VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 55815

Last change on this file since 55815 was 55815, checked in by vboxsync, 10 years ago

VMM/HMVMXR0: bounds checking for auto load/store MSR functions.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 513.1 KB
Line 
1/* $Id: HMVMXR0.cpp 55815 2015-05-12 09:22:50Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_HM
22#include <iprt/x86.h>
23#include <iprt/asm-amd64-x86.h>
24#include <iprt/thread.h>
25
26#include <VBox/vmm/pdmapi.h>
27#include <VBox/vmm/dbgf.h>
28#include <VBox/vmm/iem.h>
29#include <VBox/vmm/iom.h>
30#include <VBox/vmm/selm.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/gim.h>
33#ifdef VBOX_WITH_REM
34# include <VBox/vmm/rem.h>
35#endif
36#include "HMInternal.h"
37#include <VBox/vmm/vm.h>
38#include "HMVMXR0.h"
39#include "dtrace/VBoxVMM.h"
40
41#ifdef DEBUG_ramshankar
42# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
43# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
44# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
45# define HMVMX_ALWAYS_CHECK_GUEST_STATE
46# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
47# define HMVMX_ALWAYS_TRAP_PF
48# define HMVMX_ALWAYS_SWAP_FPU_STATE
49# define HMVMX_ALWAYS_FLUSH_TLB
50# define HMVMX_ALWAYS_SWAP_EFER
51#endif
52
53
54/*******************************************************************************
55* Defined Constants And Macros *
56*******************************************************************************/
57#if defined(RT_ARCH_AMD64)
58# define HMVMX_IS_64BIT_HOST_MODE() (true)
59typedef RTHCUINTREG HMVMXHCUINTREG;
60#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
61extern "C" uint32_t g_fVMXIs64bitHost;
62# define HMVMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
63typedef uint64_t HMVMXHCUINTREG;
64#else
65# define HMVMX_IS_64BIT_HOST_MODE() (false)
66typedef RTHCUINTREG HMVMXHCUINTREG;
67#endif
68
69/** Use the function table. */
70#define HMVMX_USE_FUNCTION_TABLE
71
72/** Determine which tagged-TLB flush handler to use. */
73#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
74#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
75#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
76#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
77
78/** @name Updated-guest-state flags.
79 * @{ */
80#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
81#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
82#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
83#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
84#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
85#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
86#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
87#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
88#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
89#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
90#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
91#define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
92#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
93#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
94#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
95#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
96#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
97#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
98#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
99#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
100#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
101 | HMVMX_UPDATED_GUEST_RSP \
102 | HMVMX_UPDATED_GUEST_RFLAGS \
103 | HMVMX_UPDATED_GUEST_CR0 \
104 | HMVMX_UPDATED_GUEST_CR3 \
105 | HMVMX_UPDATED_GUEST_CR4 \
106 | HMVMX_UPDATED_GUEST_GDTR \
107 | HMVMX_UPDATED_GUEST_IDTR \
108 | HMVMX_UPDATED_GUEST_LDTR \
109 | HMVMX_UPDATED_GUEST_TR \
110 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
111 | HMVMX_UPDATED_GUEST_DEBUG \
112 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
113 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
114 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
115 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
116 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
117 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
118 | HMVMX_UPDATED_GUEST_INTR_STATE \
119 | HMVMX_UPDATED_GUEST_APIC_STATE)
120/** @} */
121
122/** @name
123 * Flags to skip redundant reads of some common VMCS fields that are not part of
124 * the guest-CPU state but are in the transient structure.
125 */
126#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
127#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
128#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
129#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
130#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
131#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
132#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
133/** @} */
134
135/** @name
136 * States of the VMCS.
137 *
138 * This does not reflect all possible VMCS states but currently only those
139 * needed for maintaining the VMCS consistently even when thread-context hooks
140 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
141 */
142#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
143#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
144#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
145/** @} */
146
147/**
148 * Exception bitmap mask for real-mode guests (real-on-v86).
149 *
150 * We need to intercept all exceptions manually except:
151 * - #NM, #MF handled in hmR0VmxLoadSharedCR0().
152 * - #DB handled in hmR0VmxLoadSharedDebugState().
153 * - #PF need not be intercepted even in real-mode if we have Nested Paging
154 * support.
155 */
156#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
157 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
158 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
159 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
160 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
161 /* RT_BIT(X86_XCPT_MF) */ | RT_BIT(X86_XCPT_AC) | RT_BIT(X86_XCPT_MC) \
162 | RT_BIT(X86_XCPT_XF))
163
164/**
165 * Exception bitmap mask for all contributory exceptions.
166 *
167 * Page fault is deliberately excluded here as it's conditional as to whether
168 * it's contributory or benign. Page faults are handled separately.
169 */
170#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
171 | RT_BIT(X86_XCPT_DE))
172
173/** Maximum VM-instruction error number. */
174#define HMVMX_INSTR_ERROR_MAX 28
175
176/** Profiling macro. */
177#ifdef HM_PROFILE_EXIT_DISPATCH
178# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
179# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
180#else
181# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
182# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
183#endif
184
185/** Assert that preemption is disabled or covered by thread-context hooks. */
186#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
187 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
188
189/** Assert that we haven't migrated CPUs when thread-context hooks are not
190 * used. */
191#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHooksAreRegistered(pVCpu) \
192 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
193 ("Illegal migration! Entered on CPU %u Current %u\n", \
194 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
195
196/** Helper macro for VM-exit handlers called unexpectedly. */
197#define HMVMX_RETURN_UNEXPECTED_EXIT() \
198 do { \
199 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
200 return VERR_VMX_UNEXPECTED_EXIT; \
201 } while (0)
202
203
204/*******************************************************************************
205* Structures and Typedefs *
206*******************************************************************************/
207/**
208 * VMX transient state.
209 *
210 * A state structure for holding miscellaneous information across
211 * VMX non-root operation and restored after the transition.
212 */
213typedef struct VMXTRANSIENT
214{
215 /** The host's rflags/eflags. */
216 RTCCUINTREG uEflags;
217#if HC_ARCH_BITS == 32
218 uint32_t u32Alignment0;
219#endif
220 /** The guest's TPR value used for TPR shadowing. */
221 uint8_t u8GuestTpr;
222 /** Alignment. */
223 uint8_t abAlignment0[7];
224
225 /** The basic VM-exit reason. */
226 uint16_t uExitReason;
227 /** Alignment. */
228 uint16_t u16Alignment0;
229 /** The VM-exit interruption error code. */
230 uint32_t uExitIntErrorCode;
231 /** The VM-exit exit code qualification. */
232 uint64_t uExitQualification;
233
234 /** The VM-exit interruption-information field. */
235 uint32_t uExitIntInfo;
236 /** The VM-exit instruction-length field. */
237 uint32_t cbInstr;
238 /** The VM-exit instruction-information field. */
239 union
240 {
241 /** Plain unsigned int representation. */
242 uint32_t u;
243 /** INS and OUTS information. */
244 struct
245 {
246 uint32_t u6Reserved0 : 7;
247 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
248 uint32_t u3AddrSize : 3;
249 uint32_t u5Reserved1 : 5;
250 /** The segment register (X86_SREG_XXX). */
251 uint32_t iSegReg : 3;
252 uint32_t uReserved2 : 14;
253 } StrIo;
254 } ExitInstrInfo;
255 /** Whether the VM-entry failed or not. */
256 bool fVMEntryFailed;
257 /** Alignment. */
258 uint8_t abAlignment1[3];
259
260 /** The VM-entry interruption-information field. */
261 uint32_t uEntryIntInfo;
262 /** The VM-entry exception error code field. */
263 uint32_t uEntryXcptErrorCode;
264 /** The VM-entry instruction length field. */
265 uint32_t cbEntryInstr;
266
267 /** IDT-vectoring information field. */
268 uint32_t uIdtVectoringInfo;
269 /** IDT-vectoring error code. */
270 uint32_t uIdtVectoringErrorCode;
271
272 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
273 uint32_t fVmcsFieldsRead;
274
275 /** Whether the guest FPU was active at the time of VM-exit. */
276 bool fWasGuestFPUStateActive;
277 /** Whether the guest debug state was active at the time of VM-exit. */
278 bool fWasGuestDebugStateActive;
279 /** Whether the hyper debug state was active at the time of VM-exit. */
280 bool fWasHyperDebugStateActive;
281 /** Whether TSC-offsetting should be setup before VM-entry. */
282 bool fUpdateTscOffsettingAndPreemptTimer;
283 /** Whether the VM-exit was caused by a page-fault during delivery of a
284 * contributory exception or a page-fault. */
285 bool fVectoringDoublePF;
286 /** Whether the VM-exit was caused by a page-fault during delivery of an
287 * external interrupt or NMI. */
288 bool fVectoringPF;
289} VMXTRANSIENT;
290AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
291AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
292AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
293AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
294AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
295/** Pointer to VMX transient state. */
296typedef VMXTRANSIENT *PVMXTRANSIENT;
297
298
299/**
300 * MSR-bitmap read permissions.
301 */
302typedef enum VMXMSREXITREAD
303{
304 /** Reading this MSR causes a VM-exit. */
305 VMXMSREXIT_INTERCEPT_READ = 0xb,
306 /** Reading this MSR does not cause a VM-exit. */
307 VMXMSREXIT_PASSTHRU_READ
308} VMXMSREXITREAD;
309/** Pointer to MSR-bitmap read permissions. */
310typedef VMXMSREXITREAD* PVMXMSREXITREAD;
311
312/**
313 * MSR-bitmap write permissions.
314 */
315typedef enum VMXMSREXITWRITE
316{
317 /** Writing to this MSR causes a VM-exit. */
318 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
319 /** Writing to this MSR does not cause a VM-exit. */
320 VMXMSREXIT_PASSTHRU_WRITE
321} VMXMSREXITWRITE;
322/** Pointer to MSR-bitmap write permissions. */
323typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
324
325
326/**
327 * VMX VM-exit handler.
328 *
329 * @returns VBox status code.
330 * @param pVCpu Pointer to the VMCPU.
331 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
332 * out-of-sync. Make sure to update the required
333 * fields before using them.
334 * @param pVmxTransient Pointer to the VMX-transient structure.
335 */
336#ifndef HMVMX_USE_FUNCTION_TABLE
337typedef int FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
338#else
339typedef DECLCALLBACK(int) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
340/** Pointer to VM-exit handler. */
341typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
342#endif
343
344
345/*******************************************************************************
346* Internal Functions *
347*******************************************************************************/
348static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
349static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
350static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
351 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
352 bool fStepping, uint32_t *puIntState);
353#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
354static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
355#endif
356#ifndef HMVMX_USE_FUNCTION_TABLE
357DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
358# define HMVMX_EXIT_DECL static int
359#else
360# define HMVMX_EXIT_DECL static DECLCALLBACK(int)
361#endif
362DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitStep(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
363 uint32_t uExitReason, uint16_t uCsStart, uint64_t uRipStart);
364
365/** @name VM-exit handlers.
366 * @{
367 */
368static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
369static FNVMXEXITHANDLER hmR0VmxExitExtInt;
370static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
371static FNVMXEXITHANDLER hmR0VmxExitInitSignal;
372static FNVMXEXITHANDLER hmR0VmxExitSipi;
373static FNVMXEXITHANDLER hmR0VmxExitIoSmi;
374static FNVMXEXITHANDLER hmR0VmxExitSmi;
375static FNVMXEXITHANDLER hmR0VmxExitIntWindow;
376static FNVMXEXITHANDLER hmR0VmxExitNmiWindow;
377static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
378static FNVMXEXITHANDLER hmR0VmxExitCpuid;
379static FNVMXEXITHANDLER hmR0VmxExitGetsec;
380static FNVMXEXITHANDLER hmR0VmxExitHlt;
381static FNVMXEXITHANDLER hmR0VmxExitInvd;
382static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
383static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
384static FNVMXEXITHANDLER hmR0VmxExitVmcall;
385static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
386static FNVMXEXITHANDLER hmR0VmxExitRsm;
387static FNVMXEXITHANDLER hmR0VmxExitSetPendingXcptUD;
388static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
389static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
390static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
391static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
392static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
393static FNVMXEXITHANDLER hmR0VmxExitErrInvalidGuestState;
394static FNVMXEXITHANDLER hmR0VmxExitErrMsrLoad;
395static FNVMXEXITHANDLER hmR0VmxExitErrUndefined;
396static FNVMXEXITHANDLER hmR0VmxExitMwait;
397static FNVMXEXITHANDLER hmR0VmxExitMtf;
398static FNVMXEXITHANDLER hmR0VmxExitMonitor;
399static FNVMXEXITHANDLER hmR0VmxExitPause;
400static FNVMXEXITHANDLER hmR0VmxExitErrMachineCheck;
401static FNVMXEXITHANDLER hmR0VmxExitTprBelowThreshold;
402static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
403static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
404static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
405static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
406static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
407static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
408static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
409static FNVMXEXITHANDLER hmR0VmxExitWbinvd;
410static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
411static FNVMXEXITHANDLER hmR0VmxExitRdrand;
412static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
413/** @} */
414
415static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
416static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
417static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
418static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
419static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
420static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
421#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
422static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
423#endif
424static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
425
426/*******************************************************************************
427* Global Variables *
428*******************************************************************************/
429#ifdef HMVMX_USE_FUNCTION_TABLE
430
431/**
432 * VMX_EXIT dispatch table.
433 */
434static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
435{
436 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
437 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
438 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
439 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
440 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
441 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
442 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
443 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
444 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
445 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
446 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
447 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
448 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
449 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
450 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
451 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
452 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
453 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
454 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
455 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
456 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
457 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
458 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
459 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
460 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
461 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
462 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
463 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
464 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
465 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
466 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
467 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
468 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
469 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
470 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
471 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
472 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
473 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
474 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
475 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
476 /* 40 UNDEFINED */ hmR0VmxExitPause,
477 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
478 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
479 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
480 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
481 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
482 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
483 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
484 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
485 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
486 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
487 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
488 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
489 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
490 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
491 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
492 /* 56 UNDEFINED */ hmR0VmxExitErrUndefined,
493 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
494 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
495 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
496 /* 60 VMX_EXIT_RESERVED_60 */ hmR0VmxExitErrUndefined,
497 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
498 /* 62 VMX_EXIT_RESERVED_62 */ hmR0VmxExitErrUndefined,
499 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
500 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
501};
502#endif /* HMVMX_USE_FUNCTION_TABLE */
503
504#ifdef VBOX_STRICT
505static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
506{
507 /* 0 */ "(Not Used)",
508 /* 1 */ "VMCALL executed in VMX root operation.",
509 /* 2 */ "VMCLEAR with invalid physical address.",
510 /* 3 */ "VMCLEAR with VMXON pointer.",
511 /* 4 */ "VMLAUNCH with non-clear VMCS.",
512 /* 5 */ "VMRESUME with non-launched VMCS.",
513 /* 6 */ "VMRESUME after VMXOFF",
514 /* 7 */ "VM-entry with invalid control fields.",
515 /* 8 */ "VM-entry with invalid host state fields.",
516 /* 9 */ "VMPTRLD with invalid physical address.",
517 /* 10 */ "VMPTRLD with VMXON pointer.",
518 /* 11 */ "VMPTRLD with incorrect revision identifier.",
519 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
520 /* 13 */ "VMWRITE to read-only VMCS component.",
521 /* 14 */ "(Not Used)",
522 /* 15 */ "VMXON executed in VMX root operation.",
523 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
524 /* 17 */ "VM-entry with non-launched executing VMCS.",
525 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
526 /* 19 */ "VMCALL with non-clear VMCS.",
527 /* 20 */ "VMCALL with invalid VM-exit control fields.",
528 /* 21 */ "(Not Used)",
529 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
530 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
531 /* 24 */ "VMCALL with invalid SMM-monitor features.",
532 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
533 /* 26 */ "VM-entry with events blocked by MOV SS.",
534 /* 27 */ "(Not Used)",
535 /* 28 */ "Invalid operand to INVEPT/INVVPID."
536};
537#endif /* VBOX_STRICT */
538
539
540
541/**
542 * Updates the VM's last error record. If there was a VMX instruction error,
543 * reads the error data from the VMCS and updates VCPU's last error record as
544 * well.
545 *
546 * @param pVM Pointer to the VM.
547 * @param pVCpu Pointer to the VMCPU (can be NULL if @a rc is not
548 * VERR_VMX_UNABLE_TO_START_VM or
549 * VERR_VMX_INVALID_VMCS_FIELD).
550 * @param rc The error code.
551 */
552static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
553{
554 AssertPtr(pVM);
555 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
556 || rc == VERR_VMX_UNABLE_TO_START_VM)
557 {
558 AssertPtrReturnVoid(pVCpu);
559 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
560 }
561 pVM->hm.s.lLastError = rc;
562}
563
564
565/**
566 * Reads the VM-entry interruption-information field from the VMCS into the VMX
567 * transient structure.
568 *
569 * @returns VBox status code.
570 * @param pVmxTransient Pointer to the VMX transient structure.
571 *
572 * @remarks No-long-jump zone!!!
573 */
574DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
575{
576 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
577 AssertRCReturn(rc, rc);
578 return VINF_SUCCESS;
579}
580
581
582/**
583 * Reads the VM-entry exception error code field from the VMCS into
584 * the VMX transient structure.
585 *
586 * @returns VBox status code.
587 * @param pVmxTransient Pointer to the VMX transient structure.
588 *
589 * @remarks No-long-jump zone!!!
590 */
591DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
592{
593 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
594 AssertRCReturn(rc, rc);
595 return VINF_SUCCESS;
596}
597
598
599/**
600 * Reads the VM-entry exception error code field from the VMCS into
601 * the VMX transient structure.
602 *
603 * @returns VBox status code.
604 * @param pVmxTransient Pointer to the VMX transient structure.
605 *
606 * @remarks No-long-jump zone!!!
607 */
608DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
609{
610 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
611 AssertRCReturn(rc, rc);
612 return VINF_SUCCESS;
613}
614
615
616/**
617 * Reads the VM-exit interruption-information field from the VMCS into the VMX
618 * transient structure.
619 *
620 * @returns VBox status code.
621 * @param pVmxTransient Pointer to the VMX transient structure.
622 */
623DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
624{
625 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
626 {
627 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
628 AssertRCReturn(rc, rc);
629 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
630 }
631 return VINF_SUCCESS;
632}
633
634
635/**
636 * Reads the VM-exit interruption error code from the VMCS into the VMX
637 * transient structure.
638 *
639 * @returns VBox status code.
640 * @param pVmxTransient Pointer to the VMX transient structure.
641 */
642DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
643{
644 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
645 {
646 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
647 AssertRCReturn(rc, rc);
648 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
649 }
650 return VINF_SUCCESS;
651}
652
653
654/**
655 * Reads the VM-exit instruction length field from the VMCS into the VMX
656 * transient structure.
657 *
658 * @returns VBox status code.
659 * @param pVCpu Pointer to the VMCPU.
660 * @param pVmxTransient Pointer to the VMX transient structure.
661 */
662DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
663{
664 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
665 {
666 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
667 AssertRCReturn(rc, rc);
668 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
669 }
670 return VINF_SUCCESS;
671}
672
673
674/**
675 * Reads the VM-exit instruction-information field from the VMCS into
676 * the VMX transient structure.
677 *
678 * @returns VBox status code.
679 * @param pVmxTransient Pointer to the VMX transient structure.
680 */
681DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
682{
683 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
684 {
685 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
686 AssertRCReturn(rc, rc);
687 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
688 }
689 return VINF_SUCCESS;
690}
691
692
693/**
694 * Reads the exit code qualification from the VMCS into the VMX transient
695 * structure.
696 *
697 * @returns VBox status code.
698 * @param pVCpu Pointer to the VMCPU (required for the VMCS cache
699 * case).
700 * @param pVmxTransient Pointer to the VMX transient structure.
701 */
702DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
703{
704 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
705 {
706 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
707 AssertRCReturn(rc, rc);
708 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
709 }
710 return VINF_SUCCESS;
711}
712
713
714/**
715 * Reads the IDT-vectoring information field from the VMCS into the VMX
716 * transient structure.
717 *
718 * @returns VBox status code.
719 * @param pVmxTransient Pointer to the VMX transient structure.
720 *
721 * @remarks No-long-jump zone!!!
722 */
723DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
724{
725 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
726 {
727 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
728 AssertRCReturn(rc, rc);
729 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
730 }
731 return VINF_SUCCESS;
732}
733
734
735/**
736 * Reads the IDT-vectoring error code from the VMCS into the VMX
737 * transient structure.
738 *
739 * @returns VBox status code.
740 * @param pVmxTransient Pointer to the VMX transient structure.
741 */
742DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
743{
744 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
745 {
746 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
747 AssertRCReturn(rc, rc);
748 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
749 }
750 return VINF_SUCCESS;
751}
752
753
754/**
755 * Enters VMX root mode operation on the current CPU.
756 *
757 * @returns VBox status code.
758 * @param pVM Pointer to the VM (optional, can be NULL, after
759 * a resume).
760 * @param HCPhysCpuPage Physical address of the VMXON region.
761 * @param pvCpuPage Pointer to the VMXON region.
762 */
763static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
764{
765 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
766 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
767 Assert(pvCpuPage);
768 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
769
770 if (pVM)
771 {
772 /* Write the VMCS revision dword to the VMXON region. */
773 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
774 }
775
776 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
777 RTCCUINTREG uEflags = ASMIntDisableFlags();
778
779 /* Enable the VMX bit in CR4 if necessary. */
780 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, ~0);
781
782 /* Enter VMX root mode. */
783 int rc = VMXEnable(HCPhysCpuPage);
784 if (RT_FAILURE(rc))
785 {
786 if (!(uOldCr4 & X86_CR4_VMXE))
787 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
788
789 if (pVM)
790 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
791 }
792
793 /* Restore interrupts. */
794 ASMSetFlags(uEflags);
795 return rc;
796}
797
798
799/**
800 * Exits VMX root mode operation on the current CPU.
801 *
802 * @returns VBox status code.
803 */
804static int hmR0VmxLeaveRootMode(void)
805{
806 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
807
808 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
809 RTCCUINTREG uEflags = ASMIntDisableFlags();
810
811 /* If we're for some reason not in VMX root mode, then don't leave it. */
812 RTCCUINTREG uHostCR4 = ASMGetCR4();
813
814 int rc;
815 if (uHostCR4 & X86_CR4_VMXE)
816 {
817 /* Exit VMX root mode and clear the VMX bit in CR4. */
818 VMXDisable();
819 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
820 rc = VINF_SUCCESS;
821 }
822 else
823 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
824
825 /* Restore interrupts. */
826 ASMSetFlags(uEflags);
827 return rc;
828}
829
830
831/**
832 * Allocates and maps one physically contiguous page. The allocated page is
833 * zero'd out. (Used by various VT-x structures).
834 *
835 * @returns IPRT status code.
836 * @param pMemObj Pointer to the ring-0 memory object.
837 * @param ppVirt Where to store the virtual address of the
838 * allocation.
839 * @param pPhys Where to store the physical address of the
840 * allocation.
841 */
842DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
843{
844 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
845 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
846 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
847
848 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
849 if (RT_FAILURE(rc))
850 return rc;
851 *ppVirt = RTR0MemObjAddress(*pMemObj);
852 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
853 ASMMemZero32(*ppVirt, PAGE_SIZE);
854 return VINF_SUCCESS;
855}
856
857
858/**
859 * Frees and unmaps an allocated physical page.
860 *
861 * @param pMemObj Pointer to the ring-0 memory object.
862 * @param ppVirt Where to re-initialize the virtual address of
863 * allocation as 0.
864 * @param pHCPhys Where to re-initialize the physical address of the
865 * allocation as 0.
866 */
867DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
868{
869 AssertPtr(pMemObj);
870 AssertPtr(ppVirt);
871 AssertPtr(pHCPhys);
872 if (*pMemObj != NIL_RTR0MEMOBJ)
873 {
874 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
875 AssertRC(rc);
876 *pMemObj = NIL_RTR0MEMOBJ;
877 *ppVirt = 0;
878 *pHCPhys = 0;
879 }
880}
881
882
883/**
884 * Worker function to free VT-x related structures.
885 *
886 * @returns IPRT status code.
887 * @param pVM Pointer to the VM.
888 */
889static void hmR0VmxStructsFree(PVM pVM)
890{
891 for (VMCPUID i = 0; i < pVM->cCpus; i++)
892 {
893 PVMCPU pVCpu = &pVM->aCpus[i];
894 AssertPtr(pVCpu);
895
896 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
897 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
898
899 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
900 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
901
902 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
903 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
904 }
905
906 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
907#ifdef VBOX_WITH_CRASHDUMP_MAGIC
908 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
909#endif
910}
911
912
913/**
914 * Worker function to allocate VT-x related VM structures.
915 *
916 * @returns IPRT status code.
917 * @param pVM Pointer to the VM.
918 */
919static int hmR0VmxStructsAlloc(PVM pVM)
920{
921 /*
922 * Initialize members up-front so we can cleanup properly on allocation failure.
923 */
924#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
925 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
926 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
927 pVM->hm.s.vmx.HCPhys##a_Name = 0;
928
929#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
930 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
931 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
932 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
933
934#ifdef VBOX_WITH_CRASHDUMP_MAGIC
935 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
936#endif
937 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
938
939 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
940 for (VMCPUID i = 0; i < pVM->cCpus; i++)
941 {
942 PVMCPU pVCpu = &pVM->aCpus[i];
943 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
944 VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
945 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
946 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
947 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
948 }
949#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
950#undef VMXLOCAL_INIT_VM_MEMOBJ
951
952 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
953 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
954 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
955 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
956
957 /*
958 * Allocate all the VT-x structures.
959 */
960 int rc = VINF_SUCCESS;
961#ifdef VBOX_WITH_CRASHDUMP_MAGIC
962 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
963 if (RT_FAILURE(rc))
964 goto cleanup;
965 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
966 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
967#endif
968
969 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
970 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
971 {
972 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
973 &pVM->hm.s.vmx.HCPhysApicAccess);
974 if (RT_FAILURE(rc))
975 goto cleanup;
976 }
977
978 /*
979 * Initialize per-VCPU VT-x structures.
980 */
981 for (VMCPUID i = 0; i < pVM->cCpus; i++)
982 {
983 PVMCPU pVCpu = &pVM->aCpus[i];
984 AssertPtr(pVCpu);
985
986 /* Allocate the VM control structure (VMCS). */
987 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
988 if (RT_FAILURE(rc))
989 goto cleanup;
990
991 /* Allocate the Virtual-APIC page for transparent TPR accesses. */
992 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
993 {
994 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
995 &pVCpu->hm.s.vmx.HCPhysVirtApic);
996 if (RT_FAILURE(rc))
997 goto cleanup;
998 }
999
1000 /*
1001 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1002 * transparent accesses of specific MSRs.
1003 *
1004 * If the condition for enabling MSR bitmaps changes here, don't forget to
1005 * update HMIsMsrBitmapsAvailable().
1006 */
1007 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1008 {
1009 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1010 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1011 if (RT_FAILURE(rc))
1012 goto cleanup;
1013 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1014 }
1015
1016 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1017 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1018 if (RT_FAILURE(rc))
1019 goto cleanup;
1020
1021 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1022 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1023 if (RT_FAILURE(rc))
1024 goto cleanup;
1025 }
1026
1027 return VINF_SUCCESS;
1028
1029cleanup:
1030 hmR0VmxStructsFree(pVM);
1031 return rc;
1032}
1033
1034
1035/**
1036 * Does global VT-x initialization (called during module initialization).
1037 *
1038 * @returns VBox status code.
1039 */
1040VMMR0DECL(int) VMXR0GlobalInit(void)
1041{
1042#ifdef HMVMX_USE_FUNCTION_TABLE
1043 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1044# ifdef VBOX_STRICT
1045 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1046 Assert(g_apfnVMExitHandlers[i]);
1047# endif
1048#endif
1049 return VINF_SUCCESS;
1050}
1051
1052
1053/**
1054 * Does global VT-x termination (called during module termination).
1055 */
1056VMMR0DECL(void) VMXR0GlobalTerm()
1057{
1058 /* Nothing to do currently. */
1059}
1060
1061
1062/**
1063 * Sets up and activates VT-x on the current CPU.
1064 *
1065 * @returns VBox status code.
1066 * @param pCpu Pointer to the global CPU info struct.
1067 * @param pVM Pointer to the VM (can be NULL after a host resume
1068 * operation).
1069 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1070 * fEnabledByHost is true).
1071 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1072 * @a fEnabledByHost is true).
1073 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1074 * enable VT-x on the host.
1075 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1076 */
1077VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1078 void *pvMsrs)
1079{
1080 Assert(pCpu);
1081 Assert(pvMsrs);
1082 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1083
1084 /* Enable VT-x if it's not already enabled by the host. */
1085 if (!fEnabledByHost)
1086 {
1087 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1088 if (RT_FAILURE(rc))
1089 return rc;
1090 }
1091
1092 /*
1093 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1094 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1095 */
1096 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1097 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1098 {
1099 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1100 pCpu->fFlushAsidBeforeUse = false;
1101 }
1102 else
1103 pCpu->fFlushAsidBeforeUse = true;
1104
1105 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1106 ++pCpu->cTlbFlushes;
1107
1108 return VINF_SUCCESS;
1109}
1110
1111
1112/**
1113 * Deactivates VT-x on the current CPU.
1114 *
1115 * @returns VBox status code.
1116 * @param pCpu Pointer to the global CPU info struct.
1117 * @param pvCpuPage Pointer to the VMXON region.
1118 * @param HCPhysCpuPage Physical address of the VMXON region.
1119 *
1120 * @remarks This function should never be called when SUPR0EnableVTx() or
1121 * similar was used to enable VT-x on the host.
1122 */
1123VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1124{
1125 NOREF(pCpu);
1126 NOREF(pvCpuPage);
1127 NOREF(HCPhysCpuPage);
1128
1129 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1130 return hmR0VmxLeaveRootMode();
1131}
1132
1133
1134/**
1135 * Sets the permission bits for the specified MSR in the MSR bitmap.
1136 *
1137 * @param pVCpu Pointer to the VMCPU.
1138 * @param uMSR The MSR value.
1139 * @param enmRead Whether reading this MSR causes a VM-exit.
1140 * @param enmWrite Whether writing this MSR causes a VM-exit.
1141 */
1142static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1143{
1144 int32_t iBit;
1145 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1146
1147 /*
1148 * Layout:
1149 * 0x000 - 0x3ff - Low MSR read bits
1150 * 0x400 - 0x7ff - High MSR read bits
1151 * 0x800 - 0xbff - Low MSR write bits
1152 * 0xc00 - 0xfff - High MSR write bits
1153 */
1154 if (uMsr <= 0x00001FFF)
1155 iBit = uMsr;
1156 else if ( uMsr >= 0xC0000000
1157 && uMsr <= 0xC0001FFF)
1158 {
1159 iBit = (uMsr - 0xC0000000);
1160 pbMsrBitmap += 0x400;
1161 }
1162 else
1163 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1164
1165 Assert(iBit <= 0x1fff);
1166 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1167 ASMBitSet(pbMsrBitmap, iBit);
1168 else
1169 ASMBitClear(pbMsrBitmap, iBit);
1170
1171 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1172 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1173 else
1174 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1175}
1176
1177
1178#ifdef VBOX_STRICT
1179/**
1180 * Gets the permission bits for the specified MSR in the MSR bitmap.
1181 *
1182 * @returns VBox status code.
1183 * @retval VINF_SUCCESS if the specified MSR is found.
1184 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1185 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1186 *
1187 * @param pVCpu Pointer to the VMCPU.
1188 * @param uMsr The MSR.
1189 * @param penmRead Where to store the read permissions.
1190 * @param penmWrite Where to store the write permissions.
1191 */
1192static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1193{
1194 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1195 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1196 int32_t iBit;
1197 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1198
1199 /* See hmR0VmxSetMsrPermission() for the layout. */
1200 if (uMsr <= 0x00001FFF)
1201 iBit = uMsr;
1202 else if ( uMsr >= 0xC0000000
1203 && uMsr <= 0xC0001FFF)
1204 {
1205 iBit = (uMsr - 0xC0000000);
1206 pbMsrBitmap += 0x400;
1207 }
1208 else
1209 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1210
1211 Assert(iBit <= 0x1fff);
1212 if (ASMBitTest(pbMsrBitmap, iBit))
1213 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1214 else
1215 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1216
1217 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1218 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1219 else
1220 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1221 return VINF_SUCCESS;
1222}
1223#endif /* VBOX_STRICT */
1224
1225
1226/**
1227 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1228 * area.
1229 *
1230 * @returns VBox status code.
1231 * @param pVCpu Pointer to the VMCPU.
1232 * @param cMsrs The number of MSRs.
1233 */
1234DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1235{
1236 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1237 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1238 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1239 {
1240 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1241 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1242 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1243 }
1244
1245 /* Update number of guest MSRs to load/store across the world-switch. */
1246 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRCReturn(rc, rc);
1247 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRCReturn(rc, rc);
1248
1249 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1250 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRCReturn(rc, rc);
1251
1252 /* Update the VCPU's copy of the MSR count. */
1253 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1254
1255 return VINF_SUCCESS;
1256}
1257
1258
1259/**
1260 * Adds a new (or updates the value of an existing) guest/host MSR
1261 * pair to be swapped during the world-switch as part of the
1262 * auto-load/store MSR area in the VMCS.
1263 *
1264 * @returns VBox status code.
1265 * @param pVCpu Pointer to the VMCPU.
1266 * @param uMsr The MSR.
1267 * @param uGuestMsr Value of the guest MSR.
1268 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1269 * necessary.
1270 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1271 * its value was updated. Optional, can be NULL.
1272 */
1273static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1274 bool *pfAddedAndUpdated)
1275{
1276 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1277 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1278 uint32_t i;
1279 for (i = 0; i < cMsrs; i++)
1280 {
1281 if (pGuestMsr->u32Msr == uMsr)
1282 break;
1283 pGuestMsr++;
1284 }
1285
1286 bool fAdded = false;
1287 if (i == cMsrs)
1288 {
1289 ++cMsrs;
1290 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1291 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1292
1293 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1294 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1295 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1296
1297 fAdded = true;
1298 }
1299
1300 /* Update the MSR values in the auto-load/store MSR area. */
1301 pGuestMsr->u32Msr = uMsr;
1302 pGuestMsr->u64Value = uGuestMsrValue;
1303
1304 /* Create/update the MSR slot in the host MSR area. */
1305 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1306 pHostMsr += i;
1307 pHostMsr->u32Msr = uMsr;
1308
1309 /*
1310 * Update the host MSR only when requested by the caller AND when we're
1311 * adding it to the auto-load/store area. Otherwise, it would have been
1312 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1313 */
1314 bool fUpdatedMsrValue = false;
1315 if ( fAdded
1316 && fUpdateHostMsr)
1317 {
1318 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1319 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1320 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1321 fUpdatedMsrValue = true;
1322 }
1323
1324 if (pfAddedAndUpdated)
1325 *pfAddedAndUpdated = fUpdatedMsrValue;
1326 return VINF_SUCCESS;
1327}
1328
1329
1330/**
1331 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1332 * auto-load/store MSR area in the VMCS.
1333 *
1334 * @returns VBox status code.
1335 * @param pVCpu Pointer to the VMCPU.
1336 * @param uMsr The MSR.
1337 */
1338static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1339{
1340 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1341 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1342 for (uint32_t i = 0; i < cMsrs; i++)
1343 {
1344 /* Find the MSR. */
1345 if (pGuestMsr->u32Msr == uMsr)
1346 {
1347 /* If it's the last MSR, simply reduce the count. */
1348 if (i == cMsrs - 1)
1349 {
1350 --cMsrs;
1351 break;
1352 }
1353
1354 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1355 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1356 pLastGuestMsr += cMsrs - 1;
1357 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1358 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1359
1360 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1361 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1362 pLastHostMsr += cMsrs - 1;
1363 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1364 pHostMsr->u64Value = pLastHostMsr->u64Value;
1365 --cMsrs;
1366 break;
1367 }
1368 pGuestMsr++;
1369 }
1370
1371 /* Update the VMCS if the count changed (meaning the MSR was found). */
1372 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1373 {
1374 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1375 AssertRCReturn(rc, rc);
1376
1377 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1378 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1379 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1380
1381 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1382 return VINF_SUCCESS;
1383 }
1384
1385 return VERR_NOT_FOUND;
1386}
1387
1388
1389/**
1390 * Checks if the specified guest MSR is part of the auto-load/store area in
1391 * the VMCS.
1392 *
1393 * @returns true if found, false otherwise.
1394 * @param pVCpu Pointer to the VMCPU.
1395 * @param uMsr The MSR to find.
1396 */
1397static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1398{
1399 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1400 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1401
1402 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1403 {
1404 if (pGuestMsr->u32Msr == uMsr)
1405 return true;
1406 }
1407 return false;
1408}
1409
1410
1411/**
1412 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1413 *
1414 * @param pVCpu Pointer to the VMCPU.
1415 *
1416 * @remarks No-long-jump zone!!!
1417 */
1418static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1419{
1420 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1421 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1422 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1423 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1424
1425 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1426 {
1427 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1428
1429 /*
1430 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1431 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1432 */
1433 if (pHostMsr->u32Msr == MSR_K6_EFER)
1434 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1435 else
1436 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1437 }
1438
1439 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1440}
1441
1442
1443#if HC_ARCH_BITS == 64
1444/**
1445 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1446 * perform lazy restoration of the host MSRs while leaving VT-x.
1447 *
1448 * @param pVCpu Pointer to the VMCPU.
1449 *
1450 * @remarks No-long-jump zone!!!
1451 */
1452static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1453{
1454 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1455
1456 /*
1457 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1458 */
1459 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
1460 {
1461 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1462 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1463 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1464 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1465 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1466 }
1467}
1468
1469
1470/**
1471 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1472 * lazily while leaving VT-x.
1473 *
1474 * @returns true if it does, false otherwise.
1475 * @param pVCpu Pointer to the VMCPU.
1476 * @param uMsr The MSR to check.
1477 */
1478static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1479{
1480 NOREF(pVCpu);
1481 switch (uMsr)
1482 {
1483 case MSR_K8_LSTAR:
1484 case MSR_K6_STAR:
1485 case MSR_K8_SF_MASK:
1486 case MSR_K8_KERNEL_GS_BASE:
1487 return true;
1488 }
1489 return false;
1490}
1491
1492
1493/**
1494 * Saves a set of guest MSRs back into the guest-CPU context.
1495 *
1496 * @param pVCpu Pointer to the VMCPU.
1497 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1498 * out-of-sync. Make sure to update the required fields
1499 * before using them.
1500 *
1501 * @remarks No-long-jump zone!!!
1502 */
1503static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1504{
1505 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1506 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1507
1508 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1509 {
1510 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1511 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1512 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1513 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1514 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1515 }
1516}
1517
1518
1519/**
1520 * Loads a set of guests MSRs to allow read/passthru to the guest.
1521 *
1522 * The name of this function is slightly confusing. This function does NOT
1523 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1524 * common prefix for functions dealing with "lazy restoration" of the shared
1525 * MSRs.
1526 *
1527 * @param pVCpu Pointer to the VMCPU.
1528 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1529 * out-of-sync. Make sure to update the required fields
1530 * before using them.
1531 *
1532 * @remarks No-long-jump zone!!!
1533 */
1534static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1535{
1536 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1537 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1538
1539#define VMXLOCAL_LAZY_LOAD_GUEST_MSR(uMsr, a_GuestMsr, a_HostMsr) \
1540 do { \
1541 if (pMixedCtx->msr##a_GuestMsr != pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr) \
1542 ASMWrMsr(uMsr, pMixedCtx->msr##a_GuestMsr); \
1543 else \
1544 Assert(ASMRdMsr(uMsr) == pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr); \
1545 } while (0)
1546
1547 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1548 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
1549 {
1550 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_LSTAR, LSTAR, LStar);
1551 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K6_STAR, STAR, Star);
1552 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_SF_MASK, SFMASK, SFMask);
1553 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_KERNEL_GS_BASE, KERNELGSBASE, KernelGSBase);
1554 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1555 }
1556 else
1557 {
1558 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
1559 ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
1560 ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
1561 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
1562 }
1563
1564#undef VMXLOCAL_LAZY_LOAD_GUEST_MSR
1565}
1566
1567
1568/**
1569 * Performs lazy restoration of the set of host MSRs if they were previously
1570 * loaded with guest MSR values.
1571 *
1572 * @param pVCpu Pointer to the VMCPU.
1573 *
1574 * @remarks No-long-jump zone!!!
1575 * @remarks The guest MSRs should have been saved back into the guest-CPU
1576 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1577 */
1578static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1579{
1580 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1581 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1582
1583 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1584 {
1585 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1586 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1587 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1588 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1589 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1590 }
1591 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1592}
1593#endif /* HC_ARCH_BITS == 64 */
1594
1595
1596/**
1597 * Verifies that our cached values of the VMCS controls are all
1598 * consistent with what's actually present in the VMCS.
1599 *
1600 * @returns VBox status code.
1601 * @param pVCpu Pointer to the VMCPU.
1602 */
1603static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1604{
1605 uint32_t u32Val;
1606 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1607 AssertRCReturn(rc, rc);
1608 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1609 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1610
1611 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1612 AssertRCReturn(rc, rc);
1613 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1614 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1615
1616 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1617 AssertRCReturn(rc, rc);
1618 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1619 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1620
1621 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1622 AssertRCReturn(rc, rc);
1623 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1624 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1625
1626 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1627 {
1628 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1629 AssertRCReturn(rc, rc);
1630 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1631 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1632 }
1633
1634 return VINF_SUCCESS;
1635}
1636
1637
1638#ifdef VBOX_STRICT
1639/**
1640 * Verifies that our cached host EFER value has not changed
1641 * since we cached it.
1642 *
1643 * @param pVCpu Pointer to the VMCPU.
1644 */
1645static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1646{
1647 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1648
1649 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1650 {
1651 uint64_t u64Val;
1652 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_FIELD_EFER_FULL, &u64Val);
1653 AssertRC(rc);
1654
1655 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1656 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1657 }
1658}
1659
1660
1661/**
1662 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1663 * VMCS are correct.
1664 *
1665 * @param pVCpu Pointer to the VMCPU.
1666 */
1667static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1668{
1669 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1670
1671 /* Verify MSR counts in the VMCS are what we think it should be. */
1672 uint32_t cMsrs;
1673 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1674 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1675
1676 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1677 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1678
1679 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1680 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1681
1682 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1683 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1684 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1685 {
1686 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1687 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1688 pGuestMsr->u32Msr, cMsrs));
1689
1690 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1691 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1692 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1693
1694 /* Verify that the permissions are as expected in the MSR bitmap. */
1695 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1696 {
1697 VMXMSREXITREAD enmRead;
1698 VMXMSREXITWRITE enmWrite;
1699 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1700 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1701 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1702 {
1703 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1704 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1705 }
1706 else
1707 {
1708 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1709 pGuestMsr->u32Msr, cMsrs));
1710 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1711 pGuestMsr->u32Msr, cMsrs));
1712 }
1713 }
1714 }
1715}
1716#endif /* VBOX_STRICT */
1717
1718
1719/**
1720 * Flushes the TLB using EPT.
1721 *
1722 * @returns VBox status code.
1723 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1724 * enmFlush).
1725 * @param enmFlush Type of flush.
1726 *
1727 * @remarks Caller is responsible for making sure this function is called only
1728 * when NestedPaging is supported and providing @a enmFlush that is
1729 * supported by the CPU.
1730 * @remarks Can be called with interrupts disabled.
1731 */
1732static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1733{
1734 uint64_t au64Descriptor[2];
1735 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1736 au64Descriptor[0] = 0;
1737 else
1738 {
1739 Assert(pVCpu);
1740 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1741 }
1742 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1743
1744 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1745 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1746 rc));
1747 if ( RT_SUCCESS(rc)
1748 && pVCpu)
1749 {
1750 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1751 }
1752}
1753
1754
1755/**
1756 * Flushes the TLB using VPID.
1757 *
1758 * @returns VBox status code.
1759 * @param pVM Pointer to the VM.
1760 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
1761 * enmFlush).
1762 * @param enmFlush Type of flush.
1763 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1764 * on @a enmFlush).
1765 *
1766 * @remarks Can be called with interrupts disabled.
1767 */
1768static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1769{
1770 NOREF(pVM);
1771 AssertPtr(pVM);
1772 Assert(pVM->hm.s.vmx.fVpid);
1773
1774 uint64_t au64Descriptor[2];
1775 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1776 {
1777 au64Descriptor[0] = 0;
1778 au64Descriptor[1] = 0;
1779 }
1780 else
1781 {
1782 AssertPtr(pVCpu);
1783 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1784 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1785 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1786 au64Descriptor[1] = GCPtr;
1787 }
1788
1789 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1790 AssertMsg(rc == VINF_SUCCESS,
1791 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1792 if ( RT_SUCCESS(rc)
1793 && pVCpu)
1794 {
1795 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1796 }
1797}
1798
1799
1800/**
1801 * Invalidates a guest page by guest virtual address. Only relevant for
1802 * EPT/VPID, otherwise there is nothing really to invalidate.
1803 *
1804 * @returns VBox status code.
1805 * @param pVM Pointer to the VM.
1806 * @param pVCpu Pointer to the VMCPU.
1807 * @param GCVirt Guest virtual address of the page to invalidate.
1808 */
1809VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1810{
1811 AssertPtr(pVM);
1812 AssertPtr(pVCpu);
1813 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1814
1815 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1816 if (!fFlushPending)
1817 {
1818 /*
1819 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1820 * See @bugref{6043} and @bugref{6177}.
1821 *
1822 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1823 * function maybe called in a loop with individual addresses.
1824 */
1825 if (pVM->hm.s.vmx.fVpid)
1826 {
1827 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1828 {
1829 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1830 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1831 }
1832 else
1833 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1834 }
1835 else if (pVM->hm.s.fNestedPaging)
1836 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1837 }
1838
1839 return VINF_SUCCESS;
1840}
1841
1842
1843/**
1844 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1845 * otherwise there is nothing really to invalidate.
1846 *
1847 * @returns VBox status code.
1848 * @param pVM Pointer to the VM.
1849 * @param pVCpu Pointer to the VMCPU.
1850 * @param GCPhys Guest physical address of the page to invalidate.
1851 */
1852VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1853{
1854 NOREF(pVM); NOREF(GCPhys);
1855 LogFlowFunc(("%RGp\n", GCPhys));
1856
1857 /*
1858 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1859 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1860 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1861 */
1862 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1863 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1864 return VINF_SUCCESS;
1865}
1866
1867
1868/**
1869 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1870 * case where neither EPT nor VPID is supported by the CPU.
1871 *
1872 * @param pVM Pointer to the VM.
1873 * @param pVCpu Pointer to the VMCPU.
1874 * @param pCpu Pointer to the global HM struct.
1875 *
1876 * @remarks Called with interrupts disabled.
1877 */
1878static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1879{
1880 AssertPtr(pVCpu);
1881 AssertPtr(pCpu);
1882 NOREF(pVM);
1883
1884 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1885
1886 /** @todo TLB shootdown is currently not used. See hmQueueInvlPage(). */
1887#if 0
1888 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
1889 pVCpu->hm.s.TlbShootdown.cPages = 0;
1890#endif
1891
1892 Assert(pCpu->idCpu != NIL_RTCPUID);
1893 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1894 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1895 pVCpu->hm.s.fForceTLBFlush = false;
1896 return;
1897}
1898
1899
1900/**
1901 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1902 *
1903 * @param pVM Pointer to the VM.
1904 * @param pVCpu Pointer to the VMCPU.
1905 * @param pCpu Pointer to the global HM CPU struct.
1906 * @remarks All references to "ASID" in this function pertains to "VPID" in
1907 * Intel's nomenclature. The reason is, to avoid confusion in compare
1908 * statements since the host-CPU copies are named "ASID".
1909 *
1910 * @remarks Called with interrupts disabled.
1911 */
1912static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1913{
1914#ifdef VBOX_WITH_STATISTICS
1915 bool fTlbFlushed = false;
1916# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1917# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1918 if (!fTlbFlushed) \
1919 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1920 } while (0)
1921#else
1922# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1923# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1924#endif
1925
1926 AssertPtr(pVM);
1927 AssertPtr(pCpu);
1928 AssertPtr(pVCpu);
1929 Assert(pCpu->idCpu != NIL_RTCPUID);
1930
1931 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1932 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1933 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1934
1935 /*
1936 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1937 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1938 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1939 */
1940 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1941 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1942 {
1943 ++pCpu->uCurrentAsid;
1944 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1945 {
1946 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1947 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1948 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1949 }
1950
1951 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1952 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1953 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1954
1955 /*
1956 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1957 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1958 */
1959 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1960 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1961 HMVMX_SET_TAGGED_TLB_FLUSHED();
1962 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
1963 }
1964
1965 /* Check for explicit TLB shootdowns. */
1966 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1967 {
1968 /*
1969 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
1970 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
1971 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
1972 * but not guest-physical mappings.
1973 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
1974 */
1975 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1976 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1977 HMVMX_SET_TAGGED_TLB_FLUSHED();
1978 }
1979
1980 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
1981 * where it is commented out. Support individual entry flushing
1982 * someday. */
1983#if 0
1984 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
1985 {
1986 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
1987
1988 /*
1989 * Flush individual guest entries using VPID from the TLB or as little as possible with EPT
1990 * as supported by the CPU.
1991 */
1992 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1993 {
1994 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
1995 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
1996 }
1997 else
1998 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1999
2000 HMVMX_SET_TAGGED_TLB_FLUSHED();
2001 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2002 pVCpu->hm.s.TlbShootdown.cPages = 0;
2003 }
2004#endif
2005
2006 pVCpu->hm.s.fForceTLBFlush = false;
2007
2008 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2009
2010 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2011 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2012 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2013 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2014 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2015 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2016 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2017 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2018 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2019
2020 /* Update VMCS with the VPID. */
2021 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
2022 AssertRC(rc);
2023
2024#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2025}
2026
2027
2028/**
2029 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2030 *
2031 * @returns VBox status code.
2032 * @param pVM Pointer to the VM.
2033 * @param pVCpu Pointer to the VMCPU.
2034 * @param pCpu Pointer to the global HM CPU struct.
2035 *
2036 * @remarks Called with interrupts disabled.
2037 */
2038static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2039{
2040 AssertPtr(pVM);
2041 AssertPtr(pVCpu);
2042 AssertPtr(pCpu);
2043 Assert(pCpu->idCpu != NIL_RTCPUID);
2044 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2045 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2046
2047 /*
2048 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2049 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2050 */
2051 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2052 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2053 {
2054 pVCpu->hm.s.fForceTLBFlush = true;
2055 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2056 }
2057
2058 /* Check for explicit TLB shootdown flushes. */
2059 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2060 {
2061 pVCpu->hm.s.fForceTLBFlush = true;
2062 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2063 }
2064
2065 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2066 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2067
2068 if (pVCpu->hm.s.fForceTLBFlush)
2069 {
2070 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2071 pVCpu->hm.s.fForceTLBFlush = false;
2072 }
2073 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
2074 * where it is commented out. Support individual entry flushing
2075 * someday. */
2076#if 0
2077 else
2078 {
2079 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
2080 {
2081 /* We cannot flush individual entries without VPID support. Flush using EPT. */
2082 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
2083 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2084 }
2085 else
2086 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
2087
2088 pVCpu->hm.s.TlbShootdown.cPages = 0;
2089 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2090 }
2091#endif
2092}
2093
2094
2095/**
2096 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2097 *
2098 * @returns VBox status code.
2099 * @param pVM Pointer to the VM.
2100 * @param pVCpu Pointer to the VMCPU.
2101 * @param pCpu Pointer to the global HM CPU struct.
2102 *
2103 * @remarks Called with interrupts disabled.
2104 */
2105static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2106{
2107 AssertPtr(pVM);
2108 AssertPtr(pVCpu);
2109 AssertPtr(pCpu);
2110 Assert(pCpu->idCpu != NIL_RTCPUID);
2111 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2112 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2113
2114 /*
2115 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2116 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2117 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2118 */
2119 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2120 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2121 {
2122 pVCpu->hm.s.fForceTLBFlush = true;
2123 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2124 }
2125
2126 /* Check for explicit TLB shootdown flushes. */
2127 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2128 {
2129 /*
2130 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2131 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2132 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2133 */
2134 pVCpu->hm.s.fForceTLBFlush = true;
2135 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2136 }
2137
2138 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2139 if (pVCpu->hm.s.fForceTLBFlush)
2140 {
2141 ++pCpu->uCurrentAsid;
2142 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2143 {
2144 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2145 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2146 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2147 }
2148
2149 pVCpu->hm.s.fForceTLBFlush = false;
2150 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2151 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2152 if (pCpu->fFlushAsidBeforeUse)
2153 {
2154 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2155 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2156 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2157 {
2158 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2159 pCpu->fFlushAsidBeforeUse = false;
2160 }
2161 else
2162 {
2163 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2164 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2165 }
2166 }
2167 }
2168 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere. See hmQueueInvlPage()
2169 * where it is commented out. Support individual entry flushing
2170 * someday. */
2171#if 0
2172 else
2173 {
2174 AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
2175 ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
2176 pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
2177 pCpu->uCurrentAsid, pCpu->cTlbFlushes));
2178
2179 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
2180 {
2181 /* Flush individual guest entries using VPID or as little as possible with EPT as supported by the CPU. */
2182 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2183 {
2184 for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
2185 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
2186 }
2187 else
2188 hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
2189
2190 pVCpu->hm.s.TlbShootdown.cPages = 0;
2191 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2192 }
2193 else
2194 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
2195 }
2196#endif
2197
2198 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2199 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2200 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2201 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2202 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2203 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2204 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2205
2206 int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
2207 AssertRC(rc);
2208}
2209
2210
2211/**
2212 * Flushes the guest TLB entry based on CPU capabilities.
2213 *
2214 * @param pVCpu Pointer to the VMCPU.
2215 * @param pCpu Pointer to the global HM CPU struct.
2216 */
2217DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2218{
2219#ifdef HMVMX_ALWAYS_FLUSH_TLB
2220 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2221#endif
2222 PVM pVM = pVCpu->CTX_SUFF(pVM);
2223 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2224 {
2225 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2226 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2227 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2228 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2229 default:
2230 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2231 break;
2232 }
2233
2234 /* VMCPU_FF_TLB_SHOOTDOWN is unused. */
2235 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN));
2236
2237 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2238}
2239
2240
2241/**
2242 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2243 * TLB entries from the host TLB before VM-entry.
2244 *
2245 * @returns VBox status code.
2246 * @param pVM Pointer to the VM.
2247 */
2248static int hmR0VmxSetupTaggedTlb(PVM pVM)
2249{
2250 /*
2251 * Determine optimal flush type for Nested Paging.
2252 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2253 * guest execution (see hmR3InitFinalizeR0()).
2254 */
2255 if (pVM->hm.s.fNestedPaging)
2256 {
2257 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2258 {
2259 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2260 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2261 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2262 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2263 else
2264 {
2265 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2266 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2267 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2268 }
2269
2270 /* Make sure the write-back cacheable memory type for EPT is supported. */
2271 if (!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB))
2272 {
2273 LogRel(("hmR0VmxSetupTaggedTlb: Unsupported EPTP memory type %#x.\n", pVM->hm.s.vmx.Msrs.u64EptVpidCaps));
2274 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2275 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2276 }
2277 }
2278 else
2279 {
2280 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2281 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2282 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2283 }
2284 }
2285
2286 /*
2287 * Determine optimal flush type for VPID.
2288 */
2289 if (pVM->hm.s.vmx.fVpid)
2290 {
2291 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2292 {
2293 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2294 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2295 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2296 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2297 else
2298 {
2299 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2300 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2301 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2302 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2303 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2304 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2305 pVM->hm.s.vmx.fVpid = false;
2306 }
2307 }
2308 else
2309 {
2310 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2311 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2312 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2313 pVM->hm.s.vmx.fVpid = false;
2314 }
2315 }
2316
2317 /*
2318 * Setup the handler for flushing tagged-TLBs.
2319 */
2320 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2321 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2322 else if (pVM->hm.s.fNestedPaging)
2323 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2324 else if (pVM->hm.s.vmx.fVpid)
2325 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2326 else
2327 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2328 return VINF_SUCCESS;
2329}
2330
2331
2332/**
2333 * Sets up pin-based VM-execution controls in the VMCS.
2334 *
2335 * @returns VBox status code.
2336 * @param pVM Pointer to the VM.
2337 * @param pVCpu Pointer to the VMCPU.
2338 */
2339static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2340{
2341 AssertPtr(pVM);
2342 AssertPtr(pVCpu);
2343
2344 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2345 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2346
2347 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2348 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2349
2350 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2351 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2352
2353 /* Enable the VMX preemption timer. */
2354 if (pVM->hm.s.vmx.fUsePreemptTimer)
2355 {
2356 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2357 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2358 }
2359
2360 if ((val & zap) != val)
2361 {
2362 LogRel(("hmR0VmxSetupPinCtls: invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2363 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2364 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2365 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2366 }
2367
2368 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2369 AssertRCReturn(rc, rc);
2370
2371 pVCpu->hm.s.vmx.u32PinCtls = val;
2372 return rc;
2373}
2374
2375
2376/**
2377 * Sets up processor-based VM-execution controls in the VMCS.
2378 *
2379 * @returns VBox status code.
2380 * @param pVM Pointer to the VM.
2381 * @param pVMCPU Pointer to the VMCPU.
2382 */
2383static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2384{
2385 AssertPtr(pVM);
2386 AssertPtr(pVCpu);
2387
2388 int rc = VERR_INTERNAL_ERROR_5;
2389 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2390 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2391
2392 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2393 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2394 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2395 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2396 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2397 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2398 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2399
2400 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2401 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2402 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2403 {
2404 LogRel(("hmR0VmxSetupProcCtls: unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2405 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2406 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2407 }
2408
2409 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2410 if (!pVM->hm.s.fNestedPaging)
2411 {
2412 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2413 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2414 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2415 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2416 }
2417
2418 /* Use TPR shadowing if supported by the CPU. */
2419 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2420 {
2421 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2422 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2423 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2424 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2425 AssertRCReturn(rc, rc);
2426
2427 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2428 /* CR8 writes cause a VM-exit based on TPR threshold. */
2429 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2430 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2431 }
2432 else
2433 {
2434 /*
2435 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2436 * Set this control only for 64-bit guests.
2437 */
2438 if (pVM->hm.s.fAllow64BitGuests)
2439 {
2440 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2441 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2442 }
2443 }
2444
2445 /* Use MSR-bitmaps if supported by the CPU. */
2446 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2447 {
2448 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2449
2450 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2451 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2452 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2453 AssertRCReturn(rc, rc);
2454
2455 /*
2456 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2457 * automatically using dedicated fields in the VMCS.
2458 */
2459 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2460 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2461 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2462 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2463 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2464
2465#if HC_ARCH_BITS == 64
2466 /*
2467 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2468 */
2469 if (pVM->hm.s.fAllow64BitGuests)
2470 {
2471 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2472 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2473 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2474 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2475 }
2476#endif
2477 }
2478
2479 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2480 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2481 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2482
2483 if ((val & zap) != val)
2484 {
2485 LogRel(("hmR0VmxSetupProcCtls: invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2486 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2487 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2488 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2489 }
2490
2491 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2492 AssertRCReturn(rc, rc);
2493
2494 pVCpu->hm.s.vmx.u32ProcCtls = val;
2495
2496 /*
2497 * Secondary processor-based VM-execution controls.
2498 */
2499 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2500 {
2501 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2502 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2503
2504 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2505 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2506
2507 if (pVM->hm.s.fNestedPaging)
2508 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2509 else
2510 {
2511 /*
2512 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2513 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2514 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2515 */
2516 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2517 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2518 }
2519
2520 if (pVM->hm.s.vmx.fVpid)
2521 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2522
2523 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2524 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2525
2526 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2527 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2528 * done dynamically. */
2529 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2530 {
2531 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2532 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2533 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2534 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2535 AssertRCReturn(rc, rc);
2536 }
2537
2538 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2539 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2540
2541 if ((val & zap) != val)
2542 {
2543 LogRel(("hmR0VmxSetupProcCtls: invalid secondary processor-based VM-execution controls combo! "
2544 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2545 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2546 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2547 }
2548
2549 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2550 AssertRCReturn(rc, rc);
2551
2552 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2553 }
2554 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2555 {
2556 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2557 "available\n"));
2558 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2559 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2560 }
2561
2562 return VINF_SUCCESS;
2563}
2564
2565
2566/**
2567 * Sets up miscellaneous (everything other than Pin & Processor-based
2568 * VM-execution) control fields in the VMCS.
2569 *
2570 * @returns VBox status code.
2571 * @param pVM Pointer to the VM.
2572 * @param pVCpu Pointer to the VMCPU.
2573 */
2574static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2575{
2576 NOREF(pVM);
2577 AssertPtr(pVM);
2578 AssertPtr(pVCpu);
2579
2580 int rc = VERR_GENERAL_FAILURE;
2581
2582 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2583#if 0
2584 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2585 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0); AssertRCReturn(rc, rc);
2586 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0); AssertRCReturn(rc, rc);
2587
2588 /*
2589 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2590 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2591 * We thus use the exception bitmap to control it rather than use both.
2592 */
2593 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0); AssertRCReturn(rc, rc);
2594 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0); AssertRCReturn(rc, rc);
2595
2596 /** @todo Explore possibility of using IO-bitmaps. */
2597 /* All IO & IOIO instructions cause VM-exits. */
2598 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0); AssertRCReturn(rc, rc);
2599 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0); AssertRCReturn(rc, rc);
2600
2601 /* Initialize the MSR-bitmap area. */
2602 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
2603 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0); AssertRCReturn(rc, rc);
2604 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
2605#endif
2606
2607 /* Setup MSR auto-load/store area. */
2608 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2609 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2610 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2611 AssertRCReturn(rc, rc);
2612 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2613 AssertRCReturn(rc, rc);
2614
2615 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2616 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2617 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2618 AssertRCReturn(rc, rc);
2619
2620 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2621 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2622 AssertRCReturn(rc, rc);
2623
2624 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2625#if 0
2626 /* Setup debug controls */
2627 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2628 AssertRCReturn(rc, rc);
2629 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2630 AssertRCReturn(rc, rc);
2631#endif
2632
2633 return rc;
2634}
2635
2636
2637/**
2638 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2639 *
2640 * @returns VBox status code.
2641 * @param pVM Pointer to the VM.
2642 * @param pVCpu Pointer to the VMCPU.
2643 */
2644static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2645{
2646 AssertPtr(pVM);
2647 AssertPtr(pVCpu);
2648
2649 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2650
2651 uint32_t u32XcptBitmap = pVCpu->hm.s.fGIMTrapXcptUD ? RT_BIT(X86_XCPT_UD) : 0;
2652
2653 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2654 if (!pVM->hm.s.fNestedPaging)
2655 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2656
2657 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2658 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2659 AssertRCReturn(rc, rc);
2660 return rc;
2661}
2662
2663
2664/**
2665 * Sets up the initial guest-state mask. The guest-state mask is consulted
2666 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2667 * for the nested virtualization case (as it would cause a VM-exit).
2668 *
2669 * @param pVCpu Pointer to the VMCPU.
2670 */
2671static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2672{
2673 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2674 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2675 return VINF_SUCCESS;
2676}
2677
2678
2679/**
2680 * Does per-VM VT-x initialization.
2681 *
2682 * @returns VBox status code.
2683 * @param pVM Pointer to the VM.
2684 */
2685VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2686{
2687 LogFlowFunc(("pVM=%p\n", pVM));
2688
2689 int rc = hmR0VmxStructsAlloc(pVM);
2690 if (RT_FAILURE(rc))
2691 {
2692 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2693 return rc;
2694 }
2695
2696 return VINF_SUCCESS;
2697}
2698
2699
2700/**
2701 * Does per-VM VT-x termination.
2702 *
2703 * @returns VBox status code.
2704 * @param pVM Pointer to the VM.
2705 */
2706VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2707{
2708 LogFlowFunc(("pVM=%p\n", pVM));
2709
2710#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2711 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2712 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2713#endif
2714 hmR0VmxStructsFree(pVM);
2715 return VINF_SUCCESS;
2716}
2717
2718
2719/**
2720 * Sets up the VM for execution under VT-x.
2721 * This function is only called once per-VM during initialization.
2722 *
2723 * @returns VBox status code.
2724 * @param pVM Pointer to the VM.
2725 */
2726VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2727{
2728 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2729 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2730
2731 LogFlowFunc(("pVM=%p\n", pVM));
2732
2733 /*
2734 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2735 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2736 */
2737 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2738 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2739 || !pVM->hm.s.vmx.pRealModeTSS))
2740 {
2741 LogRel(("VMXR0SetupVM: invalid real-on-v86 state.\n"));
2742 return VERR_INTERNAL_ERROR;
2743 }
2744
2745#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2746 /*
2747 * This is for the darwin 32-bit/PAE kernels trying to execute 64-bit guests. We don't bother with
2748 * the 32<->64 switcher in this case. This is a rare, legacy use-case with barely any test coverage.
2749 */
2750 if ( pVM->hm.s.fAllow64BitGuests
2751 && !HMVMX_IS_64BIT_HOST_MODE())
2752 {
2753 LogRel(("VMXR0SetupVM: Unsupported guest and host paging mode combination.\n"));
2754 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
2755 }
2756#endif
2757
2758 /* Initialize these always, see hmR3InitFinalizeR0().*/
2759 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2760 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2761
2762 /* Setup the tagged-TLB flush handlers. */
2763 int rc = hmR0VmxSetupTaggedTlb(pVM);
2764 if (RT_FAILURE(rc))
2765 {
2766 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2767 return rc;
2768 }
2769
2770 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2771 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2772#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2773 if ( HMVMX_IS_64BIT_HOST_MODE()
2774 && (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2775 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2776 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2777 {
2778 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2779 }
2780#endif
2781
2782 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2783 {
2784 PVMCPU pVCpu = &pVM->aCpus[i];
2785 AssertPtr(pVCpu);
2786 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2787
2788 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2789 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2790
2791 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2792 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2793 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2794
2795 /* Set revision dword at the beginning of the VMCS structure. */
2796 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2797
2798 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2799 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2800 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2801 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2802
2803 /* Load this VMCS as the current VMCS. */
2804 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2805 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2806 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2807
2808 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2809 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2810 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2811
2812 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2813 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2814 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2815
2816 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2817 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2818 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2819
2820 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2821 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2822 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2823
2824 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2825 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2826 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2827
2828#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2829 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2830 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2831 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2832#endif
2833
2834 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2835 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2836 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2837 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2838
2839 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2840
2841 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2842 }
2843
2844 return VINF_SUCCESS;
2845}
2846
2847
2848/**
2849 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2850 * the VMCS.
2851 *
2852 * @returns VBox status code.
2853 * @param pVM Pointer to the VM.
2854 * @param pVCpu Pointer to the VMCPU.
2855 */
2856DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2857{
2858 NOREF(pVM); NOREF(pVCpu);
2859
2860 RTCCUINTREG uReg = ASMGetCR0();
2861 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2862 AssertRCReturn(rc, rc);
2863
2864#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2865 /* For the darwin 32-bit hybrid kernel, we need the 64-bit CR3 as it uses 64-bit paging. */
2866 if (HMVMX_IS_64BIT_HOST_MODE())
2867 {
2868 uint64_t uRegCR3 = HMR0Get64bitCR3();
2869 rc = VMXWriteVmcs64(VMX_VMCS_HOST_CR3, uRegCR3);
2870 }
2871 else
2872#endif
2873 {
2874 uReg = ASMGetCR3();
2875 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2876 }
2877 AssertRCReturn(rc, rc);
2878
2879 uReg = ASMGetCR4();
2880 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2881 AssertRCReturn(rc, rc);
2882 return rc;
2883}
2884
2885
2886#if HC_ARCH_BITS == 64
2887/**
2888 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2889 * requirements. See hmR0VmxSaveHostSegmentRegs().
2890 */
2891# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2892 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2893 { \
2894 bool fValidSelector = true; \
2895 if ((selValue) & X86_SEL_LDT) \
2896 { \
2897 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2898 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2899 } \
2900 if (fValidSelector) \
2901 { \
2902 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2903 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2904 } \
2905 (selValue) = 0; \
2906 }
2907#endif
2908
2909
2910/**
2911 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2912 * the host-state area in the VMCS.
2913 *
2914 * @returns VBox status code.
2915 * @param pVM Pointer to the VM.
2916 * @param pVCpu Pointer to the VMCPU.
2917 */
2918DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2919{
2920 int rc = VERR_INTERNAL_ERROR_5;
2921
2922#if HC_ARCH_BITS == 64
2923 /*
2924 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2925 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2926 */
2927 AssertMsgReturn(!(pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED),
2928 ("Re-saving host-state after executing guest code without leaving VT-x!\n"), VERR_WRONG_ORDER);
2929#endif
2930
2931 /*
2932 * Host DS, ES, FS and GS segment registers.
2933 */
2934#if HC_ARCH_BITS == 64
2935 RTSEL uSelDS = ASMGetDS();
2936 RTSEL uSelES = ASMGetES();
2937 RTSEL uSelFS = ASMGetFS();
2938 RTSEL uSelGS = ASMGetGS();
2939#else
2940 RTSEL uSelDS = 0;
2941 RTSEL uSelES = 0;
2942 RTSEL uSelFS = 0;
2943 RTSEL uSelGS = 0;
2944#endif
2945
2946 /* Recalculate which host-state bits need to be manually restored. */
2947 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2948
2949 /*
2950 * Host CS and SS segment registers.
2951 */
2952#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2953 RTSEL uSelCS;
2954 RTSEL uSelSS;
2955 if (HMVMX_IS_64BIT_HOST_MODE())
2956 {
2957 uSelCS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
2958 uSelSS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
2959 }
2960 else
2961 {
2962 /* Seems darwin uses the LDT (TI flag is set) in the CS & SS selectors which VT-x doesn't like. */
2963 uSelCS = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
2964 uSelSS = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
2965 }
2966#else
2967 RTSEL uSelCS = ASMGetCS();
2968 RTSEL uSelSS = ASMGetSS();
2969#endif
2970
2971 /*
2972 * Host TR segment register.
2973 */
2974 RTSEL uSelTR = ASMGetTR();
2975
2976#if HC_ARCH_BITS == 64
2977 /*
2978 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2979 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2980 */
2981 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2982 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2983 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2984 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2985# undef VMXLOCAL_ADJUST_HOST_SEG
2986#endif
2987
2988 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2989 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2990 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2991 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2992 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2993 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2994 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2995 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2996 Assert(uSelCS);
2997 Assert(uSelTR);
2998
2999 /* Assertion is right but we would not have updated u32ExitCtls yet. */
3000#if 0
3001 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
3002 Assert(uSelSS != 0);
3003#endif
3004
3005 /* Write these host selector fields into the host-state area in the VMCS. */
3006 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_CS, uSelCS); AssertRCReturn(rc, rc);
3007 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_SS, uSelSS); AssertRCReturn(rc, rc);
3008#if HC_ARCH_BITS == 64
3009 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_DS, uSelDS); AssertRCReturn(rc, rc);
3010 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_ES, uSelES); AssertRCReturn(rc, rc);
3011 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_FS, uSelFS); AssertRCReturn(rc, rc);
3012 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_GS, uSelGS); AssertRCReturn(rc, rc);
3013#endif
3014 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_TR, uSelTR); AssertRCReturn(rc, rc);
3015
3016 /*
3017 * Host GDTR and IDTR.
3018 */
3019 RTGDTR Gdtr;
3020 RT_ZERO(Gdtr);
3021#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3022 if (HMVMX_IS_64BIT_HOST_MODE())
3023 {
3024 X86XDTR64 Gdtr64;
3025 X86XDTR64 Idtr64;
3026 HMR0Get64bitGdtrAndIdtr(&Gdtr64, &Idtr64);
3027 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, Gdtr64.uAddr); AssertRCReturn(rc, rc);
3028 rc = VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, Idtr64.uAddr); AssertRCReturn(rc, rc);
3029
3030 Gdtr.cbGdt = Gdtr64.cb;
3031 Gdtr.pGdt = (uintptr_t)Gdtr64.uAddr;
3032 }
3033 else
3034#endif
3035 {
3036 RTIDTR Idtr;
3037 ASMGetGDTR(&Gdtr);
3038 ASMGetIDTR(&Idtr);
3039 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt); AssertRCReturn(rc, rc);
3040 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt); AssertRCReturn(rc, rc);
3041
3042#if HC_ARCH_BITS == 64
3043 /*
3044 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3045 * maximum limit (0xffff) on every VM-exit.
3046 */
3047 if (Gdtr.cbGdt != 0xffff)
3048 {
3049 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3050 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3051 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3052 }
3053
3054 /*
3055 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3056 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3057 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3058 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3059 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3060 * hosts where we are pretty sure it won't cause trouble.
3061 */
3062# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3063 if (Idtr.cbIdt < 0x0fff)
3064# else
3065 if (Idtr.cbIdt != 0xffff)
3066# endif
3067 {
3068 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3069 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3070 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3071 }
3072#endif
3073 }
3074
3075 /*
3076 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3077 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3078 */
3079 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3080 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3081 VERR_VMX_INVALID_HOST_STATE);
3082
3083 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3084#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3085 if (HMVMX_IS_64BIT_HOST_MODE())
3086 {
3087 /* We need the 64-bit TR base for hybrid darwin. */
3088 uint64_t u64TRBase = X86DESC64_BASE((PX86DESC64)pDesc);
3089 rc = VMXWriteVmcs64(VMX_VMCS_HOST_TR_BASE, u64TRBase);
3090 }
3091 else
3092#endif
3093 {
3094 uintptr_t uTRBase;
3095#if HC_ARCH_BITS == 64
3096 uTRBase = X86DESC64_BASE(pDesc);
3097
3098 /*
3099 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3100 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3101 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3102 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3103 *
3104 * [1] See Intel spec. 3.5 "System Descriptor Types".
3105 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3106 */
3107 Assert(pDesc->System.u4Type == 11);
3108 if ( pDesc->System.u16LimitLow != 0x67
3109 || pDesc->System.u4LimitHigh)
3110 {
3111 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3112 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3113 if (pVM->hm.s.uHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3114 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3115 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3116
3117 /* Store the GDTR here as we need it while restoring TR. */
3118 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3119 }
3120#else
3121 uTRBase = X86DESC_BASE(pDesc);
3122#endif
3123 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3124 }
3125 AssertRCReturn(rc, rc);
3126
3127 /*
3128 * Host FS base and GS base.
3129 */
3130#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3131 if (HMVMX_IS_64BIT_HOST_MODE())
3132 {
3133 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3134 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3135 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase); AssertRCReturn(rc, rc);
3136 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase); AssertRCReturn(rc, rc);
3137
3138# if HC_ARCH_BITS == 64
3139 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3140 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3141 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3142 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3143 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3144# endif
3145 }
3146#endif
3147 return rc;
3148}
3149
3150
3151/**
3152 * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
3153 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3154 * the host after every successful VM-exit.
3155 *
3156 * @returns VBox status code.
3157 * @param pVM Pointer to the VM.
3158 * @param pVCpu Pointer to the VMCPU.
3159 *
3160 * @remarks No-long-jump zone!!!
3161 */
3162DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3163{
3164 NOREF(pVM);
3165
3166 AssertPtr(pVCpu);
3167 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3168
3169 int rc = VINF_SUCCESS;
3170#if HC_ARCH_BITS == 64
3171 if (pVM->hm.s.fAllow64BitGuests)
3172 hmR0VmxLazySaveHostMsrs(pVCpu);
3173#endif
3174
3175 /*
3176 * Host Sysenter MSRs.
3177 */
3178 rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3179 AssertRCReturn(rc, rc);
3180#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
3181 if (HMVMX_IS_64BIT_HOST_MODE())
3182 {
3183 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3184 AssertRCReturn(rc, rc);
3185 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3186 }
3187 else
3188 {
3189 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3190 AssertRCReturn(rc, rc);
3191 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3192 }
3193#elif HC_ARCH_BITS == 32
3194 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3195 AssertRCReturn(rc, rc);
3196 rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3197#else
3198 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3199 AssertRCReturn(rc, rc);
3200 rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3201#endif
3202 AssertRCReturn(rc, rc);
3203
3204 /*
3205 * Host EFER MSR.
3206 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3207 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3208 */
3209 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3210 {
3211 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_FIELD_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3212 AssertRCReturn(rc, rc);
3213 }
3214
3215 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3216 * hmR0VmxLoadGuestExitCtls() !! */
3217
3218 return rc;
3219}
3220
3221
3222/**
3223 * Figures out if we need to swap the EFER MSR which is
3224 * particularly expensive.
3225 *
3226 * We check all relevant bits. For now, that's everything
3227 * besides LMA/LME, as these two bits are handled by VM-entry,
3228 * see hmR0VmxLoadGuestExitCtls() and
3229 * hmR0VMxLoadGuestEntryCtls().
3230 *
3231 * @returns true if we need to load guest EFER, false otherwise.
3232 * @param pVCpu Pointer to the VMCPU.
3233 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3234 * out-of-sync. Make sure to update the required fields
3235 * before using them.
3236 *
3237 * @remarks Requires EFER, CR4.
3238 * @remarks No-long-jump zone!!!
3239 */
3240static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3241{
3242#ifdef HMVMX_ALWAYS_SWAP_EFER
3243 return true;
3244#endif
3245
3246#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3247 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3248 if (CPUMIsGuestInLongMode(pVCpu))
3249 return false;
3250#endif
3251
3252 PVM pVM = pVCpu->CTX_SUFF(pVM);
3253 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3254 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3255
3256 /*
3257 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3258 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3259 */
3260 if ( CPUMIsGuestInLongMode(pVCpu)
3261 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3262 {
3263 return true;
3264 }
3265
3266 /*
3267 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3268 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3269 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3270 */
3271 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3272 && (pMixedCtx->cr0 & X86_CR0_PG)
3273 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3274 {
3275 /* Assert that host is PAE capable. */
3276 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3277 return true;
3278 }
3279
3280 /** @todo Check the latest Intel spec. for any other bits,
3281 * like SMEP/SMAP? */
3282 return false;
3283}
3284
3285
3286/**
3287 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3288 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3289 * controls".
3290 *
3291 * @returns VBox status code.
3292 * @param pVCpu Pointer to the VMCPU.
3293 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3294 * out-of-sync. Make sure to update the required fields
3295 * before using them.
3296 *
3297 * @remarks Requires EFER.
3298 * @remarks No-long-jump zone!!!
3299 */
3300DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3301{
3302 int rc = VINF_SUCCESS;
3303 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3304 {
3305 PVM pVM = pVCpu->CTX_SUFF(pVM);
3306 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3307 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3308
3309 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3310 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3311
3312 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3313 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3314 {
3315 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3316 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3317 }
3318 else
3319 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3320
3321 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3322 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3323 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3324 {
3325 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3326 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3327 }
3328
3329 /*
3330 * The following should -not- be set (since we're not in SMM mode):
3331 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3332 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3333 */
3334
3335 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3336 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3337
3338 if ((val & zap) != val)
3339 {
3340 LogRel(("hmR0VmxLoadGuestEntryCtls: invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3341 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3342 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3343 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3344 }
3345
3346 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3347 AssertRCReturn(rc, rc);
3348
3349 pVCpu->hm.s.vmx.u32EntryCtls = val;
3350 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3351 }
3352 return rc;
3353}
3354
3355
3356/**
3357 * Sets up the VM-exit controls in the VMCS.
3358 *
3359 * @returns VBox status code.
3360 * @param pVM Pointer to the VM.
3361 * @param pVCpu Pointer to the VMCPU.
3362 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3363 * out-of-sync. Make sure to update the required fields
3364 * before using them.
3365 *
3366 * @remarks Requires EFER.
3367 */
3368DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3369{
3370 NOREF(pMixedCtx);
3371
3372 int rc = VINF_SUCCESS;
3373 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3374 {
3375 PVM pVM = pVCpu->CTX_SUFF(pVM);
3376 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3377 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3378
3379 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3380 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3381
3382 /*
3383 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3384 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3385 */
3386#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3387 if (HMVMX_IS_64BIT_HOST_MODE())
3388 {
3389 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3390 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3391 }
3392 else
3393 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3394#else
3395 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3396 {
3397 /* The switcher returns to long mode, EFER is managed by the switcher. */
3398 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3399 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3400 }
3401 else
3402 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3403#endif /* HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
3404
3405 /* If the newer VMCS fields for managing EFER exists, use it. */
3406 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3407 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3408 {
3409 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3410 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3411 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3412 }
3413
3414 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3415 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3416
3417 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3418 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3419 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3420
3421 if ( pVM->hm.s.vmx.fUsePreemptTimer
3422 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3423 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3424
3425 if ((val & zap) != val)
3426 {
3427 LogRel(("hmR0VmxSetupProcCtls: invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3428 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3429 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3430 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3431 }
3432
3433 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3434 AssertRCReturn(rc, rc);
3435
3436 pVCpu->hm.s.vmx.u32ExitCtls = val;
3437 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3438 }
3439 return rc;
3440}
3441
3442
3443/**
3444 * Loads the guest APIC and related state.
3445 *
3446 * @returns VBox status code.
3447 * @param pVM Pointer to the VM.
3448 * @param pVCpu Pointer to the VMCPU.
3449 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3450 * out-of-sync. Make sure to update the required fields
3451 * before using them.
3452 */
3453DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3454{
3455 NOREF(pMixedCtx);
3456
3457 int rc = VINF_SUCCESS;
3458 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3459 {
3460 /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
3461 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3462 {
3463 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3464
3465 bool fPendingIntr = false;
3466 uint8_t u8Tpr = 0;
3467 uint8_t u8PendingIntr = 0;
3468 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3469 AssertRCReturn(rc, rc);
3470
3471 /*
3472 * If there are external interrupts pending but masked by the TPR value, instruct VT-x to cause a VM-exit when
3473 * the guest lowers its TPR below the highest-priority pending interrupt and we can deliver the interrupt.
3474 * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
3475 * the interrupt when we VM-exit for other reasons.
3476 */
3477 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8Tpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
3478 uint32_t u32TprThreshold = 0;
3479 if (fPendingIntr)
3480 {
3481 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3482 const uint8_t u8PendingPriority = (u8PendingIntr >> 4) & 0xf;
3483 const uint8_t u8TprPriority = (u8Tpr >> 4) & 0xf;
3484 if (u8PendingPriority <= u8TprPriority)
3485 u32TprThreshold = u8PendingPriority;
3486 else
3487 u32TprThreshold = u8TprPriority; /* Required for Vista 64-bit guest, see @bugref{6398}. */
3488 }
3489 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3490
3491 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3492 AssertRCReturn(rc, rc);
3493 }
3494
3495 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3496 }
3497 return rc;
3498}
3499
3500
3501/**
3502 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3503 *
3504 * @returns Guest's interruptibility-state.
3505 * @param pVCpu Pointer to the VMCPU.
3506 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3507 * out-of-sync. Make sure to update the required fields
3508 * before using them.
3509 *
3510 * @remarks No-long-jump zone!!!
3511 */
3512DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3513{
3514 /*
3515 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3516 */
3517 uint32_t uIntrState = 0;
3518 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3519 {
3520 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3521 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3522 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3523 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3524 {
3525 if (pMixedCtx->eflags.Bits.u1IF)
3526 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3527 else
3528 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3529 }
3530 /* else: Although we can clear the force-flag here, let's keep this side-effects free. */
3531 }
3532
3533 /*
3534 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3535 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3536 * setting this would block host-NMIs and IRET will not clear the blocking.
3537 *
3538 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3539 */
3540 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3541 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3542 {
3543 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3544 }
3545
3546 return uIntrState;
3547}
3548
3549
3550/**
3551 * Loads the guest's interruptibility-state into the guest-state area in the
3552 * VMCS.
3553 *
3554 * @returns VBox status code.
3555 * @param pVCpu Pointer to the VMCPU.
3556 * @param uIntrState The interruptibility-state to set.
3557 */
3558static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3559{
3560 NOREF(pVCpu);
3561 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3562 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3563 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3564 AssertRCReturn(rc, rc);
3565 return rc;
3566}
3567
3568
3569/**
3570 * Loads the exception intercepts required for guest execution in the VMCS.
3571 *
3572 * @returns VBox status code.
3573 * @param pVCpu Pointer to the VMCPU.
3574 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3575 * out-of-sync. Make sure to update the required fields
3576 * before using them.
3577 */
3578static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3579{
3580 NOREF(pMixedCtx);
3581 int rc = VINF_SUCCESS;
3582 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
3583 {
3584 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
3585 if (pVCpu->hm.s.fGIMTrapXcptUD)
3586 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
3587 else
3588 {
3589#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3590 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3591#endif
3592 }
3593
3594 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3595 AssertRCReturn(rc, rc);
3596
3597 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3598 Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
3599 pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
3600 }
3601 return rc;
3602}
3603
3604
3605/**
3606 * Loads the guest's RIP into the guest-state area in the VMCS.
3607 *
3608 * @returns VBox status code.
3609 * @param pVCpu Pointer to the VMCPU.
3610 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3611 * out-of-sync. Make sure to update the required fields
3612 * before using them.
3613 *
3614 * @remarks No-long-jump zone!!!
3615 */
3616static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3617{
3618 int rc = VINF_SUCCESS;
3619 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3620 {
3621 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3622 AssertRCReturn(rc, rc);
3623
3624 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3625 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3626 HMCPU_CF_VALUE(pVCpu)));
3627 }
3628 return rc;
3629}
3630
3631
3632/**
3633 * Loads the guest's RSP into the guest-state area in the VMCS.
3634 *
3635 * @returns VBox status code.
3636 * @param pVCpu Pointer to the VMCPU.
3637 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3638 * out-of-sync. Make sure to update the required fields
3639 * before using them.
3640 *
3641 * @remarks No-long-jump zone!!!
3642 */
3643static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3644{
3645 int rc = VINF_SUCCESS;
3646 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3647 {
3648 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3649 AssertRCReturn(rc, rc);
3650
3651 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3652 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3653 }
3654 return rc;
3655}
3656
3657
3658/**
3659 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3660 *
3661 * @returns VBox status code.
3662 * @param pVCpu Pointer to the VMCPU.
3663 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3664 * out-of-sync. Make sure to update the required fields
3665 * before using them.
3666 *
3667 * @remarks No-long-jump zone!!!
3668 */
3669static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3670{
3671 int rc = VINF_SUCCESS;
3672 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3673 {
3674 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3675 Let us assert it as such and use 32-bit VMWRITE. */
3676 Assert(!(pMixedCtx->rflags.u64 >> 32));
3677 X86EFLAGS Eflags = pMixedCtx->eflags;
3678 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3679 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3680 * These will never be cleared/set, unless some other part of the VMM
3681 * code is buggy - in which case we're better of finding and fixing
3682 * those bugs than hiding them. */
3683 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3684 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3685 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3686 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3687
3688 /*
3689 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3690 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3691 */
3692 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3693 {
3694 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3695 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3696 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3697 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3698 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3699 }
3700
3701 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3702 AssertRCReturn(rc, rc);
3703
3704 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3705 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3706 }
3707 return rc;
3708}
3709
3710
3711/**
3712 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3713 *
3714 * @returns VBox status code.
3715 * @param pVCpu Pointer to the VMCPU.
3716 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3717 * out-of-sync. Make sure to update the required fields
3718 * before using them.
3719 *
3720 * @remarks No-long-jump zone!!!
3721 */
3722DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3723{
3724 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3725 AssertRCReturn(rc, rc);
3726 rc = hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3727 AssertRCReturn(rc, rc);
3728 rc = hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3729 AssertRCReturn(rc, rc);
3730 return rc;
3731}
3732
3733
3734/**
3735 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3736 * CR0 is partially shared with the host and we have to consider the FPU bits.
3737 *
3738 * @returns VBox status code.
3739 * @param pVM Pointer to the VM.
3740 * @param pVCpu Pointer to the VMCPU.
3741 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3742 * out-of-sync. Make sure to update the required fields
3743 * before using them.
3744 *
3745 * @remarks No-long-jump zone!!!
3746 */
3747static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3748{
3749 /*
3750 * Guest CR0.
3751 * Guest FPU.
3752 */
3753 int rc = VINF_SUCCESS;
3754 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3755 {
3756 Assert(!(pMixedCtx->cr0 >> 32));
3757 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3758 PVM pVM = pVCpu->CTX_SUFF(pVM);
3759
3760 /* The guest's view (read access) of its CR0 is unblemished. */
3761 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3762 AssertRCReturn(rc, rc);
3763 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3764
3765 /* Setup VT-x's view of the guest CR0. */
3766 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3767 if (pVM->hm.s.fNestedPaging)
3768 {
3769 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3770 {
3771 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3772 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3773 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3774 }
3775 else
3776 {
3777 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3778 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3779 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3780 }
3781
3782 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3783 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3784 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3785
3786 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3787 AssertRCReturn(rc, rc);
3788 }
3789 else
3790 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3791
3792 /*
3793 * Guest FPU bits.
3794 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3795 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3796 */
3797 u32GuestCR0 |= X86_CR0_NE;
3798 bool fInterceptNM = false;
3799 if (CPUMIsGuestFPUStateActive(pVCpu))
3800 {
3801 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3802 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3803 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3804 }
3805 else
3806 {
3807 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3808 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3809 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3810 }
3811
3812 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3813 bool fInterceptMF = false;
3814 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3815 fInterceptMF = true;
3816
3817 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3818 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3819 {
3820 Assert(PDMVmmDevHeapIsEnabled(pVM));
3821 Assert(pVM->hm.s.vmx.pRealModeTSS);
3822 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3823 fInterceptNM = true;
3824 fInterceptMF = true;
3825 }
3826 else
3827 {
3828 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626} comment #11. */
3829 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3830 }
3831 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3832
3833 if (fInterceptNM)
3834 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3835 else
3836 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3837
3838 if (fInterceptMF)
3839 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3840 else
3841 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3842
3843 /* Additional intercepts for debugging, define these yourself explicitly. */
3844#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3845 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3846 | RT_BIT(X86_XCPT_BP)
3847 | RT_BIT(X86_XCPT_DB)
3848 | RT_BIT(X86_XCPT_DE)
3849 | RT_BIT(X86_XCPT_NM)
3850 | RT_BIT(X86_XCPT_TS)
3851 | RT_BIT(X86_XCPT_UD)
3852 | RT_BIT(X86_XCPT_NP)
3853 | RT_BIT(X86_XCPT_SS)
3854 | RT_BIT(X86_XCPT_GP)
3855 | RT_BIT(X86_XCPT_PF)
3856 | RT_BIT(X86_XCPT_MF)
3857 ;
3858#elif defined(HMVMX_ALWAYS_TRAP_PF)
3859 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3860#endif
3861
3862 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3863
3864 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3865 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3866 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3867 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3868 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3869 else
3870 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3871
3872 u32GuestCR0 |= uSetCR0;
3873 u32GuestCR0 &= uZapCR0;
3874 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3875
3876 /* Write VT-x's view of the guest CR0 into the VMCS. */
3877 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3878 AssertRCReturn(rc, rc);
3879 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3880 uZapCR0));
3881
3882 /*
3883 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3884 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3885 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3886 */
3887 uint32_t u32CR0Mask = 0;
3888 u32CR0Mask = X86_CR0_PE
3889 | X86_CR0_NE
3890 | X86_CR0_WP
3891 | X86_CR0_PG
3892 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3893 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3894 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3895
3896 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3897 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3898 * and @bugref{6944}. */
3899#if 0
3900 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3901 u32CR0Mask &= ~X86_CR0_PE;
3902#endif
3903 if (pVM->hm.s.fNestedPaging)
3904 u32CR0Mask &= ~X86_CR0_WP;
3905
3906 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3907 if (fInterceptNM)
3908 {
3909 u32CR0Mask |= X86_CR0_TS
3910 | X86_CR0_MP;
3911 }
3912
3913 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3914 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3915 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3916 AssertRCReturn(rc, rc);
3917 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3918
3919 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3920 }
3921 return rc;
3922}
3923
3924
3925/**
3926 * Loads the guest control registers (CR3, CR4) into the guest-state area
3927 * in the VMCS.
3928 *
3929 * @returns VBox status code.
3930 * @param pVM Pointer to the VM.
3931 * @param pVCpu Pointer to the VMCPU.
3932 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3933 * out-of-sync. Make sure to update the required fields
3934 * before using them.
3935 *
3936 * @remarks No-long-jump zone!!!
3937 */
3938static int hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3939{
3940 int rc = VINF_SUCCESS;
3941 PVM pVM = pVCpu->CTX_SUFF(pVM);
3942
3943 /*
3944 * Guest CR2.
3945 * It's always loaded in the assembler code. Nothing to do here.
3946 */
3947
3948 /*
3949 * Guest CR3.
3950 */
3951 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3952 {
3953 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3954 if (pVM->hm.s.fNestedPaging)
3955 {
3956 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3957
3958 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3959 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3960 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3961 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3962
3963 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3964 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3965 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3966
3967 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3968 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3969 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x3f) == 0, /* Bits 6:11 MBZ. */
3970 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3971
3972 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3973 AssertRCReturn(rc, rc);
3974 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3975
3976 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3977 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3978 {
3979 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3980 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3981 {
3982 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]); AssertRCReturn(rc, rc);
3983 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
3984 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
3985 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
3986 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
3987 }
3988
3989 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3990 have Unrestricted Execution to handle the guest when it's not using paging. */
3991 GCPhysGuestCR3 = pMixedCtx->cr3;
3992 }
3993 else
3994 {
3995 /*
3996 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3997 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3998 * EPT takes care of translating it to host-physical addresses.
3999 */
4000 RTGCPHYS GCPhys;
4001 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
4002 Assert(PDMVmmDevHeapIsEnabled(pVM));
4003
4004 /* We obtain it here every time as the guest could have relocated this PCI region. */
4005 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
4006 AssertRCReturn(rc, rc);
4007
4008 GCPhysGuestCR3 = GCPhys;
4009 }
4010
4011 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGv (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
4012 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4013 }
4014 else
4015 {
4016 /* Non-nested paging case, just use the hypervisor's CR3. */
4017 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4018
4019 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
4020 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4021 }
4022 AssertRCReturn(rc, rc);
4023
4024 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
4025 }
4026
4027 /*
4028 * Guest CR4.
4029 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4030 */
4031 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
4032 {
4033 Assert(!(pMixedCtx->cr4 >> 32));
4034 uint32_t u32GuestCR4 = pMixedCtx->cr4;
4035
4036 /* The guest's view of its CR4 is unblemished. */
4037 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
4038 AssertRCReturn(rc, rc);
4039 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
4040
4041 /* Setup VT-x's view of the guest CR4. */
4042 /*
4043 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
4044 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
4045 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
4046 */
4047 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4048 {
4049 Assert(pVM->hm.s.vmx.pRealModeTSS);
4050 Assert(PDMVmmDevHeapIsEnabled(pVM));
4051 u32GuestCR4 &= ~X86_CR4_VME;
4052 }
4053
4054 if (pVM->hm.s.fNestedPaging)
4055 {
4056 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4057 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4058 {
4059 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4060 u32GuestCR4 |= X86_CR4_PSE;
4061 /* Our identity mapping is a 32-bit page directory. */
4062 u32GuestCR4 &= ~X86_CR4_PAE;
4063 }
4064 /* else use guest CR4.*/
4065 }
4066 else
4067 {
4068 /*
4069 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4070 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4071 */
4072 switch (pVCpu->hm.s.enmShadowMode)
4073 {
4074 case PGMMODE_REAL: /* Real-mode. */
4075 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4076 case PGMMODE_32_BIT: /* 32-bit paging. */
4077 {
4078 u32GuestCR4 &= ~X86_CR4_PAE;
4079 break;
4080 }
4081
4082 case PGMMODE_PAE: /* PAE paging. */
4083 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4084 {
4085 u32GuestCR4 |= X86_CR4_PAE;
4086 break;
4087 }
4088
4089 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4090 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4091#ifdef VBOX_ENABLE_64_BITS_GUESTS
4092 break;
4093#endif
4094 default:
4095 AssertFailed();
4096 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4097 }
4098 }
4099
4100 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4101 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4102 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4103 u32GuestCR4 |= uSetCR4;
4104 u32GuestCR4 &= uZapCR4;
4105
4106 /* Write VT-x's view of the guest CR4 into the VMCS. */
4107 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4108 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4109 AssertRCReturn(rc, rc);
4110
4111 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4112 uint32_t u32CR4Mask = X86_CR4_VME
4113 | X86_CR4_PAE
4114 | X86_CR4_PGE
4115 | X86_CR4_PSE
4116 | X86_CR4_VMXE;
4117 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4118 u32CR4Mask |= X86_CR4_OSXSAVE;
4119 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4120 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4121 AssertRCReturn(rc, rc);
4122
4123 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4124 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
4125
4126 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4127 }
4128 return rc;
4129}
4130
4131
4132/**
4133 * Loads the guest debug registers into the guest-state area in the VMCS.
4134 * This also sets up whether #DB and MOV DRx accesses cause VM-exits.
4135 *
4136 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4137 *
4138 * @returns VBox status code.
4139 * @param pVCpu Pointer to the VMCPU.
4140 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4141 * out-of-sync. Make sure to update the required fields
4142 * before using them.
4143 *
4144 * @remarks No-long-jump zone!!!
4145 */
4146static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4147{
4148 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4149 return VINF_SUCCESS;
4150
4151#ifdef VBOX_STRICT
4152 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4153 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4154 {
4155 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4156 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4157 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4158 }
4159#endif
4160
4161 int rc;
4162 PVM pVM = pVCpu->CTX_SUFF(pVM);
4163 bool fInterceptDB = false;
4164 bool fInterceptMovDRx = false;
4165 if ( pVCpu->hm.s.fSingleInstruction
4166 || DBGFIsStepping(pVCpu))
4167 {
4168 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4169 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4170 {
4171 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4172 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4173 AssertRCReturn(rc, rc);
4174 Assert(fInterceptDB == false);
4175 }
4176 else
4177 {
4178 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4179 pVCpu->hm.s.fClearTrapFlag = true;
4180 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4181 fInterceptDB = true;
4182 }
4183 }
4184
4185 if ( fInterceptDB
4186 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4187 {
4188 /*
4189 * Use the combined guest and host DRx values found in the hypervisor
4190 * register set because the debugger has breakpoints active or someone
4191 * is single stepping on the host side without a monitor trap flag.
4192 *
4193 * Note! DBGF expects a clean DR6 state before executing guest code.
4194 */
4195#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4196 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4197 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4198 {
4199 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4200 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4201 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4202 }
4203 else
4204#endif
4205 if (!CPUMIsHyperDebugStateActive(pVCpu))
4206 {
4207 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4208 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4209 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4210 }
4211
4212 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4213 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4214 AssertRCReturn(rc, rc);
4215
4216 pVCpu->hm.s.fUsingHyperDR7 = true;
4217 fInterceptDB = true;
4218 fInterceptMovDRx = true;
4219 }
4220 else
4221 {
4222 /*
4223 * If the guest has enabled debug registers, we need to load them prior to
4224 * executing guest code so they'll trigger at the right time.
4225 */
4226 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4227 {
4228#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4229 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4230 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4231 {
4232 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4233 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4234 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4235 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4236 }
4237 else
4238#endif
4239 if (!CPUMIsGuestDebugStateActive(pVCpu))
4240 {
4241 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4242 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4243 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4244 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4245 }
4246 Assert(!fInterceptDB);
4247 Assert(!fInterceptMovDRx);
4248 }
4249 /*
4250 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4251 * must intercept #DB in order to maintain a correct DR6 guest value.
4252 */
4253#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4254 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4255 && !CPUMIsGuestDebugStateActive(pVCpu))
4256#else
4257 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4258#endif
4259 {
4260 fInterceptMovDRx = true;
4261 fInterceptDB = true;
4262 }
4263
4264 /* Update guest DR7. */
4265 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4266 AssertRCReturn(rc, rc);
4267
4268 pVCpu->hm.s.fUsingHyperDR7 = false;
4269 }
4270
4271 /*
4272 * Update the exception bitmap regarding intercepting #DB generated by the guest.
4273 */
4274 if ( fInterceptDB
4275 || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4276 {
4277 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_DB);
4278 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
4279 }
4280 else
4281 {
4282#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
4283 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
4284 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
4285#endif
4286 }
4287
4288 /*
4289 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4290 */
4291 if (fInterceptMovDRx)
4292 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4293 else
4294 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4295 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4296 AssertRCReturn(rc, rc);
4297
4298 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4299 return VINF_SUCCESS;
4300}
4301
4302
4303#ifdef VBOX_STRICT
4304/**
4305 * Strict function to validate segment registers.
4306 *
4307 * @remarks ASSUMES CR0 is up to date.
4308 */
4309static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4310{
4311 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4312 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4313 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4314 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4315 && ( !CPUMIsGuestInRealModeEx(pCtx)
4316 && !CPUMIsGuestInV86ModeEx(pCtx)))
4317 {
4318 /* Protected mode checks */
4319 /* CS */
4320 Assert(pCtx->cs.Attr.n.u1Present);
4321 Assert(!(pCtx->cs.Attr.u & 0xf00));
4322 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4323 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4324 || !(pCtx->cs.Attr.n.u1Granularity));
4325 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4326 || (pCtx->cs.Attr.n.u1Granularity));
4327 /* CS cannot be loaded with NULL in protected mode. */
4328 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS?!? */
4329 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4330 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4331 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4332 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4333 else
4334 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4335 /* SS */
4336 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4337 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4338 if ( !(pCtx->cr0 & X86_CR0_PE)
4339 || pCtx->cs.Attr.n.u4Type == 3)
4340 {
4341 Assert(!pCtx->ss.Attr.n.u2Dpl);
4342 }
4343 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4344 {
4345 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4346 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4347 Assert(pCtx->ss.Attr.n.u1Present);
4348 Assert(!(pCtx->ss.Attr.u & 0xf00));
4349 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4350 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4351 || !(pCtx->ss.Attr.n.u1Granularity));
4352 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4353 || (pCtx->ss.Attr.n.u1Granularity));
4354 }
4355 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4356 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4357 {
4358 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4359 Assert(pCtx->ds.Attr.n.u1Present);
4360 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4361 Assert(!(pCtx->ds.Attr.u & 0xf00));
4362 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4363 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4364 || !(pCtx->ds.Attr.n.u1Granularity));
4365 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4366 || (pCtx->ds.Attr.n.u1Granularity));
4367 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4368 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4369 }
4370 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4371 {
4372 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4373 Assert(pCtx->es.Attr.n.u1Present);
4374 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4375 Assert(!(pCtx->es.Attr.u & 0xf00));
4376 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4377 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4378 || !(pCtx->es.Attr.n.u1Granularity));
4379 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4380 || (pCtx->es.Attr.n.u1Granularity));
4381 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4382 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4383 }
4384 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4385 {
4386 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4387 Assert(pCtx->fs.Attr.n.u1Present);
4388 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4389 Assert(!(pCtx->fs.Attr.u & 0xf00));
4390 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4391 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4392 || !(pCtx->fs.Attr.n.u1Granularity));
4393 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4394 || (pCtx->fs.Attr.n.u1Granularity));
4395 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4396 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4397 }
4398 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4399 {
4400 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4401 Assert(pCtx->gs.Attr.n.u1Present);
4402 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4403 Assert(!(pCtx->gs.Attr.u & 0xf00));
4404 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4405 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4406 || !(pCtx->gs.Attr.n.u1Granularity));
4407 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4408 || (pCtx->gs.Attr.n.u1Granularity));
4409 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4410 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4411 }
4412 /* 64-bit capable CPUs. */
4413# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4414 if (HMVMX_IS_64BIT_HOST_MODE())
4415 {
4416 Assert(!(pCtx->cs.u64Base >> 32));
4417 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4418 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4419 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4420 }
4421# endif
4422 }
4423 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4424 || ( CPUMIsGuestInRealModeEx(pCtx)
4425 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4426 {
4427 /* Real and v86 mode checks. */
4428 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4429 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4430 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4431 {
4432 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4433 }
4434 else
4435 {
4436 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4437 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4438 }
4439
4440 /* CS */
4441 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4442 Assert(pCtx->cs.u32Limit == 0xffff);
4443 Assert(u32CSAttr == 0xf3);
4444 /* SS */
4445 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4446 Assert(pCtx->ss.u32Limit == 0xffff);
4447 Assert(u32SSAttr == 0xf3);
4448 /* DS */
4449 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4450 Assert(pCtx->ds.u32Limit == 0xffff);
4451 Assert(u32DSAttr == 0xf3);
4452 /* ES */
4453 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4454 Assert(pCtx->es.u32Limit == 0xffff);
4455 Assert(u32ESAttr == 0xf3);
4456 /* FS */
4457 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4458 Assert(pCtx->fs.u32Limit == 0xffff);
4459 Assert(u32FSAttr == 0xf3);
4460 /* GS */
4461 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4462 Assert(pCtx->gs.u32Limit == 0xffff);
4463 Assert(u32GSAttr == 0xf3);
4464 /* 64-bit capable CPUs. */
4465# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4466 if (HMVMX_IS_64BIT_HOST_MODE())
4467 {
4468 Assert(!(pCtx->cs.u64Base >> 32));
4469 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4470 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4471 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4472 }
4473# endif
4474 }
4475}
4476#endif /* VBOX_STRICT */
4477
4478
4479/**
4480 * Writes a guest segment register into the guest-state area in the VMCS.
4481 *
4482 * @returns VBox status code.
4483 * @param pVCpu Pointer to the VMCPU.
4484 * @param idxSel Index of the selector in the VMCS.
4485 * @param idxLimit Index of the segment limit in the VMCS.
4486 * @param idxBase Index of the segment base in the VMCS.
4487 * @param idxAccess Index of the access rights of the segment in the VMCS.
4488 * @param pSelReg Pointer to the segment selector.
4489 *
4490 * @remarks No-long-jump zone!!!
4491 */
4492static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4493 uint32_t idxAccess, PCPUMSELREG pSelReg)
4494{
4495 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4496 AssertRCReturn(rc, rc);
4497 rc = VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4498 AssertRCReturn(rc, rc);
4499 rc = VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4500 AssertRCReturn(rc, rc);
4501
4502 uint32_t u32Access = pSelReg->Attr.u;
4503 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4504 {
4505 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4506 u32Access = 0xf3;
4507 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4508 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4509 }
4510 else
4511 {
4512 /*
4513 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4514 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4515 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4516 * loaded in protected-mode have their attribute as 0.
4517 */
4518 if (!u32Access)
4519 u32Access = X86DESCATTR_UNUSABLE;
4520 }
4521
4522 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4523 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4524 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4525
4526 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4527 AssertRCReturn(rc, rc);
4528 return rc;
4529}
4530
4531
4532/**
4533 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4534 * into the guest-state area in the VMCS.
4535 *
4536 * @returns VBox status code.
4537 * @param pVM Pointer to the VM.
4538 * @param pVCPU Pointer to the VMCPU.
4539 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4540 * out-of-sync. Make sure to update the required fields
4541 * before using them.
4542 *
4543 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4544 * @remarks No-long-jump zone!!!
4545 */
4546static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4547{
4548 int rc = VERR_INTERNAL_ERROR_5;
4549 PVM pVM = pVCpu->CTX_SUFF(pVM);
4550
4551 /*
4552 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4553 */
4554 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4555 {
4556 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4557 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4558 {
4559 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4560 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4561 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4562 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4563 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4564 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4565 }
4566
4567#ifdef VBOX_WITH_REM
4568 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4569 {
4570 Assert(pVM->hm.s.vmx.pRealModeTSS);
4571 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4572 if ( pVCpu->hm.s.vmx.fWasInRealMode
4573 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4574 {
4575 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4576 in real-mode (e.g. OpenBSD 4.0) */
4577 REMFlushTBs(pVM);
4578 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4579 pVCpu->hm.s.vmx.fWasInRealMode = false;
4580 }
4581 }
4582#endif
4583 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_CS, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4584 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4585 AssertRCReturn(rc, rc);
4586 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_SS, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4587 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4588 AssertRCReturn(rc, rc);
4589 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_DS, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4590 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4591 AssertRCReturn(rc, rc);
4592 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_ES, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4593 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4594 AssertRCReturn(rc, rc);
4595 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_FS, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4596 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4597 AssertRCReturn(rc, rc);
4598 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_GS, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4599 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4600 AssertRCReturn(rc, rc);
4601
4602#ifdef VBOX_STRICT
4603 /* Validate. */
4604 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4605#endif
4606
4607 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4608 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4609 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4610 }
4611
4612 /*
4613 * Guest TR.
4614 */
4615 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4616 {
4617 /*
4618 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4619 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4620 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4621 */
4622 uint16_t u16Sel = 0;
4623 uint32_t u32Limit = 0;
4624 uint64_t u64Base = 0;
4625 uint32_t u32AccessRights = 0;
4626
4627 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4628 {
4629 u16Sel = pMixedCtx->tr.Sel;
4630 u32Limit = pMixedCtx->tr.u32Limit;
4631 u64Base = pMixedCtx->tr.u64Base;
4632 u32AccessRights = pMixedCtx->tr.Attr.u;
4633 }
4634 else
4635 {
4636 Assert(pVM->hm.s.vmx.pRealModeTSS);
4637 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4638
4639 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4640 RTGCPHYS GCPhys;
4641 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4642 AssertRCReturn(rc, rc);
4643
4644 X86DESCATTR DescAttr;
4645 DescAttr.u = 0;
4646 DescAttr.n.u1Present = 1;
4647 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4648
4649 u16Sel = 0;
4650 u32Limit = HM_VTX_TSS_SIZE;
4651 u64Base = GCPhys; /* in real-mode phys = virt. */
4652 u32AccessRights = DescAttr.u;
4653 }
4654
4655 /* Validate. */
4656 Assert(!(u16Sel & RT_BIT(2)));
4657 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4658 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4659 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4660 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4661 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4662 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4663 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4664 Assert( (u32Limit & 0xfff) == 0xfff
4665 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4666 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4667 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4668
4669 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_TR, u16Sel); AssertRCReturn(rc, rc);
4670 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRCReturn(rc, rc);
4671 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRCReturn(rc, rc);
4672 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRCReturn(rc, rc);
4673
4674 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4675 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4676 }
4677
4678 /*
4679 * Guest GDTR.
4680 */
4681 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4682 {
4683 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt); AssertRCReturn(rc, rc);
4684 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt); AssertRCReturn(rc, rc);
4685
4686 /* Validate. */
4687 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4688
4689 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4690 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4691 }
4692
4693 /*
4694 * Guest LDTR.
4695 */
4696 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4697 {
4698 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4699 uint32_t u32Access = 0;
4700 if (!pMixedCtx->ldtr.Attr.u)
4701 u32Access = X86DESCATTR_UNUSABLE;
4702 else
4703 u32Access = pMixedCtx->ldtr.Attr.u;
4704
4705 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_LDTR, pMixedCtx->ldtr.Sel); AssertRCReturn(rc, rc);
4706 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit); AssertRCReturn(rc, rc);
4707 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base); AssertRCReturn(rc, rc);
4708 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRCReturn(rc, rc);
4709
4710 /* Validate. */
4711 if (!(u32Access & X86DESCATTR_UNUSABLE))
4712 {
4713 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4714 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4715 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4716 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4717 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4718 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4719 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4720 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4721 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4722 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4723 }
4724
4725 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4726 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4727 }
4728
4729 /*
4730 * Guest IDTR.
4731 */
4732 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4733 {
4734 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt); AssertRCReturn(rc, rc);
4735 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt); AssertRCReturn(rc, rc);
4736
4737 /* Validate. */
4738 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4739
4740 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4741 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4742 }
4743
4744 return VINF_SUCCESS;
4745}
4746
4747
4748/**
4749 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4750 * areas.
4751 *
4752 * These MSRs will automatically be loaded to the host CPU on every successful
4753 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4754 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4755 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4756 *
4757 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4758 *
4759 * @returns VBox status code.
4760 * @param pVCpu Pointer to the VMCPU.
4761 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4762 * out-of-sync. Make sure to update the required fields
4763 * before using them.
4764 *
4765 * @remarks No-long-jump zone!!!
4766 */
4767static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4768{
4769 AssertPtr(pVCpu);
4770 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4771
4772 /*
4773 * MSRs that we use the auto-load/store MSR area in the VMCS.
4774 */
4775 PVM pVM = pVCpu->CTX_SUFF(pVM);
4776 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4777 {
4778 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4779#if HC_ARCH_BITS == 32 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4780 if (pVM->hm.s.fAllow64BitGuests)
4781 {
4782 int rc = VINF_SUCCESS;
4783 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
4784 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
4785 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
4786 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
4787 AssertRCReturn(rc, rc);
4788#ifdef DEBUG
4789 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4790 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4791 {
4792 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4793 pMsr->u64Value));
4794 }
4795# endif
4796 }
4797#endif
4798 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4799 }
4800
4801 /*
4802 * Guest Sysenter MSRs.
4803 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4804 * VM-exits on WRMSRs for these MSRs.
4805 */
4806 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4807 {
4808 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4809 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4810 }
4811
4812 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4813 {
4814 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4815 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4816 }
4817
4818 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4819 {
4820 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4821 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4822 }
4823
4824 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4825 {
4826 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4827 {
4828 /*
4829 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4830 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4831 */
4832 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4833 {
4834 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4835 AssertRCReturn(rc,rc);
4836 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4837 }
4838 else
4839 {
4840 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
4841 NULL /* pfAddedAndUpdated */);
4842 AssertRCReturn(rc, rc);
4843
4844 /* We need to intercept reads too, see @bugref{7386} comment #16. */
4845 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4846 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4847 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4848 }
4849 }
4850 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4851 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4852 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4853 }
4854
4855 return VINF_SUCCESS;
4856}
4857
4858
4859/**
4860 * Loads the guest activity state into the guest-state area in the VMCS.
4861 *
4862 * @returns VBox status code.
4863 * @param pVCpu Pointer to the VMCPU.
4864 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4865 * out-of-sync. Make sure to update the required fields
4866 * before using them.
4867 *
4868 * @remarks No-long-jump zone!!!
4869 */
4870static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pCtx)
4871{
4872 NOREF(pCtx);
4873 /** @todo See if we can make use of other states, e.g.
4874 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4875 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4876 {
4877 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4878 AssertRCReturn(rc, rc);
4879
4880 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4881 }
4882 return VINF_SUCCESS;
4883}
4884
4885
4886/**
4887 * Sets up the appropriate function to run guest code.
4888 *
4889 * @returns VBox status code.
4890 * @param pVCpu Pointer to the VMCPU.
4891 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4892 * out-of-sync. Make sure to update the required fields
4893 * before using them.
4894 *
4895 * @remarks No-long-jump zone!!!
4896 */
4897static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4898{
4899 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4900 {
4901#ifndef VBOX_ENABLE_64_BITS_GUESTS
4902 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4903#endif
4904 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4905#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4906 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4907 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4908 {
4909 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4910 {
4911 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4912 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4913 | HM_CHANGED_VMX_ENTRY_CTLS
4914 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4915 }
4916 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4917 }
4918#else
4919 /* 64-bit host or hybrid host. */
4920 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4921#endif
4922 }
4923 else
4924 {
4925 /* Guest is not in long mode, use the 32-bit handler. */
4926#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
4927 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4928 {
4929 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4930 {
4931 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4932 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4933 | HM_CHANGED_VMX_ENTRY_CTLS
4934 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4935 }
4936 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4937 }
4938#else
4939 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4940#endif
4941 }
4942 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4943 return VINF_SUCCESS;
4944}
4945
4946
4947/**
4948 * Wrapper for running the guest code in VT-x.
4949 *
4950 * @returns VBox strict status code.
4951 * @param pVM Pointer to the VM.
4952 * @param pVCpu Pointer to the VMCPU.
4953 * @param pCtx Pointer to the guest-CPU context.
4954 *
4955 * @remarks No-long-jump zone!!!
4956 */
4957DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4958{
4959 /*
4960 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4961 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4962 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4963 */
4964 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4965 /** @todo Add stats for resume vs launch. */
4966#ifdef VBOX_WITH_KERNEL_USING_XMM
4967 return HMR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4968#else
4969 return pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4970#endif
4971}
4972
4973
4974/**
4975 * Reports world-switch error and dumps some useful debug info.
4976 *
4977 * @param pVM Pointer to the VM.
4978 * @param pVCpu Pointer to the VMCPU.
4979 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4980 * @param pCtx Pointer to the guest-CPU context.
4981 * @param pVmxTransient Pointer to the VMX transient structure (only
4982 * exitReason updated).
4983 */
4984static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
4985{
4986 Assert(pVM);
4987 Assert(pVCpu);
4988 Assert(pCtx);
4989 Assert(pVmxTransient);
4990 HMVMX_ASSERT_PREEMPT_SAFE();
4991
4992 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
4993 switch (rcVMRun)
4994 {
4995 case VERR_VMX_INVALID_VMXON_PTR:
4996 AssertFailed();
4997 break;
4998 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4999 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5000 {
5001 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5002 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5003 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
5004 AssertRC(rc);
5005
5006 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5007 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5008 Cannot do it here as we may have been long preempted. */
5009
5010#ifdef VBOX_STRICT
5011 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5012 pVmxTransient->uExitReason));
5013 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
5014 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5015 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5016 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5017 else
5018 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5019 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5020 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5021
5022 /* VMX control bits. */
5023 uint32_t u32Val;
5024 uint64_t u64Val;
5025 HMVMXHCUINTREG uHCReg;
5026 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5027 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5028 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5029 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5030 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5031 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5032 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5033 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5034 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5035 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5036 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5037 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5038 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5039 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5040 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5041 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5042 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5043 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5044 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5045 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5046 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5047 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5048 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5049 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5050 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5051 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5052 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5053 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5054 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5055 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5056 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5057 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5058 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5059 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5060 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5061 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5062 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5063 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5064 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5065 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5066 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5067 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5068
5069 /* Guest bits. */
5070 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5071 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5072 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5073 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5074 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5075 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5076 rc = VMXReadVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, &u32Val); AssertRC(rc);
5077 Log4(("VMX_VMCS16_GUEST_FIELD_VPID %u\n", u32Val));
5078
5079 /* Host bits. */
5080 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5081 Log4(("Host CR0 %#RHr\n", uHCReg));
5082 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5083 Log4(("Host CR3 %#RHr\n", uHCReg));
5084 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5085 Log4(("Host CR4 %#RHr\n", uHCReg));
5086
5087 RTGDTR HostGdtr;
5088 PCX86DESCHC pDesc;
5089 ASMGetGDTR(&HostGdtr);
5090 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_CS, &u32Val); AssertRC(rc);
5091 Log4(("Host CS %#08x\n", u32Val));
5092 if (u32Val < HostGdtr.cbGdt)
5093 {
5094 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5095 HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
5096 }
5097
5098 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_DS, &u32Val); AssertRC(rc);
5099 Log4(("Host DS %#08x\n", u32Val));
5100 if (u32Val < HostGdtr.cbGdt)
5101 {
5102 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5103 HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
5104 }
5105
5106 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_ES, &u32Val); AssertRC(rc);
5107 Log4(("Host ES %#08x\n", u32Val));
5108 if (u32Val < HostGdtr.cbGdt)
5109 {
5110 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5111 HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
5112 }
5113
5114 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_FS, &u32Val); AssertRC(rc);
5115 Log4(("Host FS %#08x\n", u32Val));
5116 if (u32Val < HostGdtr.cbGdt)
5117 {
5118 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5119 HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
5120 }
5121
5122 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_GS, &u32Val); AssertRC(rc);
5123 Log4(("Host GS %#08x\n", u32Val));
5124 if (u32Val < HostGdtr.cbGdt)
5125 {
5126 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5127 HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
5128 }
5129
5130 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_SS, &u32Val); AssertRC(rc);
5131 Log4(("Host SS %#08x\n", u32Val));
5132 if (u32Val < HostGdtr.cbGdt)
5133 {
5134 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5135 HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
5136 }
5137
5138 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_TR, &u32Val); AssertRC(rc);
5139 Log4(("Host TR %#08x\n", u32Val));
5140 if (u32Val < HostGdtr.cbGdt)
5141 {
5142 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5143 HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
5144 }
5145
5146 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5147 Log4(("Host TR Base %#RHv\n", uHCReg));
5148 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5149 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5150 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5151 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5152 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5153 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5154 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5155 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5156 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5157 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5158 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5159 Log4(("Host RSP %#RHv\n", uHCReg));
5160 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5161 Log4(("Host RIP %#RHv\n", uHCReg));
5162# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
5163 if (HMVMX_IS_64BIT_HOST_MODE())
5164 {
5165 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5166 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5167 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5168 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5169 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5170 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5171 }
5172# endif
5173#endif /* VBOX_STRICT */
5174 break;
5175 }
5176
5177 default:
5178 /* Impossible */
5179 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5180 break;
5181 }
5182 NOREF(pVM); NOREF(pCtx);
5183}
5184
5185
5186#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
5187#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5188# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5189#endif
5190#ifdef VBOX_STRICT
5191static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5192{
5193 switch (idxField)
5194 {
5195 case VMX_VMCS_GUEST_RIP:
5196 case VMX_VMCS_GUEST_RSP:
5197 case VMX_VMCS_GUEST_SYSENTER_EIP:
5198 case VMX_VMCS_GUEST_SYSENTER_ESP:
5199 case VMX_VMCS_GUEST_GDTR_BASE:
5200 case VMX_VMCS_GUEST_IDTR_BASE:
5201 case VMX_VMCS_GUEST_CS_BASE:
5202 case VMX_VMCS_GUEST_DS_BASE:
5203 case VMX_VMCS_GUEST_ES_BASE:
5204 case VMX_VMCS_GUEST_FS_BASE:
5205 case VMX_VMCS_GUEST_GS_BASE:
5206 case VMX_VMCS_GUEST_SS_BASE:
5207 case VMX_VMCS_GUEST_LDTR_BASE:
5208 case VMX_VMCS_GUEST_TR_BASE:
5209 case VMX_VMCS_GUEST_CR3:
5210 return true;
5211 }
5212 return false;
5213}
5214
5215static bool hmR0VmxIsValidReadField(uint32_t idxField)
5216{
5217 switch (idxField)
5218 {
5219 /* Read-only fields. */
5220 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5221 return true;
5222 }
5223 /* Remaining readable fields should also be writable. */
5224 return hmR0VmxIsValidWriteField(idxField);
5225}
5226#endif /* VBOX_STRICT */
5227
5228
5229/**
5230 * Executes the specified handler in 64-bit mode.
5231 *
5232 * @returns VBox status code.
5233 * @param pVM Pointer to the VM.
5234 * @param pVCpu Pointer to the VMCPU.
5235 * @param pCtx Pointer to the guest CPU context.
5236 * @param enmOp The operation to perform.
5237 * @param cParams Number of parameters.
5238 * @param paParam Array of 32-bit parameters.
5239 */
5240VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
5241 uint32_t cParams, uint32_t *paParam)
5242{
5243 int rc, rc2;
5244 PHMGLOBALCPUINFO pCpu;
5245 RTHCPHYS HCPhysCpuPage;
5246 RTCCUINTREG uOldEflags;
5247
5248 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5249 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5250 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5251 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5252
5253#ifdef VBOX_STRICT
5254 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5255 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5256
5257 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5258 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5259#endif
5260
5261 /* Disable interrupts. */
5262 uOldEflags = ASMIntDisableFlags();
5263
5264#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5265 RTCPUID idHostCpu = RTMpCpuId();
5266 CPUMR0SetLApic(pVCpu, idHostCpu);
5267#endif
5268
5269 pCpu = HMR0GetCurrentCpu();
5270 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
5271
5272 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5273 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5274
5275 /* Leave VMX Root Mode. */
5276 VMXDisable();
5277
5278 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5279
5280 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5281 CPUMSetHyperEIP(pVCpu, enmOp);
5282 for (int i = (int)cParams - 1; i >= 0; i--)
5283 CPUMPushHyper(pVCpu, paParam[i]);
5284
5285 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5286
5287 /* Call the switcher. */
5288 rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5289 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5290
5291 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5292 /* Make sure the VMX instructions don't cause #UD faults. */
5293 SUPR0ChangeCR4(X86_CR4_VMXE, ~0);
5294
5295 /* Re-enter VMX Root Mode */
5296 rc2 = VMXEnable(HCPhysCpuPage);
5297 if (RT_FAILURE(rc2))
5298 {
5299 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5300 ASMSetFlags(uOldEflags);
5301 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5302 return rc2;
5303 }
5304
5305 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5306 AssertRC(rc2);
5307 Assert(!(ASMGetFlags() & X86_EFL_IF));
5308 ASMSetFlags(uOldEflags);
5309 return rc;
5310}
5311
5312
5313/**
5314 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5315 * supporting 64-bit guests.
5316 *
5317 * @returns VBox status code.
5318 * @param fResume Whether to VMLAUNCH or VMRESUME.
5319 * @param pCtx Pointer to the guest-CPU context.
5320 * @param pCache Pointer to the VMCS cache.
5321 * @param pVM Pointer to the VM.
5322 * @param pVCpu Pointer to the VMCPU.
5323 */
5324DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5325{
5326 PHMGLOBALCPUINFO pCpu = NULL;
5327 RTHCPHYS HCPhysCpuPage = 0;
5328 int rc = VERR_INTERNAL_ERROR_5;
5329
5330 pCpu = HMR0GetCurrentCpu();
5331 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
5332
5333#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5334 pCache->uPos = 1;
5335 pCache->interPD = PGMGetInterPaeCR3(pVM);
5336 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5337#endif
5338
5339#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5340 pCache->TestIn.HCPhysCpuPage = 0;
5341 pCache->TestIn.HCPhysVmcs = 0;
5342 pCache->TestIn.pCache = 0;
5343 pCache->TestOut.HCPhysVmcs = 0;
5344 pCache->TestOut.pCache = 0;
5345 pCache->TestOut.pCtx = 0;
5346 pCache->TestOut.eflags = 0;
5347#endif
5348
5349 uint32_t aParam[10];
5350 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5351 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5352 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5353 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5354 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5355 aParam[5] = 0;
5356 aParam[6] = VM_RC_ADDR(pVM, pVM);
5357 aParam[7] = 0;
5358 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5359 aParam[9] = 0;
5360
5361#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5362 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5363 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5364#endif
5365 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5366
5367#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5368 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5369 Assert(pCtx->dr[4] == 10);
5370 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5371#endif
5372
5373#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5374 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5375 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5376 pVCpu->hm.s.vmx.HCPhysVmcs));
5377 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5378 pCache->TestOut.HCPhysVmcs));
5379 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5380 pCache->TestOut.pCache));
5381 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5382 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5383 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5384 pCache->TestOut.pCtx));
5385 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5386#endif
5387 return rc;
5388}
5389
5390
5391/**
5392 * Initialize the VMCS-Read cache.
5393 *
5394 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5395 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5396 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5397 * (those that have a 32-bit FULL & HIGH part).
5398 *
5399 * @returns VBox status code.
5400 * @param pVM Pointer to the VM.
5401 * @param pVCpu Pointer to the VMCPU.
5402 */
5403static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5404{
5405#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5406{ \
5407 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5408 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5409 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5410 ++cReadFields; \
5411}
5412
5413 AssertPtr(pVM);
5414 AssertPtr(pVCpu);
5415 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5416 uint32_t cReadFields = 0;
5417
5418 /*
5419 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5420 * and serve to indicate exceptions to the rules.
5421 */
5422
5423 /* Guest-natural selector base fields. */
5424#if 0
5425 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5426 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5427 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5428#endif
5429 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5430 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5431 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5432 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5433 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5434 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5435 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5436 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5437 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5438 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5439 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5440 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5441#if 0
5442 /* Unused natural width guest-state fields. */
5443 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5444 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5445#endif
5446 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5447 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5448
5449 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5450#if 0
5451 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5452 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5453 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5455 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5456 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5457 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5458 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5459 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5460#endif
5461
5462 /* Natural width guest-state fields. */
5463 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5464#if 0
5465 /* Currently unused field. */
5466 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5467#endif
5468
5469 if (pVM->hm.s.fNestedPaging)
5470 {
5471 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5472 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5473 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5474 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5475 }
5476 else
5477 {
5478 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5479 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5480 }
5481
5482#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5483 return VINF_SUCCESS;
5484}
5485
5486
5487/**
5488 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5489 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5490 * darwin, running 64-bit guests).
5491 *
5492 * @returns VBox status code.
5493 * @param pVCpu Pointer to the VMCPU.
5494 * @param idxField The VMCS field encoding.
5495 * @param u64Val 16, 32 or 64-bit value.
5496 */
5497VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5498{
5499 int rc;
5500 switch (idxField)
5501 {
5502 /*
5503 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5504 */
5505 /* 64-bit Control fields. */
5506 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5507 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5508 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5509 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5510 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5511 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5512 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5513 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5514 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5515 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5516 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5517 case VMX_VMCS64_CTRL_EPTP_FULL:
5518 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5519 /* 64-bit Guest-state fields. */
5520 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5521 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5522 case VMX_VMCS64_GUEST_PAT_FULL:
5523 case VMX_VMCS64_GUEST_EFER_FULL:
5524 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5525 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5526 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5527 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5528 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5529 /* 64-bit Host-state fields. */
5530 case VMX_VMCS64_HOST_FIELD_PAT_FULL:
5531 case VMX_VMCS64_HOST_FIELD_EFER_FULL:
5532 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5533 {
5534 rc = VMXWriteVmcs32(idxField, u64Val);
5535 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5536 break;
5537 }
5538
5539 /*
5540 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5541 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5542 */
5543 /* Natural-width Guest-state fields. */
5544 case VMX_VMCS_GUEST_CR3:
5545 case VMX_VMCS_GUEST_ES_BASE:
5546 case VMX_VMCS_GUEST_CS_BASE:
5547 case VMX_VMCS_GUEST_SS_BASE:
5548 case VMX_VMCS_GUEST_DS_BASE:
5549 case VMX_VMCS_GUEST_FS_BASE:
5550 case VMX_VMCS_GUEST_GS_BASE:
5551 case VMX_VMCS_GUEST_LDTR_BASE:
5552 case VMX_VMCS_GUEST_TR_BASE:
5553 case VMX_VMCS_GUEST_GDTR_BASE:
5554 case VMX_VMCS_GUEST_IDTR_BASE:
5555 case VMX_VMCS_GUEST_RSP:
5556 case VMX_VMCS_GUEST_RIP:
5557 case VMX_VMCS_GUEST_SYSENTER_ESP:
5558 case VMX_VMCS_GUEST_SYSENTER_EIP:
5559 {
5560 if (!(u64Val >> 32))
5561 {
5562 /* If this field is 64-bit, VT-x will zero out the top bits. */
5563 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5564 }
5565 else
5566 {
5567 /* Assert that only the 32->64 switcher case should ever come here. */
5568 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5569 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5570 }
5571 break;
5572 }
5573
5574 default:
5575 {
5576 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5577 rc = VERR_INVALID_PARAMETER;
5578 break;
5579 }
5580 }
5581 AssertRCReturn(rc, rc);
5582 return rc;
5583}
5584
5585
5586/**
5587 * Queue up a VMWRITE by using the VMCS write cache.
5588 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5589 *
5590 * @param pVCpu Pointer to the VMCPU.
5591 * @param idxField The VMCS field encoding.
5592 * @param u64Val 16, 32 or 64-bit value.
5593 */
5594VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5595{
5596 AssertPtr(pVCpu);
5597 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5598
5599 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5600 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5601
5602 /* Make sure there are no duplicates. */
5603 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5604 {
5605 if (pCache->Write.aField[i] == idxField)
5606 {
5607 pCache->Write.aFieldVal[i] = u64Val;
5608 return VINF_SUCCESS;
5609 }
5610 }
5611
5612 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5613 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5614 pCache->Write.cValidEntries++;
5615 return VINF_SUCCESS;
5616}
5617
5618/* Enable later when the assembly code uses these as callbacks. */
5619#if 0
5620/*
5621 * Loads the VMCS write-cache into the CPU (by executing VMWRITEs).
5622 *
5623 * @param pVCpu Pointer to the VMCPU.
5624 * @param pCache Pointer to the VMCS cache.
5625 *
5626 * @remarks No-long-jump zone!!!
5627 */
5628VMMR0DECL(void) VMXWriteCachedVmcsLoad(PVMCPU pVCpu, PVMCSCACHE pCache)
5629{
5630 AssertPtr(pCache);
5631 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5632 {
5633 int rc = VMXWriteVmcs64(pCache->Write.aField[i], pCache->Write.aFieldVal[i]);
5634 AssertRC(rc);
5635 }
5636 pCache->Write.cValidEntries = 0;
5637}
5638
5639
5640/**
5641 * Stores the VMCS read-cache from the CPU (by executing VMREADs).
5642 *
5643 * @param pVCpu Pointer to the VMCPU.
5644 * @param pCache Pointer to the VMCS cache.
5645 *
5646 * @remarks No-long-jump zone!!!
5647 */
5648VMMR0DECL(void) VMXReadCachedVmcsStore(PVMCPU pVCpu, PVMCSCACHE pCache)
5649{
5650 AssertPtr(pCache);
5651 for (uint32_t i = 0; i < pCache->Read.cValidEntries; i++)
5652 {
5653 int rc = VMXReadVmcs64(pCache->Read.aField[i], &pCache->Read.aFieldVal[i]);
5654 AssertRC(rc);
5655 }
5656}
5657#endif
5658#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
5659
5660
5661/**
5662 * Sets up the usage of TSC-offsetting and updates the VMCS.
5663 *
5664 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5665 * VMX preemption timer.
5666 *
5667 * @returns VBox status code.
5668 * @param pVM Pointer to the cross context VM structure.
5669 * @param pVCpu Pointer to the VMCPU.
5670 *
5671 * @remarks No-long-jump zone!!!
5672 */
5673static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5674{
5675 int rc;
5676 bool fOffsettedTsc;
5677 bool fParavirtTsc;
5678 if (pVM->hm.s.vmx.fUsePreemptTimer)
5679 {
5680 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5681 &fOffsettedTsc, &fParavirtTsc);
5682
5683 /* Make sure the returned values have sane upper and lower boundaries. */
5684 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5685 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5686 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5687 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5688
5689 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5690 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5691 }
5692 else
5693 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5694
5695 /** @todo later optimize this to be done elsewhere and not before every
5696 * VM-entry. */
5697 if (fParavirtTsc)
5698 {
5699 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5700 AssertRC(rc);
5701 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5702 }
5703
5704 if (fOffsettedTsc)
5705 {
5706 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5707 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5708
5709 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5710 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5711 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5712 }
5713 else
5714 {
5715 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5716 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5717 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5718 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5719 }
5720}
5721
5722
5723/**
5724 * Determines if an exception is a contributory exception.
5725 *
5726 * Contributory exceptions are ones which can cause double-faults unless the
5727 * original exception was a benign exception. Page-fault is intentionally not
5728 * included here as it's a conditional contributory exception.
5729 *
5730 * @returns true if the exception is contributory, false otherwise.
5731 * @param uVector The exception vector.
5732 */
5733DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5734{
5735 switch (uVector)
5736 {
5737 case X86_XCPT_GP:
5738 case X86_XCPT_SS:
5739 case X86_XCPT_NP:
5740 case X86_XCPT_TS:
5741 case X86_XCPT_DE:
5742 return true;
5743 default:
5744 break;
5745 }
5746 return false;
5747}
5748
5749
5750/**
5751 * Sets an event as a pending event to be injected into the guest.
5752 *
5753 * @param pVCpu Pointer to the VMCPU.
5754 * @param u32IntInfo The VM-entry interruption-information field.
5755 * @param cbInstr The VM-entry instruction length in bytes (for software
5756 * interrupts, exceptions and privileged software
5757 * exceptions).
5758 * @param u32ErrCode The VM-entry exception error code.
5759 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5760 * page-fault.
5761 *
5762 * @remarks Statistics counter assumes this is a guest event being injected or
5763 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5764 * always incremented.
5765 */
5766DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5767 RTGCUINTPTR GCPtrFaultAddress)
5768{
5769 Assert(!pVCpu->hm.s.Event.fPending);
5770 pVCpu->hm.s.Event.fPending = true;
5771 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5772 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5773 pVCpu->hm.s.Event.cbInstr = cbInstr;
5774 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5775
5776 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5777}
5778
5779
5780/**
5781 * Sets a double-fault (#DF) exception as pending-for-injection into the VM.
5782 *
5783 * @param pVCpu Pointer to the VMCPU.
5784 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5785 * out-of-sync. Make sure to update the required fields
5786 * before using them.
5787 */
5788DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5789{
5790 NOREF(pMixedCtx);
5791 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5792 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5793 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5794 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5795}
5796
5797
5798/**
5799 * Handle a condition that occurred while delivering an event through the guest
5800 * IDT.
5801 *
5802 * @returns VBox status code (informational error codes included).
5803 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5804 * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
5805 * continue execution of the guest which will delivery the #DF.
5806 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5807 *
5808 * @param pVCpu Pointer to the VMCPU.
5809 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5810 * out-of-sync. Make sure to update the required fields
5811 * before using them.
5812 * @param pVmxTransient Pointer to the VMX transient structure.
5813 *
5814 * @remarks No-long-jump zone!!!
5815 */
5816static int hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5817{
5818 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5819
5820 int rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
5821 AssertRCReturn(rc, rc);
5822 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
5823 AssertRCReturn(rc, rc);
5824
5825 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5826 {
5827 uint32_t uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5828 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5829
5830 typedef enum
5831 {
5832 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5833 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5834 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5835 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
5836 } VMXREFLECTXCPT;
5837
5838 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5839 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
5840 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5841 {
5842 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
5843 {
5844 enmReflect = VMXREFLECTXCPT_XCPT;
5845#ifdef VBOX_STRICT
5846 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
5847 && uExitVector == X86_XCPT_PF)
5848 {
5849 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5850 }
5851#endif
5852 if ( uExitVector == X86_XCPT_PF
5853 && uIdtVector == X86_XCPT_PF)
5854 {
5855 pVmxTransient->fVectoringDoublePF = true;
5856 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5857 }
5858 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
5859 && hmR0VmxIsContributoryXcpt(uExitVector)
5860 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
5861 || uIdtVector == X86_XCPT_PF))
5862 {
5863 enmReflect = VMXREFLECTXCPT_DF;
5864 }
5865 else if (uIdtVector == X86_XCPT_DF)
5866 enmReflect = VMXREFLECTXCPT_TF;
5867 }
5868 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5869 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5870 {
5871 /*
5872 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
5873 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
5874 */
5875 enmReflect = VMXREFLECTXCPT_XCPT;
5876
5877 if (uExitVector == X86_XCPT_PF)
5878 {
5879 pVmxTransient->fVectoringPF = true;
5880 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5881 }
5882 }
5883 }
5884 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5885 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5886 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5887 {
5888 /*
5889 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5890 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
5891 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
5892 */
5893 enmReflect = VMXREFLECTXCPT_XCPT;
5894 }
5895
5896 /*
5897 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
5898 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
5899 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
5900 *
5901 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5902 */
5903 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5904 && enmReflect == VMXREFLECTXCPT_XCPT
5905 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
5906 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5907 {
5908 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5909 }
5910
5911 switch (enmReflect)
5912 {
5913 case VMXREFLECTXCPT_XCPT:
5914 {
5915 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5916 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5917 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5918
5919 uint32_t u32ErrCode = 0;
5920 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5921 {
5922 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5923 AssertRCReturn(rc, rc);
5924 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5925 }
5926
5927 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
5928 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5929 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5930 rc = VINF_SUCCESS;
5931 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
5932 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
5933
5934 break;
5935 }
5936
5937 case VMXREFLECTXCPT_DF:
5938 {
5939 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
5940 rc = VINF_HM_DOUBLE_FAULT;
5941 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
5942 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5943
5944 break;
5945 }
5946
5947 case VMXREFLECTXCPT_TF:
5948 {
5949 rc = VINF_EM_RESET;
5950 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
5951 uExitVector));
5952 break;
5953 }
5954
5955 default:
5956 Assert(rc == VINF_SUCCESS);
5957 break;
5958 }
5959 }
5960 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
5961 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
5962 && uExitVector != X86_XCPT_DF
5963 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
5964 {
5965 /*
5966 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
5967 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
5968 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
5969 */
5970 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5971 {
5972 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
5973 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
5974 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
5975 }
5976 }
5977
5978 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
5979 return rc;
5980}
5981
5982
5983/**
5984 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
5985 *
5986 * @returns VBox status code.
5987 * @param pVCpu Pointer to the VMCPU.
5988 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5989 * out-of-sync. Make sure to update the required fields
5990 * before using them.
5991 *
5992 * @remarks No-long-jump zone!!!
5993 */
5994static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5995{
5996 NOREF(pMixedCtx);
5997
5998 /*
5999 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
6000 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
6001 */
6002 VMMRZCallRing3Disable(pVCpu);
6003 HM_DISABLE_PREEMPT();
6004
6005 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
6006 {
6007 uint32_t uVal = 0;
6008 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
6009 AssertRCReturn(rc, rc);
6010
6011 uint32_t uShadow = 0;
6012 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
6013 AssertRCReturn(rc, rc);
6014
6015 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
6016 CPUMSetGuestCR0(pVCpu, uVal);
6017 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
6018 }
6019
6020 HM_RESTORE_PREEMPT();
6021 VMMRZCallRing3Enable(pVCpu);
6022 return VINF_SUCCESS;
6023}
6024
6025
6026/**
6027 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
6028 *
6029 * @returns VBox status code.
6030 * @param pVCpu Pointer to the VMCPU.
6031 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6032 * out-of-sync. Make sure to update the required fields
6033 * before using them.
6034 *
6035 * @remarks No-long-jump zone!!!
6036 */
6037static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6038{
6039 NOREF(pMixedCtx);
6040
6041 int rc = VINF_SUCCESS;
6042 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
6043 {
6044 uint32_t uVal = 0;
6045 uint32_t uShadow = 0;
6046 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
6047 AssertRCReturn(rc, rc);
6048 rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
6049 AssertRCReturn(rc, rc);
6050
6051 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
6052 CPUMSetGuestCR4(pVCpu, uVal);
6053 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
6054 }
6055 return rc;
6056}
6057
6058
6059/**
6060 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
6061 *
6062 * @returns VBox status code.
6063 * @param pVCpu Pointer to the VMCPU.
6064 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6065 * out-of-sync. Make sure to update the required fields
6066 * before using them.
6067 *
6068 * @remarks No-long-jump zone!!!
6069 */
6070static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6071{
6072 int rc = VINF_SUCCESS;
6073 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6074 {
6075 uint64_t u64Val = 0;
6076 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6077 AssertRCReturn(rc, rc);
6078
6079 pMixedCtx->rip = u64Val;
6080 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6081 }
6082 return rc;
6083}
6084
6085
6086/**
6087 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6088 *
6089 * @returns VBox status code.
6090 * @param pVCpu Pointer to the VMCPU.
6091 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6092 * out-of-sync. Make sure to update the required fields
6093 * before using them.
6094 *
6095 * @remarks No-long-jump zone!!!
6096 */
6097static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6098{
6099 int rc = VINF_SUCCESS;
6100 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6101 {
6102 uint64_t u64Val = 0;
6103 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6104 AssertRCReturn(rc, rc);
6105
6106 pMixedCtx->rsp = u64Val;
6107 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6108 }
6109 return rc;
6110}
6111
6112
6113/**
6114 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6115 *
6116 * @returns VBox status code.
6117 * @param pVCpu Pointer to the VMCPU.
6118 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6119 * out-of-sync. Make sure to update the required fields
6120 * before using them.
6121 *
6122 * @remarks No-long-jump zone!!!
6123 */
6124static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6125{
6126 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6127 {
6128 uint32_t uVal = 0;
6129 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6130 AssertRCReturn(rc, rc);
6131
6132 pMixedCtx->eflags.u32 = uVal;
6133 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6134 {
6135 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6136 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6137
6138 pMixedCtx->eflags.Bits.u1VM = 0;
6139 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6140 }
6141
6142 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6143 }
6144 return VINF_SUCCESS;
6145}
6146
6147
6148/**
6149 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6150 * guest-CPU context.
6151 */
6152DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6153{
6154 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6155 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6156 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6157 return rc;
6158}
6159
6160
6161/**
6162 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6163 * from the guest-state area in the VMCS.
6164 *
6165 * @param pVCpu Pointer to the VMCPU.
6166 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6167 * out-of-sync. Make sure to update the required fields
6168 * before using them.
6169 *
6170 * @remarks No-long-jump zone!!!
6171 */
6172static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6173{
6174 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6175 {
6176 uint32_t uIntrState = 0;
6177 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6178 AssertRC(rc);
6179
6180 if (!uIntrState)
6181 {
6182 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6183 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6184
6185 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6186 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6187 }
6188 else
6189 {
6190 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6191 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6192 {
6193 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6194 AssertRC(rc);
6195 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6196 AssertRC(rc);
6197
6198 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6199 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6200 }
6201 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6202 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6203
6204 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6205 {
6206 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6207 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6208 }
6209 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6210 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6211 }
6212
6213 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6214 }
6215}
6216
6217
6218/**
6219 * Saves the guest's activity state.
6220 *
6221 * @returns VBox status code.
6222 * @param pVCpu Pointer to the VMCPU.
6223 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6224 * out-of-sync. Make sure to update the required fields
6225 * before using them.
6226 *
6227 * @remarks No-long-jump zone!!!
6228 */
6229static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6230{
6231 NOREF(pMixedCtx);
6232 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6233 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6234 return VINF_SUCCESS;
6235}
6236
6237
6238/**
6239 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6240 * the current VMCS into the guest-CPU context.
6241 *
6242 * @returns VBox status code.
6243 * @param pVCpu Pointer to the VMCPU.
6244 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6245 * out-of-sync. Make sure to update the required fields
6246 * before using them.
6247 *
6248 * @remarks No-long-jump zone!!!
6249 */
6250static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6251{
6252 int rc = VINF_SUCCESS;
6253 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6254 {
6255 uint32_t u32Val = 0;
6256 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6257 pMixedCtx->SysEnter.cs = u32Val;
6258 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6259 }
6260
6261 uint64_t u64Val = 0;
6262 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6263 {
6264 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6265 pMixedCtx->SysEnter.eip = u64Val;
6266 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6267 }
6268 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6269 {
6270 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6271 pMixedCtx->SysEnter.esp = u64Val;
6272 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6273 }
6274 return rc;
6275}
6276
6277
6278/**
6279 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6280 * the CPU back into the guest-CPU context.
6281 *
6282 * @returns VBox status code.
6283 * @param pVCpu Pointer to the VMCPU.
6284 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6285 * out-of-sync. Make sure to update the required fields
6286 * before using them.
6287 *
6288 * @remarks No-long-jump zone!!!
6289 */
6290static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6291{
6292#if HC_ARCH_BITS == 64
6293 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
6294 {
6295 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6296 VMMRZCallRing3Disable(pVCpu);
6297 HM_DISABLE_PREEMPT();
6298
6299 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6300 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6301 {
6302 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6303 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6304 }
6305
6306 HM_RESTORE_PREEMPT();
6307 VMMRZCallRing3Enable(pVCpu);
6308 }
6309 else
6310 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6311#else
6312 NOREF(pMixedCtx);
6313 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6314#endif
6315
6316 return VINF_SUCCESS;
6317}
6318
6319
6320/**
6321 * Saves the auto load/store'd guest MSRs from the current VMCS into
6322 * the guest-CPU context.
6323 *
6324 * @returns VBox status code.
6325 * @param pVCpu Pointer to the VMCPU.
6326 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6327 * out-of-sync. Make sure to update the required fields
6328 * before using them.
6329 *
6330 * @remarks No-long-jump zone!!!
6331 */
6332static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6333{
6334 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6335 return VINF_SUCCESS;
6336
6337 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6338 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6339 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6340 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6341 {
6342 switch (pMsr->u32Msr)
6343 {
6344 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6345 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6346 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6347 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6348 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6349 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6350 break;
6351
6352 default:
6353 {
6354 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6355 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6356 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6357 }
6358 }
6359 }
6360
6361 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6362 return VINF_SUCCESS;
6363}
6364
6365
6366/**
6367 * Saves the guest control registers from the current VMCS into the guest-CPU
6368 * context.
6369 *
6370 * @returns VBox status code.
6371 * @param pVCpu Pointer to the VMCPU.
6372 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6373 * out-of-sync. Make sure to update the required fields
6374 * before using them.
6375 *
6376 * @remarks No-long-jump zone!!!
6377 */
6378static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6379{
6380 /* Guest CR0. Guest FPU. */
6381 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6382 AssertRCReturn(rc, rc);
6383
6384 /* Guest CR4. */
6385 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6386 AssertRCReturn(rc, rc);
6387
6388 /* Guest CR2 - updated always during the world-switch or in #PF. */
6389 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6390 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6391 {
6392 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6393 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6394
6395 PVM pVM = pVCpu->CTX_SUFF(pVM);
6396 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6397 || ( pVM->hm.s.fNestedPaging
6398 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6399 {
6400 uint64_t u64Val = 0;
6401 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6402 if (pMixedCtx->cr3 != u64Val)
6403 {
6404 CPUMSetGuestCR3(pVCpu, u64Val);
6405 if (VMMRZCallRing3IsEnabled(pVCpu))
6406 {
6407 PGMUpdateCR3(pVCpu, u64Val);
6408 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6409 }
6410 else
6411 {
6412 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6413 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6414 }
6415 }
6416
6417 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6418 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6419 {
6420 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
6421 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
6422 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
6423 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
6424
6425 if (VMMRZCallRing3IsEnabled(pVCpu))
6426 {
6427 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6428 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6429 }
6430 else
6431 {
6432 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6433 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6434 }
6435 }
6436 }
6437
6438 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6439 }
6440
6441 /*
6442 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6443 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6444 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6445 *
6446 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6447 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6448 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6449 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6450 *
6451 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6452 */
6453 if (VMMRZCallRing3IsEnabled(pVCpu))
6454 {
6455 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6456 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6457
6458 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6459 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6460
6461 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6462 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6463 }
6464
6465 return rc;
6466}
6467
6468
6469/**
6470 * Reads a guest segment register from the current VMCS into the guest-CPU
6471 * context.
6472 *
6473 * @returns VBox status code.
6474 * @param pVCpu Pointer to the VMCPU.
6475 * @param idxSel Index of the selector in the VMCS.
6476 * @param idxLimit Index of the segment limit in the VMCS.
6477 * @param idxBase Index of the segment base in the VMCS.
6478 * @param idxAccess Index of the access rights of the segment in the VMCS.
6479 * @param pSelReg Pointer to the segment selector.
6480 *
6481 * @remarks No-long-jump zone!!!
6482 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6483 * macro as that takes care of whether to read from the VMCS cache or
6484 * not.
6485 */
6486DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6487 PCPUMSELREG pSelReg)
6488{
6489 NOREF(pVCpu);
6490
6491 uint32_t u32Val = 0;
6492 int rc = VMXReadVmcs32(idxSel, &u32Val);
6493 AssertRCReturn(rc, rc);
6494 pSelReg->Sel = (uint16_t)u32Val;
6495 pSelReg->ValidSel = (uint16_t)u32Val;
6496 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6497
6498 rc = VMXReadVmcs32(idxLimit, &u32Val);
6499 AssertRCReturn(rc, rc);
6500 pSelReg->u32Limit = u32Val;
6501
6502 uint64_t u64Val = 0;
6503 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6504 AssertRCReturn(rc, rc);
6505 pSelReg->u64Base = u64Val;
6506
6507 rc = VMXReadVmcs32(idxAccess, &u32Val);
6508 AssertRCReturn(rc, rc);
6509 pSelReg->Attr.u = u32Val;
6510
6511 /*
6512 * If VT-x marks the segment as unusable, most other bits remain undefined:
6513 * - For CS the L, D and G bits have meaning.
6514 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6515 * - For the remaining data segments no bits are defined.
6516 *
6517 * The present bit and the unusable bit has been observed to be set at the
6518 * same time (the selector was supposed to be invalid as we started executing
6519 * a V8086 interrupt in ring-0).
6520 *
6521 * What should be important for the rest of the VBox code, is that the P bit is
6522 * cleared. Some of the other VBox code recognizes the unusable bit, but
6523 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6524 * safe side here, we'll strip off P and other bits we don't care about. If
6525 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6526 *
6527 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6528 */
6529 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6530 {
6531 Assert(idxSel != VMX_VMCS16_GUEST_FIELD_TR); /* TR is the only selector that can never be unusable. */
6532
6533 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6534 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6535 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6536
6537 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6538#ifdef DEBUG_bird
6539 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6540 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6541 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6542#endif
6543 }
6544 return VINF_SUCCESS;
6545}
6546
6547
6548#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6549# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6550 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6551 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6552#else
6553# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6554 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6555 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6556#endif
6557
6558
6559/**
6560 * Saves the guest segment registers from the current VMCS into the guest-CPU
6561 * context.
6562 *
6563 * @returns VBox status code.
6564 * @param pVCpu Pointer to the VMCPU.
6565 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6566 * out-of-sync. Make sure to update the required fields
6567 * before using them.
6568 *
6569 * @remarks No-long-jump zone!!!
6570 */
6571static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6572{
6573 /* Guest segment registers. */
6574 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6575 {
6576 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); AssertRCReturn(rc, rc);
6577 rc = VMXLOCAL_READ_SEG(CS, cs); AssertRCReturn(rc, rc);
6578 rc = VMXLOCAL_READ_SEG(SS, ss); AssertRCReturn(rc, rc);
6579 rc = VMXLOCAL_READ_SEG(DS, ds); AssertRCReturn(rc, rc);
6580 rc = VMXLOCAL_READ_SEG(ES, es); AssertRCReturn(rc, rc);
6581 rc = VMXLOCAL_READ_SEG(FS, fs); AssertRCReturn(rc, rc);
6582 rc = VMXLOCAL_READ_SEG(GS, gs); AssertRCReturn(rc, rc);
6583
6584 /* Restore segment attributes for real-on-v86 mode hack. */
6585 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6586 {
6587 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6588 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6589 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6590 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6591 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6592 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6593 }
6594 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6595 }
6596
6597 return VINF_SUCCESS;
6598}
6599
6600
6601/**
6602 * Saves the guest descriptor table registers and task register from the current
6603 * VMCS into the guest-CPU context.
6604 *
6605 * @returns VBox status code.
6606 * @param pVCpu Pointer to the VMCPU.
6607 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6608 * out-of-sync. Make sure to update the required fields
6609 * before using them.
6610 *
6611 * @remarks No-long-jump zone!!!
6612 */
6613static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6614{
6615 int rc = VINF_SUCCESS;
6616
6617 /* Guest LDTR. */
6618 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6619 {
6620 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6621 AssertRCReturn(rc, rc);
6622 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6623 }
6624
6625 /* Guest GDTR. */
6626 uint64_t u64Val = 0;
6627 uint32_t u32Val = 0;
6628 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6629 {
6630 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
6631 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6632 pMixedCtx->gdtr.pGdt = u64Val;
6633 pMixedCtx->gdtr.cbGdt = u32Val;
6634 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6635 }
6636
6637 /* Guest IDTR. */
6638 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6639 {
6640 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
6641 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6642 pMixedCtx->idtr.pIdt = u64Val;
6643 pMixedCtx->idtr.cbIdt = u32Val;
6644 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6645 }
6646
6647 /* Guest TR. */
6648 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6649 {
6650 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6651 AssertRCReturn(rc, rc);
6652
6653 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6654 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6655 {
6656 rc = VMXLOCAL_READ_SEG(TR, tr);
6657 AssertRCReturn(rc, rc);
6658 }
6659 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6660 }
6661 return rc;
6662}
6663
6664#undef VMXLOCAL_READ_SEG
6665
6666
6667/**
6668 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6669 * context.
6670 *
6671 * @returns VBox status code.
6672 * @param pVCpu Pointer to the VMCPU.
6673 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6674 * out-of-sync. Make sure to update the required fields
6675 * before using them.
6676 *
6677 * @remarks No-long-jump zone!!!
6678 */
6679static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6680{
6681 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG))
6682 {
6683 if (!pVCpu->hm.s.fUsingHyperDR7)
6684 {
6685 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6686 uint32_t u32Val;
6687 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6688 pMixedCtx->dr[7] = u32Val;
6689 }
6690
6691 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG);
6692 }
6693 return VINF_SUCCESS;
6694}
6695
6696
6697/**
6698 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6699 *
6700 * @returns VBox status code.
6701 * @param pVCpu Pointer to the VMCPU.
6702 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6703 * out-of-sync. Make sure to update the required fields
6704 * before using them.
6705 *
6706 * @remarks No-long-jump zone!!!
6707 */
6708static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6709{
6710 NOREF(pMixedCtx);
6711
6712 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6713 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6714 return VINF_SUCCESS;
6715}
6716
6717
6718/**
6719 * Saves the entire guest state from the currently active VMCS into the
6720 * guest-CPU context.
6721 *
6722 * This essentially VMREADs all guest-data.
6723 *
6724 * @returns VBox status code.
6725 * @param pVCpu Pointer to the VMCPU.
6726 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6727 * out-of-sync. Make sure to update the required fields
6728 * before using them.
6729 */
6730static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6731{
6732 Assert(pVCpu);
6733 Assert(pMixedCtx);
6734
6735 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6736 return VINF_SUCCESS;
6737
6738 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6739 again on the ring-3 callback path, there is no real need to. */
6740 if (VMMRZCallRing3IsEnabled(pVCpu))
6741 VMMR0LogFlushDisable(pVCpu);
6742 else
6743 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6744 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6745
6746 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6747 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6748
6749 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6750 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6751
6752 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6753 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6754
6755 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6756 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6757
6758 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
6759 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6760
6761 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
6762 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6763
6764 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6765 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6766
6767 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6768 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6769
6770 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
6771 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6772
6773 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
6774 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6775
6776 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
6777 ("Missed guest state bits while saving state; residue %RX32\n", HMVMXCPU_GST_VALUE(pVCpu)));
6778
6779 if (VMMRZCallRing3IsEnabled(pVCpu))
6780 VMMR0LogFlushEnable(pVCpu);
6781
6782 return VINF_SUCCESS;
6783}
6784
6785
6786/**
6787 * Saves basic guest registers needed for IEM instruction execution.
6788 *
6789 * @returns VBox status code (OR-able).
6790 * @param pVCpu Pointer to the cross context CPU data for the calling
6791 * EMT.
6792 * @param pMixedCtx Pointer to the CPU context of the guest.
6793 * @param fMemory Whether the instruction being executed operates on
6794 * memory or not. Only CR0 is synced up if clear.
6795 * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
6796 */
6797static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
6798{
6799 /*
6800 * We assume all general purpose registers other than RSP are available.
6801 *
6802 * RIP is a must, as it will be incremented or otherwise changed.
6803 *
6804 * RFLAGS are always required to figure the CPL.
6805 *
6806 * RSP isn't always required, however it's a GPR, so frequently required.
6807 *
6808 * SS and CS are the only segment register needed if IEM doesn't do memory
6809 * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
6810 *
6811 * CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
6812 * be required for memory accesses.
6813 *
6814 * Note! Before IEM dispatches an exception, it will call us to sync in everything.
6815 */
6816 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6817 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6818 if (fNeedRsp)
6819 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6820 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6821 if (!fMemory)
6822 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6823 else
6824 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6825 return rc;
6826}
6827
6828
6829/**
6830 * Ensures that we've got a complete basic guest-context.
6831 *
6832 * This excludes the FPU, SSE, AVX, and similar extended state. The interface
6833 * is for the interpreter.
6834 *
6835 * @returns VBox status code.
6836 * @param pVCpu Pointer to the VMCPU of the calling EMT.
6837 * @param pMixedCtx Pointer to the guest-CPU context which may have data
6838 * needing to be synced in.
6839 * @thread EMT(pVCpu)
6840 */
6841VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6842{
6843 /* Note! Since this is only applicable to VT-x, the implementation is placed
6844 in the VT-x part of the sources instead of the generic stuff. */
6845 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
6846 return hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6847 return VINF_SUCCESS;
6848}
6849
6850
6851/**
6852 * Check per-VM and per-VCPU force flag actions that require us to go back to
6853 * ring-3 for one reason or another.
6854 *
6855 * @returns VBox status code (information status code included).
6856 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6857 * ring-3.
6858 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6859 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6860 * interrupts)
6861 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6862 * all EMTs to be in ring-3.
6863 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6864 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6865 * to the EM loop.
6866 *
6867 * @param pVM Pointer to the VM.
6868 * @param pVCpu Pointer to the VMCPU.
6869 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6870 * out-of-sync. Make sure to update the required fields
6871 * before using them.
6872 */
6873static int hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6874{
6875 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6876
6877 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
6878 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
6879 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
6880 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6881 {
6882 /* We need the control registers now, make sure the guest-CPU context is updated. */
6883 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6884 AssertRCReturn(rc3, rc3);
6885
6886 /* Pending HM CR3 sync. */
6887 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6888 {
6889 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
6890 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
6891 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
6892 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6893 }
6894
6895 /* Pending HM PAE PDPEs. */
6896 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6897 {
6898 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6899 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6900 }
6901
6902 /* Pending PGM C3 sync. */
6903 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6904 {
6905 int rc2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
6906 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6907 if (rc2 != VINF_SUCCESS)
6908 {
6909 AssertRC(rc2);
6910 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", rc2));
6911 return rc2;
6912 }
6913 }
6914
6915 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6916 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6917 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6918 {
6919 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6920 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6921 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6922 return rc2;
6923 }
6924
6925 /* Pending VM request packets, such as hardware interrupts. */
6926 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6927 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6928 {
6929 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
6930 return VINF_EM_PENDING_REQUEST;
6931 }
6932
6933 /* Pending PGM pool flushes. */
6934 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6935 {
6936 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
6937 return VINF_PGM_POOL_FLUSH_PENDING;
6938 }
6939
6940 /* Pending DMA requests. */
6941 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6942 {
6943 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
6944 return VINF_EM_RAW_TO_R3;
6945 }
6946 }
6947
6948 return VINF_SUCCESS;
6949}
6950
6951
6952/**
6953 * Converts any TRPM trap into a pending HM event. This is typically used when
6954 * entering from ring-3 (not longjmp returns).
6955 *
6956 * @param pVCpu Pointer to the VMCPU.
6957 */
6958static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6959{
6960 Assert(TRPMHasTrap(pVCpu));
6961 Assert(!pVCpu->hm.s.Event.fPending);
6962
6963 uint8_t uVector;
6964 TRPMEVENT enmTrpmEvent;
6965 RTGCUINT uErrCode;
6966 RTGCUINTPTR GCPtrFaultAddress;
6967 uint8_t cbInstr;
6968
6969 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6970 AssertRC(rc);
6971
6972 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6973 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
6974 if (enmTrpmEvent == TRPM_TRAP)
6975 {
6976 switch (uVector)
6977 {
6978 case X86_XCPT_NMI:
6979 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6980 break;
6981
6982 case X86_XCPT_BP:
6983 case X86_XCPT_OF:
6984 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6985 break;
6986
6987 case X86_XCPT_PF:
6988 case X86_XCPT_DF:
6989 case X86_XCPT_TS:
6990 case X86_XCPT_NP:
6991 case X86_XCPT_SS:
6992 case X86_XCPT_GP:
6993 case X86_XCPT_AC:
6994 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6995 /* no break! */
6996 default:
6997 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6998 break;
6999 }
7000 }
7001 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7002 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7003 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7004 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7005 else
7006 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7007
7008 rc = TRPMResetTrap(pVCpu);
7009 AssertRC(rc);
7010 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7011 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7012
7013 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7014 STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
7015}
7016
7017
7018/**
7019 * Converts any pending HM event into a TRPM trap. Typically used when leaving
7020 * VT-x to execute any instruction.
7021 *
7022 * @param pvCpu Pointer to the VMCPU.
7023 */
7024static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7025{
7026 Assert(pVCpu->hm.s.Event.fPending);
7027
7028 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7029 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7030 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
7031 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7032
7033 /* If a trap was already pending, we did something wrong! */
7034 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7035
7036 TRPMEVENT enmTrapType;
7037 switch (uVectorType)
7038 {
7039 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7040 enmTrapType = TRPM_HARDWARE_INT;
7041 break;
7042
7043 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7044 enmTrapType = TRPM_SOFTWARE_INT;
7045 break;
7046
7047 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7048 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7049 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7050 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7051 enmTrapType = TRPM_TRAP;
7052 break;
7053
7054 default:
7055 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7056 enmTrapType = TRPM_32BIT_HACK;
7057 break;
7058 }
7059
7060 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7061
7062 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7063 AssertRC(rc);
7064
7065 if (fErrorCodeValid)
7066 TRPMSetErrorCode(pVCpu, uErrorCode);
7067
7068 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7069 && uVector == X86_XCPT_PF)
7070 {
7071 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7072 }
7073 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7074 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7075 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7076 {
7077 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7078 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7079 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7080 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7081 }
7082 pVCpu->hm.s.Event.fPending = false;
7083}
7084
7085
7086/**
7087 * Does the necessary state syncing before returning to ring-3 for any reason
7088 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7089 *
7090 * @returns VBox status code.
7091 * @param pVM Pointer to the VM.
7092 * @param pVCpu Pointer to the VMCPU.
7093 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7094 * be out-of-sync. Make sure to update the required
7095 * fields before using them.
7096 * @param fSaveGuestState Whether to save the guest state or not.
7097 *
7098 * @remarks No-long-jmp zone!!!
7099 */
7100static int hmR0VmxLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
7101{
7102 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7103 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7104
7105 RTCPUID idCpu = RTMpCpuId();
7106 Log4Func(("HostCpuId=%u\n", idCpu));
7107
7108 /*
7109 * !!! IMPORTANT !!!
7110 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7111 */
7112
7113 /* Save the guest state if necessary. */
7114 if ( fSaveGuestState
7115 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
7116 {
7117 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7118 AssertRCReturn(rc, rc);
7119 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7120 }
7121
7122 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
7123 if (CPUMIsGuestFPUStateActive(pVCpu))
7124 {
7125 /* We shouldn't reload CR0 without saving it first. */
7126 if (!fSaveGuestState)
7127 {
7128 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7129 AssertRCReturn(rc, rc);
7130 }
7131 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
7132 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7133 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7134 }
7135
7136 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7137#ifdef VBOX_STRICT
7138 if (CPUMIsHyperDebugStateActive(pVCpu))
7139 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7140#endif
7141 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7142 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7143 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7144 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7145
7146#if HC_ARCH_BITS == 64
7147 /* Restore host-state bits that VT-x only restores partially. */
7148 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7149 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7150 {
7151 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7152 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7153 }
7154 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7155#endif
7156
7157#if HC_ARCH_BITS == 64
7158 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7159 if ( pVM->hm.s.fAllow64BitGuests
7160 && pVCpu->hm.s.vmx.fLazyMsrs)
7161 {
7162 /* We shouldn't reload the guest MSRs without saving it first. */
7163 if (!fSaveGuestState)
7164 {
7165 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7166 AssertRCReturn(rc, rc);
7167 }
7168 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7169 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7170 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7171 }
7172#endif
7173
7174 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7175 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7176
7177 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7178 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7179 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7180 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7181 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7182 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7183 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7184 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7185
7186 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7187
7188 /** @todo This partially defeats the purpose of having preemption hooks.
7189 * The problem is, deregistering the hooks should be moved to a place that
7190 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7191 * context.
7192 */
7193 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7194 {
7195 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7196 AssertRCReturn(rc, rc);
7197
7198 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7199 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7200 }
7201 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7202 NOREF(idCpu);
7203
7204 return VINF_SUCCESS;
7205}
7206
7207
7208/**
7209 * Leaves the VT-x session.
7210 *
7211 * @returns VBox status code.
7212 * @param pVM Pointer to the VM.
7213 * @param pVCpu Pointer to the VMCPU.
7214 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7215 * out-of-sync. Make sure to update the required fields
7216 * before using them.
7217 *
7218 * @remarks No-long-jmp zone!!!
7219 */
7220DECLINLINE(int) hmR0VmxLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7221{
7222 HM_DISABLE_PREEMPT();
7223 HMVMX_ASSERT_CPU_SAFE();
7224 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7225 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7226
7227 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7228 and done this from the VMXR0ThreadCtxCallback(). */
7229 if (!pVCpu->hm.s.fLeaveDone)
7230 {
7231 int rc2 = hmR0VmxLeave(pVM, pVCpu, pMixedCtx, true /* fSaveGuestState */);
7232 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7233 pVCpu->hm.s.fLeaveDone = true;
7234 }
7235 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7236
7237 /*
7238 * !!! IMPORTANT !!!
7239 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7240 */
7241
7242 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7243 /** @todo Deregistering here means we need to VMCLEAR always
7244 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7245 VMMR0ThreadCtxHooksDeregister(pVCpu);
7246
7247 /* Leave HM context. This takes care of local init (term). */
7248 int rc = HMR0LeaveCpu(pVCpu);
7249
7250 HM_RESTORE_PREEMPT();
7251 return rc;
7252}
7253
7254
7255/**
7256 * Does the necessary state syncing before doing a longjmp to ring-3.
7257 *
7258 * @returns VBox status code.
7259 * @param pVM Pointer to the VM.
7260 * @param pVCpu Pointer to the VMCPU.
7261 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7262 * out-of-sync. Make sure to update the required fields
7263 * before using them.
7264 *
7265 * @remarks No-long-jmp zone!!!
7266 */
7267DECLINLINE(int) hmR0VmxLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7268{
7269 return hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
7270}
7271
7272
7273/**
7274 * Take necessary actions before going back to ring-3.
7275 *
7276 * An action requires us to go back to ring-3. This function does the necessary
7277 * steps before we can safely return to ring-3. This is not the same as longjmps
7278 * to ring-3, this is voluntary and prepares the guest so it may continue
7279 * executing outside HM (recompiler/IEM).
7280 *
7281 * @returns VBox status code.
7282 * @param pVM Pointer to the VM.
7283 * @param pVCpu Pointer to the VMCPU.
7284 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7285 * out-of-sync. Make sure to update the required fields
7286 * before using them.
7287 * @param rcExit The reason for exiting to ring-3. Can be
7288 * VINF_VMM_UNKNOWN_RING3_CALL.
7289 */
7290static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, int rcExit)
7291{
7292 Assert(pVM);
7293 Assert(pVCpu);
7294 Assert(pMixedCtx);
7295 HMVMX_ASSERT_PREEMPT_SAFE();
7296
7297 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7298 {
7299 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7300 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7301 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7302 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7303 }
7304
7305 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7306 VMMRZCallRing3Disable(pVCpu);
7307 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, rcExit));
7308
7309 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7310 if (pVCpu->hm.s.Event.fPending)
7311 {
7312 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7313 Assert(!pVCpu->hm.s.Event.fPending);
7314 }
7315
7316 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7317 and if we're injecting an event we should have a TRPM trap pending. */
7318 Assert(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu));
7319 Assert(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu));
7320
7321 /* Save guest state and restore host state bits. */
7322 int rc = hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
7323 AssertRCReturn(rc, rc);
7324 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7325 /* Thread-context hooks are unregistered at this point!!! */
7326
7327 /* Sync recompiler state. */
7328 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7329 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7330 | CPUM_CHANGED_LDTR
7331 | CPUM_CHANGED_GDTR
7332 | CPUM_CHANGED_IDTR
7333 | CPUM_CHANGED_TR
7334 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7335 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7336 if ( pVM->hm.s.fNestedPaging
7337 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7338 {
7339 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7340 }
7341
7342 Assert(!pVCpu->hm.s.fClearTrapFlag);
7343
7344 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7345 if (rcExit != VINF_EM_RAW_INTERRUPT)
7346 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7347
7348 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7349
7350 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7351 VMMRZCallRing3RemoveNotification(pVCpu);
7352 VMMRZCallRing3Enable(pVCpu);
7353
7354 return rc;
7355}
7356
7357
7358/**
7359 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7360 * longjump to ring-3 and possibly get preempted.
7361 *
7362 * @returns VBox status code.
7363 * @param pVCpu Pointer to the VMCPU.
7364 * @param enmOperation The operation causing the ring-3 longjump.
7365 * @param pvUser Opaque pointer to the guest-CPU context. The data
7366 * may be out-of-sync. Make sure to update the required
7367 * fields before using them.
7368 */
7369DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7370{
7371 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7372 {
7373 /*
7374 * !!! IMPORTANT !!!
7375 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7376 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7377 */
7378 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; \
7379 VMMRZCallRing3RemoveNotification(pVCpu);
7380 VMMRZCallRing3Disable(pVCpu);
7381 RTThreadPreemptDisable(&PreemptState);
7382
7383 PVM pVM = pVCpu->CTX_SUFF(pVM);
7384 if (CPUMIsGuestFPUStateActive(pVCpu))
7385 CPUMR0SaveGuestFPU(pVM, pVCpu, (PCPUMCTX)pvUser);
7386
7387 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7388
7389#if HC_ARCH_BITS == 64
7390 /* Restore host-state bits that VT-x only restores partially. */
7391 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7392 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7393 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7394 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7395
7396 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7397 if ( pVM->hm.s.fAllow64BitGuests
7398 && pVCpu->hm.s.vmx.fLazyMsrs)
7399 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7400#endif
7401 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7402 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7403 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7404 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7405 {
7406 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7407 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7408 }
7409
7410 VMMR0ThreadCtxHooksDeregister(pVCpu);
7411 HMR0LeaveCpu(pVCpu);
7412 RTThreadPreemptRestore(&PreemptState);
7413 return VINF_SUCCESS;
7414 }
7415
7416 Assert(pVCpu);
7417 Assert(pvUser);
7418 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7419 HMVMX_ASSERT_PREEMPT_SAFE();
7420
7421 VMMRZCallRing3Disable(pVCpu);
7422 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7423
7424 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7425 enmOperation));
7426
7427 int rc = hmR0VmxLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
7428 AssertRCReturn(rc, rc);
7429
7430 VMMRZCallRing3Enable(pVCpu);
7431 return VINF_SUCCESS;
7432}
7433
7434
7435/**
7436 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7437 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7438 *
7439 * @param pVCpu Pointer to the VMCPU.
7440 */
7441DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7442{
7443 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7444 {
7445 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7446 {
7447 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7448 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7449 AssertRC(rc);
7450 Log4(("Setup interrupt-window exiting\n"));
7451 }
7452 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7453}
7454
7455
7456/**
7457 * Clears the interrupt-window exiting control in the VMCS.
7458 *
7459 * @param pVCpu Pointer to the VMCPU.
7460 */
7461DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7462{
7463 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7464 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7465 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7466 AssertRC(rc);
7467 Log4(("Cleared interrupt-window exiting\n"));
7468}
7469
7470
7471/**
7472 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7473 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7474 *
7475 * @param pVCpu Pointer to the VMCPU.
7476 */
7477DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7478{
7479 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7480 {
7481 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7482 {
7483 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7484 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7485 AssertRC(rc);
7486 Log4(("Setup NMI-window exiting\n"));
7487 }
7488 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7489}
7490
7491
7492/**
7493 * Clears the NMI-window exiting control in the VMCS.
7494 *
7495 * @param pVCpu Pointer to the VMCPU.
7496 */
7497DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7498{
7499 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7500 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7501 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7502 AssertRC(rc);
7503 Log4(("Cleared NMI-window exiting\n"));
7504}
7505
7506
7507/**
7508 * Evaluates the event to be delivered to the guest and sets it as the pending
7509 * event.
7510 *
7511 * @param pVCpu Pointer to the VMCPU.
7512 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7513 * out-of-sync. Make sure to update the required fields
7514 * before using them.
7515 */
7516static void hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7517{
7518 Assert(!pVCpu->hm.s.Event.fPending);
7519
7520 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7521 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7522 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7523 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7524 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7525
7526 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7527 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7528 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7529 Assert(!TRPMHasTrap(pVCpu));
7530
7531 /*
7532 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7533 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7534 */
7535 /** @todo SMI. SMIs take priority over NMIs. */
7536 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7537 {
7538 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7539 if ( !fBlockNmi
7540 && !fBlockSti
7541 && !fBlockMovSS)
7542 {
7543 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7544 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7545 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7546
7547 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7548 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7549 }
7550 else
7551 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7552 }
7553 /*
7554 * Check if the guest can receive external interrupts (PIC/APIC). Once we do PDMGetInterrupt() we -must- deliver
7555 * the interrupt ASAP. We must not execute any guest code until we inject the interrupt.
7556 */
7557 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7558 && !pVCpu->hm.s.fSingleInstruction)
7559 {
7560 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7561 AssertRC(rc);
7562 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7563 if ( !fBlockInt
7564 && !fBlockSti
7565 && !fBlockMovSS)
7566 {
7567 uint8_t u8Interrupt;
7568 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7569 if (RT_SUCCESS(rc))
7570 {
7571 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7572 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7573 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7574
7575 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7576 }
7577 else
7578 {
7579 /** @todo Does this actually happen? If not turn it into an assertion. */
7580 Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
7581 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7582 }
7583 }
7584 else
7585 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7586 }
7587}
7588
7589
7590/**
7591 * Sets a pending-debug exception to be delivered to the guest if the guest is
7592 * single-stepping.
7593 *
7594 * @param pVCpu Pointer to the VMCPU.
7595 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7596 * out-of-sync. Make sure to update the required fields
7597 * before using them.
7598 */
7599DECLINLINE(void) hmR0VmxSetPendingDebugXcpt(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7600{
7601 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7602 if (pMixedCtx->eflags.Bits.u1TF) /* We don't have any IA32_DEBUGCTL MSR for guests. Treat as all bits 0. */
7603 {
7604 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7605 AssertRC(rc);
7606 }
7607}
7608
7609
7610/**
7611 * Injects any pending events into the guest if the guest is in a state to
7612 * receive them.
7613 *
7614 * @returns VBox status code (informational status codes included).
7615 * @param pVCpu Pointer to the VMCPU.
7616 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7617 * out-of-sync. Make sure to update the required fields
7618 * before using them.
7619 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7620 * return VINF_EM_DBG_STEPPED if the event was
7621 * dispatched directly.
7622 */
7623static int hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
7624{
7625 HMVMX_ASSERT_PREEMPT_SAFE();
7626 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7627
7628 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7629 uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7630 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7631 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7632
7633 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7634 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7635 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7636 Assert(!TRPMHasTrap(pVCpu));
7637
7638 int rc = VINF_SUCCESS;
7639 if (pVCpu->hm.s.Event.fPending)
7640 {
7641 /*
7642 * Clear any interrupt-window exiting control if we're going to inject an interrupt. Saves one extra
7643 * VM-exit in situations where we previously setup interrupt-window exiting but got other VM-exits and
7644 * ended up enabling interrupts outside VT-x.
7645 */
7646 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7647 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
7648 && uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7649 {
7650 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7651 hmR0VmxClearIntWindowExitVmcs(pVCpu);
7652 }
7653
7654#ifdef VBOX_STRICT
7655 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7656 {
7657 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7658 Assert(!fBlockInt);
7659 Assert(!fBlockSti);
7660 Assert(!fBlockMovSS);
7661 }
7662 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7663 {
7664 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7665 Assert(!fBlockSti);
7666 Assert(!fBlockMovSS);
7667 Assert(!fBlockNmi);
7668 }
7669#endif
7670 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7671 (uint8_t)uIntType));
7672 rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7673 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping, &uIntrState);
7674 AssertRCReturn(rc, rc);
7675
7676 /* Update the interruptibility-state as it could have been changed by
7677 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7678 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7679 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7680
7681#ifdef VBOX_WITH_STATISTICS
7682 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7683 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7684 else
7685 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7686#endif
7687 }
7688
7689 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7690 if ( fBlockSti
7691 || fBlockMovSS)
7692 {
7693 if ( !pVCpu->hm.s.fSingleInstruction
7694 && !DBGFIsStepping(pVCpu))
7695 {
7696 /*
7697 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7698 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7699 * See Intel spec. 27.3.4 "Saving Non-Register State".
7700 */
7701 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7702 AssertRCReturn(rc2, rc2);
7703 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
7704 }
7705 else if (pMixedCtx->eflags.Bits.u1TF)
7706 {
7707 /*
7708 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7709 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7710 */
7711 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7712 uIntrState = 0;
7713 }
7714 }
7715
7716 /*
7717 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7718 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7719 */
7720 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7721 AssertRC(rc2);
7722
7723 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET || (rc == VINF_EM_DBG_STEPPED && fStepping));
7724 NOREF(fBlockMovSS); NOREF(fBlockSti);
7725 return rc;
7726}
7727
7728
7729/**
7730 * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
7731 *
7732 * @param pVCpu Pointer to the VMCPU.
7733 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7734 * out-of-sync. Make sure to update the required fields
7735 * before using them.
7736 */
7737DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7738{
7739 NOREF(pMixedCtx);
7740 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7741 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7742}
7743
7744
7745/**
7746 * Injects a double-fault (#DF) exception into the VM.
7747 *
7748 * @returns VBox status code (informational status code included).
7749 * @param pVCpu Pointer to the VMCPU.
7750 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7751 * out-of-sync. Make sure to update the required fields
7752 * before using them.
7753 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7754 * and should return VINF_EM_DBG_STEPPED if the event
7755 * is injected directly (register modified by us, not
7756 * by hardware on VM-entry).
7757 * @param puIntrState Pointer to the current guest interruptibility-state.
7758 * This interruptibility-state will be updated if
7759 * necessary. This cannot not be NULL.
7760 */
7761DECLINLINE(int) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
7762{
7763 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7764 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7765 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7766 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
7767 fStepping, puIntrState);
7768}
7769
7770
7771/**
7772 * Sets a debug (#DB) exception as pending-for-injection into the VM.
7773 *
7774 * @param pVCpu Pointer to the VMCPU.
7775 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7776 * out-of-sync. Make sure to update the required fields
7777 * before using them.
7778 */
7779DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7780{
7781 NOREF(pMixedCtx);
7782 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
7783 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7784 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7785}
7786
7787
7788/**
7789 * Sets an overflow (#OF) exception as pending-for-injection into the VM.
7790 *
7791 * @param pVCpu Pointer to the VMCPU.
7792 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7793 * out-of-sync. Make sure to update the required fields
7794 * before using them.
7795 * @param cbInstr The value of RIP that is to be pushed on the guest
7796 * stack.
7797 */
7798DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
7799{
7800 NOREF(pMixedCtx);
7801 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7802 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7803 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7804}
7805
7806
7807/**
7808 * Injects a general-protection (#GP) fault into the VM.
7809 *
7810 * @returns VBox status code (informational status code included).
7811 * @param pVCpu Pointer to the VMCPU.
7812 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7813 * out-of-sync. Make sure to update the required fields
7814 * before using them.
7815 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7816 * mode, i.e. in real-mode it's not valid).
7817 * @param u32ErrorCode The error code associated with the #GP.
7818 * @param fStepping Whether we're running in
7819 * hmR0VmxRunGuestCodeStep() and should return
7820 * VINF_EM_DBG_STEPPED if the event is injected
7821 * directly (register modified by us, not by
7822 * hardware on VM-entry).
7823 * @param puIntrState Pointer to the current guest interruptibility-state.
7824 * This interruptibility-state will be updated if
7825 * necessary. This cannot not be NULL.
7826 */
7827DECLINLINE(int) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
7828 bool fStepping, uint32_t *puIntrState)
7829{
7830 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7831 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7832 if (fErrorCodeValid)
7833 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7834 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
7835 fStepping, puIntrState);
7836}
7837
7838
7839/**
7840 * Sets a general-protection (#GP) exception as pending-for-injection into the
7841 * VM.
7842 *
7843 * @param pVCpu Pointer to the VMCPU.
7844 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7845 * out-of-sync. Make sure to update the required fields
7846 * before using them.
7847 * @param u32ErrorCode The error code associated with the #GP.
7848 */
7849DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
7850{
7851 NOREF(pMixedCtx);
7852 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7853 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7854 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7855 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
7856}
7857
7858
7859/**
7860 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7861 *
7862 * @param pVCpu Pointer to the VMCPU.
7863 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7864 * out-of-sync. Make sure to update the required fields
7865 * before using them.
7866 * @param uVector The software interrupt vector number.
7867 * @param cbInstr The value of RIP that is to be pushed on the guest
7868 * stack.
7869 */
7870DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
7871{
7872 NOREF(pMixedCtx);
7873 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7874 if ( uVector == X86_XCPT_BP
7875 || uVector == X86_XCPT_OF)
7876 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7877 else
7878 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7879 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7880}
7881
7882
7883/**
7884 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7885 * stack.
7886 *
7887 * @returns VBox status code (information status code included).
7888 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7889 * @param pVM Pointer to the VM.
7890 * @param pMixedCtx Pointer to the guest-CPU context.
7891 * @param uValue The value to push to the guest stack.
7892 */
7893DECLINLINE(int) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
7894{
7895 /*
7896 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7897 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7898 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7899 */
7900 if (pMixedCtx->sp == 1)
7901 return VINF_EM_RESET;
7902 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7903 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
7904 AssertRCReturn(rc, rc);
7905 return rc;
7906}
7907
7908
7909/**
7910 * Injects an event into the guest upon VM-entry by updating the relevant fields
7911 * in the VM-entry area in the VMCS.
7912 *
7913 * @returns VBox status code (informational error codes included).
7914 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7915 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7916 *
7917 * @param pVCpu Pointer to the VMCPU.
7918 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7919 * be out-of-sync. Make sure to update the required
7920 * fields before using them.
7921 * @param u64IntInfo The VM-entry interruption-information field.
7922 * @param cbInstr The VM-entry instruction length in bytes (for
7923 * software interrupts, exceptions and privileged
7924 * software exceptions).
7925 * @param u32ErrCode The VM-entry exception error code.
7926 * @param GCPtrFaultAddress The page-fault address for #PF exceptions.
7927 * @param puIntrState Pointer to the current guest interruptibility-state.
7928 * This interruptibility-state will be updated if
7929 * necessary. This cannot not be NULL.
7930 * @param fStepping Whether we're running in
7931 * hmR0VmxRunGuestCodeStep() and should return
7932 * VINF_EM_DBG_STEPPED if the event is injected
7933 * directly (register modified by us, not by
7934 * hardware on VM-entry).
7935 *
7936 * @remarks Requires CR0!
7937 * @remarks No-long-jump zone!!!
7938 */
7939static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
7940 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *puIntrState)
7941{
7942 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7943 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
7944 Assert(puIntrState);
7945 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7946
7947 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
7948 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
7949
7950#ifdef VBOX_STRICT
7951 /* Validate the error-code-valid bit for hardware exceptions. */
7952 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
7953 {
7954 switch (uVector)
7955 {
7956 case X86_XCPT_PF:
7957 case X86_XCPT_DF:
7958 case X86_XCPT_TS:
7959 case X86_XCPT_NP:
7960 case X86_XCPT_SS:
7961 case X86_XCPT_GP:
7962 case X86_XCPT_AC:
7963 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
7964 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7965 /* fallthru */
7966 default:
7967 break;
7968 }
7969 }
7970#endif
7971
7972 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7973 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
7974 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
7975
7976 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7977
7978 /* We require CR0 to check if the guest is in real-mode. */
7979 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7980 AssertRCReturn(rc, rc);
7981
7982 /*
7983 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
7984 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
7985 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
7986 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7987 */
7988 if (CPUMIsGuestInRealModeEx(pMixedCtx))
7989 {
7990 PVM pVM = pVCpu->CTX_SUFF(pVM);
7991 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
7992 {
7993 Assert(PDMVmmDevHeapIsEnabled(pVM));
7994 Assert(pVM->hm.s.vmx.pRealModeTSS);
7995
7996 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
7997 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7998 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
7999 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8000 AssertRCReturn(rc, rc);
8001 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
8002
8003 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8004 size_t const cbIdtEntry = sizeof(X86IDTR16);
8005 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
8006 {
8007 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8008 if (uVector == X86_XCPT_DF)
8009 return VINF_EM_RESET;
8010
8011 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
8012 if (uVector == X86_XCPT_GP)
8013 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
8014
8015 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
8016 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
8017 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
8018 fStepping, puIntrState);
8019 }
8020
8021 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8022 uint16_t uGuestIp = pMixedCtx->ip;
8023 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
8024 {
8025 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8026 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8027 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8028 }
8029 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
8030 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8031
8032 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8033 X86IDTR16 IdtEntry;
8034 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
8035 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8036 AssertRCReturn(rc, rc);
8037
8038 /* Construct the stack frame for the interrupt/exception handler. */
8039 rc = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
8040 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
8041 rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
8042 AssertRCReturn(rc, rc);
8043
8044 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8045 if (rc == VINF_SUCCESS)
8046 {
8047 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8048 pMixedCtx->rip = IdtEntry.offSel;
8049 pMixedCtx->cs.Sel = IdtEntry.uSel;
8050 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
8051 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8052 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8053 && uVector == X86_XCPT_PF)
8054 pMixedCtx->cr2 = GCPtrFaultAddress;
8055
8056 /* If any other guest-state bits are changed here, make sure to update
8057 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
8058 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
8059 | HM_CHANGED_GUEST_RIP
8060 | HM_CHANGED_GUEST_RFLAGS
8061 | HM_CHANGED_GUEST_RSP);
8062
8063 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
8064 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8065 {
8066 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8067 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8068 Log4(("Clearing inhibition due to STI.\n"));
8069 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
8070 }
8071 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8072 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
8073
8074 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
8075 it, if we are returning to ring-3 before executing guest code. */
8076 pVCpu->hm.s.Event.fPending = false;
8077
8078 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
8079 if (fStepping)
8080 rc = VINF_EM_DBG_STEPPED;
8081 }
8082 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET || (rc == VINF_EM_DBG_STEPPED && fStepping));
8083 return rc;
8084 }
8085
8086 /*
8087 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
8088 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8089 */
8090 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8091 }
8092
8093 /* Validate. */
8094 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8095 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8096 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8097
8098 /* Inject. */
8099 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8100 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
8101 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8102 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8103
8104 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8105 && uVector == X86_XCPT_PF)
8106 pMixedCtx->cr2 = GCPtrFaultAddress;
8107
8108 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
8109 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
8110
8111 AssertRCReturn(rc, rc);
8112 return rc;
8113}
8114
8115
8116/**
8117 * Clears the interrupt-window exiting control in the VMCS and if necessary
8118 * clears the current event in the VMCS as well.
8119 *
8120 * @returns VBox status code.
8121 * @param pVCpu Pointer to the VMCPU.
8122 *
8123 * @remarks Use this function only to clear events that have not yet been
8124 * delivered to the guest but are injected in the VMCS!
8125 * @remarks No-long-jump zone!!!
8126 */
8127static void hmR0VmxClearEventVmcs(PVMCPU pVCpu)
8128{
8129 int rc;
8130 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8131
8132 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8133 {
8134 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8135 Assert(!pVCpu->hm.s.Event.fPending);
8136 }
8137
8138 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8139 {
8140 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8141 Assert(!pVCpu->hm.s.Event.fPending);
8142 }
8143
8144 if (!pVCpu->hm.s.Event.fPending)
8145 return;
8146
8147#ifdef VBOX_STRICT
8148 uint32_t u32EntryInfo;
8149 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
8150 AssertRC(rc);
8151 Assert(VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo));
8152#endif
8153
8154 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
8155 AssertRC(rc);
8156
8157 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
8158 AssertRC(rc);
8159
8160 /* We deliberately don't clear "hm.s.Event.fPending" here, it's taken
8161 care of in hmR0VmxExitToRing3() converting the pending event to TRPM. */
8162}
8163
8164
8165/**
8166 * Enters the VT-x session.
8167 *
8168 * @returns VBox status code.
8169 * @param pVM Pointer to the VM.
8170 * @param pVCpu Pointer to the VMCPU.
8171 * @param pCpu Pointer to the CPU info struct.
8172 */
8173VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8174{
8175 AssertPtr(pVM);
8176 AssertPtr(pVCpu);
8177 Assert(pVM->hm.s.vmx.fSupported);
8178 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8179 NOREF(pCpu); NOREF(pVM);
8180
8181 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8182 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8183
8184#ifdef VBOX_STRICT
8185 /* Make sure we're in VMX root mode. */
8186 RTCCUINTREG u32HostCR4 = ASMGetCR4();
8187 if (!(u32HostCR4 & X86_CR4_VMXE))
8188 {
8189 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8190 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8191 }
8192#endif
8193
8194 /*
8195 * Load the VCPU's VMCS as the current (and active) one.
8196 */
8197 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8198 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8199 if (RT_FAILURE(rc))
8200 return rc;
8201
8202 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8203 pVCpu->hm.s.fLeaveDone = false;
8204 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8205
8206 return VINF_SUCCESS;
8207}
8208
8209
8210/**
8211 * The thread-context callback (only on platforms which support it).
8212 *
8213 * @param enmEvent The thread-context event.
8214 * @param pVCpu Pointer to the VMCPU.
8215 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8216 * @thread EMT(pVCpu)
8217 */
8218VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8219{
8220 NOREF(fGlobalInit);
8221
8222 switch (enmEvent)
8223 {
8224 case RTTHREADCTXEVENT_PREEMPTING:
8225 {
8226 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8227 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
8228 VMCPU_ASSERT_EMT(pVCpu);
8229
8230 PVM pVM = pVCpu->CTX_SUFF(pVM);
8231 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8232
8233 /* No longjmps (logger flushes, locks) in this fragile context. */
8234 VMMRZCallRing3Disable(pVCpu);
8235 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8236
8237 /*
8238 * Restore host-state (FPU, debug etc.)
8239 */
8240 if (!pVCpu->hm.s.fLeaveDone)
8241 {
8242 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8243 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8244 hmR0VmxLeave(pVM, pVCpu, pMixedCtx, false /* fSaveGuestState */);
8245 pVCpu->hm.s.fLeaveDone = true;
8246 }
8247
8248 /* Leave HM context, takes care of local init (term). */
8249 int rc = HMR0LeaveCpu(pVCpu);
8250 AssertRC(rc); NOREF(rc);
8251
8252 /* Restore longjmp state. */
8253 VMMRZCallRing3Enable(pVCpu);
8254 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptPreempting);
8255 break;
8256 }
8257
8258 case RTTHREADCTXEVENT_RESUMED:
8259 {
8260 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8261 Assert(VMMR0ThreadCtxHooksAreRegistered(pVCpu));
8262 VMCPU_ASSERT_EMT(pVCpu);
8263
8264 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8265 VMMRZCallRing3Disable(pVCpu);
8266 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8267
8268 /* Initialize the bare minimum state required for HM. This takes care of
8269 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8270 int rc = HMR0EnterCpu(pVCpu);
8271 AssertRC(rc);
8272 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8273
8274 /* Load the active VMCS as the current one. */
8275 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8276 {
8277 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8278 AssertRC(rc); NOREF(rc);
8279 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8280 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8281 }
8282 pVCpu->hm.s.fLeaveDone = false;
8283
8284 /* Restore longjmp state. */
8285 VMMRZCallRing3Enable(pVCpu);
8286 break;
8287 }
8288
8289 default:
8290 break;
8291 }
8292}
8293
8294
8295/**
8296 * Saves the host state in the VMCS host-state.
8297 * Sets up the VM-exit MSR-load area.
8298 *
8299 * The CPU state will be loaded from these fields on every successful VM-exit.
8300 *
8301 * @returns VBox status code.
8302 * @param pVM Pointer to the VM.
8303 * @param pVCpu Pointer to the VMCPU.
8304 *
8305 * @remarks No-long-jump zone!!!
8306 */
8307static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8308{
8309 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8310
8311 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8312 return VINF_SUCCESS;
8313
8314 int rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8315 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8316
8317 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8318 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8319
8320 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8321 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8322
8323 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8324 return rc;
8325}
8326
8327
8328/**
8329 * Saves the host state in the VMCS host-state.
8330 *
8331 * @returns VBox status code.
8332 * @param pVM Pointer to the VM.
8333 * @param pVCpu Pointer to the VMCPU.
8334 *
8335 * @remarks No-long-jump zone!!!
8336 */
8337VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8338{
8339 AssertPtr(pVM);
8340 AssertPtr(pVCpu);
8341
8342 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8343
8344 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8345 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8346 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8347 return hmR0VmxSaveHostState(pVM, pVCpu);
8348}
8349
8350
8351/**
8352 * Loads the guest state into the VMCS guest-state area.
8353 *
8354 * The will typically be done before VM-entry when the guest-CPU state and the
8355 * VMCS state may potentially be out of sync.
8356 *
8357 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8358 * VM-entry controls.
8359 * Sets up the appropriate VMX non-root function to execute guest code based on
8360 * the guest CPU mode.
8361 *
8362 * @returns VBox status code.
8363 * @param pVM Pointer to the VM.
8364 * @param pVCpu Pointer to the VMCPU.
8365 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8366 * out-of-sync. Make sure to update the required fields
8367 * before using them.
8368 *
8369 * @remarks No-long-jump zone!!!
8370 */
8371static int hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8372{
8373 AssertPtr(pVM);
8374 AssertPtr(pVCpu);
8375 AssertPtr(pMixedCtx);
8376 HMVMX_ASSERT_PREEMPT_SAFE();
8377
8378 VMMRZCallRing3Disable(pVCpu);
8379 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8380
8381 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8382
8383 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8384
8385 /* Determine real-on-v86 mode. */
8386 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8387 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8388 && CPUMIsGuestInRealModeEx(pMixedCtx))
8389 {
8390 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8391 }
8392
8393 /*
8394 * Load the guest-state into the VMCS.
8395 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8396 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8397 */
8398 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8399 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8400
8401 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8402 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8403 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8404
8405 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8406 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8407 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8408
8409 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8410 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8411
8412 rc = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8413 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestCR3AndCR4: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8414
8415 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8416 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8417 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8418
8419 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8420 determine we don't have to swap EFER after all. */
8421 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8422 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadSharedMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8423
8424 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8425 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8426
8427 rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
8428 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8429
8430 /*
8431 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8432 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8433 */
8434 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8435 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8436
8437 /* Clear any unused and reserved bits. */
8438 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8439
8440 VMMRZCallRing3Enable(pVCpu);
8441
8442 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8443 return rc;
8444}
8445
8446
8447/**
8448 * Loads the state shared between the host and guest into the VMCS.
8449 *
8450 * @param pVM Pointer to the VM.
8451 * @param pVCpu Pointer to the VMCPU.
8452 * @param pCtx Pointer to the guest-CPU context.
8453 *
8454 * @remarks No-long-jump zone!!!
8455 */
8456static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8457{
8458 NOREF(pVM);
8459
8460 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8461 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8462
8463 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8464 {
8465 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8466 AssertRC(rc);
8467 }
8468
8469 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8470 {
8471 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8472 AssertRC(rc);
8473
8474 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8475 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8476 {
8477 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8478 AssertRC(rc);
8479 }
8480 }
8481
8482 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8483 {
8484#if HC_ARCH_BITS == 64
8485 if (pVM->hm.s.fAllow64BitGuests)
8486 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8487#endif
8488 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8489 }
8490
8491 /* Loading CR0, debug state might have changed intercepts, update VMCS. */
8492 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
8493 {
8494 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
8495 AssertRC(rc);
8496 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
8497 }
8498
8499 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8500 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8501}
8502
8503
8504/**
8505 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8506 *
8507 * @param pVM Pointer to the VM.
8508 * @param pVCpu Pointer to the VMCPU.
8509 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8510 * out-of-sync. Make sure to update the required fields
8511 * before using them.
8512 */
8513DECLINLINE(void) hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8514{
8515 HMVMX_ASSERT_PREEMPT_SAFE();
8516
8517 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8518#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8519 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8520#endif
8521
8522 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8523 {
8524 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8525 AssertRC(rc);
8526 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8527 }
8528 else if (HMCPU_CF_VALUE(pVCpu))
8529 {
8530 int rc = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8531 AssertRC(rc);
8532 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8533 }
8534
8535 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8536 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8537 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8538 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8539}
8540
8541
8542/**
8543 * Does the preparations before executing guest code in VT-x.
8544 *
8545 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8546 * recompiler/IEM. We must be cautious what we do here regarding committing
8547 * guest-state information into the VMCS assuming we assuredly execute the
8548 * guest in VT-x mode.
8549 *
8550 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8551 * the common-state (TRPM/forceflags), we must undo those changes so that the
8552 * recompiler/IEM can (and should) use them when it resumes guest execution.
8553 * Otherwise such operations must be done when we can no longer exit to ring-3.
8554 *
8555 * @returns Strict VBox status code.
8556 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8557 * have been disabled.
8558 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8559 * double-fault into the guest.
8560 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8561 * dispatched directly.
8562 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8563 *
8564 * @param pVM Pointer to the VM.
8565 * @param pVCpu Pointer to the VMCPU.
8566 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8567 * out-of-sync. Make sure to update the required fields
8568 * before using them.
8569 * @param pVmxTransient Pointer to the VMX transient structure.
8570 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8571 * us ignore some of the reasons for returning to
8572 * ring-3, and return VINF_EM_DBG_STEPPED if event
8573 * dispatching took place.
8574 */
8575static int hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8576{
8577 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8578
8579#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8580 PGMRZDynMapFlushAutoSet(pVCpu);
8581#endif
8582
8583 /* Check force flag actions that might require us to go back to ring-3. */
8584 int rc = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx);
8585 if (rc != VINF_SUCCESS)
8586 return rc;
8587
8588#ifndef IEM_VERIFICATION_MODE_FULL
8589 /* Setup the Virtualized APIC accesses. pMixedCtx->msrApicBase is always up-to-date. It's not part of the VMCS. */
8590 if ( pVCpu->hm.s.vmx.u64MsrApicBase != pMixedCtx->msrApicBase
8591 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
8592 {
8593 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8594 RTGCPHYS GCPhysApicBase;
8595 GCPhysApicBase = pMixedCtx->msrApicBase;
8596 GCPhysApicBase &= PAGE_BASE_GC_MASK;
8597
8598 /* Unalias any existing mapping. */
8599 rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8600 AssertRCReturn(rc, rc);
8601
8602 /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
8603 Log4(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGv\n", GCPhysApicBase));
8604 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8605 AssertRCReturn(rc, rc);
8606
8607 pVCpu->hm.s.vmx.u64MsrApicBase = pMixedCtx->msrApicBase;
8608 }
8609#endif /* !IEM_VERIFICATION_MODE_FULL */
8610
8611 if (TRPMHasTrap(pVCpu))
8612 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8613 else if (!pVCpu->hm.s.Event.fPending)
8614 hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8615
8616 /*
8617 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8618 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8619 */
8620 rc = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, fStepping);
8621 if (RT_UNLIKELY(rc != VINF_SUCCESS))
8622 {
8623 Assert(rc == VINF_EM_RESET || (rc == VINF_EM_DBG_STEPPED && fStepping));
8624 return rc;
8625 }
8626
8627 /*
8628 * Load the guest state bits, we can handle longjmps/getting preempted here.
8629 *
8630 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8631 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8632 * Hence, this needs to be done -after- injection of events.
8633 */
8634 hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8635
8636 /*
8637 * No longjmps to ring-3 from this point on!!!
8638 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8639 * This also disables flushing of the R0-logger instance (if any).
8640 */
8641 VMMRZCallRing3Disable(pVCpu);
8642
8643 /*
8644 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8645 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8646 *
8647 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8648 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8649 *
8650 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8651 * executing guest code.
8652 */
8653 pVmxTransient->uEflags = ASMIntDisableFlags();
8654 if ( ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8655 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8656 && ( !fStepping /* Optimized for the non-stepping case, of course. */
8657 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8658 {
8659 hmR0VmxClearEventVmcs(pVCpu);
8660 ASMSetFlags(pVmxTransient->uEflags);
8661 VMMRZCallRing3Enable(pVCpu);
8662 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8663 return VINF_EM_RAW_TO_R3;
8664 }
8665
8666 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
8667 {
8668 hmR0VmxClearEventVmcs(pVCpu);
8669 ASMSetFlags(pVmxTransient->uEflags);
8670 VMMRZCallRing3Enable(pVCpu);
8671 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8672 return VINF_EM_RAW_INTERRUPT;
8673 }
8674
8675 /* We've injected any pending events. This is really the point of no return (to ring-3). */
8676 pVCpu->hm.s.Event.fPending = false;
8677
8678 return VINF_SUCCESS;
8679}
8680
8681
8682/**
8683 * Prepares to run guest code in VT-x and we've committed to doing so. This
8684 * means there is no backing out to ring-3 or anywhere else at this
8685 * point.
8686 *
8687 * @param pVM Pointer to the VM.
8688 * @param pVCpu Pointer to the VMCPU.
8689 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8690 * out-of-sync. Make sure to update the required fields
8691 * before using them.
8692 * @param pVmxTransient Pointer to the VMX transient structure.
8693 *
8694 * @remarks Called with preemption disabled.
8695 * @remarks No-long-jump zone!!!
8696 */
8697static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8698{
8699 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8700 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8701 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8702
8703 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8704 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
8705
8706#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8707 if (!CPUMIsGuestFPUStateActive(pVCpu))
8708 CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
8709 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8710#endif
8711
8712 if ( pVCpu->hm.s.fPreloadGuestFpu
8713 && !CPUMIsGuestFPUStateActive(pVCpu))
8714 {
8715 CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
8716 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
8717 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8718 }
8719
8720 /*
8721 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8722 */
8723 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8724 && pVCpu->hm.s.vmx.cMsrs > 0)
8725 {
8726 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8727 }
8728
8729 /*
8730 * Load the host state bits as we may've been preempted (only happens when
8731 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8732 */
8733 /** @todo Why should hmR0VmxSetupVMRunHandler() changing pfnStartVM have
8734 * any effect to the host state needing to be saved? */
8735 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8736 {
8737 /* This ASSUMES that pfnStartVM has been set up already. */
8738 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
8739 AssertRC(rc);
8740 STAM_COUNTER_INC(&pVCpu->hm.s.StatPreemptSaveHostState);
8741 }
8742 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
8743
8744 /*
8745 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
8746 */
8747 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
8748 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
8749 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8750
8751 /* Store status of the shared guest-host state at the time of VM-entry. */
8752#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
8753 if (CPUMIsGuestInLongModeEx(pMixedCtx))
8754 {
8755 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8756 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8757 }
8758 else
8759#endif
8760 {
8761 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8762 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8763 }
8764 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
8765
8766 /*
8767 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8768 */
8769 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8770 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
8771
8772 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
8773 RTCPUID idCurrentCpu = pCpu->idCpu;
8774 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8775 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8776 {
8777 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
8778 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8779 }
8780
8781 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
8782 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8783 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8784 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8785
8786 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8787
8788 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8789 to start executing. */
8790
8791 /*
8792 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8793 */
8794 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
8795 {
8796 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8797 {
8798 bool fMsrUpdated;
8799 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
8800 AssertRC(rc2);
8801 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
8802
8803 rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8804 &fMsrUpdated);
8805 AssertRC(rc2);
8806 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8807
8808 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8809 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8810 }
8811 else
8812 {
8813 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8814 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8815 }
8816 }
8817
8818#ifdef VBOX_STRICT
8819 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8820 hmR0VmxCheckHostEferMsr(pVCpu);
8821 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8822#endif
8823#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8824 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
8825 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8826 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8827#endif
8828}
8829
8830
8831/**
8832 * Performs some essential restoration of state after running guest code in
8833 * VT-x.
8834 *
8835 * @param pVM Pointer to the VM.
8836 * @param pVCpu Pointer to the VMCPU.
8837 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8838 * out-of-sync. Make sure to update the required fields
8839 * before using them.
8840 * @param pVmxTransient Pointer to the VMX transient structure.
8841 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8842 *
8843 * @remarks Called with interrupts disabled, and returns with interrups enabled!
8844 *
8845 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8846 * unconditionally when it is safe to do so.
8847 */
8848static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8849{
8850 NOREF(pVM);
8851
8852 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8853
8854 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
8855 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
8856 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
8857 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8858 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8859 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8860
8861 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8862 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
8863
8864 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
8865 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8866 Assert(!(ASMGetFlags() & X86_EFL_IF));
8867 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8868
8869#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8870 if (CPUMIsGuestFPUStateActive(pVCpu))
8871 {
8872 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8873 CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
8874 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8875 }
8876#endif
8877
8878#if HC_ARCH_BITS == 64
8879 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8880#endif
8881 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8882#ifdef VBOX_STRICT
8883 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8884#endif
8885 ASMSetFlags(pVmxTransient->uEflags); /* Enable interrupts. */
8886 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
8887
8888 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8889 uint32_t uExitReason;
8890 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8891 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8892 AssertRC(rc);
8893 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8894 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8895
8896 /* Update the VM-exit history array. */
8897 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
8898
8899 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
8900 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
8901 {
8902 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
8903 pVmxTransient->fVMEntryFailed));
8904 return;
8905 }
8906
8907 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
8908 {
8909 /** @todo We can optimize this by only syncing with our force-flags when
8910 * really needed and keeping the VMCS state as it is for most
8911 * VM-exits. */
8912 /* Update the guest interruptibility-state from the VMCS. */
8913 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
8914
8915#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8916 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8917 AssertRC(rc);
8918#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8919 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8920 AssertRC(rc);
8921#endif
8922
8923 /*
8924 * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
8925 * we eventually get a VM-exit for any reason. This maybe expensive as PDMApicSetTPR() can longjmp to ring-3 and which is
8926 * why it's done here as it's easier and no less efficient to deal with it here than making hmR0VmxSaveGuestState()
8927 * cope with longjmps safely (see VMCPU_FF_HM_UPDATE_CR3 handling).
8928 */
8929 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8930 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
8931 {
8932 rc = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
8933 AssertRC(rc);
8934 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
8935 }
8936 }
8937}
8938
8939
8940/**
8941 * Runs the guest code using VT-x the normal way.
8942 *
8943 * @returns VBox status code.
8944 * @param pVM Pointer to the VM.
8945 * @param pVCpu Pointer to the VMCPU.
8946 * @param pCtx Pointer to the guest-CPU context.
8947 *
8948 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8949 */
8950static int hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8951{
8952 VMXTRANSIENT VmxTransient;
8953 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8954 int rc = VERR_INTERNAL_ERROR_5;
8955 uint32_t cLoops = 0;
8956
8957 for (;; cLoops++)
8958 {
8959 Assert(!HMR0SuspendPending());
8960 HMVMX_ASSERT_CPU_SAFE();
8961
8962 /* Preparatory work for running guest code, this may force us to return
8963 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8964 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8965 rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
8966 if (rc != VINF_SUCCESS)
8967 break;
8968
8969 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
8970 rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
8971 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
8972
8973 /* Restore any residual host-state and save any bits shared between host
8974 and guest into the guest-CPU state. Re-enables interrupts! */
8975 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
8976
8977 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8978 if (RT_UNLIKELY(rc != VINF_SUCCESS))
8979 {
8980 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
8981 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
8982 return rc;
8983 }
8984
8985 /* Profile the VM-exit. */
8986 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8987 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8988 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8989 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
8990 HMVMX_START_EXIT_DISPATCH_PROF();
8991
8992 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
8993 if (RT_UNLIKELY(VBOXVMM_R0_HMVMX_VMEXIT_ENABLED()))
8994 {
8995 hmR0VmxReadExitQualificationVmcs(pVCpu, &VmxTransient);
8996 hmR0VmxSaveGuestState(pVCpu, pCtx);
8997 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pCtx, VmxTransient.uExitReason, VmxTransient.uExitQualification);
8998 }
8999
9000 /* Handle the VM-exit. */
9001#ifdef HMVMX_USE_FUNCTION_TABLE
9002 rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
9003#else
9004 rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
9005#endif
9006 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9007 if (rc != VINF_SUCCESS)
9008 break;
9009 if (cLoops > pVM->hm.s.cMaxResumeLoops)
9010 {
9011 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9012 rc = VINF_EM_RAW_INTERRUPT;
9013 break;
9014 }
9015 }
9016
9017 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9018 return rc;
9019}
9020
9021
9022/**
9023 * Single steps guest code using VT-x.
9024 *
9025 * @returns VBox status code.
9026 * @param pVM Pointer to the VM.
9027 * @param pVCpu Pointer to the VMCPU.
9028 * @param pCtx Pointer to the guest-CPU context.
9029 *
9030 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
9031 */
9032static int hmR0VmxRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9033{
9034 VMXTRANSIENT VmxTransient;
9035 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
9036 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
9037 uint32_t cLoops = 0;
9038 uint16_t uCsStart = pCtx->cs.Sel;
9039 uint64_t uRipStart = pCtx->rip;
9040
9041 for (;; cLoops++)
9042 {
9043 Assert(!HMR0SuspendPending());
9044 HMVMX_ASSERT_CPU_SAFE();
9045
9046 /* Preparatory work for running guest code, this may force us to return
9047 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
9048 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
9049 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, true /* fStepping */);
9050 if (rcStrict != VINF_SUCCESS)
9051 break;
9052
9053 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
9054 rcStrict = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
9055 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
9056
9057 /* Restore any residual host-state and save any bits shared between host
9058 and guest into the guest-CPU state. Re-enables interrupts! */
9059 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, VBOXSTRICTRC_TODO(rcStrict));
9060
9061 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
9062 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
9063 {
9064 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
9065 hmR0VmxReportWorldSwitchError(pVM, pVCpu, VBOXSTRICTRC_TODO(rcStrict), pCtx, &VmxTransient);
9066 return VBOXSTRICTRC_TODO(rcStrict);
9067 }
9068
9069 /* Profile the VM-exit. */
9070 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
9071 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
9072 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
9073 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
9074 HMVMX_START_EXIT_DISPATCH_PROF();
9075
9076 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
9077 if (RT_UNLIKELY(VBOXVMM_R0_HMVMX_VMEXIT_ENABLED()))
9078 {
9079 hmR0VmxReadExitQualificationVmcs(pVCpu, &VmxTransient);
9080 hmR0VmxSaveGuestState(pVCpu, pCtx);
9081 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pCtx, VmxTransient.uExitReason, VmxTransient.uExitQualification);
9082 }
9083
9084 /* Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitStep(). */
9085 rcStrict = hmR0VmxHandleExitStep(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, uCsStart, uRipStart);
9086 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9087 if (rcStrict != VINF_SUCCESS)
9088 break;
9089 if (cLoops > pVM->hm.s.cMaxResumeLoops)
9090 {
9091 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9092 rcStrict = VINF_EM_RAW_INTERRUPT;
9093 break;
9094 }
9095
9096 /*
9097 * Did the RIP change, if so, consider it a single step.
9098 * Otherwise, make sure one of the TFs gets set.
9099 */
9100 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
9101 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
9102 AssertRCReturn(rc2, rc2);
9103 if ( pCtx->rip != uRipStart
9104 || pCtx->cs.Sel != uCsStart)
9105 {
9106 rcStrict = VINF_EM_DBG_STEPPED;
9107 break;
9108 }
9109 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
9110 }
9111
9112 /*
9113 * Clear the X86_EFL_TF if necessary.
9114 */
9115 if (pVCpu->hm.s.fClearTrapFlag)
9116 {
9117 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
9118 AssertRCReturn(rc2, rc2);
9119 pVCpu->hm.s.fClearTrapFlag = false;
9120 pCtx->eflags.Bits.u1TF = 0;
9121 }
9122 /** @todo there seems to be issues with the resume flag when the monitor trap
9123 * flag is pending without being used. Seen early in bios init when
9124 * accessing APIC page in protected mode. */
9125
9126 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9127 return VBOXSTRICTRC_TODO(rcStrict);
9128}
9129
9130
9131/**
9132 * Runs the guest code using VT-x.
9133 *
9134 * @returns VBox status code.
9135 * @param pVM Pointer to the VM.
9136 * @param pVCpu Pointer to the VMCPU.
9137 * @param pCtx Pointer to the guest-CPU context.
9138 */
9139VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9140{
9141 Assert(VMMRZCallRing3IsEnabled(pVCpu));
9142 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
9143 HMVMX_ASSERT_PREEMPT_SAFE();
9144
9145 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
9146
9147 int rc;
9148 if (!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu))
9149 rc = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
9150 else
9151 rc = hmR0VmxRunGuestCodeStep(pVM, pVCpu, pCtx);
9152
9153 if (rc == VERR_EM_INTERPRETER)
9154 rc = VINF_EM_RAW_EMULATE_INSTR;
9155 else if (rc == VINF_EM_RESET)
9156 rc = VINF_EM_TRIPLE_FAULT;
9157
9158 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rc);
9159 if (RT_FAILURE(rc2))
9160 {
9161 pVCpu->hm.s.u32HMError = rc;
9162 rc = rc2;
9163 }
9164 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
9165 return rc;
9166}
9167
9168
9169#ifndef HMVMX_USE_FUNCTION_TABLE
9170DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
9171{
9172#ifdef DEBUG_ramshankar
9173# define SVVMCS() do { int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); } while (0)
9174# define LDVMCS() do { HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); } while (0)
9175#endif
9176 int rc;
9177 switch (rcReason)
9178 {
9179 case VMX_EXIT_EPT_MISCONFIG: /* SVVMCS(); */ rc = hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9180 case VMX_EXIT_EPT_VIOLATION: /* SVVMCS(); */ rc = hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9181 case VMX_EXIT_IO_INSTR: /* SVVMCS(); */ rc = hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9182 case VMX_EXIT_CPUID: /* SVVMCS(); */ rc = hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9183 case VMX_EXIT_RDTSC: /* SVVMCS(); */ rc = hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9184 case VMX_EXIT_RDTSCP: /* SVVMCS(); */ rc = hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9185 case VMX_EXIT_APIC_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9186 case VMX_EXIT_XCPT_OR_NMI: /* SVVMCS(); */ rc = hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9187 case VMX_EXIT_MOV_CRX: /* SVVMCS(); */ rc = hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9188 case VMX_EXIT_EXT_INT: /* SVVMCS(); */ rc = hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9189 case VMX_EXIT_INT_WINDOW: /* SVVMCS(); */ rc = hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9190 case VMX_EXIT_MWAIT: /* SVVMCS(); */ rc = hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9191 case VMX_EXIT_MONITOR: /* SVVMCS(); */ rc = hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9192 case VMX_EXIT_TASK_SWITCH: /* SVVMCS(); */ rc = hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9193 case VMX_EXIT_PREEMPT_TIMER: /* SVVMCS(); */ rc = hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9194 case VMX_EXIT_RDMSR: /* SVVMCS(); */ rc = hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9195 case VMX_EXIT_WRMSR: /* SVVMCS(); */ rc = hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9196 case VMX_EXIT_MOV_DRX: /* SVVMCS(); */ rc = hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9197 case VMX_EXIT_TPR_BELOW_THRESHOLD: /* SVVMCS(); */ rc = hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9198 case VMX_EXIT_HLT: /* SVVMCS(); */ rc = hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9199 case VMX_EXIT_INVD: /* SVVMCS(); */ rc = hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9200 case VMX_EXIT_INVLPG: /* SVVMCS(); */ rc = hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9201 case VMX_EXIT_RSM: /* SVVMCS(); */ rc = hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9202 case VMX_EXIT_MTF: /* SVVMCS(); */ rc = hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9203 case VMX_EXIT_PAUSE: /* SVVMCS(); */ rc = hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9204 case VMX_EXIT_XDTR_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9205 case VMX_EXIT_TR_ACCESS: /* SVVMCS(); */ rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9206 case VMX_EXIT_WBINVD: /* SVVMCS(); */ rc = hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9207 case VMX_EXIT_XSETBV: /* SVVMCS(); */ rc = hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9208 case VMX_EXIT_RDRAND: /* SVVMCS(); */ rc = hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9209 case VMX_EXIT_INVPCID: /* SVVMCS(); */ rc = hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9210 case VMX_EXIT_GETSEC: /* SVVMCS(); */ rc = hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9211 case VMX_EXIT_RDPMC: /* SVVMCS(); */ rc = hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9212 case VMX_EXIT_VMCALL: /* SVVMCS(); */ rc = hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient); /* LDVMCS(); */ break;
9213
9214 case VMX_EXIT_TRIPLE_FAULT: rc = hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient); break;
9215 case VMX_EXIT_NMI_WINDOW: rc = hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient); break;
9216 case VMX_EXIT_INIT_SIGNAL: rc = hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient); break;
9217 case VMX_EXIT_SIPI: rc = hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient); break;
9218 case VMX_EXIT_IO_SMI: rc = hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient); break;
9219 case VMX_EXIT_SMI: rc = hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient); break;
9220 case VMX_EXIT_ERR_MSR_LOAD: rc = hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient); break;
9221 case VMX_EXIT_ERR_INVALID_GUEST_STATE: rc = hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient); break;
9222 case VMX_EXIT_ERR_MACHINE_CHECK: rc = hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient); break;
9223
9224 case VMX_EXIT_VMCLEAR:
9225 case VMX_EXIT_VMLAUNCH:
9226 case VMX_EXIT_VMPTRLD:
9227 case VMX_EXIT_VMPTRST:
9228 case VMX_EXIT_VMREAD:
9229 case VMX_EXIT_VMRESUME:
9230 case VMX_EXIT_VMWRITE:
9231 case VMX_EXIT_VMXOFF:
9232 case VMX_EXIT_VMXON:
9233 case VMX_EXIT_INVEPT:
9234 case VMX_EXIT_INVVPID:
9235 case VMX_EXIT_VMFUNC:
9236 case VMX_EXIT_XSAVES:
9237 case VMX_EXIT_XRSTORS:
9238 rc = hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
9239 break;
9240 case VMX_EXIT_RESERVED_60:
9241 case VMX_EXIT_RDSEED: /* only spurious exits, so undefined */
9242 case VMX_EXIT_RESERVED_62:
9243 default:
9244 rc = hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
9245 break;
9246 }
9247 return rc;
9248}
9249#endif /* !HMVMX_USE_FUNCTION_TABLE */
9250
9251
9252/**
9253 * Single-stepping VM-exit filtering.
9254 *
9255 * This is preprocessing the exits and deciding whether we've gotten far enough
9256 * to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit handling is
9257 * performed.
9258 *
9259 * @returns Strict VBox status code.
9260 * @param pVCpu The virtual CPU of the calling EMT.
9261 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
9262 * out-of-sync. Make sure to update the required
9263 * fields before using them.
9264 * @param pVmxTransient Pointer to the VMX-transient structure.
9265 * @param uExitReason The VM-exit reason.
9266 */
9267DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitStep(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
9268 uint32_t uExitReason, uint16_t uCsStart, uint64_t uRipStart)
9269{
9270 switch (uExitReason)
9271 {
9272 case VMX_EXIT_XCPT_OR_NMI:
9273 {
9274 /* Check for host NMI. */
9275 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9276 AssertRCReturn(rc2, rc2);
9277 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
9278 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9279 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
9280 /* fall thru */
9281 }
9282
9283 case VMX_EXIT_EPT_MISCONFIG:
9284 case VMX_EXIT_TRIPLE_FAULT:
9285 case VMX_EXIT_APIC_ACCESS:
9286 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9287 case VMX_EXIT_TASK_SWITCH:
9288
9289 /* Instruction specific VM-exits: */
9290 case VMX_EXIT_IO_INSTR:
9291 case VMX_EXIT_CPUID:
9292 case VMX_EXIT_RDTSC:
9293 case VMX_EXIT_RDTSCP:
9294 case VMX_EXIT_MOV_CRX:
9295 case VMX_EXIT_MWAIT:
9296 case VMX_EXIT_MONITOR:
9297 case VMX_EXIT_RDMSR:
9298 case VMX_EXIT_WRMSR:
9299 case VMX_EXIT_MOV_DRX:
9300 case VMX_EXIT_HLT:
9301 case VMX_EXIT_INVD:
9302 case VMX_EXIT_INVLPG:
9303 case VMX_EXIT_RSM:
9304 case VMX_EXIT_PAUSE:
9305 case VMX_EXIT_XDTR_ACCESS:
9306 case VMX_EXIT_TR_ACCESS:
9307 case VMX_EXIT_WBINVD:
9308 case VMX_EXIT_XSETBV:
9309 case VMX_EXIT_RDRAND:
9310 case VMX_EXIT_INVPCID:
9311 case VMX_EXIT_GETSEC:
9312 case VMX_EXIT_RDPMC:
9313 case VMX_EXIT_VMCALL:
9314 case VMX_EXIT_VMCLEAR:
9315 case VMX_EXIT_VMLAUNCH:
9316 case VMX_EXIT_VMPTRLD:
9317 case VMX_EXIT_VMPTRST:
9318 case VMX_EXIT_VMREAD:
9319 case VMX_EXIT_VMRESUME:
9320 case VMX_EXIT_VMWRITE:
9321 case VMX_EXIT_VMXOFF:
9322 case VMX_EXIT_VMXON:
9323 case VMX_EXIT_INVEPT:
9324 case VMX_EXIT_INVVPID:
9325 case VMX_EXIT_VMFUNC:
9326 {
9327 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
9328 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
9329 AssertRCReturn(rc2, rc2);
9330 if ( pMixedCtx->rip != uRipStart
9331 || pMixedCtx->cs.Sel != uCsStart)
9332 return VINF_EM_DBG_STEPPED;
9333 break;
9334 }
9335 }
9336
9337 /*
9338 * Normal processing.
9339 */
9340#ifdef HMVMX_USE_FUNCTION_TABLE
9341 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
9342#else
9343 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
9344#endif
9345}
9346
9347
9348#ifdef DEBUG
9349/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
9350# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
9351 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
9352
9353# define HMVMX_ASSERT_PREEMPT_CPUID() \
9354 do \
9355 { \
9356 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
9357 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
9358 } while (0)
9359
9360# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
9361 do { \
9362 AssertPtr(pVCpu); \
9363 AssertPtr(pMixedCtx); \
9364 AssertPtr(pVmxTransient); \
9365 Assert(pVmxTransient->fVMEntryFailed == false); \
9366 Assert(ASMIntAreEnabled()); \
9367 HMVMX_ASSERT_PREEMPT_SAFE(); \
9368 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
9369 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
9370 HMVMX_ASSERT_PREEMPT_SAFE(); \
9371 if (VMMR0IsLogFlushDisabled(pVCpu)) \
9372 HMVMX_ASSERT_PREEMPT_CPUID(); \
9373 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
9374 } while (0)
9375
9376# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
9377 do { \
9378 Log4Func(("\n")); \
9379 } while (0)
9380#else /* Release builds */
9381# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
9382 do { \
9383 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
9384 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
9385 } while (0)
9386# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
9387#endif
9388
9389
9390/**
9391 * Advances the guest RIP after reading it from the VMCS.
9392 *
9393 * @returns VBox status code.
9394 * @param pVCpu Pointer to the VMCPU.
9395 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
9396 * out-of-sync. Make sure to update the required fields
9397 * before using them.
9398 * @param pVmxTransient Pointer to the VMX transient structure.
9399 *
9400 * @remarks No-long-jump zone!!!
9401 */
9402DECLINLINE(int) hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9403{
9404 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
9405 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
9406 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9407 AssertRCReturn(rc, rc);
9408
9409 pMixedCtx->rip += pVmxTransient->cbInstr;
9410 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
9411
9412 /*
9413 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
9414 * pending debug exception field as it takes care of priority of events.
9415 *
9416 * See Intel spec. 32.2.1 "Debug Exceptions".
9417 */
9418 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
9419
9420 return rc;
9421}
9422
9423
9424/**
9425 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9426 * and update error record fields accordingly.
9427 *
9428 * @return VMX_IGS_* return codes.
9429 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9430 * wrong with the guest state.
9431 *
9432 * @param pVM Pointer to the VM.
9433 * @param pVCpu Pointer to the VMCPU.
9434 * @param pCtx Pointer to the guest-CPU state.
9435 *
9436 * @remarks This function assumes our cache of the VMCS controls
9437 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
9438 */
9439static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9440{
9441#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9442#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
9443 uError = (err); \
9444 break; \
9445 } else do { } while (0)
9446
9447 int rc;
9448 uint32_t uError = VMX_IGS_ERROR;
9449 uint32_t u32Val;
9450 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
9451
9452 do
9453 {
9454 /*
9455 * CR0.
9456 */
9457 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9458 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9459 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
9460 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9461 if (fUnrestrictedGuest)
9462 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
9463
9464 uint32_t u32GuestCR0;
9465 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
9466 AssertRCBreak(rc);
9467 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
9468 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
9469 if ( !fUnrestrictedGuest
9470 && (u32GuestCR0 & X86_CR0_PG)
9471 && !(u32GuestCR0 & X86_CR0_PE))
9472 {
9473 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9474 }
9475
9476 /*
9477 * CR4.
9478 */
9479 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9480 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9481
9482 uint32_t u32GuestCR4;
9483 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
9484 AssertRCBreak(rc);
9485 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
9486 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
9487
9488 /*
9489 * IA32_DEBUGCTL MSR.
9490 */
9491 uint64_t u64Val;
9492 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9493 AssertRCBreak(rc);
9494 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
9495 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9496 {
9497 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9498 }
9499 uint64_t u64DebugCtlMsr = u64Val;
9500
9501#ifdef VBOX_STRICT
9502 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9503 AssertRCBreak(rc);
9504 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
9505#endif
9506 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
9507
9508 /*
9509 * RIP and RFLAGS.
9510 */
9511 uint32_t u32Eflags;
9512#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9513 if (HMVMX_IS_64BIT_HOST_MODE())
9514 {
9515 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
9516 AssertRCBreak(rc);
9517 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9518 if ( !fLongModeGuest
9519 || !pCtx->cs.Attr.n.u1Long)
9520 {
9521 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9522 }
9523 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9524 * must be identical if the "IA-32e mode guest" VM-entry
9525 * control is 1 and CS.L is 1. No check applies if the
9526 * CPU supports 64 linear-address bits. */
9527
9528 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9529 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9530 AssertRCBreak(rc);
9531 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9532 VMX_IGS_RFLAGS_RESERVED);
9533 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9534 u32Eflags = u64Val;
9535 }
9536 else
9537#endif
9538 {
9539 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
9540 AssertRCBreak(rc);
9541 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
9542 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9543 }
9544
9545 if ( fLongModeGuest
9546 || ( fUnrestrictedGuest
9547 && !(u32GuestCR0 & X86_CR0_PE)))
9548 {
9549 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9550 }
9551
9552 uint32_t u32EntryInfo;
9553 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9554 AssertRCBreak(rc);
9555 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
9556 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
9557 {
9558 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9559 }
9560
9561 /*
9562 * 64-bit checks.
9563 */
9564#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9565 if (HMVMX_IS_64BIT_HOST_MODE())
9566 {
9567 if (fLongModeGuest)
9568 {
9569 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9570 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9571 }
9572
9573 if ( !fLongModeGuest
9574 && (u32GuestCR4 & X86_CR4_PCIDE))
9575 {
9576 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9577 }
9578
9579 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9580 * 51:32 beyond the processor's physical-address width are 0. */
9581
9582 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
9583 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9584 {
9585 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9586 }
9587
9588 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9589 AssertRCBreak(rc);
9590 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9591
9592 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9593 AssertRCBreak(rc);
9594 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9595 }
9596#endif
9597
9598 /*
9599 * PERF_GLOBAL MSR.
9600 */
9601 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
9602 {
9603 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9604 AssertRCBreak(rc);
9605 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9606 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9607 }
9608
9609 /*
9610 * PAT MSR.
9611 */
9612 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
9613 {
9614 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9615 AssertRCBreak(rc);
9616 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9617 for (unsigned i = 0; i < 8; i++)
9618 {
9619 uint8_t u8Val = (u64Val & 0xff);
9620 if ( u8Val != 0 /* UC */
9621 && u8Val != 1 /* WC */
9622 && u8Val != 4 /* WT */
9623 && u8Val != 5 /* WP */
9624 && u8Val != 6 /* WB */
9625 && u8Val != 7 /* UC- */)
9626 {
9627 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9628 }
9629 u64Val >>= 8;
9630 }
9631 }
9632
9633 /*
9634 * EFER MSR.
9635 */
9636 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
9637 {
9638 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
9639 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9640 AssertRCBreak(rc);
9641 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9642 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9643 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
9644 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9645 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9646 || !(u32GuestCR0 & X86_CR0_PG)
9647 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9648 VMX_IGS_EFER_LMA_LME_MISMATCH);
9649 }
9650
9651 /*
9652 * Segment registers.
9653 */
9654 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9655 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9656 if (!(u32Eflags & X86_EFL_VM))
9657 {
9658 /* CS */
9659 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9660 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9661 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9662 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9663 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9664 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9665 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9666 /* CS cannot be loaded with NULL in protected mode. */
9667 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9668 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9669 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9670 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9671 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9672 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9673 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9674 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9675 else
9676 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9677
9678 /* SS */
9679 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9680 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9681 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9682 if ( !(pCtx->cr0 & X86_CR0_PE)
9683 || pCtx->cs.Attr.n.u4Type == 3)
9684 {
9685 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9686 }
9687 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9688 {
9689 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9690 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9691 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9692 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9693 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9694 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9695 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9696 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9697 }
9698
9699 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
9700 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9701 {
9702 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9703 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9704 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9705 || pCtx->ds.Attr.n.u4Type > 11
9706 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9707 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9708 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9709 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9710 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9711 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9712 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9713 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9714 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9715 }
9716 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9717 {
9718 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9719 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9720 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9721 || pCtx->es.Attr.n.u4Type > 11
9722 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9723 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9724 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9725 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9726 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9727 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9728 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9729 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9730 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9731 }
9732 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9733 {
9734 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
9735 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
9736 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9737 || pCtx->fs.Attr.n.u4Type > 11
9738 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
9739 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
9740 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
9741 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
9742 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9743 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
9744 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9745 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9746 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
9747 }
9748 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
9749 {
9750 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
9751 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
9752 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9753 || pCtx->gs.Attr.n.u4Type > 11
9754 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
9755 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
9756 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
9757 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
9758 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9759 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
9760 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9761 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9762 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
9763 }
9764 /* 64-bit capable CPUs. */
9765#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9766 if (HMVMX_IS_64BIT_HOST_MODE())
9767 {
9768 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9769 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9770 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9771 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9772 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9773 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
9774 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9775 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
9776 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9777 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
9778 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9779 }
9780#endif
9781 }
9782 else
9783 {
9784 /* V86 mode checks. */
9785 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
9786 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
9787 {
9788 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
9789 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
9790 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
9791 }
9792 else
9793 {
9794 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
9795 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
9796 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
9797 }
9798
9799 /* CS */
9800 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9801 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9802 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9803 /* SS */
9804 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9805 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9806 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9807 /* DS */
9808 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9809 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9810 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9811 /* ES */
9812 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9813 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9814 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9815 /* FS */
9816 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9817 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9818 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9819 /* GS */
9820 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9821 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9822 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9823 /* 64-bit capable CPUs. */
9824#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9825 if (HMVMX_IS_64BIT_HOST_MODE())
9826 {
9827 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9828 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9829 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9830 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9831 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9832 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
9833 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9834 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
9835 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9836 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
9837 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9838 }
9839#endif
9840 }
9841
9842 /*
9843 * TR.
9844 */
9845 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9846 /* 64-bit capable CPUs. */
9847#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9848 if (HMVMX_IS_64BIT_HOST_MODE())
9849 {
9850 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9851 }
9852#endif
9853 if (fLongModeGuest)
9854 {
9855 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9856 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9857 }
9858 else
9859 {
9860 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9861 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9862 VMX_IGS_TR_ATTR_TYPE_INVALID);
9863 }
9864 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9865 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9866 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9867 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9868 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9869 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9870 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9871 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9872
9873 /*
9874 * GDTR and IDTR.
9875 */
9876#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
9877 if (HMVMX_IS_64BIT_HOST_MODE())
9878 {
9879 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9880 AssertRCBreak(rc);
9881 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9882
9883 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9884 AssertRCBreak(rc);
9885 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9886 }
9887#endif
9888
9889 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9890 AssertRCBreak(rc);
9891 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9892
9893 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9894 AssertRCBreak(rc);
9895 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9896
9897 /*
9898 * Guest Non-Register State.
9899 */
9900 /* Activity State. */
9901 uint32_t u32ActivityState;
9902 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9903 AssertRCBreak(rc);
9904 HMVMX_CHECK_BREAK( !u32ActivityState
9905 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
9906 VMX_IGS_ACTIVITY_STATE_INVALID);
9907 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9908 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9909 uint32_t u32IntrState;
9910 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
9911 AssertRCBreak(rc);
9912 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
9913 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9914 {
9915 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9916 }
9917
9918 /** @todo Activity state and injecting interrupts. Left as a todo since we
9919 * currently don't use activity states but ACTIVE. */
9920
9921 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
9922 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9923
9924 /* Guest interruptibility-state. */
9925 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9926 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
9927 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
9928 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
9929 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9930 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9931 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9932 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
9933 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9934 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
9935 {
9936 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
9937 {
9938 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9939 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9940 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9941 }
9942 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9943 {
9944 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
9945 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9946 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
9947 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9948 }
9949 }
9950 /** @todo Assumes the processor is not in SMM. */
9951 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
9952 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9953 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
9954 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
9955 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9956 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
9957 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
9958 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9959 {
9960 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
9961 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9962 }
9963
9964 /* Pending debug exceptions. */
9965 if (HMVMX_IS_64BIT_HOST_MODE())
9966 {
9967 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
9968 AssertRCBreak(rc);
9969 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9970 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9971 u32Val = u64Val; /* For pending debug exceptions checks below. */
9972 }
9973 else
9974 {
9975 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
9976 AssertRCBreak(rc);
9977 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
9978 HMVMX_CHECK_BREAK(!(u64Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
9979 }
9980
9981 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
9982 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
9983 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9984 {
9985 if ( (u32Eflags & X86_EFL_TF)
9986 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9987 {
9988 /* Bit 14 is PendingDebug.BS. */
9989 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9990 }
9991 if ( !(u32Eflags & X86_EFL_TF)
9992 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9993 {
9994 /* Bit 14 is PendingDebug.BS. */
9995 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
9996 }
9997 }
9998
9999 /* VMCS link pointer. */
10000 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
10001 AssertRCBreak(rc);
10002 if (u64Val != UINT64_C(0xffffffffffffffff))
10003 {
10004 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
10005 /** @todo Bits beyond the processor's physical-address width MBZ. */
10006 /** @todo 32-bit located in memory referenced by value of this field (as a
10007 * physical address) must contain the processor's VMCS revision ID. */
10008 /** @todo SMM checks. */
10009 }
10010
10011 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
10012 * not using Nested Paging? */
10013 if ( pVM->hm.s.fNestedPaging
10014 && !fLongModeGuest
10015 && CPUMIsGuestInPAEModeEx(pCtx))
10016 {
10017 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
10018 AssertRCBreak(rc);
10019 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10020
10021 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
10022 AssertRCBreak(rc);
10023 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10024
10025 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
10026 AssertRCBreak(rc);
10027 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10028
10029 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
10030 AssertRCBreak(rc);
10031 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10032 }
10033
10034 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
10035 if (uError == VMX_IGS_ERROR)
10036 uError = VMX_IGS_REASON_NOT_FOUND;
10037 } while (0);
10038
10039 pVCpu->hm.s.u32HMError = uError;
10040 return uError;
10041
10042#undef HMVMX_ERROR_BREAK
10043#undef HMVMX_CHECK_BREAK
10044}
10045
10046/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
10047/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
10048/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
10049
10050/** @name VM-exit handlers.
10051 * @{
10052 */
10053
10054/**
10055 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
10056 */
10057HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10058{
10059 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10060 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
10061 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
10062 if (VMMR0ThreadCtxHooksAreRegistered(pVCpu))
10063 return VINF_SUCCESS;
10064 return VINF_EM_RAW_INTERRUPT;
10065}
10066
10067
10068/**
10069 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
10070 */
10071HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10072{
10073 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10074 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
10075
10076 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
10077 AssertRCReturn(rc, rc);
10078
10079 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
10080 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
10081 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
10082 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
10083
10084 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
10085 {
10086 /*
10087 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
10088 * anything we inject is not going to cause a VM-exit directly for the event being injected.
10089 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
10090 *
10091 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
10092 */
10093 VMXDispatchHostNmi();
10094 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
10095 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
10096 return VINF_SUCCESS;
10097 }
10098
10099 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
10100 rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
10101 if (RT_UNLIKELY(rc != VINF_SUCCESS))
10102 {
10103 if (rc == VINF_HM_DOUBLE_FAULT)
10104 rc = VINF_SUCCESS;
10105 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
10106 return rc;
10107 }
10108
10109 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
10110 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
10111 switch (uIntType)
10112 {
10113 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
10114 Assert(uVector == X86_XCPT_DB);
10115 /* no break */
10116 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
10117 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
10118 /* no break */
10119 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
10120 {
10121 switch (uVector)
10122 {
10123 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
10124 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
10125 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
10126 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
10127 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
10128 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
10129#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
10130 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
10131 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
10132 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
10133 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
10134 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
10135 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
10136 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
10137 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
10138 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
10139 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
10140 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
10141 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
10142#endif
10143 default:
10144 {
10145 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10146 AssertRCReturn(rc, rc);
10147
10148 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
10149 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10150 {
10151 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
10152 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
10153 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
10154
10155 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10156 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
10157 AssertRCReturn(rc, rc);
10158 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
10159 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
10160 0 /* GCPtrFaultAddress */);
10161 AssertRCReturn(rc, rc);
10162 }
10163 else
10164 {
10165 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
10166 pVCpu->hm.s.u32HMError = uVector;
10167 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
10168 }
10169 break;
10170 }
10171 }
10172 break;
10173 }
10174
10175 default:
10176 {
10177 pVCpu->hm.s.u32HMError = uExitIntInfo;
10178 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
10179 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
10180 break;
10181 }
10182 }
10183 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
10184 return rc;
10185}
10186
10187
10188/**
10189 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
10190 */
10191HMVMX_EXIT_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10192{
10193 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10194
10195 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
10196 hmR0VmxClearIntWindowExitVmcs(pVCpu);
10197
10198 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
10199 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
10200 return VINF_SUCCESS;
10201}
10202
10203
10204/**
10205 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
10206 */
10207HMVMX_EXIT_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10208{
10209 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10210 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
10211 {
10212 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
10213 HMVMX_RETURN_UNEXPECTED_EXIT();
10214 }
10215
10216 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
10217
10218 /*
10219 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
10220 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
10221 */
10222 uint32_t uIntrState = 0;
10223 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
10224 AssertRCReturn(rc, rc);
10225
10226 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
10227 if ( fBlockSti
10228 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
10229 {
10230 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10231 }
10232
10233 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
10234 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
10235
10236 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
10237 return VINF_SUCCESS;
10238}
10239
10240
10241/**
10242 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
10243 */
10244HMVMX_EXIT_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10245{
10246 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10247 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
10248 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10249}
10250
10251
10252/**
10253 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
10254 */
10255HMVMX_EXIT_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10256{
10257 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10258 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
10259 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10260}
10261
10262
10263/**
10264 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
10265 */
10266HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10267{
10268 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10269 PVM pVM = pVCpu->CTX_SUFF(pVM);
10270 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10271 if (RT_LIKELY(rc == VINF_SUCCESS))
10272 {
10273 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10274 Assert(pVmxTransient->cbInstr == 2);
10275 }
10276 else
10277 {
10278 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
10279 rc = VERR_EM_INTERPRETER;
10280 }
10281 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
10282 return rc;
10283}
10284
10285
10286/**
10287 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
10288 */
10289HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10290{
10291 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10292 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
10293 AssertRCReturn(rc, rc);
10294
10295 if (pMixedCtx->cr4 & X86_CR4_SMXE)
10296 return VINF_EM_RAW_EMULATE_INSTR;
10297
10298 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
10299 HMVMX_RETURN_UNEXPECTED_EXIT();
10300}
10301
10302
10303/**
10304 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
10305 */
10306HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10307{
10308 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10309 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
10310 AssertRCReturn(rc, rc);
10311
10312 PVM pVM = pVCpu->CTX_SUFF(pVM);
10313 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10314 if (RT_LIKELY(rc == VINF_SUCCESS))
10315 {
10316 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10317 Assert(pVmxTransient->cbInstr == 2);
10318 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
10319 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
10320 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10321 }
10322 else
10323 rc = VERR_EM_INTERPRETER;
10324 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
10325 return rc;
10326}
10327
10328
10329/**
10330 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
10331 */
10332HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10333{
10334 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10335 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
10336 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
10337 AssertRCReturn(rc, rc);
10338
10339 PVM pVM = pVCpu->CTX_SUFF(pVM);
10340 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
10341 if (RT_LIKELY(rc == VINF_SUCCESS))
10342 {
10343 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10344 Assert(pVmxTransient->cbInstr == 3);
10345 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
10346 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
10347 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10348 }
10349 else
10350 {
10351 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
10352 rc = VERR_EM_INTERPRETER;
10353 }
10354 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
10355 return rc;
10356}
10357
10358
10359/**
10360 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
10361 */
10362HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10363{
10364 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10365 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
10366 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); /** @todo review if CR0 is really required by EM. */
10367 AssertRCReturn(rc, rc);
10368
10369 PVM pVM = pVCpu->CTX_SUFF(pVM);
10370 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10371 if (RT_LIKELY(rc == VINF_SUCCESS))
10372 {
10373 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10374 Assert(pVmxTransient->cbInstr == 2);
10375 }
10376 else
10377 {
10378 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
10379 rc = VERR_EM_INTERPRETER;
10380 }
10381 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
10382 return rc;
10383}
10384
10385
10386/**
10387 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
10388 */
10389HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10390{
10391 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10392 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
10393
10394 if (pVCpu->hm.s.fHypercallsEnabled)
10395 {
10396#if 0
10397 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10398 AssertRCReturn(rc, rc);
10399#else
10400 /* Aggressive state sync. for now. */
10401 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10402 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
10403#endif
10404 AssertRCReturn(rc, rc);
10405
10406 rc = GIMHypercall(pVCpu, pMixedCtx);
10407 if (RT_SUCCESS(rc))
10408 {
10409 /* If the hypercall changes anything other than guest general-purpose registers,
10410 we would need to reload the guest changed bits here before VM-reentry. */
10411 hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10412 return VINF_SUCCESS;
10413 }
10414 }
10415
10416 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
10417 return VINF_SUCCESS;
10418}
10419
10420
10421/**
10422 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
10423 */
10424HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10425{
10426 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10427 PVM pVM = pVCpu->CTX_SUFF(pVM);
10428 Assert(!pVM->hm.s.fNestedPaging);
10429
10430 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10431 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
10432 AssertRCReturn(rc, rc);
10433
10434 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
10435 rc = VBOXSTRICTRC_VAL(rc2);
10436 if (RT_LIKELY(rc == VINF_SUCCESS))
10437 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10438 else
10439 {
10440 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
10441 pVmxTransient->uExitQualification, rc));
10442 }
10443 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
10444 return rc;
10445}
10446
10447
10448/**
10449 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
10450 */
10451HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10452{
10453 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10454 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10455 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10456 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10457 AssertRCReturn(rc, rc);
10458
10459 PVM pVM = pVCpu->CTX_SUFF(pVM);
10460 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10461 if (RT_LIKELY(rc == VINF_SUCCESS))
10462 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10463 else
10464 {
10465 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
10466 rc = VERR_EM_INTERPRETER;
10467 }
10468 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
10469 return rc;
10470}
10471
10472
10473/**
10474 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
10475 */
10476HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10477{
10478 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10479 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10480 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10481 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10482 AssertRCReturn(rc, rc);
10483
10484 PVM pVM = pVCpu->CTX_SUFF(pVM);
10485 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10486 rc = VBOXSTRICTRC_VAL(rc2);
10487 if (RT_LIKELY( rc == VINF_SUCCESS
10488 || rc == VINF_EM_HALT))
10489 {
10490 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10491 AssertRCReturn(rc3, rc3);
10492
10493 if ( rc == VINF_EM_HALT
10494 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
10495 {
10496 rc = VINF_SUCCESS;
10497 }
10498 }
10499 else
10500 {
10501 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
10502 rc = VERR_EM_INTERPRETER;
10503 }
10504 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
10505 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
10506 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
10507 return rc;
10508}
10509
10510
10511/**
10512 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
10513 */
10514HMVMX_EXIT_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10515{
10516 /*
10517 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
10518 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
10519 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
10520 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
10521 */
10522 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10523 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10524 HMVMX_RETURN_UNEXPECTED_EXIT();
10525}
10526
10527
10528/**
10529 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
10530 */
10531HMVMX_EXIT_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10532{
10533 /*
10534 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
10535 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
10536 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
10537 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
10538 */
10539 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10540 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10541 HMVMX_RETURN_UNEXPECTED_EXIT();
10542}
10543
10544
10545/**
10546 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
10547 */
10548HMVMX_EXIT_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10549{
10550 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
10551 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10552 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10553 HMVMX_RETURN_UNEXPECTED_EXIT();
10554}
10555
10556
10557/**
10558 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
10559 */
10560HMVMX_EXIT_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10561{
10562 /*
10563 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
10564 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
10565 * See Intel spec. 25.3 "Other Causes of VM-exits".
10566 */
10567 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10568 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10569 HMVMX_RETURN_UNEXPECTED_EXIT();
10570}
10571
10572
10573/**
10574 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
10575 * VM-exit.
10576 */
10577HMVMX_EXIT_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10578{
10579 /*
10580 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
10581 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
10582 *
10583 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
10584 * See Intel spec. "23.8 Restrictions on VMX operation".
10585 */
10586 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10587 return VINF_SUCCESS;
10588}
10589
10590
10591/**
10592 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
10593 * VM-exit.
10594 */
10595HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10596{
10597 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10598 return VINF_EM_RESET;
10599}
10600
10601
10602/**
10603 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
10604 */
10605HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10606{
10607 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10608 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
10609 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10610 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10611 AssertRCReturn(rc, rc);
10612
10613 pMixedCtx->rip++;
10614 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10615 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
10616 rc = VINF_SUCCESS;
10617 else
10618 rc = VINF_EM_HALT;
10619
10620 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
10621 if (rc != VINF_SUCCESS)
10622 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
10623 return rc;
10624}
10625
10626
10627/**
10628 * VM-exit handler for instructions that result in a #UD exception delivered to
10629 * the guest.
10630 */
10631HMVMX_EXIT_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10632{
10633 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10634 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
10635 return VINF_SUCCESS;
10636}
10637
10638
10639/**
10640 * VM-exit handler for expiry of the VMX preemption timer.
10641 */
10642HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10643{
10644 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10645
10646 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
10647 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10648
10649 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
10650 PVM pVM = pVCpu->CTX_SUFF(pVM);
10651 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
10652 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
10653 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
10654}
10655
10656
10657/**
10658 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
10659 */
10660HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10661{
10662 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10663
10664 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10665 rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
10666 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
10667 AssertRCReturn(rc, rc);
10668
10669 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
10670 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
10671
10672 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
10673
10674 return VBOXSTRICTRC_TODO(rcStrict);
10675}
10676
10677
10678/**
10679 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
10680 */
10681HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10682{
10683 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10684
10685 /* The guest should not invalidate the host CPU's TLBs, fallback to interpreter. */
10686 /** @todo implement EMInterpretInvpcid() */
10687 return VERR_EM_INTERPRETER;
10688}
10689
10690
10691/**
10692 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
10693 * Error VM-exit.
10694 */
10695HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10696{
10697 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10698 AssertRCReturn(rc, rc);
10699
10700 rc = hmR0VmxCheckVmcsCtls(pVCpu);
10701 AssertRCReturn(rc, rc);
10702
10703 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
10704 NOREF(uInvalidReason);
10705
10706#ifdef VBOX_STRICT
10707 uint32_t uIntrState;
10708 HMVMXHCUINTREG uHCReg;
10709 uint64_t u64Val;
10710 uint32_t u32Val;
10711
10712 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
10713 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
10714 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
10715 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
10716 AssertRCReturn(rc, rc);
10717
10718 Log4(("uInvalidReason %u\n", uInvalidReason));
10719 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
10720 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
10721 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
10722 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
10723
10724 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
10725 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
10726 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
10727 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
10728 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
10729 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
10730 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
10731 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
10732 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
10733 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
10734 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
10735 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
10736#else
10737 NOREF(pVmxTransient);
10738#endif
10739
10740 HMDumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
10741 return VERR_VMX_INVALID_GUEST_STATE;
10742}
10743
10744
10745/**
10746 * VM-exit handler for VM-entry failure due to an MSR-load
10747 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
10748 */
10749HMVMX_EXIT_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10750{
10751 NOREF(pVmxTransient);
10752 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
10753 HMVMX_RETURN_UNEXPECTED_EXIT();
10754}
10755
10756
10757/**
10758 * VM-exit handler for VM-entry failure due to a machine-check event
10759 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
10760 */
10761HMVMX_EXIT_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10762{
10763 NOREF(pVmxTransient);
10764 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
10765 HMVMX_RETURN_UNEXPECTED_EXIT();
10766}
10767
10768
10769/**
10770 * VM-exit handler for all undefined reasons. Should never ever happen.. in
10771 * theory.
10772 */
10773HMVMX_EXIT_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10774{
10775 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
10776 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
10777 return VERR_VMX_UNDEFINED_EXIT_CODE;
10778}
10779
10780
10781/**
10782 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
10783 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
10784 * Conditional VM-exit.
10785 */
10786HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10787{
10788 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10789
10790 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
10791 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
10792 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
10793 return VERR_EM_INTERPRETER;
10794 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10795 HMVMX_RETURN_UNEXPECTED_EXIT();
10796}
10797
10798
10799/**
10800 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
10801 */
10802HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10803{
10804 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10805
10806 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
10807 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
10808 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
10809 return VERR_EM_INTERPRETER;
10810 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
10811 HMVMX_RETURN_UNEXPECTED_EXIT();
10812}
10813
10814
10815/**
10816 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
10817 */
10818HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10819{
10820 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10821
10822 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
10823 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10824 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10825 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10826 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10827 {
10828 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
10829 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
10830 }
10831 AssertRCReturn(rc, rc);
10832 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
10833
10834#ifdef VBOX_STRICT
10835 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
10836 {
10837 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
10838 && pMixedCtx->ecx != MSR_K6_EFER)
10839 {
10840 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
10841 HMVMX_RETURN_UNEXPECTED_EXIT();
10842 }
10843# if HC_ARCH_BITS == 64
10844 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests
10845 && hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10846 {
10847 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
10848 HMVMX_RETURN_UNEXPECTED_EXIT();
10849 }
10850# endif
10851 }
10852#endif
10853
10854 PVM pVM = pVCpu->CTX_SUFF(pVM);
10855 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10856 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
10857 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
10858 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
10859 if (RT_LIKELY(rc == VINF_SUCCESS))
10860 {
10861 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10862 Assert(pVmxTransient->cbInstr == 2);
10863 }
10864 return rc;
10865}
10866
10867
10868/**
10869 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
10870 */
10871HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10872{
10873 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10874 PVM pVM = pVCpu->CTX_SUFF(pVM);
10875 int rc = VINF_SUCCESS;
10876
10877 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
10878 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
10879 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10880 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10881 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10882 {
10883 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
10884 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
10885 }
10886 AssertRCReturn(rc, rc);
10887 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
10888
10889 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
10890 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
10891 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
10892
10893 if (RT_LIKELY(rc == VINF_SUCCESS))
10894 {
10895 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
10896
10897 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
10898 if ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
10899 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END)
10900 {
10901 /* We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
10902 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
10903 EMInterpretWrmsr() changes it. */
10904 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
10905 }
10906 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
10907 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
10908 else if (pMixedCtx->ecx == MSR_K6_EFER)
10909 {
10910 /*
10911 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
10912 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
10913 * the other bits as well, SCE and NXE. See @bugref{7368}.
10914 */
10915 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
10916 }
10917
10918 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
10919 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
10920 {
10921 switch (pMixedCtx->ecx)
10922 {
10923 case MSR_IA32_SYSENTER_CS: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
10924 case MSR_IA32_SYSENTER_EIP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
10925 case MSR_IA32_SYSENTER_ESP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
10926 case MSR_K8_FS_BASE: /* no break */
10927 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
10928 case MSR_K6_EFER: /* already handled above */ break;
10929 default:
10930 {
10931 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
10932 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
10933#if HC_ARCH_BITS == 64
10934 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10935 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
10936#endif
10937 break;
10938 }
10939 }
10940 }
10941#ifdef VBOX_STRICT
10942 else
10943 {
10944 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
10945 switch (pMixedCtx->ecx)
10946 {
10947 case MSR_IA32_SYSENTER_CS:
10948 case MSR_IA32_SYSENTER_EIP:
10949 case MSR_IA32_SYSENTER_ESP:
10950 case MSR_K8_FS_BASE:
10951 case MSR_K8_GS_BASE:
10952 {
10953 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
10954 HMVMX_RETURN_UNEXPECTED_EXIT();
10955 }
10956
10957 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
10958 default:
10959 {
10960 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
10961 {
10962 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
10963 if (pMixedCtx->ecx != MSR_K6_EFER)
10964 {
10965 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
10966 pMixedCtx->ecx));
10967 HMVMX_RETURN_UNEXPECTED_EXIT();
10968 }
10969 }
10970
10971#if HC_ARCH_BITS == 64
10972 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
10973 {
10974 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
10975 HMVMX_RETURN_UNEXPECTED_EXIT();
10976 }
10977#endif
10978 break;
10979 }
10980 }
10981 }
10982#endif /* VBOX_STRICT */
10983 }
10984 return rc;
10985}
10986
10987
10988/**
10989 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
10990 */
10991HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10992{
10993 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
10994
10995 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT. */
10996 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
10997 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT)
10998 return VERR_EM_INTERPRETER;
10999 AssertMsgFailed(("Unexpected PAUSE exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11000 HMVMX_RETURN_UNEXPECTED_EXIT();
11001}
11002
11003
11004/**
11005 * VM-exit handler for when the TPR value is lowered below the specified
11006 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
11007 */
11008HMVMX_EXIT_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11009{
11010 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11011 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
11012
11013 /*
11014 * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
11015 * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectPendingEvent() and
11016 * resume guest execution.
11017 */
11018 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
11019 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
11020 return VINF_SUCCESS;
11021}
11022
11023
11024/**
11025 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
11026 * VM-exit.
11027 *
11028 * @retval VINF_SUCCESS when guest execution can continue.
11029 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
11030 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
11031 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
11032 * interpreter.
11033 */
11034HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11035{
11036 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11037 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
11038 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11039 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11040 AssertRCReturn(rc, rc);
11041
11042 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
11043 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
11044 PVM pVM = pVCpu->CTX_SUFF(pVM);
11045 VBOXSTRICTRC rcStrict;
11046 rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
11047 switch (uAccessType)
11048 {
11049 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
11050 {
11051 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11052 AssertRCReturn(rc, rc);
11053
11054 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
11055 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
11056 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
11057 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
11058 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11059 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
11060 {
11061 case 0: /* CR0 */
11062 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
11063 Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
11064 break;
11065 case 2: /* CR2 */
11066 /* Nothing to do here, CR2 it's not part of the VMCS. */
11067 break;
11068 case 3: /* CR3 */
11069 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx));
11070 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
11071 Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
11072 break;
11073 case 4: /* CR4 */
11074 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
11075 Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
11076 VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
11077 break;
11078 case 8: /* CR8 */
11079 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
11080 /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
11081 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
11082 break;
11083 default:
11084 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
11085 break;
11086 }
11087
11088 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
11089 break;
11090 }
11091
11092 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
11093 {
11094 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11095 AssertRCReturn(rc, rc);
11096
11097 Assert( !pVM->hm.s.fNestedPaging
11098 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
11099 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
11100
11101 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
11102 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
11103 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
11104
11105 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
11106 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
11107 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
11108 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11109 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
11110 Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
11111 VBOXSTRICTRC_VAL(rcStrict)));
11112 break;
11113 }
11114
11115 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
11116 {
11117 AssertRCReturn(rc, rc);
11118 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
11119 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11120 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
11121 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
11122 Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
11123 break;
11124 }
11125
11126 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
11127 {
11128 AssertRCReturn(rc, rc);
11129 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
11130 VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
11131 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11132 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
11133 Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
11134 break;
11135 }
11136
11137 default:
11138 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
11139 VERR_VMX_UNEXPECTED_EXCEPTION);
11140 }
11141
11142 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
11143 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
11144 return VBOXSTRICTRC_TODO(rcStrict);
11145}
11146
11147
11148/**
11149 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
11150 * VM-exit.
11151 */
11152HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11153{
11154 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11155 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
11156
11157 int rc2 = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11158 rc2 |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11159 rc2 |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11160 rc2 |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
11161 rc2 |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
11162 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
11163 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
11164 AssertRCReturn(rc2, rc2);
11165
11166 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
11167 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
11168 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
11169 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
11170 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
11171 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
11172 bool fStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
11173 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
11174
11175 /* I/O operation lookup arrays. */
11176 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
11177 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
11178
11179 VBOXSTRICTRC rcStrict;
11180 uint32_t const cbValue = s_aIOSizes[uIOWidth];
11181 uint32_t const cbInstr = pVmxTransient->cbInstr;
11182 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
11183 PVM pVM = pVCpu->CTX_SUFF(pVM);
11184 if (fIOString)
11185 {
11186#if 0 /* Not yet ready. IEM gurus with debian 32-bit guest without NP (on ATA reads). See @bugref{5752#c158} */
11187 /*
11188 * INS/OUTS - I/O String instruction.
11189 *
11190 * Use instruction-information if available, otherwise fall back on
11191 * interpreting the instruction.
11192 */
11193 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
11194 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
11195 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
11196 {
11197 rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11198 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
11199 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11200 AssertRCReturn(rc2, rc2);
11201 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
11202 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
11203 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
11204 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
11205 if (fIOWrite)
11206 {
11207 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
11208 pVmxTransient->ExitInstrInfo.StrIo.iSegReg);
11209 }
11210 else
11211 {
11212 /*
11213 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
11214 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
11215 * See Intel Instruction spec. for "INS".
11216 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
11217 */
11218 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr);
11219 }
11220 }
11221 else
11222 {
11223 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
11224 rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11225 AssertRCReturn(rc2, rc2);
11226 rcStrict = IEMExecOne(pVCpu);
11227 }
11228 /** @todo IEM needs to be setting these flags somehow. */
11229 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
11230 fUpdateRipAlready = true;
11231#else
11232 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
11233 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
11234 if (RT_SUCCESS(rcStrict))
11235 {
11236 if (fIOWrite)
11237 {
11238 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
11239 (DISCPUMODE)pDis->uAddrMode, cbValue);
11240 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
11241 }
11242 else
11243 {
11244 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
11245 (DISCPUMODE)pDis->uAddrMode, cbValue);
11246 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
11247 }
11248 }
11249 else
11250 {
11251 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP %#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->rip));
11252 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
11253 }
11254#endif
11255 }
11256 else
11257 {
11258 /*
11259 * IN/OUT - I/O instruction.
11260 */
11261 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
11262 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
11263 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
11264 if (fIOWrite)
11265 {
11266 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
11267 if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
11268 HMR0SavePendingIOPortWrite(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
11269 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
11270 }
11271 else
11272 {
11273 uint32_t u32Result = 0;
11274 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
11275 if (IOM_SUCCESS(rcStrict))
11276 {
11277 /* Save result of I/O IN instr. in AL/AX/EAX. */
11278 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
11279 }
11280 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
11281 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
11282 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
11283 }
11284 }
11285
11286 if (IOM_SUCCESS(rcStrict))
11287 {
11288 if (!fUpdateRipAlready)
11289 {
11290 pMixedCtx->rip += cbInstr;
11291 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
11292 }
11293
11294 /*
11295 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
11296 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
11297 */
11298 if (fIOString)
11299 {
11300 /** @todo Single-step for INS/OUTS with REP prefix? */
11301 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
11302 }
11303 else if (fStepping)
11304 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
11305
11306 /*
11307 * If any I/O breakpoints are armed, we need to check if one triggered
11308 * and take appropriate action.
11309 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
11310 */
11311 rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
11312 AssertRCReturn(rc2, rc2);
11313
11314 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
11315 * execution engines about whether hyper BPs and such are pending. */
11316 uint32_t const uDr7 = pMixedCtx->dr[7];
11317 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
11318 && X86_DR7_ANY_RW_IO(uDr7)
11319 && (pMixedCtx->cr4 & X86_CR4_DE))
11320 || DBGFBpIsHwIoArmed(pVM)))
11321 {
11322 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
11323
11324 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
11325 VMMRZCallRing3Disable(pVCpu);
11326 HM_DISABLE_PREEMPT();
11327
11328 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
11329
11330 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
11331 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
11332 {
11333 /* Raise #DB. */
11334 if (fIsGuestDbgActive)
11335 ASMSetDR6(pMixedCtx->dr[6]);
11336 if (pMixedCtx->dr[7] != uDr7)
11337 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
11338
11339 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
11340 }
11341 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
11342 else if ( rcStrict2 != VINF_SUCCESS
11343 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
11344 rcStrict = rcStrict2;
11345
11346 HM_RESTORE_PREEMPT();
11347 VMMRZCallRing3Enable(pVCpu);
11348 }
11349 }
11350
11351#ifdef DEBUG
11352 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
11353 Assert(!fIOWrite);
11354 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
11355 Assert(fIOWrite);
11356 else
11357 {
11358 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
11359 * statuses, that the VMM device and some others may return. See
11360 * IOM_SUCCESS() for guidance. */
11361 AssertMsg( RT_FAILURE(rcStrict)
11362 || rcStrict == VINF_SUCCESS
11363 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
11364 || rcStrict == VINF_EM_DBG_BREAKPOINT
11365 || rcStrict == VINF_EM_RAW_GUEST_TRAP
11366 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11367 }
11368#endif
11369
11370 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
11371 return VBOXSTRICTRC_TODO(rcStrict);
11372}
11373
11374
11375/**
11376 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
11377 * VM-exit.
11378 */
11379HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11380{
11381 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11382
11383 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
11384 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11385 AssertRCReturn(rc, rc);
11386 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
11387 {
11388 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
11389 AssertRCReturn(rc, rc);
11390 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
11391 {
11392 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
11393
11394 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
11395 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
11396
11397 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
11398 Assert(!pVCpu->hm.s.Event.fPending);
11399 pVCpu->hm.s.Event.fPending = true;
11400 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
11401 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
11402 AssertRCReturn(rc, rc);
11403 if (fErrorCodeValid)
11404 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
11405 else
11406 pVCpu->hm.s.Event.u32ErrCode = 0;
11407 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
11408 && uVector == X86_XCPT_PF)
11409 {
11410 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
11411 }
11412
11413 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
11414 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
11415 return VINF_EM_RAW_INJECT_TRPM_EVENT;
11416 }
11417 }
11418
11419 /** @todo Emulate task switch someday, currently just going back to ring-3 for
11420 * emulation. */
11421 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
11422 return VERR_EM_INTERPRETER;
11423}
11424
11425
11426/**
11427 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
11428 */
11429HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11430{
11431 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11432 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
11433 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
11434 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
11435 AssertRCReturn(rc, rc);
11436 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
11437 return VINF_EM_DBG_STEPPED;
11438}
11439
11440
11441/**
11442 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
11443 */
11444HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11445{
11446 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11447
11448 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11449 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11450 if (RT_UNLIKELY(rc != VINF_SUCCESS))
11451 {
11452 if (rc == VINF_HM_DOUBLE_FAULT)
11453 rc = VINF_SUCCESS;
11454 return rc;
11455 }
11456
11457#if 0
11458 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
11459 * just sync the whole thing. */
11460 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11461#else
11462 /* Aggressive state sync. for now. */
11463 rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
11464 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11465 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11466#endif
11467 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11468 AssertRCReturn(rc, rc);
11469
11470 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
11471 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
11472 switch (uAccessType)
11473 {
11474 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
11475 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
11476 {
11477 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
11478 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != 0x80,
11479 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
11480
11481 RTGCPHYS GCPhys = pMixedCtx->msrApicBase; /* Always up-to-date, msrApicBase is not part of the VMCS. */
11482 GCPhys &= PAGE_BASE_GC_MASK;
11483 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
11484 PVM pVM = pVCpu->CTX_SUFF(pVM);
11485 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGv Off=%#x\n", uAccessType, GCPhys,
11486 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
11487
11488 VBOXSTRICTRC rc2 = IOMMMIOPhysHandler(pVM, pVCpu,
11489 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
11490 CPUMCTX2CORE(pMixedCtx), GCPhys);
11491 rc = VBOXSTRICTRC_VAL(rc2);
11492 Log4(("ApicAccess rc=%d\n", rc));
11493 if ( rc == VINF_SUCCESS
11494 || rc == VERR_PAGE_TABLE_NOT_PRESENT
11495 || rc == VERR_PAGE_NOT_PRESENT)
11496 {
11497 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11498 | HM_CHANGED_GUEST_RSP
11499 | HM_CHANGED_GUEST_RFLAGS
11500 | HM_CHANGED_VMX_GUEST_APIC_STATE);
11501 rc = VINF_SUCCESS;
11502 }
11503 break;
11504 }
11505
11506 default:
11507 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
11508 rc = VINF_EM_RAW_EMULATE_INSTR;
11509 break;
11510 }
11511
11512 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
11513 if (rc != VINF_SUCCESS)
11514 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
11515 return rc;
11516}
11517
11518
11519/**
11520 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
11521 * VM-exit.
11522 */
11523HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11524{
11525 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11526
11527 /* We should -not- get this VM-exit if the guest's debug registers were active. */
11528 if (pVmxTransient->fWasGuestDebugStateActive)
11529 {
11530 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11531 HMVMX_RETURN_UNEXPECTED_EXIT();
11532 }
11533
11534 int rc = VERR_INTERNAL_ERROR_5;
11535 if ( !DBGFIsStepping(pVCpu)
11536 && !pVCpu->hm.s.fSingleInstruction
11537 && !pVmxTransient->fWasHyperDebugStateActive)
11538 {
11539 /* Don't intercept MOV DRx and #DB any more. */
11540 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
11541 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
11542 AssertRCReturn(rc, rc);
11543
11544 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11545 {
11546#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11547 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
11548 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
11549#endif
11550 }
11551
11552 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
11553 VMMRZCallRing3Disable(pVCpu);
11554 HM_DISABLE_PREEMPT();
11555
11556 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
11557 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
11558 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
11559
11560 HM_RESTORE_PREEMPT();
11561 VMMRZCallRing3Enable(pVCpu);
11562
11563#ifdef VBOX_WITH_STATISTICS
11564 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11565 AssertRCReturn(rc, rc);
11566 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
11567 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
11568 else
11569 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
11570#endif
11571 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
11572 return VINF_SUCCESS;
11573 }
11574
11575 /*
11576 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
11577 * Update the segment registers and DR7 from the CPU.
11578 */
11579 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11580 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11581 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
11582 AssertRCReturn(rc, rc);
11583 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
11584
11585 PVM pVM = pVCpu->CTX_SUFF(pVM);
11586 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
11587 {
11588 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
11589 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
11590 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
11591 if (RT_SUCCESS(rc))
11592 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
11593 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
11594 }
11595 else
11596 {
11597 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
11598 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
11599 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
11600 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
11601 }
11602
11603 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
11604 if (RT_SUCCESS(rc))
11605 {
11606 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11607 AssertRCReturn(rc2, rc2);
11608 }
11609 return rc;
11610}
11611
11612
11613/**
11614 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
11615 * Conditional VM-exit.
11616 */
11617HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11618{
11619 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11620 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
11621
11622 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11623 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11624 if (RT_UNLIKELY(rc != VINF_SUCCESS))
11625 {
11626 if (rc == VINF_HM_DOUBLE_FAULT)
11627 rc = VINF_SUCCESS;
11628 return rc;
11629 }
11630
11631 RTGCPHYS GCPhys = 0;
11632 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
11633
11634#if 0
11635 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
11636#else
11637 /* Aggressive state sync. for now. */
11638 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
11639 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11640 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11641#endif
11642 AssertRCReturn(rc, rc);
11643
11644 /*
11645 * If we succeed, resume guest execution.
11646 * If we fail in interpreting the instruction because we couldn't get the guest physical address
11647 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
11648 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
11649 * weird case. See @bugref{6043}.
11650 */
11651 PVM pVM = pVCpu->CTX_SUFF(pVM);
11652 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
11653 rc = VBOXSTRICTRC_VAL(rc2);
11654 Log4(("EPT misconfig at %#RGv RIP=%#RX64 rc=%d\n", GCPhys, pMixedCtx->rip, rc));
11655 if ( rc == VINF_SUCCESS
11656 || rc == VERR_PAGE_TABLE_NOT_PRESENT
11657 || rc == VERR_PAGE_NOT_PRESENT)
11658 {
11659 /* Successfully handled MMIO operation. */
11660 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11661 | HM_CHANGED_GUEST_RSP
11662 | HM_CHANGED_GUEST_RFLAGS
11663 | HM_CHANGED_VMX_GUEST_APIC_STATE);
11664 rc = VINF_SUCCESS;
11665 }
11666 return rc;
11667}
11668
11669
11670/**
11671 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
11672 * VM-exit.
11673 */
11674HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11675{
11676 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11677 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
11678
11679 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11680 int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11681 if (RT_UNLIKELY(rc != VINF_SUCCESS))
11682 {
11683 if (rc == VINF_HM_DOUBLE_FAULT)
11684 rc = VINF_SUCCESS;
11685 return rc;
11686 }
11687
11688 RTGCPHYS GCPhys = 0;
11689 rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
11690 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11691#if 0
11692 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
11693#else
11694 /* Aggressive state sync. for now. */
11695 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
11696 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11697 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11698#endif
11699 AssertRCReturn(rc, rc);
11700
11701 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
11702 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
11703
11704 RTGCUINT uErrorCode = 0;
11705 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
11706 uErrorCode |= X86_TRAP_PF_ID;
11707 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
11708 uErrorCode |= X86_TRAP_PF_RW;
11709 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
11710 uErrorCode |= X86_TRAP_PF_P;
11711
11712 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
11713
11714 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
11715 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
11716
11717 /* Handle the pagefault trap for the nested shadow table. */
11718 PVM pVM = pVCpu->CTX_SUFF(pVM);
11719 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
11720 TRPMResetTrap(pVCpu);
11721
11722 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
11723 if ( rc == VINF_SUCCESS
11724 || rc == VERR_PAGE_TABLE_NOT_PRESENT
11725 || rc == VERR_PAGE_NOT_PRESENT)
11726 {
11727 /* Successfully synced our nested page tables. */
11728 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
11729 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
11730 | HM_CHANGED_GUEST_RSP
11731 | HM_CHANGED_GUEST_RFLAGS);
11732 return VINF_SUCCESS;
11733 }
11734
11735 Log4(("EPT return to ring-3 rc=%Rrc\n", rc));
11736 return rc;
11737}
11738
11739/** @} */
11740
11741/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11742/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
11743/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11744
11745/** @name VM-exit exception handlers.
11746 * @{
11747 */
11748
11749/**
11750 * VM-exit exception handler for #MF (Math Fault: floating point exception).
11751 */
11752static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11753{
11754 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11755 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
11756
11757 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11758 AssertRCReturn(rc, rc);
11759
11760 if (!(pMixedCtx->cr0 & X86_CR0_NE))
11761 {
11762 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
11763 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
11764
11765 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
11766 * provides VM-exit instruction length. If this causes problem later,
11767 * disassemble the instruction like it's done on AMD-V. */
11768 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11769 AssertRCReturn(rc2, rc2);
11770 return rc;
11771 }
11772
11773 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11774 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11775 return rc;
11776}
11777
11778
11779/**
11780 * VM-exit exception handler for #BP (Breakpoint exception).
11781 */
11782static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11783{
11784 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11785 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
11786
11787 /** @todo Try optimize this by not saving the entire guest state unless
11788 * really needed. */
11789 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11790 AssertRCReturn(rc, rc);
11791
11792 PVM pVM = pVCpu->CTX_SUFF(pVM);
11793 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11794 if (rc == VINF_EM_RAW_GUEST_TRAP)
11795 {
11796 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11797 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11798 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11799 AssertRCReturn(rc, rc);
11800
11801 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11802 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11803 }
11804
11805 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
11806 return rc;
11807}
11808
11809
11810/**
11811 * VM-exit exception handler for #DB (Debug exception).
11812 */
11813static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11814{
11815 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11816 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
11817 Log6(("XcptDB\n"));
11818
11819 /*
11820 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
11821 * for processing.
11822 */
11823 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11824 AssertRCReturn(rc, rc);
11825
11826 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
11827 uint64_t uDR6 = X86_DR6_INIT_VAL;
11828 uDR6 |= ( pVmxTransient->uExitQualification
11829 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
11830
11831 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
11832 if (rc == VINF_EM_RAW_GUEST_TRAP)
11833 {
11834 /*
11835 * The exception was for the guest. Update DR6, DR7.GD and
11836 * IA32_DEBUGCTL.LBR before forwarding it.
11837 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
11838 */
11839 VMMRZCallRing3Disable(pVCpu);
11840 HM_DISABLE_PREEMPT();
11841
11842 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
11843 pMixedCtx->dr[6] |= uDR6;
11844 if (CPUMIsGuestDebugStateActive(pVCpu))
11845 ASMSetDR6(pMixedCtx->dr[6]);
11846
11847 HM_RESTORE_PREEMPT();
11848 VMMRZCallRing3Enable(pVCpu);
11849
11850 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
11851 AssertRCReturn(rc, rc);
11852
11853 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
11854 pMixedCtx->dr[7] &= ~X86_DR7_GD;
11855
11856 /* Paranoia. */
11857 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
11858 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
11859
11860 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
11861 AssertRCReturn(rc, rc);
11862
11863 /*
11864 * Raise #DB in the guest.
11865 *
11866 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
11867 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
11868 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
11869 *
11870 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
11871 */
11872 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11873 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11874 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11875 AssertRCReturn(rc, rc);
11876 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11877 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11878 return VINF_SUCCESS;
11879 }
11880
11881 /*
11882 * Not a guest trap, must be a hypervisor related debug event then.
11883 * Update DR6 in case someone is interested in it.
11884 */
11885 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
11886 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
11887 CPUMSetHyperDR6(pVCpu, uDR6);
11888
11889 return rc;
11890}
11891
11892
11893/**
11894 * VM-exit exception handler for #NM (Device-not-available exception: floating
11895 * point exception).
11896 */
11897static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11898{
11899 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11900
11901 /* We require CR0 and EFER. EFER is always up-to-date. */
11902 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11903 AssertRCReturn(rc, rc);
11904
11905 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
11906 VMMRZCallRing3Disable(pVCpu);
11907 HM_DISABLE_PREEMPT();
11908
11909 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
11910 if (pVmxTransient->fWasGuestFPUStateActive)
11911 {
11912 rc = VINF_EM_RAW_GUEST_TRAP;
11913 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
11914 }
11915 else
11916 {
11917#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11918 Assert(!pVmxTransient->fWasGuestFPUStateActive);
11919#endif
11920 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11921 Assert(rc == VINF_EM_RAW_GUEST_TRAP || (rc == VINF_SUCCESS && CPUMIsGuestFPUStateActive(pVCpu)));
11922 }
11923
11924 HM_RESTORE_PREEMPT();
11925 VMMRZCallRing3Enable(pVCpu);
11926
11927 if (rc == VINF_SUCCESS)
11928 {
11929 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
11930 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
11931 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
11932 pVCpu->hm.s.fPreloadGuestFpu = true;
11933 }
11934 else
11935 {
11936 /* Forward #NM to the guest. */
11937 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
11938 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11939 AssertRCReturn(rc, rc);
11940 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11941 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
11942 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11943 }
11944
11945 return VINF_SUCCESS;
11946}
11947
11948
11949/**
11950 * VM-exit exception handler for #GP (General-protection exception).
11951 *
11952 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
11953 */
11954static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11955{
11956 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
11957 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
11958
11959 int rc = VERR_INTERNAL_ERROR_5;
11960 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11961 {
11962#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
11963 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
11964 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11965 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11966 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11967 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11968 AssertRCReturn(rc, rc);
11969 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
11970 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
11971 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
11972 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
11973 return rc;
11974#else
11975 /* We don't intercept #GP. */
11976 AssertMsgFailed(("Unexpected VM-exit caused by #GP exception\n"));
11977 NOREF(pVmxTransient);
11978 return VERR_VMX_UNEXPECTED_EXCEPTION;
11979#endif
11980 }
11981
11982 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11983 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
11984
11985 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
11986 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11987 AssertRCReturn(rc, rc);
11988
11989 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
11990 uint32_t cbOp = 0;
11991 PVM pVM = pVCpu->CTX_SUFF(pVM);
11992 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
11993 if (RT_SUCCESS(rc))
11994 {
11995 rc = VINF_SUCCESS;
11996 Assert(cbOp == pDis->cbInstr);
11997 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
11998 switch (pDis->pCurInstr->uOpcode)
11999 {
12000 case OP_CLI:
12001 {
12002 pMixedCtx->eflags.Bits.u1IF = 0;
12003 pMixedCtx->eflags.Bits.u1RF = 0;
12004 pMixedCtx->rip += pDis->cbInstr;
12005 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12006 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
12007 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
12008 break;
12009 }
12010
12011 case OP_STI:
12012 {
12013 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
12014 pMixedCtx->eflags.Bits.u1IF = 1;
12015 pMixedCtx->eflags.Bits.u1RF = 0;
12016 pMixedCtx->rip += pDis->cbInstr;
12017 if (!fOldIF)
12018 {
12019 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
12020 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
12021 }
12022 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12023 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
12024 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
12025 break;
12026 }
12027
12028 case OP_HLT:
12029 {
12030 rc = VINF_EM_HALT;
12031 pMixedCtx->rip += pDis->cbInstr;
12032 pMixedCtx->eflags.Bits.u1RF = 0;
12033 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12034 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
12035 break;
12036 }
12037
12038 case OP_POPF:
12039 {
12040 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
12041 uint32_t cbParm;
12042 uint32_t uMask;
12043 bool fStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12044 if (pDis->fPrefix & DISPREFIX_OPSIZE)
12045 {
12046 cbParm = 4;
12047 uMask = 0xffffffff;
12048 }
12049 else
12050 {
12051 cbParm = 2;
12052 uMask = 0xffff;
12053 }
12054
12055 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
12056 RTGCPTR GCPtrStack = 0;
12057 X86EFLAGS Eflags;
12058 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
12059 &GCPtrStack);
12060 if (RT_SUCCESS(rc))
12061 {
12062 Assert(sizeof(Eflags.u32) >= cbParm);
12063 Eflags.u32 = 0;
12064 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm);
12065 }
12066 if (RT_FAILURE(rc))
12067 {
12068 rc = VERR_EM_INTERPRETER;
12069 break;
12070 }
12071 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
12072 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
12073 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
12074 pMixedCtx->esp += cbParm;
12075 pMixedCtx->esp &= uMask;
12076 pMixedCtx->rip += pDis->cbInstr;
12077 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12078 | HM_CHANGED_GUEST_RSP
12079 | HM_CHANGED_GUEST_RFLAGS);
12080 /* Generate a pending-debug exception when stepping over POPF regardless of how POPF modifies EFLAGS.TF. */
12081 if (fStepping)
12082 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
12083
12084 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
12085 break;
12086 }
12087
12088 case OP_PUSHF:
12089 {
12090 uint32_t cbParm;
12091 uint32_t uMask;
12092 if (pDis->fPrefix & DISPREFIX_OPSIZE)
12093 {
12094 cbParm = 4;
12095 uMask = 0xffffffff;
12096 }
12097 else
12098 {
12099 cbParm = 2;
12100 uMask = 0xffff;
12101 }
12102
12103 /* Get the stack pointer & push the contents of eflags onto the stack. */
12104 RTGCPTR GCPtrStack = 0;
12105 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
12106 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
12107 if (RT_FAILURE(rc))
12108 {
12109 rc = VERR_EM_INTERPRETER;
12110 break;
12111 }
12112 X86EFLAGS Eflags = pMixedCtx->eflags;
12113 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
12114 Eflags.Bits.u1RF = 0;
12115 Eflags.Bits.u1VM = 0;
12116
12117 rc = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm);
12118 if (RT_FAILURE(rc))
12119 {
12120 rc = VERR_EM_INTERPRETER;
12121 break;
12122 }
12123 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
12124 pMixedCtx->esp -= cbParm;
12125 pMixedCtx->esp &= uMask;
12126 pMixedCtx->rip += pDis->cbInstr;
12127 pMixedCtx->eflags.Bits.u1RF = 0;
12128 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12129 | HM_CHANGED_GUEST_RSP
12130 | HM_CHANGED_GUEST_RFLAGS);
12131 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
12132 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
12133 break;
12134 }
12135
12136 case OP_IRET:
12137 {
12138 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
12139 * instruction reference. */
12140 RTGCPTR GCPtrStack = 0;
12141 uint32_t uMask = 0xffff;
12142 bool fStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12143 uint16_t aIretFrame[3];
12144 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
12145 {
12146 rc = VERR_EM_INTERPRETER;
12147 break;
12148 }
12149 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
12150 &GCPtrStack);
12151 if (RT_SUCCESS(rc))
12152 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
12153 if (RT_FAILURE(rc))
12154 {
12155 rc = VERR_EM_INTERPRETER;
12156 break;
12157 }
12158 pMixedCtx->eip = 0;
12159 pMixedCtx->ip = aIretFrame[0];
12160 pMixedCtx->cs.Sel = aIretFrame[1];
12161 pMixedCtx->cs.ValidSel = aIretFrame[1];
12162 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
12163 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
12164 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
12165 pMixedCtx->sp += sizeof(aIretFrame);
12166 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12167 | HM_CHANGED_GUEST_SEGMENT_REGS
12168 | HM_CHANGED_GUEST_RSP
12169 | HM_CHANGED_GUEST_RFLAGS);
12170 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
12171 if (fStepping)
12172 hmR0VmxSetPendingDebugXcpt(pVCpu, pMixedCtx);
12173 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
12174 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
12175 break;
12176 }
12177
12178 case OP_INT:
12179 {
12180 uint16_t uVector = pDis->Param1.uValue & 0xff;
12181 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
12182 /* INT clears EFLAGS.TF, we mustn't set any pending debug exceptions here. */
12183 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
12184 break;
12185 }
12186
12187 case OP_INTO:
12188 {
12189 if (pMixedCtx->eflags.Bits.u1OF)
12190 {
12191 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
12192 /* INTO clears EFLAGS.TF, we mustn't set any pending debug exceptions here. */
12193 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
12194 }
12195 else
12196 {
12197 pMixedCtx->eflags.Bits.u1RF = 0;
12198 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12199 }
12200 break;
12201 }
12202
12203 default:
12204 {
12205 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
12206 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
12207 EMCODETYPE_SUPERVISOR);
12208 rc = VBOXSTRICTRC_VAL(rc2);
12209 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
12210 /** @todo We have to set pending-debug exceptions here when the guest is
12211 * single-stepping depending on the instruction that was interpreted. */
12212 Log4(("#GP rc=%Rrc\n", rc));
12213 break;
12214 }
12215 }
12216 }
12217 else
12218 rc = VERR_EM_INTERPRETER;
12219
12220 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
12221 ("#GP Unexpected rc=%Rrc\n", rc));
12222 return rc;
12223}
12224
12225
12226#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
12227/**
12228 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
12229 * the exception reported in the VMX transient structure back into the VM.
12230 *
12231 * @remarks Requires uExitIntInfo in the VMX transient structure to be
12232 * up-to-date.
12233 */
12234static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12235{
12236 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
12237
12238 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
12239 hmR0VmxCheckExitDueToEventDelivery(). */
12240 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
12241 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12242 AssertRCReturn(rc, rc);
12243 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
12244
12245#ifdef DEBUG_ramshankar
12246 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12247 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
12248 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
12249#endif
12250
12251 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
12252 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
12253 return VINF_SUCCESS;
12254}
12255#endif
12256
12257
12258/**
12259 * VM-exit exception handler for #PF (Page-fault exception).
12260 */
12261static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12262{
12263 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
12264 PVM pVM = pVCpu->CTX_SUFF(pVM);
12265 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12266 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12267 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
12268 AssertRCReturn(rc, rc);
12269
12270#if defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) || defined(HMVMX_ALWAYS_TRAP_PF)
12271 if (pVM->hm.s.fNestedPaging)
12272 {
12273 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
12274 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
12275 {
12276 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
12277 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
12278 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
12279 }
12280 else
12281 {
12282 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
12283 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
12284 Log4(("Pending #DF due to vectoring #PF. NP\n"));
12285 }
12286 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
12287 return rc;
12288 }
12289#else
12290 Assert(!pVM->hm.s.fNestedPaging);
12291 NOREF(pVM);
12292#endif
12293
12294 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
12295 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
12296 if (pVmxTransient->fVectoringPF)
12297 {
12298 Assert(pVCpu->hm.s.Event.fPending);
12299 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12300 }
12301
12302 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12303 AssertRCReturn(rc, rc);
12304
12305 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
12306 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
12307
12308 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
12309 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
12310 (RTGCPTR)pVmxTransient->uExitQualification);
12311
12312 Log4(("#PF: rc=%Rrc\n", rc));
12313 if (rc == VINF_SUCCESS)
12314 {
12315 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
12316 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
12317 * memory? We don't update the whole state here... */
12318 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12319 | HM_CHANGED_GUEST_RSP
12320 | HM_CHANGED_GUEST_RFLAGS
12321 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12322 TRPMResetTrap(pVCpu);
12323 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
12324 return rc;
12325 }
12326
12327 if (rc == VINF_EM_RAW_GUEST_TRAP)
12328 {
12329 if (!pVmxTransient->fVectoringDoublePF)
12330 {
12331 /* It's a guest page fault and needs to be reflected to the guest. */
12332 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
12333 TRPMResetTrap(pVCpu);
12334 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
12335 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
12336 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
12337 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
12338 }
12339 else
12340 {
12341 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
12342 TRPMResetTrap(pVCpu);
12343 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
12344 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
12345 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
12346 }
12347
12348 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
12349 return VINF_SUCCESS;
12350 }
12351
12352 TRPMResetTrap(pVCpu);
12353 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
12354 return rc;
12355}
12356
12357/** @} */
12358
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette