VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 54985

Last change on this file since 54985 was 54908, checked in by vboxsync, 10 years ago

VMM: Rename variable to better reflect its purpose.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 506.2 KB
Line 
1/* $Id: HMVMXR0.cpp 54908 2015-03-23 12:03:18Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/x86.h>
23#include <iprt/asm-amd64-x86.h>
24#include <iprt/thread.h>
25
26#include "HMInternal.h"
27#include <VBox/vmm/vm.h>
28#include "HMVMXR0.h"
29#include <VBox/vmm/pdmapi.h>
30#include <VBox/vmm/dbgf.h>
31#include <VBox/vmm/iem.h>
32#include <VBox/vmm/iom.h>
33#include <VBox/vmm/selm.h>
34#include <VBox/vmm/tm.h>
35#include <VBox/vmm/gim.h>
36#ifdef VBOX_WITH_REM
37# include <VBox/vmm/rem.h>
38#endif
39# include "dtrace/VBoxVMM.h"
40
41#ifdef DEBUG_ramshankar
42# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
43# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
44# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
45# define HMVMX_ALWAYS_CHECK_GUEST_STATE
46# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
47# define HMVMX_ALWAYS_TRAP_PF
48# define HMVMX_ALWAYS_SWAP_FPU_STATE
49# define HMVMX_ALWAYS_FLUSH_TLB
50# define HMVMX_ALWAYS_SWAP_EFER
51#endif
52
53
54/*******************************************************************************
55* Defined Constants And Macros *
56*******************************************************************************/
57#if defined(RT_ARCH_AMD64)
58# define HMVMX_IS_64BIT_HOST_MODE() (true)
59typedef RTHCUINTREG HMVMXHCUINTREG;
60#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
61extern "C" uint32_t g_fVMXIs64bitHost;
62# define HMVMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
63typedef uint64_t HMVMXHCUINTREG;
64#else
65# define HMVMX_IS_64BIT_HOST_MODE() (false)
66typedef RTHCUINTREG HMVMXHCUINTREG;
67#endif
68
69/** Use the function table. */
70#define HMVMX_USE_FUNCTION_TABLE
71
72/** Determine which tagged-TLB flush handler to use. */
73#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
74#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
75#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
76#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
77
78/** @name Updated-guest-state flags.
79 * @{ */
80#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
81#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
82#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
83#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
84#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
85#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
86#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
87#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
88#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
89#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
90#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
91#define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
92#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
93#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
94#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
95#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
96#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
97#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
98#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
99#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
100#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
101 | HMVMX_UPDATED_GUEST_RSP \
102 | HMVMX_UPDATED_GUEST_RFLAGS \
103 | HMVMX_UPDATED_GUEST_CR0 \
104 | HMVMX_UPDATED_GUEST_CR3 \
105 | HMVMX_UPDATED_GUEST_CR4 \
106 | HMVMX_UPDATED_GUEST_GDTR \
107 | HMVMX_UPDATED_GUEST_IDTR \
108 | HMVMX_UPDATED_GUEST_LDTR \
109 | HMVMX_UPDATED_GUEST_TR \
110 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
111 | HMVMX_UPDATED_GUEST_DEBUG \
112 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
113 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
114 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
115 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
116 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
117 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
118 | HMVMX_UPDATED_GUEST_INTR_STATE \
119 | HMVMX_UPDATED_GUEST_APIC_STATE)
120/** @} */
121
122/** @name
123 * Flags to skip redundant reads of some common VMCS fields that are not part of
124 * the guest-CPU state but are in the transient structure.
125 */
126#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
127#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
128#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
129#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
130#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
131#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
132#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
133/** @} */
134
135/** @name
136 * States of the VMCS.
137 *
138 * This does not reflect all possible VMCS states but currently only those
139 * needed for maintaining the VMCS consistently even when thread-context hooks
140 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
141 */
142#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
143#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
144#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
145/** @} */
146
147/**
148 * Exception bitmap mask for real-mode guests (real-on-v86).
149 *
150 * We need to intercept all exceptions manually except:
151 * - #NM, #MF handled in hmR0VmxLoadSharedCR0().
152 * - #DB handled in hmR0VmxLoadSharedDebugState().
153 * - #PF need not be intercepted even in real-mode if we have Nested Paging
154 * support.
155 */
156#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
157 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
158 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
159 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
160 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
161 /* RT_BIT(X86_XCPT_MF) */ | RT_BIT(X86_XCPT_AC) | RT_BIT(X86_XCPT_MC) \
162 | RT_BIT(X86_XCPT_XF))
163
164/**
165 * Exception bitmap mask for all contributory exceptions.
166 *
167 * Page fault is deliberately excluded here as it's conditional as to whether
168 * it's contributory or benign. Page faults are handled separately.
169 */
170#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
171 | RT_BIT(X86_XCPT_DE))
172
173/** Maximum VM-instruction error number. */
174#define HMVMX_INSTR_ERROR_MAX 28
175
176/** Profiling macro. */
177#ifdef HM_PROFILE_EXIT_DISPATCH
178# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
179# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
180#else
181# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
182# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
183#endif
184
185/** Assert that preemption is disabled or covered by thread-context hooks. */
186#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
187 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
188
189/** Assert that we haven't migrated CPUs when thread-context hooks are not
190 * used. */
191#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
192 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
193 ("Illegal migration! Entered on CPU %u Current %u\n", \
194 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
195
196/** Helper macro for VM-exit handlers called unexpectedly. */
197#define HMVMX_RETURN_UNEXPECTED_EXIT() \
198 do { \
199 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
200 return VERR_VMX_UNEXPECTED_EXIT; \
201 } while (0)
202
203
204/*******************************************************************************
205* Structures and Typedefs *
206*******************************************************************************/
207/**
208 * VMX transient state.
209 *
210 * A state structure for holding miscellaneous information across
211 * VMX non-root operation and restored after the transition.
212 */
213typedef struct VMXTRANSIENT
214{
215 /** The host's rflags/eflags. */
216 RTCCUINTREG uEflags;
217#if HC_ARCH_BITS == 32
218 uint32_t u32Alignment0;
219#endif
220 /** The guest's TPR value used for TPR shadowing. */
221 uint8_t u8GuestTpr;
222 /** Alignment. */
223 uint8_t abAlignment0[7];
224
225 /** The basic VM-exit reason. */
226 uint16_t uExitReason;
227 /** Alignment. */
228 uint16_t u16Alignment0;
229 /** The VM-exit interruption error code. */
230 uint32_t uExitIntErrorCode;
231 /** The VM-exit exit code qualification. */
232 uint64_t uExitQualification;
233
234 /** The VM-exit interruption-information field. */
235 uint32_t uExitIntInfo;
236 /** The VM-exit instruction-length field. */
237 uint32_t cbInstr;
238 /** The VM-exit instruction-information field. */
239 union
240 {
241 /** Plain unsigned int representation. */
242 uint32_t u;
243 /** INS and OUTS information. */
244 struct
245 {
246 uint32_t u6Reserved0 : 7;
247 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
248 uint32_t u3AddrSize : 3;
249 uint32_t u5Reserved1 : 5;
250 /** The segment register (X86_SREG_XXX). */
251 uint32_t iSegReg : 3;
252 uint32_t uReserved2 : 14;
253 } StrIo;
254 } ExitInstrInfo;
255 /** Whether the VM-entry failed or not. */
256 bool fVMEntryFailed;
257 /** Alignment. */
258 uint8_t abAlignment1[3];
259
260 /** The VM-entry interruption-information field. */
261 uint32_t uEntryIntInfo;
262 /** The VM-entry exception error code field. */
263 uint32_t uEntryXcptErrorCode;
264 /** The VM-entry instruction length field. */
265 uint32_t cbEntryInstr;
266
267 /** IDT-vectoring information field. */
268 uint32_t uIdtVectoringInfo;
269 /** IDT-vectoring error code. */
270 uint32_t uIdtVectoringErrorCode;
271
272 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
273 uint32_t fVmcsFieldsRead;
274
275 /** Whether the guest FPU was active at the time of VM-exit. */
276 bool fWasGuestFPUStateActive;
277 /** Whether the guest debug state was active at the time of VM-exit. */
278 bool fWasGuestDebugStateActive;
279 /** Whether the hyper debug state was active at the time of VM-exit. */
280 bool fWasHyperDebugStateActive;
281 /** Whether TSC-offsetting should be setup before VM-entry. */
282 bool fUpdateTscOffsettingAndPreemptTimer;
283 /** Whether the VM-exit was caused by a page-fault during delivery of a
284 * contributory exception or a page-fault. */
285 bool fVectoringDoublePF;
286 /** Whether the VM-exit was caused by a page-fault during delivery of an
287 * external interrupt or NMI. */
288 bool fVectoringPF;
289} VMXTRANSIENT;
290AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
291AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
292AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
293AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
294AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
295/** Pointer to VMX transient state. */
296typedef VMXTRANSIENT *PVMXTRANSIENT;
297
298
299/**
300 * MSR-bitmap read permissions.
301 */
302typedef enum VMXMSREXITREAD
303{
304 /** Reading this MSR causes a VM-exit. */
305 VMXMSREXIT_INTERCEPT_READ = 0xb,
306 /** Reading this MSR does not cause a VM-exit. */
307 VMXMSREXIT_PASSTHRU_READ
308} VMXMSREXITREAD;
309/** Pointer to MSR-bitmap read permissions. */
310typedef VMXMSREXITREAD* PVMXMSREXITREAD;
311
312/**
313 * MSR-bitmap write permissions.
314 */
315typedef enum VMXMSREXITWRITE
316{
317 /** Writing to this MSR causes a VM-exit. */
318 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
319 /** Writing to this MSR does not cause a VM-exit. */
320 VMXMSREXIT_PASSTHRU_WRITE
321} VMXMSREXITWRITE;
322/** Pointer to MSR-bitmap write permissions. */
323typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
324
325
326/**
327 * VMX VM-exit handler.
328 *
329 * @returns VBox status code.
330 * @param pVCpu Pointer to the VMCPU.
331 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
332 * out-of-sync. Make sure to update the required
333 * fields before using them.
334 * @param pVmxTransient Pointer to the VMX-transient structure.
335 */
336#ifndef HMVMX_USE_FUNCTION_TABLE
337typedef int FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
338#else
339typedef DECLCALLBACK(int) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
340/** Pointer to VM-exit handler. */
341typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
342#endif
343
344
345/*******************************************************************************
346* Internal Functions *
347*******************************************************************************/
348static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
349static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
350static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
351 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
352 bool fStepping, uint32_t *puIntState);
353#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
354static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
355#endif
356#ifndef HMVMX_USE_FUNCTION_TABLE
357DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
358# define HMVMX_EXIT_DECL static int
359#else
360# define HMVMX_EXIT_DECL static DECLCALLBACK(int)
361#endif
362DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitStep(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
363 uint32_t uExitReason, uint16_t uCsStart, uint64_t uRipStart);
364
365/** @name VM-exit handlers.
366 * @{
367 */
368static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
369static FNVMXEXITHANDLER hmR0VmxExitExtInt;
370static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
371static FNVMXEXITHANDLER hmR0VmxExitInitSignal;
372static FNVMXEXITHANDLER hmR0VmxExitSipi;
373static FNVMXEXITHANDLER hmR0VmxExitIoSmi;
374static FNVMXEXITHANDLER hmR0VmxExitSmi;
375static FNVMXEXITHANDLER hmR0VmxExitIntWindow;
376static FNVMXEXITHANDLER hmR0VmxExitNmiWindow;
377static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
378static FNVMXEXITHANDLER hmR0VmxExitCpuid;
379static FNVMXEXITHANDLER hmR0VmxExitGetsec;
380static FNVMXEXITHANDLER hmR0VmxExitHlt;
381static FNVMXEXITHANDLER hmR0VmxExitInvd;
382static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
383static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
384static FNVMXEXITHANDLER hmR0VmxExitVmcall;
385static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
386static FNVMXEXITHANDLER hmR0VmxExitRsm;
387static FNVMXEXITHANDLER hmR0VmxExitSetPendingXcptUD;
388static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
389static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
390static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
391static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
392static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
393static FNVMXEXITHANDLER hmR0VmxExitErrInvalidGuestState;
394static FNVMXEXITHANDLER hmR0VmxExitErrMsrLoad;
395static FNVMXEXITHANDLER hmR0VmxExitErrUndefined;
396static FNVMXEXITHANDLER hmR0VmxExitMwait;
397static FNVMXEXITHANDLER hmR0VmxExitMtf;
398static FNVMXEXITHANDLER hmR0VmxExitMonitor;
399static FNVMXEXITHANDLER hmR0VmxExitPause;
400static FNVMXEXITHANDLER hmR0VmxExitErrMachineCheck;
401static FNVMXEXITHANDLER hmR0VmxExitTprBelowThreshold;
402static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
403static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
404static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
405static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
406static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
407static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
408static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
409static FNVMXEXITHANDLER hmR0VmxExitWbinvd;
410static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
411static FNVMXEXITHANDLER hmR0VmxExitRdrand;
412static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
413/** @} */
414
415static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
416static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
417static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
418static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
419static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
420static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
421#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
422static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
423#endif
424static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
425
426/*******************************************************************************
427* Global Variables *
428*******************************************************************************/
429#ifdef HMVMX_USE_FUNCTION_TABLE
430
431/**
432 * VMX_EXIT dispatch table.
433 */
434static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
435{
436 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
437 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
438 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
439 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
440 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
441 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
442 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
443 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
444 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
445 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
446 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
447 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
448 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
449 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
450 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
451 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
452 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
453 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
454 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
455 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
456 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
457 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
458 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
459 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
460 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
461 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
462 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
463 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
464 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
465 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
466 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
467 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
468 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
469 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
470 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
471 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
472 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
473 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
474 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
475 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
476 /* 40 UNDEFINED */ hmR0VmxExitPause,
477 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
478 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
479 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
480 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
481 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
482 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
483 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
484 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
485 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
486 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
487 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
488 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
489 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
490 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
491 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
492 /* 56 UNDEFINED */ hmR0VmxExitErrUndefined,
493 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
494 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
495 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD
496};
497#endif /* HMVMX_USE_FUNCTION_TABLE */
498
499#ifdef VBOX_STRICT
500static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
501{
502 /* 0 */ "(Not Used)",
503 /* 1 */ "VMCALL executed in VMX root operation.",
504 /* 2 */ "VMCLEAR with invalid physical address.",
505 /* 3 */ "VMCLEAR with VMXON pointer.",
506 /* 4 */ "VMLAUNCH with non-clear VMCS.",
507 /* 5 */ "VMRESUME with non-launched VMCS.",
508 /* 6 */ "VMRESUME after VMXOFF",
509 /* 7 */ "VM-entry with invalid control fields.",
510 /* 8 */ "VM-entry with invalid host state fields.",
511 /* 9 */ "VMPTRLD with invalid physical address.",
512 /* 10 */ "VMPTRLD with VMXON pointer.",
513 /* 11 */ "VMPTRLD with incorrect revision identifier.",
514 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
515 /* 13 */ "VMWRITE to read-only VMCS component.",
516 /* 14 */ "(Not Used)",
517 /* 15 */ "VMXON executed in VMX root operation.",
518 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
519 /* 17 */ "VM-entry with non-launched executing VMCS.",
520 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
521 /* 19 */ "VMCALL with non-clear VMCS.",
522 /* 20 */ "VMCALL with invalid VM-exit control fields.",
523 /* 21 */ "(Not Used)",
524 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
525 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
526 /* 24 */ "VMCALL with invalid SMM-monitor features.",
527 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
528 /* 26 */ "VM-entry with events blocked by MOV SS.",
529 /* 27 */ "(Not Used)",
530 /* 28 */ "Invalid operand to INVEPT/INVVPID."
531};
532#endif /* VBOX_STRICT */
533
534
535
536/**
537 * Updates the VM's last error record. If there was a VMX instruction error,
538 * reads the error data from the VMCS and updates VCPU's last error record as
539 * well.
540 *
541 * @param pVM Pointer to the VM.
542 * @param pVCpu Pointer to the VMCPU (can be NULL if @a rc is not
543 * VERR_VMX_UNABLE_TO_START_VM or
544 * VERR_VMX_INVALID_VMCS_FIELD).
545 * @param rc The error code.
546 */
547static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
548{
549 AssertPtr(pVM);
550 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
551 || rc == VERR_VMX_UNABLE_TO_START_VM)
552 {
553 AssertPtrReturnVoid(pVCpu);
554 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
555 }
556 pVM->hm.s.lLastError = rc;
557}
558
559
560/**
561 * Reads the VM-entry interruption-information field from the VMCS into the VMX
562 * transient structure.
563 *
564 * @returns VBox status code.
565 * @param pVmxTransient Pointer to the VMX transient structure.
566 *
567 * @remarks No-long-jump zone!!!
568 */
569DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
570{
571 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
572 AssertRCReturn(rc, rc);
573 return VINF_SUCCESS;
574}
575
576
577/**
578 * Reads the VM-entry exception error code field from the VMCS into
579 * the VMX transient structure.
580 *
581 * @returns VBox status code.
582 * @param pVmxTransient Pointer to the VMX transient structure.
583 *
584 * @remarks No-long-jump zone!!!
585 */
586DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
587{
588 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
589 AssertRCReturn(rc, rc);
590 return VINF_SUCCESS;
591}
592
593
594/**
595 * Reads the VM-entry exception error code field from the VMCS into
596 * the VMX transient structure.
597 *
598 * @returns VBox status code.
599 * @param pVmxTransient Pointer to the VMX transient structure.
600 *
601 * @remarks No-long-jump zone!!!
602 */
603DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
604{
605 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
606 AssertRCReturn(rc, rc);
607 return VINF_SUCCESS;
608}
609
610
611/**
612 * Reads the VM-exit interruption-information field from the VMCS into the VMX
613 * transient structure.
614 *
615 * @returns VBox status code.
616 * @param pVmxTransient Pointer to the VMX transient structure.
617 */
618DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
619{
620 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
621 {
622 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
623 AssertRCReturn(rc, rc);
624 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
625 }
626 return VINF_SUCCESS;
627}
628
629
630/**
631 * Reads the VM-exit interruption error code from the VMCS into the VMX
632 * transient structure.
633 *
634 * @returns VBox status code.
635 * @param pVmxTransient Pointer to the VMX transient structure.
636 */
637DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
638{
639 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
640 {
641 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
642 AssertRCReturn(rc, rc);
643 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
644 }
645 return VINF_SUCCESS;
646}
647
648
649/**
650 * Reads the VM-exit instruction length field from the VMCS into the VMX
651 * transient structure.
652 *
653 * @returns VBox status code.
654 * @param pVCpu Pointer to the VMCPU.
655 * @param pVmxTransient Pointer to the VMX transient structure.
656 */
657DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
658{
659 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
660 {
661 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
662 AssertRCReturn(rc, rc);
663 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
664 }
665 return VINF_SUCCESS;
666}
667
668
669/**
670 * Reads the VM-exit instruction-information field from the VMCS into
671 * the VMX transient structure.
672 *
673 * @returns VBox status code.
674 * @param pVmxTransient Pointer to the VMX transient structure.
675 */
676DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
677{
678 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
679 {
680 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
681 AssertRCReturn(rc, rc);
682 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
683 }
684 return VINF_SUCCESS;
685}
686
687
688/**
689 * Reads the exit code qualification from the VMCS into the VMX transient
690 * structure.
691 *
692 * @returns VBox status code.
693 * @param pVCpu Pointer to the VMCPU (required for the VMCS cache
694 * case).
695 * @param pVmxTransient Pointer to the VMX transient structure.
696 */
697DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
698{
699 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
700 {
701 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
702 AssertRCReturn(rc, rc);
703 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
704 }
705 return VINF_SUCCESS;
706}
707
708
709/**
710 * Reads the IDT-vectoring information field from the VMCS into the VMX
711 * transient structure.
712 *
713 * @returns VBox status code.
714 * @param pVmxTransient Pointer to the VMX transient structure.
715 *
716 * @remarks No-long-jump zone!!!
717 */
718DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
719{
720 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
721 {
722 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
723 AssertRCReturn(rc, rc);
724 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
725 }
726 return VINF_SUCCESS;
727}
728
729
730/**
731 * Reads the IDT-vectoring error code from the VMCS into the VMX
732 * transient structure.
733 *
734 * @returns VBox status code.
735 * @param pVmxTransient Pointer to the VMX transient structure.
736 */
737DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
738{
739 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
740 {
741 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
742 AssertRCReturn(rc, rc);
743 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
744 }
745 return VINF_SUCCESS;
746}
747
748
749/**
750 * Enters VMX root mode operation on the current CPU.
751 *
752 * @returns VBox status code.
753 * @param pVM Pointer to the VM (optional, can be NULL, after
754 * a resume).
755 * @param HCPhysCpuPage Physical address of the VMXON region.
756 * @param pvCpuPage Pointer to the VMXON region.
757 */
758static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
759{
760 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
761 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
762 Assert(pvCpuPage);
763 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
764
765 if (pVM)
766 {
767 /* Write the VMCS revision dword to the VMXON region. */
768 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
769 }
770
771 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
772 RTCCUINTREG uEflags = ASMIntDisableFlags();
773
774 /* Enable the VMX bit in CR4 if necessary. */
775 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, ~0);
776
777 /* Enter VMX root mode. */
778 int rc = VMXEnable(HCPhysCpuPage);
779 if ( RT_FAILURE(rc)
780 && !(uOldCr4 & X86_CR4_VMXE))
781 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
782
783 /* Restore interrupts. */
784 ASMSetFlags(uEflags);
785 return rc;
786}
787
788
789/**
790 * Exits VMX root mode operation on the current CPU.
791 *
792 * @returns VBox status code.
793 */
794static int hmR0VmxLeaveRootMode(void)
795{
796 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
797
798 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
799 RTCCUINTREG uEflags = ASMIntDisableFlags();
800
801 /* If we're for some reason not in VMX root mode, then don't leave it. */
802 RTCCUINTREG uHostCR4 = ASMGetCR4();
803
804 int rc;
805 if (uHostCR4 & X86_CR4_VMXE)
806 {
807 /* Exit VMX root mode and clear the VMX bit in CR4. */
808 VMXDisable();
809 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
810 rc = VINF_SUCCESS;
811 }
812 else
813 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
814
815 /* Restore interrupts. */
816 ASMSetFlags(uEflags);
817 return rc;
818}
819
820
821/**
822 * Allocates and maps one physically contiguous page. The allocated page is
823 * zero'd out. (Used by various VT-x structures).
824 *
825 * @returns IPRT status code.
826 * @param pMemObj Pointer to the ring-0 memory object.
827 * @param ppVirt Where to store the virtual address of the
828 * allocation.
829 * @param pPhys Where to store the physical address of the
830 * allocation.
831 */
832DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
833{
834 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
835 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
836 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
837
838 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
839 if (RT_FAILURE(rc))
840 return rc;
841 *ppVirt = RTR0MemObjAddress(*pMemObj);
842 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
843 ASMMemZero32(*ppVirt, PAGE_SIZE);
844 return VINF_SUCCESS;
845}
846
847
848/**
849 * Frees and unmaps an allocated physical page.
850 *
851 * @param pMemObj Pointer to the ring-0 memory object.
852 * @param ppVirt Where to re-initialize the virtual address of
853 * allocation as 0.
854 * @param pHCPhys Where to re-initialize the physical address of the
855 * allocation as 0.
856 */
857DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
858{
859 AssertPtr(pMemObj);
860 AssertPtr(ppVirt);
861 AssertPtr(pHCPhys);
862 if (*pMemObj != NIL_RTR0MEMOBJ)
863 {
864 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
865 AssertRC(rc);
866 *pMemObj = NIL_RTR0MEMOBJ;
867 *ppVirt = 0;
868 *pHCPhys = 0;
869 }
870}
871
872
873/**
874 * Worker function to free VT-x related structures.
875 *
876 * @returns IPRT status code.
877 * @param pVM Pointer to the VM.
878 */
879static void hmR0VmxStructsFree(PVM pVM)
880{
881 for (VMCPUID i = 0; i < pVM->cCpus; i++)
882 {
883 PVMCPU pVCpu = &pVM->aCpus[i];
884 AssertPtr(pVCpu);
885
886 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
887 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
888
889 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
890 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
891
892 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
893 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
894 }
895
896 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
897#ifdef VBOX_WITH_CRASHDUMP_MAGIC
898 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
899#endif
900}
901
902
903/**
904 * Worker function to allocate VT-x related VM structures.
905 *
906 * @returns IPRT status code.
907 * @param pVM Pointer to the VM.
908 */
909static int hmR0VmxStructsAlloc(PVM pVM)
910{
911 /*
912 * Initialize members up-front so we can cleanup properly on allocation failure.
913 */
914#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
915 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
916 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
917 pVM->hm.s.vmx.HCPhys##a_Name = 0;
918
919#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
920 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
921 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
922 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
923
924#ifdef VBOX_WITH_CRASHDUMP_MAGIC
925 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
926#endif
927 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
928
929 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
930 for (VMCPUID i = 0; i < pVM->cCpus; i++)
931 {
932 PVMCPU pVCpu = &pVM->aCpus[i];
933 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
934 VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
935 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
936 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
937 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
938 }
939#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
940#undef VMXLOCAL_INIT_VM_MEMOBJ
941
942 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
943 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
944 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
945 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
946
947 /*
948 * Allocate all the VT-x structures.
949 */
950 int rc = VINF_SUCCESS;
951#ifdef VBOX_WITH_CRASHDUMP_MAGIC
952 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
953 if (RT_FAILURE(rc))
954 goto cleanup;
955 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
956 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
957#endif
958
959 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
960 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
961 {
962 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
963 &pVM->hm.s.vmx.HCPhysApicAccess);
964 if (RT_FAILURE(rc))
965 goto cleanup;
966 }
967
968 /*
969 * Initialize per-VCPU VT-x structures.
970 */
971 for (VMCPUID i = 0; i < pVM->cCpus; i++)
972 {
973 PVMCPU pVCpu = &pVM->aCpus[i];
974 AssertPtr(pVCpu);
975
976 /* Allocate the VM control structure (VMCS). */
977 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
978 if (RT_FAILURE(rc))
979 goto cleanup;
980
981 /* Allocate the Virtual-APIC page for transparent TPR accesses. */
982 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
983 {
984 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
985 &pVCpu->hm.s.vmx.HCPhysVirtApic);
986 if (RT_FAILURE(rc))
987 goto cleanup;
988 }
989
990 /*
991 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
992 * transparent accesses of specific MSRs.
993 *
994 * If the condition for enabling MSR bitmaps changes here, don't forget to
995 * update HMIsMsrBitmapsAvailable().
996 */
997 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
998 {
999 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1000 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1001 if (RT_FAILURE(rc))
1002 goto cleanup;
1003 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1004 }
1005
1006 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1007 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1008 if (RT_FAILURE(rc))
1009 goto cleanup;
1010
1011 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1012 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1013 if (RT_FAILURE(rc))
1014 goto cleanup;
1015 }
1016
1017 return VINF_SUCCESS;
1018
1019cleanup:
1020 hmR0VmxStructsFree(pVM);
1021 return rc;
1022}
1023
1024
1025/**
1026 * Does global VT-x initialization (called during module initialization).
1027 *
1028 * @returns VBox status code.
1029 */
1030VMMR0DECL(int) VMXR0GlobalInit(void)
1031{
1032#ifdef HMVMX_USE_FUNCTION_TABLE
1033 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1034# ifdef VBOX_STRICT
1035 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1036 Assert(g_apfnVMExitHandlers[i]);
1037# endif
1038#endif
1039 return VINF_SUCCESS;
1040}
1041
1042
1043/**
1044 * Does global VT-x termination (called during module termination).
1045 */
1046VMMR0DECL(void) VMXR0GlobalTerm()
1047{
1048 /* Nothing to do currently. */
1049}
1050
1051
1052/**
1053 * Sets up and activates VT-x on the current CPU.
1054 *
1055 * @returns VBox status code.
1056 * @param pCpu Pointer to the global CPU info struct.
1057 * @param pVM Pointer to the VM (can be NULL after a host resume
1058 * operation).
1059 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1060 * fEnabledByHost is true).
1061 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1062 * @a fEnabledByHost is true).
1063 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1064 * enable VT-x on the host.
1065 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1066 */
1067VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1068 void *pvMsrs)
1069{
1070 Assert(pCpu);
1071 Assert(pvMsrs);
1072 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1073
1074 /* Enable VT-x if it's not already enabled by the host. */
1075 if (!fEnabledByHost)
1076 {
1077 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1078 if (RT_FAILURE(rc))
1079 return rc;
1080 }
1081
1082 /*
1083 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1084 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1085 */
1086 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1087 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1088 {
1089 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1090 pCpu->fFlushAsidBeforeUse = false;
1091 }
1092 else
1093 pCpu->fFlushAsidBeforeUse = true;
1094
1095 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1096 ++pCpu->cTlbFlushes;
1097
1098 return VINF_SUCCESS;
1099}
1100
1101
1102/**
1103 * Deactivates VT-x on the current CPU.
1104 *
1105 * @returns VBox status code.
1106 * @param pCpu Pointer to the global CPU info struct.
1107 * @param pvCpuPage Pointer to the VMXON region.
1108 * @param HCPhysCpuPage Physical address of the VMXON region.
1109 *
1110 * @remarks This function should never be called when SUPR0EnableVTx() or
1111 * similar was used to enable VT-x on the host.
1112 */
1113VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1114{
1115 NOREF(pCpu);
1116 NOREF(pvCpuPage);
1117 NOREF(HCPhysCpuPage);
1118
1119 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1120 return hmR0VmxLeaveRootMode();
1121}
1122
1123
1124/**
1125 * Sets the permission bits for the specified MSR in the MSR bitmap.
1126 *
1127 * @param pVCpu Pointer to the VMCPU.
1128 * @param uMSR The MSR value.
1129 * @param enmRead Whether reading this MSR causes a VM-exit.
1130 * @param enmWrite Whether writing this MSR causes a VM-exit.
1131 */
1132static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1133{
1134 int32_t iBit;
1135 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1136
1137 /*
1138 * Layout:
1139 * 0x000 - 0x3ff - Low MSR read bits
1140 * 0x400 - 0x7ff - High MSR read bits
1141 * 0x800 - 0xbff - Low MSR write bits
1142 * 0xc00 - 0xfff - High MSR write bits
1143 */
1144 if (uMsr <= 0x00001FFF)
1145 iBit = uMsr;
1146 else if ( uMsr >= 0xC0000000
1147 && uMsr <= 0xC0001FFF)
1148 {
1149 iBit = (uMsr - 0xC0000000);
1150 pbMsrBitmap += 0x400;
1151 }
1152 else
1153 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1154
1155 Assert(iBit <= 0x1fff);
1156 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1157 ASMBitSet(pbMsrBitmap, iBit);
1158 else
1159 ASMBitClear(pbMsrBitmap, iBit);
1160
1161 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1162 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1163 else
1164 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1165}
1166
1167
1168#ifdef VBOX_STRICT
1169/**
1170 * Gets the permission bits for the specified MSR in the MSR bitmap.
1171 *
1172 * @returns VBox status code.
1173 * @retval VINF_SUCCESS if the specified MSR is found.
1174 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1175 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1176 *
1177 * @param pVCpu Pointer to the VMCPU.
1178 * @param uMsr The MSR.
1179 * @param penmRead Where to store the read permissions.
1180 * @param penmWrite Where to store the write permissions.
1181 */
1182static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1183{
1184 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1185 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1186 int32_t iBit;
1187 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1188
1189 /* See hmR0VmxSetMsrPermission() for the layout. */
1190 if (uMsr <= 0x00001FFF)
1191 iBit = uMsr;
1192 else if ( uMsr >= 0xC0000000
1193 && uMsr <= 0xC0001FFF)
1194 {
1195 iBit = (uMsr - 0xC0000000);
1196 pbMsrBitmap += 0x400;
1197 }
1198 else
1199 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1200
1201 Assert(iBit <= 0x1fff);
1202 if (ASMBitTest(pbMsrBitmap, iBit))
1203 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1204 else
1205 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1206
1207 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1208 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1209 else
1210 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1211 return VINF_SUCCESS;
1212}
1213#endif /* VBOX_STRICT */
1214
1215
1216/**
1217 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1218 * area.
1219 *
1220 * @returns VBox status code.
1221 * @param pVCpu Pointer to the VMCPU.
1222 * @param cMsrs The number of MSRs.
1223 */
1224DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1225{
1226 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1227 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1228 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1229 {
1230 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1231 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1232 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1233 }
1234
1235 /* Update number of guest MSRs to load/store across the world-switch. */
1236 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRCReturn(rc, rc);
1237 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRCReturn(rc, rc);
1238
1239 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1240 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRCReturn(rc, rc);
1241
1242 /* Update the VCPU's copy of the MSR count. */
1243 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1244
1245 return VINF_SUCCESS;
1246}
1247
1248
1249/**
1250 * Adds a new (or updates the value of an existing) guest/host MSR
1251 * pair to be swapped during the world-switch as part of the
1252 * auto-load/store MSR area in the VMCS.
1253 *
1254 * @returns true if the MSR was added -and- its value was updated, false
1255 * otherwise.
1256 * @param pVCpu Pointer to the VMCPU.
1257 * @param uMsr The MSR.
1258 * @param uGuestMsr Value of the guest MSR.
1259 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1260 * necessary.
1261 */
1262static bool hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr)
1263{
1264 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1265 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1266 uint32_t i;
1267 for (i = 0; i < cMsrs; i++)
1268 {
1269 if (pGuestMsr->u32Msr == uMsr)
1270 break;
1271 pGuestMsr++;
1272 }
1273
1274 bool fAdded = false;
1275 if (i == cMsrs)
1276 {
1277 ++cMsrs;
1278 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1279 AssertRC(rc);
1280
1281 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1282 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1283 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1284
1285 fAdded = true;
1286 }
1287
1288 /* Update the MSR values in the auto-load/store MSR area. */
1289 pGuestMsr->u32Msr = uMsr;
1290 pGuestMsr->u64Value = uGuestMsrValue;
1291
1292 /* Create/update the MSR slot in the host MSR area. */
1293 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1294 pHostMsr += i;
1295 pHostMsr->u32Msr = uMsr;
1296
1297 /*
1298 * Update the host MSR only when requested by the caller AND when we're
1299 * adding it to the auto-load/store area. Otherwise, it would have been
1300 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1301 */
1302 bool fUpdatedMsrValue = false;
1303 if ( fAdded
1304 && fUpdateHostMsr)
1305 {
1306 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1307 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1308 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1309 fUpdatedMsrValue = true;
1310 }
1311
1312 return fUpdatedMsrValue;
1313}
1314
1315
1316/**
1317 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1318 * auto-load/store MSR area in the VMCS.
1319 *
1320 * @returns VBox status code.
1321 * @param pVCpu Pointer to the VMCPU.
1322 * @param uMsr The MSR.
1323 */
1324static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1325{
1326 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1327 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1328 for (uint32_t i = 0; i < cMsrs; i++)
1329 {
1330 /* Find the MSR. */
1331 if (pGuestMsr->u32Msr == uMsr)
1332 {
1333 /* If it's the last MSR, simply reduce the count. */
1334 if (i == cMsrs - 1)
1335 {
1336 --cMsrs;
1337 break;
1338 }
1339
1340 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1341 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1342 pLastGuestMsr += cMsrs - 1;
1343 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1344 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1345
1346 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1347 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1348 pLastHostMsr += cMsrs - 1;
1349 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1350 pHostMsr->u64Value = pLastHostMsr->u64Value;
1351 --cMsrs;
1352 break;
1353 }
1354 pGuestMsr++;
1355 }
1356
1357 /* Update the VMCS if the count changed (meaning the MSR was found). */
1358 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1359 {
1360 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1361 AssertRCReturn(rc, rc);
1362
1363 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1364 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1365 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1366
1367 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1368 return VINF_SUCCESS;
1369 }
1370
1371 return VERR_NOT_FOUND;
1372}
1373
1374
1375/**
1376 * Checks if the specified guest MSR is part of the auto-load/store area in
1377 * the VMCS.
1378 *
1379 * @returns true if found, false otherwise.
1380 * @param pVCpu Pointer to the VMCPU.
1381 * @param uMsr The MSR to find.
1382 */
1383static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1384{
1385 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1386 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1387
1388 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1389 {
1390 if (pGuestMsr->u32Msr == uMsr)
1391 return true;
1392 }
1393 return false;
1394}
1395
1396
1397/**
1398 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1399 *
1400 * @param pVCpu Pointer to the VMCPU.
1401 *
1402 * @remarks No-long-jump zone!!!
1403 */
1404static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1405{
1406 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1407 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1408 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1409 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1410
1411 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1412 {
1413 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1414
1415 /*
1416 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1417 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1418 */
1419 if (pHostMsr->u32Msr == MSR_K6_EFER)
1420 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1421 else
1422 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1423 }
1424
1425 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1426}
1427
1428
1429#if HC_ARCH_BITS == 64
1430/**
1431 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1432 * perform lazy restoration of the host MSRs while leaving VT-x.
1433 *
1434 * @param pVCpu Pointer to the VMCPU.
1435 *
1436 * @remarks No-long-jump zone!!!
1437 */
1438static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1439{
1440 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1441
1442 /*
1443 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1444 */
1445 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
1446 {
1447 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1448 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1449 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1450 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1451 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1452 }
1453}
1454
1455
1456/**
1457 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1458 * lazily while leaving VT-x.
1459 *
1460 * @returns true if it does, false otherwise.
1461 * @param pVCpu Pointer to the VMCPU.
1462 * @param uMsr The MSR to check.
1463 */
1464static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1465{
1466 NOREF(pVCpu);
1467 switch (uMsr)
1468 {
1469 case MSR_K8_LSTAR:
1470 case MSR_K6_STAR:
1471 case MSR_K8_SF_MASK:
1472 case MSR_K8_KERNEL_GS_BASE:
1473 return true;
1474 }
1475 return false;
1476}
1477
1478
1479/**
1480 * Saves a set of guest MSRs back into the guest-CPU context.
1481 *
1482 * @param pVCpu Pointer to the VMCPU.
1483 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1484 * out-of-sync. Make sure to update the required fields
1485 * before using them.
1486 *
1487 * @remarks No-long-jump zone!!!
1488 */
1489static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1490{
1491 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1492 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1493
1494 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1495 {
1496 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1497 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1498 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1499 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1500 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1501 }
1502}
1503
1504
1505/**
1506 * Loads a set of guests MSRs to allow read/passthru to the guest.
1507 *
1508 * The name of this function is slightly confusing. This function does NOT
1509 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1510 * common prefix for functions dealing with "lazy restoration" of the shared
1511 * MSRs.
1512 *
1513 * @param pVCpu Pointer to the VMCPU.
1514 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1515 * out-of-sync. Make sure to update the required fields
1516 * before using them.
1517 *
1518 * @remarks No-long-jump zone!!!
1519 */
1520static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1521{
1522 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1523 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1524
1525#define VMXLOCAL_LAZY_LOAD_GUEST_MSR(uMsr, a_GuestMsr, a_HostMsr) \
1526 do { \
1527 if (pMixedCtx->msr##a_GuestMsr != pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr) \
1528 ASMWrMsr(uMsr, pMixedCtx->msr##a_GuestMsr); \
1529 else \
1530 Assert(ASMRdMsr(uMsr) == pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr); \
1531 } while (0)
1532
1533 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1534 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
1535 {
1536 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_LSTAR, LSTAR, LStar);
1537 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K6_STAR, STAR, Star);
1538 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_SF_MASK, SFMASK, SFMask);
1539 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_KERNEL_GS_BASE, KERNELGSBASE, KernelGSBase);
1540 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1541 }
1542 else
1543 {
1544 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
1545 ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
1546 ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
1547 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
1548 }
1549
1550#undef VMXLOCAL_LAZY_LOAD_GUEST_MSR
1551}
1552
1553
1554/**
1555 * Performs lazy restoration of the set of host MSRs if they were previously
1556 * loaded with guest MSR values.
1557 *
1558 * @param pVCpu Pointer to the VMCPU.
1559 *
1560 * @remarks No-long-jump zone!!!
1561 * @remarks The guest MSRs should have been saved back into the guest-CPU
1562 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1563 */
1564static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1565{
1566 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1567 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1568
1569 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1570 {
1571 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1572 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1573 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1574 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1575 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1576 }
1577 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1578}
1579#endif /* HC_ARCH_BITS == 64 */
1580
1581
1582/**
1583 * Verifies that our cached values of the VMCS controls are all
1584 * consistent with what's actually present in the VMCS.
1585 *
1586 * @returns VBox status code.
1587 * @param pVCpu Pointer to the VMCPU.
1588 */
1589static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1590{
1591 uint32_t u32Val;
1592 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1593 AssertRCReturn(rc, rc);
1594 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1595 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1596
1597 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1598 AssertRCReturn(rc, rc);
1599 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1600 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1601
1602 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1603 AssertRCReturn(rc, rc);
1604 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1605 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1606
1607 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1608 AssertRCReturn(rc, rc);
1609 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1610 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1611
1612 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1613 {
1614 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1615 AssertRCReturn(rc, rc);
1616 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1617 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1618 }
1619
1620 return VINF_SUCCESS;
1621}
1622
1623
1624#ifdef VBOX_STRICT
1625/**
1626 * Verifies that our cached host EFER value has not changed
1627 * since we cached it.
1628 *
1629 * @param pVCpu Pointer to the VMCPU.
1630 */
1631static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1632{
1633 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1634
1635 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1636 {
1637 uint64_t u64Val;
1638 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_FIELD_EFER_FULL, &u64Val);
1639 AssertRC(rc);
1640
1641 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1642 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1643 }
1644}
1645
1646
1647/**
1648 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1649 * VMCS are correct.
1650 *
1651 * @param pVCpu Pointer to the VMCPU.
1652 */
1653static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1654{
1655 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1656
1657 /* Verify MSR counts in the VMCS are what we think it should be. */
1658 uint32_t cMsrs;
1659 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1660 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1661
1662 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1663 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1664
1665 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1666 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1667
1668 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1669 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1670 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1671 {
1672 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1673 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1674 pGuestMsr->u32Msr, cMsrs));
1675
1676 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1677 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1678 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1679
1680 /* Verify that the permissions are as expected in the MSR bitmap. */
1681 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1682 {
1683 VMXMSREXITREAD enmRead;
1684 VMXMSREXITWRITE enmWrite;
1685 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1686 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1687 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1688 {
1689 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1690 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1691 }
1692 else
1693 {
1694 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1695 pGuestMsr->u32Msr, cMsrs));
1696 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1697 pGuestMsr->u32Msr, cMsrs));
1698 }
1699 }
1700 }
1701}
1702#endif /* VBOX_STRICT */
1703
1704
1705/**
1706 * Flushes the TLB using EPT.
1707 *
1708 * @returns VBox status code.
1709 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1710 * enmFlush).
1711 * @param enmFlush Type of flush.
1712 *
1713 * @remarks Caller is responsible for making sure this function is called only
1714 * when NestedPaging is supported and providing @a enmFlush that is
1715 * supported by the CPU.
1716 * @remarks Can be called with interrupts disabled.
1717 */
1718static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1719{
1720 uint64_t au64Descriptor[2];
1721 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1722 au64Descriptor[0] = 0;
1723 else
1724 {
1725 Assert(pVCpu);
1726 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1727 }
1728 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1729
1730 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1731 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1732 rc));
1733 if ( RT_SUCCESS(rc)
1734 && pVCpu)
1735 {
1736 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1737 }
1738}
1739
1740
1741/**
1742 * Flushes the TLB using VPID.
1743 *
1744 * @returns VBox status code.
1745 * @param pVM Pointer to the VM.
1746 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1747 * enmFlush).
1748 * @param enmFlush Type of flush.
1749 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1750 * on @a enmFlush).
1751 *
1752 * @remarks Can be called with interrupts disabled.
1753 */
1754static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1755{
1756 NOREF(pVM);
1757 AssertPtr(pVM);
1758 Assert(pVM->hm.s.vmx.fVpid);
1759
1760 uint64_t au64Descriptor[2];
1761 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1762 {
1763 au64Descriptor[0] = 0;
1764 au64Descriptor[1] = 0;
1765 }
1766 else
1767 {
1768 AssertPtr(pVCpu);
1769 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1770 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1771 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1772 au64Descriptor[1] = GCPtr;
1773 }
1774
1775 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1776 AssertMsg(rc == VINF_SUCCESS,
1777 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1778 if ( RT_SUCCESS(rc)
1779 && pVCpu)
1780 {
1781 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1782 }
1783}
1784
1785
1786/**
1787 * Invalidates a guest page by guest virtual address. Only relevant for
1788 * EPT/VPID, otherwise there is nothing really to invalidate.
1789 *
1790 * @returns VBox status code.
1791 * @param pVM Pointer to the VM.
1792 * @param pVCpu Pointer to the VMCPU.
1793 * @param GCVirt Guest virtual address of the page to invalidate.
1794 */
1795VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1796{
1797 AssertPtr(pVM);
1798 AssertPtr(pVCpu);
1799 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1800
1801 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1802 if (!fFlushPending)
1803 {
1804 /*
1805 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1806 * See @bugref{6043} and @bugref{6177}.
1807 *
1808 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1809 * function maybe called in a loop with individual addresses.
1810 */
1811 if (pVM->hm.s.vmx.fVpid)
1812 {
1813 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1814 {
1815 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1816 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1817 }
1818 else
1819 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1820 }
1821 else if (pVM->hm.s.fNestedPaging)
1822 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1823 }
1824
1825 return VINF_SUCCESS;
1826}
1827
1828
1829/**
1830 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1831 * otherwise there is nothing really to invalidate.
1832 *
1833 * @returns VBox status code.
1834 * @param pVM Pointer to the VM.
1835 * @param pVCpu Pointer to the VMCPU.
1836 * @param GCPhys Guest physical address of the page to invalidate.
1837 */
1838VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1839{
1840 NOREF(pVM); NOREF(GCPhys);
1841 LogFlowFunc(("%RGp\n", GCPhys));
1842
1843 /*
1844 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1845 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1846 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1847 */
1848 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1849 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1850 return VINF_SUCCESS;
1851}
1852
1853
1854/**
1855 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1856 * case where neither EPT nor VPID is supported by the CPU.
1857 *
1858 * @param pVM Pointer to the VM.
1859 * @param pVCpu Pointer to the VMCPU.
1860 * @param pCpu Pointer to the global HM struct.
1861 *
1862 * @remarks Called with interrupts disabled.
1863 */
1864static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1865{
1866 AssertPtr(pVCpu);
1867 AssertPtr(pCpu);
1868 NOREF(pVM);
1869
1870 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1871
1872 /** @todo TLB shootdown is currently not used. See hmQueueInvlPage(). */
1873#if 0
1874 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1875 pVCpu->hm.s.TlbShootdown.cPages = 0;
1876#endif
1877
1878 Assert(pCpu->idCpu != NIL_RTCPUID);
1879 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1880 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1881 pVCpu->hm.s.fForceTLBFlush = false;
1882 return;
1883}
1884
1885
1886/**
1887 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1888 *
1889 * @param pVM Pointer to the VM.
1890 * @param pVCpu Pointer to the VMCPU.
1891 * @param pCpu Pointer to the global HM CPU struct.
1892 * @remarks All references to "ASID" in this function pertains to "VPID" in
1893 * Intel's nomenclature. The reason is, to avoid confusion in compare
1894 * statements since the host-CPU copies are named "ASID".
1895 *
1896 * @remarks Called with interrupts disabled.
1897 */
1898static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1899{
1900#ifdef VBOX_WITH_STATISTICS
1901 bool fTlbFlushed = false;
1902# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1903# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1904 if (!fTlbFlushed) \
1905 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1906 } while (0)
1907#else
1908# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1909# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1910#endif
1911
1912 AssertPtr(pVM);
1913 AssertPtr(pCpu);
1914 AssertPtr(pVCpu);
1915 Assert(pCpu->idCpu != NIL_RTCPUID);
1916
1917 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1918 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1919 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1920
1921 /*
1922 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1923 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1924 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1925 */
1926 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1927 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1928 {
1929 ++pCpu->uCurrentAsid;
1930 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1931 {
1932 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1933 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1934 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1935 }
1936
1937 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1938 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1939 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1940
1941 /*
1942 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1943 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1944 */
1945 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1946 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1947 HMVMX_SET_TAGGED_TLB_FLUSHED();
1948 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
1949 }
1950
1951 /* Check for explicit TLB shootdowns. */
1952 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1953 {
1954 /*
1955 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
1956 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
1957 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
1958 * but not guest-physical mappings.
1959 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
1960 */
1961 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1962 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1963 HMVMX_SET_TAGGED_TLB_FLUSHED();
1964 }
1965
1966 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
1967 * where it is commented out. Support individual entry flushing
1968 * someday. */
1969#if 0
1970 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1971 {
1972 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1973
1974 /*
1975 * Flush individual guest entries using VPID from the TLB or as little as possible with EPT
1976 * as supported by the CPU.
1977 */
1978 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1979 {
1980 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1981 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
1982 }
1983 else
1984 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1985
1986 HMVMX_SET_TAGGED_TLB_FLUSHED();
1987 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1988 pVCpu->hm.s.TlbShootdown.cPages = 0;
1989 }
1990#endif
1991
1992 pVCpu->hm.s.fForceTLBFlush = false;
1993
1994 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1995
1996 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
1997 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
1998 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1999 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2000 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2001 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2002 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2003 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2004 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2005
2006 /* Update VMCS with the VPID. */
2007 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
2008 AssertRC(rc);
2009
2010#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2011}
2012
2013
2014/**
2015 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2016 *
2017 * @returns VBox status code.
2018 * @param pVM Pointer to the VM.
2019 * @param pVCpu Pointer to the VMCPU.
2020 * @param pCpu Pointer to the global HM CPU struct.
2021 *
2022 * @remarks Called with interrupts disabled.
2023 */
2024static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2025{
2026 AssertPtr(pVM);
2027 AssertPtr(pVCpu);
2028 AssertPtr(pCpu);
2029 Assert(pCpu->idCpu != NIL_RTCPUID);
2030 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2031 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2032
2033 /*
2034 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2035 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2036 */
2037 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2038 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2039 {
2040 pVCpu->hm.s.fForceTLBFlush = true;
2041 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2042 }
2043
2044 /* Check for explicit TLB shootdown flushes. */
2045 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2046 {
2047 pVCpu->hm.s.fForceTLBFlush = true;
2048 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2049 }
2050
2051 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2052 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2053
2054 if (pVCpu->hm.s.fForceTLBFlush)
2055 {
2056 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2057 pVCpu->hm.s.fForceTLBFlush = false;
2058 }
2059 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
2060 * where it is commented out. Support individual entry flushing
2061 * someday. */
2062#if 0
2063 else
2064 {
2065 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
2066 {
2067 /* We cannot flush individual entries without VPID support. Flush using EPT. */
2068 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
2069 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2070 }
2071 else
2072 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
2073
2074 pVCpu->hm.s.TlbShootdown.cPages = 0;
2075 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2076 }
2077#endif
2078}
2079
2080
2081/**
2082 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2083 *
2084 * @returns VBox status code.
2085 * @param pVM Pointer to the VM.
2086 * @param pVCpu Pointer to the VMCPU.
2087 * @param pCpu Pointer to the global HM CPU struct.
2088 *
2089 * @remarks Called with interrupts disabled.
2090 */
2091static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2092{
2093 AssertPtr(pVM);
2094 AssertPtr(pVCpu);
2095 AssertPtr(pCpu);
2096 Assert(pCpu->idCpu != NIL_RTCPUID);
2097 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2098 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2099
2100 /*
2101 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2102 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2103 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2104 */
2105 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2106 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2107 {
2108 pVCpu->hm.s.fForceTLBFlush = true;
2109 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2110 }
2111
2112 /* Check for explicit TLB shootdown flushes. */
2113 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2114 {
2115 /*
2116 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2117 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2118 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2119 */
2120 pVCpu->hm.s.fForceTLBFlush = true;
2121 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2122 }
2123
2124 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2125 if (pVCpu->hm.s.fForceTLBFlush)
2126 {
2127 ++pCpu->uCurrentAsid;
2128 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2129 {
2130 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2131 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2132 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2133 }
2134
2135 pVCpu->hm.s.fForceTLBFlush = false;
2136 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2137 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2138 if (pCpu->fFlushAsidBeforeUse)
2139 {
2140 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2141 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2142 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2143 {
2144 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2145 pCpu->fFlushAsidBeforeUse = false;
2146 }
2147 else
2148 {
2149 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2150 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2151 }
2152 }
2153 }
2154 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
2155 * where it is commented out. Support individual entry flushing
2156 * someday. */
2157#if 0
2158 else
2159 {
2160 AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
2161 ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
2162 pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
2163 pCpu->uCurrentAsid, pCpu->cTlbFlushes));
2164
2165 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
2166 {
2167 /* Flush individual guest entries using VPID or as little as possible with EPT as supported by the CPU. */
2168 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2169 {
2170 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
2171 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
2172 }
2173 else
2174 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
2175
2176 pVCpu->hm.s.TlbShootdown.cPages = 0;
2177 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2178 }
2179 else
2180 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
2181 }
2182#endif
2183
2184 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2185 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2186 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2187 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2188 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2189 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2190 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2191
2192 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
2193 AssertRC(rc);
2194}
2195
2196
2197/**
2198 * Flushes the guest TLB entry based on CPU capabilities.
2199 *
2200 * @param pVCpu Pointer to the VMCPU.
2201 * @param pCpu Pointer to the global HM CPU struct.
2202 */
2203DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2204{
2205#ifdef HMVMX_ALWAYS_FLUSH_TLB
2206 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2207#endif
2208 PVM pVM = pVCpu->CTX_SUFF(pVM);
2209 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2210 {
2211 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2212 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2213 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2214 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2215 default:
2216 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2217 break;
2218 }
2219
2220 /* VMCPU_FF_TLB_SHOOTDOWN is unused. */
2221 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN));
2222
2223 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2224}
2225
2226
2227/**
2228 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2229 * TLB entries from the host TLB before VM-entry.
2230 *
2231 * @returns VBox status code.
2232 * @param pVM Pointer to the VM.
2233 */
2234static int hmR0VmxSetupTaggedTlb(PVM pVM)
2235{
2236 /*
2237 * Determine optimal flush type for Nested Paging.
2238 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2239 * guest execution (see hmR3InitFinalizeR0()).
2240 */
2241 if (pVM->hm.s.fNestedPaging)
2242 {
2243 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2244 {
2245 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2246 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2247 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2248 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2249 else
2250 {
2251 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2252 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2253 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2254 }
2255
2256 /* Make sure the write-back cacheable memory type for EPT is supported. */
2257 if (!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB))
2258 {
2259 LogRel(("hmR0VmxSetupTaggedTlb: Unsupported EPTP memory type %#x.\n", pVM->hm.s.vmx.Msrs.u64EptVpidCaps));
2260 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2261 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2262 }
2263 }
2264 else
2265 {
2266 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2267 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2268 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2269 }
2270 }
2271
2272 /*
2273 * Determine optimal flush type for VPID.
2274 */
2275 if (pVM->hm.s.vmx.fVpid)
2276 {
2277 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2278 {
2279 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2280 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2281 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2282 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2283 else
2284 {
2285 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2286 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2287 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2288 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2289 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2290 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2291 pVM->hm.s.vmx.fVpid = false;
2292 }
2293 }
2294 else
2295 {
2296 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2297 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2298 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2299 pVM->hm.s.vmx.fVpid = false;
2300 }
2301 }
2302
2303 /*
2304 * Setup the handler for flushing tagged-TLBs.
2305 */
2306 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2307 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2308 else if (pVM->hm.s.fNestedPaging)
2309 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2310 else if (pVM->hm.s.vmx.fVpid)
2311 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2312 else
2313 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2314 return VINF_SUCCESS;
2315}
2316
2317
2318/**
2319 * Sets up pin-based VM-execution controls in the VMCS.
2320 *
2321 * @returns VBox status code.
2322 * @param pVM Pointer to the VM.
2323 * @param pVCpu Pointer to the VMCPU.
2324 */
2325static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2326{
2327 AssertPtr(pVM);
2328 AssertPtr(pVCpu);
2329
2330 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2331 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2332
2333 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2334 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2335
2336 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2337 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2338
2339 /* Enable the VMX preemption timer. */
2340 if (pVM->hm.s.vmx.fUsePreemptTimer)
2341 {
2342 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2343 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2344 }
2345
2346 if ((val & zap) != val)
2347 {
2348 LogRel(("hmR0VmxSetupPinCtls: invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2349 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2350 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2351 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2352 }
2353
2354 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2355 AssertRCReturn(rc, rc);
2356
2357 pVCpu->hm.s.vmx.u32PinCtls = val;
2358 return rc;
2359}
2360
2361
2362/**
2363 * Sets up processor-based VM-execution controls in the VMCS.
2364 *
2365 * @returns VBox status code.
2366 * @param pVM Pointer to the VM.
2367 * @param pVMCPU Pointer to the VMCPU.
2368 */
2369static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2370{
2371 AssertPtr(pVM);
2372 AssertPtr(pVCpu);
2373
2374 int rc = VERR_INTERNAL_ERROR_5;
2375 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2376 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2377
2378 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2379 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2380 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2381 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2382 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2383 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2384 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2385
2386 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2387 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2388 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2389 {
2390 LogRel(("hmR0VmxSetupProcCtls: unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2391 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2392 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2393 }
2394
2395 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2396 if (!pVM->hm.s.fNestedPaging)
2397 {
2398 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2399 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2400 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2401 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2402 }
2403
2404 /* Use TPR shadowing if supported by the CPU. */
2405 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2406 {
2407 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2408 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2409 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2410 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2411 AssertRCReturn(rc, rc);
2412
2413 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2414 /* CR8 writes cause a VM-exit based on TPR threshold. */
2415 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2416 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2417 }
2418 else
2419 {
2420 /*
2421 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2422 * Set this control only for 64-bit guests.
2423 */
2424 if (pVM->hm.s.fAllow64BitGuests)
2425 {
2426 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2427 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2428 }
2429 }
2430
2431 /* Use MSR-bitmaps if supported by the CPU. */
2432 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2433 {
2434 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2435
2436 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2437 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2438 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2439 AssertRCReturn(rc, rc);
2440
2441 /*
2442 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2443 * automatically using dedicated fields in the VMCS.
2444 */
2445 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2446 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2447 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2448 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2449 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2450
2451#if HC_ARCH_BITS == 64
2452 /*
2453 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2454 */
2455 if (pVM->hm.s.fAllow64BitGuests)
2456 {
2457 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2458 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2459 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2460 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2461 }
2462#endif
2463 }
2464
2465 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2466 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2467 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2468
2469 if ((val & zap) != val)
2470 {
2471 LogRel(("hmR0VmxSetupProcCtls: invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2472 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2473 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2474 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2475 }
2476
2477 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2478 AssertRCReturn(rc, rc);
2479
2480 pVCpu->hm.s.vmx.u32ProcCtls = val;
2481
2482 /*
2483 * Secondary processor-based VM-execution controls.
2484 */
2485 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2486 {
2487 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2488 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2489
2490 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2491 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2492
2493 if (pVM->hm.s.fNestedPaging)
2494 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2495 else
2496 {
2497 /*
2498 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2499 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2500 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2501 */
2502 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2503 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2504 }
2505
2506 if (pVM->hm.s.vmx.fVpid)
2507 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2508
2509 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2510 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2511
2512 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2513 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2514 * done dynamically. */
2515 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2516 {
2517 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2518 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2519 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2520 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2521 AssertRCReturn(rc, rc);
2522 }
2523
2524 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2525 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2526
2527 if ((val & zap) != val)
2528 {
2529 LogRel(("hmR0VmxSetupProcCtls: invalid secondary processor-based VM-execution controls combo! "
2530 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2531 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2532 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2533 }
2534
2535 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2536 AssertRCReturn(rc, rc);
2537
2538 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2539 }
2540 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2541 {
2542 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2543 "available\n"));
2544 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2545 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2546 }
2547
2548 return VINF_SUCCESS;
2549}
2550
2551
2552/**
2553 * Sets up miscellaneous (everything other than Pin & Processor-based
2554 * VM-execution) control fields in the VMCS.
2555 *
2556 * @returns VBox status code.
2557 * @param pVM Pointer to the VM.
2558 * @param pVCpu Pointer to the VMCPU.
2559 */
2560static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2561{
2562 NOREF(pVM);
2563 AssertPtr(pVM);
2564 AssertPtr(pVCpu);
2565
2566 int rc = VERR_GENERAL_FAILURE;
2567
2568 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2569#if 0
2570 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2571 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0); AssertRCReturn(rc, rc);
2572 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0); AssertRCReturn(rc, rc);
2573
2574 /*
2575 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2576 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2577 * We thus use the exception bitmap to control it rather than use both.
2578 */
2579 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0); AssertRCReturn(rc, rc);
2580 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0); AssertRCReturn(rc, rc);
2581
2582 /** @todo Explore possibility of using IO-bitmaps. */
2583 /* All IO & IOIO instructions cause VM-exits. */
2584 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0); AssertRCReturn(rc, rc);
2585 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0); AssertRCReturn(rc, rc);
2586
2587 /* Initialize the MSR-bitmap area. */
2588 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
2589 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0); AssertRCReturn(rc, rc);
2590 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
2591#endif
2592
2593 /* Setup MSR auto-load/store area. */
2594 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2595 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2596 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2597 AssertRCReturn(rc, rc);
2598 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2599 AssertRCReturn(rc, rc);
2600
2601 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2602 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2603 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2604 AssertRCReturn(rc, rc);
2605
2606 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2607 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2608 AssertRCReturn(rc, rc);
2609
2610 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2611#if 0
2612 /* Setup debug controls */
2613 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2614 AssertRCReturn(rc, rc);
2615 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2616 AssertRCReturn(rc, rc);
2617#endif
2618
2619 return rc;
2620}
2621
2622
2623/**
2624 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2625 *
2626 * @returns VBox status code.
2627 * @param pVM Pointer to the VM.
2628 * @param pVCpu Pointer to the VMCPU.
2629 */
2630static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2631{
2632 AssertPtr(pVM);
2633 AssertPtr(pVCpu);
2634
2635 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2636
2637 uint32_t u32XcptBitmap = 0;
2638
2639 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2640 if (!pVM->hm.s.fNestedPaging)
2641 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2642
2643 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2644 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2645 AssertRCReturn(rc, rc);
2646 return rc;
2647}
2648
2649
2650/**
2651 * Sets up the initial guest-state mask. The guest-state mask is consulted
2652 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2653 * for the nested virtualization case (as it would cause a VM-exit).
2654 *
2655 * @param pVCpu Pointer to the VMCPU.
2656 */
2657static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2658{
2659 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2660 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2661 return VINF_SUCCESS;
2662}
2663
2664
2665/**
2666 * Does per-VM VT-x initialization.
2667 *
2668 * @returns VBox status code.
2669 * @param pVM Pointer to the VM.
2670 */
2671VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2672{
2673 LogFlowFunc(("pVM=%p\n", pVM));
2674
2675 int rc = hmR0VmxStructsAlloc(pVM);
2676 if (RT_FAILURE(rc))
2677 {
2678 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2679 return rc;
2680 }
2681
2682 return VINF_SUCCESS;
2683}
2684
2685
2686/**
2687 * Does per-VM VT-x termination.
2688 *
2689 * @returns VBox status code.
2690 * @param pVM Pointer to the VM.
2691 */
2692VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2693{
2694 LogFlowFunc(("pVM=%p\n", pVM));
2695
2696#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2697 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2698 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2699#endif
2700 hmR0VmxStructsFree(pVM);
2701 return VINF_SUCCESS;
2702}
2703
2704
2705/**
2706 * Sets up the VM for execution under VT-x.
2707 * This function is only called once per-VM during initialization.
2708 *
2709 * @returns VBox status code.
2710 * @param pVM Pointer to the VM.
2711 */
2712VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2713{
2714 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2715 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2716
2717 LogFlowFunc(("pVM=%p\n", pVM));
2718
2719 /*
2720 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2721 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2722 */
2723 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2724 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2725 || !pVM->hm.s.vmx.pRealModeTSS))
2726 {
2727 LogRel(("VMXR0SetupVM: invalid real-on-v86 state.\n"));
2728 return VERR_INTERNAL_ERROR;
2729 }
2730
2731#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2732 /*
2733 * This is for the darwin 32-bit/PAE kernels trying to execute 64-bit guests. We don't bother with
2734 * the 32<->64 switcher in this case. This is a rare, legacy use-case with barely any test coverage.
2735 */
2736 if ( pVM->hm.s.fAllow64BitGuests
2737 && !HMVMX_IS_64BIT_HOST_MODE())
2738 {
2739 LogRel(("VMXR0SetupVM: Unsupported guest and host paging mode combination.\n"));
2740 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
2741 }
2742#endif
2743
2744 /* Initialize these always, see hmR3InitFinalizeR0().*/
2745 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2746 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2747
2748 /* Setup the tagged-TLB flush handlers. */
2749 int rc = hmR0VmxSetupTaggedTlb(pVM);
2750 if (RT_FAILURE(rc))
2751 {
2752 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2753 return rc;
2754 }
2755
2756 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2757 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2758#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2759 if ( HMVMX_IS_64BIT_HOST_MODE()
2760 && (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2761 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2762 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2763 {
2764 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2765 }
2766#endif
2767
2768 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2769 {
2770 PVMCPU pVCpu = &pVM->aCpus[i];
2771 AssertPtr(pVCpu);
2772 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2773
2774 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2775 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2776
2777 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2778 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2779 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2780
2781 /* Set revision dword at the beginning of the VMCS structure. */
2782 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2783
2784 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2785 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2786 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2787 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2788
2789 /* Load this VMCS as the current VMCS. */
2790 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2791 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2792 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2793
2794 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2795 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2796 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2797
2798 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2799 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2800 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2801
2802 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2803 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2804 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2805
2806 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2807 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2808 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2809
2810 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2811 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2812 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2813
2814#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2815 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2816 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2817 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2818#endif
2819
2820 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2821 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2822 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2823 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2824
2825 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2826
2827 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2828 }
2829
2830 return VINF_SUCCESS;
2831}
2832
2833
2834/**
2835 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2836 * the VMCS.
2837 *
2838 * @returns VBox status code.
2839 * @param pVM Pointer to the VM.
2840 * @param pVCpu Pointer to the VMCPU.
2841 */
2842DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2843{
2844 NOREF(pVM); NOREF(pVCpu);
2845
2846 RTCCUINTREG uReg = ASMGetCR0();
2847 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2848 AssertRCReturn(rc, rc);
2849
2850#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2851 /* For the darwin 32-bit hybrid kernel, we need the 64-bit CR3 as it uses 64-bit paging. */
2852 if (HMVMX_IS_64BIT_HOST_MODE())
2853 {
2854 uint64_t uRegCR3 = HMR0Get64bitCR3();
2855 rc = VMXWriteVmcs64(VMX_VMCS_HOST_CR3, uRegCR3);
2856 }
2857 else
2858#endif
2859 {
2860 uReg = ASMGetCR3();
2861 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2862 }
2863 AssertRCReturn(rc, rc);
2864
2865 uReg = ASMGetCR4();
2866 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2867 AssertRCReturn(rc, rc);
2868 return rc;
2869}
2870
2871
2872#if HC_ARCH_BITS == 64
2873/**
2874 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2875 * requirements. See hmR0VmxSaveHostSegmentRegs().
2876 */
2877# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2878 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2879 { \
2880 bool fValidSelector = true; \
2881 if ((selValue) & X86_SEL_LDT) \
2882 { \
2883 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2884 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2885 } \
2886 if (fValidSelector) \
2887 { \
2888 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2889 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2890 } \
2891 (selValue) = 0; \
2892 }
2893#endif
2894
2895
2896/**
2897 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2898 * the host-state area in the VMCS.
2899 *
2900 * @returns VBox status code.
2901 * @param pVM Pointer to the VM.
2902 * @param pVCpu Pointer to the VMCPU.
2903 */
2904DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2905{
2906 int rc = VERR_INTERNAL_ERROR_5;
2907
2908#if HC_ARCH_BITS == 64
2909 /*
2910 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2911 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2912 */
2913 AssertMsgReturn(!(pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED),
2914 ("Re-saving host-state after executing guest code without leaving VT-x!\n"), VERR_WRONG_ORDER);
2915#endif
2916
2917 /*
2918 * Host DS, ES, FS and GS segment registers.
2919 */
2920#if HC_ARCH_BITS == 64
2921 RTSEL uSelDS = ASMGetDS();
2922 RTSEL uSelES = ASMGetES();
2923 RTSEL uSelFS = ASMGetFS();
2924 RTSEL uSelGS = ASMGetGS();
2925#else
2926 RTSEL uSelDS = 0;
2927 RTSEL uSelES = 0;
2928 RTSEL uSelFS = 0;
2929 RTSEL uSelGS = 0;
2930#endif
2931
2932 /* Recalculate which host-state bits need to be manually restored. */
2933 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2934
2935 /*
2936 * Host CS and SS segment registers.
2937 */
2938#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2939 RTSEL uSelCS;
2940 RTSEL uSelSS;
2941 if (HMVMX_IS_64BIT_HOST_MODE())
2942 {
2943 uSelCS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
2944 uSelSS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
2945 }
2946 else
2947 {
2948 /* Seems darwin uses the LDT (TI flag is set) in the CS & SS selectors which VT-x doesn't like. */
2949 uSelCS = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
2950 uSelSS = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
2951 }
2952#else
2953 RTSEL uSelCS = ASMGetCS();
2954 RTSEL uSelSS = ASMGetSS();
2955#endif
2956
2957 /*
2958 * Host TR segment register.
2959 */
2960 RTSEL uSelTR = ASMGetTR();
2961
2962#if HC_ARCH_BITS == 64
2963 /*
2964 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2965 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2966 */
2967 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2968 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2969 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2970 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2971# undef VMXLOCAL_ADJUST_HOST_SEG
2972#endif
2973
2974 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2975 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2976 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2977 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2978 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2979 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2980 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2981 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2982 Assert(uSelCS);
2983 Assert(uSelTR);
2984
2985 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2986#if 0
2987 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2988 Assert(uSelSS != 0);
2989#endif
2990
2991 /* Write these host selector fields into the host-state area in the VMCS. */
2992 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_CS, uSelCS); AssertRCReturn(rc, rc);
2993 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_SS, uSelSS); AssertRCReturn(rc, rc);
2994#if HC_ARCH_BITS == 64
2995 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_DS, uSelDS); AssertRCReturn(rc, rc);
2996 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_ES, uSelES); AssertRCReturn(rc, rc);
2997 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_FS, uSelFS); AssertRCReturn(rc, rc);
2998 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_GS, uSelGS); AssertRCReturn(rc, rc);
2999#endif
3000 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_TR, uSelTR); AssertRCReturn(rc, rc);
3001
3002 /*
3003 * Host GDTR and IDTR.
3004 */
3005 RTGDTR Gdtr;
3006 RT_ZERO(Gdtr);
3007#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3008 if (HMVMX_IS_64BIT_HOST_MODE())
3009 {
3010 X86XDTR64 Gdtr64;
3011 X86XDTR64 Idtr64;
3012 HMR0Get64bitGdtrAndIdtr(&Gdtr64, &Idtr64);
3013 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, Gdtr64.uAddr); AssertRCReturn(rc, rc);
3014 rc = VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, Idtr64.uAddr); AssertRCReturn(rc, rc);
3015
3016 Gdtr.cbGdt = Gdtr64.cb;
3017 Gdtr.pGdt = (uintptr_t)Gdtr64.uAddr;
3018 }
3019 else
3020#endif
3021 {
3022 RTIDTR Idtr;
3023 ASMGetGDTR(&Gdtr);
3024 ASMGetIDTR(&Idtr);
3025 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt); AssertRCReturn(rc, rc);
3026 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt); AssertRCReturn(rc, rc);
3027
3028#if HC_ARCH_BITS == 64
3029 /*
3030 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3031 * maximum limit (0xffff) on every VM-exit.
3032 */
3033 if (Gdtr.cbGdt != 0xffff)
3034 {
3035 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3036 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3037 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3038 }
3039
3040 /*
3041 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3042 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3043 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3044 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3045 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3046 * hosts where we are pretty sure it won't cause trouble.
3047 */
3048# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3049 if (Idtr.cbIdt < 0x0fff)
3050# else
3051 if (Idtr.cbIdt != 0xffff)
3052# endif
3053 {
3054 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3055 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3056 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3057 }
3058#endif
3059 }
3060
3061 /*
3062 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3063 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3064 */
3065 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3066 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3067 VERR_VMX_INVALID_HOST_STATE);
3068
3069 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3070#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3071 if (HMVMX_IS_64BIT_HOST_MODE())
3072 {
3073 /* We need the 64-bit TR base for hybrid darwin. */
3074 uint64_t u64TRBase = X86DESC64_BASE((PX86DESC64)pDesc);
3075 rc = VMXWriteVmcs64(VMX_VMCS_HOST_TR_BASE, u64TRBase);
3076 }
3077 else
3078#endif
3079 {
3080 uintptr_t uTRBase;
3081#if HC_ARCH_BITS == 64
3082 uTRBase = X86DESC64_BASE(pDesc);
3083
3084 /*
3085 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3086 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3087 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3088 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3089 *
3090 * [1] See Intel spec. 3.5 "System Descriptor Types".
3091 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3092 */
3093 Assert(pDesc->System.u4Type == 11);
3094 if ( pDesc->System.u16LimitLow != 0x67
3095 || pDesc->System.u4LimitHigh)
3096 {
3097 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3098 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3099 if (pVM->hm.s.uHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3100 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3101 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3102
3103 /* Store the GDTR here as we need it while restoring TR. */
3104 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3105 }
3106#else
3107 uTRBase = X86DESC_BASE(pDesc);
3108#endif
3109 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3110 }
3111 AssertRCReturn(rc, rc);
3112
3113 /*
3114 * Host FS base and GS base.
3115 */
3116#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3117 if (HMVMX_IS_64BIT_HOST_MODE())
3118 {
3119 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3120 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3121 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase); AssertRCReturn(rc, rc);
3122 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase); AssertRCReturn(rc, rc);
3123
3124# if HC_ARCH_BITS == 64
3125 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3126 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3127 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3128 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3129 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3130# endif
3131 }
3132#endif
3133 return rc;
3134}
3135
3136
3137/**
3138 * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
3139 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3140 * the host after every successful VM-exit.
3141 *
3142 * @returns VBox status code.
3143 * @param pVM Pointer to the VM.
3144 * @param pVCpu Pointer to the VMCPU.
3145 *
3146 * @remarks No-long-jump zone!!!
3147 */
3148DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3149{
3150 NOREF(pVM);
3151
3152 AssertPtr(pVCpu);
3153 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3154
3155 int rc = VINF_SUCCESS;
3156#if HC_ARCH_BITS == 64
3157 if (pVM->hm.s.fAllow64BitGuests)
3158 hmR0VmxLazySaveHostMsrs(pVCpu);
3159#endif
3160
3161 /*
3162 * Host Sysenter MSRs.
3163 */
3164 rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3165 AssertRCReturn(rc, rc);
3166#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3167 if (HMVMX_IS_64BIT_HOST_MODE())
3168 {
3169 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3170 AssertRCReturn(rc, rc);
3171 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3172 }
3173 else
3174 {
3175 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3176 AssertRCReturn(rc, rc);
3177 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3178 }
3179#elif HC_ARCH_BITS == 32
3180 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3181 AssertRCReturn(rc, rc);
3182 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3183#else
3184 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3185 AssertRCReturn(rc, rc);
3186 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3187#endif
3188 AssertRCReturn(rc, rc);
3189
3190 /*
3191 * Host EFER MSR.
3192 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3193 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3194 */
3195 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3196 {
3197 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_FIELD_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3198 AssertRCReturn(rc, rc);
3199 }
3200
3201 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3202 * hmR0VmxLoadGuestExitCtls() !! */
3203
3204 return rc;
3205}
3206
3207
3208/**
3209 * Figures out if we need to swap the EFER MSR which is
3210 * particularly expensive.
3211 *
3212 * We check all relevant bits. For now, that's everything
3213 * besides LMA/LME, as these two bits are handled by VM-entry,
3214 * see hmR0VmxLoadGuestExitCtls() and
3215 * hmR0VMxLoadGuestEntryCtls().
3216 *
3217 * @returns true if we need to load guest EFER, false otherwise.
3218 * @param pVCpu Pointer to the VMCPU.
3219 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3220 * out-of-sync. Make sure to update the required fields
3221 * before using them.
3222 *
3223 * @remarks Requires EFER, CR4.
3224 * @remarks No-long-jump zone!!!
3225 */
3226static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3227{
3228#ifdef HMVMX_ALWAYS_SWAP_EFER
3229 return true;
3230#endif
3231
3232#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3233 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3234 if (CPUMIsGuestInLongMode(pVCpu))
3235 return false;
3236#endif
3237
3238 PVM pVM = pVCpu->CTX_SUFF(pVM);
3239 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3240 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3241
3242 /*
3243 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3244 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3245 */
3246 if ( CPUMIsGuestInLongMode(pVCpu)
3247 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3248 {
3249 return true;
3250 }
3251
3252 /*
3253 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3254 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3255 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3256 */
3257 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3258 && (pMixedCtx->cr0 & X86_CR0_PG)
3259 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3260 {
3261 /* Assert that host is PAE capable. */
3262 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3263 return true;
3264 }
3265
3266 /** @todo Check the latest Intel spec. for any other bits,
3267 * like SMEP/SMAP? */
3268 return false;
3269}
3270
3271
3272/**
3273 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3274 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3275 * controls".
3276 *
3277 * @returns VBox status code.
3278 * @param pVCpu Pointer to the VMCPU.
3279 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3280 * out-of-sync. Make sure to update the required fields
3281 * before using them.
3282 *
3283 * @remarks Requires EFER.
3284 * @remarks No-long-jump zone!!!
3285 */
3286DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3287{
3288 int rc = VINF_SUCCESS;
3289 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3290 {
3291 PVM pVM = pVCpu->CTX_SUFF(pVM);
3292 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3293 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3294
3295 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3296 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3297
3298 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3299 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3300 {
3301 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3302 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3303 }
3304 else
3305 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3306
3307 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3308 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3309 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3310 {
3311 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3312 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3313 }
3314
3315 /*
3316 * The following should -not- be set (since we're not in SMM mode):
3317 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3318 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3319 */
3320
3321 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3322 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3323
3324 if ((val & zap) != val)
3325 {
3326 LogRel(("hmR0VmxLoadGuestEntryCtls: invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3327 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3328 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3329 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3330 }
3331
3332 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3333 AssertRCReturn(rc, rc);
3334
3335 pVCpu->hm.s.vmx.u32EntryCtls = val;
3336 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3337 }
3338 return rc;
3339}
3340
3341
3342/**
3343 * Sets up the VM-exit controls in the VMCS.
3344 *
3345 * @returns VBox status code.
3346 * @param pVM Pointer to the VM.
3347 * @param pVCpu Pointer to the VMCPU.
3348 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3349 * out-of-sync. Make sure to update the required fields
3350 * before using them.
3351 *
3352 * @remarks Requires EFER.
3353 */
3354DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3355{
3356 NOREF(pMixedCtx);
3357
3358 int rc = VINF_SUCCESS;
3359 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3360 {
3361 PVM pVM = pVCpu->CTX_SUFF(pVM);
3362 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3363 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3364
3365 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3366 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3367
3368 /*
3369 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3370 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3371 */
3372#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3373 if (HMVMX_IS_64BIT_HOST_MODE())
3374 {
3375 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3376 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3377 }
3378 else
3379 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3380#else
3381 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3382 {
3383 /* The switcher returns to long mode, EFER is managed by the switcher. */
3384 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3385 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3386 }
3387 else
3388 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3389#endif /* HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
3390
3391 /* If the newer VMCS fields for managing EFER exists, use it. */
3392 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3393 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3394 {
3395 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3396 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3397 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3398 }
3399
3400 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3401 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3402
3403 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3404 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3405 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3406
3407 if ( pVM->hm.s.vmx.fUsePreemptTimer
3408 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3409 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3410
3411 if ((val & zap) != val)
3412 {
3413 LogRel(("hmR0VmxSetupProcCtls: invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3414 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3415 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3416 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3417 }
3418
3419 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3420 AssertRCReturn(rc, rc);
3421
3422 pVCpu->hm.s.vmx.u32ExitCtls = val;
3423 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3424 }
3425 return rc;
3426}
3427
3428
3429/**
3430 * Loads the guest APIC and related state.
3431 *
3432 * @returns VBox status code.
3433 * @param pVM Pointer to the VM.
3434 * @param pVCpu Pointer to the VMCPU.
3435 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3436 * out-of-sync. Make sure to update the required fields
3437 * before using them.
3438 */
3439DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3440{
3441 NOREF(pMixedCtx);
3442
3443 int rc = VINF_SUCCESS;
3444 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3445 {
3446 /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
3447 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3448 {
3449 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3450
3451 bool fPendingIntr = false;
3452 uint8_t u8Tpr = 0;
3453 uint8_t u8PendingIntr = 0;
3454 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3455 AssertRCReturn(rc, rc);
3456
3457 /*
3458 * If there are external interrupts pending but masked by the TPR value, instruct VT-x to cause a VM-exit when
3459 * the guest lowers its TPR below the highest-priority pending interrupt and we can deliver the interrupt.
3460 * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
3461 * the interrupt when we VM-exit for other reasons.
3462 */
3463 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8Tpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
3464 uint32_t u32TprThreshold = 0;
3465 if (fPendingIntr)
3466 {
3467 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3468 const uint8_t u8PendingPriority = (u8PendingIntr >> 4) & 0xf;
3469 const uint8_t u8TprPriority = (u8Tpr >> 4) & 0xf;
3470 if (u8PendingPriority <= u8TprPriority)
3471 u32TprThreshold = u8PendingPriority;
3472 else
3473 u32TprThreshold = u8TprPriority; /* Required for Vista 64-bit guest, see @bugref{6398}. */
3474 }
3475 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3476
3477 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3478 AssertRCReturn(rc, rc);
3479 }
3480
3481 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3482 }
3483 return rc;
3484}
3485
3486
3487/**
3488 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3489 *
3490 * @returns Guest's interruptibility-state.
3491 * @param pVCpu Pointer to the VMCPU.
3492 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3493 * out-of-sync. Make sure to update the required fields
3494 * before using them.
3495 *
3496 * @remarks No-long-jump zone!!!
3497 */
3498DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3499{
3500 /*
3501 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3502 */
3503 uint32_t uIntrState = 0;
3504 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3505 {
3506 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3507 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3508 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3509 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3510 {
3511 if (pMixedCtx->eflags.Bits.u1IF)
3512 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3513 else
3514 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3515 }
3516 /* else: Although we can clear the force-flag here, let's keep this side-effects free. */
3517 }
3518
3519 /*
3520 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3521 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3522 * setting this would block host-NMIs and IRET will not clear the blocking.
3523 *
3524 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3525 */
3526 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3527 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3528 {
3529 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3530 }
3531
3532 return uIntrState;
3533}
3534
3535
3536/**
3537 * Loads the guest's interruptibility-state into the guest-state area in the
3538 * VMCS.
3539 *
3540 * @returns VBox status code.
3541 * @param pVCpu Pointer to the VMCPU.
3542 * @param uIntrState The interruptibility-state to set.
3543 */
3544static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3545{
3546 NOREF(pVCpu);
3547 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3548 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3549 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3550 AssertRCReturn(rc, rc);
3551 return rc;
3552}
3553
3554
3555/**
3556 * Loads the guest's RIP into the guest-state area in the VMCS.
3557 *
3558 * @returns VBox status code.
3559 * @param pVCpu Pointer to the VMCPU.
3560 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3561 * out-of-sync. Make sure to update the required fields
3562 * before using them.
3563 *
3564 * @remarks No-long-jump zone!!!
3565 */
3566static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3567{
3568 int rc = VINF_SUCCESS;
3569 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3570 {
3571 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3572 AssertRCReturn(rc, rc);
3573
3574 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3575 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3576 HMCPU_CF_VALUE(pVCpu)));
3577 }
3578 return rc;
3579}
3580
3581
3582/**
3583 * Loads the guest's RSP into the guest-state area in the VMCS.
3584 *
3585 * @returns VBox status code.
3586 * @param pVCpu Pointer to the VMCPU.
3587 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3588 * out-of-sync. Make sure to update the required fields
3589 * before using them.
3590 *
3591 * @remarks No-long-jump zone!!!
3592 */
3593static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3594{
3595 int rc = VINF_SUCCESS;
3596 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3597 {
3598 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3599 AssertRCReturn(rc, rc);
3600
3601 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3602 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3603 }
3604 return rc;
3605}
3606
3607
3608/**
3609 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3610 *
3611 * @returns VBox status code.
3612 * @param pVCpu Pointer to the VMCPU.
3613 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3614 * out-of-sync. Make sure to update the required fields
3615 * before using them.
3616 *
3617 * @remarks No-long-jump zone!!!
3618 */
3619static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3620{
3621 int rc = VINF_SUCCESS;
3622 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3623 {
3624 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3625 Let us assert it as such and use 32-bit VMWRITE. */
3626 Assert(!(pMixedCtx->rflags.u64 >> 32));
3627 X86EFLAGS Eflags = pMixedCtx->eflags;
3628 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3629 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3630 * These will never be cleared/set, unless some other part of the VMM
3631 * code is buggy - in which case we're better of finding and fixing
3632 * those bugs than hiding them. */
3633 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3634 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3635 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3636 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3637
3638 /*
3639 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3640 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3641 */
3642 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3643 {
3644 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3645 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3646 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3647 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3648 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3649 }
3650
3651 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3652 AssertRCReturn(rc, rc);
3653
3654 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3655 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3656 }
3657 return rc;
3658}
3659
3660
3661/**
3662 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3663 *
3664 * @returns VBox status code.
3665 * @param pVCpu Pointer to the VMCPU.
3666 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3667 * out-of-sync. Make sure to update the required fields
3668 * before using them.
3669 *
3670 * @remarks No-long-jump zone!!!
3671 */
3672DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3673{
3674 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3675 AssertRCReturn(rc, rc);
3676 rc = hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3677 AssertRCReturn(rc, rc);
3678 rc = hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3679 AssertRCReturn(rc, rc);
3680 return rc;
3681}
3682
3683
3684/**
3685 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3686 * CR0 is partially shared with the host and we have to consider the FPU bits.
3687 *
3688 * @returns VBox status code.
3689 * @param pVM Pointer to the VM.
3690 * @param pVCpu Pointer to the VMCPU.
3691 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3692 * out-of-sync. Make sure to update the required fields
3693 * before using them.
3694 *
3695 * @remarks No-long-jump zone!!!
3696 */
3697static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3698{
3699 /*
3700 * Guest CR0.
3701 * Guest FPU.
3702 */
3703 int rc = VINF_SUCCESS;
3704 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3705 {
3706 Assert(!(pMixedCtx->cr0 >> 32));
3707 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3708 PVM pVM = pVCpu->CTX_SUFF(pVM);
3709
3710 /* The guest's view (read access) of its CR0 is unblemished. */
3711 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3712 AssertRCReturn(rc, rc);
3713 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3714
3715 /* Setup VT-x's view of the guest CR0. */
3716 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3717 if (pVM->hm.s.fNestedPaging)
3718 {
3719 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3720 {
3721 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3722 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3723 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3724 }
3725 else
3726 {
3727 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3728 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3729 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3730 }
3731
3732 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3733 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3734 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3735
3736 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3737 AssertRCReturn(rc, rc);
3738 }
3739 else
3740 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3741
3742 /*
3743 * Guest FPU bits.
3744 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3745 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3746 */
3747 u32GuestCR0 |= X86_CR0_NE;
3748 bool fInterceptNM = false;
3749 if (CPUMIsGuestFPUStateActive(pVCpu))
3750 {
3751 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3752 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3753 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3754 }
3755 else
3756 {
3757 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3758 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3759 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3760 }
3761
3762 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3763 bool fInterceptMF = false;
3764 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3765 fInterceptMF = true;
3766
3767 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3768 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3769 {
3770 Assert(PDMVmmDevHeapIsEnabled(pVM));
3771 Assert(pVM->hm.s.vmx.pRealModeTSS);
3772 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3773 fInterceptNM = true;
3774 fInterceptMF = true;
3775 }
3776 else
3777 {
3778 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626} comment #11. */
3779 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3780 }
3781
3782 if (fInterceptNM)
3783 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3784 else
3785 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3786
3787 if (fInterceptMF)
3788 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3789 else
3790 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3791
3792 /* Additional intercepts for debugging, define these yourself explicitly. */
3793#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3794 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3795 | RT_BIT(X86_XCPT_BP)
3796 | RT_BIT(X86_XCPT_DB)
3797 | RT_BIT(X86_XCPT_DE)
3798 | RT_BIT(X86_XCPT_NM)
3799 | RT_BIT(X86_XCPT_TS)
3800 | RT_BIT(X86_XCPT_UD)
3801 | RT_BIT(X86_XCPT_NP)
3802 | RT_BIT(X86_XCPT_SS)
3803 | RT_BIT(X86_XCPT_GP)
3804 | RT_BIT(X86_XCPT_PF)
3805 | RT_BIT(X86_XCPT_MF)
3806 ;
3807#elif defined(HMVMX_ALWAYS_TRAP_PF)
3808 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3809#endif
3810
3811 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3812
3813 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3814 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3815 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3816 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3817 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3818 else
3819 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3820
3821 u32GuestCR0 |= uSetCR0;
3822 u32GuestCR0 &= uZapCR0;
3823 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3824
3825 /* Write VT-x's view of the guest CR0 into the VMCS and update the exception bitmap. */
3826 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3827 AssertRCReturn(rc, rc);
3828 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3829 AssertRCReturn(rc, rc);
3830 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3831 uZapCR0));
3832
3833 /*
3834 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3835 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3836 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3837 */
3838 uint32_t u32CR0Mask = 0;
3839 u32CR0Mask = X86_CR0_PE
3840 | X86_CR0_NE
3841 | X86_CR0_WP
3842 | X86_CR0_PG
3843 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3844 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3845 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3846
3847 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3848 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3849 * and @bugref{6944}. */
3850#if 0
3851 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3852 u32CR0Mask &= ~X86_CR0_PE;
3853#endif
3854 if (pVM->hm.s.fNestedPaging)
3855 u32CR0Mask &= ~X86_CR0_WP;
3856
3857 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3858 if (fInterceptNM)
3859 {
3860 u32CR0Mask |= X86_CR0_TS
3861 | X86_CR0_MP;
3862 }
3863
3864 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3865 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3866 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3867 AssertRCReturn(rc, rc);
3868 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3869
3870 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3871 }
3872 return rc;
3873}
3874
3875
3876/**
3877 * Loads the guest control registers (CR3, CR4) into the guest-state area
3878 * in the VMCS.
3879 *
3880 * @returns VBox status code.
3881 * @param pVM Pointer to the VM.
3882 * @param pVCpu Pointer to the VMCPU.
3883 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3884 * out-of-sync. Make sure to update the required fields
3885 * before using them.
3886 *
3887 * @remarks No-long-jump zone!!!
3888 */
3889static int hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3890{
3891 int rc = VINF_SUCCESS;
3892 PVM pVM = pVCpu->CTX_SUFF(pVM);
3893
3894 /*
3895 * Guest CR2.
3896 * It's always loaded in the assembler code. Nothing to do here.
3897 */
3898
3899 /*
3900 * Guest CR3.
3901 */
3902 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3903 {
3904 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3905 if (pVM->hm.s.fNestedPaging)
3906 {
3907 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3908
3909 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3910 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3911 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3912 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3913
3914 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3915 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3916 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3917
3918 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3919 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3920 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x3f) == 0, /* Bits 6:11 MBZ. */
3921 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3922
3923 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3924 AssertRCReturn(rc, rc);
3925 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3926
3927 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3928 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3929 {
3930 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3931 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3932 {
3933 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]); AssertRCReturn(rc, rc);
3934 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
3935 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
3936 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
3937 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
3938 }
3939
3940 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3941 have Unrestricted Execution to handle the guest when it's not using paging. */
3942 GCPhysGuestCR3 = pMixedCtx->cr3;
3943 }
3944 else
3945 {
3946 /*
3947 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3948 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3949 * EPT takes care of translating it to host-physical addresses.
3950 */
3951 RTGCPHYS GCPhys;
3952 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3953 Assert(PDMVmmDevHeapIsEnabled(pVM));
3954
3955 /* We obtain it here every time as the guest could have relocated this PCI region. */
3956 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3957 AssertRCReturn(rc, rc);
3958
3959 GCPhysGuestCR3 = GCPhys;
3960 }
3961
3962 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGv (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
3963 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3964 }
3965 else
3966 {
3967 /* Non-nested paging case, just use the hypervisor's CR3. */
3968 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3969
3970 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
3971 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3972 }
3973 AssertRCReturn(rc, rc);
3974
3975 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
3976 }
3977
3978 /*
3979 * Guest CR4.
3980 */
3981 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
3982 {
3983 Assert(!(pMixedCtx->cr4 >> 32));
3984 uint32_t u32GuestCR4 = pMixedCtx->cr4;
3985
3986 /* The guest's view of its CR4 is unblemished. */
3987 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
3988 AssertRCReturn(rc, rc);
3989 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
3990
3991 /* Setup VT-x's view of the guest CR4. */
3992 /*
3993 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
3994 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3995 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3996 */
3997 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3998 {
3999 Assert(pVM->hm.s.vmx.pRealModeTSS);
4000 Assert(PDMVmmDevHeapIsEnabled(pVM));
4001 u32GuestCR4 &= ~X86_CR4_VME;
4002 }
4003
4004 if (pVM->hm.s.fNestedPaging)
4005 {
4006 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4007 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4008 {
4009 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4010 u32GuestCR4 |= X86_CR4_PSE;
4011 /* Our identity mapping is a 32-bit page directory. */
4012 u32GuestCR4 &= ~X86_CR4_PAE;
4013 }
4014 /* else use guest CR4.*/
4015 }
4016 else
4017 {
4018 /*
4019 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4020 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4021 */
4022 switch (pVCpu->hm.s.enmShadowMode)
4023 {
4024 case PGMMODE_REAL: /* Real-mode. */
4025 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4026 case PGMMODE_32_BIT: /* 32-bit paging. */
4027 {
4028 u32GuestCR4 &= ~X86_CR4_PAE;
4029 break;
4030 }
4031
4032 case PGMMODE_PAE: /* PAE paging. */
4033 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4034 {
4035 u32GuestCR4 |= X86_CR4_PAE;
4036 break;
4037 }
4038
4039 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4040 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4041#ifdef VBOX_ENABLE_64_BITS_GUESTS
4042 break;
4043#endif
4044 default:
4045 AssertFailed();
4046 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4047 }
4048 }
4049
4050 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4051 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4052 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4053 u32GuestCR4 |= uSetCR4;
4054 u32GuestCR4 &= uZapCR4;
4055
4056 /* Write VT-x's view of the guest CR4 into the VMCS. */
4057 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4058 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4059 AssertRCReturn(rc, rc);
4060
4061 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4062 uint32_t u32CR4Mask = 0;
4063 u32CR4Mask = X86_CR4_VME
4064 | X86_CR4_PAE
4065 | X86_CR4_PGE
4066 | X86_CR4_PSE
4067 | X86_CR4_VMXE;
4068 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4069 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4070 AssertRCReturn(rc, rc);
4071
4072 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4073 }
4074 return rc;
4075}
4076
4077
4078/**
4079 * Loads the guest debug registers into the guest-state area in the VMCS.
4080 * This also sets up whether #DB and MOV DRx accesses cause VM-exits.
4081 *
4082 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4083 *
4084 * @returns VBox status code.
4085 * @param pVCpu Pointer to the VMCPU.
4086 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4087 * out-of-sync. Make sure to update the required fields
4088 * before using them.
4089 *
4090 * @remarks No-long-jump zone!!!
4091 */
4092static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4093{
4094 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4095 return VINF_SUCCESS;
4096
4097#ifdef VBOX_STRICT
4098 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4099 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4100 {
4101 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4102 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4103 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4104 }
4105#endif
4106
4107 int rc;
4108 PVM pVM = pVCpu->CTX_SUFF(pVM);
4109 bool fInterceptDB = false;
4110 bool fInterceptMovDRx = false;
4111 if ( pVCpu->hm.s.fSingleInstruction
4112 || DBGFIsStepping(pVCpu))
4113 {
4114 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4115 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4116 {
4117 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4118 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4119 AssertRCReturn(rc, rc);
4120 Assert(fInterceptDB == false);
4121 }
4122 else
4123 {
4124 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4125 pVCpu->hm.s.fClearTrapFlag = true;
4126 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4127 fInterceptDB = true;
4128 }
4129 }
4130
4131 if ( fInterceptDB
4132 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4133 {
4134 /*
4135 * Use the combined guest and host DRx values found in the hypervisor
4136 * register set because the debugger has breakpoints active or someone
4137 * is single stepping on the host side without a monitor trap flag.
4138 *
4139 * Note! DBGF expects a clean DR6 state before executing guest code.
4140 */
4141#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4142 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4143 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4144 {
4145 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4146 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4147 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4148 }
4149 else
4150#endif
4151 if (!CPUMIsHyperDebugStateActive(pVCpu))
4152 {
4153 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4154 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4155 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4156 }
4157
4158 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4159 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4160 AssertRCReturn(rc, rc);
4161
4162 pVCpu->hm.s.fUsingHyperDR7 = true;
4163 fInterceptDB = true;
4164 fInterceptMovDRx = true;
4165 }
4166 else
4167 {
4168 /*
4169 * If the guest has enabled debug registers, we need to load them prior to
4170 * executing guest code so they'll trigger at the right time.
4171 */
4172 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4173 {
4174#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4175 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4176 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4177 {
4178 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4179 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4180 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4181 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4182 }
4183 else
4184#endif
4185 if (!CPUMIsGuestDebugStateActive(pVCpu))
4186 {
4187 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4188 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4189 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4190 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4191 }
4192 Assert(!fInterceptDB);
4193 Assert(!fInterceptMovDRx);
4194 }
4195 /*
4196 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4197 * must intercept #DB in order to maintain a correct DR6 guest value.
4198 */
4199#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4200 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4201 && !CPUMIsGuestDebugStateActive(pVCpu))
4202#else
4203 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4204#endif
4205 {
4206 fInterceptMovDRx = true;
4207 fInterceptDB = true;
4208 }
4209
4210 /* Update guest DR7. */
4211 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4212 AssertRCReturn(rc, rc);
4213
4214 pVCpu->hm.s.fUsingHyperDR7 = false;
4215 }
4216
4217 /*
4218 * Update the exception bitmap regarding intercepting #DB generated by the guest.
4219 */
4220 if ( fInterceptDB
4221 || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4222 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_DB);
4223 else
4224 {
4225#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
4226 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
4227#endif
4228 }
4229 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
4230 AssertRCReturn(rc, rc);
4231
4232 /*
4233 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4234 */
4235 if (fInterceptMovDRx)
4236 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4237 else
4238 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4239 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4240 AssertRCReturn(rc, rc);
4241
4242 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4243 return VINF_SUCCESS;
4244}
4245
4246
4247#ifdef VBOX_STRICT
4248/**
4249 * Strict function to validate segment registers.
4250 *
4251 * @remarks ASSUMES CR0 is up to date.
4252 */
4253static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4254{
4255 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4256 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4257 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4258 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4259 && ( !CPUMIsGuestInRealModeEx(pCtx)
4260 && !CPUMIsGuestInV86ModeEx(pCtx)))
4261 {
4262 /* Protected mode checks */
4263 /* CS */
4264 Assert(pCtx->cs.Attr.n.u1Present);
4265 Assert(!(pCtx->cs.Attr.u & 0xf00));
4266 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4267 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4268 || !(pCtx->cs.Attr.n.u1Granularity));
4269 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4270 || (pCtx->cs.Attr.n.u1Granularity));
4271 /* CS cannot be loaded with NULL in protected mode. */
4272 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS?!? */
4273 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4274 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4275 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4276 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4277 else
4278 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4279 /* SS */
4280 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4281 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4282 if ( !(pCtx->cr0 & X86_CR0_PE)
4283 || pCtx->cs.Attr.n.u4Type == 3)
4284 {
4285 Assert(!pCtx->ss.Attr.n.u2Dpl);
4286 }
4287 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4288 {
4289 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4290 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4291 Assert(pCtx->ss.Attr.n.u1Present);
4292 Assert(!(pCtx->ss.Attr.u & 0xf00));
4293 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4294 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4295 || !(pCtx->ss.Attr.n.u1Granularity));
4296 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4297 || (pCtx->ss.Attr.n.u1Granularity));
4298 }
4299 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4300 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4301 {
4302 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4303 Assert(pCtx->ds.Attr.n.u1Present);
4304 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4305 Assert(!(pCtx->ds.Attr.u & 0xf00));
4306 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4307 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4308 || !(pCtx->ds.Attr.n.u1Granularity));
4309 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4310 || (pCtx->ds.Attr.n.u1Granularity));
4311 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4312 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4313 }
4314 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4315 {
4316 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4317 Assert(pCtx->es.Attr.n.u1Present);
4318 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4319 Assert(!(pCtx->es.Attr.u & 0xf00));
4320 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4321 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4322 || !(pCtx->es.Attr.n.u1Granularity));
4323 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4324 || (pCtx->es.Attr.n.u1Granularity));
4325 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4326 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4327 }
4328 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4329 {
4330 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4331 Assert(pCtx->fs.Attr.n.u1Present);
4332 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4333 Assert(!(pCtx->fs.Attr.u & 0xf00));
4334 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4335 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4336 || !(pCtx->fs.Attr.n.u1Granularity));
4337 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4338 || (pCtx->fs.Attr.n.u1Granularity));
4339 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4340 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4341 }
4342 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4343 {
4344 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4345 Assert(pCtx->gs.Attr.n.u1Present);
4346 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4347 Assert(!(pCtx->gs.Attr.u & 0xf00));
4348 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4349 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4350 || !(pCtx->gs.Attr.n.u1Granularity));
4351 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4352 || (pCtx->gs.Attr.n.u1Granularity));
4353 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4354 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4355 }
4356 /* 64-bit capable CPUs. */
4357# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4358 if (HMVMX_IS_64BIT_HOST_MODE())
4359 {
4360 Assert(!(pCtx->cs.u64Base >> 32));
4361 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4362 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4363 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4364 }
4365# endif
4366 }
4367 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4368 || ( CPUMIsGuestInRealModeEx(pCtx)
4369 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4370 {
4371 /* Real and v86 mode checks. */
4372 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4373 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4374 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4375 {
4376 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4377 }
4378 else
4379 {
4380 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4381 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4382 }
4383
4384 /* CS */
4385 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4386 Assert(pCtx->cs.u32Limit == 0xffff);
4387 Assert(u32CSAttr == 0xf3);
4388 /* SS */
4389 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4390 Assert(pCtx->ss.u32Limit == 0xffff);
4391 Assert(u32SSAttr == 0xf3);
4392 /* DS */
4393 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4394 Assert(pCtx->ds.u32Limit == 0xffff);
4395 Assert(u32DSAttr == 0xf3);
4396 /* ES */
4397 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4398 Assert(pCtx->es.u32Limit == 0xffff);
4399 Assert(u32ESAttr == 0xf3);
4400 /* FS */
4401 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4402 Assert(pCtx->fs.u32Limit == 0xffff);
4403 Assert(u32FSAttr == 0xf3);
4404 /* GS */
4405 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4406 Assert(pCtx->gs.u32Limit == 0xffff);
4407 Assert(u32GSAttr == 0xf3);
4408 /* 64-bit capable CPUs. */
4409# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4410 if (HMVMX_IS_64BIT_HOST_MODE())
4411 {
4412 Assert(!(pCtx->cs.u64Base >> 32));
4413 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4414 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4415 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4416 }
4417# endif
4418 }
4419}
4420#endif /* VBOX_STRICT */
4421
4422
4423/**
4424 * Writes a guest segment register into the guest-state area in the VMCS.
4425 *
4426 * @returns VBox status code.
4427 * @param pVCpu Pointer to the VMCPU.
4428 * @param idxSel Index of the selector in the VMCS.
4429 * @param idxLimit Index of the segment limit in the VMCS.
4430 * @param idxBase Index of the segment base in the VMCS.
4431 * @param idxAccess Index of the access rights of the segment in the VMCS.
4432 * @param pSelReg Pointer to the segment selector.
4433 *
4434 * @remarks No-long-jump zone!!!
4435 */
4436static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4437 uint32_t idxAccess, PCPUMSELREG pSelReg)
4438{
4439 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4440 AssertRCReturn(rc, rc);
4441 rc = VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4442 AssertRCReturn(rc, rc);
4443 rc = VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4444 AssertRCReturn(rc, rc);
4445
4446 uint32_t u32Access = pSelReg->Attr.u;
4447 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4448 {
4449 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4450 u32Access = 0xf3;
4451 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4452 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4453 }
4454 else
4455 {
4456 /*
4457 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4458 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4459 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4460 * loaded in protected-mode have their attribute as 0.
4461 */
4462 if (!u32Access)
4463 u32Access = X86DESCATTR_UNUSABLE;
4464 }
4465
4466 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4467 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4468 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4469
4470 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4471 AssertRCReturn(rc, rc);
4472 return rc;
4473}
4474
4475
4476/**
4477 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4478 * into the guest-state area in the VMCS.
4479 *
4480 * @returns VBox status code.
4481 * @param pVM Pointer to the VM.
4482 * @param pVCPU Pointer to the VMCPU.
4483 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4484 * out-of-sync. Make sure to update the required fields
4485 * before using them.
4486 *
4487 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4488 * @remarks No-long-jump zone!!!
4489 */
4490static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4491{
4492 int rc = VERR_INTERNAL_ERROR_5;
4493 PVM pVM = pVCpu->CTX_SUFF(pVM);
4494
4495 /*
4496 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4497 */
4498 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4499 {
4500 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4501 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4502 {
4503 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4504 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4505 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4506 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4507 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4508 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4509 }
4510
4511#ifdef VBOX_WITH_REM
4512 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4513 {
4514 Assert(pVM->hm.s.vmx.pRealModeTSS);
4515 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4516 if ( pVCpu->hm.s.vmx.fWasInRealMode
4517 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4518 {
4519 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4520 in real-mode (e.g. OpenBSD 4.0) */
4521 REMFlushTBs(pVM);
4522 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4523 pVCpu->hm.s.vmx.fWasInRealMode = false;
4524 }
4525 }
4526#endif
4527 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_CS, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4528 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4529 AssertRCReturn(rc, rc);
4530 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_SS, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4531 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4532 AssertRCReturn(rc, rc);
4533 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_DS, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4534 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4535 AssertRCReturn(rc, rc);
4536 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_ES, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4537 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4538 AssertRCReturn(rc, rc);
4539 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_FS, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4540 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4541 AssertRCReturn(rc, rc);
4542 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_GS, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4543 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4544 AssertRCReturn(rc, rc);
4545
4546#ifdef VBOX_STRICT
4547 /* Validate. */
4548 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4549#endif
4550
4551 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4552 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4553 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4554 }
4555
4556 /*
4557 * Guest TR.
4558 */
4559 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4560 {
4561 /*
4562 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4563 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4564 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4565 */
4566 uint16_t u16Sel = 0;
4567 uint32_t u32Limit = 0;
4568 uint64_t u64Base = 0;
4569 uint32_t u32AccessRights = 0;
4570
4571 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4572 {
4573 u16Sel = pMixedCtx->tr.Sel;
4574 u32Limit = pMixedCtx->tr.u32Limit;
4575 u64Base = pMixedCtx->tr.u64Base;
4576 u32AccessRights = pMixedCtx->tr.Attr.u;
4577 }
4578 else
4579 {
4580 Assert(pVM->hm.s.vmx.pRealModeTSS);
4581 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4582
4583 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4584 RTGCPHYS GCPhys;
4585 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4586 AssertRCReturn(rc, rc);
4587
4588 X86DESCATTR DescAttr;
4589 DescAttr.u = 0;
4590 DescAttr.n.u1Present = 1;
4591 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4592
4593 u16Sel = 0;
4594 u32Limit = HM_VTX_TSS_SIZE;
4595 u64Base = GCPhys; /* in real-mode phys = virt. */
4596 u32AccessRights = DescAttr.u;
4597 }
4598
4599 /* Validate. */
4600 Assert(!(u16Sel & RT_BIT(2)));
4601 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4602 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4603 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4604 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4605 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4606 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4607 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4608 Assert( (u32Limit & 0xfff) == 0xfff
4609 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4610 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4611 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4612
4613 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_TR, u16Sel); AssertRCReturn(rc, rc);
4614 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRCReturn(rc, rc);
4615 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRCReturn(rc, rc);
4616 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRCReturn(rc, rc);
4617
4618 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4619 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4620 }
4621
4622 /*
4623 * Guest GDTR.
4624 */
4625 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4626 {
4627 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt); AssertRCReturn(rc, rc);
4628 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt); AssertRCReturn(rc, rc);
4629
4630 /* Validate. */
4631 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4632
4633 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4634 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4635 }
4636
4637 /*
4638 * Guest LDTR.
4639 */
4640 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4641 {
4642 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4643 uint32_t u32Access = 0;
4644 if (!pMixedCtx->ldtr.Attr.u)
4645 u32Access = X86DESCATTR_UNUSABLE;
4646 else
4647 u32Access = pMixedCtx->ldtr.Attr.u;
4648
4649 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_LDTR, pMixedCtx->ldtr.Sel); AssertRCReturn(rc, rc);
4650 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit); AssertRCReturn(rc, rc);
4651 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base); AssertRCReturn(rc, rc);
4652 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRCReturn(rc, rc);
4653
4654 /* Validate. */
4655 if (!(u32Access & X86DESCATTR_UNUSABLE))
4656 {
4657 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4658 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4659 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4660 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4661 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4662 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4663 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4664 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4665 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4666 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4667 }
4668
4669 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4670 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4671 }
4672
4673 /*
4674 * Guest IDTR.
4675 */
4676 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4677 {
4678 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt); AssertRCReturn(rc, rc);
4679 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt); AssertRCReturn(rc, rc);
4680
4681 /* Validate. */
4682 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4683
4684 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4685 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4686 }
4687
4688 return VINF_SUCCESS;
4689}
4690
4691
4692/**
4693 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4694 * areas.
4695 *
4696 * These MSRs will automatically be loaded to the host CPU on every successful
4697 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4698 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4699 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4700 *
4701 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4702 *
4703 * @returns VBox status code.
4704 * @param pVCpu Pointer to the VMCPU.
4705 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4706 * out-of-sync. Make sure to update the required fields
4707 * before using them.
4708 *
4709 * @remarks No-long-jump zone!!!
4710 */
4711static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4712{
4713 AssertPtr(pVCpu);
4714 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4715
4716 /*
4717 * MSRs that we use the auto-load/store MSR area in the VMCS.
4718 */
4719 PVM pVM = pVCpu->CTX_SUFF(pVM);
4720 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4721 {
4722 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4723#if HC_ARCH_BITS == 32 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4724 if (pVM->hm.s.fAllow64BitGuests)
4725 {
4726 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false /* fUpdateHostMsr */);
4727 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false /* fUpdateHostMsr */);
4728 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false /* fUpdateHostMsr */);
4729 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false /* fUpdateHostMsr */);
4730# ifdef DEBUG
4731 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4732 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4733 {
4734 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4735 pMsr->u64Value));
4736 }
4737# endif
4738 }
4739#endif
4740 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4741 }
4742
4743 /*
4744 * Guest Sysenter MSRs.
4745 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4746 * VM-exits on WRMSRs for these MSRs.
4747 */
4748 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4749 {
4750 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4751 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4752 }
4753
4754 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4755 {
4756 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4757 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4758 }
4759
4760 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4761 {
4762 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4763 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4764 }
4765
4766 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4767 {
4768 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4769 {
4770 /*
4771 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4772 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4773 */
4774 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4775 {
4776 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4777 AssertRCReturn(rc,rc);
4778 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4779 }
4780 else
4781 {
4782 hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */);
4783 /* We need to intercept reads too, see @bugref{7386} comment #16. */
4784 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4785 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4786 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4787 }
4788 }
4789 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4790 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4791 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4792 }
4793
4794 return VINF_SUCCESS;
4795}
4796
4797
4798/**
4799 * Loads the guest activity state into the guest-state area in the VMCS.
4800 *
4801 * @returns VBox status code.
4802 * @param pVCpu Pointer to the VMCPU.
4803 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4804 * out-of-sync. Make sure to update the required fields
4805 * before using them.
4806 *
4807 * @remarks No-long-jump zone!!!
4808 */
4809static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pCtx)
4810{
4811 NOREF(pCtx);
4812 /** @todo See if we can make use of other states, e.g.
4813 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4814 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4815 {
4816 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4817 AssertRCReturn(rc, rc);
4818
4819 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4820 }
4821 return VINF_SUCCESS;
4822}
4823
4824
4825/**
4826 * Sets up the appropriate function to run guest code.
4827 *
4828 * @returns VBox status code.
4829 * @param pVCpu Pointer to the VMCPU.
4830 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4831 * out-of-sync. Make sure to update the required fields
4832 * before using them.
4833 *
4834 * @remarks No-long-jump zone!!!
4835 */
4836static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4837{
4838 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4839 {
4840#ifndef VBOX_ENABLE_64_BITS_GUESTS
4841 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4842#endif
4843 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4844#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4845 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4846 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4847 {
4848 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4849 {
4850 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4851 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4852 | HM_CHANGED_VMX_ENTRY_CTLS
4853 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4854 }
4855 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4856 }
4857#else
4858 /* 64-bit host or hybrid host. */
4859 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4860#endif
4861 }
4862 else
4863 {
4864 /* Guest is not in long mode, use the 32-bit handler. */
4865#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4866 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4867 {
4868 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4869 {
4870 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4871 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4872 | HM_CHANGED_VMX_ENTRY_CTLS
4873 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4874 }
4875 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4876 }
4877#else
4878 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4879#endif
4880 }
4881 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4882 return VINF_SUCCESS;
4883}
4884
4885
4886/**
4887 * Wrapper for running the guest code in VT-x.
4888 *
4889 * @returns VBox strict status code.
4890 * @param pVM Pointer to the VM.
4891 * @param pVCpu Pointer to the VMCPU.
4892 * @param pCtx Pointer to the guest-CPU context.
4893 *
4894 * @remarks No-long-jump zone!!!
4895 */
4896DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4897{
4898 /*
4899 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4900 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4901 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4902 */
4903 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4904 /** @todo Add stats for resume vs launch. */
4905#ifdef VBOX_WITH_KERNEL_USING_XMM
4906 return HMR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4907#else
4908 return pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4909#endif
4910}
4911
4912
4913/**
4914 * Reports world-switch error and dumps some useful debug info.
4915 *
4916 * @param pVM Pointer to the VM.
4917 * @param pVCpu Pointer to the VMCPU.
4918 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4919 * @param pCtx Pointer to the guest-CPU context.
4920 * @param pVmxTransient Pointer to the VMX transient structure (only
4921 * exitReason updated).
4922 */
4923static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
4924{
4925 Assert(pVM);
4926 Assert(pVCpu);
4927 Assert(pCtx);
4928 Assert(pVmxTransient);
4929 HMVMX_ASSERT_PREEMPT_SAFE();
4930
4931 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
4932 switch (rcVMRun)
4933 {
4934 case VERR_VMX_INVALID_VMXON_PTR:
4935 AssertFailed();
4936 break;
4937 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4938 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
4939 {
4940 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
4941 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
4942 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
4943 AssertRC(rc);
4944
4945 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
4946 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
4947 Cannot do it here as we may have been long preempted. */
4948
4949#ifdef VBOX_STRICT
4950 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
4951 pVmxTransient->uExitReason));
4952 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
4953 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
4954 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
4955 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
4956 else
4957 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
4958 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
4959 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
4960
4961 /* VMX control bits. */
4962 uint32_t u32Val;
4963 uint64_t u64Val;
4964 HMVMXHCUINTREG uHCReg;
4965 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
4966 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
4967 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
4968 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
4969 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
4970 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
4971 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
4972 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
4973 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
4974 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
4975 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
4976 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
4977 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
4978 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
4979 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
4980 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
4981 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
4982 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
4983 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
4984 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
4985 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
4986 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
4987 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
4988 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
4989 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
4990 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
4991 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
4992 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
4993 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
4994 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
4995 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
4996 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
4997 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
4998 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
4999 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5000 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5001 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5002 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5003 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5004 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5005 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5006 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5007
5008 /* Guest bits. */
5009 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5010 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5011 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5012 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5013 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5014 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5015 rc = VMXReadVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, &u32Val); AssertRC(rc);
5016 Log4(("VMX_VMCS16_GUEST_FIELD_VPID %u\n", u32Val));
5017
5018 /* Host bits. */
5019 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5020 Log4(("Host CR0 %#RHr\n", uHCReg));
5021 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5022 Log4(("Host CR3 %#RHr\n", uHCReg));
5023 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5024 Log4(("Host CR4 %#RHr\n", uHCReg));
5025
5026 RTGDTR HostGdtr;
5027 PCX86DESCHC pDesc;
5028 ASMGetGDTR(&HostGdtr);
5029 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_CS, &u32Val); AssertRC(rc);
5030 Log4(("Host CS %#08x\n", u32Val));
5031 if (u32Val < HostGdtr.cbGdt)
5032 {
5033 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5034 HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
5035 }
5036
5037 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_DS, &u32Val); AssertRC(rc);
5038 Log4(("Host DS %#08x\n", u32Val));
5039 if (u32Val < HostGdtr.cbGdt)
5040 {
5041 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5042 HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
5043 }
5044
5045 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_ES, &u32Val); AssertRC(rc);
5046 Log4(("Host ES %#08x\n", u32Val));
5047 if (u32Val < HostGdtr.cbGdt)
5048 {
5049 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5050 HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
5051 }
5052
5053 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_FS, &u32Val); AssertRC(rc);
5054 Log4(("Host FS %#08x\n", u32Val));
5055 if (u32Val < HostGdtr.cbGdt)
5056 {
5057 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5058 HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
5059 }
5060
5061 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_GS, &u32Val); AssertRC(rc);
5062 Log4(("Host GS %#08x\n", u32Val));
5063 if (u32Val < HostGdtr.cbGdt)
5064 {
5065 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5066 HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
5067 }
5068
5069 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_SS, &u32Val); AssertRC(rc);
5070 Log4(("Host SS %#08x\n", u32Val));
5071 if (u32Val < HostGdtr.cbGdt)
5072 {
5073 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5074 HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
5075 }
5076
5077 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_TR, &u32Val); AssertRC(rc);
5078 Log4(("Host TR %#08x\n", u32Val));
5079 if (u32Val < HostGdtr.cbGdt)
5080 {
5081 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5082 HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
5083 }
5084
5085 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5086 Log4(("Host TR Base %#RHv\n", uHCReg));
5087 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5088 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5089 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5090 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5091 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5092 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5093 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5094 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5095 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5096 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5097 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5098 Log4(("Host RSP %#RHv\n", uHCReg));
5099 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5100 Log4(("Host RIP %#RHv\n", uHCReg));
5101# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
5102 if (HMVMX_IS_64BIT_HOST_MODE())
5103 {
5104 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5105 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5106 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5107 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5108 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5109 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5110 }
5111# endif
5112#endif /* VBOX_STRICT */
5113 break;
5114 }
5115
5116 default:
5117 /* Impossible */
5118 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5119 break;
5120 }
5121 NOREF(pVM); NOREF(pCtx);
5122}
5123
5124
5125#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
5126#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5127# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5128#endif
5129#ifdef VBOX_STRICT
5130static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5131{
5132 switch (idxField)
5133 {
5134 case VMX_VMCS_GUEST_RIP:
5135 case VMX_VMCS_GUEST_RSP:
5136 case VMX_VMCS_GUEST_SYSENTER_EIP:
5137 case VMX_VMCS_GUEST_SYSENTER_ESP:
5138 case VMX_VMCS_GUEST_GDTR_BASE:
5139 case VMX_VMCS_GUEST_IDTR_BASE:
5140 case VMX_VMCS_GUEST_CS_BASE:
5141 case VMX_VMCS_GUEST_DS_BASE:
5142 case VMX_VMCS_GUEST_ES_BASE:
5143 case VMX_VMCS_GUEST_FS_BASE:
5144 case VMX_VMCS_GUEST_GS_BASE:
5145 case VMX_VMCS_GUEST_SS_BASE:
5146 case VMX_VMCS_GUEST_LDTR_BASE:
5147 case VMX_VMCS_GUEST_TR_BASE:
5148 case VMX_VMCS_GUEST_CR3:
5149 return true;
5150 }
5151 return false;
5152}
5153
5154static bool hmR0VmxIsValidReadField(uint32_t idxField)
5155{
5156 switch (idxField)
5157 {
5158 /* Read-only fields. */
5159 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5160 return true;
5161 }
5162 /* Remaining readable fields should also be writable. */
5163 return hmR0VmxIsValidWriteField(idxField);
5164}
5165#endif /* VBOX_STRICT */
5166
5167
5168/**
5169 * Executes the specified handler in 64-bit mode.
5170 *
5171 * @returns VBox status code.
5172 * @param pVM Pointer to the VM.
5173 * @param pVCpu Pointer to the VMCPU.
5174 * @param pCtx Pointer to the guest CPU context.
5175 * @param enmOp The operation to perform.
5176 * @param cbParam Number of parameters.
5177 * @param paParam Array of 32-bit parameters.
5178 */
5179VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
5180 uint32_t *paParam)
5181{
5182 int rc, rc2;
5183 PHMGLOBALCPUINFO pCpu;
5184 RTHCPHYS HCPhysCpuPage;
5185 RTCCUINTREG uOldEflags;
5186
5187 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5188 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5189 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5190 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5191
5192#ifdef VBOX_STRICT
5193 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5194 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5195
5196 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5197 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5198#endif
5199
5200 /* Disable interrupts. */
5201 uOldEflags = ASMIntDisableFlags();
5202
5203#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5204 RTCPUID idHostCpu = RTMpCpuId();
5205 CPUMR0SetLApic(pVCpu, idHostCpu);
5206#endif
5207
5208 pCpu = HMR0GetCurrentCpu();
5209 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
5210
5211 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5212 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5213
5214 /* Leave VMX Root Mode. */
5215 VMXDisable();
5216
5217 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5218
5219 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5220 CPUMSetHyperEIP(pVCpu, enmOp);
5221 for (int i = (int)cbParam - 1; i >= 0; i--)
5222 CPUMPushHyper(pVCpu, paParam[i]);
5223
5224 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5225
5226 /* Call the switcher. */
5227 rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5228 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5229
5230 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5231 /* Make sure the VMX instructions don't cause #UD faults. */
5232 SUPR0ChangeCR4(X86_CR4_VMXE, ~0);
5233
5234 /* Re-enter VMX Root Mode */
5235 rc2 = VMXEnable(HCPhysCpuPage);
5236 if (RT_FAILURE(rc2))
5237 {
5238 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5239 ASMSetFlags(uOldEflags);
5240 return rc2;
5241 }
5242
5243 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5244 AssertRC(rc2);
5245 Assert(!(ASMGetFlags() & X86_EFL_IF));
5246 ASMSetFlags(uOldEflags);
5247 return rc;
5248}
5249
5250
5251/**
5252 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5253 * supporting 64-bit guests.
5254 *
5255 * @returns VBox status code.
5256 * @param fResume Whether to VMLAUNCH or VMRESUME.
5257 * @param pCtx Pointer to the guest-CPU context.
5258 * @param pCache Pointer to the VMCS cache.
5259 * @param pVM Pointer to the VM.
5260 * @param pVCpu Pointer to the VMCPU.
5261 */
5262DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5263{
5264 uint32_t aParam[6];
5265 PHMGLOBALCPUINFO pCpu = NULL;
5266 RTHCPHYS HCPhysCpuPage = 0;
5267 int rc = VERR_INTERNAL_ERROR_5;
5268
5269 pCpu = HMR0GetCurrentCpu();
5270 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
5271
5272#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5273 pCache->uPos = 1;
5274 pCache->interPD = PGMGetInterPaeCR3(pVM);
5275 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5276#endif
5277
5278#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5279 pCache->TestIn.HCPhysCpuPage = 0;
5280 pCache->TestIn.HCPhysVmcs = 0;
5281 pCache->TestIn.pCache = 0;
5282 pCache->TestOut.HCPhysVmcs = 0;
5283 pCache->TestOut.pCache = 0;
5284 pCache->TestOut.pCtx = 0;
5285 pCache->TestOut.eflags = 0;
5286#endif
5287
5288 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5289 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5290 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5291 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5292 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5293 aParam[5] = 0;
5294
5295#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5296 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5297 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5298#endif
5299 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, 6, &aParam[0]);
5300
5301#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5302 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5303 Assert(pCtx->dr[4] == 10);
5304 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5305#endif
5306
5307#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5308 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5309 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5310 pVCpu->hm.s.vmx.HCPhysVmcs));
5311 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5312 pCache->TestOut.HCPhysVmcs));
5313 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5314 pCache->TestOut.pCache));
5315 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5316 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5317 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5318 pCache->TestOut.pCtx));
5319 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5320#endif
5321 return rc;
5322}
5323
5324
5325/**
5326 * Initialize the VMCS-Read cache.
5327 *
5328 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5329 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5330 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5331 * (those that have a 32-bit FULL & HIGH part).
5332 *
5333 * @returns VBox status code.
5334 * @param pVM Pointer to the VM.
5335 * @param pVCpu Pointer to the VMCPU.
5336 */
5337static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5338{
5339#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5340{ \
5341 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5342 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5343 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5344 ++cReadFields; \
5345}
5346
5347 AssertPtr(pVM);
5348 AssertPtr(pVCpu);
5349 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5350 uint32_t cReadFields = 0;
5351
5352 /*
5353 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5354 * and serve to indicate exceptions to the rules.
5355 */
5356
5357 /* Guest-natural selector base fields. */
5358#if 0
5359 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5360 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5361 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5362#endif
5363 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5364 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5365 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5366 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5367 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5368 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5369 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5370 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5371 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5372 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5373 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5374 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5375#if 0
5376 /* Unused natural width guest-state fields. */
5377 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5378 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5379#endif
5380 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5381 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5382
5383 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5384#if 0
5385 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5386 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5387 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5388 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5389 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5390 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5391 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5392 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5393 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5394#endif
5395
5396 /* Natural width guest-state fields. */
5397 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5398#if 0
5399 /* Currently unused field. */
5400 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5401#endif
5402
5403 if (pVM->hm.s.fNestedPaging)
5404 {
5405 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5406 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5407 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5408 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5409 }
5410 else
5411 {
5412 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5413 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5414 }
5415
5416#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5417 return VINF_SUCCESS;
5418}
5419
5420
5421/**
5422 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5423 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5424 * darwin, running 64-bit guests).
5425 *
5426 * @returns VBox status code.
5427 * @param pVCpu Pointer to the VMCPU.
5428 * @param idxField The VMCS field encoding.
5429 * @param u64Val 16, 32 or 64-bit value.
5430 */
5431VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5432{
5433 int rc;
5434 switch (idxField)
5435 {
5436 /*
5437 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5438 */
5439 /* 64-bit Control fields. */
5440 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5441 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5442 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5443 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5444 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5445 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5446 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5447 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5448 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5449 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5450 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5451 case VMX_VMCS64_CTRL_EPTP_FULL:
5452 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5453 /* 64-bit Guest-state fields. */
5454 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5455 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5456 case VMX_VMCS64_GUEST_PAT_FULL:
5457 case VMX_VMCS64_GUEST_EFER_FULL:
5458 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5459 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5460 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5461 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5462 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5463 /* 64-bit Host-state fields. */
5464 case VMX_VMCS64_HOST_FIELD_PAT_FULL:
5465 case VMX_VMCS64_HOST_FIELD_EFER_FULL:
5466 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5467 {
5468 rc = VMXWriteVmcs32(idxField, u64Val);
5469 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5470 break;
5471 }
5472
5473 /*
5474 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5475 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5476 */
5477 /* Natural-width Guest-state fields. */
5478 case VMX_VMCS_GUEST_CR3:
5479 case VMX_VMCS_GUEST_ES_BASE:
5480 case VMX_VMCS_GUEST_CS_BASE:
5481 case VMX_VMCS_GUEST_SS_BASE:
5482 case VMX_VMCS_GUEST_DS_BASE:
5483 case VMX_VMCS_GUEST_FS_BASE:
5484 case VMX_VMCS_GUEST_GS_BASE:
5485 case VMX_VMCS_GUEST_LDTR_BASE:
5486 case VMX_VMCS_GUEST_TR_BASE:
5487 case VMX_VMCS_GUEST_GDTR_BASE:
5488 case VMX_VMCS_GUEST_IDTR_BASE:
5489 case VMX_VMCS_GUEST_RSP:
5490 case VMX_VMCS_GUEST_RIP:
5491 case VMX_VMCS_GUEST_SYSENTER_ESP:
5492 case VMX_VMCS_GUEST_SYSENTER_EIP:
5493 {
5494 if (!(u64Val >> 32))
5495 {
5496 /* If this field is 64-bit, VT-x will zero out the top bits. */
5497 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5498 }
5499 else
5500 {
5501 /* Assert that only the 32->64 switcher case should ever come here. */
5502 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5503 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5504 }
5505 break;
5506 }
5507
5508 default:
5509 {
5510 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5511 rc = VERR_INVALID_PARAMETER;
5512 break;
5513 }
5514 }
5515 AssertRCReturn(rc, rc);
5516 return rc;
5517}
5518
5519
5520/**
5521 * Queue up a VMWRITE by using the VMCS write cache.
5522 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5523 *
5524 * @param pVCpu Pointer to the VMCPU.
5525 * @param idxField The VMCS field encoding.
5526 * @param u64Val 16, 32 or 64-bit value.
5527 */
5528VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5529{
5530 AssertPtr(pVCpu);
5531 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5532
5533 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5534 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5535
5536 /* Make sure there are no duplicates. */
5537 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5538 {
5539 if (pCache->Write.aField[i] == idxField)
5540 {
5541 pCache->Write.aFieldVal[i] = u64Val;
5542 return VINF_SUCCESS;
5543 }
5544 }
5545
5546 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5547 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5548 pCache->Write.cValidEntries++;
5549 return VINF_SUCCESS;
5550}
5551
5552/* Enable later when the assembly code uses these as callbacks. */
5553#if 0
5554/*
5555 * Loads the VMCS write-cache into the CPU (by executing VMWRITEs).
5556 *
5557 * @param pVCpu Pointer to the VMCPU.
5558 * @param pCache Pointer to the VMCS cache.
5559 *
5560 * @remarks No-long-jump zone!!!
5561 */
5562VMMR0DECL(void) VMXWriteCachedVmcsLoad(PVMCPU pVCpu, PVMCSCACHE pCache)
5563{
5564 AssertPtr(pCache);
5565 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5566 {
5567 int rc = VMXWriteVmcs64(pCache->Write.aField[i], pCache->Write.aFieldVal[i]);
5568 AssertRC(rc);
5569 }
5570 pCache->Write.cValidEntries = 0;
5571}
5572
5573
5574/**
5575 * Stores the VMCS read-cache from the CPU (by executing VMREADs).
5576 *
5577 * @param pVCpu Pointer to the VMCPU.
5578 * @param pCache Pointer to the VMCS cache.
5579 *
5580 * @remarks No-long-jump zone!!!
5581 */
5582VMMR0DECL(void) VMXReadCachedVmcsStore(PVMCPU pVCpu, PVMCSCACHE pCache)
5583{
5584 AssertPtr(pCache);
5585 for (uint32_t i = 0; i < pCache->Read.cValidEntries; i++)
5586 {
5587 int rc = VMXReadVmcs64(pCache->Read.aField[i], &pCache->Read.aFieldVal[i]);
5588 AssertRC(rc);
5589 }
5590}
5591#endif
5592#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
5593
5594
5595/**
5596 * Sets up the usage of TSC-offsetting and updates the VMCS.
5597 *
5598 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5599 * VMX preemption timer.
5600 *
5601 * @returns VBox status code.
5602 * @param pVM Pointer to the cross context VM structure.
5603 * @param pVCpu Pointer to the VMCPU.
5604 *
5605 * @remarks No-long-jump zone!!!
5606 */
5607static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5608{
5609 int rc;
5610 bool fOffsettedTsc;
5611 bool fParavirtTsc;
5612 if (pVM->hm.s.vmx.fUsePreemptTimer)
5613 {
5614 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5615 &fOffsettedTsc, &fParavirtTsc);
5616
5617 /* Make sure the returned values have sane upper and lower boundaries. */
5618 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5619 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5620 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5621 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5622
5623 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5624 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5625 }
5626 else
5627 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5628
5629 /** @todo later optimize this to be done elsewhere and not before every
5630 * VM-entry. */
5631 if (fParavirtTsc)
5632 {
5633 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5634 AssertRC(rc);
5635 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5636 }
5637
5638 if (fOffsettedTsc)
5639 {
5640 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5641 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5642
5643 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5644 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5645 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5646 }
5647 else
5648 {
5649 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5650 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5651 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5652 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5653 }
5654}
5655
5656
5657/**
5658 * Determines if an exception is a contributory exception.
5659 *
5660 * Contributory exceptions are ones which can cause double-faults unless the
5661 * original exception was a benign exception. Page-fault is intentionally not
5662 * included here as it's a conditional contributory exception.
5663 *
5664 * @returns true if the exception is contributory, false otherwise.
5665 * @param uVector The exception vector.
5666 */
5667DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5668{
5669 switch (uVector)
5670 {
5671 case X86_XCPT_GP:
5672 case X86_XCPT_SS:
5673 case X86_XCPT_NP:
5674 case X86_XCPT_TS:
5675 case X86_XCPT_DE:
5676 return true;
5677 default:
5678 break;
5679 }
5680 return false;
5681}
5682
5683
5684/**
5685 * Sets an event as a pending event to be injected into the guest.
5686 *
5687 * @param pVCpu Pointer to the VMCPU.
5688 * @param u32IntInfo The VM-entry interruption-information field.
5689 * @param cbInstr The VM-entry instruction length in bytes (for software
5690 * interrupts, exceptions and privileged software
5691 * exceptions).
5692 * @param u32ErrCode The VM-entry exception error code.
5693 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5694 * page-fault.
5695 *
5696 * @remarks Statistics counter assumes this is a guest event being injected or
5697 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5698 * always incremented.
5699 */
5700DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5701 RTGCUINTPTR GCPtrFaultAddress)
5702{
5703 Assert(!pVCpu->hm.s.Event.fPending);
5704 pVCpu->hm.s.Event.fPending = true;
5705 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5706 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5707 pVCpu->hm.s.Event.cbInstr = cbInstr;
5708 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5709
5710 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5711}
5712
5713
5714/**
5715 * Sets a double-fault (#DF) exception as pending-for-injection into the VM.
5716 *
5717 * @param pVCpu Pointer to the VMCPU.
5718 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5719 * out-of-sync. Make sure to update the required fields
5720 * before using them.
5721 */
5722DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5723{
5724 NOREF(pMixedCtx);
5725 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5726 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5727 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5728 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5729}
5730
5731
5732/**
5733 * Handle a condition that occurred while delivering an event through the guest
5734 * IDT.
5735 *
5736 * @returns VBox status code (informational error codes included).
5737 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5738 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
5739 * continue execution of the guest which will delivery the #DF.
5740 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5741 *
5742 * @param pVCpu Pointer to the VMCPU.
5743 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5744 * out-of-sync. Make sure to update the required fields
5745 * before using them.
5746 * @param pVmxTransient Pointer to the VMX transient structure.
5747 *
5748 * @remarks No-long-jump zone!!!
5749 */
5750static int hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5751{
5752 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5753
5754 int rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
5755 AssertRCReturn(rc, rc);
5756 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
5757 AssertRCReturn(rc, rc);
5758
5759 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5760 {
5761 uint32_t uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5762 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5763
5764 typedef enum
5765 {
5766 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5767 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5768 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5769 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
5770 } VMXREFLECTXCPT;
5771
5772 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5773 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
5774 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5775 {
5776 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
5777 {
5778 enmReflect = VMXREFLECTXCPT_XCPT;
5779#ifdef VBOX_STRICT
5780 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
5781 && uExitVector == X86_XCPT_PF)
5782 {
5783 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5784 }
5785#endif
5786 if ( uExitVector == X86_XCPT_PF
5787 && uIdtVector == X86_XCPT_PF)
5788 {
5789 pVmxTransient->fVectoringDoublePF = true;
5790 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5791 }
5792 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
5793 && hmR0VmxIsContributoryXcpt(uExitVector)
5794 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
5795 || uIdtVector == X86_XCPT_PF))
5796 {
5797 enmReflect = VMXREFLECTXCPT_DF;
5798 }
5799 else if (uIdtVector == X86_XCPT_DF)
5800 enmReflect = VMXREFLECTXCPT_TF;
5801 }
5802 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5803 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5804 {
5805 /*
5806 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
5807 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
5808 */
5809 enmReflect = VMXREFLECTXCPT_XCPT;
5810
5811 if (uExitVector == X86_XCPT_PF)
5812 {
5813 pVmxTransient->fVectoringPF = true;
5814 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5815 }
5816 }
5817 }
5818 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5819 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5820 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5821 {
5822 /*
5823 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5824 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
5825 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
5826 */
5827 enmReflect = VMXREFLECTXCPT_XCPT;
5828 }
5829
5830 /*
5831 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
5832 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
5833 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
5834 *
5835 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5836 */
5837 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5838 && enmReflect == VMXREFLECTXCPT_XCPT
5839 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
5840 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5841 {
5842 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5843 }
5844
5845 switch (enmReflect)
5846 {
5847 case VMXREFLECTXCPT_XCPT:
5848 {
5849 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5850 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5851 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5852
5853 uint32_t u32ErrCode = 0;
5854 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5855 {
5856 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5857 AssertRCReturn(rc, rc);
5858 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5859 }
5860
5861 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
5862 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5863 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5864 rc = VINF_SUCCESS;
5865 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
5866 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
5867
5868 break;
5869 }
5870
5871 case VMXREFLECTXCPT_DF:
5872 {
5873 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
5874 rc = VINF_HM_DOUBLE_FAULT;
5875 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
5876 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5877
5878 break;
5879 }
5880
5881 case VMXREFLECTXCPT_TF:
5882 {
5883 rc = VINF_EM_RESET;
5884 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
5885 uExitVector));
5886 break;
5887 }
5888
5889 default:
5890 Assert(rc == VINF_SUCCESS);
5891 break;
5892 }
5893 }
5894 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
5895 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
5896 && uExitVector != X86_XCPT_DF
5897 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
5898 {
5899 /*
5900 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
5901 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
5902 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
5903 */
5904 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5905 {
5906 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
5907 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
5908 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
5909 }
5910 }
5911
5912 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
5913 return rc;
5914}
5915
5916
5917/**
5918 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
5919 *
5920 * @returns VBox status code.
5921 * @param pVCpu Pointer to the VMCPU.
5922 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5923 * out-of-sync. Make sure to update the required fields
5924 * before using them.
5925 *
5926 * @remarks No-long-jump zone!!!
5927 */
5928static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5929{
5930 NOREF(pMixedCtx);
5931
5932 /*
5933 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
5934 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
5935 */
5936 VMMRZCallRing3Disable(pVCpu);
5937 HM_DISABLE_PREEMPT_IF_NEEDED();
5938
5939 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
5940 {
5941 uint32_t uVal = 0;
5942 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
5943 AssertRCReturn(rc, rc);
5944
5945 uint32_t uShadow = 0;
5946 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
5947 AssertRCReturn(rc, rc);
5948
5949 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
5950 CPUMSetGuestCR0(pVCpu, uVal);
5951 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
5952 }
5953
5954 HM_RESTORE_PREEMPT_IF_NEEDED();
5955 VMMRZCallRing3Enable(pVCpu);
5956 return VINF_SUCCESS;
5957}
5958
5959
5960/**
5961 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
5962 *
5963 * @returns VBox status code.
5964 * @param pVCpu Pointer to the VMCPU.
5965 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5966 * out-of-sync. Make sure to update the required fields
5967 * before using them.
5968 *
5969 * @remarks No-long-jump zone!!!
5970 */
5971static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5972{
5973 NOREF(pMixedCtx);
5974
5975 int rc = VINF_SUCCESS;
5976 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
5977 {
5978 uint32_t uVal = 0;
5979 uint32_t uShadow = 0;
5980 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
5981 AssertRCReturn(rc, rc);
5982 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
5983 AssertRCReturn(rc, rc);
5984
5985 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
5986 CPUMSetGuestCR4(pVCpu, uVal);
5987 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
5988 }
5989 return rc;
5990}
5991
5992
5993/**
5994 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
5995 *
5996 * @returns VBox status code.
5997 * @param pVCpu Pointer to the VMCPU.
5998 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5999 * out-of-sync. Make sure to update the required fields
6000 * before using them.
6001 *
6002 * @remarks No-long-jump zone!!!
6003 */
6004static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6005{
6006 int rc = VINF_SUCCESS;
6007 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6008 {
6009 uint64_t u64Val = 0;
6010 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6011 AssertRCReturn(rc, rc);
6012
6013 pMixedCtx->rip = u64Val;
6014 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6015 }
6016 return rc;
6017}
6018
6019
6020/**
6021 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6022 *
6023 * @returns VBox status code.
6024 * @param pVCpu Pointer to the VMCPU.
6025 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6026 * out-of-sync. Make sure to update the required fields
6027 * before using them.
6028 *
6029 * @remarks No-long-jump zone!!!
6030 */
6031static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6032{
6033 int rc = VINF_SUCCESS;
6034 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6035 {
6036 uint64_t u64Val = 0;
6037 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6038 AssertRCReturn(rc, rc);
6039
6040 pMixedCtx->rsp = u64Val;
6041 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6042 }
6043 return rc;
6044}
6045
6046
6047/**
6048 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6049 *
6050 * @returns VBox status code.
6051 * @param pVCpu Pointer to the VMCPU.
6052 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6053 * out-of-sync. Make sure to update the required fields
6054 * before using them.
6055 *
6056 * @remarks No-long-jump zone!!!
6057 */
6058static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6059{
6060 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6061 {
6062 uint32_t uVal = 0;
6063 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6064 AssertRCReturn(rc, rc);
6065
6066 pMixedCtx->eflags.u32 = uVal;
6067 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6068 {
6069 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6070 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6071
6072 pMixedCtx->eflags.Bits.u1VM = 0;
6073 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6074 }
6075
6076 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6077 }
6078 return VINF_SUCCESS;
6079}
6080
6081
6082/**
6083 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6084 * guest-CPU context.
6085 */
6086DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6087{
6088 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6089 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6090 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6091 return rc;
6092}
6093
6094
6095/**
6096 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6097 * from the guest-state area in the VMCS.
6098 *
6099 * @param pVCpu Pointer to the VMCPU.
6100 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6101 * out-of-sync. Make sure to update the required fields
6102 * before using them.
6103 *
6104 * @remarks No-long-jump zone!!!
6105 */
6106static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6107{
6108 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6109 {
6110 uint32_t uIntrState = 0;
6111 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6112 AssertRC(rc);
6113
6114 if (!uIntrState)
6115 {
6116 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6117 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6118
6119 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6120 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6121 }
6122 else
6123 {
6124 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6125 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6126 {
6127 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6128 AssertRC(rc);
6129 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6130 AssertRC(rc);
6131
6132 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6133 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6134 }
6135 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6136 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6137
6138 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6139 {
6140 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6141 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6142 }
6143 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6144 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6145 }
6146
6147 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6148 }
6149}
6150
6151
6152/**
6153 * Saves the guest's activity state.
6154 *
6155 * @returns VBox status code.
6156 * @param pVCpu Pointer to the VMCPU.
6157 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6158 * out-of-sync. Make sure to update the required fields
6159 * before using them.
6160 *
6161 * @remarks No-long-jump zone!!!
6162 */
6163static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6164{
6165 NOREF(pMixedCtx);
6166 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6167 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6168 return VINF_SUCCESS;
6169}
6170
6171
6172/**
6173 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6174 * the current VMCS into the guest-CPU context.
6175 *
6176 * @returns VBox status code.
6177 * @param pVCpu Pointer to the VMCPU.
6178 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6179 * out-of-sync. Make sure to update the required fields
6180 * before using them.
6181 *
6182 * @remarks No-long-jump zone!!!
6183 */
6184static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6185{
6186 int rc = VINF_SUCCESS;
6187 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6188 {
6189 uint32_t u32Val = 0;
6190 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6191 pMixedCtx->SysEnter.cs = u32Val;
6192 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6193 }
6194
6195 uint64_t u64Val = 0;
6196 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6197 {
6198 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6199 pMixedCtx->SysEnter.eip = u64Val;
6200 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6201 }
6202 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6203 {
6204 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6205 pMixedCtx->SysEnter.esp = u64Val;
6206 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6207 }
6208 return rc;
6209}
6210
6211
6212/**
6213 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6214 * the CPU back into the guest-CPU context.
6215 *
6216 * @returns VBox status code.
6217 * @param pVCpu Pointer to the VMCPU.
6218 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6219 * out-of-sync. Make sure to update the required fields
6220 * before using them.
6221 *
6222 * @remarks No-long-jump zone!!!
6223 */
6224static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6225{
6226#if HC_ARCH_BITS == 64
6227 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
6228 {
6229 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6230 VMMRZCallRing3Disable(pVCpu);
6231 HM_DISABLE_PREEMPT_IF_NEEDED();
6232
6233 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6234 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6235 {
6236 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6237 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6238 }
6239
6240 HM_RESTORE_PREEMPT_IF_NEEDED();
6241 VMMRZCallRing3Enable(pVCpu);
6242 }
6243 else
6244 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6245#else
6246 NOREF(pMixedCtx);
6247 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6248#endif
6249
6250 return VINF_SUCCESS;
6251}
6252
6253
6254/**
6255 * Saves the auto load/store'd guest MSRs from the current VMCS into
6256 * the guest-CPU context.
6257 *
6258 * @returns VBox status code.
6259 * @param pVCpu Pointer to the VMCPU.
6260 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6261 * out-of-sync. Make sure to update the required fields
6262 * before using them.
6263 *
6264 * @remarks No-long-jump zone!!!
6265 */
6266static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6267{
6268 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6269 return VINF_SUCCESS;
6270
6271 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6272 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6273 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6274 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6275 {
6276 switch (pMsr->u32Msr)
6277 {
6278 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6279 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6280 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6281 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6282 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6283 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6284 break;
6285
6286 default:
6287 {
6288 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6289 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6290 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6291 }
6292 }
6293 }
6294
6295 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6296 return VINF_SUCCESS;
6297}
6298
6299
6300/**
6301 * Saves the guest control registers from the current VMCS into the guest-CPU
6302 * context.
6303 *
6304 * @returns VBox status code.
6305 * @param pVCpu Pointer to the VMCPU.
6306 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6307 * out-of-sync. Make sure to update the required fields
6308 * before using them.
6309 *
6310 * @remarks No-long-jump zone!!!
6311 */
6312static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6313{
6314 /* Guest CR0. Guest FPU. */
6315 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6316 AssertRCReturn(rc, rc);
6317
6318 /* Guest CR4. */
6319 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6320 AssertRCReturn(rc, rc);
6321
6322 /* Guest CR2 - updated always during the world-switch or in #PF. */
6323 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6324 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6325 {
6326 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6327 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6328
6329 PVM pVM = pVCpu->CTX_SUFF(pVM);
6330 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6331 || ( pVM->hm.s.fNestedPaging
6332 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6333 {
6334 uint64_t u64Val = 0;
6335 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6336 if (pMixedCtx->cr3 != u64Val)
6337 {
6338 CPUMSetGuestCR3(pVCpu, u64Val);
6339 if (VMMRZCallRing3IsEnabled(pVCpu))
6340 {
6341 PGMUpdateCR3(pVCpu, u64Val);
6342 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6343 }
6344 else
6345 {
6346 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6347 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6348 }
6349 }
6350
6351 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6352 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6353 {
6354 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
6355 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
6356 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
6357 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
6358
6359 if (VMMRZCallRing3IsEnabled(pVCpu))
6360 {
6361 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6362 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6363 }
6364 else
6365 {
6366 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6367 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6368 }
6369 }
6370 }
6371
6372 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6373 }
6374
6375 /*
6376 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6377 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6378 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6379 *
6380 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6381 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6382 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6383 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6384 *
6385 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6386 */
6387 if (VMMRZCallRing3IsEnabled(pVCpu))
6388 {
6389 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6390 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6391
6392 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6393 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6394
6395 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6396 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6397 }
6398
6399 return rc;
6400}
6401
6402
6403/**
6404 * Reads a guest segment register from the current VMCS into the guest-CPU
6405 * context.
6406 *
6407 * @returns VBox status code.
6408 * @param pVCpu Pointer to the VMCPU.
6409 * @param idxSel Index of the selector in the VMCS.
6410 * @param idxLimit Index of the segment limit in the VMCS.
6411 * @param idxBase Index of the segment base in the VMCS.
6412 * @param idxAccess Index of the access rights of the segment in the VMCS.
6413 * @param pSelReg Pointer to the segment selector.
6414 *
6415 * @remarks No-long-jump zone!!!
6416 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6417 * macro as that takes care of whether to read from the VMCS cache or
6418 * not.
6419 */
6420DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6421 PCPUMSELREG pSelReg)
6422{
6423 NOREF(pVCpu);
6424
6425 uint32_t u32Val = 0;
6426 int rc = VMXReadVmcs32(idxSel, &u32Val);
6427 AssertRCReturn(rc, rc);
6428 pSelReg->Sel = (uint16_t)u32Val;
6429 pSelReg->ValidSel = (uint16_t)u32Val;
6430 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6431
6432 rc = VMXReadVmcs32(idxLimit, &u32Val);
6433 AssertRCReturn(rc, rc);
6434 pSelReg->u32Limit = u32Val;
6435
6436 uint64_t u64Val = 0;
6437 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6438 AssertRCReturn(rc, rc);
6439 pSelReg->u64Base = u64Val;
6440
6441 rc = VMXReadVmcs32(idxAccess, &u32Val);
6442 AssertRCReturn(rc, rc);
6443 pSelReg->Attr.u = u32Val;
6444
6445 /*
6446 * If VT-x marks the segment as unusable, most other bits remain undefined:
6447 * - For CS the L, D and G bits have meaning.
6448 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6449 * - For the remaining data segments no bits are defined.
6450 *
6451 * The present bit and the unusable bit has been observed to be set at the
6452 * same time (the selector was supposed to be invalid as we started executing
6453 * a V8086 interrupt in ring-0).
6454 *
6455 * What should be important for the rest of the VBox code, is that the P bit is
6456 * cleared. Some of the other VBox code recognizes the unusable bit, but
6457 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6458 * safe side here, we'll strip off P and other bits we don't care about. If
6459 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6460 *
6461 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6462 */
6463 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6464 {
6465 Assert(idxSel != VMX_VMCS16_GUEST_FIELD_TR); /* TR is the only selector that can never be unusable. */
6466
6467 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6468 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6469 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6470
6471 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6472#ifdef DEBUG_bird
6473 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6474 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6475 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6476#endif
6477 }
6478 return VINF_SUCCESS;
6479}
6480
6481
6482#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6483# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6484 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6485 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6486#else
6487# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6488 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6489 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6490#endif
6491
6492
6493/**
6494 * Saves the guest segment registers from the current VMCS into the guest-CPU
6495 * context.
6496 *
6497 * @returns VBox status code.
6498 * @param pVCpu Pointer to the VMCPU.
6499 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6500 * out-of-sync. Make sure to update the required fields
6501 * before using them.
6502 *
6503 * @remarks No-long-jump zone!!!
6504 */
6505static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6506{
6507 /* Guest segment registers. */
6508 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6509 {
6510 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); AssertRCReturn(rc, rc);
6511 rc = VMXLOCAL_READ_SEG(CS, cs); AssertRCReturn(rc, rc);
6512 rc = VMXLOCAL_READ_SEG(SS, ss); AssertRCReturn(rc, rc);
6513 rc = VMXLOCAL_READ_SEG(DS, ds); AssertRCReturn(rc, rc);
6514 rc = VMXLOCAL_READ_SEG(ES, es); AssertRCReturn(rc, rc);
6515 rc = VMXLOCAL_READ_SEG(FS, fs); AssertRCReturn(rc, rc);
6516 rc = VMXLOCAL_READ_SEG(GS, gs); AssertRCReturn(rc, rc);
6517
6518 /* Restore segment attributes for real-on-v86 mode hack. */
6519 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6520 {
6521 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6522 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6523 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6524 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6525 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6526 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6527 }
6528 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6529 }
6530
6531 return VINF_SUCCESS;
6532}
6533
6534
6535/**
6536 * Saves the guest descriptor table registers and task register from the current
6537 * VMCS into the guest-CPU context.
6538 *
6539 * @returns VBox status code.
6540 * @param pVCpu Pointer to the VMCPU.
6541 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6542 * out-of-sync. Make sure to update the required fields
6543 * before using them.
6544 *
6545 * @remarks No-long-jump zone!!!
6546 */
6547static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6548{
6549 int rc = VINF_SUCCESS;
6550
6551 /* Guest LDTR. */
6552 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6553 {
6554 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6555 AssertRCReturn(rc, rc);
6556 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6557 }
6558
6559 /* Guest GDTR. */
6560 uint64_t u64Val = 0;
6561 uint32_t u32Val = 0;
6562 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6563 {
6564 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
6565 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6566 pMixedCtx->gdtr.pGdt = u64Val;
6567 pMixedCtx->gdtr.cbGdt = u32Val;
6568 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6569 }
6570
6571 /* Guest IDTR. */
6572 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6573 {
6574 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
6575 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6576 pMixedCtx->idtr.pIdt = u64Val;
6577 pMixedCtx->idtr.cbIdt = u32Val;
6578 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6579 }
6580
6581 /* Guest TR. */
6582 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6583 {
6584 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6585 AssertRCReturn(rc, rc);
6586
6587 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6588 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6589 {
6590 rc = VMXLOCAL_READ_SEG(TR, tr);
6591 AssertRCReturn(rc, rc);
6592 }
6593 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6594 }
6595 return rc;
6596}
6597
6598#undef VMXLOCAL_READ_SEG
6599
6600
6601/**
6602 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6603 * context.
6604 *
6605 * @returns VBox status code.
6606 * @param pVCpu Pointer to the VMCPU.
6607 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6608 * out-of-sync. Make sure to update the required fields
6609 * before using them.
6610 *
6611 * @remarks No-long-jump zone!!!
6612 */
6613static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6614{
6615 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG))
6616 {
6617 if (!pVCpu->hm.s.fUsingHyperDR7)
6618 {
6619 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6620 uint32_t u32Val;
6621 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6622 pMixedCtx->dr[7] = u32Val;
6623 }
6624
6625 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG);
6626 }
6627 return VINF_SUCCESS;
6628}
6629
6630
6631/**
6632 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6633 *
6634 * @returns VBox status code.
6635 * @param pVCpu Pointer to the VMCPU.
6636 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6637 * out-of-sync. Make sure to update the required fields
6638 * before using them.
6639 *
6640 * @remarks No-long-jump zone!!!
6641 */
6642static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6643{
6644 NOREF(pMixedCtx);
6645
6646 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6647 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6648 return VINF_SUCCESS;
6649}
6650
6651
6652/**
6653 * Saves the entire guest state from the currently active VMCS into the
6654 * guest-CPU context. This essentially VMREADs all guest-data.
6655 *
6656 * @returns VBox status code.
6657 * @param pVCpu Pointer to the VMCPU.
6658 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6659 * out-of-sync. Make sure to update the required fields
6660 * before using them.
6661 */
6662static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6663{
6664 Assert(pVCpu);
6665 Assert(pMixedCtx);
6666
6667 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6668 return VINF_SUCCESS;
6669
6670 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6671 again on the ring-3 callback path, there is no real need to. */
6672 if (VMMRZCallRing3IsEnabled(pVCpu))
6673 VMMR0LogFlushDisable(pVCpu);
6674 else
6675 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6676 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6677
6678 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6679 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6680
6681 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6682 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6683
6684 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6685 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6686
6687 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6688 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6689
6690 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
6691 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6692
6693 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
6694 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6695
6696 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6697 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6698
6699 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6700 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6701
6702 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
6703 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6704
6705 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
6706 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6707
6708 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
6709 ("Missed guest state bits while saving state; residue %RX32\n", HMVMXCPU_GST_VALUE(pVCpu)));
6710
6711 if (VMMRZCallRing3IsEnabled(pVCpu))
6712 VMMR0LogFlushEnable(pVCpu);
6713
6714 return rc;
6715}
6716
6717
6718/**
6719 * Check per-VM and per-VCPU force flag actions that require us to go back to
6720 * ring-3 for one reason or another.
6721 *
6722 * @returns VBox status code (information status code included).
6723 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6724 * ring-3.
6725 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6726 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6727 * interrupts)
6728 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6729 * all EMTs to be in ring-3.
6730 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6731 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6732 * to the EM loop.
6733 *
6734 * @param pVM Pointer to the VM.
6735 * @param pVCpu Pointer to the VMCPU.
6736 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6737 * out-of-sync. Make sure to update the required fields
6738 * before using them.
6739 */
6740static int hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6741{
6742 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6743
6744 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
6745 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
6746 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
6747 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6748 {
6749 /* We need the control registers now, make sure the guest-CPU context is updated. */
6750 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6751 AssertRCReturn(rc3, rc3);
6752
6753 /* Pending HM CR3 sync. */
6754 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6755 {
6756 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
6757 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
6758 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
6759 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6760 }
6761
6762 /* Pending HM PAE PDPEs. */
6763 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6764 {
6765 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6766 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6767 }
6768
6769 /* Pending PGM C3 sync. */
6770 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6771 {
6772 int rc2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
6773 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6774 if (rc2 != VINF_SUCCESS)
6775 {
6776 AssertRC(rc2);
6777 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", rc2));
6778 return rc2;
6779 }
6780 }
6781
6782 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6783 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6784 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6785 {
6786 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6787 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6788 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6789 return rc2;
6790 }
6791
6792 /* Pending VM request packets, such as hardware interrupts. */
6793 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6794 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6795 {
6796 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
6797 return VINF_EM_PENDING_REQUEST;
6798 }
6799
6800 /* Pending PGM pool flushes. */
6801 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6802 {
6803 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
6804 return VINF_PGM_POOL_FLUSH_PENDING;
6805 }
6806
6807 /* Pending DMA requests. */
6808 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6809 {
6810 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
6811 return VINF_EM_RAW_TO_R3;
6812 }
6813 }
6814
6815 return VINF_SUCCESS;
6816}
6817
6818
6819/**
6820 * Converts any TRPM trap into a pending HM event. This is typically used when
6821 * entering from ring-3 (not longjmp returns).
6822 *
6823 * @param pVCpu Pointer to the VMCPU.
6824 */
6825static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6826{
6827 Assert(TRPMHasTrap(pVCpu));
6828 Assert(!pVCpu->hm.s.Event.fPending);
6829
6830 uint8_t uVector;
6831 TRPMEVENT enmTrpmEvent;
6832 RTGCUINT uErrCode;
6833 RTGCUINTPTR GCPtrFaultAddress;
6834 uint8_t cbInstr;
6835
6836 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6837 AssertRC(rc);
6838
6839 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6840 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
6841 if (enmTrpmEvent == TRPM_TRAP)
6842 {
6843 switch (uVector)
6844 {
6845 case X86_XCPT_NMI:
6846 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6847 break;
6848
6849 case X86_XCPT_BP:
6850 case X86_XCPT_OF:
6851 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6852 break;
6853
6854 case X86_XCPT_PF:
6855 case X86_XCPT_DF:
6856 case X86_XCPT_TS:
6857 case X86_XCPT_NP:
6858 case X86_XCPT_SS:
6859 case X86_XCPT_GP:
6860 case X86_XCPT_AC:
6861 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6862 /* no break! */
6863 default:
6864 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6865 break;
6866 }
6867 }
6868 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
6869 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6870 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
6871 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6872 else
6873 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
6874
6875 rc = TRPMResetTrap(pVCpu);
6876 AssertRC(rc);
6877 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
6878 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
6879
6880 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
6881 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
6882}
6883
6884
6885/**
6886 * Converts any pending HM event into a TRPM trap. Typically used when leaving
6887 * VT-x to execute any instruction.
6888 *
6889 * @param pvCpu Pointer to the VMCPU.
6890 */
6891static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
6892{
6893 Assert(pVCpu->hm.s.Event.fPending);
6894
6895 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
6896 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
6897 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
6898 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
6899
6900 /* If a trap was already pending, we did something wrong! */
6901 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
6902
6903 TRPMEVENT enmTrapType;
6904 switch (uVectorType)
6905 {
6906 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
6907 enmTrapType = TRPM_HARDWARE_INT;
6908 break;
6909
6910 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
6911 enmTrapType = TRPM_SOFTWARE_INT;
6912 break;
6913
6914 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
6915 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
6916 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
6917 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
6918 enmTrapType = TRPM_TRAP;
6919 break;
6920
6921 default:
6922 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
6923 enmTrapType = TRPM_32BIT_HACK;
6924 break;
6925 }
6926
6927 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
6928
6929 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
6930 AssertRC(rc);
6931
6932 if (fErrorCodeValid)
6933 TRPMSetErrorCode(pVCpu, uErrorCode);
6934
6935 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6936 && uVector == X86_XCPT_PF)
6937 {
6938 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
6939 }
6940 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6941 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6942 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6943 {
6944 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6945 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
6946 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
6947 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
6948 }
6949 pVCpu->hm.s.Event.fPending = false;
6950}
6951
6952
6953/**
6954 * Does the necessary state syncing before returning to ring-3 for any reason
6955 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
6956 *
6957 * @returns VBox status code.
6958 * @param pVM Pointer to the VM.
6959 * @param pVCpu Pointer to the VMCPU.
6960 * @param pMixedCtx Pointer to the guest-CPU context. The data may
6961 * be out-of-sync. Make sure to update the required
6962 * fields before using them.
6963 * @param fSaveGuestState Whether to save the guest state or not.
6964 *
6965 * @remarks No-long-jmp zone!!!
6966 */
6967static int hmR0VmxLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
6968{
6969 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
6970 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
6971
6972 RTCPUID idCpu = RTMpCpuId();
6973 Log4Func(("HostCpuId=%u\n", idCpu));
6974
6975 /*
6976 * !!! IMPORTANT !!!
6977 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
6978 */
6979
6980 /* Save the guest state if necessary. */
6981 if ( fSaveGuestState
6982 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
6983 {
6984 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6985 AssertRCReturn(rc, rc);
6986 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
6987 }
6988
6989 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
6990 if (CPUMIsGuestFPUStateActive(pVCpu))
6991 {
6992 /* We shouldn't reload CR0 without saving it first. */
6993 if (!fSaveGuestState)
6994 {
6995 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6996 AssertRCReturn(rc, rc);
6997 }
6998 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
6999 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7000 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7001 }
7002
7003 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7004#ifdef VBOX_STRICT
7005 if (CPUMIsHyperDebugStateActive(pVCpu))
7006 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7007#endif
7008 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7009 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7010 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7011 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7012
7013#if HC_ARCH_BITS == 64
7014 /* Restore host-state bits that VT-x only restores partially. */
7015 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7016 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7017 {
7018 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7019 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7020 }
7021 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7022#endif
7023
7024#if HC_ARCH_BITS == 64
7025 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7026 if ( pVM->hm.s.fAllow64BitGuests
7027 && pVCpu->hm.s.vmx.fLazyMsrs)
7028 {
7029 /* We shouldn't reload the guest MSRs without saving it first. */
7030 if (!fSaveGuestState)
7031 {
7032 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7033 AssertRCReturn(rc, rc);
7034 }
7035 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7036 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7037 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7038 }
7039#endif
7040
7041 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7042 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7043
7044 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7045 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7046 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7047 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7048 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7049 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7050 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7051 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7052
7053 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7054
7055 /** @todo This partially defeats the purpose of having preemption hooks.
7056 * The problem is, deregistering the hooks should be moved to a place that
7057 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7058 * context.
7059 */
7060 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7061 {
7062 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7063 AssertRCReturn(rc, rc);
7064
7065 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7066 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7067 }
7068 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7069 NOREF(idCpu);
7070
7071 return VINF_SUCCESS;
7072}
7073
7074
7075/**
7076 * Leaves the VT-x session.
7077 *
7078 * @returns VBox status code.
7079 * @param pVM Pointer to the VM.
7080 * @param pVCpu Pointer to the VMCPU.
7081 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7082 * out-of-sync. Make sure to update the required fields
7083 * before using them.
7084 *
7085 * @remarks No-long-jmp zone!!!
7086 */
7087DECLINLINE(int) hmR0VmxLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7088{
7089 HM_DISABLE_PREEMPT_IF_NEEDED();
7090 HMVMX_ASSERT_CPU_SAFE();
7091 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7092 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7093
7094 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7095 and done this from the VMXR0ThreadCtxCallback(). */
7096 if (!pVCpu->hm.s.fLeaveDone)
7097 {
7098 int rc2 = hmR0VmxLeave(pVM, pVCpu, pMixedCtx, true /* fSaveGuestState */);
7099 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT_IF_NEEDED(), rc2);
7100 pVCpu->hm.s.fLeaveDone = true;
7101 }
7102 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7103
7104 /*
7105 * !!! IMPORTANT !!!
7106 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7107 */
7108
7109 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7110 /** @todo Deregistering here means we need to VMCLEAR always
7111 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7112 VMMR0ThreadCtxHooksDeregister(pVCpu);
7113
7114 /* Leave HM context. This takes care of local init (term). */
7115 int rc = HMR0LeaveCpu(pVCpu);
7116
7117 HM_RESTORE_PREEMPT_IF_NEEDED();
7118
7119 return rc;
7120}
7121
7122
7123/**
7124 * Does the necessary state syncing before doing a longjmp to ring-3.
7125 *
7126 * @returns VBox status code.
7127 * @param pVM Pointer to the VM.
7128 * @param pVCpu Pointer to the VMCPU.
7129 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7130 * out-of-sync. Make sure to update the required fields
7131 * before using them.
7132 *
7133 * @remarks No-long-jmp zone!!!
7134 */
7135DECLINLINE(int) hmR0VmxLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7136{
7137 return hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
7138}
7139
7140
7141/**
7142 * Take necessary actions before going back to ring-3.
7143 *
7144 * An action requires us to go back to ring-3. This function does the necessary
7145 * steps before we can safely return to ring-3. This is not the same as longjmps
7146 * to ring-3, this is voluntary and prepares the guest so it may continue
7147 * executing outside HM (recompiler/IEM).
7148 *
7149 * @returns VBox status code.
7150 * @param pVM Pointer to the VM.
7151 * @param pVCpu Pointer to the VMCPU.
7152 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7153 * out-of-sync. Make sure to update the required fields
7154 * before using them.
7155 * @param rcExit The reason for exiting to ring-3. Can be
7156 * VINF_VMM_UNKNOWN_RING3_CALL.
7157 */
7158static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, int rcExit)
7159{
7160 Assert(pVM);
7161 Assert(pVCpu);
7162 Assert(pMixedCtx);
7163 HMVMX_ASSERT_PREEMPT_SAFE();
7164
7165 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7166 {
7167 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7168 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7169 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7170 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7171 }
7172
7173 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7174 VMMRZCallRing3Disable(pVCpu);
7175 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, rcExit));
7176
7177 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7178 if (pVCpu->hm.s.Event.fPending)
7179 {
7180 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7181 Assert(!pVCpu->hm.s.Event.fPending);
7182 }
7183
7184 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7185 and if we're injecting an event we should have a TRPM trap pending. */
7186 Assert(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu));
7187 Assert(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu));
7188
7189 /* Save guest state and restore host state bits. */
7190 int rc = hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
7191 AssertRCReturn(rc, rc);
7192 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7193 /* Thread-context hooks are unregistered at this point!!! */
7194
7195 /* Sync recompiler state. */
7196 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7197 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7198 | CPUM_CHANGED_LDTR
7199 | CPUM_CHANGED_GDTR
7200 | CPUM_CHANGED_IDTR
7201 | CPUM_CHANGED_TR
7202 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7203 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7204 if ( pVM->hm.s.fNestedPaging
7205 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7206 {
7207 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7208 }
7209
7210 Assert(!pVCpu->hm.s.fClearTrapFlag);
7211
7212 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7213 if (rcExit != VINF_EM_RAW_INTERRUPT)
7214 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7215
7216 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7217
7218 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7219 VMMRZCallRing3RemoveNotification(pVCpu);
7220 VMMRZCallRing3Enable(pVCpu);
7221
7222 return rc;
7223}
7224
7225
7226/**
7227 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7228 * longjump to ring-3 and possibly get preempted.
7229 *
7230 * @returns VBox status code.
7231 * @param pVCpu Pointer to the VMCPU.
7232 * @param enmOperation The operation causing the ring-3 longjump.
7233 * @param pvUser Opaque pointer to the guest-CPU context. The data
7234 * may be out-of-sync. Make sure to update the required
7235 * fields before using them.
7236 */
7237DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7238{
7239 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7240 {
7241 /*
7242 * !!! IMPORTANT !!!
7243 * If you modify code here, make sure to check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs
7244 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
7245 */
7246 VMMRZCallRing3RemoveNotification(pVCpu);
7247 VMMRZCallRing3Disable(pVCpu);
7248 HM_DISABLE_PREEMPT_IF_NEEDED();
7249
7250 PVM pVM = pVCpu->CTX_SUFF(pVM);
7251 if (CPUMIsGuestFPUStateActive(pVCpu))
7252 CPUMR0SaveGuestFPU(pVM, pVCpu, (PCPUMCTX)pvUser);
7253
7254 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7255
7256#if HC_ARCH_BITS == 64
7257 /* Restore host-state bits that VT-x only restores partially. */
7258 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7259 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7260 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7261 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7262
7263 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7264 if ( pVM->hm.s.fAllow64BitGuests
7265 && pVCpu->hm.s.vmx.fLazyMsrs)
7266 {
7267 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7268 }
7269#endif
7270 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7271 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7272 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7273 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7274 {
7275 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7276 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7277 }
7278
7279 VMMR0ThreadCtxHooksDeregister(pVCpu);
7280
7281 HMR0LeaveCpu(pVCpu);
7282 HM_RESTORE_PREEMPT_IF_NEEDED();
7283 return VINF_SUCCESS;
7284 }
7285
7286 Assert(pVCpu);
7287 Assert(pvUser);
7288 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7289 HMVMX_ASSERT_PREEMPT_SAFE();
7290
7291 VMMRZCallRing3Disable(pVCpu);
7292 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7293
7294 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7295 enmOperation));
7296
7297 int rc = hmR0VmxLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
7298 AssertRCReturn(rc, rc);
7299
7300 VMMRZCallRing3Enable(pVCpu);
7301 return VINF_SUCCESS;
7302}
7303
7304
7305/**
7306 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7307 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7308 *
7309 * @param pVCpu Pointer to the VMCPU.
7310 */
7311DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7312{
7313 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7314 {
7315 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7316 {
7317 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7318 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7319 AssertRC(rc);
7320 Log4(("Setup interrupt-window exiting\n"));
7321 }
7322 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7323}
7324
7325
7326/**
7327 * Clears the interrupt-window exiting control in the VMCS.
7328 *
7329 * @param pVCpu Pointer to the VMCPU.
7330 */
7331DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7332{
7333 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7334 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7335 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7336 AssertRC(rc);
7337 Log4(("Cleared interrupt-window exiting\n"));
7338}
7339
7340
7341/**
7342 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7343 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7344 *
7345 * @param pVCpu Pointer to the VMCPU.
7346 */
7347DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7348{
7349 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7350 {
7351 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7352 {
7353 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7354 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7355 AssertRC(rc);
7356 Log4(("Setup NMI-window exiting\n"));
7357 }
7358 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7359}
7360
7361
7362/**
7363 * Clears the NMI-window exiting control in the VMCS.
7364 *
7365 * @param pVCpu Pointer to the VMCPU.
7366 */
7367DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7368{
7369 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7370 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7371 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7372 AssertRC(rc);
7373 Log4(("Cleared NMI-window exiting\n"));
7374}
7375
7376
7377/**
7378 * Evaluates the event to be delivered to the guest and sets it as the pending
7379 * event.
7380 *
7381 * @param pVCpu Pointer to the VMCPU.
7382 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7383 * out-of-sync. Make sure to update the required fields
7384 * before using them.
7385 */
7386static void hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7387{
7388 Assert(!pVCpu->hm.s.Event.fPending);
7389
7390 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7391 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7392 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7393 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7394 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7395
7396 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7397 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7398 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7399 Assert(!TRPMHasTrap(pVCpu));
7400
7401 /*
7402 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7403 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7404 */
7405 /** @todo SMI. SMIs take priority over NMIs. */
7406 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7407 {
7408 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7409 if ( !fBlockNmi
7410 && !fBlockSti
7411 && !fBlockMovSS)
7412 {
7413 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7414 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7415 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7416
7417 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7418 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7419 }
7420 else
7421 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7422 }
7423 /*
7424 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
7425 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt.
7426 */
7427 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7428 && !pVCpu->hm.s.fSingleInstruction)
7429 {
7430 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7431 AssertRC(rc);
7432 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7433 if ( !fBlockInt
7434 && !fBlockSti
7435 && !fBlockMovSS)
7436 {
7437 uint8_t u8Interrupt;
7438 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7439 if (RT_SUCCESS(rc))
7440 {
7441 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7442 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7443 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7444
7445 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7446 }
7447 else
7448 {
7449 /** @todo Does this actually happen? If not turn it into an assertion. */
7450 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
7451 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7452 }
7453 }
7454 else
7455 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7456 }
7457}
7458
7459
7460/**
7461 * Sets a pending-debug exception to be delivered to the guest if the guest is
7462 * single-stepping.
7463 *
7464 * @param pVCpu Pointer to the VMCPU.
7465 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7466 * out-of-sync. Make sure to update the required fields
7467 * before using them.
7468 */
7469DECLINLINE(void) hmR0VmxSetPendingDebugXcpt(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7470{
7471 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7472 if (pMixedCtx->eflags.Bits.u1TF) /* We don't have any IA32_DEBUGCTL MSR for guests. Treat as all bits 0. */
7473 {
7474 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7475 AssertRC(rc);
7476 }
7477}
7478
7479
7480/**
7481 * Injects any pending events into the guest if the guest is in a state to
7482 * receive them.
7483 *
7484 * @returns VBox status code (informational status codes included).
7485 * @param pVCpu Pointer to the VMCPU.
7486 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7487 * out-of-sync. Make sure to update the required fields
7488 * before using them.
7489 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7490 * return VINF_EM_DBG_STEPPED if the event was
7491 * dispatched directly.
7492 */
7493static int hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
7494{
7495 HMVMX_ASSERT_PREEMPT_SAFE();
7496 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7497
7498 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7499 uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7500 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7501 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7502
7503 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7504 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7505 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7506 Assert(!TRPMHasTrap(pVCpu));
7507
7508 int rc = VINF_SUCCESS;
7509 if (pVCpu->hm.s.Event.fPending)
7510 {
7511 /*
7512 * Clear any interrupt-window exiting control if we're going to inject an interrupt. Saves one extra
7513 * VM-exit in situations where we previously setup interrupt-window exiting but got other VM-exits and
7514 * ended up enabling interrupts outside VT-x.
7515 */
7516 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7517 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
7518 && uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7519 {
7520 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7521 hmR0VmxClearIntWindowExitVmcs(pVCpu);
7522 }
7523
7524#ifdef VBOX_STRICT
7525 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7526 {
7527 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7528 Assert(!fBlockInt);
7529 Assert(!fBlockSti);
7530 Assert(!fBlockMovSS);
7531 }
7532 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7533 {
7534 bool fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7535 Assert(!fBlockSti);
7536 Assert(!fBlockMovSS);
7537 Assert(!fBlockNmi);
7538 }
7539#endif
7540 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7541 (uint8_t)uIntType));
7542 rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7543 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping, &uIntrState);
7544 AssertRCReturn(rc, rc);
7545
7546 /* Update the interruptibility-state as it could have been changed by
7547 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7548 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7549 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7550
7551#ifdef VBOX_WITH_STATISTICS
7552 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7553 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7554 else
7555 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7556#endif
7557 }
7558
7559 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7560 if ( fBlockSti
7561 || fBlockMovSS)
7562 {
7563 if ( !pVCpu->hm.s.fSingleInstruction
7564 && !DBGFIsStepping(pVCpu))
7565 {
7566 /*
7567 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7568 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7569 * See Intel spec. 27.3.4 "Saving Non-Register State".
7570 */
7571 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7572 AssertRCReturn(rc2, rc2);
7573 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
7574 }
7575 else if (pMixedCtx->eflags.Bits.u1TF)
7576 {
7577 /*
7578 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7579 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7580 */
7581 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7582 uIntrState = 0;
7583 }
7584 }
7585
7586 /*
7587 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7588 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7589 */
7590 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7591 AssertRC(rc2);
7592
7593 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET || (rc == VINF_EM_DBG_STEPPED && fStepping));
7594 NOREF(fBlockMovSS); NOREF(fBlockSti);
7595 return rc;
7596}
7597
7598
7599/**
7600 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
7601 *
7602 * @param pVCpu Pointer to the VMCPU.
7603 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7604 * out-of-sync. Make sure to update the required fields
7605 * before using them.
7606 */
7607DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7608{
7609 NOREF(pMixedCtx);
7610 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7611 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7612}
7613
7614
7615/**
7616 * Injects a double-fault (#DF) exception into the VM.
7617 *
7618 * @returns VBox status code (informational status code included).
7619 * @param pVCpu Pointer to the VMCPU.
7620 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7621 * out-of-sync. Make sure to update the required fields
7622 * before using them.
7623 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7624 * and should return VINF_EM_DBG_STEPPED if the event
7625 * is injected directly (register modified by us, not
7626 * by hardware on VM-entry).
7627 * @param puIntrState Pointer to the current guest interruptibility-state.
7628 * This interruptibility-state will be updated if
7629 * necessary. This cannot not be NULL.
7630 */
7631DECLINLINE(int) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
7632{
7633 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7634 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7635 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7636 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
7637 fStepping, puIntrState);
7638}
7639
7640
7641/**
7642 * Sets a debug (#DB) exception as pending-for-injection into the VM.
7643 *
7644 * @param pVCpu Pointer to the VMCPU.
7645 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7646 * out-of-sync. Make sure to update the required fields
7647 * before using them.
7648 */
7649DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7650{
7651 NOREF(pMixedCtx);
7652 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
7653 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7654 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7655}
7656
7657
7658/**
7659 * Sets an overflow (#OF) exception as pending-for-injection into the VM.
7660 *
7661 * @param pVCpu Pointer to the VMCPU.
7662 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7663 * out-of-sync. Make sure to update the required fields
7664 * before using them.
7665 * @param cbInstr The value of RIP that is to be pushed on the guest
7666 * stack.
7667 */
7668DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
7669{
7670 NOREF(pMixedCtx);
7671 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7672 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7673 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7674}
7675
7676
7677/**
7678 * Injects a general-protection (#GP) fault into the VM.
7679 *
7680 * @returns VBox status code (informational status code included).
7681 * @param pVCpu Pointer to the VMCPU.
7682 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7683 * out-of-sync. Make sure to update the required fields
7684 * before using them.
7685 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7686 * mode, i.e. in real-mode it's not valid).
7687 * @param u32ErrorCode The error code associated with the #GP.
7688 * @param fStepping Whether we're running in
7689 * hmR0VmxRunGuestCodeStep() and should return
7690 * VINF_EM_DBG_STEPPED if the event is injected
7691 * directly (register modified by us, not by
7692 * hardware on VM-entry).
7693 * @param puIntrState Pointer to the current guest interruptibility-state.
7694 * This interruptibility-state will be updated if
7695 * necessary. This cannot not be NULL.
7696 */
7697DECLINLINE(int) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
7698 bool fStepping, uint32_t *puIntrState)
7699{
7700 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7701 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7702 if (fErrorCodeValid)
7703 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7704 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
7705 fStepping, puIntrState);
7706}
7707
7708
7709/**
7710 * Sets a general-protection (#GP) exception as pending-for-injection into the
7711 * VM.
7712 *
7713 * @param pVCpu Pointer to the VMCPU.
7714 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7715 * out-of-sync. Make sure to update the required fields
7716 * before using them.
7717 * @param u32ErrorCode The error code associated with the #GP.
7718 */
7719DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
7720{
7721 NOREF(pMixedCtx);
7722 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7723 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7724 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7725 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
7726}
7727
7728
7729/**
7730 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7731 *
7732 * @param pVCpu Pointer to the VMCPU.
7733 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7734 * out-of-sync. Make sure to update the required fields
7735 * before using them.
7736 * @param uVector The software interrupt vector number.
7737 * @param cbInstr The value of RIP that is to be pushed on the guest
7738 * stack.
7739 */
7740DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
7741{
7742 NOREF(pMixedCtx);
7743 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7744 if ( uVector == X86_XCPT_BP
7745 || uVector == X86_XCPT_OF)
7746 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7747 else
7748 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7749 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7750}
7751
7752
7753/**
7754 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7755 * stack.
7756 *
7757 * @returns VBox status code (information status code included).
7758 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7759 * @param pVM Pointer to the VM.
7760 * @param pMixedCtx Pointer to the guest-CPU context.
7761 * @param uValue The value to push to the guest stack.
7762 */
7763DECLINLINE(int) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
7764{
7765 /*
7766 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7767 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7768 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7769 */
7770 if (pMixedCtx->sp == 1)
7771 return VINF_EM_RESET;
7772 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7773 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
7774 AssertRCReturn(rc, rc);
7775 return rc;
7776}
7777
7778
7779/**
7780 * Injects an event into the guest upon VM-entry by updating the relevant fields
7781 * in the VM-entry area in the VMCS.
7782 *
7783 * @returns VBox status code (informational error codes included).
7784 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7785 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7786 *
7787 * @param pVCpu Pointer to the VMCPU.
7788 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7789 * be out-of-sync. Make sure to update the required
7790 * fields before using them.
7791 * @param u64IntInfo The VM-entry interruption-information field.
7792 * @param cbInstr The VM-entry instruction length in bytes (for
7793 * software interrupts, exceptions and privileged
7794 * software exceptions).
7795 * @param u32ErrCode The VM-entry exception error code.
7796 * @param GCPtrFaultAddress The page-fault address for #PF exceptions.
7797 * @param puIntrState Pointer to the current guest interruptibility-state.
7798 * This interruptibility-state will be updated if
7799 * necessary. This cannot not be NULL.
7800 * @param fStepping Whether we're running in
7801 * hmR0VmxRunGuestCodeStep() and should return
7802 * VINF_EM_DBG_STEPPED if the event is injected
7803 * directly (register modified by us, not by
7804 * hardware on VM-entry).
7805 *
7806 * @remarks Requires CR0!
7807 * @remarks No-long-jump zone!!!
7808 */
7809static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
7810 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *puIntrState)
7811{
7812 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7813 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
7814 Assert(puIntrState);
7815 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7816
7817 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
7818 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
7819
7820#ifdef VBOX_STRICT
7821 /* Validate the error-code-valid bit for hardware exceptions. */
7822 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
7823 {
7824 switch (uVector)
7825 {
7826 case X86_XCPT_PF:
7827 case X86_XCPT_DF:
7828 case X86_XCPT_TS:
7829 case X86_XCPT_NP:
7830 case X86_XCPT_SS:
7831 case X86_XCPT_GP:
7832 case X86_XCPT_AC:
7833 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
7834 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7835 /* fallthru */
7836 default:
7837 break;
7838 }
7839 }
7840#endif
7841
7842 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7843 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
7844 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
7845
7846 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7847
7848 /* We require CR0 to check if the guest is in real-mode. */
7849 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7850 AssertRCReturn(rc, rc);
7851
7852 /*
7853 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
7854 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
7855 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
7856 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7857 */
7858 if (CPUMIsGuestInRealModeEx(pMixedCtx))
7859 {
7860 PVM pVM = pVCpu->CTX_SUFF(pVM);
7861 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
7862 {
7863 Assert(PDMVmmDevHeapIsEnabled(pVM));
7864 Assert(pVM->hm.s.vmx.pRealModeTSS);
7865
7866 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
7867 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7868 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
7869 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
7870 AssertRCReturn(rc, rc);
7871 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
7872
7873 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7874 size_t const cbIdtEntry = sizeof(X86IDTR16);
7875 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
7876 {
7877 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7878 if (uVector == X86_XCPT_DF)
7879 return VINF_EM_RESET;
7880
7881 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7882 if (uVector == X86_XCPT_GP)
7883 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
7884
7885 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
7886 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
7887 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
7888 fStepping, puIntrState);
7889 }
7890
7891 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7892 uint16_t uGuestIp = pMixedCtx->ip;
7893 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
7894 {
7895 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7896 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7897 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
7898 }
7899 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
7900 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
7901
7902 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7903 X86IDTR16 IdtEntry;
7904 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
7905 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7906 AssertRCReturn(rc, rc);
7907
7908 /* Construct the stack frame for the interrupt/exception handler. */
7909 rc = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
7910 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
7911 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
7912 AssertRCReturn(rc, rc);
7913
7914 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7915 if (rc == VINF_SUCCESS)
7916 {
7917 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7918 pMixedCtx->rip = IdtEntry.offSel;
7919 pMixedCtx->cs.Sel = IdtEntry.uSel;
7920 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
7921 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7922 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
7923 && uVector == X86_XCPT_PF)
7924 pMixedCtx->cr2 = GCPtrFaultAddress;
7925
7926 /* If any other guest-state bits are changed here, make sure to update
7927 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7928 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
7929 | HM_CHANGED_GUEST_RIP
7930 | HM_CHANGED_GUEST_RFLAGS
7931 | HM_CHANGED_GUEST_RSP);
7932
7933 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7934 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
7935 {
7936 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
7937 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
7938 Log4(("Clearing inhibition due to STI.\n"));
7939 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
7940 }
7941 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
7942 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
7943
7944 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7945 it, if we are returning to ring-3 before executing guest code. */
7946 pVCpu->hm.s.Event.fPending = false;
7947
7948 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
7949 if (fStepping)
7950 rc = VINF_EM_DBG_STEPPED;
7951 }
7952 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET || (rc == VINF_EM_DBG_STEPPED && fStepping));
7953 return rc;
7954 }
7955
7956 /*
7957 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
7958 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7959 */
7960 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7961 }
7962
7963 /* Validate. */
7964 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
7965 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
7966 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
7967
7968 /* Inject. */
7969 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
7970 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
7971 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
7972 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
7973
7974 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
7975 && uVector == X86_XCPT_PF)
7976 pMixedCtx->cr2 = GCPtrFaultAddress;
7977
7978 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
7979 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
7980
7981 AssertRCReturn(rc, rc);
7982 return rc;
7983}
7984
7985
7986/**
7987 * Clears the interrupt-window exiting control in the VMCS and if necessary
7988 * clears the current event in the VMCS as well.
7989 *
7990 * @returns VBox status code.
7991 * @param pVCpu Pointer to the VMCPU.
7992 *
7993 * @remarks Use this function only to clear events that have not yet been
7994 * delivered to the guest but are injected in the VMCS!
7995 * @remarks No-long-jump zone!!!
7996 */
7997static void hmR0VmxClearEventVmcs(PVMCPU pVCpu)
7998{
7999 int rc;
8000 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8001
8002 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8003 {
8004 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8005 Assert(!pVCpu->hm.s.Event.fPending);
8006 }
8007
8008 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8009 {
8010 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8011 Assert(!pVCpu->hm.s.Event.fPending);
8012 }
8013
8014 if (!pVCpu->hm.s.Event.fPending)
8015 return;
8016
8017#ifdef VBOX_STRICT
8018 uint32_t u32EntryInfo;
8019 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
8020 AssertRC(rc);
8021 Assert(VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo));
8022#endif
8023
8024 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
8025 AssertRC(rc);
8026
8027 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
8028 AssertRC(rc);
8029
8030 /* We deliberately don't clear "hm.s.Event.fPending" here, it's taken
8031 care of in hmR0VmxExitToRing3() converting the pending event to TRPM. */
8032}
8033
8034
8035/**
8036 * Enters the VT-x session.
8037 *
8038 * @returns VBox status code.
8039 * @param pVM Pointer to the VM.
8040 * @param pVCpu Pointer to the VMCPU.
8041 * @param pCpu Pointer to the CPU info struct.
8042 */
8043VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8044{
8045 AssertPtr(pVM);
8046 AssertPtr(pVCpu);
8047 Assert(pVM->hm.s.vmx.fSupported);
8048 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8049 NOREF(pCpu); NOREF(pVM);
8050
8051 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8052 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8053
8054#ifdef VBOX_STRICT
8055 /* Make sure we're in VMX root mode. */
8056 RTCCUINTREG u32HostCR4 = ASMGetCR4();
8057 if (!(u32HostCR4 & X86_CR4_VMXE))
8058 {
8059 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8060 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8061 }
8062#endif
8063
8064 /*
8065 * Load the VCPU's VMCS as the current (and active) one.
8066 */
8067 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8068 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8069 if (RT_FAILURE(rc))
8070 return rc;
8071
8072 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8073 pVCpu->hm.s.fLeaveDone = false;
8074 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8075
8076 return VINF_SUCCESS;
8077}
8078
8079
8080/**
8081 * The thread-context callback (only on platforms which support it).
8082 *
8083 * @param enmEvent The thread-context event.
8084 * @param pVCpu Pointer to the VMCPU.
8085 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8086 * @thread EMT(pVCpu)
8087 */
8088VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8089{
8090 NOREF(fGlobalInit);
8091
8092 switch (enmEvent)
8093 {
8094 case RTTHREADCTXEVENT_PREEMPTING:
8095 {
8096 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8097 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
8098 VMCPU_ASSERT_EMT(pVCpu);
8099
8100 PVM pVM = pVCpu->CTX_SUFF(pVM);
8101 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8102
8103 /* No longjmps (logger flushes, locks) in this fragile context. */
8104 VMMRZCallRing3Disable(pVCpu);
8105 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8106
8107 /*
8108 * Restore host-state (FPU, debug etc.)
8109 */
8110 if (!pVCpu->hm.s.fLeaveDone)
8111 {
8112 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8113 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8114 hmR0VmxLeave(pVM, pVCpu, pMixedCtx, false /* fSaveGuestState */);
8115 pVCpu->hm.s.fLeaveDone = true;
8116 }
8117
8118 /* Leave HM context, takes care of local init (term). */
8119 int rc = HMR0LeaveCpu(pVCpu);
8120 AssertRC(rc); NOREF(rc);
8121
8122 /* Restore longjmp state. */
8123 VMMRZCallRing3Enable(pVCpu);
8124 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptPreempting);
8125 break;
8126 }
8127
8128 case RTTHREADCTXEVENT_RESUMED:
8129 {
8130 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8131 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
8132 VMCPU_ASSERT_EMT(pVCpu);
8133
8134 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8135 VMMRZCallRing3Disable(pVCpu);
8136 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8137
8138 /* Initialize the bare minimum state required for HM. This takes care of
8139 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8140 int rc = HMR0EnterCpu(pVCpu);
8141 AssertRC(rc);
8142 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8143
8144 /* Load the active VMCS as the current one. */
8145 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8146 {
8147 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8148 AssertRC(rc); NOREF(rc);
8149 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8150 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8151 }
8152 pVCpu->hm.s.fLeaveDone = false;
8153
8154 /* Restore longjmp state. */
8155 VMMRZCallRing3Enable(pVCpu);
8156 break;
8157 }
8158
8159 default:
8160 break;
8161 }
8162}
8163
8164
8165/**
8166 * Saves the host state in the VMCS host-state.
8167 * Sets up the VM-exit MSR-load area.
8168 *
8169 * The CPU state will be loaded from these fields on every successful VM-exit.
8170 *
8171 * @returns VBox status code.
8172 * @param pVM Pointer to the VM.
8173 * @param pVCpu Pointer to the VMCPU.
8174 *
8175 * @remarks No-long-jump zone!!!
8176 */
8177static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8178{
8179 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8180
8181 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8182 return VINF_SUCCESS;
8183
8184 int rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8185 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8186
8187 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8188 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8189
8190 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8191 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8192
8193 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8194 return rc;
8195}
8196
8197
8198/**
8199 * Saves the host state in the VMCS host-state.
8200 *
8201 * @returns VBox status code.
8202 * @param pVM Pointer to the VM.
8203 * @param pVCpu Pointer to the VMCPU.
8204 *
8205 * @remarks No-long-jump zone!!!
8206 */
8207VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8208{
8209 AssertPtr(pVM);
8210 AssertPtr(pVCpu);
8211
8212 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8213
8214 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8215 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8216 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8217 return hmR0VmxSaveHostState(pVM, pVCpu);
8218}
8219
8220
8221/**
8222 * Loads the guest state into the VMCS guest-state area.
8223 *
8224 * The will typically be done before VM-entry when the guest-CPU state and the
8225 * VMCS state may potentially be out of sync.
8226 *
8227 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8228 * VM-entry controls.
8229 * Sets up the appropriate VMX non-root function to execute guest code based on
8230 * the guest CPU mode.
8231 *
8232 * @returns VBox status code.
8233 * @param pVM Pointer to the VM.
8234 * @param pVCpu Pointer to the VMCPU.
8235 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8236 * out-of-sync. Make sure to update the required fields
8237 * before using them.
8238 *
8239 * @remarks No-long-jump zone!!!
8240 */
8241static int hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8242{
8243 AssertPtr(pVM);
8244 AssertPtr(pVCpu);
8245 AssertPtr(pMixedCtx);
8246 HMVMX_ASSERT_PREEMPT_SAFE();
8247
8248 VMMRZCallRing3Disable(pVCpu);
8249 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8250
8251 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8252
8253 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8254
8255 /* Determine real-on-v86 mode. */
8256 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8257 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8258 && CPUMIsGuestInRealModeEx(pMixedCtx))
8259 {
8260 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8261 }
8262
8263 /*
8264 * Load the guest-state into the VMCS.
8265 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8266 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8267 */
8268 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8269 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8270
8271 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8272 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8273 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8274
8275 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8276 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8277 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8278
8279 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8280 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8281
8282 rc = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8283 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestCR3AndCR4: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8284
8285 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8286 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8287 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8288
8289 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8290 determine we don't have to swap EFER after all. */
8291 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8292 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadSharedMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8293
8294 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8295 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8296
8297 /*
8298 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8299 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8300 */
8301 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8302 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8303
8304 /* Clear any unused and reserved bits. */
8305 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8306
8307 VMMRZCallRing3Enable(pVCpu);
8308
8309 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8310 return rc;
8311}
8312
8313
8314/**
8315 * Loads the state shared between the host and guest into the VMCS.
8316 *
8317 * @param pVM Pointer to the VM.
8318 * @param pVCpu Pointer to the VMCPU.
8319 * @param pCtx Pointer to the guest-CPU context.
8320 *
8321 * @remarks No-long-jump zone!!!
8322 */
8323static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8324{
8325 NOREF(pVM);
8326
8327 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8328 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8329
8330 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8331 {
8332 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8333 AssertRC(rc);
8334 }
8335
8336 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8337 {
8338 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8339 AssertRC(rc);
8340
8341 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8342 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8343 {
8344 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8345 AssertRC(rc);
8346 }
8347 }
8348
8349 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8350 {
8351#if HC_ARCH_BITS == 64
8352 if (pVM->hm.s.fAllow64BitGuests)
8353 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8354#endif
8355 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8356 }
8357
8358 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8359 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8360}
8361
8362
8363/**
8364 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8365 *
8366 * @param pVM Pointer to the VM.
8367 * @param pVCpu Pointer to the VMCPU.
8368 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8369 * out-of-sync. Make sure to update the required fields
8370 * before using them.
8371 */
8372DECLINLINE(void) hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8373{
8374 HMVMX_ASSERT_PREEMPT_SAFE();
8375
8376 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8377#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8378 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8379#endif
8380
8381 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8382 {
8383 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8384 AssertRC(rc);
8385 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8386 }
8387 else if (HMCPU_CF_VALUE(pVCpu))
8388 {
8389 int rc = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8390 AssertRC(rc);
8391 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8392 }
8393
8394 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8395 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8396 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8397 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8398}
8399
8400
8401/**
8402 * Does the preparations before executing guest code in VT-x.
8403 *
8404 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8405 * recompiler/IEM. We must be cautious what we do here regarding committing
8406 * guest-state information into the VMCS assuming we assuredly execute the
8407 * guest in VT-x mode.
8408 *
8409 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8410 * the common-state (TRPM/forceflags), we must undo those changes so that the
8411 * recompiler/IEM can (and should) use them when it resumes guest execution.
8412 * Otherwise such operations must be done when we can no longer exit to ring-3.
8413 *
8414 * @returns Strict VBox status code.
8415 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8416 * have been disabled.
8417 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8418 * double-fault into the guest.
8419 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8420 * dispatched directly.
8421 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8422 *
8423 * @param pVM Pointer to the VM.
8424 * @param pVCpu Pointer to the VMCPU.
8425 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8426 * out-of-sync. Make sure to update the required fields
8427 * before using them.
8428 * @param pVmxTransient Pointer to the VMX transient structure.
8429 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8430 * us ignore some of the reasons for returning to
8431 * ring-3, and return VINF_EM_DBG_STEPPED if event
8432 * dispatching took place.
8433 */
8434static int hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8435{
8436 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8437
8438#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8439 PGMRZDynMapFlushAutoSet(pVCpu);
8440#endif
8441
8442 /* Check force flag actions that might require us to go back to ring-3. */
8443 int rc = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx);
8444 if (rc != VINF_SUCCESS)
8445 return rc;
8446
8447#ifndef IEM_VERIFICATION_MODE_FULL
8448 /* Setup the Virtualized APIC accesses. pMixedCtx->msrApicBase is always up-to-date. It's not part of the VMCS. */
8449 if ( pVCpu->hm.s.vmx.u64MsrApicBase != pMixedCtx->msrApicBase
8450 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
8451 {
8452 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8453 RTGCPHYS GCPhysApicBase;
8454 GCPhysApicBase = pMixedCtx->msrApicBase;
8455 GCPhysApicBase &= PAGE_BASE_GC_MASK;
8456
8457 /* Unalias any existing mapping. */
8458 rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8459 AssertRCReturn(rc, rc);
8460
8461 /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
8462 Log4(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGv\n", GCPhysApicBase));
8463 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8464 AssertRCReturn(rc, rc);
8465
8466 pVCpu->hm.s.vmx.u64MsrApicBase = pMixedCtx->msrApicBase;
8467 }
8468#endif /* !IEM_VERIFICATION_MODE_FULL */
8469
8470 if (TRPMHasTrap(pVCpu))
8471 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8472 else if (!pVCpu->hm.s.Event.fPending)
8473 hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8474
8475 /*
8476 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8477 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8478 */
8479 rc = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, fStepping);
8480 if (RT_UNLIKELY(rc != VINF_SUCCESS))
8481 {
8482 Assert(rc == VINF_EM_RESET || (rc == VINF_EM_DBG_STEPPED && fStepping));
8483 return rc;
8484 }
8485
8486 /*
8487 * Load the guest state bits, we can handle longjmps/getting preempted here.
8488 *
8489 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8490 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8491 * Hence, this needs to be done -after- injection of events.
8492 */
8493 hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8494
8495 /*
8496 * No longjmps to ring-3 from this point on!!!
8497 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8498 * This also disables flushing of the R0-logger instance (if any).
8499 */
8500 VMMRZCallRing3Disable(pVCpu);
8501
8502 /*
8503 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8504 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8505 *
8506 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8507 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8508 *
8509 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8510 * executing guest code.
8511 */
8512 pVmxTransient->uEflags = ASMIntDisableFlags();
8513 if ( ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8514 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8515 && ( !fStepping /* Optimized for the non-stepping case, of course. */
8516 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8517 {
8518 hmR0VmxClearEventVmcs(pVCpu);
8519 ASMSetFlags(pVmxTransient->uEflags);
8520 VMMRZCallRing3Enable(pVCpu);
8521 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8522 return VINF_EM_RAW_TO_R3;
8523 }
8524
8525 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
8526 {
8527 hmR0VmxClearEventVmcs(pVCpu);
8528 ASMSetFlags(pVmxTransient->uEflags);
8529 VMMRZCallRing3Enable(pVCpu);
8530 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8531 return VINF_EM_RAW_INTERRUPT;
8532 }
8533
8534 /* We've injected any pending events. This is really the point of no return (to ring-3). */
8535 pVCpu->hm.s.Event.fPending = false;
8536
8537 return VINF_SUCCESS;
8538}
8539
8540
8541/**
8542 * Prepares to run guest code in VT-x and we've committed to doing so. This
8543 * means there is no backing out to ring-3 or anywhere else at this
8544 * point.
8545 *
8546 * @param pVM Pointer to the VM.
8547 * @param pVCpu Pointer to the VMCPU.
8548 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8549 * out-of-sync. Make sure to update the required fields
8550 * before using them.
8551 * @param pVmxTransient Pointer to the VMX transient structure.
8552 *
8553 * @remarks Called with preemption disabled.
8554 * @remarks No-long-jump zone!!!
8555 */
8556static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8557{
8558 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8559 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8560 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8561
8562 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8563 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
8564
8565#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8566 if (!CPUMIsGuestFPUStateActive(pVCpu))
8567 CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
8568 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8569#endif
8570
8571 if ( pVCpu->hm.s.fPreloadGuestFpu
8572 && !CPUMIsGuestFPUStateActive(pVCpu))
8573 {
8574 CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
8575 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
8576 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8577 }
8578
8579 /*
8580 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8581 */
8582 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8583 && pVCpu->hm.s.vmx.cMsrs > 0)
8584 {
8585 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8586 }
8587
8588 /*
8589 * Load the host state bits as we may've been preempted (only happens when
8590 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8591 */
8592 /** @todo Why should hmR0VmxSetupVMRunHandler() changing pfnStartVM have
8593 * any effect to the host state needing to be saved? */
8594 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8595 {
8596 /* This ASSUMES that pfnStartVM has been set up already. */
8597 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
8598 AssertRC(rc);
8599 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptSaveHostState);
8600 }
8601 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
8602
8603 /*
8604 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
8605 */
8606 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
8607 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
8608 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8609
8610 /* Store status of the shared guest-host state at the time of VM-entry. */
8611#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8612 if (CPUMIsGuestInLongModeEx(pMixedCtx))
8613 {
8614 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8615 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8616 }
8617 else
8618#endif
8619 {
8620 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8621 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8622 }
8623 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
8624
8625 /*
8626 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8627 */
8628 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8629 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
8630
8631 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
8632 RTCPUID idCurrentCpu = pCpu->idCpu;
8633 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8634 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8635 {
8636 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
8637 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8638 }
8639
8640 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
8641 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8642 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8643 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8644
8645 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8646
8647 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8648 to start executing. */
8649
8650 /*
8651 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8652 */
8653 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
8654 {
8655 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8656 {
8657 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
8658 AssertRC(rc2);
8659 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
8660 bool fMsrUpdated = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu),
8661 true /* fUpdateHostMsr */);
8662 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8663 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8664 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8665 }
8666 else
8667 {
8668 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8669 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8670 }
8671 }
8672
8673#ifdef VBOX_STRICT
8674 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8675 hmR0VmxCheckHostEferMsr(pVCpu);
8676 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8677#endif
8678#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8679 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
8680 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8681 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8682#endif
8683}
8684
8685
8686/**
8687 * Performs some essential restoration of state after running guest code in
8688 * VT-x.
8689 *
8690 * @param pVM Pointer to the VM.
8691 * @param pVCpu Pointer to the VMCPU.
8692 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8693 * out-of-sync. Make sure to update the required fields
8694 * before using them.
8695 * @param pVmxTransient Pointer to the VMX transient structure.
8696 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8697 *
8698 * @remarks Called with interrupts disabled, and returns with interrups enabled!
8699 *
8700 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8701 * unconditionally when it is safe to do so.
8702 */
8703static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8704{
8705 NOREF(pVM);
8706
8707 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8708
8709 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
8710 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
8711 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
8712 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8713 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8714 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8715
8716 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8717 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
8718
8719 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
8720 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8721 Assert(!(ASMGetFlags() & X86_EFL_IF));
8722 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8723
8724#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8725 if (CPUMIsGuestFPUStateActive(pVCpu))
8726 {
8727 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8728 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
8729 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8730 }
8731#endif
8732
8733#if HC_ARCH_BITS == 64
8734 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8735#endif
8736 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8737#ifdef VBOX_STRICT
8738 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8739#endif
8740 ASMSetFlags(pVmxTransient->uEflags); /* Enable interrupts. */
8741 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
8742
8743 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8744 uint32_t uExitReason;
8745 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8746 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8747 AssertRC(rc);
8748 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8749 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8750
8751 /* Update the VM-exit history array. */
8752 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
8753
8754 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
8755 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
8756 {
8757 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
8758 pVmxTransient->fVMEntryFailed));
8759 return;
8760 }
8761
8762 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
8763 {
8764 /** @todo We can optimize this by only syncing with our force-flags when
8765 * really needed and keeping the VMCS state as it is for most
8766 * VM-exits. */
8767 /* Update the guest interruptibility-state from the VMCS. */
8768 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
8769
8770#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8771 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8772 AssertRC(rc);
8773#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8774 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8775 AssertRC(rc);
8776#endif
8777
8778 /*
8779 * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
8780 * we eventually get a VM-exit for any reason. This maybe expensive as PDMApicSetTPR() can longjmp to ring-3 and which is
8781 * why it's done here as it's easier and no less efficient to deal with it here than making hmR0VmxSaveGuestState()
8782 * cope with longjmps safely (see VMCPU_FF_HM_UPDATE_CR3 handling).
8783 */
8784 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8785 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
8786 {
8787 rc = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
8788 AssertRC(rc);
8789 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
8790 }
8791 }
8792}
8793
8794
8795/**
8796 * Runs the guest code using VT-x the normal way.
8797 *
8798 * @returns VBox status code.
8799 * @param pVM Pointer to the VM.
8800 * @param pVCpu Pointer to the VMCPU.
8801 * @param pCtx Pointer to the guest-CPU context.
8802 *
8803 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8804 */
8805static int hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8806{
8807 VMXTRANSIENT VmxTransient;
8808 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8809 int rc = VERR_INTERNAL_ERROR_5;
8810 uint32_t cLoops = 0;
8811
8812 for (;; cLoops++)
8813 {
8814 Assert(!HMR0SuspendPending());
8815 HMVMX_ASSERT_CPU_SAFE();
8816
8817 /* Preparatory work for running guest code, this may force us to return
8818 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8819 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8820 rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
8821 if (rc != VINF_SUCCESS)
8822 break;
8823
8824 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
8825 rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
8826 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
8827
8828 /* Restore any residual host-state and save any bits shared between host
8829 and guest into the guest-CPU state. Re-enables interrupts! */
8830 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
8831
8832 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8833 if (RT_UNLIKELY(rc != VINF_SUCCESS))
8834 {
8835 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
8836 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
8837 return rc;
8838 }
8839
8840 /* Profile the VM-exit. */
8841 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8842 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8843 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8844 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
8845 HMVMX_START_EXIT_DISPATCH_PROF();
8846
8847 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
8848 if (RT_UNLIKELY(VBOXVMM_R0_HMVMX_VMEXIT_ENABLED()))
8849 {
8850 hmR0VmxReadExitQualificationVmcs(pVCpu, &VmxTransient);
8851 hmR0VmxSaveGuestState(pVCpu, pCtx);
8852 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pCtx, VmxTransient.uExitReason, VmxTransient.uExitQualification);
8853 }
8854
8855 /* Handle the VM-exit. */
8856#ifdef HMVMX_USE_FUNCTION_TABLE
8857 rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
8858#else
8859 rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
8860#endif
8861 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
8862 if (rc != VINF_SUCCESS)
8863 break;
8864 if (cLoops > pVM->hm.s.cMaxResumeLoops)
8865 {
8866 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8867 rc = VINF_EM_RAW_INTERRUPT;
8868 break;
8869 }
8870 }
8871
8872 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8873 return rc;
8874}
8875
8876
8877/**
8878 * Single steps guest code using VT-x.
8879 *
8880 * @returns VBox status code.
8881 * @param pVM Pointer to the VM.
8882 * @param pVCpu Pointer to the VMCPU.
8883 * @param pCtx Pointer to the guest-CPU context.
8884 *
8885 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
8886 */
8887static int hmR0VmxRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8888{
8889 VMXTRANSIENT VmxTransient;
8890 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8891 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8892 uint32_t cLoops = 0;
8893 uint16_t uCsStart = pCtx->cs.Sel;
8894 uint64_t uRipStart = pCtx->rip;
8895
8896 for (;; cLoops++)
8897 {
8898 Assert(!HMR0SuspendPending());
8899 HMVMX_ASSERT_CPU_SAFE();
8900
8901 /* Preparatory work for running guest code, this may force us to return
8902 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8903 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8904 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, true /* fStepping */);
8905 if (rcStrict != VINF_SUCCESS)
8906 break;
8907
8908 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
8909 rcStrict = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
8910 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
8911
8912 /* Restore any residual host-state and save any bits shared between host
8913 and guest into the guest-CPU state. Re-enables interrupts! */
8914 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, VBOXSTRICTRC_TODO(rcStrict));
8915
8916 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8917 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
8918 {
8919 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
8920 hmR0VmxReportWorldSwitchError(pVM, pVCpu, VBOXSTRICTRC_TODO(rcStrict), pCtx, &VmxTransient);
8921 return VBOXSTRICTRC_TODO(rcStrict);
8922 }
8923
8924 /* Profile the VM-exit. */
8925 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8926 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8927 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8928 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
8929 HMVMX_START_EXIT_DISPATCH_PROF();
8930
8931 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
8932 if (RT_UNLIKELY(VBOXVMM_R0_HMVMX_VMEXIT_ENABLED()))
8933 {
8934 hmR0VmxReadExitQualificationVmcs(pVCpu, &VmxTransient);
8935 hmR0VmxSaveGuestState(pVCpu, pCtx);
8936 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pCtx, VmxTransient.uExitReason, VmxTransient.uExitQualification);
8937 }
8938
8939 /* Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitStep(). */
8940 rcStrict = hmR0VmxHandleExitStep(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, uCsStart, uRipStart);
8941 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
8942 if (rcStrict != VINF_SUCCESS)
8943 break;
8944 if (cLoops > pVM->hm.s.cMaxResumeLoops)
8945 {
8946 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8947 rcStrict = VINF_EM_RAW_INTERRUPT;
8948 break;
8949 }
8950
8951 /*
8952 * Did the RIP change, if so, consider it a single step.
8953 * Otherwise, make sure one of the TFs gets set.
8954 */
8955 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
8956 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
8957 AssertRCReturn(rc2, rc2);
8958 if ( pCtx->rip != uRipStart
8959 || pCtx->cs.Sel != uCsStart)
8960 {
8961 rcStrict = VINF_EM_DBG_STEPPED;
8962 break;
8963 }
8964 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
8965 }
8966
8967 /*
8968 * Clear the X86_EFL_TF if necessary.
8969 */
8970 if (pVCpu->hm.s.fClearTrapFlag)
8971 {
8972 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
8973 AssertRCReturn(rc2, rc2);
8974 pVCpu->hm.s.fClearTrapFlag = false;
8975 pCtx->eflags.Bits.u1TF = 0;
8976 }
8977 /** @todo there seems to be issues with the resume flag when the monitor trap
8978 * flag is pending without being used. Seen early in bios init when
8979 * accessing APIC page in protected mode. */
8980
8981 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8982 return VBOXSTRICTRC_TODO(rcStrict);
8983}
8984
8985
8986/**
8987 * Runs the guest code using VT-x.
8988 *
8989 * @returns VBox status code.
8990 * @param pVM Pointer to the VM.
8991 * @param pVCpu Pointer to the VMCPU.
8992 * @param pCtx Pointer to the guest-CPU context.
8993 */
8994VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8995{
8996 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8997 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
8998 HMVMX_ASSERT_PREEMPT_SAFE();
8999
9000 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
9001
9002 int rc;
9003 if (!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu))
9004 rc = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
9005 else
9006 rc = hmR0VmxRunGuestCodeStep(pVM, pVCpu, pCtx);
9007
9008 if (rc == VERR_EM_INTERPRETER)
9009 rc = VINF_EM_RAW_EMULATE_INSTR;
9010 else if (rc == VINF_EM_RESET)
9011 rc = VINF_EM_TRIPLE_FAULT;
9012
9013 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rc);
9014 if (RT_FAILURE(rc2))
9015 {
9016 pVCpu->hm.s.u32HMError = rc;
9017 rc = rc2;
9018 }
9019 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
9020 return rc;
9021}
9022
9023
9024#ifndef HMVMX_USE_FUNCTION_TABLE
9025DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
9026{
9027#ifdef DEBUG_ramshankar
9028# define SVVMCS() do { int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); } while (0)
9029# define LDVMCS() do { HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); } while (0)
9030#endif
9031 int rc;
9032 switch (rcReason)
9033 {
9034 case VMX_EXIT_EPT_MISCONFIG: /* SVVMCS(); */ rc = hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9035 case VMX_EXIT_EPT_VIOLATION: /* SVVMCS(); */ rc = hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9036 case VMX_EXIT_IO_INSTR: /* SVVMCS(); */ rc = hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9037 case VMX_EXIT_CPUID: /* SVVMCS(); */ rc = hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9038 case VMX_EXIT_RDTSC: /* SVVMCS(); */ rc = hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9039 case VMX_EXIT_RDTSCP: /* SVVMCS(); */ rc = hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9040 case VMX_EXIT_APIC_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9041 case VMX_EXIT_XCPT_OR_NMI: /* SVVMCS(); */ rc = hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9042 case VMX_EXIT_MOV_CRX: /* SVVMCS(); */ rc = hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9043 case VMX_EXIT_EXT_INT: /* SVVMCS(); */ rc = hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9044 case VMX_EXIT_INT_WINDOW: /* SVVMCS(); */ rc = hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9045 case VMX_EXIT_MWAIT: /* SVVMCS(); */ rc = hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9046 case VMX_EXIT_MONITOR: /* SVVMCS(); */ rc = hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9047 case VMX_EXIT_TASK_SWITCH: /* SVVMCS(); */ rc = hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9048 case VMX_EXIT_PREEMPT_TIMER: /* SVVMCS(); */ rc = hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9049 case VMX_EXIT_RDMSR: /* SVVMCS(); */ rc = hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9050 case VMX_EXIT_WRMSR: /* SVVMCS(); */ rc = hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9051 case VMX_EXIT_MOV_DRX: /* SVVMCS(); */ rc = hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9052 case VMX_EXIT_TPR_BELOW_THRESHOLD: /* SVVMCS(); */ rc = hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9053 case VMX_EXIT_HLT: /* SVVMCS(); */ rc = hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9054 case VMX_EXIT_INVD: /* SVVMCS(); */ rc = hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9055 case VMX_EXIT_INVLPG: /* SVVMCS(); */ rc = hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9056 case VMX_EXIT_RSM: /* SVVMCS(); */ rc = hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9057 case VMX_EXIT_MTF: /* SVVMCS(); */ rc = hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9058 case VMX_EXIT_PAUSE: /* SVVMCS(); */ rc = hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9059 case VMX_EXIT_XDTR_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9060 case VMX_EXIT_TR_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9061 case VMX_EXIT_WBINVD: /* SVVMCS(); */ rc = hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9062 case VMX_EXIT_XSETBV: /* SVVMCS(); */ rc = hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9063 case VMX_EXIT_RDRAND: /* SVVMCS(); */ rc = hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9064 case VMX_EXIT_INVPCID: /* SVVMCS(); */ rc = hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9065 case VMX_EXIT_GETSEC: /* SVVMCS(); */ rc = hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9066 case VMX_EXIT_RDPMC: /* SVVMCS(); */ rc = hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9067 case VMX_EXIT_VMCALL: /* SVVMCS(); */ rc = hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9068
9069 case VMX_EXIT_TRIPLE_FAULT: rc = hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient); break;
9070 case VMX_EXIT_NMI_WINDOW: rc = hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient); break;
9071 case VMX_EXIT_INIT_SIGNAL: rc = hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient); break;
9072 case VMX_EXIT_SIPI: rc = hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient); break;
9073 case VMX_EXIT_IO_SMI: rc = hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient); break;
9074 case VMX_EXIT_SMI: rc = hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient); break;
9075 case VMX_EXIT_ERR_MSR_LOAD: rc = hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient); break;
9076 case VMX_EXIT_ERR_INVALID_GUEST_STATE: rc = hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient); break;
9077 case VMX_EXIT_ERR_MACHINE_CHECK: rc = hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient); break;
9078
9079 case VMX_EXIT_VMCLEAR:
9080 case VMX_EXIT_VMLAUNCH:
9081 case VMX_EXIT_VMPTRLD:
9082 case VMX_EXIT_VMPTRST:
9083 case VMX_EXIT_VMREAD:
9084 case VMX_EXIT_VMRESUME:
9085 case VMX_EXIT_VMWRITE:
9086 case VMX_EXIT_VMXOFF:
9087 case VMX_EXIT_VMXON:
9088 case VMX_EXIT_INVEPT:
9089 case VMX_EXIT_INVVPID:
9090 case VMX_EXIT_VMFUNC:
9091 rc = hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
9092 break;
9093 default:
9094 rc = hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
9095 break;
9096 }
9097 return rc;
9098}
9099#endif /* !HMVMX_USE_FUNCTION_TABLE */
9100
9101
9102/**
9103 * Single-stepping VM-exit filtering.
9104 *
9105 * This is preprocessing the exits and deciding whether we've gotten far enough
9106 * to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit handling is
9107 * performed.
9108 *
9109 * @returns Strict VBox status code.
9110 * @param pVCpu The virtual CPU of the calling EMT.
9111 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
9112 * out-of-sync. Make sure to update the required
9113 * fields before using them.
9114 * @param pVmxTransient Pointer to the VMX-transient structure.
9115 * @param uExitReason The VM-exit reason.
9116 */
9117DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitStep(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
9118 uint32_t uExitReason, uint16_t uCsStart, uint64_t uRipStart)
9119{
9120 switch (uExitReason)
9121 {
9122 case VMX_EXIT_XCPT_OR_NMI:
9123 {
9124 /* Check for host NMI. */
9125 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9126 AssertRCReturn(rc2, rc2);
9127 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
9128 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9129 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
9130 /* fall thru */
9131 }
9132
9133 case VMX_EXIT_EPT_MISCONFIG:
9134 case VMX_EXIT_TRIPLE_FAULT:
9135 case VMX_EXIT_APIC_ACCESS:
9136 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9137 case VMX_EXIT_TASK_SWITCH:
9138
9139 /* Instruction specific VM-exits: */
9140 case VMX_EXIT_IO_INSTR:
9141 case VMX_EXIT_CPUID:
9142 case VMX_EXIT_RDTSC:
9143 case VMX_EXIT_RDTSCP:
9144 case VMX_EXIT_MOV_CRX:
9145 case VMX_EXIT_MWAIT:
9146 case VMX_EXIT_MONITOR:
9147 case VMX_EXIT_RDMSR:
9148 case VMX_EXIT_WRMSR:
9149 case VMX_EXIT_MOV_DRX:
9150 case VMX_EXIT_HLT:
9151 case VMX_EXIT_INVD:
9152 case VMX_EXIT_INVLPG:
9153 case VMX_EXIT_RSM:
9154 case VMX_EXIT_PAUSE:
9155 case VMX_EXIT_XDTR_ACCESS:
9156 case VMX_EXIT_TR_ACCESS:
9157 case VMX_EXIT_WBINVD:
9158 case VMX_EXIT_XSETBV:
9159 case VMX_EXIT_RDRAND:
9160 case VMX_EXIT_INVPCID:
9161 case VMX_EXIT_GETSEC:
9162 case VMX_EXIT_RDPMC:
9163 case VMX_EXIT_VMCALL:
9164 case VMX_EXIT_VMCLEAR:
9165 case VMX_EXIT_VMLAUNCH:
9166 case VMX_EXIT_VMPTRLD:
9167 case VMX_EXIT_VMPTRST:
9168 case VMX_EXIT_VMREAD:
9169 case VMX_EXIT_VMRESUME:
9170 case VMX_EXIT_VMWRITE:
9171 case VMX_EXIT_VMXOFF:
9172 case VMX_EXIT_VMXON:
9173 case VMX_EXIT_INVEPT:
9174 case VMX_EXIT_INVVPID:
9175 case VMX_EXIT_VMFUNC:
9176 {
9177 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
9178 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9179 AssertRCReturn(rc2, rc2);
9180 if ( pMixedCtx->rip != uRipStart
9181 || pMixedCtx->cs.Sel != uCsStart)
9182 return VINF_EM_DBG_STEPPED;
9183 break;
9184 }
9185 }
9186
9187 /*
9188 * Normal processing.
9189 */
9190#ifdef HMVMX_USE_FUNCTION_TABLE
9191 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
9192#else
9193 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
9194#endif
9195}
9196
9197
9198#ifdef DEBUG
9199/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
9200# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
9201 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
9202
9203# define HMVMX_ASSERT_PREEMPT_CPUID() \
9204 do \
9205 { \
9206 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
9207 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
9208 } while (0)
9209
9210# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
9211 do { \
9212 AssertPtr(pVCpu); \
9213 AssertPtr(pMixedCtx); \
9214 AssertPtr(pVmxTransient); \
9215 Assert(pVmxTransient->fVMEntryFailed == false); \
9216 Assert(ASMIntAreEnabled()); \
9217 HMVMX_ASSERT_PREEMPT_SAFE(); \
9218 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
9219 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
9220 HMVMX_ASSERT_PREEMPT_SAFE(); \
9221 if (VMMR0IsLogFlushDisabled(pVCpu)) \
9222 HMVMX_ASSERT_PREEMPT_CPUID(); \
9223 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
9224 } while (0)
9225
9226# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
9227 do { \
9228 Log4Func(("\n")); \
9229 } while (0)
9230#else /* Release builds */
9231# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
9232 do { \
9233 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
9234 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
9235 } while (0)
9236# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
9237#endif
9238
9239
9240/**
9241 * Advances the guest RIP after reading it from the VMCS.
9242 *
9243 * @returns VBox status code.
9244 * @param pVCpu Pointer to the VMCPU.
9245 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
9246 * out-of-sync. Make sure to update the required fields
9247 * before using them.
9248 * @param pVmxTransient Pointer to the VMX transient structure.
9249 *
9250 * @remarks No-long-jump zone!!!
9251 */
9252DECLINLINE(int) hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9253{
9254 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
9255 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
9256 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9257 AssertRCReturn(rc, rc);
9258
9259 pMixedCtx->rip += pVmxTransient->cbInstr;
9260 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
9261
9262 /*
9263 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
9264 * pending debug exception field as it takes care of priority of events.
9265 *
9266 * See Intel spec. 32.2.1 "Debug Exceptions".
9267 */
9268 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
9269
9270 return rc;
9271}
9272
9273
9274/**
9275 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9276 * and update error record fields accordingly.
9277 *
9278 * @return VMX_IGS_* return codes.
9279 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9280 * wrong with the guest state.
9281 *
9282 * @param pVM Pointer to the VM.
9283 * @param pVCpu Pointer to the VMCPU.
9284 * @param pCtx Pointer to the guest-CPU state.
9285 *
9286 * @remarks This function assumes our cache of the VMCS controls
9287 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
9288 */
9289static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9290{
9291#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9292#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
9293 uError = (err); \
9294 break; \
9295 } else do { } while (0)
9296
9297 int rc;
9298 uint32_t uError = VMX_IGS_ERROR;
9299 uint32_t u32Val;
9300 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
9301
9302 do
9303 {
9304 /*
9305 * CR0.
9306 */
9307 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9308 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9309 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
9310 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9311 if (fUnrestrictedGuest)
9312 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
9313
9314 uint32_t u32GuestCR0;
9315 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
9316 AssertRCBreak(rc);
9317 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
9318 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
9319 if ( !fUnrestrictedGuest
9320 && (u32GuestCR0 & X86_CR0_PG)
9321 && !(u32GuestCR0 & X86_CR0_PE))
9322 {
9323 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9324 }
9325
9326 /*
9327 * CR4.
9328 */
9329 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9330 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9331
9332 uint32_t u32GuestCR4;
9333 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
9334 AssertRCBreak(rc);
9335 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
9336 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
9337
9338 /*
9339 * IA32_DEBUGCTL MSR.
9340 */
9341 uint64_t u64Val;
9342 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9343 AssertRCBreak(rc);
9344 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
9345 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9346 {
9347 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9348 }
9349 uint64_t u64DebugCtlMsr = u64Val;
9350
9351#ifdef VBOX_STRICT
9352 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9353 AssertRCBreak(rc);
9354 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
9355#endif
9356 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
9357
9358 /*
9359 * RIP and RFLAGS.
9360 */
9361 uint32_t u32Eflags;
9362#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9363 if (HMVMX_IS_64BIT_HOST_MODE())
9364 {
9365 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
9366 AssertRCBreak(rc);
9367 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9368 if ( !fLongModeGuest
9369 || !pCtx->cs.Attr.n.u1Long)
9370 {
9371 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9372 }
9373 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9374 * must be identical if the "IA-32e mode guest" VM-entry
9375 * control is 1 and CS.L is 1. No check applies if the
9376 * CPU supports 64 linear-address bits. */
9377
9378 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9379 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9380 AssertRCBreak(rc);
9381 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9382 VMX_IGS_RFLAGS_RESERVED);
9383 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9384 u32Eflags = u64Val;
9385 }
9386 else
9387#endif
9388 {
9389 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
9390 AssertRCBreak(rc);
9391 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
9392 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9393 }
9394
9395 if ( fLongModeGuest
9396 || ( fUnrestrictedGuest
9397 && !(u32GuestCR0 & X86_CR0_PE)))
9398 {
9399 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9400 }
9401
9402 uint32_t u32EntryInfo;
9403 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9404 AssertRCBreak(rc);
9405 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
9406 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
9407 {
9408 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9409 }
9410
9411 /*
9412 * 64-bit checks.
9413 */
9414#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9415 if (HMVMX_IS_64BIT_HOST_MODE())
9416 {
9417 if ( fLongModeGuest
9418 && !fUnrestrictedGuest)
9419 {
9420 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9421 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9422 }
9423
9424 if ( !fLongModeGuest
9425 && (u32GuestCR4 & X86_CR4_PCIDE))
9426 {
9427 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9428 }
9429
9430 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9431 * 51:32 beyond the processor's physical-address width are 0. */
9432
9433 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
9434 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9435 {
9436 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9437 }
9438
9439 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9440 AssertRCBreak(rc);
9441 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9442
9443 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9444 AssertRCBreak(rc);
9445 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9446 }
9447#endif
9448
9449 /*
9450 * PERF_GLOBAL MSR.
9451 */
9452 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
9453 {
9454 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9455 AssertRCBreak(rc);
9456 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9457 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9458 }
9459
9460 /*
9461 * PAT MSR.
9462 */
9463 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
9464 {
9465 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9466 AssertRCBreak(rc);
9467 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9468 for (unsigned i = 0; i < 8; i++)
9469 {
9470 uint8_t u8Val = (u64Val & 0xff);
9471 if ( u8Val != 0 /* UC */
9472 && u8Val != 1 /* WC */
9473 && u8Val != 4 /* WT */
9474 && u8Val != 5 /* WP */
9475 && u8Val != 6 /* WB */
9476 && u8Val != 7 /* UC- */)
9477 {
9478 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9479 }
9480 u64Val >>= 8;
9481 }
9482 }
9483
9484 /*
9485 * EFER MSR.
9486 */
9487 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
9488 {
9489 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
9490 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9491 AssertRCBreak(rc);
9492 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9493 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9494 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
9495 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9496 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9497 || !(u32GuestCR0 & X86_CR0_PG)
9498 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9499 VMX_IGS_EFER_LMA_LME_MISMATCH);
9500 }
9501
9502 /*
9503 * Segment registers.
9504 */
9505 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9506 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9507 if (!(u32Eflags & X86_EFL_VM))
9508 {
9509 /* CS */
9510 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9511 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9512 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9513 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9514 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9515 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9516 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9517 /* CS cannot be loaded with NULL in protected mode. */
9518 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9519 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9520 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9521 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9522 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9523 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9524 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9525 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9526 else
9527 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9528
9529 /* SS */
9530 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9531 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9532 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9533 if ( !(pCtx->cr0 & X86_CR0_PE)
9534 || pCtx->cs.Attr.n.u4Type == 3)
9535 {
9536 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9537 }
9538 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9539 {
9540 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9541 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9542 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9543 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9544 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9545 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9546 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9547 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9548 }
9549
9550 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
9551 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9552 {
9553 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9554 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9555 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9556 || pCtx->ds.Attr.n.u4Type > 11
9557 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9558 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9559 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9560 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9561 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9562 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9563 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9564 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9565 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9566 }
9567 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9568 {
9569 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9570 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9571 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9572 || pCtx->es.Attr.n.u4Type > 11
9573 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9574 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9575 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9576 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9577 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9578 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9579 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9580 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9581 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9582 }
9583 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9584 {
9585 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
9586 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
9587 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9588 || pCtx->fs.Attr.n.u4Type > 11
9589 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
9590 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
9591 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
9592 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
9593 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9594 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
9595 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9596 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9597 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
9598 }
9599 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
9600 {
9601 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
9602 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
9603 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9604 || pCtx->gs.Attr.n.u4Type > 11
9605 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
9606 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
9607 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
9608 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
9609 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9610 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
9611 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9612 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9613 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
9614 }
9615 /* 64-bit capable CPUs. */
9616#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9617 if (HMVMX_IS_64BIT_HOST_MODE())
9618 {
9619 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9620 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9621 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9622 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9623 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9624 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
9625 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9626 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
9627 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9628 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
9629 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9630 }
9631#endif
9632 }
9633 else
9634 {
9635 /* V86 mode checks. */
9636 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
9637 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
9638 {
9639 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
9640 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
9641 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
9642 }
9643 else
9644 {
9645 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
9646 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
9647 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
9648 }
9649
9650 /* CS */
9651 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9652 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9653 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9654 /* SS */
9655 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9656 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9657 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9658 /* DS */
9659 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9660 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9661 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9662 /* ES */
9663 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9664 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9665 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9666 /* FS */
9667 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9668 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9669 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9670 /* GS */
9671 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9672 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9673 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9674 /* 64-bit capable CPUs. */
9675#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9676 if (HMVMX_IS_64BIT_HOST_MODE())
9677 {
9678 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9679 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9680 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9681 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9682 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9683 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
9684 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9685 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
9686 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9687 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
9688 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9689 }
9690#endif
9691 }
9692
9693 /*
9694 * TR.
9695 */
9696 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9697 /* 64-bit capable CPUs. */
9698#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9699 if (HMVMX_IS_64BIT_HOST_MODE())
9700 {
9701 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9702 }
9703#endif
9704 if (fLongModeGuest)
9705 {
9706 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9707 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9708 }
9709 else
9710 {
9711 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9712 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9713 VMX_IGS_TR_ATTR_TYPE_INVALID);
9714 }
9715 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9716 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9717 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9718 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9719 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9720 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9721 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9722 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9723
9724 /*
9725 * GDTR and IDTR.
9726 */
9727#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9728 if (HMVMX_IS_64BIT_HOST_MODE())
9729 {
9730 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9731 AssertRCBreak(rc);
9732 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9733
9734 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9735 AssertRCBreak(rc);
9736 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9737 }
9738#endif
9739
9740 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9741 AssertRCBreak(rc);
9742 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9743
9744 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9745 AssertRCBreak(rc);
9746 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9747
9748 /*
9749 * Guest Non-Register State.
9750 */
9751 /* Activity State. */
9752 uint32_t u32ActivityState;
9753 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9754 AssertRCBreak(rc);
9755 HMVMX_CHECK_BREAK( !u32ActivityState
9756 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
9757 VMX_IGS_ACTIVITY_STATE_INVALID);
9758 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9759 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9760 uint32_t u32IntrState;
9761 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
9762 AssertRCBreak(rc);
9763 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
9764 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9765 {
9766 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9767 }
9768
9769 /** @todo Activity state and injecting interrupts. Left as a todo since we
9770 * currently don't use activity states but ACTIVE. */
9771
9772 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
9773 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9774
9775 /* Guest interruptibility-state. */
9776 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9777 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
9778 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
9779 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
9780 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9781 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9782 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9783 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
9784 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9785 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
9786 {
9787 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
9788 {
9789 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9790 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9791 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9792 }
9793 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9794 {
9795 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9796 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9797 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
9798 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9799 }
9800 }
9801 /** @todo Assumes the processor is not in SMM. */
9802 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
9803 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9804 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
9805 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
9806 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9807 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
9808 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
9809 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9810 {
9811 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
9812 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9813 }
9814
9815 /* Pending debug exceptions. */
9816 if (HMVMX_IS_64BIT_HOST_MODE())
9817 {
9818 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
9819 AssertRCBreak(rc);
9820 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9821 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9822 u32Val = u64Val; /* For pending debug exceptions checks below. */
9823 }
9824 else
9825 {
9826 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
9827 AssertRCBreak(rc);
9828 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
9829 HMVMX_CHECK_BREAK(!(u64Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
9830 }
9831
9832 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9833 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
9834 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9835 {
9836 if ( (u32Eflags & X86_EFL_TF)
9837 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9838 {
9839 /* Bit 14 is PendingDebug.BS. */
9840 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9841 }
9842 if ( !(u32Eflags & X86_EFL_TF)
9843 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9844 {
9845 /* Bit 14 is PendingDebug.BS. */
9846 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
9847 }
9848 }
9849
9850 /* VMCS link pointer. */
9851 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
9852 AssertRCBreak(rc);
9853 if (u64Val != UINT64_C(0xffffffffffffffff))
9854 {
9855 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
9856 /** @todo Bits beyond the processor's physical-address width MBZ. */
9857 /** @todo 32-bit located in memory referenced by value of this field (as a
9858 * physical address) must contain the processor's VMCS revision ID. */
9859 /** @todo SMM checks. */
9860 }
9861
9862 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
9863 * not using Nested Paging? */
9864 if ( pVM->hm.s.fNestedPaging
9865 && !fLongModeGuest
9866 && CPUMIsGuestInPAEModeEx(pCtx))
9867 {
9868 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
9869 AssertRCBreak(rc);
9870 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9871
9872 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
9873 AssertRCBreak(rc);
9874 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9875
9876 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
9877 AssertRCBreak(rc);
9878 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9879
9880 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
9881 AssertRCBreak(rc);
9882 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9883 }
9884
9885 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
9886 if (uError == VMX_IGS_ERROR)
9887 uError = VMX_IGS_REASON_NOT_FOUND;
9888 } while (0);
9889
9890 pVCpu->hm.s.u32HMError = uError;
9891 return uError;
9892
9893#undef HMVMX_ERROR_BREAK
9894#undef HMVMX_CHECK_BREAK
9895}
9896
9897/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
9898/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
9899/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
9900
9901/** @name VM-exit handlers.
9902 * @{
9903 */
9904
9905/**
9906 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
9907 */
9908HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9909{
9910 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9911 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
9912 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
9913 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
9914 return VINF_SUCCESS;
9915 return VINF_EM_RAW_INTERRUPT;
9916}
9917
9918
9919/**
9920 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
9921 */
9922HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9923{
9924 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
9925 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
9926
9927 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9928 AssertRCReturn(rc, rc);
9929
9930 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
9931 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
9932 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
9933 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
9934
9935 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9936 {
9937 /*
9938 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
9939 * anything we inject is not going to cause a VM-exit directly for the event being injected.
9940 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
9941 *
9942 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
9943 */
9944 VMXDispatchHostNmi();
9945 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
9946 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9947 return VINF_SUCCESS;
9948 }
9949
9950 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
9951 rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
9952 if (RT_UNLIKELY(rc != VINF_SUCCESS))
9953 {
9954 if (rc == VINF_HM_DOUBLE_FAULT)
9955 rc = VINF_SUCCESS;
9956 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
9957 return rc;
9958 }
9959
9960 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
9961 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
9962 switch (uIntType)
9963 {
9964 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
9965 Assert(uVector == X86_XCPT_DB);
9966 /* no break */
9967 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
9968 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
9969 /* no break */
9970 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9971 {
9972 switch (uVector)
9973 {
9974 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
9975 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
9976 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
9977 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
9978 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
9979 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
9980#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
9981 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
9982 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9983 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
9984 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9985 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
9986 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9987 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
9988 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9989 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
9990 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9991 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
9992 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
9993#endif
9994 default:
9995 {
9996 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9997 AssertRCReturn(rc, rc);
9998
9999 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
10000 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10001 {
10002 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
10003 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
10004 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
10005
10006 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10007 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
10008 AssertRCReturn(rc, rc);
10009 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
10010 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
10011 0 /* GCPtrFaultAddress */);
10012 AssertRCReturn(rc, rc);
10013 }
10014 else
10015 {
10016 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
10017 pVCpu->hm.s.u32HMError = uVector;
10018 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
10019 }
10020 break;
10021 }
10022 }
10023 break;
10024 }
10025
10026 default:
10027 {
10028 pVCpu->hm.s.u32HMError = uExitIntInfo;
10029 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
10030 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
10031 break;
10032 }
10033 }
10034 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
10035 return rc;
10036}
10037
10038
10039/**
10040 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
10041 */
10042HMVMX_EXIT_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10043{
10044 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10045
10046 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
10047 hmR0VmxClearIntWindowExitVmcs(pVCpu);
10048
10049 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
10050 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
10051 return VINF_SUCCESS;
10052}
10053
10054
10055/**
10056 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
10057 */
10058HMVMX_EXIT_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10059{
10060 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10061 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
10062 {
10063 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
10064 HMVMX_RETURN_UNEXPECTED_EXIT();
10065 }
10066
10067 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
10068
10069 /*
10070 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
10071 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
10072 */
10073 uint32_t uIntrState = 0;
10074 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
10075 AssertRCReturn(rc, rc);
10076
10077 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
10078 if ( fBlockSti
10079 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
10080 {
10081 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10082 }
10083
10084 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
10085 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
10086
10087 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
10088 return VINF_SUCCESS;
10089}
10090
10091
10092/**
10093 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
10094 */
10095HMVMX_EXIT_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10096{
10097 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10098 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
10099 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10100}
10101
10102
10103/**
10104 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
10105 */
10106HMVMX_EXIT_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10107{
10108 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10109 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
10110 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10111}
10112
10113
10114/**
10115 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
10116 */
10117HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10118{
10119 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10120 PVM pVM = pVCpu->CTX_SUFF(pVM);
10121 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10122 if (RT_LIKELY(rc == VINF_SUCCESS))
10123 {
10124 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10125 Assert(pVmxTransient->cbInstr == 2);
10126 }
10127 else
10128 {
10129 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
10130 rc = VERR_EM_INTERPRETER;
10131 }
10132 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
10133 return rc;
10134}
10135
10136
10137/**
10138 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
10139 */
10140HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10141{
10142 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10143 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
10144 AssertRCReturn(rc, rc);
10145
10146 if (pMixedCtx->cr4 & X86_CR4_SMXE)
10147 return VINF_EM_RAW_EMULATE_INSTR;
10148
10149 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
10150 HMVMX_RETURN_UNEXPECTED_EXIT();
10151}
10152
10153
10154/**
10155 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
10156 */
10157HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10158{
10159 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10160 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
10161 AssertRCReturn(rc, rc);
10162
10163 PVM pVM = pVCpu->CTX_SUFF(pVM);
10164 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10165 if (RT_LIKELY(rc == VINF_SUCCESS))
10166 {
10167 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10168 Assert(pVmxTransient->cbInstr == 2);
10169 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
10170 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
10171 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10172 }
10173 else
10174 rc = VERR_EM_INTERPRETER;
10175 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
10176 return rc;
10177}
10178
10179
10180/**
10181 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
10182 */
10183HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10184{
10185 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10186 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
10187 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
10188 AssertRCReturn(rc, rc);
10189
10190 PVM pVM = pVCpu->CTX_SUFF(pVM);
10191 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
10192 if (RT_LIKELY(rc == VINF_SUCCESS))
10193 {
10194 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10195 Assert(pVmxTransient->cbInstr == 3);
10196 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
10197 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
10198 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10199 }
10200 else
10201 {
10202 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
10203 rc = VERR_EM_INTERPRETER;
10204 }
10205 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
10206 return rc;
10207}
10208
10209
10210/**
10211 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
10212 */
10213HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10214{
10215 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10216 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
10217 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); /** @todo review if CR0 is really required by EM. */
10218 AssertRCReturn(rc, rc);
10219
10220 PVM pVM = pVCpu->CTX_SUFF(pVM);
10221 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10222 if (RT_LIKELY(rc == VINF_SUCCESS))
10223 {
10224 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10225 Assert(pVmxTransient->cbInstr == 2);
10226 }
10227 else
10228 {
10229 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
10230 rc = VERR_EM_INTERPRETER;
10231 }
10232 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
10233 return rc;
10234}
10235
10236
10237/**
10238 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
10239 */
10240HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10241{
10242 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10243
10244 int rc = VERR_NOT_SUPPORTED;
10245 if (GIMAreHypercallsEnabled(pVCpu))
10246 {
10247 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10248 AssertRCReturn(rc, rc);
10249
10250 rc = GIMHypercall(pVCpu, pMixedCtx);
10251 }
10252 if (rc != VINF_SUCCESS)
10253 {
10254 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
10255 rc = VINF_SUCCESS;
10256 }
10257
10258 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
10259 return rc;
10260}
10261
10262
10263/**
10264 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
10265 */
10266HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10267{
10268 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10269 PVM pVM = pVCpu->CTX_SUFF(pVM);
10270 Assert(!pVM->hm.s.fNestedPaging);
10271
10272 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10273 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10274 AssertRCReturn(rc, rc);
10275
10276 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
10277 rc = VBOXSTRICTRC_VAL(rc2);
10278 if (RT_LIKELY(rc == VINF_SUCCESS))
10279 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10280 else
10281 {
10282 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
10283 pVmxTransient->uExitQualification, rc));
10284 }
10285 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
10286 return rc;
10287}
10288
10289
10290/**
10291 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
10292 */
10293HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10294{
10295 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10296 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10297 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10298 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10299 AssertRCReturn(rc, rc);
10300
10301 PVM pVM = pVCpu->CTX_SUFF(pVM);
10302 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10303 if (RT_LIKELY(rc == VINF_SUCCESS))
10304 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10305 else
10306 {
10307 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
10308 rc = VERR_EM_INTERPRETER;
10309 }
10310 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
10311 return rc;
10312}
10313
10314
10315/**
10316 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
10317 */
10318HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10319{
10320 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10321 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10322 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10323 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10324 AssertRCReturn(rc, rc);
10325
10326 PVM pVM = pVCpu->CTX_SUFF(pVM);
10327 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10328 rc = VBOXSTRICTRC_VAL(rc2);
10329 if (RT_LIKELY( rc == VINF_SUCCESS
10330 || rc == VINF_EM_HALT))
10331 {
10332 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10333 AssertRCReturn(rc3, rc3);
10334
10335 if ( rc == VINF_EM_HALT
10336 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
10337 {
10338 rc = VINF_SUCCESS;
10339 }
10340 }
10341 else
10342 {
10343 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
10344 rc = VERR_EM_INTERPRETER;
10345 }
10346 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
10347 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
10348 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
10349 return rc;
10350}
10351
10352
10353/**
10354 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
10355 */
10356HMVMX_EXIT_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10357{
10358 /*
10359 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
10360 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
10361 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
10362 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
10363 */
10364 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10365 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10366 HMVMX_RETURN_UNEXPECTED_EXIT();
10367}
10368
10369
10370/**
10371 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
10372 */
10373HMVMX_EXIT_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10374{
10375 /*
10376 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
10377 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
10378 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
10379 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
10380 */
10381 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10382 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10383 HMVMX_RETURN_UNEXPECTED_EXIT();
10384}
10385
10386
10387/**
10388 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
10389 */
10390HMVMX_EXIT_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10391{
10392 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
10393 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10394 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10395 HMVMX_RETURN_UNEXPECTED_EXIT();
10396}
10397
10398
10399/**
10400 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
10401 */
10402HMVMX_EXIT_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10403{
10404 /*
10405 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
10406 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
10407 * See Intel spec. 25.3 "Other Causes of VM-exits".
10408 */
10409 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10410 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10411 HMVMX_RETURN_UNEXPECTED_EXIT();
10412}
10413
10414
10415/**
10416 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
10417 * VM-exit.
10418 */
10419HMVMX_EXIT_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10420{
10421 /*
10422 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
10423 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
10424 *
10425 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
10426 * See Intel spec. "23.8 Restrictions on VMX operation".
10427 */
10428 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10429 return VINF_SUCCESS;
10430}
10431
10432
10433/**
10434 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
10435 * VM-exit.
10436 */
10437HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10438{
10439 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10440 return VINF_EM_RESET;
10441}
10442
10443
10444/**
10445 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
10446 */
10447HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10448{
10449 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10450 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
10451 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10452 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10453 AssertRCReturn(rc, rc);
10454
10455 pMixedCtx->rip++;
10456 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10457 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
10458 rc = VINF_SUCCESS;
10459 else
10460 rc = VINF_EM_HALT;
10461
10462 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
10463 if (rc != VINF_SUCCESS)
10464 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
10465 return rc;
10466}
10467
10468
10469/**
10470 * VM-exit handler for instructions that result in a #UD exception delivered to
10471 * the guest.
10472 */
10473HMVMX_EXIT_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10474{
10475 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10476 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
10477 return VINF_SUCCESS;
10478}
10479
10480
10481/**
10482 * VM-exit handler for expiry of the VMX preemption timer.
10483 */
10484HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10485{
10486 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10487
10488 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
10489 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10490
10491 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
10492 PVM pVM = pVCpu->CTX_SUFF(pVM);
10493 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
10494 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
10495 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
10496}
10497
10498
10499/**
10500 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
10501 */
10502HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10503{
10504 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10505
10506 /* We expose XSETBV to the guest, fallback to the recompiler for emulation. */
10507 /** @todo check if XSETBV is supported by the recompiler. */
10508 return VERR_EM_INTERPRETER;
10509}
10510
10511
10512/**
10513 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
10514 */
10515HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10516{
10517 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10518
10519 /* The guest should not invalidate the host CPU's TLBs, fallback to recompiler. */
10520 /** @todo implement EMInterpretInvpcid() */
10521 return VERR_EM_INTERPRETER;
10522}
10523
10524
10525/**
10526 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
10527 * Error VM-exit.
10528 */
10529HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10530{
10531 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10532 AssertRCReturn(rc, rc);
10533
10534 rc = hmR0VmxCheckVmcsCtls(pVCpu);
10535 AssertRCReturn(rc, rc);
10536
10537 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
10538 NOREF(uInvalidReason);
10539
10540#ifdef VBOX_STRICT
10541 uint32_t uIntrState;
10542 HMVMXHCUINTREG uHCReg;
10543 uint64_t u64Val;
10544 uint32_t u32Val;
10545
10546 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
10547 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
10548 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
10549 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
10550 AssertRCReturn(rc, rc);
10551
10552 Log4(("uInvalidReason %u\n", uInvalidReason));
10553 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
10554 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
10555 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
10556 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
10557
10558 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
10559 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
10560 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
10561 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
10562 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
10563 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
10564 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
10565 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
10566 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
10567 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
10568 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
10569 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
10570#else
10571 NOREF(pVmxTransient);
10572#endif
10573
10574 HMDumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
10575 return VERR_VMX_INVALID_GUEST_STATE;
10576}
10577
10578
10579/**
10580 * VM-exit handler for VM-entry failure due to an MSR-load
10581 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
10582 */
10583HMVMX_EXIT_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10584{
10585 NOREF(pVmxTransient);
10586 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
10587 HMVMX_RETURN_UNEXPECTED_EXIT();
10588}
10589
10590
10591/**
10592 * VM-exit handler for VM-entry failure due to a machine-check event
10593 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
10594 */
10595HMVMX_EXIT_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10596{
10597 NOREF(pVmxTransient);
10598 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
10599 HMVMX_RETURN_UNEXPECTED_EXIT();
10600}
10601
10602
10603/**
10604 * VM-exit handler for all undefined reasons. Should never ever happen.. in
10605 * theory.
10606 */
10607HMVMX_EXIT_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10608{
10609 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
10610 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
10611 return VERR_VMX_UNDEFINED_EXIT_CODE;
10612}
10613
10614
10615/**
10616 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
10617 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
10618 * Conditional VM-exit.
10619 */
10620HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10621{
10622 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10623
10624 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
10625 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
10626 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
10627 return VERR_EM_INTERPRETER;
10628 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10629 HMVMX_RETURN_UNEXPECTED_EXIT();
10630}
10631
10632
10633/**
10634 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
10635 */
10636HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10637{
10638 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10639
10640 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
10641 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
10642 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
10643 return VERR_EM_INTERPRETER;
10644 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10645 HMVMX_RETURN_UNEXPECTED_EXIT();
10646}
10647
10648
10649/**
10650 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
10651 */
10652HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10653{
10654 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10655
10656 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
10657 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10658 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10659 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10660 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10661 {
10662 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
10663 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
10664 }
10665 AssertRCReturn(rc, rc);
10666 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
10667
10668#ifdef VBOX_STRICT
10669 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
10670 {
10671 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
10672 && pMixedCtx->ecx != MSR_K6_EFER)
10673 {
10674 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
10675 HMVMX_RETURN_UNEXPECTED_EXIT();
10676 }
10677# if HC_ARCH_BITS == 64
10678 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests
10679 && hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10680 {
10681 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
10682 HMVMX_RETURN_UNEXPECTED_EXIT();
10683 }
10684# endif
10685 }
10686#endif
10687
10688 PVM pVM = pVCpu->CTX_SUFF(pVM);
10689 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10690 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
10691 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
10692 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
10693 if (RT_LIKELY(rc == VINF_SUCCESS))
10694 {
10695 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10696 Assert(pVmxTransient->cbInstr == 2);
10697 }
10698 return rc;
10699}
10700
10701
10702/**
10703 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
10704 */
10705HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10706{
10707 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10708 PVM pVM = pVCpu->CTX_SUFF(pVM);
10709 int rc = VINF_SUCCESS;
10710
10711 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
10712 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10713 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10714 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10715 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10716 {
10717 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
10718 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
10719 }
10720 AssertRCReturn(rc, rc);
10721 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
10722
10723 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10724 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
10725 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
10726
10727 if (RT_LIKELY(rc == VINF_SUCCESS))
10728 {
10729 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10730
10731 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
10732 if ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
10733 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END)
10734 {
10735 /* We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
10736 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
10737 EMInterpretWrmsr() changes it. */
10738 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10739 }
10740 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
10741 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10742 else if (pMixedCtx->ecx == MSR_K6_EFER)
10743 {
10744 /*
10745 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
10746 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
10747 * the other bits as well, SCE and NXE. See @bugref{7368}.
10748 */
10749 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
10750 }
10751
10752 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
10753 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10754 {
10755 switch (pMixedCtx->ecx)
10756 {
10757 case MSR_IA32_SYSENTER_CS: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
10758 case MSR_IA32_SYSENTER_EIP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
10759 case MSR_IA32_SYSENTER_ESP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
10760 case MSR_K8_FS_BASE: /* no break */
10761 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
10762 case MSR_K6_EFER: /* already handled above */ break;
10763 default:
10764 {
10765 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
10766 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
10767#if HC_ARCH_BITS == 64
10768 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10769 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
10770#endif
10771 break;
10772 }
10773 }
10774 }
10775#ifdef VBOX_STRICT
10776 else
10777 {
10778 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
10779 switch (pMixedCtx->ecx)
10780 {
10781 case MSR_IA32_SYSENTER_CS:
10782 case MSR_IA32_SYSENTER_EIP:
10783 case MSR_IA32_SYSENTER_ESP:
10784 case MSR_K8_FS_BASE:
10785 case MSR_K8_GS_BASE:
10786 {
10787 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
10788 HMVMX_RETURN_UNEXPECTED_EXIT();
10789 }
10790
10791 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
10792 default:
10793 {
10794 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
10795 {
10796 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
10797 if (pMixedCtx->ecx != MSR_K6_EFER)
10798 {
10799 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
10800 pMixedCtx->ecx));
10801 HMVMX_RETURN_UNEXPECTED_EXIT();
10802 }
10803 }
10804
10805#if HC_ARCH_BITS == 64
10806 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10807 {
10808 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
10809 HMVMX_RETURN_UNEXPECTED_EXIT();
10810 }
10811#endif
10812 break;
10813 }
10814 }
10815 }
10816#endif /* VBOX_STRICT */
10817 }
10818 return rc;
10819}
10820
10821
10822/**
10823 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
10824 */
10825HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10826{
10827 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10828
10829 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT. */
10830 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
10831 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT)
10832 return VERR_EM_INTERPRETER;
10833 AssertMsgFailed(("Unexpected PAUSE exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10834 HMVMX_RETURN_UNEXPECTED_EXIT();
10835}
10836
10837
10838/**
10839 * VM-exit handler for when the TPR value is lowered below the specified
10840 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
10841 */
10842HMVMX_EXIT_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10843{
10844 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10845 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
10846
10847 /*
10848 * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
10849 * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectPendingEvent() and
10850 * resume guest execution.
10851 */
10852 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10853 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
10854 return VINF_SUCCESS;
10855}
10856
10857
10858/**
10859 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
10860 * VM-exit.
10861 *
10862 * @retval VINF_SUCCESS when guest execution can continue.
10863 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
10864 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
10865 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
10866 * recompiler.
10867 */
10868HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10869{
10870 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10871 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
10872 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10873 AssertRCReturn(rc, rc);
10874
10875 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
10876 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
10877 PVM pVM = pVCpu->CTX_SUFF(pVM);
10878 switch (uAccessType)
10879 {
10880 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
10881 {
10882#if 0
10883 /* EMInterpretCRxWrite() references a lot of guest state (EFER, RFLAGS, Segment Registers, etc.) Sync entire state */
10884 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10885#else
10886 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
10887 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10888 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10889#endif
10890 AssertRCReturn(rc, rc);
10891
10892 rc = EMInterpretCRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10893 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
10894 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
10895 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
10896
10897 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
10898 {
10899 case 0: /* CR0 */
10900 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
10901 Log4(("CRX CR0 write rc=%d CR0=%#RX64\n", rc, pMixedCtx->cr0));
10902 break;
10903 case 2: /* CR2 */
10904 /* Nothing to do here, CR2 it's not part of the VMCS. */
10905 break;
10906 case 3: /* CR3 */
10907 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx));
10908 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
10909 Log4(("CRX CR3 write rc=%d CR3=%#RX64\n", rc, pMixedCtx->cr3));
10910 break;
10911 case 4: /* CR4 */
10912 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
10913 Log4(("CRX CR4 write rc=%d CR4=%#RX64\n", rc, pMixedCtx->cr4));
10914 break;
10915 case 8: /* CR8 */
10916 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
10917 /* CR8 contains the APIC TPR. Was updated by EMInterpretCRxWrite(). */
10918 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10919 break;
10920 default:
10921 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
10922 break;
10923 }
10924
10925 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
10926 break;
10927 }
10928
10929 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
10930 {
10931 /* EMInterpretCRxRead() requires EFER MSR, CS. */
10932 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10933 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10934 AssertRCReturn(rc, rc);
10935 Assert( !pVM->hm.s.fNestedPaging
10936 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
10937 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
10938
10939 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
10940 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
10941 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
10942
10943 rc = EMInterpretCRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
10944 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
10945 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
10946 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
10947 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
10948 Log4(("CRX CR%d Read access rc=%d\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification), rc));
10949 break;
10950 }
10951
10952 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
10953 {
10954 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10955 AssertRCReturn(rc, rc);
10956 rc = EMInterpretCLTS(pVM, pVCpu);
10957 AssertRCReturn(rc, rc);
10958 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
10959 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
10960 Log4(("CRX CLTS write rc=%d\n", rc));
10961 break;
10962 }
10963
10964 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
10965 {
10966 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10967 AssertRCReturn(rc, rc);
10968 rc = EMInterpretLMSW(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
10969 if (RT_LIKELY(rc == VINF_SUCCESS))
10970 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
10971 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
10972 Log4(("CRX LMSW write rc=%d\n", rc));
10973 break;
10974 }
10975
10976 default:
10977 {
10978 AssertMsgFailed(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType));
10979 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
10980 }
10981 }
10982
10983 /* Validate possible error codes. */
10984 Assert(rc == VINF_SUCCESS || rc == VINF_PGM_CHANGE_MODE || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_SYNC_CR3
10985 || rc == VERR_VMX_UNEXPECTED_EXCEPTION);
10986 if (RT_SUCCESS(rc))
10987 {
10988 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10989 AssertRCReturn(rc2, rc2);
10990 }
10991
10992 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
10993 return rc;
10994}
10995
10996
10997/**
10998 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
10999 * VM-exit.
11000 */
11001HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11002{
11003 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11004 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
11005
11006 int rc2 = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11007 rc2 |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11008 rc2 |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11009 rc2 |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
11010 rc2 |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
11011 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
11012 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
11013 AssertRCReturn(rc2, rc2);
11014
11015 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
11016 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
11017 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
11018 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
11019 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
11020 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
11021 bool fStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
11022 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
11023
11024 /* I/O operation lookup arrays. */
11025 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
11026 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
11027
11028 VBOXSTRICTRC rcStrict;
11029 uint32_t const cbValue = s_aIOSizes[uIOWidth];
11030 uint32_t const cbInstr = pVmxTransient->cbInstr;
11031 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
11032 PVM pVM = pVCpu->CTX_SUFF(pVM);
11033 if (fIOString)
11034 {
11035#if 0 /* Not yet ready. IEM gurus with debian 32-bit guest without NP (on ATA reads). See @bugref{5752#c158} */
11036 /*
11037 * INS/OUTS - I/O String instruction.
11038 *
11039 * Use instruction-information if available, otherwise fall back on
11040 * interpreting the instruction.
11041 */
11042 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
11043 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
11044 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
11045 {
11046 rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11047 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
11048 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11049 AssertRCReturn(rc2, rc2);
11050 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
11051 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
11052 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
11053 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
11054 if (fIOWrite)
11055 {
11056 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
11057 pVmxTransient->ExitInstrInfo.StrIo.iSegReg);
11058 }
11059 else
11060 {
11061 /*
11062 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
11063 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
11064 * See Intel Instruction spec. for "INS".
11065 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
11066 */
11067 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr);
11068 }
11069 }
11070 else
11071 {
11072 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
11073 rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11074 AssertRCReturn(rc2, rc2);
11075 rcStrict = IEMExecOne(pVCpu);
11076 }
11077 /** @todo IEM needs to be setting these flags somehow. */
11078 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
11079 fUpdateRipAlready = true;
11080#else
11081 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
11082 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
11083 if (RT_SUCCESS(rcStrict))
11084 {
11085 if (fIOWrite)
11086 {
11087 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
11088 (DISCPUMODE)pDis->uAddrMode, cbValue);
11089 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
11090 }
11091 else
11092 {
11093 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
11094 (DISCPUMODE)pDis->uAddrMode, cbValue);
11095 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
11096 }
11097 }
11098 else
11099 {
11100 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP %#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->rip));
11101 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
11102 }
11103#endif
11104 }
11105 else
11106 {
11107 /*
11108 * IN/OUT - I/O instruction.
11109 */
11110 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
11111 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
11112 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
11113 if (fIOWrite)
11114 {
11115 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
11116 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
11117 HMR0SavePendingIOPortWrite(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
11118 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
11119 }
11120 else
11121 {
11122 uint32_t u32Result = 0;
11123 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
11124 if (IOM_SUCCESS(rcStrict))
11125 {
11126 /* Save result of I/O IN instr. in AL/AX/EAX. */
11127 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
11128 }
11129 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
11130 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
11131 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
11132 }
11133 }
11134
11135 if (IOM_SUCCESS(rcStrict))
11136 {
11137 if (!fUpdateRipAlready)
11138 {
11139 pMixedCtx->rip += cbInstr;
11140 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
11141 }
11142
11143 /*
11144 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
11145 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
11146 */
11147 if (fIOString)
11148 {
11149 /** @todo Single-step for INS/OUTS with REP prefix? */
11150 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
11151 }
11152 else if (fStepping)
11153 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
11154
11155 /*
11156 * If any I/O breakpoints are armed, we need to check if one triggered
11157 * and take appropriate action.
11158 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
11159 */
11160 rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
11161 AssertRCReturn(rc2, rc2);
11162
11163 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
11164 * execution engines about whether hyper BPs and such are pending. */
11165 uint32_t const uDr7 = pMixedCtx->dr[7];
11166 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
11167 && X86_DR7_ANY_RW_IO(uDr7)
11168 && (pMixedCtx->cr4 & X86_CR4_DE))
11169 || DBGFBpIsHwIoArmed(pVM)))
11170 {
11171 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
11172
11173 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
11174 VMMRZCallRing3Disable(pVCpu);
11175 HM_DISABLE_PREEMPT_IF_NEEDED();
11176
11177 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
11178
11179 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
11180 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
11181 {
11182 /* Raise #DB. */
11183 if (fIsGuestDbgActive)
11184 ASMSetDR6(pMixedCtx->dr[6]);
11185 if (pMixedCtx->dr[7] != uDr7)
11186 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
11187
11188 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
11189 }
11190 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
11191 else if ( rcStrict2 != VINF_SUCCESS
11192 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
11193 rcStrict = rcStrict2;
11194
11195 HM_RESTORE_PREEMPT_IF_NEEDED();
11196 VMMRZCallRing3Enable(pVCpu);
11197 }
11198 }
11199
11200#ifdef DEBUG
11201 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
11202 Assert(!fIOWrite);
11203 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
11204 Assert(fIOWrite);
11205 else
11206 {
11207 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
11208 * statuses, that the VMM device and some others may return. See
11209 * IOM_SUCCESS() for guidance. */
11210 AssertMsg( RT_FAILURE(rcStrict)
11211 || rcStrict == VINF_SUCCESS
11212 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
11213 || rcStrict == VINF_EM_DBG_BREAKPOINT
11214 || rcStrict == VINF_EM_RAW_GUEST_TRAP
11215 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11216 }
11217#endif
11218
11219 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
11220 return VBOXSTRICTRC_TODO(rcStrict);
11221}
11222
11223
11224/**
11225 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
11226 * VM-exit.
11227 */
11228HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11229{
11230 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11231
11232 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
11233 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11234 AssertRCReturn(rc, rc);
11235 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
11236 {
11237 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
11238 AssertRCReturn(rc, rc);
11239 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
11240 {
11241 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
11242
11243 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
11244 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
11245
11246 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
11247 Assert(!pVCpu->hm.s.Event.fPending);
11248 pVCpu->hm.s.Event.fPending = true;
11249 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
11250 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
11251 AssertRCReturn(rc, rc);
11252 if (fErrorCodeValid)
11253 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
11254 else
11255 pVCpu->hm.s.Event.u32ErrCode = 0;
11256 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
11257 && uVector == X86_XCPT_PF)
11258 {
11259 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
11260 }
11261
11262 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
11263 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
11264 return VINF_EM_RAW_INJECT_TRPM_EVENT;
11265 }
11266 }
11267
11268 /** @todo Emulate task switch someday, currently just going back to ring-3 for
11269 * emulation. */
11270 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
11271 return VERR_EM_INTERPRETER;
11272}
11273
11274
11275/**
11276 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
11277 */
11278HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11279{
11280 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11281 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
11282 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
11283 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
11284 AssertRCReturn(rc, rc);
11285 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
11286 return VINF_EM_DBG_STEPPED;
11287}
11288
11289
11290/**
11291 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
11292 */
11293HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11294{
11295 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11296
11297 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11298 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11299 if (RT_UNLIKELY(rc != VINF_SUCCESS))
11300 {
11301 if (rc == VINF_HM_DOUBLE_FAULT)
11302 rc = VINF_SUCCESS;
11303 return rc;
11304 }
11305
11306#if 0
11307 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
11308 * just sync the whole thing. */
11309 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11310#else
11311 /* Aggressive state sync. for now. */
11312 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
11313 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11314 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11315#endif
11316 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11317 AssertRCReturn(rc, rc);
11318
11319 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
11320 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
11321 switch (uAccessType)
11322 {
11323 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
11324 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
11325 {
11326 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
11327 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != 0x80,
11328 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
11329
11330 RTGCPHYS GCPhys = pMixedCtx->msrApicBase; /* Always up-to-date, msrApicBase is not part of the VMCS. */
11331 GCPhys &= PAGE_BASE_GC_MASK;
11332 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
11333 PVM pVM = pVCpu->CTX_SUFF(pVM);
11334 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGv Off=%#x\n", uAccessType, GCPhys,
11335 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
11336
11337 VBOXSTRICTRC rc2 = IOMMMIOPhysHandler(pVM, pVCpu,
11338 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
11339 CPUMCTX2CORE(pMixedCtx), GCPhys);
11340 rc = VBOXSTRICTRC_VAL(rc2);
11341 Log4(("ApicAccess rc=%d\n", rc));
11342 if ( rc == VINF_SUCCESS
11343 || rc == VERR_PAGE_TABLE_NOT_PRESENT
11344 || rc == VERR_PAGE_NOT_PRESENT)
11345 {
11346 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11347 | HM_CHANGED_GUEST_RSP
11348 | HM_CHANGED_GUEST_RFLAGS
11349 | HM_CHANGED_VMX_GUEST_APIC_STATE);
11350 rc = VINF_SUCCESS;
11351 }
11352 break;
11353 }
11354
11355 default:
11356 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
11357 rc = VINF_EM_RAW_EMULATE_INSTR;
11358 break;
11359 }
11360
11361 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
11362 if (rc != VINF_SUCCESS)
11363 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
11364 return rc;
11365}
11366
11367
11368/**
11369 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
11370 * VM-exit.
11371 */
11372HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11373{
11374 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11375
11376 /* We should -not- get this VM-exit if the guest's debug registers were active. */
11377 if (pVmxTransient->fWasGuestDebugStateActive)
11378 {
11379 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11380 HMVMX_RETURN_UNEXPECTED_EXIT();
11381 }
11382
11383 int rc = VERR_INTERNAL_ERROR_5;
11384 if ( !DBGFIsStepping(pVCpu)
11385 && !pVCpu->hm.s.fSingleInstruction
11386 && !pVmxTransient->fWasHyperDebugStateActive)
11387 {
11388 /* Don't intercept MOV DRx and #DB any more. */
11389 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
11390 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
11391 AssertRCReturn(rc, rc);
11392
11393 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11394 {
11395#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11396 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
11397 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
11398 AssertRCReturn(rc, rc);
11399#endif
11400 }
11401
11402 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
11403 VMMRZCallRing3Disable(pVCpu);
11404 HM_DISABLE_PREEMPT_IF_NEEDED();
11405
11406 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
11407 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
11408 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
11409
11410 HM_RESTORE_PREEMPT_IF_NEEDED();
11411 VMMRZCallRing3Enable(pVCpu);
11412
11413#ifdef VBOX_WITH_STATISTICS
11414 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11415 AssertRCReturn(rc, rc);
11416 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
11417 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
11418 else
11419 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
11420#endif
11421 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
11422 return VINF_SUCCESS;
11423 }
11424
11425 /*
11426 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
11427 * Update the segment registers and DR7 from the CPU.
11428 */
11429 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11430 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11431 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
11432 AssertRCReturn(rc, rc);
11433 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
11434
11435 PVM pVM = pVCpu->CTX_SUFF(pVM);
11436 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
11437 {
11438 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
11439 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
11440 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
11441 if (RT_SUCCESS(rc))
11442 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
11443 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
11444 }
11445 else
11446 {
11447 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
11448 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
11449 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
11450 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
11451 }
11452
11453 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
11454 if (RT_SUCCESS(rc))
11455 {
11456 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11457 AssertRCReturn(rc2, rc2);
11458 }
11459 return rc;
11460}
11461
11462
11463/**
11464 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
11465 * Conditional VM-exit.
11466 */
11467HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11468{
11469 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11470 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
11471
11472 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11473 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11474 if (RT_UNLIKELY(rc != VINF_SUCCESS))
11475 {
11476 if (rc == VINF_HM_DOUBLE_FAULT)
11477 rc = VINF_SUCCESS;
11478 return rc;
11479 }
11480
11481 RTGCPHYS GCPhys = 0;
11482 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
11483
11484#if 0
11485 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
11486#else
11487 /* Aggressive state sync. for now. */
11488 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
11489 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11490 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11491#endif
11492 AssertRCReturn(rc, rc);
11493
11494 /*
11495 * If we succeed, resume guest execution.
11496 * If we fail in interpreting the instruction because we couldn't get the guest physical address
11497 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
11498 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
11499 * weird case. See @bugref{6043}.
11500 */
11501 PVM pVM = pVCpu->CTX_SUFF(pVM);
11502 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
11503 rc = VBOXSTRICTRC_VAL(rc2);
11504 Log4(("EPT misconfig at %#RGv RIP=%#RX64 rc=%d\n", GCPhys, pMixedCtx->rip, rc));
11505 if ( rc == VINF_SUCCESS
11506 || rc == VERR_PAGE_TABLE_NOT_PRESENT
11507 || rc == VERR_PAGE_NOT_PRESENT)
11508 {
11509 /* Successfully handled MMIO operation. */
11510 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11511 | HM_CHANGED_GUEST_RSP
11512 | HM_CHANGED_GUEST_RFLAGS
11513 | HM_CHANGED_VMX_GUEST_APIC_STATE);
11514 rc = VINF_SUCCESS;
11515 }
11516 return rc;
11517}
11518
11519
11520/**
11521 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
11522 * VM-exit.
11523 */
11524HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11525{
11526 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11527 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
11528
11529 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11530 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11531 if (RT_UNLIKELY(rc != VINF_SUCCESS))
11532 {
11533 if (rc == VINF_HM_DOUBLE_FAULT)
11534 rc = VINF_SUCCESS;
11535 return rc;
11536 }
11537
11538 RTGCPHYS GCPhys = 0;
11539 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
11540 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11541#if 0
11542 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
11543#else
11544 /* Aggressive state sync. for now. */
11545 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
11546 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11547 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11548#endif
11549 AssertRCReturn(rc, rc);
11550
11551 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
11552 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
11553
11554 RTGCUINT uErrorCode = 0;
11555 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
11556 uErrorCode |= X86_TRAP_PF_ID;
11557 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
11558 uErrorCode |= X86_TRAP_PF_RW;
11559 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
11560 uErrorCode |= X86_TRAP_PF_P;
11561
11562 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
11563
11564 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
11565 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
11566
11567 /* Handle the pagefault trap for the nested shadow table. */
11568 PVM pVM = pVCpu->CTX_SUFF(pVM);
11569 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
11570 TRPMResetTrap(pVCpu);
11571
11572 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
11573 if ( rc == VINF_SUCCESS
11574 || rc == VERR_PAGE_TABLE_NOT_PRESENT
11575 || rc == VERR_PAGE_NOT_PRESENT)
11576 {
11577 /* Successfully synced our nested page tables. */
11578 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
11579 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11580 | HM_CHANGED_GUEST_RSP
11581 | HM_CHANGED_GUEST_RFLAGS);
11582 return VINF_SUCCESS;
11583 }
11584
11585 Log4(("EPT return to ring-3 rc=%Rrc\n", rc));
11586 return rc;
11587}
11588
11589/** @} */
11590
11591/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11592/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
11593/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11594
11595/** @name VM-exit exception handlers.
11596 * @{
11597 */
11598
11599/**
11600 * VM-exit exception handler for #MF (Math Fault: floating point exception).
11601 */
11602static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11603{
11604 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11605 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
11606
11607 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11608 AssertRCReturn(rc, rc);
11609
11610 if (!(pMixedCtx->cr0 & X86_CR0_NE))
11611 {
11612 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
11613 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
11614
11615 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
11616 * provides VM-exit instruction length. If this causes problem later,
11617 * disassemble the instruction like it's done on AMD-V. */
11618 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11619 AssertRCReturn(rc2, rc2);
11620 return rc;
11621 }
11622
11623 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11624 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11625 return rc;
11626}
11627
11628
11629/**
11630 * VM-exit exception handler for #BP (Breakpoint exception).
11631 */
11632static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11633{
11634 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11635 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
11636
11637 /** @todo Try optimize this by not saving the entire guest state unless
11638 * really needed. */
11639 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11640 AssertRCReturn(rc, rc);
11641
11642 PVM pVM = pVCpu->CTX_SUFF(pVM);
11643 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11644 if (rc == VINF_EM_RAW_GUEST_TRAP)
11645 {
11646 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11647 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11648 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11649 AssertRCReturn(rc, rc);
11650
11651 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11652 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11653 }
11654
11655 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
11656 return rc;
11657}
11658
11659
11660/**
11661 * VM-exit exception handler for #DB (Debug exception).
11662 */
11663static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11664{
11665 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11666 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
11667 Log6(("XcptDB\n"));
11668
11669 /*
11670 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
11671 * for processing.
11672 */
11673 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11674 AssertRCReturn(rc, rc);
11675
11676 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
11677 uint64_t uDR6 = X86_DR6_INIT_VAL;
11678 uDR6 |= ( pVmxTransient->uExitQualification
11679 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
11680
11681 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
11682 if (rc == VINF_EM_RAW_GUEST_TRAP)
11683 {
11684 /*
11685 * The exception was for the guest. Update DR6, DR7.GD and
11686 * IA32_DEBUGCTL.LBR before forwarding it.
11687 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
11688 */
11689 VMMRZCallRing3Disable(pVCpu);
11690 HM_DISABLE_PREEMPT_IF_NEEDED();
11691
11692 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
11693 pMixedCtx->dr[6] |= uDR6;
11694 if (CPUMIsGuestDebugStateActive(pVCpu))
11695 ASMSetDR6(pMixedCtx->dr[6]);
11696
11697 HM_RESTORE_PREEMPT_IF_NEEDED();
11698 VMMRZCallRing3Enable(pVCpu);
11699
11700 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
11701 AssertRCReturn(rc, rc);
11702
11703 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
11704 pMixedCtx->dr[7] &= ~X86_DR7_GD;
11705
11706 /* Paranoia. */
11707 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
11708 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
11709
11710 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
11711 AssertRCReturn(rc, rc);
11712
11713 /*
11714 * Raise #DB in the guest.
11715 *
11716 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
11717 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
11718 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
11719 *
11720 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
11721 */
11722 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11723 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11724 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11725 AssertRCReturn(rc, rc);
11726 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11727 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11728 return VINF_SUCCESS;
11729 }
11730
11731 /*
11732 * Not a guest trap, must be a hypervisor related debug event then.
11733 * Update DR6 in case someone is interested in it.
11734 */
11735 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
11736 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
11737 CPUMSetHyperDR6(pVCpu, uDR6);
11738
11739 return rc;
11740}
11741
11742
11743/**
11744 * VM-exit exception handler for #NM (Device-not-available exception: floating
11745 * point exception).
11746 */
11747static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11748{
11749 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11750
11751 /* We require CR0 and EFER. EFER is always up-to-date. */
11752 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11753 AssertRCReturn(rc, rc);
11754
11755 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
11756 VMMRZCallRing3Disable(pVCpu);
11757 HM_DISABLE_PREEMPT_IF_NEEDED();
11758
11759 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
11760 if (pVmxTransient->fWasGuestFPUStateActive)
11761 {
11762 rc = VINF_EM_RAW_GUEST_TRAP;
11763 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
11764 }
11765 else
11766 {
11767#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11768 Assert(!pVmxTransient->fWasGuestFPUStateActive);
11769#endif
11770 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11771 Assert(rc == VINF_EM_RAW_GUEST_TRAP || (rc == VINF_SUCCESS && CPUMIsGuestFPUStateActive(pVCpu)));
11772 }
11773
11774 HM_RESTORE_PREEMPT_IF_NEEDED();
11775 VMMRZCallRing3Enable(pVCpu);
11776
11777 if (rc == VINF_SUCCESS)
11778 {
11779 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
11780 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
11781 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
11782 pVCpu->hm.s.fPreloadGuestFpu = true;
11783 }
11784 else
11785 {
11786 /* Forward #NM to the guest. */
11787 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
11788 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11789 AssertRCReturn(rc, rc);
11790 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11791 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
11792 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11793 }
11794
11795 return VINF_SUCCESS;
11796}
11797
11798
11799/**
11800 * VM-exit exception handler for #GP (General-protection exception).
11801 *
11802 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
11803 */
11804static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11805{
11806 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11807 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
11808
11809 int rc = VERR_INTERNAL_ERROR_5;
11810 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11811 {
11812#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11813 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
11814 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11815 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11816 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11817 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11818 AssertRCReturn(rc, rc);
11819 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
11820 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
11821 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11822 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11823 return rc;
11824#else
11825 /* We don't intercept #GP. */
11826 AssertMsgFailed(("Unexpected VM-exit caused by #GP exception\n"));
11827 NOREF(pVmxTransient);
11828 return VERR_VMX_UNEXPECTED_EXCEPTION;
11829#endif
11830 }
11831
11832 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11833 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
11834
11835 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
11836 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11837 AssertRCReturn(rc, rc);
11838
11839 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
11840 uint32_t cbOp = 0;
11841 PVM pVM = pVCpu->CTX_SUFF(pVM);
11842 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
11843 if (RT_SUCCESS(rc))
11844 {
11845 rc = VINF_SUCCESS;
11846 Assert(cbOp == pDis->cbInstr);
11847 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
11848 switch (pDis->pCurInstr->uOpcode)
11849 {
11850 case OP_CLI:
11851 {
11852 pMixedCtx->eflags.Bits.u1IF = 0;
11853 pMixedCtx->eflags.Bits.u1RF = 0;
11854 pMixedCtx->rip += pDis->cbInstr;
11855 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11856 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
11857 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
11858 break;
11859 }
11860
11861 case OP_STI:
11862 {
11863 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
11864 pMixedCtx->eflags.Bits.u1IF = 1;
11865 pMixedCtx->eflags.Bits.u1RF = 0;
11866 pMixedCtx->rip += pDis->cbInstr;
11867 if (!fOldIF)
11868 {
11869 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
11870 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
11871 }
11872 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11873 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
11874 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
11875 break;
11876 }
11877
11878 case OP_HLT:
11879 {
11880 rc = VINF_EM_HALT;
11881 pMixedCtx->rip += pDis->cbInstr;
11882 pMixedCtx->eflags.Bits.u1RF = 0;
11883 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11884 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11885 break;
11886 }
11887
11888 case OP_POPF:
11889 {
11890 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
11891 uint32_t cbParm;
11892 uint32_t uMask;
11893 bool fStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
11894 if (pDis->fPrefix & DISPREFIX_OPSIZE)
11895 {
11896 cbParm = 4;
11897 uMask = 0xffffffff;
11898 }
11899 else
11900 {
11901 cbParm = 2;
11902 uMask = 0xffff;
11903 }
11904
11905 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
11906 RTGCPTR GCPtrStack = 0;
11907 X86EFLAGS Eflags;
11908 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
11909 &GCPtrStack);
11910 if (RT_SUCCESS(rc))
11911 {
11912 Assert(sizeof(Eflags.u32) >= cbParm);
11913 Eflags.u32 = 0;
11914 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm);
11915 }
11916 if (RT_FAILURE(rc))
11917 {
11918 rc = VERR_EM_INTERPRETER;
11919 break;
11920 }
11921 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
11922 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
11923 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
11924 pMixedCtx->esp += cbParm;
11925 pMixedCtx->esp &= uMask;
11926 pMixedCtx->rip += pDis->cbInstr;
11927 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11928 | HM_CHANGED_GUEST_RSP
11929 | HM_CHANGED_GUEST_RFLAGS);
11930 /* Generate a pending-debug exception when stepping over POPF regardless of how POPF modifies EFLAGS.TF. */
11931 if (fStepping)
11932 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
11933
11934 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
11935 break;
11936 }
11937
11938 case OP_PUSHF:
11939 {
11940 uint32_t cbParm;
11941 uint32_t uMask;
11942 if (pDis->fPrefix & DISPREFIX_OPSIZE)
11943 {
11944 cbParm = 4;
11945 uMask = 0xffffffff;
11946 }
11947 else
11948 {
11949 cbParm = 2;
11950 uMask = 0xffff;
11951 }
11952
11953 /* Get the stack pointer & push the contents of eflags onto the stack. */
11954 RTGCPTR GCPtrStack = 0;
11955 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
11956 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
11957 if (RT_FAILURE(rc))
11958 {
11959 rc = VERR_EM_INTERPRETER;
11960 break;
11961 }
11962 X86EFLAGS Eflags = pMixedCtx->eflags;
11963 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
11964 Eflags.Bits.u1RF = 0;
11965 Eflags.Bits.u1VM = 0;
11966
11967 rc = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm);
11968 if (RT_FAILURE(rc))
11969 {
11970 rc = VERR_EM_INTERPRETER;
11971 break;
11972 }
11973 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
11974 pMixedCtx->esp -= cbParm;
11975 pMixedCtx->esp &= uMask;
11976 pMixedCtx->rip += pDis->cbInstr;
11977 pMixedCtx->eflags.Bits.u1RF = 0;
11978 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11979 | HM_CHANGED_GUEST_RSP
11980 | HM_CHANGED_GUEST_RFLAGS);
11981 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
11982 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
11983 break;
11984 }
11985
11986 case OP_IRET:
11987 {
11988 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
11989 * instruction reference. */
11990 RTGCPTR GCPtrStack = 0;
11991 uint32_t uMask = 0xffff;
11992 bool fStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
11993 uint16_t aIretFrame[3];
11994 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
11995 {
11996 rc = VERR_EM_INTERPRETER;
11997 break;
11998 }
11999 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
12000 &GCPtrStack);
12001 if (RT_SUCCESS(rc))
12002 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
12003 if (RT_FAILURE(rc))
12004 {
12005 rc = VERR_EM_INTERPRETER;
12006 break;
12007 }
12008 pMixedCtx->eip = 0;
12009 pMixedCtx->ip = aIretFrame[0];
12010 pMixedCtx->cs.Sel = aIretFrame[1];
12011 pMixedCtx->cs.ValidSel = aIretFrame[1];
12012 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
12013 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
12014 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
12015 pMixedCtx->sp += sizeof(aIretFrame);
12016 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12017 | HM_CHANGED_GUEST_SEGMENT_REGS
12018 | HM_CHANGED_GUEST_RSP
12019 | HM_CHANGED_GUEST_RFLAGS);
12020 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
12021 if (fStepping)
12022 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
12023 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
12024 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
12025 break;
12026 }
12027
12028 case OP_INT:
12029 {
12030 uint16_t uVector = pDis->Param1.uValue & 0xff;
12031 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
12032 /* INT clears EFLAGS.TF, we mustn't set any pending debug exceptions here. */
12033 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
12034 break;
12035 }
12036
12037 case OP_INTO:
12038 {
12039 if (pMixedCtx->eflags.Bits.u1OF)
12040 {
12041 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
12042 /* INTO clears EFLAGS.TF, we mustn't set any pending debug exceptions here. */
12043 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
12044 }
12045 else
12046 {
12047 pMixedCtx->eflags.Bits.u1RF = 0;
12048 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12049 }
12050 break;
12051 }
12052
12053 default:
12054 {
12055 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
12056 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
12057 EMCODETYPE_SUPERVISOR);
12058 rc = VBOXSTRICTRC_VAL(rc2);
12059 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
12060 /** @todo We have to set pending-debug exceptions here when the guest is
12061 * single-stepping depending on the instruction that was interpreted. */
12062 Log4(("#GP rc=%Rrc\n", rc));
12063 break;
12064 }
12065 }
12066 }
12067 else
12068 rc = VERR_EM_INTERPRETER;
12069
12070 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
12071 ("#GP Unexpected rc=%Rrc\n", rc));
12072 return rc;
12073}
12074
12075
12076#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
12077/**
12078 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
12079 * the exception reported in the VMX transient structure back into the VM.
12080 *
12081 * @remarks Requires uExitIntInfo in the VMX transient structure to be
12082 * up-to-date.
12083 */
12084static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12085{
12086 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
12087
12088 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
12089 hmR0VmxCheckExitDueToEventDelivery(). */
12090 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
12091 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12092 AssertRCReturn(rc, rc);
12093 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
12094
12095#ifdef DEBUG_ramshankar
12096 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12097 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
12098 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
12099#endif
12100
12101 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
12102 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
12103 return VINF_SUCCESS;
12104}
12105#endif
12106
12107
12108/**
12109 * VM-exit exception handler for #PF (Page-fault exception).
12110 */
12111static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12112{
12113 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
12114 PVM pVM = pVCpu->CTX_SUFF(pVM);
12115 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12116 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12117 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
12118 AssertRCReturn(rc, rc);
12119
12120#if defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) || defined(HMVMX_ALWAYS_TRAP_PF)
12121 if (pVM->hm.s.fNestedPaging)
12122 {
12123 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
12124 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
12125 {
12126 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
12127 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
12128 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
12129 }
12130 else
12131 {
12132 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
12133 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
12134 Log4(("Pending #DF due to vectoring #PF. NP\n"));
12135 }
12136 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
12137 return rc;
12138 }
12139#else
12140 Assert(!pVM->hm.s.fNestedPaging);
12141 NOREF(pVM);
12142#endif
12143
12144 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
12145 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
12146 if (pVmxTransient->fVectoringPF)
12147 {
12148 Assert(pVCpu->hm.s.Event.fPending);
12149 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12150 }
12151
12152 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12153 AssertRCReturn(rc, rc);
12154
12155 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
12156 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
12157
12158 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
12159 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
12160 (RTGCPTR)pVmxTransient->uExitQualification);
12161
12162 Log4(("#PF: rc=%Rrc\n", rc));
12163 if (rc == VINF_SUCCESS)
12164 {
12165 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
12166 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
12167 * memory? We don't update the whole state here... */
12168 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12169 | HM_CHANGED_GUEST_RSP
12170 | HM_CHANGED_GUEST_RFLAGS
12171 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12172 TRPMResetTrap(pVCpu);
12173 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
12174 return rc;
12175 }
12176
12177 if (rc == VINF_EM_RAW_GUEST_TRAP)
12178 {
12179 if (!pVmxTransient->fVectoringDoublePF)
12180 {
12181 /* It's a guest page fault and needs to be reflected to the guest. */
12182 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
12183 TRPMResetTrap(pVCpu);
12184 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
12185 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
12186 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
12187 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
12188 }
12189 else
12190 {
12191 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
12192 TRPMResetTrap(pVCpu);
12193 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
12194 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
12195 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
12196 }
12197
12198 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
12199 return VINF_SUCCESS;
12200 }
12201
12202 TRPMResetTrap(pVCpu);
12203 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
12204 return rc;
12205}
12206
12207/** @} */
12208
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette