VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 62748

Last change on this file since 62748 was 62606, checked in by vboxsync, 8 years ago

VMM: Unused parameters.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 583.2 KB
Line 
1/* $Id: HMVMXR0.cpp 62606 2016-07-27 16:33:40Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/x86.h>
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/selm.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/gim.h>
34#ifdef VBOX_WITH_REM
35# include <VBox/vmm/rem.h>
36#endif
37#ifdef VBOX_WITH_NEW_APIC
38# include <VBox/vmm/apic.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include "HMVMXR0.h"
43#include "dtrace/VBoxVMM.h"
44
45#ifdef DEBUG_ramshankar
46# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CHECK_GUEST_STATE
50# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
51# define HMVMX_ALWAYS_TRAP_PF
52# define HMVMX_ALWAYS_SWAP_FPU_STATE
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/** @name Updated-guest-state flags.
71 * @{ */
72#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
73#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
74#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
75#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
76#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
77#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
78#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
79#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
80#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
81#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
82#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
83#define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
84#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
85#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
86#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
87#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
88#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
89#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
90#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
91#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
92#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
93 | HMVMX_UPDATED_GUEST_RSP \
94 | HMVMX_UPDATED_GUEST_RFLAGS \
95 | HMVMX_UPDATED_GUEST_CR0 \
96 | HMVMX_UPDATED_GUEST_CR3 \
97 | HMVMX_UPDATED_GUEST_CR4 \
98 | HMVMX_UPDATED_GUEST_GDTR \
99 | HMVMX_UPDATED_GUEST_IDTR \
100 | HMVMX_UPDATED_GUEST_LDTR \
101 | HMVMX_UPDATED_GUEST_TR \
102 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
103 | HMVMX_UPDATED_GUEST_DEBUG \
104 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
105 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
106 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
107 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
108 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
109 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
110 | HMVMX_UPDATED_GUEST_INTR_STATE \
111 | HMVMX_UPDATED_GUEST_APIC_STATE)
112/** @} */
113
114/** @name
115 * Flags to skip redundant reads of some common VMCS fields that are not part of
116 * the guest-CPU state but are in the transient structure.
117 */
118#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
119#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
120#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
124#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
125/** @} */
126
127/** @name
128 * States of the VMCS.
129 *
130 * This does not reflect all possible VMCS states but currently only those
131 * needed for maintaining the VMCS consistently even when thread-context hooks
132 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
133 */
134#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
135#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
136#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
137/** @} */
138
139/**
140 * Exception bitmap mask for real-mode guests (real-on-v86).
141 *
142 * We need to intercept all exceptions manually except:
143 * - \#NM, \#MF handled in hmR0VmxLoadSharedCR0().
144 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
145 * due to bugs in Intel CPUs.
146 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
147 * support.
148 */
149#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
150 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
151 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
152 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
153 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
154 /* RT_BIT(X86_XCPT_MF) always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
155 | RT_BIT(X86_XCPT_XF))
156
157/**
158 * Exception bitmap mask for all contributory exceptions.
159 *
160 * Page fault is deliberately excluded here as it's conditional as to whether
161 * it's contributory or benign. Page faults are handled separately.
162 */
163#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
164 | RT_BIT(X86_XCPT_DE))
165
166/** Maximum VM-instruction error number. */
167#define HMVMX_INSTR_ERROR_MAX 28
168
169/** Profiling macro. */
170#ifdef HM_PROFILE_EXIT_DISPATCH
171# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
172# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
173#else
174# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
175# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
176#endif
177
178/** Assert that preemption is disabled or covered by thread-context hooks. */
179#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
180 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
181
182/** Assert that we haven't migrated CPUs when thread-context hooks are not
183 * used. */
184#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
185 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
186 ("Illegal migration! Entered on CPU %u Current %u\n", \
187 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
188
189/** Helper macro for VM-exit handlers called unexpectedly. */
190#define HMVMX_RETURN_UNEXPECTED_EXIT() \
191 do { \
192 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
193 return VERR_VMX_UNEXPECTED_EXIT; \
194 } while (0)
195
196
197/*********************************************************************************************************************************
198* Structures and Typedefs *
199*********************************************************************************************************************************/
200/**
201 * VMX transient state.
202 *
203 * A state structure for holding miscellaneous information across
204 * VMX non-root operation and restored after the transition.
205 */
206typedef struct VMXTRANSIENT
207{
208 /** The host's rflags/eflags. */
209 RTCCUINTREG fEFlags;
210#if HC_ARCH_BITS == 32
211 uint32_t u32Alignment0;
212#endif
213 /** The guest's TPR value used for TPR shadowing. */
214 uint8_t u8GuestTpr;
215 /** Alignment. */
216 uint8_t abAlignment0[7];
217
218 /** The basic VM-exit reason. */
219 uint16_t uExitReason;
220 /** Alignment. */
221 uint16_t u16Alignment0;
222 /** The VM-exit interruption error code. */
223 uint32_t uExitIntErrorCode;
224 /** The VM-exit exit code qualification. */
225 uint64_t uExitQualification;
226
227 /** The VM-exit interruption-information field. */
228 uint32_t uExitIntInfo;
229 /** The VM-exit instruction-length field. */
230 uint32_t cbInstr;
231 /** The VM-exit instruction-information field. */
232 union
233 {
234 /** Plain unsigned int representation. */
235 uint32_t u;
236 /** INS and OUTS information. */
237 struct
238 {
239 uint32_t u7Reserved0 : 7;
240 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
241 uint32_t u3AddrSize : 3;
242 uint32_t u5Reserved1 : 5;
243 /** The segment register (X86_SREG_XXX). */
244 uint32_t iSegReg : 3;
245 uint32_t uReserved2 : 14;
246 } StrIo;
247 } ExitInstrInfo;
248 /** Whether the VM-entry failed or not. */
249 bool fVMEntryFailed;
250 /** Alignment. */
251 uint8_t abAlignment1[3];
252
253 /** The VM-entry interruption-information field. */
254 uint32_t uEntryIntInfo;
255 /** The VM-entry exception error code field. */
256 uint32_t uEntryXcptErrorCode;
257 /** The VM-entry instruction length field. */
258 uint32_t cbEntryInstr;
259
260 /** IDT-vectoring information field. */
261 uint32_t uIdtVectoringInfo;
262 /** IDT-vectoring error code. */
263 uint32_t uIdtVectoringErrorCode;
264
265 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
266 uint32_t fVmcsFieldsRead;
267
268 /** Whether the guest FPU was active at the time of VM-exit. */
269 bool fWasGuestFPUStateActive;
270 /** Whether the guest debug state was active at the time of VM-exit. */
271 bool fWasGuestDebugStateActive;
272 /** Whether the hyper debug state was active at the time of VM-exit. */
273 bool fWasHyperDebugStateActive;
274 /** Whether TSC-offsetting should be setup before VM-entry. */
275 bool fUpdateTscOffsettingAndPreemptTimer;
276 /** Whether the VM-exit was caused by a page-fault during delivery of a
277 * contributory exception or a page-fault. */
278 bool fVectoringDoublePF;
279 /** Whether the VM-exit was caused by a page-fault during delivery of an
280 * external interrupt or NMI. */
281 bool fVectoringPF;
282} VMXTRANSIENT;
283AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
284AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
285AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
286AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
287AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
288/** Pointer to VMX transient state. */
289typedef VMXTRANSIENT *PVMXTRANSIENT;
290
291
292/**
293 * MSR-bitmap read permissions.
294 */
295typedef enum VMXMSREXITREAD
296{
297 /** Reading this MSR causes a VM-exit. */
298 VMXMSREXIT_INTERCEPT_READ = 0xb,
299 /** Reading this MSR does not cause a VM-exit. */
300 VMXMSREXIT_PASSTHRU_READ
301} VMXMSREXITREAD;
302/** Pointer to MSR-bitmap read permissions. */
303typedef VMXMSREXITREAD* PVMXMSREXITREAD;
304
305/**
306 * MSR-bitmap write permissions.
307 */
308typedef enum VMXMSREXITWRITE
309{
310 /** Writing to this MSR causes a VM-exit. */
311 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
312 /** Writing to this MSR does not cause a VM-exit. */
313 VMXMSREXIT_PASSTHRU_WRITE
314} VMXMSREXITWRITE;
315/** Pointer to MSR-bitmap write permissions. */
316typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
317
318
319/**
320 * VMX VM-exit handler.
321 *
322 * @returns Strict VBox status code (i.e. informational status codes too).
323 * @param pVCpu The cross context virtual CPU structure.
324 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
325 * out-of-sync. Make sure to update the required
326 * fields before using them.
327 * @param pVmxTransient Pointer to the VMX-transient structure.
328 */
329#ifndef HMVMX_USE_FUNCTION_TABLE
330typedef DECLINLINE(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
331#else
332typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
333/** Pointer to VM-exit handler. */
334typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
335#endif
336
337/**
338 * VMX VM-exit handler, non-strict status code.
339 *
340 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
341 *
342 * @returns VBox status code, no informational status code returned.
343 * @param pVCpu The cross context virtual CPU structure.
344 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
345 * out-of-sync. Make sure to update the required
346 * fields before using them.
347 * @param pVmxTransient Pointer to the VMX-transient structure.
348 *
349 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
350 * use of that status code will be replaced with VINF_EM_SOMETHING
351 * later when switching over to IEM.
352 */
353#ifndef HMVMX_USE_FUNCTION_TABLE
354typedef DECLINLINE(int) FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
355#else
356typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
357#endif
358
359
360/*********************************************************************************************************************************
361* Internal Functions *
362*********************************************************************************************************************************/
363static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
364static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
365static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
366static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
367 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
368 bool fStepping, uint32_t *puIntState);
369#if HC_ARCH_BITS == 32
370static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
371#endif
372#ifndef HMVMX_USE_FUNCTION_TABLE
373DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
374# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
375# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
376#else
377# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
378# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
379#endif
380
381
382/** @name VM-exit handlers.
383 * @{
384 */
385static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
386static FNVMXEXITHANDLER hmR0VmxExitExtInt;
387static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
393static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
394static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
395static FNVMXEXITHANDLER hmR0VmxExitCpuid;
396static FNVMXEXITHANDLER hmR0VmxExitGetsec;
397static FNVMXEXITHANDLER hmR0VmxExitHlt;
398static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
399static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
400static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
401static FNVMXEXITHANDLER hmR0VmxExitVmcall;
402static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
405static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
406static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
407static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
408static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
409static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
410static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
411static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
413static FNVMXEXITHANDLER hmR0VmxExitMwait;
414static FNVMXEXITHANDLER hmR0VmxExitMtf;
415static FNVMXEXITHANDLER hmR0VmxExitMonitor;
416static FNVMXEXITHANDLER hmR0VmxExitPause;
417static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
418static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
419static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
420static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
421static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
422static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
423static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
424static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
425static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
426static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
427static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
428static FNVMXEXITHANDLER hmR0VmxExitRdrand;
429static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
430/** @} */
431
432static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
433static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
434static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
435static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
436static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
437static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
438static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
439static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
440static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
441
442
443/*********************************************************************************************************************************
444* Global Variables *
445*********************************************************************************************************************************/
446#ifdef HMVMX_USE_FUNCTION_TABLE
447
448/**
449 * VMX_EXIT dispatch table.
450 */
451static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
452{
453 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
454 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
455 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
456 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
457 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
458 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
459 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
460 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
461 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
462 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
463 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
464 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
465 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
466 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
467 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
468 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
469 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
470 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
471 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
472 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
473 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
474 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
475 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
476 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
477 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
478 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
479 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
480 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
481 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
482 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
483 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
484 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
485 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
486 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
487 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
488 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
489 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
490 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
491 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
492 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
493 /* 40 UNDEFINED */ hmR0VmxExitPause,
494 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
495 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
496 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
497 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
498 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
499 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
500 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
501 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
502 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
503 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
504 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
505 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
506 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
507 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
508 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
509 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
510 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
511 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
512 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
513 /* 60 VMX_EXIT_RESERVED_60 */ hmR0VmxExitErrUndefined,
514 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
515 /* 62 VMX_EXIT_RESERVED_62 */ hmR0VmxExitErrUndefined,
516 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
517 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
518};
519#endif /* HMVMX_USE_FUNCTION_TABLE */
520
521#ifdef VBOX_STRICT
522static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
523{
524 /* 0 */ "(Not Used)",
525 /* 1 */ "VMCALL executed in VMX root operation.",
526 /* 2 */ "VMCLEAR with invalid physical address.",
527 /* 3 */ "VMCLEAR with VMXON pointer.",
528 /* 4 */ "VMLAUNCH with non-clear VMCS.",
529 /* 5 */ "VMRESUME with non-launched VMCS.",
530 /* 6 */ "VMRESUME after VMXOFF",
531 /* 7 */ "VM-entry with invalid control fields.",
532 /* 8 */ "VM-entry with invalid host state fields.",
533 /* 9 */ "VMPTRLD with invalid physical address.",
534 /* 10 */ "VMPTRLD with VMXON pointer.",
535 /* 11 */ "VMPTRLD with incorrect revision identifier.",
536 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
537 /* 13 */ "VMWRITE to read-only VMCS component.",
538 /* 14 */ "(Not Used)",
539 /* 15 */ "VMXON executed in VMX root operation.",
540 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
541 /* 17 */ "VM-entry with non-launched executing VMCS.",
542 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
543 /* 19 */ "VMCALL with non-clear VMCS.",
544 /* 20 */ "VMCALL with invalid VM-exit control fields.",
545 /* 21 */ "(Not Used)",
546 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
547 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
548 /* 24 */ "VMCALL with invalid SMM-monitor features.",
549 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
550 /* 26 */ "VM-entry with events blocked by MOV SS.",
551 /* 27 */ "(Not Used)",
552 /* 28 */ "Invalid operand to INVEPT/INVVPID."
553};
554#endif /* VBOX_STRICT */
555
556
557
558/**
559 * Updates the VM's last error record.
560 *
561 * If there was a VMX instruction error, reads the error data from the VMCS and
562 * updates VCPU's last error record as well.
563 *
564 * @param pVM The cross context VM structure.
565 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
566 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
567 * VERR_VMX_INVALID_VMCS_FIELD.
568 * @param rc The error code.
569 */
570static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
571{
572 AssertPtr(pVM);
573 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
574 || rc == VERR_VMX_UNABLE_TO_START_VM)
575 {
576 AssertPtrReturnVoid(pVCpu);
577 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
578 }
579 pVM->hm.s.lLastError = rc;
580}
581
582
583/**
584 * Reads the VM-entry interruption-information field from the VMCS into the VMX
585 * transient structure.
586 *
587 * @returns VBox status code.
588 * @param pVmxTransient Pointer to the VMX transient structure.
589 *
590 * @remarks No-long-jump zone!!!
591 */
592DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
593{
594 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
595 AssertRCReturn(rc, rc);
596 return VINF_SUCCESS;
597}
598
599
600/**
601 * Reads the VM-entry exception error code field from the VMCS into
602 * the VMX transient structure.
603 *
604 * @returns VBox status code.
605 * @param pVmxTransient Pointer to the VMX transient structure.
606 *
607 * @remarks No-long-jump zone!!!
608 */
609DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
610{
611 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
612 AssertRCReturn(rc, rc);
613 return VINF_SUCCESS;
614}
615
616
617/**
618 * Reads the VM-entry exception error code field from the VMCS into
619 * the VMX transient structure.
620 *
621 * @returns VBox status code.
622 * @param pVmxTransient Pointer to the VMX transient structure.
623 *
624 * @remarks No-long-jump zone!!!
625 */
626DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
627{
628 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
629 AssertRCReturn(rc, rc);
630 return VINF_SUCCESS;
631}
632
633
634/**
635 * Reads the VM-exit interruption-information field from the VMCS into the VMX
636 * transient structure.
637 *
638 * @returns VBox status code.
639 * @param pVmxTransient Pointer to the VMX transient structure.
640 */
641DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
642{
643 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
644 {
645 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
646 AssertRCReturn(rc, rc);
647 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
648 }
649 return VINF_SUCCESS;
650}
651
652
653/**
654 * Reads the VM-exit interruption error code from the VMCS into the VMX
655 * transient structure.
656 *
657 * @returns VBox status code.
658 * @param pVmxTransient Pointer to the VMX transient structure.
659 */
660DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
661{
662 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
663 {
664 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
665 AssertRCReturn(rc, rc);
666 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
667 }
668 return VINF_SUCCESS;
669}
670
671
672/**
673 * Reads the VM-exit instruction length field from the VMCS into the VMX
674 * transient structure.
675 *
676 * @returns VBox status code.
677 * @param pVmxTransient Pointer to the VMX transient structure.
678 */
679DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
680{
681 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
682 {
683 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
684 AssertRCReturn(rc, rc);
685 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
686 }
687 return VINF_SUCCESS;
688}
689
690
691/**
692 * Reads the VM-exit instruction-information field from the VMCS into
693 * the VMX transient structure.
694 *
695 * @returns VBox status code.
696 * @param pVmxTransient Pointer to the VMX transient structure.
697 */
698DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
699{
700 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
701 {
702 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
703 AssertRCReturn(rc, rc);
704 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
705 }
706 return VINF_SUCCESS;
707}
708
709
710/**
711 * Reads the exit code qualification from the VMCS into the VMX transient
712 * structure.
713 *
714 * @returns VBox status code.
715 * @param pVCpu The cross context virtual CPU structure of the
716 * calling EMT. (Required for the VMCS cache case.)
717 * @param pVmxTransient Pointer to the VMX transient structure.
718 */
719DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
720{
721 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
722 {
723 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
724 AssertRCReturn(rc, rc);
725 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
726 }
727 return VINF_SUCCESS;
728}
729
730
731/**
732 * Reads the IDT-vectoring information field from the VMCS into the VMX
733 * transient structure.
734 *
735 * @returns VBox status code.
736 * @param pVmxTransient Pointer to the VMX transient structure.
737 *
738 * @remarks No-long-jump zone!!!
739 */
740DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
741{
742 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
743 {
744 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
745 AssertRCReturn(rc, rc);
746 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
747 }
748 return VINF_SUCCESS;
749}
750
751
752/**
753 * Reads the IDT-vectoring error code from the VMCS into the VMX
754 * transient structure.
755 *
756 * @returns VBox status code.
757 * @param pVmxTransient Pointer to the VMX transient structure.
758 */
759DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
760{
761 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
762 {
763 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
764 AssertRCReturn(rc, rc);
765 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
766 }
767 return VINF_SUCCESS;
768}
769
770
771/**
772 * Enters VMX root mode operation on the current CPU.
773 *
774 * @returns VBox status code.
775 * @param pVM The cross context VM structure. Can be
776 * NULL, after a resume.
777 * @param HCPhysCpuPage Physical address of the VMXON region.
778 * @param pvCpuPage Pointer to the VMXON region.
779 */
780static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
781{
782 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
783 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
784 Assert(pvCpuPage);
785 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
786
787 if (pVM)
788 {
789 /* Write the VMCS revision dword to the VMXON region. */
790 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
791 }
792
793 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
794 RTCCUINTREG fEFlags = ASMIntDisableFlags();
795
796 /* Enable the VMX bit in CR4 if necessary. */
797 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
798
799 /* Enter VMX root mode. */
800 int rc = VMXEnable(HCPhysCpuPage);
801 if (RT_FAILURE(rc))
802 {
803 if (!(uOldCr4 & X86_CR4_VMXE))
804 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
805
806 if (pVM)
807 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
808 }
809
810 /* Restore interrupts. */
811 ASMSetFlags(fEFlags);
812 return rc;
813}
814
815
816/**
817 * Exits VMX root mode operation on the current CPU.
818 *
819 * @returns VBox status code.
820 */
821static int hmR0VmxLeaveRootMode(void)
822{
823 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
824
825 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
826 RTCCUINTREG fEFlags = ASMIntDisableFlags();
827
828 /* If we're for some reason not in VMX root mode, then don't leave it. */
829 RTCCUINTREG uHostCR4 = ASMGetCR4();
830
831 int rc;
832 if (uHostCR4 & X86_CR4_VMXE)
833 {
834 /* Exit VMX root mode and clear the VMX bit in CR4. */
835 VMXDisable();
836 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
837 rc = VINF_SUCCESS;
838 }
839 else
840 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
841
842 /* Restore interrupts. */
843 ASMSetFlags(fEFlags);
844 return rc;
845}
846
847
848/**
849 * Allocates and maps one physically contiguous page. The allocated page is
850 * zero'd out. (Used by various VT-x structures).
851 *
852 * @returns IPRT status code.
853 * @param pMemObj Pointer to the ring-0 memory object.
854 * @param ppVirt Where to store the virtual address of the
855 * allocation.
856 * @param pHCPhys Where to store the physical address of the
857 * allocation.
858 */
859DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
860{
861 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
862 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
863 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
864
865 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
866 if (RT_FAILURE(rc))
867 return rc;
868 *ppVirt = RTR0MemObjAddress(*pMemObj);
869 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
870 ASMMemZero32(*ppVirt, PAGE_SIZE);
871 return VINF_SUCCESS;
872}
873
874
875/**
876 * Frees and unmaps an allocated physical page.
877 *
878 * @param pMemObj Pointer to the ring-0 memory object.
879 * @param ppVirt Where to re-initialize the virtual address of
880 * allocation as 0.
881 * @param pHCPhys Where to re-initialize the physical address of the
882 * allocation as 0.
883 */
884DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
885{
886 AssertPtr(pMemObj);
887 AssertPtr(ppVirt);
888 AssertPtr(pHCPhys);
889 if (*pMemObj != NIL_RTR0MEMOBJ)
890 {
891 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
892 AssertRC(rc);
893 *pMemObj = NIL_RTR0MEMOBJ;
894 *ppVirt = 0;
895 *pHCPhys = 0;
896 }
897}
898
899
900/**
901 * Worker function to free VT-x related structures.
902 *
903 * @returns IPRT status code.
904 * @param pVM The cross context VM structure.
905 */
906static void hmR0VmxStructsFree(PVM pVM)
907{
908 for (VMCPUID i = 0; i < pVM->cCpus; i++)
909 {
910 PVMCPU pVCpu = &pVM->aCpus[i];
911 AssertPtr(pVCpu);
912
913 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
914 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
915
916 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
917 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
918
919 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
920 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
921 }
922
923 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
924#ifdef VBOX_WITH_CRASHDUMP_MAGIC
925 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
926#endif
927}
928
929
930/**
931 * Worker function to allocate VT-x related VM structures.
932 *
933 * @returns IPRT status code.
934 * @param pVM The cross context VM structure.
935 */
936static int hmR0VmxStructsAlloc(PVM pVM)
937{
938 /*
939 * Initialize members up-front so we can cleanup properly on allocation failure.
940 */
941#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
942 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
943 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
944 pVM->hm.s.vmx.HCPhys##a_Name = 0;
945
946#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
947 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
948 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
949 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
950
951#ifdef VBOX_WITH_CRASHDUMP_MAGIC
952 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
953#endif
954 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
955
956 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
957 for (VMCPUID i = 0; i < pVM->cCpus; i++)
958 {
959 PVMCPU pVCpu = &pVM->aCpus[i];
960 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
961 VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
962 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
963 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
964 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
965 }
966#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
967#undef VMXLOCAL_INIT_VM_MEMOBJ
968
969 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
970 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
971 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
972 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
973
974 /*
975 * Allocate all the VT-x structures.
976 */
977 int rc = VINF_SUCCESS;
978#ifdef VBOX_WITH_CRASHDUMP_MAGIC
979 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
980 if (RT_FAILURE(rc))
981 goto cleanup;
982 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
983 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
984#endif
985
986 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
987 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
988 {
989 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
990 &pVM->hm.s.vmx.HCPhysApicAccess);
991 if (RT_FAILURE(rc))
992 goto cleanup;
993 }
994
995 /*
996 * Initialize per-VCPU VT-x structures.
997 */
998 for (VMCPUID i = 0; i < pVM->cCpus; i++)
999 {
1000 PVMCPU pVCpu = &pVM->aCpus[i];
1001 AssertPtr(pVCpu);
1002
1003 /* Allocate the VM control structure (VMCS). */
1004 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1005 if (RT_FAILURE(rc))
1006 goto cleanup;
1007
1008 /* Allocate the Virtual-APIC page for transparent TPR accesses. */
1009 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
1010 {
1011 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1012 &pVCpu->hm.s.vmx.HCPhysVirtApic);
1013 if (RT_FAILURE(rc))
1014 goto cleanup;
1015 }
1016
1017 /*
1018 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1019 * transparent accesses of specific MSRs.
1020 *
1021 * If the condition for enabling MSR bitmaps changes here, don't forget to
1022 * update HMAreMsrBitmapsAvailable().
1023 */
1024 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1025 {
1026 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1027 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1028 if (RT_FAILURE(rc))
1029 goto cleanup;
1030 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1031 }
1032
1033 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1034 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1035 if (RT_FAILURE(rc))
1036 goto cleanup;
1037
1038 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1039 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1040 if (RT_FAILURE(rc))
1041 goto cleanup;
1042 }
1043
1044 return VINF_SUCCESS;
1045
1046cleanup:
1047 hmR0VmxStructsFree(pVM);
1048 return rc;
1049}
1050
1051
1052/**
1053 * Does global VT-x initialization (called during module initialization).
1054 *
1055 * @returns VBox status code.
1056 */
1057VMMR0DECL(int) VMXR0GlobalInit(void)
1058{
1059#ifdef HMVMX_USE_FUNCTION_TABLE
1060 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1061# ifdef VBOX_STRICT
1062 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1063 Assert(g_apfnVMExitHandlers[i]);
1064# endif
1065#endif
1066 return VINF_SUCCESS;
1067}
1068
1069
1070/**
1071 * Does global VT-x termination (called during module termination).
1072 */
1073VMMR0DECL(void) VMXR0GlobalTerm()
1074{
1075 /* Nothing to do currently. */
1076}
1077
1078
1079/**
1080 * Sets up and activates VT-x on the current CPU.
1081 *
1082 * @returns VBox status code.
1083 * @param pCpu Pointer to the global CPU info struct.
1084 * @param pVM The cross context VM structure. Can be
1085 * NULL after a host resume operation.
1086 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1087 * fEnabledByHost is @c true).
1088 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1089 * @a fEnabledByHost is @c true).
1090 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1091 * enable VT-x on the host.
1092 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1093 */
1094VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1095 void *pvMsrs)
1096{
1097 Assert(pCpu);
1098 Assert(pvMsrs);
1099 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1100
1101 /* Enable VT-x if it's not already enabled by the host. */
1102 if (!fEnabledByHost)
1103 {
1104 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1105 if (RT_FAILURE(rc))
1106 return rc;
1107 }
1108
1109 /*
1110 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1111 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1112 */
1113 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1114 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1115 {
1116 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1117 pCpu->fFlushAsidBeforeUse = false;
1118 }
1119 else
1120 pCpu->fFlushAsidBeforeUse = true;
1121
1122 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1123 ++pCpu->cTlbFlushes;
1124
1125 return VINF_SUCCESS;
1126}
1127
1128
1129/**
1130 * Deactivates VT-x on the current CPU.
1131 *
1132 * @returns VBox status code.
1133 * @param pCpu Pointer to the global CPU info struct.
1134 * @param pvCpuPage Pointer to the VMXON region.
1135 * @param HCPhysCpuPage Physical address of the VMXON region.
1136 *
1137 * @remarks This function should never be called when SUPR0EnableVTx() or
1138 * similar was used to enable VT-x on the host.
1139 */
1140VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1141{
1142 NOREF(pCpu);
1143 NOREF(pvCpuPage);
1144 NOREF(HCPhysCpuPage);
1145
1146 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1147 return hmR0VmxLeaveRootMode();
1148}
1149
1150
1151/**
1152 * Sets the permission bits for the specified MSR in the MSR bitmap.
1153 *
1154 * @param pVCpu The cross context virtual CPU structure.
1155 * @param uMsr The MSR value.
1156 * @param enmRead Whether reading this MSR causes a VM-exit.
1157 * @param enmWrite Whether writing this MSR causes a VM-exit.
1158 */
1159static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1160{
1161 int32_t iBit;
1162 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1163
1164 /*
1165 * Layout:
1166 * 0x000 - 0x3ff - Low MSR read bits
1167 * 0x400 - 0x7ff - High MSR read bits
1168 * 0x800 - 0xbff - Low MSR write bits
1169 * 0xc00 - 0xfff - High MSR write bits
1170 */
1171 if (uMsr <= 0x00001FFF)
1172 iBit = uMsr;
1173 else if (uMsr - UINT32_C(0xC0000000) <= UINT32_C(0x00001FFF))
1174 {
1175 iBit = uMsr - UINT32_C(0xC0000000);
1176 pbMsrBitmap += 0x400;
1177 }
1178 else
1179 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1180
1181 Assert(iBit <= 0x1fff);
1182 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1183 ASMBitSet(pbMsrBitmap, iBit);
1184 else
1185 ASMBitClear(pbMsrBitmap, iBit);
1186
1187 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1188 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1189 else
1190 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1191}
1192
1193
1194#ifdef VBOX_STRICT
1195/**
1196 * Gets the permission bits for the specified MSR in the MSR bitmap.
1197 *
1198 * @returns VBox status code.
1199 * @retval VINF_SUCCESS if the specified MSR is found.
1200 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1201 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1202 *
1203 * @param pVCpu The cross context virtual CPU structure.
1204 * @param uMsr The MSR.
1205 * @param penmRead Where to store the read permissions.
1206 * @param penmWrite Where to store the write permissions.
1207 */
1208static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1209{
1210 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1211 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1212 int32_t iBit;
1213 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1214
1215 /* See hmR0VmxSetMsrPermission() for the layout. */
1216 if (uMsr <= 0x00001FFF)
1217 iBit = uMsr;
1218 else if ( uMsr >= 0xC0000000
1219 && uMsr <= 0xC0001FFF)
1220 {
1221 iBit = (uMsr - 0xC0000000);
1222 pbMsrBitmap += 0x400;
1223 }
1224 else
1225 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1226
1227 Assert(iBit <= 0x1fff);
1228 if (ASMBitTest(pbMsrBitmap, iBit))
1229 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1230 else
1231 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1232
1233 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1234 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1235 else
1236 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1237 return VINF_SUCCESS;
1238}
1239#endif /* VBOX_STRICT */
1240
1241
1242/**
1243 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1244 * area.
1245 *
1246 * @returns VBox status code.
1247 * @param pVCpu The cross context virtual CPU structure.
1248 * @param cMsrs The number of MSRs.
1249 */
1250DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1251{
1252 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1253 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1254 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1255 {
1256 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1257 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1258 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1259 }
1260
1261 /* Update number of guest MSRs to load/store across the world-switch. */
1262 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1263 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1264
1265 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1266 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1267 AssertRCReturn(rc, rc);
1268
1269 /* Update the VCPU's copy of the MSR count. */
1270 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1271
1272 return VINF_SUCCESS;
1273}
1274
1275
1276/**
1277 * Adds a new (or updates the value of an existing) guest/host MSR
1278 * pair to be swapped during the world-switch as part of the
1279 * auto-load/store MSR area in the VMCS.
1280 *
1281 * @returns VBox status code.
1282 * @param pVCpu The cross context virtual CPU structure.
1283 * @param uMsr The MSR.
1284 * @param uGuestMsrValue Value of the guest MSR.
1285 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1286 * necessary.
1287 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1288 * its value was updated. Optional, can be NULL.
1289 */
1290static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1291 bool *pfAddedAndUpdated)
1292{
1293 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1294 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1295 uint32_t i;
1296 for (i = 0; i < cMsrs; i++)
1297 {
1298 if (pGuestMsr->u32Msr == uMsr)
1299 break;
1300 pGuestMsr++;
1301 }
1302
1303 bool fAdded = false;
1304 if (i == cMsrs)
1305 {
1306 ++cMsrs;
1307 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1308 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1309
1310 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1311 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1312 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1313
1314 fAdded = true;
1315 }
1316
1317 /* Update the MSR values in the auto-load/store MSR area. */
1318 pGuestMsr->u32Msr = uMsr;
1319 pGuestMsr->u64Value = uGuestMsrValue;
1320
1321 /* Create/update the MSR slot in the host MSR area. */
1322 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1323 pHostMsr += i;
1324 pHostMsr->u32Msr = uMsr;
1325
1326 /*
1327 * Update the host MSR only when requested by the caller AND when we're
1328 * adding it to the auto-load/store area. Otherwise, it would have been
1329 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1330 */
1331 bool fUpdatedMsrValue = false;
1332 if ( fAdded
1333 && fUpdateHostMsr)
1334 {
1335 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1336 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1337 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1338 fUpdatedMsrValue = true;
1339 }
1340
1341 if (pfAddedAndUpdated)
1342 *pfAddedAndUpdated = fUpdatedMsrValue;
1343 return VINF_SUCCESS;
1344}
1345
1346
1347/**
1348 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1349 * auto-load/store MSR area in the VMCS.
1350 *
1351 * @returns VBox status code.
1352 * @param pVCpu The cross context virtual CPU structure.
1353 * @param uMsr The MSR.
1354 */
1355static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1356{
1357 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1358 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1359 for (uint32_t i = 0; i < cMsrs; i++)
1360 {
1361 /* Find the MSR. */
1362 if (pGuestMsr->u32Msr == uMsr)
1363 {
1364 /* If it's the last MSR, simply reduce the count. */
1365 if (i == cMsrs - 1)
1366 {
1367 --cMsrs;
1368 break;
1369 }
1370
1371 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1372 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1373 pLastGuestMsr += cMsrs - 1;
1374 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1375 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1376
1377 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1378 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1379 pLastHostMsr += cMsrs - 1;
1380 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1381 pHostMsr->u64Value = pLastHostMsr->u64Value;
1382 --cMsrs;
1383 break;
1384 }
1385 pGuestMsr++;
1386 }
1387
1388 /* Update the VMCS if the count changed (meaning the MSR was found). */
1389 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1390 {
1391 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1392 AssertRCReturn(rc, rc);
1393
1394 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1395 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1396 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1397
1398 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1399 return VINF_SUCCESS;
1400 }
1401
1402 return VERR_NOT_FOUND;
1403}
1404
1405
1406/**
1407 * Checks if the specified guest MSR is part of the auto-load/store area in
1408 * the VMCS.
1409 *
1410 * @returns true if found, false otherwise.
1411 * @param pVCpu The cross context virtual CPU structure.
1412 * @param uMsr The MSR to find.
1413 */
1414static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1415{
1416 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1417 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1418
1419 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1420 {
1421 if (pGuestMsr->u32Msr == uMsr)
1422 return true;
1423 }
1424 return false;
1425}
1426
1427
1428/**
1429 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1430 *
1431 * @param pVCpu The cross context virtual CPU structure.
1432 *
1433 * @remarks No-long-jump zone!!!
1434 */
1435static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1436{
1437 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1438 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1439 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1440 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1441
1442 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1443 {
1444 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1445
1446 /*
1447 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1448 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1449 */
1450 if (pHostMsr->u32Msr == MSR_K6_EFER)
1451 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1452 else
1453 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1454 }
1455
1456 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1457}
1458
1459
1460/**
1461 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1462 * perform lazy restoration of the host MSRs while leaving VT-x.
1463 *
1464 * @param pVCpu The cross context virtual CPU structure.
1465 *
1466 * @remarks No-long-jump zone!!!
1467 */
1468static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1469{
1470 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1471
1472 /*
1473 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1474 */
1475 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1476 {
1477 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1478#if HC_ARCH_BITS == 64
1479 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1480 {
1481 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1482 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1483 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1484 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1485 }
1486#endif
1487 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1488 }
1489}
1490
1491
1492/**
1493 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1494 * lazily while leaving VT-x.
1495 *
1496 * @returns true if it does, false otherwise.
1497 * @param pVCpu The cross context virtual CPU structure.
1498 * @param uMsr The MSR to check.
1499 */
1500static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1501{
1502 NOREF(pVCpu);
1503#if HC_ARCH_BITS == 64
1504 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1505 {
1506 switch (uMsr)
1507 {
1508 case MSR_K8_LSTAR:
1509 case MSR_K6_STAR:
1510 case MSR_K8_SF_MASK:
1511 case MSR_K8_KERNEL_GS_BASE:
1512 return true;
1513 }
1514 }
1515#endif
1516 return false;
1517}
1518
1519
1520/**
1521 * Saves a set of guest MSRs back into the guest-CPU context.
1522 *
1523 * @param pVCpu The cross context virtual CPU structure.
1524 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1525 * out-of-sync. Make sure to update the required fields
1526 * before using them.
1527 *
1528 * @remarks No-long-jump zone!!!
1529 */
1530static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1531{
1532 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1533 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1534
1535 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1536 {
1537 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1538#if HC_ARCH_BITS == 64
1539 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1540 {
1541 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1542 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1543 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1544 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1545 }
1546#endif
1547 }
1548}
1549
1550
1551/**
1552 * Loads a set of guests MSRs to allow read/passthru to the guest.
1553 *
1554 * The name of this function is slightly confusing. This function does NOT
1555 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1556 * common prefix for functions dealing with "lazy restoration" of the shared
1557 * MSRs.
1558 *
1559 * @param pVCpu The cross context virtual CPU structure.
1560 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1561 * out-of-sync. Make sure to update the required fields
1562 * before using them.
1563 *
1564 * @remarks No-long-jump zone!!!
1565 */
1566static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1567{
1568 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1569 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1570
1571#define VMXLOCAL_LAZY_LOAD_GUEST_MSR(uMsr, a_GuestMsr, a_HostMsr) \
1572 do { \
1573 if (pMixedCtx->msr##a_GuestMsr != pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr) \
1574 ASMWrMsr(uMsr, pMixedCtx->msr##a_GuestMsr); \
1575 else \
1576 Assert(ASMRdMsr(uMsr) == pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr); \
1577 } while (0)
1578
1579 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1580 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
1581 {
1582#if HC_ARCH_BITS == 64
1583 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1584 {
1585 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_LSTAR, LSTAR, LStar);
1586 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K6_STAR, STAR, Star);
1587 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_SF_MASK, SFMASK, SFMask);
1588 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_KERNEL_GS_BASE, KERNELGSBASE, KernelGSBase);
1589 }
1590#endif
1591 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1592 }
1593
1594#undef VMXLOCAL_LAZY_LOAD_GUEST_MSR
1595}
1596
1597
1598/**
1599 * Performs lazy restoration of the set of host MSRs if they were previously
1600 * loaded with guest MSR values.
1601 *
1602 * @param pVCpu The cross context virtual CPU structure.
1603 *
1604 * @remarks No-long-jump zone!!!
1605 * @remarks The guest MSRs should have been saved back into the guest-CPU
1606 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1607 */
1608static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1609{
1610 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1611 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1612
1613 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1614 {
1615 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1616#if HC_ARCH_BITS == 64
1617 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1618 {
1619 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1620 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1621 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1622 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1623 }
1624#endif
1625 }
1626 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1627}
1628
1629
1630/**
1631 * Verifies that our cached values of the VMCS controls are all
1632 * consistent with what's actually present in the VMCS.
1633 *
1634 * @returns VBox status code.
1635 * @param pVCpu The cross context virtual CPU structure.
1636 */
1637static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1638{
1639 uint32_t u32Val;
1640 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1641 AssertRCReturn(rc, rc);
1642 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1643 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1644
1645 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1646 AssertRCReturn(rc, rc);
1647 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1648 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1649
1650 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1651 AssertRCReturn(rc, rc);
1652 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1653 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1654
1655 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1656 AssertRCReturn(rc, rc);
1657 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1658 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1659
1660 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1661 {
1662 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1663 AssertRCReturn(rc, rc);
1664 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1665 ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1666 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1667 }
1668
1669 return VINF_SUCCESS;
1670}
1671
1672
1673#ifdef VBOX_STRICT
1674/**
1675 * Verifies that our cached host EFER value has not changed
1676 * since we cached it.
1677 *
1678 * @param pVCpu The cross context virtual CPU structure.
1679 */
1680static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1681{
1682 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1683
1684 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1685 {
1686 uint64_t u64Val;
1687 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1688 AssertRC(rc);
1689
1690 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1691 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1692 }
1693}
1694
1695
1696/**
1697 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1698 * VMCS are correct.
1699 *
1700 * @param pVCpu The cross context virtual CPU structure.
1701 */
1702static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1703{
1704 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1705
1706 /* Verify MSR counts in the VMCS are what we think it should be. */
1707 uint32_t cMsrs;
1708 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1709 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1710
1711 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1712 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1713
1714 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1715 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1716
1717 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1718 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1719 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1720 {
1721 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1722 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1723 pGuestMsr->u32Msr, cMsrs));
1724
1725 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1726 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1727 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1728
1729 /* Verify that the permissions are as expected in the MSR bitmap. */
1730 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1731 {
1732 VMXMSREXITREAD enmRead;
1733 VMXMSREXITWRITE enmWrite;
1734 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1735 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1736 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1737 {
1738 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1739 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1740 }
1741 else
1742 {
1743 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1744 pGuestMsr->u32Msr, cMsrs));
1745 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1746 pGuestMsr->u32Msr, cMsrs));
1747 }
1748 }
1749 }
1750}
1751#endif /* VBOX_STRICT */
1752
1753
1754/**
1755 * Flushes the TLB using EPT.
1756 *
1757 * @returns VBox status code.
1758 * @param pVCpu The cross context virtual CPU structure of the calling
1759 * EMT. Can be NULL depending on @a enmFlush.
1760 * @param enmFlush Type of flush.
1761 *
1762 * @remarks Caller is responsible for making sure this function is called only
1763 * when NestedPaging is supported and providing @a enmFlush that is
1764 * supported by the CPU.
1765 * @remarks Can be called with interrupts disabled.
1766 */
1767static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1768{
1769 uint64_t au64Descriptor[2];
1770 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1771 au64Descriptor[0] = 0;
1772 else
1773 {
1774 Assert(pVCpu);
1775 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1776 }
1777 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1778
1779 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1780 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1781 rc));
1782 if ( RT_SUCCESS(rc)
1783 && pVCpu)
1784 {
1785 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1786 }
1787}
1788
1789
1790/**
1791 * Flushes the TLB using VPID.
1792 *
1793 * @returns VBox status code.
1794 * @param pVM The cross context VM structure.
1795 * @param pVCpu The cross context virtual CPU structure of the calling
1796 * EMT. Can be NULL depending on @a enmFlush.
1797 * @param enmFlush Type of flush.
1798 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1799 * on @a enmFlush).
1800 *
1801 * @remarks Can be called with interrupts disabled.
1802 */
1803static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1804{
1805 NOREF(pVM);
1806 AssertPtr(pVM);
1807 Assert(pVM->hm.s.vmx.fVpid);
1808
1809 uint64_t au64Descriptor[2];
1810 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1811 {
1812 au64Descriptor[0] = 0;
1813 au64Descriptor[1] = 0;
1814 }
1815 else
1816 {
1817 AssertPtr(pVCpu);
1818 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1819 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1820 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1821 au64Descriptor[1] = GCPtr;
1822 }
1823
1824 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1825 AssertMsg(rc == VINF_SUCCESS,
1826 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1827 if ( RT_SUCCESS(rc)
1828 && pVCpu)
1829 {
1830 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1831 }
1832}
1833
1834
1835/**
1836 * Invalidates a guest page by guest virtual address. Only relevant for
1837 * EPT/VPID, otherwise there is nothing really to invalidate.
1838 *
1839 * @returns VBox status code.
1840 * @param pVM The cross context VM structure.
1841 * @param pVCpu The cross context virtual CPU structure.
1842 * @param GCVirt Guest virtual address of the page to invalidate.
1843 */
1844VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1845{
1846 AssertPtr(pVM);
1847 AssertPtr(pVCpu);
1848 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1849
1850 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1851 if (!fFlushPending)
1852 {
1853 /*
1854 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1855 * See @bugref{6043} and @bugref{6177}.
1856 *
1857 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1858 * function maybe called in a loop with individual addresses.
1859 */
1860 if (pVM->hm.s.vmx.fVpid)
1861 {
1862 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1863 {
1864 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1865 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1866 }
1867 else
1868 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1869 }
1870 else if (pVM->hm.s.fNestedPaging)
1871 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1872 }
1873
1874 return VINF_SUCCESS;
1875}
1876
1877
1878/**
1879 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1880 * otherwise there is nothing really to invalidate.
1881 *
1882 * @returns VBox status code.
1883 * @param pVM The cross context VM structure.
1884 * @param pVCpu The cross context virtual CPU structure.
1885 * @param GCPhys Guest physical address of the page to invalidate.
1886 */
1887VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1888{
1889 NOREF(pVM); NOREF(GCPhys);
1890 LogFlowFunc(("%RGp\n", GCPhys));
1891
1892 /*
1893 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1894 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1895 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1896 */
1897 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1898 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1899 return VINF_SUCCESS;
1900}
1901
1902
1903/**
1904 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1905 * case where neither EPT nor VPID is supported by the CPU.
1906 *
1907 * @param pVM The cross context VM structure.
1908 * @param pVCpu The cross context virtual CPU structure.
1909 * @param pCpu Pointer to the global HM struct.
1910 *
1911 * @remarks Called with interrupts disabled.
1912 */
1913static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1914{
1915 AssertPtr(pVCpu);
1916 AssertPtr(pCpu);
1917 NOREF(pVM);
1918
1919 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1920
1921 Assert(pCpu->idCpu != NIL_RTCPUID);
1922 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1923 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1924 pVCpu->hm.s.fForceTLBFlush = false;
1925 return;
1926}
1927
1928
1929/**
1930 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1931 *
1932 * @param pVM The cross context VM structure.
1933 * @param pVCpu The cross context virtual CPU structure.
1934 * @param pCpu Pointer to the global HM CPU struct.
1935 * @remarks All references to "ASID" in this function pertains to "VPID" in
1936 * Intel's nomenclature. The reason is, to avoid confusion in compare
1937 * statements since the host-CPU copies are named "ASID".
1938 *
1939 * @remarks Called with interrupts disabled.
1940 */
1941static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1942{
1943#ifdef VBOX_WITH_STATISTICS
1944 bool fTlbFlushed = false;
1945# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1946# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1947 if (!fTlbFlushed) \
1948 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1949 } while (0)
1950#else
1951# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1952# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1953#endif
1954
1955 AssertPtr(pVM);
1956 AssertPtr(pCpu);
1957 AssertPtr(pVCpu);
1958 Assert(pCpu->idCpu != NIL_RTCPUID);
1959
1960 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1961 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1962 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1963
1964 /*
1965 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1966 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1967 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1968 */
1969 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1970 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1971 {
1972 ++pCpu->uCurrentAsid;
1973 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1974 {
1975 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1976 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1977 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1978 }
1979
1980 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1981 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1982 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1983
1984 /*
1985 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1986 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1987 */
1988 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1989 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1990 HMVMX_SET_TAGGED_TLB_FLUSHED();
1991 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
1992 }
1993
1994 /* Check for explicit TLB flushes. */
1995 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1996 {
1997 /*
1998 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
1999 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
2000 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
2001 * but not guest-physical mappings.
2002 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
2003 */
2004 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2005 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2006 HMVMX_SET_TAGGED_TLB_FLUSHED();
2007 }
2008
2009 pVCpu->hm.s.fForceTLBFlush = false;
2010 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2011
2012 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2013 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2014 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2015 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2016 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2017 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2018 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2019 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2020 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2021
2022 /* Update VMCS with the VPID. */
2023 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2024 AssertRC(rc);
2025
2026#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2027}
2028
2029
2030/**
2031 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2032 *
2033 * @returns VBox status code.
2034 * @param pVM The cross context VM structure.
2035 * @param pVCpu The cross context virtual CPU structure.
2036 * @param pCpu Pointer to the global HM CPU struct.
2037 *
2038 * @remarks Called with interrupts disabled.
2039 */
2040static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2041{
2042 AssertPtr(pVM);
2043 AssertPtr(pVCpu);
2044 AssertPtr(pCpu);
2045 Assert(pCpu->idCpu != NIL_RTCPUID);
2046 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2047 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2048
2049 /*
2050 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2051 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2052 */
2053 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2054 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2055 {
2056 pVCpu->hm.s.fForceTLBFlush = true;
2057 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2058 }
2059
2060 /* Check for explicit TLB flushes. */
2061 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2062 {
2063 pVCpu->hm.s.fForceTLBFlush = true;
2064 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2065 }
2066
2067 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2068 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2069
2070 if (pVCpu->hm.s.fForceTLBFlush)
2071 {
2072 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2073 pVCpu->hm.s.fForceTLBFlush = false;
2074 }
2075}
2076
2077
2078/**
2079 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2080 *
2081 * @returns VBox status code.
2082 * @param pVM The cross context VM structure.
2083 * @param pVCpu The cross context virtual CPU structure.
2084 * @param pCpu Pointer to the global HM CPU struct.
2085 *
2086 * @remarks Called with interrupts disabled.
2087 */
2088static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2089{
2090 AssertPtr(pVM);
2091 AssertPtr(pVCpu);
2092 AssertPtr(pCpu);
2093 Assert(pCpu->idCpu != NIL_RTCPUID);
2094 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2095 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2096
2097 /*
2098 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2099 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2100 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2101 */
2102 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2103 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2104 {
2105 pVCpu->hm.s.fForceTLBFlush = true;
2106 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2107 }
2108
2109 /* Check for explicit TLB flushes. */
2110 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2111 {
2112 /*
2113 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2114 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2115 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2116 */
2117 pVCpu->hm.s.fForceTLBFlush = true;
2118 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2119 }
2120
2121 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2122 if (pVCpu->hm.s.fForceTLBFlush)
2123 {
2124 ++pCpu->uCurrentAsid;
2125 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2126 {
2127 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2128 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2129 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2130 }
2131
2132 pVCpu->hm.s.fForceTLBFlush = false;
2133 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2134 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2135 if (pCpu->fFlushAsidBeforeUse)
2136 {
2137 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2138 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2139 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2140 {
2141 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2142 pCpu->fFlushAsidBeforeUse = false;
2143 }
2144 else
2145 {
2146 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2147 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2148 }
2149 }
2150 }
2151
2152 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2153 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2154 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2155 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2156 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2157 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2158 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2159
2160 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2161 AssertRC(rc);
2162}
2163
2164
2165/**
2166 * Flushes the guest TLB entry based on CPU capabilities.
2167 *
2168 * @param pVCpu The cross context virtual CPU structure.
2169 * @param pCpu Pointer to the global HM CPU struct.
2170 */
2171DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2172{
2173#ifdef HMVMX_ALWAYS_FLUSH_TLB
2174 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2175#endif
2176 PVM pVM = pVCpu->CTX_SUFF(pVM);
2177 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2178 {
2179 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2180 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2181 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2182 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2183 default:
2184 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2185 break;
2186 }
2187
2188 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2189}
2190
2191
2192/**
2193 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2194 * TLB entries from the host TLB before VM-entry.
2195 *
2196 * @returns VBox status code.
2197 * @param pVM The cross context VM structure.
2198 */
2199static int hmR0VmxSetupTaggedTlb(PVM pVM)
2200{
2201 /*
2202 * Determine optimal flush type for Nested Paging.
2203 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2204 * guest execution (see hmR3InitFinalizeR0()).
2205 */
2206 if (pVM->hm.s.fNestedPaging)
2207 {
2208 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2209 {
2210 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2211 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2212 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2213 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2214 else
2215 {
2216 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2217 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2218 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2219 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2220 }
2221
2222 /* Make sure the write-back cacheable memory type for EPT is supported. */
2223 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2224 {
2225 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2226 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2227 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2228 }
2229
2230 /* EPT requires a page-walk length of 4. */
2231 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2232 {
2233 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2234 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2235 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2236 }
2237 }
2238 else
2239 {
2240 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2241 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2242 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2243 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2244 }
2245 }
2246
2247 /*
2248 * Determine optimal flush type for VPID.
2249 */
2250 if (pVM->hm.s.vmx.fVpid)
2251 {
2252 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2253 {
2254 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2255 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2256 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2257 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2258 else
2259 {
2260 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2261 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2262 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2263 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2264 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2265 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2266 pVM->hm.s.vmx.fVpid = false;
2267 }
2268 }
2269 else
2270 {
2271 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2272 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2273 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2274 pVM->hm.s.vmx.fVpid = false;
2275 }
2276 }
2277
2278 /*
2279 * Setup the handler for flushing tagged-TLBs.
2280 */
2281 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2282 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2283 else if (pVM->hm.s.fNestedPaging)
2284 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2285 else if (pVM->hm.s.vmx.fVpid)
2286 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2287 else
2288 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2289 return VINF_SUCCESS;
2290}
2291
2292
2293/**
2294 * Sets up pin-based VM-execution controls in the VMCS.
2295 *
2296 * @returns VBox status code.
2297 * @param pVM The cross context VM structure.
2298 * @param pVCpu The cross context virtual CPU structure.
2299 */
2300static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2301{
2302 AssertPtr(pVM);
2303 AssertPtr(pVCpu);
2304
2305 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2306 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2307
2308 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2309 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2310
2311 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2312 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2313
2314 /* Enable the VMX preemption timer. */
2315 if (pVM->hm.s.vmx.fUsePreemptTimer)
2316 {
2317 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2318 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2319 }
2320
2321#ifdef VBOX_WITH_NEW_APIC
2322#if 0
2323 /* Enable posted-interrupt processing. */
2324 if (pVM->hm.s.fPostedIntrs)
2325 {
2326 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
2327 Assert(pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
2328 val |= VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR;
2329 }
2330#endif
2331#endif
2332
2333 if ((val & zap) != val)
2334 {
2335 LogRel(("hmR0VmxSetupPinCtls: Invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2336 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2337 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2338 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2339 }
2340
2341 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2342 AssertRCReturn(rc, rc);
2343
2344 pVCpu->hm.s.vmx.u32PinCtls = val;
2345 return rc;
2346}
2347
2348
2349/**
2350 * Sets up processor-based VM-execution controls in the VMCS.
2351 *
2352 * @returns VBox status code.
2353 * @param pVM The cross context VM structure.
2354 * @param pVCpu The cross context virtual CPU structure.
2355 */
2356static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2357{
2358 AssertPtr(pVM);
2359 AssertPtr(pVCpu);
2360
2361 int rc = VERR_INTERNAL_ERROR_5;
2362 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2363 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2364
2365 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2366 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2367 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2368 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2369 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2370 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2371 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2372
2373 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2374 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2375 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2376 {
2377 LogRel(("hmR0VmxSetupProcCtls: Unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2378 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2379 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2380 }
2381
2382 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2383 if (!pVM->hm.s.fNestedPaging)
2384 {
2385 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2386 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2387 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2388 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2389 }
2390
2391 /* Use TPR shadowing if supported by the CPU. */
2392 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2393 {
2394 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2395 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2396 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2397 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2398 AssertRCReturn(rc, rc);
2399
2400 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2401 /* CR8 writes cause a VM-exit based on TPR threshold. */
2402 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2403 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2404 }
2405 else
2406 {
2407 /*
2408 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2409 * Set this control only for 64-bit guests.
2410 */
2411 if (pVM->hm.s.fAllow64BitGuests)
2412 {
2413 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2414 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2415 }
2416 }
2417
2418 /* Use MSR-bitmaps if supported by the CPU. */
2419 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2420 {
2421 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2422
2423 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2424 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2425 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2426 AssertRCReturn(rc, rc);
2427
2428 /*
2429 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2430 * automatically using dedicated fields in the VMCS.
2431 */
2432 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2433 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2434 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2435 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2436 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2437
2438#if HC_ARCH_BITS == 64
2439 /*
2440 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2441 */
2442 if (pVM->hm.s.fAllow64BitGuests)
2443 {
2444 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2445 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2446 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2447 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2448 }
2449#endif
2450 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2451 }
2452
2453 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2454 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2455 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2456
2457 if ((val & zap) != val)
2458 {
2459 LogRel(("hmR0VmxSetupProcCtls: Invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2460 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2461 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2462 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2463 }
2464
2465 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2466 AssertRCReturn(rc, rc);
2467
2468 pVCpu->hm.s.vmx.u32ProcCtls = val;
2469
2470 /*
2471 * Secondary processor-based VM-execution controls.
2472 */
2473 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2474 {
2475 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2476 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2477
2478 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2479 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2480
2481 if (pVM->hm.s.fNestedPaging)
2482 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2483 else
2484 {
2485 /*
2486 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2487 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2488 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2489 */
2490 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2491 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2492 }
2493
2494 if (pVM->hm.s.vmx.fVpid)
2495 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2496
2497 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2498 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2499
2500#ifdef VBOX_WITH_NEW_APIC
2501#if 0
2502 if (pVM->hm.s.fVirtApicRegs)
2503 {
2504 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
2505 val |= VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT; /* Enable APIC-register virtualization. */
2506
2507 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
2508 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY; /* Enable virtual-interrupt delivery. */
2509 }
2510#endif
2511#endif
2512
2513 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2514 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2515 * done dynamically. */
2516 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2517 {
2518 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2519 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2520 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2521 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2522 AssertRCReturn(rc, rc);
2523 }
2524
2525 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2526 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2527
2528 if ( pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT
2529 && pVM->hm.s.vmx.cPleGapTicks
2530 && pVM->hm.s.vmx.cPleWindowTicks)
2531 {
2532 val |= VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT; /* Enable pause-loop exiting. */
2533
2534 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2535 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2536 AssertRCReturn(rc, rc);
2537 }
2538
2539 if ((val & zap) != val)
2540 {
2541 LogRel(("hmR0VmxSetupProcCtls: Invalid secondary processor-based VM-execution controls combo! "
2542 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2543 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2544 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2545 }
2546
2547 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2548 AssertRCReturn(rc, rc);
2549
2550 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2551 }
2552 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2553 {
2554 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2555 "available\n"));
2556 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2557 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2558 }
2559
2560 return VINF_SUCCESS;
2561}
2562
2563
2564/**
2565 * Sets up miscellaneous (everything other than Pin & Processor-based
2566 * VM-execution) control fields in the VMCS.
2567 *
2568 * @returns VBox status code.
2569 * @param pVM The cross context VM structure.
2570 * @param pVCpu The cross context virtual CPU structure.
2571 */
2572static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2573{
2574 NOREF(pVM);
2575 AssertPtr(pVM);
2576 AssertPtr(pVCpu);
2577
2578 int rc = VERR_GENERAL_FAILURE;
2579
2580 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2581#if 0
2582 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2583 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2584 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2585
2586 /*
2587 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2588 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2589 * We thus use the exception bitmap to control it rather than use both.
2590 */
2591 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2592 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2593
2594 /** @todo Explore possibility of using IO-bitmaps. */
2595 /* All IO & IOIO instructions cause VM-exits. */
2596 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2597 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2598
2599 /* Initialize the MSR-bitmap area. */
2600 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2601 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2602 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2603 AssertRCReturn(rc, rc);
2604#endif
2605
2606 /* Setup MSR auto-load/store area. */
2607 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2608 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2609 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2610 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2611 AssertRCReturn(rc, rc);
2612
2613 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2614 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2615 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2616 AssertRCReturn(rc, rc);
2617
2618 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2619 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2620 AssertRCReturn(rc, rc);
2621
2622 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2623#if 0
2624 /* Setup debug controls */
2625 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2626 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2627 AssertRCReturn(rc, rc);
2628#endif
2629
2630 return rc;
2631}
2632
2633
2634/**
2635 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2636 *
2637 * @returns VBox status code.
2638 * @param pVM The cross context VM structure.
2639 * @param pVCpu The cross context virtual CPU structure.
2640 */
2641static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2642{
2643 AssertPtr(pVM);
2644 AssertPtr(pVCpu);
2645
2646 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2647
2648 uint32_t u32XcptBitmap = pVCpu->hm.s.fGIMTrapXcptUD ? RT_BIT(X86_XCPT_UD) : 0;
2649
2650 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2651 u32XcptBitmap |= RT_BIT_32(X86_XCPT_AC);
2652
2653 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2654 and writes, and because recursive #DBs can cause the CPU hang, we must always
2655 intercept #DB. */
2656 u32XcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2657
2658 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2659 if (!pVM->hm.s.fNestedPaging)
2660 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2661
2662 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2663 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2664 AssertRCReturn(rc, rc);
2665 return rc;
2666}
2667
2668
2669/**
2670 * Sets up the initial guest-state mask. The guest-state mask is consulted
2671 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2672 * for the nested virtualization case (as it would cause a VM-exit).
2673 *
2674 * @param pVCpu The cross context virtual CPU structure.
2675 */
2676static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2677{
2678 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2679 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2680 return VINF_SUCCESS;
2681}
2682
2683
2684/**
2685 * Does per-VM VT-x initialization.
2686 *
2687 * @returns VBox status code.
2688 * @param pVM The cross context VM structure.
2689 */
2690VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2691{
2692 LogFlowFunc(("pVM=%p\n", pVM));
2693
2694 int rc = hmR0VmxStructsAlloc(pVM);
2695 if (RT_FAILURE(rc))
2696 {
2697 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2698 return rc;
2699 }
2700
2701 return VINF_SUCCESS;
2702}
2703
2704
2705/**
2706 * Does per-VM VT-x termination.
2707 *
2708 * @returns VBox status code.
2709 * @param pVM The cross context VM structure.
2710 */
2711VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2712{
2713 LogFlowFunc(("pVM=%p\n", pVM));
2714
2715#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2716 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2717 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2718#endif
2719 hmR0VmxStructsFree(pVM);
2720 return VINF_SUCCESS;
2721}
2722
2723
2724/**
2725 * Sets up the VM for execution under VT-x.
2726 * This function is only called once per-VM during initialization.
2727 *
2728 * @returns VBox status code.
2729 * @param pVM The cross context VM structure.
2730 */
2731VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2732{
2733 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2734 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2735
2736 LogFlowFunc(("pVM=%p\n", pVM));
2737
2738 /*
2739 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2740 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2741 */
2742 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2743 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2744 || !pVM->hm.s.vmx.pRealModeTSS))
2745 {
2746 LogRel(("VMXR0SetupVM: Invalid real-on-v86 state.\n"));
2747 return VERR_INTERNAL_ERROR;
2748 }
2749
2750 /* Initialize these always, see hmR3InitFinalizeR0().*/
2751 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2752 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2753
2754 /* Setup the tagged-TLB flush handlers. */
2755 int rc = hmR0VmxSetupTaggedTlb(pVM);
2756 if (RT_FAILURE(rc))
2757 {
2758 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2759 return rc;
2760 }
2761
2762 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2763 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2764#if HC_ARCH_BITS == 64
2765 if ( (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2766 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2767 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2768 {
2769 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2770 }
2771#endif
2772
2773 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2774 RTCCUINTREG uHostCR4 = ASMGetCR4();
2775 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2776 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2777
2778 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2779 {
2780 PVMCPU pVCpu = &pVM->aCpus[i];
2781 AssertPtr(pVCpu);
2782 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2783
2784 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2785 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2786
2787 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2788 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2789 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2790
2791 /* Set revision dword at the beginning of the VMCS structure. */
2792 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2793
2794 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2795 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2796 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2797 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2798
2799 /* Load this VMCS as the current VMCS. */
2800 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2801 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2802 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2803
2804 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2805 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2806 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2807
2808 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2809 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2810 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2811
2812 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2813 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2814 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2815
2816 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2817 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2818 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2819
2820 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2821 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2822 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2823
2824#if HC_ARCH_BITS == 32
2825 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2826 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2827 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2828#endif
2829
2830 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2831 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2832 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2833 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2834
2835 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2836
2837 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2838 }
2839
2840 return VINF_SUCCESS;
2841}
2842
2843
2844/**
2845 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2846 * the VMCS.
2847 *
2848 * @returns VBox status code.
2849 * @param pVM The cross context VM structure.
2850 * @param pVCpu The cross context virtual CPU structure.
2851 */
2852DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2853{
2854 NOREF(pVM); NOREF(pVCpu);
2855
2856 RTCCUINTREG uReg = ASMGetCR0();
2857 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2858 AssertRCReturn(rc, rc);
2859
2860 uReg = ASMGetCR3();
2861 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2862 AssertRCReturn(rc, rc);
2863
2864 uReg = ASMGetCR4();
2865 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2866 AssertRCReturn(rc, rc);
2867 return rc;
2868}
2869
2870
2871#if HC_ARCH_BITS == 64
2872/**
2873 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2874 * requirements. See hmR0VmxSaveHostSegmentRegs().
2875 */
2876# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2877 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2878 { \
2879 bool fValidSelector = true; \
2880 if ((selValue) & X86_SEL_LDT) \
2881 { \
2882 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2883 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2884 } \
2885 if (fValidSelector) \
2886 { \
2887 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2888 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2889 } \
2890 (selValue) = 0; \
2891 }
2892#endif
2893
2894
2895/**
2896 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2897 * the host-state area in the VMCS.
2898 *
2899 * @returns VBox status code.
2900 * @param pVM The cross context VM structure.
2901 * @param pVCpu The cross context virtual CPU structure.
2902 */
2903DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2904{
2905 int rc = VERR_INTERNAL_ERROR_5;
2906
2907#if HC_ARCH_BITS == 64
2908 /*
2909 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2910 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2911 *
2912 * This apparently can happen (most likely the FPU changes), deal with it rather than asserting.
2913 * Was observed booting Solaris10u10 32-bit guest.
2914 */
2915 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2916 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2917 {
2918 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2919 pVCpu->idCpu));
2920 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2921 }
2922 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2923#endif
2924
2925 /*
2926 * Host DS, ES, FS and GS segment registers.
2927 */
2928#if HC_ARCH_BITS == 64
2929 RTSEL uSelDS = ASMGetDS();
2930 RTSEL uSelES = ASMGetES();
2931 RTSEL uSelFS = ASMGetFS();
2932 RTSEL uSelGS = ASMGetGS();
2933#else
2934 RTSEL uSelDS = 0;
2935 RTSEL uSelES = 0;
2936 RTSEL uSelFS = 0;
2937 RTSEL uSelGS = 0;
2938#endif
2939
2940 /*
2941 * Host CS and SS segment registers.
2942 */
2943 RTSEL uSelCS = ASMGetCS();
2944 RTSEL uSelSS = ASMGetSS();
2945
2946 /*
2947 * Host TR segment register.
2948 */
2949 RTSEL uSelTR = ASMGetTR();
2950
2951#if HC_ARCH_BITS == 64
2952 /*
2953 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2954 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2955 */
2956 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2957 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2958 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2959 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2960# undef VMXLOCAL_ADJUST_HOST_SEG
2961#endif
2962
2963 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2964 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2965 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2966 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2967 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2968 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2969 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2970 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2971 Assert(uSelCS);
2972 Assert(uSelTR);
2973
2974 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2975#if 0
2976 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2977 Assert(uSelSS != 0);
2978#endif
2979
2980 /* Write these host selector fields into the host-state area in the VMCS. */
2981 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2982 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2983#if HC_ARCH_BITS == 64
2984 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2985 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2986 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2987 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2988#else
2989 NOREF(uSelDS);
2990 NOREF(uSelES);
2991 NOREF(uSelFS);
2992 NOREF(uSelGS);
2993#endif
2994 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2995 AssertRCReturn(rc, rc);
2996
2997 /*
2998 * Host GDTR and IDTR.
2999 */
3000 RTGDTR Gdtr;
3001 RTIDTR Idtr;
3002 RT_ZERO(Gdtr);
3003 RT_ZERO(Idtr);
3004 ASMGetGDTR(&Gdtr);
3005 ASMGetIDTR(&Idtr);
3006 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3007 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3008 AssertRCReturn(rc, rc);
3009
3010#if HC_ARCH_BITS == 64
3011 /*
3012 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3013 * maximum limit (0xffff) on every VM-exit.
3014 */
3015 if (Gdtr.cbGdt != 0xffff)
3016 {
3017 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3018 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3019 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3020 }
3021
3022 /*
3023 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3024 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3025 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3026 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3027 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3028 * hosts where we are pretty sure it won't cause trouble.
3029 */
3030# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3031 if (Idtr.cbIdt < 0x0fff)
3032# else
3033 if (Idtr.cbIdt != 0xffff)
3034# endif
3035 {
3036 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3037 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3038 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3039 }
3040#endif
3041
3042 /*
3043 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3044 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3045 */
3046 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3047 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3048 VERR_VMX_INVALID_HOST_STATE);
3049
3050 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3051#if HC_ARCH_BITS == 64
3052 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3053
3054 /*
3055 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3056 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3057 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3058 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3059 *
3060 * [1] See Intel spec. 3.5 "System Descriptor Types".
3061 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3062 */
3063 Assert(pDesc->System.u4Type == 11);
3064 if ( pDesc->System.u16LimitLow != 0x67
3065 || pDesc->System.u4LimitHigh)
3066 {
3067 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3068 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3069 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3070 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3071 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3072
3073 /* Store the GDTR here as we need it while restoring TR. */
3074 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3075 }
3076#else
3077 NOREF(pVM);
3078 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3079#endif
3080 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3081 AssertRCReturn(rc, rc);
3082
3083 /*
3084 * Host FS base and GS base.
3085 */
3086#if HC_ARCH_BITS == 64
3087 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3088 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3089 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3090 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3091 AssertRCReturn(rc, rc);
3092
3093 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3094 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3095 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3096 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3097 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3098#endif
3099 return rc;
3100}
3101
3102
3103/**
3104 * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
3105 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3106 * the host after every successful VM-exit.
3107 *
3108 * @returns VBox status code.
3109 * @param pVM The cross context VM structure.
3110 * @param pVCpu The cross context virtual CPU structure.
3111 *
3112 * @remarks No-long-jump zone!!!
3113 */
3114DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3115{
3116 NOREF(pVM);
3117
3118 AssertPtr(pVCpu);
3119 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3120
3121 /*
3122 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3123 * rather than swapping them on every VM-entry.
3124 */
3125 hmR0VmxLazySaveHostMsrs(pVCpu);
3126
3127 /*
3128 * Host Sysenter MSRs.
3129 */
3130 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3131#if HC_ARCH_BITS == 32
3132 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3133 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3134#else
3135 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3136 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3137#endif
3138 AssertRCReturn(rc, rc);
3139
3140 /*
3141 * Host EFER MSR.
3142 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3143 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3144 */
3145 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3146 {
3147 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3148 AssertRCReturn(rc, rc);
3149 }
3150
3151 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3152 * hmR0VmxLoadGuestExitCtls() !! */
3153
3154 return rc;
3155}
3156
3157
3158/**
3159 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3160 *
3161 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3162 * these two bits are handled by VM-entry, see hmR0VmxLoadGuestExitCtls() and
3163 * hmR0VMxLoadGuestEntryCtls().
3164 *
3165 * @returns true if we need to load guest EFER, false otherwise.
3166 * @param pVCpu The cross context virtual CPU structure.
3167 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3168 * out-of-sync. Make sure to update the required fields
3169 * before using them.
3170 *
3171 * @remarks Requires EFER, CR4.
3172 * @remarks No-long-jump zone!!!
3173 */
3174static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3175{
3176#ifdef HMVMX_ALWAYS_SWAP_EFER
3177 return true;
3178#endif
3179
3180#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3181 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3182 if (CPUMIsGuestInLongMode(pVCpu))
3183 return false;
3184#endif
3185
3186 PVM pVM = pVCpu->CTX_SUFF(pVM);
3187 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3188 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3189
3190 /*
3191 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3192 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3193 */
3194 if ( CPUMIsGuestInLongMode(pVCpu)
3195 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3196 {
3197 return true;
3198 }
3199
3200 /*
3201 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3202 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3203 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3204 */
3205 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3206 && (pMixedCtx->cr0 & X86_CR0_PG)
3207 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3208 {
3209 /* Assert that host is PAE capable. */
3210 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3211 return true;
3212 }
3213
3214 /** @todo Check the latest Intel spec. for any other bits,
3215 * like SMEP/SMAP? */
3216 return false;
3217}
3218
3219
3220/**
3221 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3222 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3223 * controls".
3224 *
3225 * @returns VBox status code.
3226 * @param pVCpu The cross context virtual CPU structure.
3227 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3228 * out-of-sync. Make sure to update the required fields
3229 * before using them.
3230 *
3231 * @remarks Requires EFER.
3232 * @remarks No-long-jump zone!!!
3233 */
3234DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3235{
3236 int rc = VINF_SUCCESS;
3237 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3238 {
3239 PVM pVM = pVCpu->CTX_SUFF(pVM);
3240 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3241 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3242
3243 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3244 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3245
3246 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3247 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3248 {
3249 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3250 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3251 }
3252 else
3253 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3254
3255 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3256 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3257 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3258 {
3259 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3260 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3261 }
3262
3263 /*
3264 * The following should -not- be set (since we're not in SMM mode):
3265 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3266 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3267 */
3268
3269 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3270 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3271
3272 if ((val & zap) != val)
3273 {
3274 LogRel(("hmR0VmxLoadGuestEntryCtls: Invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3275 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3276 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3277 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3278 }
3279
3280 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3281 AssertRCReturn(rc, rc);
3282
3283 pVCpu->hm.s.vmx.u32EntryCtls = val;
3284 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3285 }
3286 return rc;
3287}
3288
3289
3290/**
3291 * Sets up the VM-exit controls in the VMCS.
3292 *
3293 * @returns VBox status code.
3294 * @param pVCpu The cross context virtual CPU structure.
3295 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3296 * out-of-sync. Make sure to update the required fields
3297 * before using them.
3298 *
3299 * @remarks Requires EFER.
3300 */
3301DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3302{
3303 NOREF(pMixedCtx);
3304
3305 int rc = VINF_SUCCESS;
3306 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3307 {
3308 PVM pVM = pVCpu->CTX_SUFF(pVM);
3309 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3310 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3311
3312 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3313 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3314
3315 /*
3316 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3317 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3318 */
3319#if HC_ARCH_BITS == 64
3320 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3321 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3322#else
3323 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3324 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3325 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3326 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3327 {
3328 /* The switcher returns to long mode, EFER is managed by the switcher. */
3329 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3330 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3331 }
3332 else
3333 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3334#endif
3335
3336 /* If the newer VMCS fields for managing EFER exists, use it. */
3337 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3338 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3339 {
3340 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3341 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3342 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3343 }
3344
3345 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3346 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3347
3348 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3349 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3350 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3351
3352 if ( pVM->hm.s.vmx.fUsePreemptTimer
3353 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3354 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3355
3356 if ((val & zap) != val)
3357 {
3358 LogRel(("hmR0VmxSetupProcCtls: Invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3359 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3360 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3361 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3362 }
3363
3364 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3365 AssertRCReturn(rc, rc);
3366
3367 pVCpu->hm.s.vmx.u32ExitCtls = val;
3368 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3369 }
3370 return rc;
3371}
3372
3373
3374/**
3375 * Sets the TPR threshold in the VMCS.
3376 *
3377 * @returns VBox status code.
3378 * @param pVCpu The cross context virtual CPU structure.
3379 * @param u32TprThreshold The TPR threshold (task-priority class only).
3380 */
3381DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3382{
3383 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3384 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3385 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3386}
3387
3388
3389/**
3390 * Loads the guest APIC and related state.
3391 *
3392 * @returns VBox status code.
3393 * @param pVCpu The cross context virtual CPU structure.
3394 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3395 * out-of-sync. Make sure to update the required fields
3396 * before using them.
3397 */
3398DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3399{
3400 NOREF(pMixedCtx);
3401
3402 int rc = VINF_SUCCESS;
3403 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3404 {
3405 /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
3406 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3407 {
3408 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3409
3410 bool fPendingIntr = false;
3411 uint8_t u8Tpr = 0;
3412 uint8_t u8PendingIntr = 0;
3413 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3414 AssertRCReturn(rc, rc);
3415
3416 /*
3417 * If there are external interrupts pending but masked by the TPR value, instruct VT-x to cause a VM-exit when
3418 * the guest lowers its TPR below the highest-priority pending interrupt and we can deliver the interrupt.
3419 * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
3420 * the interrupt when we VM-exit for other reasons.
3421 */
3422 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8Tpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
3423 uint32_t u32TprThreshold = 0;
3424 if (fPendingIntr)
3425 {
3426 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3427 const uint8_t u8PendingPriority = (u8PendingIntr >> 4) & 0xf;
3428 const uint8_t u8TprPriority = (u8Tpr >> 4) & 0xf;
3429 if (u8PendingPriority <= u8TprPriority)
3430 u32TprThreshold = u8PendingPriority;
3431 else
3432 u32TprThreshold = u8TprPriority; /* Required for Vista 64-bit guest, see @bugref{6398}. */
3433 }
3434
3435 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3436 AssertRCReturn(rc, rc);
3437 }
3438
3439 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3440 }
3441 return rc;
3442}
3443
3444
3445/**
3446 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3447 *
3448 * @returns Guest's interruptibility-state.
3449 * @param pVCpu The cross context virtual CPU structure.
3450 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3451 * out-of-sync. Make sure to update the required fields
3452 * before using them.
3453 *
3454 * @remarks No-long-jump zone!!!
3455 */
3456DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3457{
3458 /*
3459 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3460 */
3461 uint32_t uIntrState = 0;
3462 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3463 {
3464 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3465 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3466 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3467 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3468 {
3469 if (pMixedCtx->eflags.Bits.u1IF)
3470 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3471 else
3472 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3473 }
3474 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3475 {
3476 /*
3477 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3478 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3479 */
3480 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3481 }
3482 }
3483
3484 /*
3485 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3486 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3487 * setting this would block host-NMIs and IRET will not clear the blocking.
3488 *
3489 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3490 */
3491 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3492 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3493 {
3494 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3495 }
3496
3497 return uIntrState;
3498}
3499
3500
3501/**
3502 * Loads the guest's interruptibility-state into the guest-state area in the
3503 * VMCS.
3504 *
3505 * @returns VBox status code.
3506 * @param pVCpu The cross context virtual CPU structure.
3507 * @param uIntrState The interruptibility-state to set.
3508 */
3509static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3510{
3511 NOREF(pVCpu);
3512 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3513 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3514 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3515 AssertRC(rc);
3516 return rc;
3517}
3518
3519
3520/**
3521 * Loads the exception intercepts required for guest execution in the VMCS.
3522 *
3523 * @returns VBox status code.
3524 * @param pVCpu The cross context virtual CPU structure.
3525 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3526 * out-of-sync. Make sure to update the required fields
3527 * before using them.
3528 */
3529static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3530{
3531 NOREF(pMixedCtx);
3532 int rc = VINF_SUCCESS;
3533 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
3534 {
3535 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
3536 if (pVCpu->hm.s.fGIMTrapXcptUD)
3537 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
3538#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3539 else
3540 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3541#endif
3542
3543 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
3544 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
3545
3546 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3547 AssertRCReturn(rc, rc);
3548
3549 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3550 Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
3551 pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
3552 }
3553 return rc;
3554}
3555
3556
3557/**
3558 * Loads the guest's RIP into the guest-state area in the VMCS.
3559 *
3560 * @returns VBox status code.
3561 * @param pVCpu The cross context virtual CPU structure.
3562 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3563 * out-of-sync. Make sure to update the required fields
3564 * before using them.
3565 *
3566 * @remarks No-long-jump zone!!!
3567 */
3568static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3569{
3570 int rc = VINF_SUCCESS;
3571 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3572 {
3573 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3574 AssertRCReturn(rc, rc);
3575
3576 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3577 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3578 HMCPU_CF_VALUE(pVCpu)));
3579 }
3580 return rc;
3581}
3582
3583
3584/**
3585 * Loads the guest's RSP into the guest-state area in the VMCS.
3586 *
3587 * @returns VBox status code.
3588 * @param pVCpu The cross context virtual CPU structure.
3589 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3590 * out-of-sync. Make sure to update the required fields
3591 * before using them.
3592 *
3593 * @remarks No-long-jump zone!!!
3594 */
3595static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3596{
3597 int rc = VINF_SUCCESS;
3598 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3599 {
3600 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3601 AssertRCReturn(rc, rc);
3602
3603 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3604 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3605 }
3606 return rc;
3607}
3608
3609
3610/**
3611 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3612 *
3613 * @returns VBox status code.
3614 * @param pVCpu The cross context virtual CPU structure.
3615 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3616 * out-of-sync. Make sure to update the required fields
3617 * before using them.
3618 *
3619 * @remarks No-long-jump zone!!!
3620 */
3621static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3622{
3623 int rc = VINF_SUCCESS;
3624 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3625 {
3626 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3627 Let us assert it as such and use 32-bit VMWRITE. */
3628 Assert(!(pMixedCtx->rflags.u64 >> 32));
3629 X86EFLAGS Eflags = pMixedCtx->eflags;
3630 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3631 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3632 * These will never be cleared/set, unless some other part of the VMM
3633 * code is buggy - in which case we're better of finding and fixing
3634 * those bugs than hiding them. */
3635 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3636 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3637 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3638 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3639
3640 /*
3641 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3642 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3643 */
3644 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3645 {
3646 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3647 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3648 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3649 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3650 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3651 }
3652
3653 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3654 AssertRCReturn(rc, rc);
3655
3656 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3657 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3658 }
3659 return rc;
3660}
3661
3662
3663/**
3664 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3665 *
3666 * @returns VBox status code.
3667 * @param pVCpu The cross context virtual CPU structure.
3668 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3669 * out-of-sync. Make sure to update the required fields
3670 * before using them.
3671 *
3672 * @remarks No-long-jump zone!!!
3673 */
3674DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3675{
3676 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3677 rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3678 rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3679 AssertRCReturn(rc, rc);
3680 return rc;
3681}
3682
3683
3684/**
3685 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3686 * CR0 is partially shared with the host and we have to consider the FPU bits.
3687 *
3688 * @returns VBox status code.
3689 * @param pVCpu The cross context virtual CPU structure.
3690 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3691 * out-of-sync. Make sure to update the required fields
3692 * before using them.
3693 *
3694 * @remarks No-long-jump zone!!!
3695 */
3696static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3697{
3698 /*
3699 * Guest CR0.
3700 * Guest FPU.
3701 */
3702 int rc = VINF_SUCCESS;
3703 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3704 {
3705 Assert(!(pMixedCtx->cr0 >> 32));
3706 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3707 PVM pVM = pVCpu->CTX_SUFF(pVM);
3708
3709 /* The guest's view (read access) of its CR0 is unblemished. */
3710 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3711 AssertRCReturn(rc, rc);
3712 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3713
3714 /* Setup VT-x's view of the guest CR0. */
3715 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3716 if (pVM->hm.s.fNestedPaging)
3717 {
3718 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3719 {
3720 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3721 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3722 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3723 }
3724 else
3725 {
3726 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3727 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3728 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3729 }
3730
3731 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3732 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3733 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3734
3735 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3736 AssertRCReturn(rc, rc);
3737 }
3738 else
3739 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3740
3741 /*
3742 * Guest FPU bits.
3743 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3744 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3745 */
3746 u32GuestCR0 |= X86_CR0_NE;
3747 bool fInterceptNM = false;
3748 if (CPUMIsGuestFPUStateActive(pVCpu))
3749 {
3750 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3751 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3752 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3753 }
3754 else
3755 {
3756 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3757 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3758 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3759 }
3760
3761 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3762 bool fInterceptMF = false;
3763 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3764 fInterceptMF = true;
3765
3766 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3767 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3768 {
3769 Assert(PDMVmmDevHeapIsEnabled(pVM));
3770 Assert(pVM->hm.s.vmx.pRealModeTSS);
3771 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3772 fInterceptNM = true;
3773 fInterceptMF = true;
3774 }
3775 else
3776 {
3777 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3778 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3779 }
3780 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3781
3782 if (fInterceptNM)
3783 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3784 else
3785 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3786
3787 if (fInterceptMF)
3788 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3789 else
3790 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3791
3792 /* Additional intercepts for debugging, define these yourself explicitly. */
3793#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3794 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3795 | RT_BIT(X86_XCPT_BP)
3796 | RT_BIT(X86_XCPT_DE)
3797 | RT_BIT(X86_XCPT_NM)
3798 | RT_BIT(X86_XCPT_TS)
3799 | RT_BIT(X86_XCPT_UD)
3800 | RT_BIT(X86_XCPT_NP)
3801 | RT_BIT(X86_XCPT_SS)
3802 | RT_BIT(X86_XCPT_GP)
3803 | RT_BIT(X86_XCPT_PF)
3804 | RT_BIT(X86_XCPT_MF)
3805 ;
3806#elif defined(HMVMX_ALWAYS_TRAP_PF)
3807 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3808#endif
3809
3810 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3811
3812 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3813 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3814 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3815 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3816 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3817 else
3818 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3819
3820 u32GuestCR0 |= uSetCR0;
3821 u32GuestCR0 &= uZapCR0;
3822 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3823
3824 /* Write VT-x's view of the guest CR0 into the VMCS. */
3825 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3826 AssertRCReturn(rc, rc);
3827 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3828 uZapCR0));
3829
3830 /*
3831 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3832 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3833 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3834 */
3835 uint32_t u32CR0Mask = 0;
3836 u32CR0Mask = X86_CR0_PE
3837 | X86_CR0_NE
3838 | X86_CR0_WP
3839 | X86_CR0_PG
3840 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3841 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3842 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3843
3844 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3845 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3846 * and @bugref{6944}. */
3847#if 0
3848 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3849 u32CR0Mask &= ~X86_CR0_PE;
3850#endif
3851 if (pVM->hm.s.fNestedPaging)
3852 u32CR0Mask &= ~X86_CR0_WP;
3853
3854 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3855 if (fInterceptNM)
3856 {
3857 u32CR0Mask |= X86_CR0_TS
3858 | X86_CR0_MP;
3859 }
3860
3861 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3862 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3863 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3864 AssertRCReturn(rc, rc);
3865 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3866
3867 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3868 }
3869 return rc;
3870}
3871
3872
3873/**
3874 * Loads the guest control registers (CR3, CR4) into the guest-state area
3875 * in the VMCS.
3876 *
3877 * @returns VBox strict status code.
3878 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3879 * without unrestricted guest access and the VMMDev is not presently
3880 * mapped (e.g. EFI32).
3881 *
3882 * @param pVCpu The cross context virtual CPU structure.
3883 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3884 * out-of-sync. Make sure to update the required fields
3885 * before using them.
3886 *
3887 * @remarks No-long-jump zone!!!
3888 */
3889static VBOXSTRICTRC hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3890{
3891 int rc = VINF_SUCCESS;
3892 PVM pVM = pVCpu->CTX_SUFF(pVM);
3893
3894 /*
3895 * Guest CR2.
3896 * It's always loaded in the assembler code. Nothing to do here.
3897 */
3898
3899 /*
3900 * Guest CR3.
3901 */
3902 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3903 {
3904 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3905 if (pVM->hm.s.fNestedPaging)
3906 {
3907 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3908
3909 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3910 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3911 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3912 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3913
3914 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3915 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3916 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3917
3918 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3919 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3920 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3921 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3922 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3923 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3924 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3925
3926 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3927 AssertRCReturn(rc, rc);
3928 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3929
3930 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3931 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3932 {
3933 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3934 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3935 {
3936 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3937 AssertRCReturn(rc, rc);
3938 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3939 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3940 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3941 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3942 AssertRCReturn(rc, rc);
3943 }
3944
3945 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3946 have Unrestricted Execution to handle the guest when it's not using paging. */
3947 GCPhysGuestCR3 = pMixedCtx->cr3;
3948 }
3949 else
3950 {
3951 /*
3952 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3953 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3954 * EPT takes care of translating it to host-physical addresses.
3955 */
3956 RTGCPHYS GCPhys;
3957 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3958
3959 /* We obtain it here every time as the guest could have relocated this PCI region. */
3960 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3961 if (RT_SUCCESS(rc))
3962 { /* likely */ }
3963 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3964 {
3965 Log4(("Load[%RU32]: VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n", pVCpu->idCpu));
3966 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3967 }
3968 else
3969 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3970
3971 GCPhysGuestCR3 = GCPhys;
3972 }
3973
3974 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGp (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
3975 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3976 }
3977 else
3978 {
3979 /* Non-nested paging case, just use the hypervisor's CR3. */
3980 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3981
3982 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
3983 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3984 }
3985 AssertRCReturn(rc, rc);
3986
3987 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
3988 }
3989
3990 /*
3991 * Guest CR4.
3992 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3993 */
3994 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
3995 {
3996 Assert(!(pMixedCtx->cr4 >> 32));
3997 uint32_t u32GuestCR4 = pMixedCtx->cr4;
3998
3999 /* The guest's view of its CR4 is unblemished. */
4000 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
4001 AssertRCReturn(rc, rc);
4002 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
4003
4004 /* Setup VT-x's view of the guest CR4. */
4005 /*
4006 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
4007 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
4008 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
4009 */
4010 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4011 {
4012 Assert(pVM->hm.s.vmx.pRealModeTSS);
4013 Assert(PDMVmmDevHeapIsEnabled(pVM));
4014 u32GuestCR4 &= ~X86_CR4_VME;
4015 }
4016
4017 if (pVM->hm.s.fNestedPaging)
4018 {
4019 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4020 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4021 {
4022 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4023 u32GuestCR4 |= X86_CR4_PSE;
4024 /* Our identity mapping is a 32-bit page directory. */
4025 u32GuestCR4 &= ~X86_CR4_PAE;
4026 }
4027 /* else use guest CR4.*/
4028 }
4029 else
4030 {
4031 /*
4032 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4033 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4034 */
4035 switch (pVCpu->hm.s.enmShadowMode)
4036 {
4037 case PGMMODE_REAL: /* Real-mode. */
4038 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4039 case PGMMODE_32_BIT: /* 32-bit paging. */
4040 {
4041 u32GuestCR4 &= ~X86_CR4_PAE;
4042 break;
4043 }
4044
4045 case PGMMODE_PAE: /* PAE paging. */
4046 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4047 {
4048 u32GuestCR4 |= X86_CR4_PAE;
4049 break;
4050 }
4051
4052 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4053 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4054#ifdef VBOX_ENABLE_64_BITS_GUESTS
4055 break;
4056#endif
4057 default:
4058 AssertFailed();
4059 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4060 }
4061 }
4062
4063 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4064 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4065 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4066 u32GuestCR4 |= uSetCR4;
4067 u32GuestCR4 &= uZapCR4;
4068
4069 /* Write VT-x's view of the guest CR4 into the VMCS. */
4070 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4071 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4072 AssertRCReturn(rc, rc);
4073
4074 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4075 uint32_t u32CR4Mask = X86_CR4_VME
4076 | X86_CR4_PAE
4077 | X86_CR4_PGE
4078 | X86_CR4_PSE
4079 | X86_CR4_VMXE;
4080 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4081 u32CR4Mask |= X86_CR4_OSXSAVE;
4082 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4083 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4084 AssertRCReturn(rc, rc);
4085
4086 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4087 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
4088
4089 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4090 }
4091 return rc;
4092}
4093
4094
4095/**
4096 * Loads the guest debug registers into the guest-state area in the VMCS.
4097 *
4098 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4099 *
4100 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4101 *
4102 * @returns VBox status code.
4103 * @param pVCpu The cross context virtual CPU structure.
4104 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4105 * out-of-sync. Make sure to update the required fields
4106 * before using them.
4107 *
4108 * @remarks No-long-jump zone!!!
4109 */
4110static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4111{
4112 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4113 return VINF_SUCCESS;
4114
4115#ifdef VBOX_STRICT
4116 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4117 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4118 {
4119 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4120 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4121 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4122 }
4123#endif
4124
4125 int rc;
4126 PVM pVM = pVCpu->CTX_SUFF(pVM);
4127 bool fSteppingDB = false;
4128 bool fInterceptMovDRx = false;
4129 if (pVCpu->hm.s.fSingleInstruction)
4130 {
4131 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4132 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4133 {
4134 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4135 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4136 AssertRCReturn(rc, rc);
4137 Assert(fSteppingDB == false);
4138 }
4139 else
4140 {
4141 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4142 pVCpu->hm.s.fClearTrapFlag = true;
4143 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4144 fSteppingDB = true;
4145 }
4146 }
4147
4148 if ( fSteppingDB
4149 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4150 {
4151 /*
4152 * Use the combined guest and host DRx values found in the hypervisor
4153 * register set because the debugger has breakpoints active or someone
4154 * is single stepping on the host side without a monitor trap flag.
4155 *
4156 * Note! DBGF expects a clean DR6 state before executing guest code.
4157 */
4158#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4159 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4160 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4161 {
4162 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4163 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4164 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4165 }
4166 else
4167#endif
4168 if (!CPUMIsHyperDebugStateActive(pVCpu))
4169 {
4170 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4171 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4172 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4173 }
4174
4175 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4176 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4177 AssertRCReturn(rc, rc);
4178
4179 pVCpu->hm.s.fUsingHyperDR7 = true;
4180 fInterceptMovDRx = true;
4181 }
4182 else
4183 {
4184 /*
4185 * If the guest has enabled debug registers, we need to load them prior to
4186 * executing guest code so they'll trigger at the right time.
4187 */
4188 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4189 {
4190#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4191 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4192 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4193 {
4194 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4195 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4196 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4197 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4198 }
4199 else
4200#endif
4201 if (!CPUMIsGuestDebugStateActive(pVCpu))
4202 {
4203 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4204 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4205 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4206 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4207 }
4208 Assert(!fInterceptMovDRx);
4209 }
4210 /*
4211 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4212 * must intercept #DB in order to maintain a correct DR6 guest value, and
4213 * because we need to intercept it to prevent nested #DBs from hanging the
4214 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4215 */
4216#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4217 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4218 && !CPUMIsGuestDebugStateActive(pVCpu))
4219#else
4220 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4221#endif
4222 {
4223 fInterceptMovDRx = true;
4224 }
4225
4226 /* Update guest DR7. */
4227 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4228 AssertRCReturn(rc, rc);
4229
4230 pVCpu->hm.s.fUsingHyperDR7 = false;
4231 }
4232
4233 /*
4234 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4235 */
4236 if (fInterceptMovDRx)
4237 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4238 else
4239 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4240 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4241 AssertRCReturn(rc, rc);
4242
4243 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4244 return VINF_SUCCESS;
4245}
4246
4247
4248#ifdef VBOX_STRICT
4249/**
4250 * Strict function to validate segment registers.
4251 *
4252 * @remarks ASSUMES CR0 is up to date.
4253 */
4254static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4255{
4256 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4257 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4258 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4259 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4260 && ( !CPUMIsGuestInRealModeEx(pCtx)
4261 && !CPUMIsGuestInV86ModeEx(pCtx)))
4262 {
4263 /* Protected mode checks */
4264 /* CS */
4265 Assert(pCtx->cs.Attr.n.u1Present);
4266 Assert(!(pCtx->cs.Attr.u & 0xf00));
4267 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4268 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4269 || !(pCtx->cs.Attr.n.u1Granularity));
4270 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4271 || (pCtx->cs.Attr.n.u1Granularity));
4272 /* CS cannot be loaded with NULL in protected mode. */
4273 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4274 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4275 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4276 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4277 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4278 else
4279 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4280 /* SS */
4281 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4282 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4283 if ( !(pCtx->cr0 & X86_CR0_PE)
4284 || pCtx->cs.Attr.n.u4Type == 3)
4285 {
4286 Assert(!pCtx->ss.Attr.n.u2Dpl);
4287 }
4288 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4289 {
4290 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4291 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4292 Assert(pCtx->ss.Attr.n.u1Present);
4293 Assert(!(pCtx->ss.Attr.u & 0xf00));
4294 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4295 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4296 || !(pCtx->ss.Attr.n.u1Granularity));
4297 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4298 || (pCtx->ss.Attr.n.u1Granularity));
4299 }
4300 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4301 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4302 {
4303 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4304 Assert(pCtx->ds.Attr.n.u1Present);
4305 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4306 Assert(!(pCtx->ds.Attr.u & 0xf00));
4307 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4308 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4309 || !(pCtx->ds.Attr.n.u1Granularity));
4310 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4311 || (pCtx->ds.Attr.n.u1Granularity));
4312 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4313 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4314 }
4315 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4316 {
4317 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4318 Assert(pCtx->es.Attr.n.u1Present);
4319 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4320 Assert(!(pCtx->es.Attr.u & 0xf00));
4321 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4322 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4323 || !(pCtx->es.Attr.n.u1Granularity));
4324 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4325 || (pCtx->es.Attr.n.u1Granularity));
4326 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4327 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4328 }
4329 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4330 {
4331 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4332 Assert(pCtx->fs.Attr.n.u1Present);
4333 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4334 Assert(!(pCtx->fs.Attr.u & 0xf00));
4335 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4336 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4337 || !(pCtx->fs.Attr.n.u1Granularity));
4338 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4339 || (pCtx->fs.Attr.n.u1Granularity));
4340 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4341 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4342 }
4343 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4344 {
4345 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4346 Assert(pCtx->gs.Attr.n.u1Present);
4347 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4348 Assert(!(pCtx->gs.Attr.u & 0xf00));
4349 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4350 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4351 || !(pCtx->gs.Attr.n.u1Granularity));
4352 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4353 || (pCtx->gs.Attr.n.u1Granularity));
4354 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4355 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4356 }
4357 /* 64-bit capable CPUs. */
4358# if HC_ARCH_BITS == 64
4359 Assert(!(pCtx->cs.u64Base >> 32));
4360 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4361 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4362 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4363# endif
4364 }
4365 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4366 || ( CPUMIsGuestInRealModeEx(pCtx)
4367 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4368 {
4369 /* Real and v86 mode checks. */
4370 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4371 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4372 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4373 {
4374 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4375 }
4376 else
4377 {
4378 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4379 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4380 }
4381
4382 /* CS */
4383 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4384 Assert(pCtx->cs.u32Limit == 0xffff);
4385 Assert(u32CSAttr == 0xf3);
4386 /* SS */
4387 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4388 Assert(pCtx->ss.u32Limit == 0xffff);
4389 Assert(u32SSAttr == 0xf3);
4390 /* DS */
4391 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4392 Assert(pCtx->ds.u32Limit == 0xffff);
4393 Assert(u32DSAttr == 0xf3);
4394 /* ES */
4395 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4396 Assert(pCtx->es.u32Limit == 0xffff);
4397 Assert(u32ESAttr == 0xf3);
4398 /* FS */
4399 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4400 Assert(pCtx->fs.u32Limit == 0xffff);
4401 Assert(u32FSAttr == 0xf3);
4402 /* GS */
4403 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4404 Assert(pCtx->gs.u32Limit == 0xffff);
4405 Assert(u32GSAttr == 0xf3);
4406 /* 64-bit capable CPUs. */
4407# if HC_ARCH_BITS == 64
4408 Assert(!(pCtx->cs.u64Base >> 32));
4409 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4410 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4411 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4412# endif
4413 }
4414}
4415#endif /* VBOX_STRICT */
4416
4417
4418/**
4419 * Writes a guest segment register into the guest-state area in the VMCS.
4420 *
4421 * @returns VBox status code.
4422 * @param pVCpu The cross context virtual CPU structure.
4423 * @param idxSel Index of the selector in the VMCS.
4424 * @param idxLimit Index of the segment limit in the VMCS.
4425 * @param idxBase Index of the segment base in the VMCS.
4426 * @param idxAccess Index of the access rights of the segment in the VMCS.
4427 * @param pSelReg Pointer to the segment selector.
4428 *
4429 * @remarks No-long-jump zone!!!
4430 */
4431static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4432 uint32_t idxAccess, PCPUMSELREG pSelReg)
4433{
4434 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4435 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4436 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4437 AssertRCReturn(rc, rc);
4438
4439 uint32_t u32Access = pSelReg->Attr.u;
4440 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4441 {
4442 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4443 u32Access = 0xf3;
4444 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4445 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4446 }
4447 else
4448 {
4449 /*
4450 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4451 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4452 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4453 * loaded in protected-mode have their attribute as 0.
4454 */
4455 if (!u32Access)
4456 u32Access = X86DESCATTR_UNUSABLE;
4457 }
4458
4459 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4460 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4461 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4462
4463 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4464 AssertRCReturn(rc, rc);
4465 return rc;
4466}
4467
4468
4469/**
4470 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4471 * into the guest-state area in the VMCS.
4472 *
4473 * @returns VBox status code.
4474 * @param pVCpu The cross context virtual CPU structure.
4475 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4476 * out-of-sync. Make sure to update the required fields
4477 * before using them.
4478 *
4479 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4480 * @remarks No-long-jump zone!!!
4481 */
4482static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4483{
4484 int rc = VERR_INTERNAL_ERROR_5;
4485 PVM pVM = pVCpu->CTX_SUFF(pVM);
4486
4487 /*
4488 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4489 */
4490 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4491 {
4492 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4493 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4494 {
4495 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4496 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4497 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4498 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4499 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4500 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4501 }
4502
4503#ifdef VBOX_WITH_REM
4504 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4505 {
4506 Assert(pVM->hm.s.vmx.pRealModeTSS);
4507 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4508 if ( pVCpu->hm.s.vmx.fWasInRealMode
4509 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4510 {
4511 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4512 in real-mode (e.g. OpenBSD 4.0) */
4513 REMFlushTBs(pVM);
4514 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4515 pVCpu->hm.s.vmx.fWasInRealMode = false;
4516 }
4517 }
4518#endif
4519 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_CS_SEL, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4520 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4521 AssertRCReturn(rc, rc);
4522 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_SS_SEL, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4523 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4524 AssertRCReturn(rc, rc);
4525 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_DS_SEL, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4526 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4527 AssertRCReturn(rc, rc);
4528 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_ES_SEL, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4529 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4530 AssertRCReturn(rc, rc);
4531 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FS_SEL, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4532 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4533 AssertRCReturn(rc, rc);
4534 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_GS_SEL, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4535 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4536 AssertRCReturn(rc, rc);
4537
4538#ifdef VBOX_STRICT
4539 /* Validate. */
4540 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4541#endif
4542
4543 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4544 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4545 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4546 }
4547
4548 /*
4549 * Guest TR.
4550 */
4551 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4552 {
4553 /*
4554 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4555 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4556 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4557 */
4558 uint16_t u16Sel = 0;
4559 uint32_t u32Limit = 0;
4560 uint64_t u64Base = 0;
4561 uint32_t u32AccessRights = 0;
4562
4563 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4564 {
4565 u16Sel = pMixedCtx->tr.Sel;
4566 u32Limit = pMixedCtx->tr.u32Limit;
4567 u64Base = pMixedCtx->tr.u64Base;
4568 u32AccessRights = pMixedCtx->tr.Attr.u;
4569 }
4570 else
4571 {
4572 Assert(pVM->hm.s.vmx.pRealModeTSS);
4573 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4574
4575 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4576 RTGCPHYS GCPhys;
4577 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4578 AssertRCReturn(rc, rc);
4579
4580 X86DESCATTR DescAttr;
4581 DescAttr.u = 0;
4582 DescAttr.n.u1Present = 1;
4583 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4584
4585 u16Sel = 0;
4586 u32Limit = HM_VTX_TSS_SIZE;
4587 u64Base = GCPhys; /* in real-mode phys = virt. */
4588 u32AccessRights = DescAttr.u;
4589 }
4590
4591 /* Validate. */
4592 Assert(!(u16Sel & RT_BIT(2)));
4593 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4594 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4595 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4596 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4597 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4598 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4599 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4600 Assert( (u32Limit & 0xfff) == 0xfff
4601 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4602 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4603 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4604
4605 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4606 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4607 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4608 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4609 AssertRCReturn(rc, rc);
4610
4611 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4612 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4613 }
4614
4615 /*
4616 * Guest GDTR.
4617 */
4618 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4619 {
4620 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
4621 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
4622 AssertRCReturn(rc, rc);
4623
4624 /* Validate. */
4625 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4626
4627 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4628 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4629 }
4630
4631 /*
4632 * Guest LDTR.
4633 */
4634 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4635 {
4636 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4637 uint32_t u32Access = 0;
4638 if (!pMixedCtx->ldtr.Attr.u)
4639 u32Access = X86DESCATTR_UNUSABLE;
4640 else
4641 u32Access = pMixedCtx->ldtr.Attr.u;
4642
4643 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pMixedCtx->ldtr.Sel);
4644 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
4645 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
4646 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4647 AssertRCReturn(rc, rc);
4648
4649 /* Validate. */
4650 if (!(u32Access & X86DESCATTR_UNUSABLE))
4651 {
4652 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4653 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4654 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4655 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4656 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4657 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4658 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4659 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4660 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4661 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4662 }
4663
4664 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4665 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4666 }
4667
4668 /*
4669 * Guest IDTR.
4670 */
4671 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4672 {
4673 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
4674 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
4675 AssertRCReturn(rc, rc);
4676
4677 /* Validate. */
4678 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4679
4680 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4681 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4682 }
4683
4684 return VINF_SUCCESS;
4685}
4686
4687
4688/**
4689 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4690 * areas.
4691 *
4692 * These MSRs will automatically be loaded to the host CPU on every successful
4693 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4694 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4695 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4696 *
4697 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4698 *
4699 * @returns VBox status code.
4700 * @param pVCpu The cross context virtual CPU structure.
4701 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4702 * out-of-sync. Make sure to update the required fields
4703 * before using them.
4704 *
4705 * @remarks No-long-jump zone!!!
4706 */
4707static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4708{
4709 AssertPtr(pVCpu);
4710 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4711
4712 /*
4713 * MSRs that we use the auto-load/store MSR area in the VMCS.
4714 */
4715 PVM pVM = pVCpu->CTX_SUFF(pVM);
4716 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4717 {
4718 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4719#if HC_ARCH_BITS == 32
4720 if (pVM->hm.s.fAllow64BitGuests)
4721 {
4722 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
4723 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
4724 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
4725 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
4726 AssertRCReturn(rc, rc);
4727# ifdef LOG_ENABLED
4728 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4729 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4730 {
4731 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4732 pMsr->u64Value));
4733 }
4734# endif
4735 }
4736#endif
4737 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4738 }
4739
4740 /*
4741 * Guest Sysenter MSRs.
4742 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4743 * VM-exits on WRMSRs for these MSRs.
4744 */
4745 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4746 {
4747 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4748 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4749 }
4750
4751 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4752 {
4753 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4754 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4755 }
4756
4757 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4758 {
4759 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4760 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4761 }
4762
4763 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4764 {
4765 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4766 {
4767 /*
4768 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4769 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4770 */
4771 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4772 {
4773 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4774 AssertRCReturn(rc,rc);
4775 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4776 }
4777 else
4778 {
4779 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
4780 NULL /* pfAddedAndUpdated */);
4781 AssertRCReturn(rc, rc);
4782
4783 /* We need to intercept reads too, see @bugref{7386#c16}. */
4784 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
4785 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4786 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4787 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4788 }
4789 }
4790 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4791 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4792 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4793 }
4794
4795 return VINF_SUCCESS;
4796}
4797
4798
4799/**
4800 * Loads the guest activity state into the guest-state area in the VMCS.
4801 *
4802 * @returns VBox status code.
4803 * @param pVCpu The cross context virtual CPU structure.
4804 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4805 * out-of-sync. Make sure to update the required fields
4806 * before using them.
4807 *
4808 * @remarks No-long-jump zone!!!
4809 */
4810static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4811{
4812 NOREF(pMixedCtx);
4813 /** @todo See if we can make use of other states, e.g.
4814 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4815 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4816 {
4817 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4818 AssertRCReturn(rc, rc);
4819
4820 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4821 }
4822 return VINF_SUCCESS;
4823}
4824
4825
4826#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4827/**
4828 * Check if guest state allows safe use of 32-bit switcher again.
4829 *
4830 * Segment bases and protected mode structures must be 32-bit addressable
4831 * because the 32-bit switcher will ignore high dword when writing these VMCS
4832 * fields. See @bugref{8432} for details.
4833 *
4834 * @returns true if safe, false if must continue to use the 64-bit switcher.
4835 * @param pVCpu The cross context virtual CPU structure.
4836 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4837 * out-of-sync. Make sure to update the required fields
4838 * before using them.
4839 *
4840 * @remarks No-long-jump zone!!!
4841 */
4842static bool hmR0VmxIs32BitSwitcherSafe(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4843{
4844 if (pMixedCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000))
4845 return false;
4846 if (pMixedCtx->idtr.pIdt & UINT64_C(0xffffffff00000000))
4847 return false;
4848 if (pMixedCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000))
4849 return false;
4850 if (pMixedCtx->tr.u64Base & UINT64_C(0xffffffff00000000))
4851 return false;
4852 if (pMixedCtx->es.u64Base & UINT64_C(0xffffffff00000000))
4853 return false;
4854 if (pMixedCtx->cs.u64Base & UINT64_C(0xffffffff00000000))
4855 return false;
4856 if (pMixedCtx->ss.u64Base & UINT64_C(0xffffffff00000000))
4857 return false;
4858 if (pMixedCtx->ds.u64Base & UINT64_C(0xffffffff00000000))
4859 return false;
4860 if (pMixedCtx->fs.u64Base & UINT64_C(0xffffffff00000000))
4861 return false;
4862 if (pMixedCtx->gs.u64Base & UINT64_C(0xffffffff00000000))
4863 return false;
4864 /* All good, bases are 32-bit. */
4865 return true;
4866}
4867#endif
4868
4869
4870/**
4871 * Sets up the appropriate function to run guest code.
4872 *
4873 * @returns VBox status code.
4874 * @param pVCpu The cross context virtual CPU structure.
4875 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4876 * out-of-sync. Make sure to update the required fields
4877 * before using them.
4878 *
4879 * @remarks No-long-jump zone!!!
4880 */
4881static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4882{
4883 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4884 {
4885#ifndef VBOX_ENABLE_64_BITS_GUESTS
4886 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4887#endif
4888 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4889#if HC_ARCH_BITS == 32
4890 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4891 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4892 {
4893 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4894 {
4895 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4896 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4897 | HM_CHANGED_VMX_ENTRY_CTLS
4898 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4899 }
4900 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4901
4902 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4903 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4904 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4905 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 64-bit switcher\n", pVCpu->idCpu));
4906 }
4907#else
4908 /* 64-bit host. */
4909 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4910#endif
4911 }
4912 else
4913 {
4914 /* Guest is not in long mode, use the 32-bit handler. */
4915#if HC_ARCH_BITS == 32
4916 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4917 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4918 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4919 {
4920 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4921 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4922 | HM_CHANGED_VMX_ENTRY_CTLS
4923 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4924 }
4925# ifdef VBOX_ENABLE_64_BITS_GUESTS
4926 /*
4927 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel design, see @bugref{8432#c7}.
4928 * If real-on-v86 mode is active, clear the 64-bit switcher flag because now we know the guest is in a sane
4929 * state where it's safe to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4930 * the much faster 32-bit switcher again.
4931 */
4932 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4933 {
4934 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4935 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher\n", pVCpu->idCpu));
4936 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4937 }
4938 else
4939 {
4940 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4941 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4942 || hmR0VmxIs32BitSwitcherSafe(pVCpu, pMixedCtx))
4943 {
4944 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4945 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4946 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR
4947 | HM_CHANGED_VMX_ENTRY_CTLS
4948 | HM_CHANGED_VMX_EXIT_CTLS
4949 | HM_CHANGED_HOST_CONTEXT);
4950 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher (safe)\n", pVCpu->idCpu));
4951 }
4952 }
4953# else
4954 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4955# endif
4956#else
4957 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4958#endif
4959 }
4960 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4961 return VINF_SUCCESS;
4962}
4963
4964
4965/**
4966 * Wrapper for running the guest code in VT-x.
4967 *
4968 * @returns VBox status code, no informational status codes.
4969 * @param pVM The cross context VM structure.
4970 * @param pVCpu The cross context virtual CPU structure.
4971 * @param pCtx Pointer to the guest-CPU context.
4972 *
4973 * @remarks No-long-jump zone!!!
4974 */
4975DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4976{
4977 /*
4978 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4979 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4980 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4981 */
4982 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4983 /** @todo Add stats for resume vs launch. */
4984#ifdef VBOX_WITH_KERNEL_USING_XMM
4985 int rc = HMR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4986#else
4987 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4988#endif
4989 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4990 return rc;
4991}
4992
4993
4994/**
4995 * Reports world-switch error and dumps some useful debug info.
4996 *
4997 * @param pVM The cross context VM structure.
4998 * @param pVCpu The cross context virtual CPU structure.
4999 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5000 * @param pCtx Pointer to the guest-CPU context.
5001 * @param pVmxTransient Pointer to the VMX transient structure (only
5002 * exitReason updated).
5003 */
5004static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
5005{
5006 Assert(pVM);
5007 Assert(pVCpu);
5008 Assert(pCtx);
5009 Assert(pVmxTransient);
5010 HMVMX_ASSERT_PREEMPT_SAFE();
5011
5012 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
5013 switch (rcVMRun)
5014 {
5015 case VERR_VMX_INVALID_VMXON_PTR:
5016 AssertFailed();
5017 break;
5018 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5019 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5020 {
5021 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5022 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5023 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
5024 AssertRC(rc);
5025
5026 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5027 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5028 Cannot do it here as we may have been long preempted. */
5029
5030#ifdef VBOX_STRICT
5031 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5032 pVmxTransient->uExitReason));
5033 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
5034 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5035 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5036 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5037 else
5038 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5039 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5040 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5041
5042 /* VMX control bits. */
5043 uint32_t u32Val;
5044 uint64_t u64Val;
5045 RTHCUINTREG uHCReg;
5046 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5047 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5048 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5049 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5050 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
5051 {
5052 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5053 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5054 }
5055 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5056 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5057 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5058 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5059 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5060 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5061 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5062 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5063 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5064 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5065 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5066 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5067 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5068 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5069 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5070 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5071 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5072 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5073 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5074 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5075 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5076 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5077 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5078 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5079 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5080 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5081 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5082 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5083 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5084 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5085 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5086 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5087 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5088 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5089 if (pVM->hm.s.fNestedPaging)
5090 {
5091 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5092 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5093 }
5094
5095 /* Guest bits. */
5096 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5097 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5098 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5099 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5100 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5101 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5102 if (pVM->hm.s.vmx.fVpid)
5103 {
5104 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5105 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5106 }
5107
5108 /* Host bits. */
5109 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5110 Log4(("Host CR0 %#RHr\n", uHCReg));
5111 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5112 Log4(("Host CR3 %#RHr\n", uHCReg));
5113 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5114 Log4(("Host CR4 %#RHr\n", uHCReg));
5115
5116 RTGDTR HostGdtr;
5117 PCX86DESCHC pDesc;
5118 ASMGetGDTR(&HostGdtr);
5119 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5120 Log4(("Host CS %#08x\n", u32Val));
5121 if (u32Val < HostGdtr.cbGdt)
5122 {
5123 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5124 HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
5125 }
5126
5127 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5128 Log4(("Host DS %#08x\n", u32Val));
5129 if (u32Val < HostGdtr.cbGdt)
5130 {
5131 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5132 HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
5133 }
5134
5135 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5136 Log4(("Host ES %#08x\n", u32Val));
5137 if (u32Val < HostGdtr.cbGdt)
5138 {
5139 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5140 HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
5141 }
5142
5143 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5144 Log4(("Host FS %#08x\n", u32Val));
5145 if (u32Val < HostGdtr.cbGdt)
5146 {
5147 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5148 HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
5149 }
5150
5151 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5152 Log4(("Host GS %#08x\n", u32Val));
5153 if (u32Val < HostGdtr.cbGdt)
5154 {
5155 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5156 HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
5157 }
5158
5159 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5160 Log4(("Host SS %#08x\n", u32Val));
5161 if (u32Val < HostGdtr.cbGdt)
5162 {
5163 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5164 HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
5165 }
5166
5167 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5168 Log4(("Host TR %#08x\n", u32Val));
5169 if (u32Val < HostGdtr.cbGdt)
5170 {
5171 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5172 HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
5173 }
5174
5175 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5176 Log4(("Host TR Base %#RHv\n", uHCReg));
5177 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5178 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5179 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5180 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5181 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5182 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5183 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5184 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5185 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5186 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5187 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5188 Log4(("Host RSP %#RHv\n", uHCReg));
5189 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5190 Log4(("Host RIP %#RHv\n", uHCReg));
5191# if HC_ARCH_BITS == 64
5192 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5193 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5194 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5195 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5196 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5197 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5198# endif
5199#endif /* VBOX_STRICT */
5200 break;
5201 }
5202
5203 default:
5204 /* Impossible */
5205 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5206 break;
5207 }
5208 NOREF(pVM); NOREF(pCtx);
5209}
5210
5211
5212#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5213#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5214# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5215#endif
5216#ifdef VBOX_STRICT
5217static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5218{
5219 switch (idxField)
5220 {
5221 case VMX_VMCS_GUEST_RIP:
5222 case VMX_VMCS_GUEST_RSP:
5223 case VMX_VMCS_GUEST_SYSENTER_EIP:
5224 case VMX_VMCS_GUEST_SYSENTER_ESP:
5225 case VMX_VMCS_GUEST_GDTR_BASE:
5226 case VMX_VMCS_GUEST_IDTR_BASE:
5227 case VMX_VMCS_GUEST_CS_BASE:
5228 case VMX_VMCS_GUEST_DS_BASE:
5229 case VMX_VMCS_GUEST_ES_BASE:
5230 case VMX_VMCS_GUEST_FS_BASE:
5231 case VMX_VMCS_GUEST_GS_BASE:
5232 case VMX_VMCS_GUEST_SS_BASE:
5233 case VMX_VMCS_GUEST_LDTR_BASE:
5234 case VMX_VMCS_GUEST_TR_BASE:
5235 case VMX_VMCS_GUEST_CR3:
5236 return true;
5237 }
5238 return false;
5239}
5240
5241static bool hmR0VmxIsValidReadField(uint32_t idxField)
5242{
5243 switch (idxField)
5244 {
5245 /* Read-only fields. */
5246 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5247 return true;
5248 }
5249 /* Remaining readable fields should also be writable. */
5250 return hmR0VmxIsValidWriteField(idxField);
5251}
5252#endif /* VBOX_STRICT */
5253
5254
5255/**
5256 * Executes the specified handler in 64-bit mode.
5257 *
5258 * @returns VBox status code (no informational status codes).
5259 * @param pVM The cross context VM structure.
5260 * @param pVCpu The cross context virtual CPU structure.
5261 * @param pCtx Pointer to the guest CPU context.
5262 * @param enmOp The operation to perform.
5263 * @param cParams Number of parameters.
5264 * @param paParam Array of 32-bit parameters.
5265 */
5266VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
5267 uint32_t cParams, uint32_t *paParam)
5268{
5269 NOREF(pCtx);
5270
5271 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5272 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5273 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5274 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5275
5276#ifdef VBOX_STRICT
5277 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5278 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5279
5280 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5281 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5282#endif
5283
5284 /* Disable interrupts. */
5285 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5286
5287#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5288 RTCPUID idHostCpu = RTMpCpuId();
5289 CPUMR0SetLApic(pVCpu, idHostCpu);
5290#endif
5291
5292 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
5293 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5294
5295 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5296 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5297 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5298
5299 /* Leave VMX Root Mode. */
5300 VMXDisable();
5301
5302 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5303
5304 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5305 CPUMSetHyperEIP(pVCpu, enmOp);
5306 for (int i = (int)cParams - 1; i >= 0; i--)
5307 CPUMPushHyper(pVCpu, paParam[i]);
5308
5309 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5310
5311 /* Call the switcher. */
5312 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5313 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5314
5315 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5316 /* Make sure the VMX instructions don't cause #UD faults. */
5317 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5318
5319 /* Re-enter VMX Root Mode */
5320 int rc2 = VMXEnable(HCPhysCpuPage);
5321 if (RT_FAILURE(rc2))
5322 {
5323 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5324 ASMSetFlags(fOldEFlags);
5325 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5326 return rc2;
5327 }
5328
5329 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5330 AssertRC(rc2);
5331 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5332 Assert(!(ASMGetFlags() & X86_EFL_IF));
5333 ASMSetFlags(fOldEFlags);
5334 return rc;
5335}
5336
5337
5338/**
5339 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5340 * supporting 64-bit guests.
5341 *
5342 * @returns VBox status code.
5343 * @param fResume Whether to VMLAUNCH or VMRESUME.
5344 * @param pCtx Pointer to the guest-CPU context.
5345 * @param pCache Pointer to the VMCS cache.
5346 * @param pVM The cross context VM structure.
5347 * @param pVCpu The cross context virtual CPU structure.
5348 */
5349DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5350{
5351 NOREF(fResume);
5352
5353 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
5354 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5355
5356#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5357 pCache->uPos = 1;
5358 pCache->interPD = PGMGetInterPaeCR3(pVM);
5359 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5360#endif
5361
5362#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5363 pCache->TestIn.HCPhysCpuPage = 0;
5364 pCache->TestIn.HCPhysVmcs = 0;
5365 pCache->TestIn.pCache = 0;
5366 pCache->TestOut.HCPhysVmcs = 0;
5367 pCache->TestOut.pCache = 0;
5368 pCache->TestOut.pCtx = 0;
5369 pCache->TestOut.eflags = 0;
5370#else
5371 NOREF(pCache);
5372#endif
5373
5374 uint32_t aParam[10];
5375 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5376 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5377 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5378 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5379 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5380 aParam[5] = 0;
5381 aParam[6] = VM_RC_ADDR(pVM, pVM);
5382 aParam[7] = 0;
5383 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5384 aParam[9] = 0;
5385
5386#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5387 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5388 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5389#endif
5390 int rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5391
5392#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5393 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5394 Assert(pCtx->dr[4] == 10);
5395 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5396#endif
5397
5398#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5399 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5400 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5401 pVCpu->hm.s.vmx.HCPhysVmcs));
5402 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5403 pCache->TestOut.HCPhysVmcs));
5404 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5405 pCache->TestOut.pCache));
5406 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5407 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5408 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5409 pCache->TestOut.pCtx));
5410 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5411#endif
5412 return rc;
5413}
5414
5415
5416/**
5417 * Initialize the VMCS-Read cache.
5418 *
5419 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5420 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5421 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5422 * (those that have a 32-bit FULL & HIGH part).
5423 *
5424 * @returns VBox status code.
5425 * @param pVM The cross context VM structure.
5426 * @param pVCpu The cross context virtual CPU structure.
5427 */
5428static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5429{
5430#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5431{ \
5432 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5433 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5434 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5435 ++cReadFields; \
5436}
5437
5438 AssertPtr(pVM);
5439 AssertPtr(pVCpu);
5440 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5441 uint32_t cReadFields = 0;
5442
5443 /*
5444 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5445 * and serve to indicate exceptions to the rules.
5446 */
5447
5448 /* Guest-natural selector base fields. */
5449#if 0
5450 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5451 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5452 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5453#endif
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5455 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5456 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5457 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5458 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5459 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5460 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5461 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5462 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5463 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5464 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5465 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5466#if 0
5467 /* Unused natural width guest-state fields. */
5468 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5469 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5470#endif
5471 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5472 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5473
5474 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5475#if 0
5476 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5477 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5478 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5479 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5480 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5481 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5482 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5483 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5484 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5485#endif
5486
5487 /* Natural width guest-state fields. */
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5489#if 0
5490 /* Currently unused field. */
5491 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5492#endif
5493
5494 if (pVM->hm.s.fNestedPaging)
5495 {
5496 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5497 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5498 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5499 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5500 }
5501 else
5502 {
5503 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5504 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5505 }
5506
5507#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5508 return VINF_SUCCESS;
5509}
5510
5511
5512/**
5513 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5514 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5515 * darwin, running 64-bit guests).
5516 *
5517 * @returns VBox status code.
5518 * @param pVCpu The cross context virtual CPU structure.
5519 * @param idxField The VMCS field encoding.
5520 * @param u64Val 16, 32 or 64-bit value.
5521 */
5522VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5523{
5524 int rc;
5525 switch (idxField)
5526 {
5527 /*
5528 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5529 */
5530 /* 64-bit Control fields. */
5531 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5532 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5533 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5534 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5535 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5536 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5537 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5538 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5539 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5540 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5541 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5542 case VMX_VMCS64_CTRL_EPTP_FULL:
5543 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5544 /* 64-bit Guest-state fields. */
5545 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5546 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5547 case VMX_VMCS64_GUEST_PAT_FULL:
5548 case VMX_VMCS64_GUEST_EFER_FULL:
5549 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5550 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5551 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5552 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5553 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5554 /* 64-bit Host-state fields. */
5555 case VMX_VMCS64_HOST_PAT_FULL:
5556 case VMX_VMCS64_HOST_EFER_FULL:
5557 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5558 {
5559 rc = VMXWriteVmcs32(idxField, u64Val);
5560 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5561 break;
5562 }
5563
5564 /*
5565 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5566 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5567 */
5568 /* Natural-width Guest-state fields. */
5569 case VMX_VMCS_GUEST_CR3:
5570 case VMX_VMCS_GUEST_ES_BASE:
5571 case VMX_VMCS_GUEST_CS_BASE:
5572 case VMX_VMCS_GUEST_SS_BASE:
5573 case VMX_VMCS_GUEST_DS_BASE:
5574 case VMX_VMCS_GUEST_FS_BASE:
5575 case VMX_VMCS_GUEST_GS_BASE:
5576 case VMX_VMCS_GUEST_LDTR_BASE:
5577 case VMX_VMCS_GUEST_TR_BASE:
5578 case VMX_VMCS_GUEST_GDTR_BASE:
5579 case VMX_VMCS_GUEST_IDTR_BASE:
5580 case VMX_VMCS_GUEST_RSP:
5581 case VMX_VMCS_GUEST_RIP:
5582 case VMX_VMCS_GUEST_SYSENTER_ESP:
5583 case VMX_VMCS_GUEST_SYSENTER_EIP:
5584 {
5585 if (!(u64Val >> 32))
5586 {
5587 /* If this field is 64-bit, VT-x will zero out the top bits. */
5588 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5589 }
5590 else
5591 {
5592 /* Assert that only the 32->64 switcher case should ever come here. */
5593 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5594 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5595 }
5596 break;
5597 }
5598
5599 default:
5600 {
5601 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5602 rc = VERR_INVALID_PARAMETER;
5603 break;
5604 }
5605 }
5606 AssertRCReturn(rc, rc);
5607 return rc;
5608}
5609
5610
5611/**
5612 * Queue up a VMWRITE by using the VMCS write cache.
5613 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5614 *
5615 * @param pVCpu The cross context virtual CPU structure.
5616 * @param idxField The VMCS field encoding.
5617 * @param u64Val 16, 32 or 64-bit value.
5618 */
5619VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5620{
5621 AssertPtr(pVCpu);
5622 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5623
5624 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5625 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5626
5627 /* Make sure there are no duplicates. */
5628 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5629 {
5630 if (pCache->Write.aField[i] == idxField)
5631 {
5632 pCache->Write.aFieldVal[i] = u64Val;
5633 return VINF_SUCCESS;
5634 }
5635 }
5636
5637 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5638 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5639 pCache->Write.cValidEntries++;
5640 return VINF_SUCCESS;
5641}
5642#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5643
5644
5645/**
5646 * Sets up the usage of TSC-offsetting and updates the VMCS.
5647 *
5648 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5649 * VMX preemption timer.
5650 *
5651 * @returns VBox status code.
5652 * @param pVM The cross context VM structure.
5653 * @param pVCpu The cross context virtual CPU structure.
5654 *
5655 * @remarks No-long-jump zone!!!
5656 */
5657static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5658{
5659 int rc;
5660 bool fOffsettedTsc;
5661 bool fParavirtTsc;
5662 if (pVM->hm.s.vmx.fUsePreemptTimer)
5663 {
5664 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5665 &fOffsettedTsc, &fParavirtTsc);
5666
5667 /* Make sure the returned values have sane upper and lower boundaries. */
5668 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5669 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5670 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5671 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5672
5673 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5674 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5675 }
5676 else
5677 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5678
5679 /** @todo later optimize this to be done elsewhere and not before every
5680 * VM-entry. */
5681 if (fParavirtTsc)
5682 {
5683 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5684 information before every VM-entry, hence disable it for performance sake. */
5685#if 0
5686 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5687 AssertRC(rc);
5688#endif
5689 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5690 }
5691
5692 if (fOffsettedTsc && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5693 {
5694 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5695 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5696
5697 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5698 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5699 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5700 }
5701 else
5702 {
5703 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5704 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5705 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5706 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5707 }
5708}
5709
5710
5711/**
5712 * Determines if an exception is a contributory exception.
5713 *
5714 * Contributory exceptions are ones which can cause double-faults unless the
5715 * original exception was a benign exception. Page-fault is intentionally not
5716 * included here as it's a conditional contributory exception.
5717 *
5718 * @returns true if the exception is contributory, false otherwise.
5719 * @param uVector The exception vector.
5720 */
5721DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5722{
5723 switch (uVector)
5724 {
5725 case X86_XCPT_GP:
5726 case X86_XCPT_SS:
5727 case X86_XCPT_NP:
5728 case X86_XCPT_TS:
5729 case X86_XCPT_DE:
5730 return true;
5731 default:
5732 break;
5733 }
5734 return false;
5735}
5736
5737
5738/**
5739 * Sets an event as a pending event to be injected into the guest.
5740 *
5741 * @param pVCpu The cross context virtual CPU structure.
5742 * @param u32IntInfo The VM-entry interruption-information field.
5743 * @param cbInstr The VM-entry instruction length in bytes (for software
5744 * interrupts, exceptions and privileged software
5745 * exceptions).
5746 * @param u32ErrCode The VM-entry exception error code.
5747 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5748 * page-fault.
5749 *
5750 * @remarks Statistics counter assumes this is a guest event being injected or
5751 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5752 * always incremented.
5753 */
5754DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5755 RTGCUINTPTR GCPtrFaultAddress)
5756{
5757 Assert(!pVCpu->hm.s.Event.fPending);
5758 pVCpu->hm.s.Event.fPending = true;
5759 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5760 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5761 pVCpu->hm.s.Event.cbInstr = cbInstr;
5762 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5763}
5764
5765
5766/**
5767 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5768 *
5769 * @param pVCpu The cross context virtual CPU structure.
5770 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5771 * out-of-sync. Make sure to update the required fields
5772 * before using them.
5773 */
5774DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5775{
5776 NOREF(pMixedCtx);
5777 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5778 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5779 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5780 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5781}
5782
5783
5784/**
5785 * Handle a condition that occurred while delivering an event through the guest
5786 * IDT.
5787 *
5788 * @returns Strict VBox status code (i.e. informational status codes too).
5789 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5790 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
5791 * to continue execution of the guest which will delivery the \#DF.
5792 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5793 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5794 *
5795 * @param pVCpu The cross context virtual CPU structure.
5796 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5797 * out-of-sync. Make sure to update the required fields
5798 * before using them.
5799 * @param pVmxTransient Pointer to the VMX transient structure.
5800 *
5801 * @remarks No-long-jump zone!!!
5802 */
5803static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5804{
5805 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5806
5807 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5808 rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5809
5810 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
5811 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5812 {
5813 uint32_t uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5814 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5815
5816 typedef enum
5817 {
5818 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5819 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5820 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5821 VMXREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
5822 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
5823 } VMXREFLECTXCPT;
5824
5825 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5826 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
5827 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5828 {
5829 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
5830 {
5831 enmReflect = VMXREFLECTXCPT_XCPT;
5832#ifdef VBOX_STRICT
5833 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
5834 && uExitVector == X86_XCPT_PF)
5835 {
5836 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5837 }
5838#endif
5839 if ( uExitVector == X86_XCPT_PF
5840 && uIdtVector == X86_XCPT_PF)
5841 {
5842 pVmxTransient->fVectoringDoublePF = true;
5843 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5844 }
5845 else if ( uExitVector == X86_XCPT_AC
5846 && uIdtVector == X86_XCPT_AC)
5847 {
5848 enmReflect = VMXREFLECTXCPT_HANG;
5849 Log4(("IDT: Nested #AC - Bad guest\n"));
5850 }
5851 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
5852 && hmR0VmxIsContributoryXcpt(uExitVector)
5853 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
5854 || uIdtVector == X86_XCPT_PF))
5855 {
5856 enmReflect = VMXREFLECTXCPT_DF;
5857 }
5858 else if (uIdtVector == X86_XCPT_DF)
5859 enmReflect = VMXREFLECTXCPT_TF;
5860 }
5861 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5862 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5863 {
5864 /*
5865 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
5866 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
5867 */
5868 enmReflect = VMXREFLECTXCPT_XCPT;
5869
5870 if (uExitVector == X86_XCPT_PF)
5871 {
5872 pVmxTransient->fVectoringPF = true;
5873 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5874 }
5875 }
5876 }
5877 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5878 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5879 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5880 {
5881 /*
5882 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5883 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
5884 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
5885 */
5886 enmReflect = VMXREFLECTXCPT_XCPT;
5887 }
5888
5889 /*
5890 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
5891 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
5892 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
5893 *
5894 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5895 */
5896 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5897 && enmReflect == VMXREFLECTXCPT_XCPT
5898 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
5899 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5900 {
5901 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5902 }
5903
5904 switch (enmReflect)
5905 {
5906 case VMXREFLECTXCPT_XCPT:
5907 {
5908 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5909 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5910 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5911
5912 uint32_t u32ErrCode = 0;
5913 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5914 {
5915 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5916 AssertRCReturn(rc2, rc2);
5917 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5918 }
5919
5920 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
5921 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5922 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5923 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5924 rcStrict = VINF_SUCCESS;
5925 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
5926 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
5927
5928 break;
5929 }
5930
5931 case VMXREFLECTXCPT_DF:
5932 {
5933 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5934 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
5935 rcStrict = VINF_HM_DOUBLE_FAULT;
5936 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
5937 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5938
5939 break;
5940 }
5941
5942 case VMXREFLECTXCPT_TF:
5943 {
5944 rcStrict = VINF_EM_RESET;
5945 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
5946 uExitVector));
5947 break;
5948 }
5949
5950 case VMXREFLECTXCPT_HANG:
5951 {
5952 rcStrict = VERR_EM_GUEST_CPU_HANG;
5953 break;
5954 }
5955
5956 default:
5957 Assert(rcStrict == VINF_SUCCESS);
5958 break;
5959 }
5960 }
5961 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
5962 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
5963 && uExitVector != X86_XCPT_DF
5964 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
5965 {
5966 /*
5967 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
5968 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
5969 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
5970 */
5971 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5972 {
5973 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
5974 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
5975 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
5976 }
5977 }
5978
5979 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
5980 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
5981 return rcStrict;
5982}
5983
5984
5985/**
5986 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
5987 *
5988 * @returns VBox status code.
5989 * @param pVCpu The cross context virtual CPU structure.
5990 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5991 * out-of-sync. Make sure to update the required fields
5992 * before using them.
5993 *
5994 * @remarks No-long-jump zone!!!
5995 */
5996static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5997{
5998 NOREF(pMixedCtx);
5999
6000 /*
6001 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
6002 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
6003 */
6004 VMMRZCallRing3Disable(pVCpu);
6005 HM_DISABLE_PREEMPT();
6006
6007 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
6008 {
6009 uint32_t uVal = 0;
6010 uint32_t uShadow = 0;
6011 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
6012 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
6013 AssertRCReturn(rc, rc);
6014
6015 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
6016 CPUMSetGuestCR0(pVCpu, uVal);
6017 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
6018 }
6019
6020 HM_RESTORE_PREEMPT();
6021 VMMRZCallRing3Enable(pVCpu);
6022 return VINF_SUCCESS;
6023}
6024
6025
6026/**
6027 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
6028 *
6029 * @returns VBox status code.
6030 * @param pVCpu The cross context virtual CPU structure.
6031 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6032 * out-of-sync. Make sure to update the required fields
6033 * before using them.
6034 *
6035 * @remarks No-long-jump zone!!!
6036 */
6037static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6038{
6039 NOREF(pMixedCtx);
6040
6041 int rc = VINF_SUCCESS;
6042 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
6043 {
6044 uint32_t uVal = 0;
6045 uint32_t uShadow = 0;
6046 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
6047 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
6048 AssertRCReturn(rc, rc);
6049
6050 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
6051 CPUMSetGuestCR4(pVCpu, uVal);
6052 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
6053 }
6054 return rc;
6055}
6056
6057
6058/**
6059 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
6060 *
6061 * @returns VBox status code.
6062 * @param pVCpu The cross context virtual CPU structure.
6063 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6064 * out-of-sync. Make sure to update the required fields
6065 * before using them.
6066 *
6067 * @remarks No-long-jump zone!!!
6068 */
6069static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6070{
6071 int rc = VINF_SUCCESS;
6072 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6073 {
6074 uint64_t u64Val = 0;
6075 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6076 AssertRCReturn(rc, rc);
6077
6078 pMixedCtx->rip = u64Val;
6079 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6080 }
6081 return rc;
6082}
6083
6084
6085/**
6086 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6087 *
6088 * @returns VBox status code.
6089 * @param pVCpu The cross context virtual CPU structure.
6090 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6091 * out-of-sync. Make sure to update the required fields
6092 * before using them.
6093 *
6094 * @remarks No-long-jump zone!!!
6095 */
6096static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6097{
6098 int rc = VINF_SUCCESS;
6099 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6100 {
6101 uint64_t u64Val = 0;
6102 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6103 AssertRCReturn(rc, rc);
6104
6105 pMixedCtx->rsp = u64Val;
6106 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6107 }
6108 return rc;
6109}
6110
6111
6112/**
6113 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6114 *
6115 * @returns VBox status code.
6116 * @param pVCpu The cross context virtual CPU structure.
6117 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6118 * out-of-sync. Make sure to update the required fields
6119 * before using them.
6120 *
6121 * @remarks No-long-jump zone!!!
6122 */
6123static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6124{
6125 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6126 {
6127 uint32_t uVal = 0;
6128 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6129 AssertRCReturn(rc, rc);
6130
6131 pMixedCtx->eflags.u32 = uVal;
6132 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6133 {
6134 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6135 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6136
6137 pMixedCtx->eflags.Bits.u1VM = 0;
6138 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6139 }
6140
6141 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6142 }
6143 return VINF_SUCCESS;
6144}
6145
6146
6147/**
6148 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6149 * guest-CPU context.
6150 */
6151DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6152{
6153 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6154 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6155 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6156 return rc;
6157}
6158
6159
6160/**
6161 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6162 * from the guest-state area in the VMCS.
6163 *
6164 * @param pVCpu The cross context virtual CPU structure.
6165 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6166 * out-of-sync. Make sure to update the required fields
6167 * before using them.
6168 *
6169 * @remarks No-long-jump zone!!!
6170 */
6171static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6172{
6173 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6174 {
6175 uint32_t uIntrState = 0;
6176 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6177 AssertRC(rc);
6178
6179 if (!uIntrState)
6180 {
6181 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6182 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6183
6184 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6185 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6186 }
6187 else
6188 {
6189 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6190 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6191 {
6192 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6193 AssertRC(rc);
6194 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6195 AssertRC(rc);
6196
6197 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6198 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6199 }
6200 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6201 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6202
6203 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6204 {
6205 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6206 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6207 }
6208 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6209 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6210 }
6211
6212 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6213 }
6214}
6215
6216
6217/**
6218 * Saves the guest's activity state.
6219 *
6220 * @returns VBox status code.
6221 * @param pVCpu The cross context virtual CPU structure.
6222 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6223 * out-of-sync. Make sure to update the required fields
6224 * before using them.
6225 *
6226 * @remarks No-long-jump zone!!!
6227 */
6228static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6229{
6230 NOREF(pMixedCtx);
6231 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6232 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6233 return VINF_SUCCESS;
6234}
6235
6236
6237/**
6238 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6239 * the current VMCS into the guest-CPU context.
6240 *
6241 * @returns VBox status code.
6242 * @param pVCpu The cross context virtual CPU structure.
6243 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6244 * out-of-sync. Make sure to update the required fields
6245 * before using them.
6246 *
6247 * @remarks No-long-jump zone!!!
6248 */
6249static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6250{
6251 int rc = VINF_SUCCESS;
6252 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6253 {
6254 uint32_t u32Val = 0;
6255 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6256 pMixedCtx->SysEnter.cs = u32Val;
6257 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6258 }
6259
6260 uint64_t u64Val = 0;
6261 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6262 {
6263 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6264 pMixedCtx->SysEnter.eip = u64Val;
6265 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6266 }
6267 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6268 {
6269 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6270 pMixedCtx->SysEnter.esp = u64Val;
6271 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6272 }
6273 return rc;
6274}
6275
6276
6277/**
6278 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6279 * the CPU back into the guest-CPU context.
6280 *
6281 * @returns VBox status code.
6282 * @param pVCpu The cross context virtual CPU structure.
6283 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6284 * out-of-sync. Make sure to update the required fields
6285 * before using them.
6286 *
6287 * @remarks No-long-jump zone!!!
6288 */
6289static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6290{
6291 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6292 VMMRZCallRing3Disable(pVCpu);
6293 HM_DISABLE_PREEMPT();
6294
6295 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6296 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6297 {
6298 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6299 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6300 }
6301
6302 HM_RESTORE_PREEMPT();
6303 VMMRZCallRing3Enable(pVCpu);
6304
6305 return VINF_SUCCESS;
6306}
6307
6308
6309/**
6310 * Saves the auto load/store'd guest MSRs from the current VMCS into
6311 * the guest-CPU context.
6312 *
6313 * @returns VBox status code.
6314 * @param pVCpu The cross context virtual CPU structure.
6315 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6316 * out-of-sync. Make sure to update the required fields
6317 * before using them.
6318 *
6319 * @remarks No-long-jump zone!!!
6320 */
6321static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6322{
6323 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6324 return VINF_SUCCESS;
6325
6326 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6327 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6328 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6329 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6330 {
6331 switch (pMsr->u32Msr)
6332 {
6333 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6334 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6335 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6336 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6337 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6338 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6339 break;
6340
6341 default:
6342 {
6343 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6344 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6345 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6346 }
6347 }
6348 }
6349
6350 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6351 return VINF_SUCCESS;
6352}
6353
6354
6355/**
6356 * Saves the guest control registers from the current VMCS into the guest-CPU
6357 * context.
6358 *
6359 * @returns VBox status code.
6360 * @param pVCpu The cross context virtual CPU structure.
6361 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6362 * out-of-sync. Make sure to update the required fields
6363 * before using them.
6364 *
6365 * @remarks No-long-jump zone!!!
6366 */
6367static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6368{
6369 /* Guest CR0. Guest FPU. */
6370 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6371 AssertRCReturn(rc, rc);
6372
6373 /* Guest CR4. */
6374 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6375 AssertRCReturn(rc, rc);
6376
6377 /* Guest CR2 - updated always during the world-switch or in #PF. */
6378 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6379 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6380 {
6381 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6382 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6383
6384 PVM pVM = pVCpu->CTX_SUFF(pVM);
6385 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6386 || ( pVM->hm.s.fNestedPaging
6387 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6388 {
6389 uint64_t u64Val = 0;
6390 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6391 if (pMixedCtx->cr3 != u64Val)
6392 {
6393 CPUMSetGuestCR3(pVCpu, u64Val);
6394 if (VMMRZCallRing3IsEnabled(pVCpu))
6395 {
6396 PGMUpdateCR3(pVCpu, u64Val);
6397 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6398 }
6399 else
6400 {
6401 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6402 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6403 }
6404 }
6405
6406 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6407 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6408 {
6409 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6410 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6411 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6412 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6413 AssertRCReturn(rc, rc);
6414
6415 if (VMMRZCallRing3IsEnabled(pVCpu))
6416 {
6417 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6418 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6419 }
6420 else
6421 {
6422 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6423 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6424 }
6425 }
6426 }
6427
6428 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6429 }
6430
6431 /*
6432 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6433 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6434 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6435 *
6436 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6437 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6438 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6439 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6440 *
6441 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6442 */
6443 if (VMMRZCallRing3IsEnabled(pVCpu))
6444 {
6445 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6446 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6447
6448 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6449 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6450
6451 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6452 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6453 }
6454
6455 return rc;
6456}
6457
6458
6459/**
6460 * Reads a guest segment register from the current VMCS into the guest-CPU
6461 * context.
6462 *
6463 * @returns VBox status code.
6464 * @param pVCpu The cross context virtual CPU structure.
6465 * @param idxSel Index of the selector in the VMCS.
6466 * @param idxLimit Index of the segment limit in the VMCS.
6467 * @param idxBase Index of the segment base in the VMCS.
6468 * @param idxAccess Index of the access rights of the segment in the VMCS.
6469 * @param pSelReg Pointer to the segment selector.
6470 *
6471 * @remarks No-long-jump zone!!!
6472 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6473 * macro as that takes care of whether to read from the VMCS cache or
6474 * not.
6475 */
6476DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6477 PCPUMSELREG pSelReg)
6478{
6479 NOREF(pVCpu);
6480
6481 uint32_t u32Val = 0;
6482 int rc = VMXReadVmcs32(idxSel, &u32Val);
6483 AssertRCReturn(rc, rc);
6484 pSelReg->Sel = (uint16_t)u32Val;
6485 pSelReg->ValidSel = (uint16_t)u32Val;
6486 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6487
6488 rc = VMXReadVmcs32(idxLimit, &u32Val);
6489 AssertRCReturn(rc, rc);
6490 pSelReg->u32Limit = u32Val;
6491
6492 uint64_t u64Val = 0;
6493 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6494 AssertRCReturn(rc, rc);
6495 pSelReg->u64Base = u64Val;
6496
6497 rc = VMXReadVmcs32(idxAccess, &u32Val);
6498 AssertRCReturn(rc, rc);
6499 pSelReg->Attr.u = u32Val;
6500
6501 /*
6502 * If VT-x marks the segment as unusable, most other bits remain undefined:
6503 * - For CS the L, D and G bits have meaning.
6504 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6505 * - For the remaining data segments no bits are defined.
6506 *
6507 * The present bit and the unusable bit has been observed to be set at the
6508 * same time (the selector was supposed to be invalid as we started executing
6509 * a V8086 interrupt in ring-0).
6510 *
6511 * What should be important for the rest of the VBox code, is that the P bit is
6512 * cleared. Some of the other VBox code recognizes the unusable bit, but
6513 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6514 * safe side here, we'll strip off P and other bits we don't care about. If
6515 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6516 *
6517 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6518 */
6519 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6520 {
6521 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6522
6523 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6524 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6525 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6526
6527 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6528#ifdef DEBUG_bird
6529 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6530 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6531 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6532#endif
6533 }
6534 return VINF_SUCCESS;
6535}
6536
6537
6538#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6539# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6540 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6541 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6542#else
6543# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6544 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6545 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6546#endif
6547
6548
6549/**
6550 * Saves the guest segment registers from the current VMCS into the guest-CPU
6551 * context.
6552 *
6553 * @returns VBox status code.
6554 * @param pVCpu The cross context virtual CPU structure.
6555 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6556 * out-of-sync. Make sure to update the required fields
6557 * before using them.
6558 *
6559 * @remarks No-long-jump zone!!!
6560 */
6561static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6562{
6563 /* Guest segment registers. */
6564 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6565 {
6566 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6567 AssertRCReturn(rc, rc);
6568
6569 rc = VMXLOCAL_READ_SEG(CS, cs);
6570 rc |= VMXLOCAL_READ_SEG(SS, ss);
6571 rc |= VMXLOCAL_READ_SEG(DS, ds);
6572 rc |= VMXLOCAL_READ_SEG(ES, es);
6573 rc |= VMXLOCAL_READ_SEG(FS, fs);
6574 rc |= VMXLOCAL_READ_SEG(GS, gs);
6575 AssertRCReturn(rc, rc);
6576
6577 /* Restore segment attributes for real-on-v86 mode hack. */
6578 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6579 {
6580 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6581 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6582 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6583 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6584 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6585 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6586 }
6587 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6588 }
6589
6590 return VINF_SUCCESS;
6591}
6592
6593
6594/**
6595 * Saves the guest descriptor table registers and task register from the current
6596 * VMCS into the guest-CPU context.
6597 *
6598 * @returns VBox status code.
6599 * @param pVCpu The cross context virtual CPU structure.
6600 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6601 * out-of-sync. Make sure to update the required fields
6602 * before using them.
6603 *
6604 * @remarks No-long-jump zone!!!
6605 */
6606static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6607{
6608 int rc = VINF_SUCCESS;
6609
6610 /* Guest LDTR. */
6611 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6612 {
6613 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6614 AssertRCReturn(rc, rc);
6615 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6616 }
6617
6618 /* Guest GDTR. */
6619 uint64_t u64Val = 0;
6620 uint32_t u32Val = 0;
6621 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6622 {
6623 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6624 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6625 pMixedCtx->gdtr.pGdt = u64Val;
6626 pMixedCtx->gdtr.cbGdt = u32Val;
6627 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6628 }
6629
6630 /* Guest IDTR. */
6631 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6632 {
6633 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6634 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6635 pMixedCtx->idtr.pIdt = u64Val;
6636 pMixedCtx->idtr.cbIdt = u32Val;
6637 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6638 }
6639
6640 /* Guest TR. */
6641 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6642 {
6643 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6644 AssertRCReturn(rc, rc);
6645
6646 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6647 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6648 {
6649 rc = VMXLOCAL_READ_SEG(TR, tr);
6650 AssertRCReturn(rc, rc);
6651 }
6652 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6653 }
6654 return rc;
6655}
6656
6657#undef VMXLOCAL_READ_SEG
6658
6659
6660/**
6661 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6662 * context.
6663 *
6664 * @returns VBox status code.
6665 * @param pVCpu The cross context virtual CPU structure.
6666 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6667 * out-of-sync. Make sure to update the required fields
6668 * before using them.
6669 *
6670 * @remarks No-long-jump zone!!!
6671 */
6672static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6673{
6674 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG))
6675 {
6676 if (!pVCpu->hm.s.fUsingHyperDR7)
6677 {
6678 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6679 uint32_t u32Val;
6680 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6681 pMixedCtx->dr[7] = u32Val;
6682 }
6683
6684 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG);
6685 }
6686 return VINF_SUCCESS;
6687}
6688
6689
6690/**
6691 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6692 *
6693 * @returns VBox status code.
6694 * @param pVCpu The cross context virtual CPU structure.
6695 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6696 * out-of-sync. Make sure to update the required fields
6697 * before using them.
6698 *
6699 * @remarks No-long-jump zone!!!
6700 */
6701static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6702{
6703 NOREF(pMixedCtx);
6704
6705 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6706 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6707 return VINF_SUCCESS;
6708}
6709
6710
6711/**
6712 * Saves the entire guest state from the currently active VMCS into the
6713 * guest-CPU context.
6714 *
6715 * This essentially VMREADs all guest-data.
6716 *
6717 * @returns VBox status code.
6718 * @param pVCpu The cross context virtual CPU structure.
6719 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6720 * out-of-sync. Make sure to update the required fields
6721 * before using them.
6722 */
6723static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6724{
6725 Assert(pVCpu);
6726 Assert(pMixedCtx);
6727
6728 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6729 return VINF_SUCCESS;
6730
6731 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6732 again on the ring-3 callback path, there is no real need to. */
6733 if (VMMRZCallRing3IsEnabled(pVCpu))
6734 VMMR0LogFlushDisable(pVCpu);
6735 else
6736 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6737 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6738
6739 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6740 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6741
6742 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6743 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6744
6745 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6746 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6747
6748 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6749 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6750
6751 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
6752 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6753
6754 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
6755 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6756
6757 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6758 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6759
6760 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6761 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6762
6763 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
6764 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6765
6766 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
6767 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6768
6769 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
6770 ("Missed guest state bits while saving state; missing %RX32 (got %RX32, want %RX32) - check log for any previous errors!\n",
6771 HMVMX_UPDATED_GUEST_ALL ^ HMVMXCPU_GST_VALUE(pVCpu), HMVMXCPU_GST_VALUE(pVCpu), HMVMX_UPDATED_GUEST_ALL));
6772
6773 if (VMMRZCallRing3IsEnabled(pVCpu))
6774 VMMR0LogFlushEnable(pVCpu);
6775
6776 return VINF_SUCCESS;
6777}
6778
6779
6780/**
6781 * Saves basic guest registers needed for IEM instruction execution.
6782 *
6783 * @returns VBox status code (OR-able).
6784 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
6785 * @param pMixedCtx Pointer to the CPU context of the guest.
6786 * @param fMemory Whether the instruction being executed operates on
6787 * memory or not. Only CR0 is synced up if clear.
6788 * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
6789 */
6790static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
6791{
6792 /*
6793 * We assume all general purpose registers other than RSP are available.
6794 *
6795 * RIP is a must, as it will be incremented or otherwise changed.
6796 *
6797 * RFLAGS are always required to figure the CPL.
6798 *
6799 * RSP isn't always required, however it's a GPR, so frequently required.
6800 *
6801 * SS and CS are the only segment register needed if IEM doesn't do memory
6802 * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
6803 *
6804 * CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
6805 * be required for memory accesses.
6806 *
6807 * Note! Before IEM dispatches an exception, it will call us to sync in everything.
6808 */
6809 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6810 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6811 if (fNeedRsp)
6812 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6813 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6814 if (!fMemory)
6815 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6816 else
6817 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6818 AssertRCReturn(rc, rc);
6819 return rc;
6820}
6821
6822
6823/**
6824 * Ensures that we've got a complete basic guest-context.
6825 *
6826 * This excludes the FPU, SSE, AVX, and similar extended state. The interface
6827 * is for the interpreter.
6828 *
6829 * @returns VBox status code.
6830 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
6831 * @param pMixedCtx Pointer to the guest-CPU context which may have data
6832 * needing to be synced in.
6833 * @thread EMT(pVCpu)
6834 */
6835VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6836{
6837 /* Note! Since this is only applicable to VT-x, the implementation is placed
6838 in the VT-x part of the sources instead of the generic stuff. */
6839 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
6840 {
6841 /* For now, imply that the caller might change everything too. */
6842 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6843 return hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6844 }
6845 return VINF_SUCCESS;
6846}
6847
6848
6849/**
6850 * Check per-VM and per-VCPU force flag actions that require us to go back to
6851 * ring-3 for one reason or another.
6852 *
6853 * @returns Strict VBox status code (i.e. informational status codes too)
6854 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6855 * ring-3.
6856 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6857 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6858 * interrupts)
6859 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6860 * all EMTs to be in ring-3.
6861 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6862 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6863 * to the EM loop.
6864 *
6865 * @param pVM The cross context VM structure.
6866 * @param pVCpu The cross context virtual CPU structure.
6867 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6868 * out-of-sync. Make sure to update the required fields
6869 * before using them.
6870 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6871 */
6872static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
6873{
6874 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6875
6876 /*
6877 * Anything pending? Should be more likely than not if we're doing a good job.
6878 */
6879 if ( !fStepping
6880 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6881 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6882 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6883 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6884 return VINF_SUCCESS;
6885
6886 /* We need the control registers now, make sure the guest-CPU context is updated. */
6887 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6888 AssertRCReturn(rc3, rc3);
6889
6890 /* Pending HM CR3 sync. */
6891 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6892 {
6893 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
6894 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
6895 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
6896 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6897 }
6898
6899 /* Pending HM PAE PDPEs. */
6900 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6901 {
6902 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6903 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6904 }
6905
6906 /* Pending PGM C3 sync. */
6907 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6908 {
6909 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
6910 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6911 if (rcStrict2 != VINF_SUCCESS)
6912 {
6913 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6914 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6915 return rcStrict2;
6916 }
6917 }
6918
6919 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6920 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6921 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6922 {
6923 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6924 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6925 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6926 return rc2;
6927 }
6928
6929 /* Pending VM request packets, such as hardware interrupts. */
6930 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6931 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6932 {
6933 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
6934 return VINF_EM_PENDING_REQUEST;
6935 }
6936
6937 /* Pending PGM pool flushes. */
6938 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6939 {
6940 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
6941 return VINF_PGM_POOL_FLUSH_PENDING;
6942 }
6943
6944 /* Pending DMA requests. */
6945 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6946 {
6947 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
6948 return VINF_EM_RAW_TO_R3;
6949 }
6950
6951 return VINF_SUCCESS;
6952}
6953
6954
6955/**
6956 * Converts any TRPM trap into a pending HM event. This is typically used when
6957 * entering from ring-3 (not longjmp returns).
6958 *
6959 * @param pVCpu The cross context virtual CPU structure.
6960 */
6961static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6962{
6963 Assert(TRPMHasTrap(pVCpu));
6964 Assert(!pVCpu->hm.s.Event.fPending);
6965
6966 uint8_t uVector;
6967 TRPMEVENT enmTrpmEvent;
6968 RTGCUINT uErrCode;
6969 RTGCUINTPTR GCPtrFaultAddress;
6970 uint8_t cbInstr;
6971
6972 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6973 AssertRC(rc);
6974
6975 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6976 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
6977 if (enmTrpmEvent == TRPM_TRAP)
6978 {
6979 switch (uVector)
6980 {
6981 case X86_XCPT_NMI:
6982 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6983 break;
6984
6985 case X86_XCPT_BP:
6986 case X86_XCPT_OF:
6987 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6988 break;
6989
6990 case X86_XCPT_PF:
6991 case X86_XCPT_DF:
6992 case X86_XCPT_TS:
6993 case X86_XCPT_NP:
6994 case X86_XCPT_SS:
6995 case X86_XCPT_GP:
6996 case X86_XCPT_AC:
6997 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6998 /* no break! */
6999 default:
7000 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7001 break;
7002 }
7003 }
7004 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7005 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7006 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7007 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7008 else
7009 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7010
7011 rc = TRPMResetTrap(pVCpu);
7012 AssertRC(rc);
7013 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7014 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7015
7016 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7017}
7018
7019
7020/**
7021 * Converts the pending HM event into a TRPM trap.
7022 *
7023 * @param pVCpu The cross context virtual CPU structure.
7024 */
7025static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7026{
7027 Assert(pVCpu->hm.s.Event.fPending);
7028
7029 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7030 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7031 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
7032 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7033
7034 /* If a trap was already pending, we did something wrong! */
7035 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7036
7037 TRPMEVENT enmTrapType;
7038 switch (uVectorType)
7039 {
7040 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7041 enmTrapType = TRPM_HARDWARE_INT;
7042 break;
7043
7044 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7045 enmTrapType = TRPM_SOFTWARE_INT;
7046 break;
7047
7048 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7049 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7050 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7051 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7052 enmTrapType = TRPM_TRAP;
7053 break;
7054
7055 default:
7056 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7057 enmTrapType = TRPM_32BIT_HACK;
7058 break;
7059 }
7060
7061 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7062
7063 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7064 AssertRC(rc);
7065
7066 if (fErrorCodeValid)
7067 TRPMSetErrorCode(pVCpu, uErrorCode);
7068
7069 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7070 && uVector == X86_XCPT_PF)
7071 {
7072 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7073 }
7074 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7075 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7076 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7077 {
7078 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7079 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7080 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7081 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7082 }
7083
7084 /* Clear any pending events from the VMCS. */
7085 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
7086 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc);
7087
7088 /* We're now done converting the pending event. */
7089 pVCpu->hm.s.Event.fPending = false;
7090}
7091
7092
7093/**
7094 * Does the necessary state syncing before returning to ring-3 for any reason
7095 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7096 *
7097 * @returns VBox status code.
7098 * @param pVCpu The cross context virtual CPU structure.
7099 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7100 * be out-of-sync. Make sure to update the required
7101 * fields before using them.
7102 * @param fSaveGuestState Whether to save the guest state or not.
7103 *
7104 * @remarks No-long-jmp zone!!!
7105 */
7106static int hmR0VmxLeave(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
7107{
7108 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7109 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7110
7111 RTCPUID idCpu = RTMpCpuId();
7112 Log4Func(("HostCpuId=%u\n", idCpu));
7113
7114 /*
7115 * !!! IMPORTANT !!!
7116 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7117 */
7118
7119 /* Save the guest state if necessary. */
7120 if ( fSaveGuestState
7121 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
7122 {
7123 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7124 AssertRCReturn(rc, rc);
7125 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7126 }
7127
7128 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
7129 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
7130 {
7131 if (fSaveGuestState)
7132 {
7133 /* We shouldn't reload CR0 without saving it first. */
7134 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7135 AssertRCReturn(rc, rc);
7136 }
7137 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7138 }
7139
7140 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7141#ifdef VBOX_STRICT
7142 if (CPUMIsHyperDebugStateActive(pVCpu))
7143 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7144#endif
7145 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7146 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7147 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7148 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7149
7150#if HC_ARCH_BITS == 64
7151 /* Restore host-state bits that VT-x only restores partially. */
7152 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7153 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7154 {
7155 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7156 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7157 }
7158 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7159#endif
7160
7161 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7162 if (pVCpu->hm.s.vmx.fLazyMsrs)
7163 {
7164 /* We shouldn't reload the guest MSRs without saving it first. */
7165 if (!fSaveGuestState)
7166 {
7167 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7168 AssertRCReturn(rc, rc);
7169 }
7170 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7171 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7172 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7173 }
7174
7175 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7176 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7177
7178 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7179 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7180 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7181 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7182 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7183 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7184 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7185 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7186
7187 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7188
7189 /** @todo This partially defeats the purpose of having preemption hooks.
7190 * The problem is, deregistering the hooks should be moved to a place that
7191 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7192 * context.
7193 */
7194 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7195 {
7196 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7197 AssertRCReturn(rc, rc);
7198
7199 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7200 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7201 }
7202 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7203 NOREF(idCpu);
7204
7205 return VINF_SUCCESS;
7206}
7207
7208
7209/**
7210 * Leaves the VT-x session.
7211 *
7212 * @returns VBox status code.
7213 * @param pVCpu The cross context virtual CPU structure.
7214 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7215 * out-of-sync. Make sure to update the required fields
7216 * before using them.
7217 *
7218 * @remarks No-long-jmp zone!!!
7219 */
7220DECLINLINE(int) hmR0VmxLeaveSession(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7221{
7222 HM_DISABLE_PREEMPT();
7223 HMVMX_ASSERT_CPU_SAFE();
7224 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7225 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7226
7227 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7228 and done this from the VMXR0ThreadCtxCallback(). */
7229 if (!pVCpu->hm.s.fLeaveDone)
7230 {
7231 int rc2 = hmR0VmxLeave(pVCpu, pMixedCtx, true /* fSaveGuestState */);
7232 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7233 pVCpu->hm.s.fLeaveDone = true;
7234 }
7235 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7236
7237 /*
7238 * !!! IMPORTANT !!!
7239 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7240 */
7241
7242 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7243 /** @todo Deregistering here means we need to VMCLEAR always
7244 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7245 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7246 VMMR0ThreadCtxHookDisable(pVCpu);
7247
7248 /* Leave HM context. This takes care of local init (term). */
7249 int rc = HMR0LeaveCpu(pVCpu);
7250
7251 HM_RESTORE_PREEMPT();
7252 return rc;
7253}
7254
7255
7256/**
7257 * Does the necessary state syncing before doing a longjmp to ring-3.
7258 *
7259 * @returns VBox status code.
7260 * @param pVCpu The cross context virtual CPU structure.
7261 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7262 * out-of-sync. Make sure to update the required fields
7263 * before using them.
7264 *
7265 * @remarks No-long-jmp zone!!!
7266 */
7267DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7268{
7269 return hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7270}
7271
7272
7273/**
7274 * Take necessary actions before going back to ring-3.
7275 *
7276 * An action requires us to go back to ring-3. This function does the necessary
7277 * steps before we can safely return to ring-3. This is not the same as longjmps
7278 * to ring-3, this is voluntary and prepares the guest so it may continue
7279 * executing outside HM (recompiler/IEM).
7280 *
7281 * @returns VBox status code.
7282 * @param pVM The cross context VM structure.
7283 * @param pVCpu The cross context virtual CPU structure.
7284 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7285 * out-of-sync. Make sure to update the required fields
7286 * before using them.
7287 * @param rcExit The reason for exiting to ring-3. Can be
7288 * VINF_VMM_UNKNOWN_RING3_CALL.
7289 */
7290static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, VBOXSTRICTRC rcExit)
7291{
7292 Assert(pVM);
7293 Assert(pVCpu);
7294 Assert(pMixedCtx);
7295 HMVMX_ASSERT_PREEMPT_SAFE();
7296
7297 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7298 {
7299 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7300 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7301 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7302 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7303 }
7304
7305 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7306 VMMRZCallRing3Disable(pVCpu);
7307 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcExit)));
7308
7309 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7310 if (pVCpu->hm.s.Event.fPending)
7311 {
7312 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7313 Assert(!pVCpu->hm.s.Event.fPending);
7314 }
7315
7316 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7317 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7318
7319 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7320 and if we're injecting an event we should have a TRPM trap pending. */
7321 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7322#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a tripple fault in progress. */
7323 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7324#endif
7325
7326 /* Save guest state and restore host state bits. */
7327 int rc = hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7328 AssertRCReturn(rc, rc);
7329 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7330 /* Thread-context hooks are unregistered at this point!!! */
7331
7332 /* Sync recompiler state. */
7333 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7334 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7335 | CPUM_CHANGED_LDTR
7336 | CPUM_CHANGED_GDTR
7337 | CPUM_CHANGED_IDTR
7338 | CPUM_CHANGED_TR
7339 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7340 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7341 if ( pVM->hm.s.fNestedPaging
7342 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7343 {
7344 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7345 }
7346
7347 Assert(!pVCpu->hm.s.fClearTrapFlag);
7348
7349 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7350 if (rcExit != VINF_EM_RAW_INTERRUPT)
7351 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7352
7353 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7354
7355 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7356 VMMRZCallRing3RemoveNotification(pVCpu);
7357 VMMRZCallRing3Enable(pVCpu);
7358
7359 return rc;
7360}
7361
7362
7363/**
7364 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7365 * longjump to ring-3 and possibly get preempted.
7366 *
7367 * @returns VBox status code.
7368 * @param pVCpu The cross context virtual CPU structure.
7369 * @param enmOperation The operation causing the ring-3 longjump.
7370 * @param pvUser Opaque pointer to the guest-CPU context. The data
7371 * may be out-of-sync. Make sure to update the required
7372 * fields before using them.
7373 */
7374static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7375{
7376 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7377 {
7378 /*
7379 * !!! IMPORTANT !!!
7380 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7381 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7382 */
7383 VMMRZCallRing3RemoveNotification(pVCpu);
7384 VMMRZCallRing3Disable(pVCpu);
7385 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7386 RTThreadPreemptDisable(&PreemptState);
7387
7388 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7389 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7390
7391#if HC_ARCH_BITS == 64
7392 /* Restore host-state bits that VT-x only restores partially. */
7393 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7394 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7395 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7396 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7397#endif
7398 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7399 if (pVCpu->hm.s.vmx.fLazyMsrs)
7400 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7401
7402 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7403 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7404 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7405 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7406 {
7407 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7408 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7409 }
7410
7411 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7412 VMMR0ThreadCtxHookDisable(pVCpu);
7413 HMR0LeaveCpu(pVCpu);
7414 RTThreadPreemptRestore(&PreemptState);
7415 return VINF_SUCCESS;
7416 }
7417
7418 Assert(pVCpu);
7419 Assert(pvUser);
7420 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7421 HMVMX_ASSERT_PREEMPT_SAFE();
7422
7423 VMMRZCallRing3Disable(pVCpu);
7424 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7425
7426 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7427 enmOperation));
7428
7429 int rc = hmR0VmxLongJmpToRing3(pVCpu, (PCPUMCTX)pvUser);
7430 AssertRCReturn(rc, rc);
7431
7432 VMMRZCallRing3Enable(pVCpu);
7433 return VINF_SUCCESS;
7434}
7435
7436
7437/**
7438 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7439 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7440 *
7441 * @param pVCpu The cross context virtual CPU structure.
7442 */
7443DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7444{
7445 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7446 {
7447 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7448 {
7449 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7450 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7451 AssertRC(rc);
7452 Log4(("Setup interrupt-window exiting\n"));
7453 }
7454 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7455}
7456
7457
7458/**
7459 * Clears the interrupt-window exiting control in the VMCS.
7460 *
7461 * @param pVCpu The cross context virtual CPU structure.
7462 */
7463DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7464{
7465 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7466 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7467 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7468 AssertRC(rc);
7469 Log4(("Cleared interrupt-window exiting\n"));
7470}
7471
7472
7473/**
7474 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7475 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7476 *
7477 * @param pVCpu The cross context virtual CPU structure.
7478 */
7479DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7480{
7481 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7482 {
7483 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7484 {
7485 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7486 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7487 AssertRC(rc);
7488 Log4(("Setup NMI-window exiting\n"));
7489 }
7490 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7491}
7492
7493
7494/**
7495 * Clears the NMI-window exiting control in the VMCS.
7496 *
7497 * @param pVCpu The cross context virtual CPU structure.
7498 */
7499DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7500{
7501 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7502 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7503 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7504 AssertRC(rc);
7505 Log4(("Cleared NMI-window exiting\n"));
7506}
7507
7508
7509/**
7510 * Evaluates the event to be delivered to the guest and sets it as the pending
7511 * event.
7512 *
7513 * @returns The VT-x guest-interruptibility state.
7514 * @param pVCpu The cross context virtual CPU structure.
7515 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7516 * out-of-sync. Make sure to update the required fields
7517 * before using them.
7518 */
7519static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7520{
7521 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7522 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7523 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7524 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7525 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7526
7527 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7528 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7529 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7530 Assert(!TRPMHasTrap(pVCpu));
7531
7532#ifdef VBOX_WITH_NEW_APIC
7533 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7534 APICUpdatePendingInterrupts(pVCpu);
7535#endif
7536
7537 /*
7538 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7539 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7540 */
7541 /** @todo SMI. SMIs take priority over NMIs. */
7542 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7543 {
7544 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7545 if ( !pVCpu->hm.s.Event.fPending
7546 && !fBlockNmi
7547 && !fBlockSti
7548 && !fBlockMovSS)
7549 {
7550 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7551 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7552 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7553
7554 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7555 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7556 }
7557 else
7558 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7559 }
7560 /*
7561 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7562 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7563 */
7564 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7565 && !pVCpu->hm.s.fSingleInstruction)
7566 {
7567 Assert(!DBGFIsStepping(pVCpu));
7568 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7569 AssertRC(rc);
7570 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7571 if ( !pVCpu->hm.s.Event.fPending
7572 && !fBlockInt
7573 && !fBlockSti
7574 && !fBlockMovSS)
7575 {
7576 uint8_t u8Interrupt;
7577 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7578 if (RT_SUCCESS(rc))
7579 {
7580 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7581 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7582 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7583
7584 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7585 }
7586 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7587 {
7588 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7589 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7590 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7591 }
7592 else
7593 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7594 }
7595 else
7596 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7597 }
7598
7599 return uIntrState;
7600}
7601
7602
7603/**
7604 * Sets a pending-debug exception to be delivered to the guest if the guest is
7605 * single-stepping in the VMCS.
7606 *
7607 * @param pVCpu The cross context virtual CPU structure.
7608 */
7609DECLINLINE(void) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7610{
7611 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS)); NOREF(pVCpu);
7612 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7613 AssertRC(rc);
7614}
7615
7616
7617/**
7618 * Injects any pending events into the guest if the guest is in a state to
7619 * receive them.
7620 *
7621 * @returns Strict VBox status code (i.e. informational status codes too).
7622 * @param pVCpu The cross context virtual CPU structure.
7623 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7624 * out-of-sync. Make sure to update the required fields
7625 * before using them.
7626 * @param uIntrState The VT-x guest-interruptibility state.
7627 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7628 * return VINF_EM_DBG_STEPPED if the event was
7629 * dispatched directly.
7630 */
7631static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t uIntrState, bool fStepping)
7632{
7633 HMVMX_ASSERT_PREEMPT_SAFE();
7634 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7635
7636 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7637 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7638
7639 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7640 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7641 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7642 Assert(!TRPMHasTrap(pVCpu));
7643
7644 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7645 if (pVCpu->hm.s.Event.fPending)
7646 {
7647 /*
7648 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7649 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7650 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7651 *
7652 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7653 */
7654 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7655#ifdef VBOX_STRICT
7656 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7657 {
7658 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7659 Assert(!fBlockInt);
7660 Assert(!fBlockSti);
7661 Assert(!fBlockMovSS);
7662 }
7663 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7664 {
7665 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7666 Assert(!fBlockSti);
7667 Assert(!fBlockMovSS);
7668 Assert(!fBlockNmi);
7669 }
7670#endif
7671 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7672 (uint8_t)uIntType));
7673 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7674 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress,
7675 fStepping, &uIntrState);
7676 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7677
7678 /* Update the interruptibility-state as it could have been changed by
7679 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7680 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7681 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7682
7683 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7684 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7685 else
7686 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7687 }
7688
7689 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7690 if ( fBlockSti
7691 || fBlockMovSS)
7692 {
7693 if (!pVCpu->hm.s.fSingleInstruction)
7694 {
7695 /*
7696 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7697 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7698 * See Intel spec. 27.3.4 "Saving Non-Register State".
7699 */
7700 Assert(!DBGFIsStepping(pVCpu));
7701 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7702 AssertRCReturn(rc2, rc2);
7703 if (pMixedCtx->eflags.Bits.u1TF)
7704 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7705 }
7706 else if (pMixedCtx->eflags.Bits.u1TF)
7707 {
7708 /*
7709 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7710 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7711 */
7712 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7713 uIntrState = 0;
7714 }
7715 }
7716
7717 /*
7718 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7719 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7720 */
7721 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7722 AssertRC(rc2);
7723
7724 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7725 NOREF(fBlockMovSS); NOREF(fBlockSti);
7726 return rcStrict;
7727}
7728
7729
7730/**
7731 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7732 *
7733 * @param pVCpu The cross context virtual CPU structure.
7734 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7735 * out-of-sync. Make sure to update the required fields
7736 * before using them.
7737 */
7738DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7739{
7740 NOREF(pMixedCtx);
7741 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7742 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7743}
7744
7745
7746/**
7747 * Injects a double-fault (\#DF) exception into the VM.
7748 *
7749 * @returns Strict VBox status code (i.e. informational status codes too).
7750 * @param pVCpu The cross context virtual CPU structure.
7751 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7752 * out-of-sync. Make sure to update the required fields
7753 * before using them.
7754 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7755 * and should return VINF_EM_DBG_STEPPED if the event
7756 * is injected directly (register modified by us, not
7757 * by hardware on VM-entry).
7758 * @param puIntrState Pointer to the current guest interruptibility-state.
7759 * This interruptibility-state will be updated if
7760 * necessary. This cannot not be NULL.
7761 */
7762DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
7763{
7764 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7765 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7766 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7767 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
7768 fStepping, puIntrState);
7769}
7770
7771
7772/**
7773 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
7774 *
7775 * @param pVCpu The cross context virtual CPU structure.
7776 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7777 * out-of-sync. Make sure to update the required fields
7778 * before using them.
7779 */
7780DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7781{
7782 NOREF(pMixedCtx);
7783 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
7784 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7785 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7786}
7787
7788
7789/**
7790 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
7791 *
7792 * @param pVCpu The cross context virtual CPU structure.
7793 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7794 * out-of-sync. Make sure to update the required fields
7795 * before using them.
7796 * @param cbInstr The value of RIP that is to be pushed on the guest
7797 * stack.
7798 */
7799DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
7800{
7801 NOREF(pMixedCtx);
7802 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7803 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7804 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7805}
7806
7807
7808/**
7809 * Injects a general-protection (\#GP) fault into the VM.
7810 *
7811 * @returns Strict VBox status code (i.e. informational status codes too).
7812 * @param pVCpu The cross context virtual CPU structure.
7813 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7814 * out-of-sync. Make sure to update the required fields
7815 * before using them.
7816 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7817 * mode, i.e. in real-mode it's not valid).
7818 * @param u32ErrorCode The error code associated with the \#GP.
7819 * @param fStepping Whether we're running in
7820 * hmR0VmxRunGuestCodeStep() and should return
7821 * VINF_EM_DBG_STEPPED if the event is injected
7822 * directly (register modified by us, not by
7823 * hardware on VM-entry).
7824 * @param puIntrState Pointer to the current guest interruptibility-state.
7825 * This interruptibility-state will be updated if
7826 * necessary. This cannot not be NULL.
7827 */
7828DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
7829 bool fStepping, uint32_t *puIntrState)
7830{
7831 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7832 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7833 if (fErrorCodeValid)
7834 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7835 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
7836 fStepping, puIntrState);
7837}
7838
7839
7840/**
7841 * Sets a general-protection (\#GP) exception as pending-for-injection into the
7842 * VM.
7843 *
7844 * @param pVCpu The cross context virtual CPU structure.
7845 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7846 * out-of-sync. Make sure to update the required fields
7847 * before using them.
7848 * @param u32ErrorCode The error code associated with the \#GP.
7849 */
7850DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
7851{
7852 NOREF(pMixedCtx);
7853 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7854 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7855 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7856 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
7857}
7858
7859
7860/**
7861 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7862 *
7863 * @param pVCpu The cross context virtual CPU structure.
7864 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7865 * out-of-sync. Make sure to update the required fields
7866 * before using them.
7867 * @param uVector The software interrupt vector number.
7868 * @param cbInstr The value of RIP that is to be pushed on the guest
7869 * stack.
7870 */
7871DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
7872{
7873 NOREF(pMixedCtx);
7874 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7875 if ( uVector == X86_XCPT_BP
7876 || uVector == X86_XCPT_OF)
7877 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7878 else
7879 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7880 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7881}
7882
7883
7884/**
7885 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7886 * stack.
7887 *
7888 * @returns Strict VBox status code (i.e. informational status codes too).
7889 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7890 * @param pVM The cross context VM structure.
7891 * @param pMixedCtx Pointer to the guest-CPU context.
7892 * @param uValue The value to push to the guest stack.
7893 */
7894DECLINLINE(VBOXSTRICTRC) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
7895{
7896 /*
7897 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7898 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7899 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7900 */
7901 if (pMixedCtx->sp == 1)
7902 return VINF_EM_RESET;
7903 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7904 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
7905 AssertRC(rc);
7906 return rc;
7907}
7908
7909
7910/**
7911 * Injects an event into the guest upon VM-entry by updating the relevant fields
7912 * in the VM-entry area in the VMCS.
7913 *
7914 * @returns Strict VBox status code (i.e. informational status codes too).
7915 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7916 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7917 *
7918 * @param pVCpu The cross context virtual CPU structure.
7919 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7920 * be out-of-sync. Make sure to update the required
7921 * fields before using them.
7922 * @param u64IntInfo The VM-entry interruption-information field.
7923 * @param cbInstr The VM-entry instruction length in bytes (for
7924 * software interrupts, exceptions and privileged
7925 * software exceptions).
7926 * @param u32ErrCode The VM-entry exception error code.
7927 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7928 * @param puIntrState Pointer to the current guest interruptibility-state.
7929 * This interruptibility-state will be updated if
7930 * necessary. This cannot not be NULL.
7931 * @param fStepping Whether we're running in
7932 * hmR0VmxRunGuestCodeStep() and should return
7933 * VINF_EM_DBG_STEPPED if the event is injected
7934 * directly (register modified by us, not by
7935 * hardware on VM-entry).
7936 *
7937 * @remarks Requires CR0!
7938 * @remarks No-long-jump zone!!!
7939 */
7940static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
7941 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping,
7942 uint32_t *puIntrState)
7943{
7944 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7945 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
7946 Assert(puIntrState);
7947 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7948
7949 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
7950 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
7951
7952#ifdef VBOX_STRICT
7953 /* Validate the error-code-valid bit for hardware exceptions. */
7954 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
7955 {
7956 switch (uVector)
7957 {
7958 case X86_XCPT_PF:
7959 case X86_XCPT_DF:
7960 case X86_XCPT_TS:
7961 case X86_XCPT_NP:
7962 case X86_XCPT_SS:
7963 case X86_XCPT_GP:
7964 case X86_XCPT_AC:
7965 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
7966 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7967 /* fallthru */
7968 default:
7969 break;
7970 }
7971 }
7972#endif
7973
7974 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7975 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
7976 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
7977
7978 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7979
7980 /* We require CR0 to check if the guest is in real-mode. */
7981 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7982 AssertRCReturn(rc, rc);
7983
7984 /*
7985 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
7986 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
7987 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
7988 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7989 */
7990 if (CPUMIsGuestInRealModeEx(pMixedCtx))
7991 {
7992 PVM pVM = pVCpu->CTX_SUFF(pVM);
7993 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
7994 {
7995 Assert(PDMVmmDevHeapIsEnabled(pVM));
7996 Assert(pVM->hm.s.vmx.pRealModeTSS);
7997
7998 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
7999 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8000 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
8001 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8002 AssertRCReturn(rc, rc);
8003 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
8004
8005 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8006 size_t const cbIdtEntry = sizeof(X86IDTR16);
8007 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
8008 {
8009 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8010 if (uVector == X86_XCPT_DF)
8011 return VINF_EM_RESET;
8012
8013 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
8014 if (uVector == X86_XCPT_GP)
8015 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
8016
8017 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
8018 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
8019 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
8020 fStepping, puIntrState);
8021 }
8022
8023 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8024 uint16_t uGuestIp = pMixedCtx->ip;
8025 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
8026 {
8027 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8028 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8029 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8030 }
8031 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
8032 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8033
8034 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8035 X86IDTR16 IdtEntry;
8036 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
8037 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8038 AssertRCReturn(rc, rc);
8039
8040 /* Construct the stack frame for the interrupt/exception handler. */
8041 VBOXSTRICTRC rcStrict;
8042 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
8043 if (rcStrict == VINF_SUCCESS)
8044 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
8045 if (rcStrict == VINF_SUCCESS)
8046 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
8047
8048 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8049 if (rcStrict == VINF_SUCCESS)
8050 {
8051 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8052 pMixedCtx->rip = IdtEntry.offSel;
8053 pMixedCtx->cs.Sel = IdtEntry.uSel;
8054 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
8055 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8056 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8057 && uVector == X86_XCPT_PF)
8058 pMixedCtx->cr2 = GCPtrFaultAddress;
8059
8060 /* If any other guest-state bits are changed here, make sure to update
8061 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
8062 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
8063 | HM_CHANGED_GUEST_RIP
8064 | HM_CHANGED_GUEST_RFLAGS
8065 | HM_CHANGED_GUEST_RSP);
8066
8067 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
8068 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8069 {
8070 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8071 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8072 Log4(("Clearing inhibition due to STI.\n"));
8073 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
8074 }
8075 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8076 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
8077
8078 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
8079 it, if we are returning to ring-3 before executing guest code. */
8080 pVCpu->hm.s.Event.fPending = false;
8081
8082 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
8083 if (fStepping)
8084 rcStrict = VINF_EM_DBG_STEPPED;
8085 }
8086 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8087 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8088 return rcStrict;
8089 }
8090
8091 /*
8092 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
8093 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8094 */
8095 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8096 }
8097
8098 /* Validate. */
8099 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8100 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8101 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8102
8103 /* Inject. */
8104 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8105 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
8106 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8107 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8108
8109 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8110 && uVector == X86_XCPT_PF)
8111 pMixedCtx->cr2 = GCPtrFaultAddress;
8112
8113 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
8114 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
8115
8116 AssertRCReturn(rc, rc);
8117 return VINF_SUCCESS;
8118}
8119
8120
8121/**
8122 * Clears the interrupt-window exiting control in the VMCS and if necessary
8123 * clears the current event in the VMCS as well.
8124 *
8125 * @returns VBox status code.
8126 * @param pVCpu The cross context virtual CPU structure.
8127 *
8128 * @remarks Use this function only to clear events that have not yet been
8129 * delivered to the guest but are injected in the VMCS!
8130 * @remarks No-long-jump zone!!!
8131 */
8132static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8133{
8134 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8135
8136 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8137 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8138
8139 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8140 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8141}
8142
8143
8144/**
8145 * Enters the VT-x session.
8146 *
8147 * @returns VBox status code.
8148 * @param pVM The cross context VM structure.
8149 * @param pVCpu The cross context virtual CPU structure.
8150 * @param pCpu Pointer to the CPU info struct.
8151 */
8152VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8153{
8154 AssertPtr(pVM);
8155 AssertPtr(pVCpu);
8156 Assert(pVM->hm.s.vmx.fSupported);
8157 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8158 NOREF(pCpu); NOREF(pVM);
8159
8160 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8161 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8162
8163#ifdef VBOX_STRICT
8164 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8165 RTCCUINTREG uHostCR4 = ASMGetCR4();
8166 if (!(uHostCR4 & X86_CR4_VMXE))
8167 {
8168 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8169 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8170 }
8171#endif
8172
8173 /*
8174 * Load the VCPU's VMCS as the current (and active) one.
8175 */
8176 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8177 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8178 if (RT_FAILURE(rc))
8179 return rc;
8180
8181 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8182 pVCpu->hm.s.fLeaveDone = false;
8183 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8184
8185 return VINF_SUCCESS;
8186}
8187
8188
8189/**
8190 * The thread-context callback (only on platforms which support it).
8191 *
8192 * @param enmEvent The thread-context event.
8193 * @param pVCpu The cross context virtual CPU structure.
8194 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8195 * @thread EMT(pVCpu)
8196 */
8197VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8198{
8199 NOREF(fGlobalInit);
8200
8201 switch (enmEvent)
8202 {
8203 case RTTHREADCTXEVENT_OUT:
8204 {
8205 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8206 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8207 VMCPU_ASSERT_EMT(pVCpu);
8208
8209 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8210
8211 /* No longjmps (logger flushes, locks) in this fragile context. */
8212 VMMRZCallRing3Disable(pVCpu);
8213 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8214
8215 /*
8216 * Restore host-state (FPU, debug etc.)
8217 */
8218 if (!pVCpu->hm.s.fLeaveDone)
8219 {
8220 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8221 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8222 hmR0VmxLeave(pVCpu, pMixedCtx, false /* fSaveGuestState */);
8223 pVCpu->hm.s.fLeaveDone = true;
8224 }
8225
8226 /* Leave HM context, takes care of local init (term). */
8227 int rc = HMR0LeaveCpu(pVCpu);
8228 AssertRC(rc); NOREF(rc);
8229
8230 /* Restore longjmp state. */
8231 VMMRZCallRing3Enable(pVCpu);
8232 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8233 break;
8234 }
8235
8236 case RTTHREADCTXEVENT_IN:
8237 {
8238 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8239 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8240 VMCPU_ASSERT_EMT(pVCpu);
8241
8242 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8243 VMMRZCallRing3Disable(pVCpu);
8244 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8245
8246 /* Initialize the bare minimum state required for HM. This takes care of
8247 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8248 int rc = HMR0EnterCpu(pVCpu);
8249 AssertRC(rc);
8250 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8251
8252 /* Load the active VMCS as the current one. */
8253 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8254 {
8255 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8256 AssertRC(rc); NOREF(rc);
8257 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8258 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8259 }
8260 pVCpu->hm.s.fLeaveDone = false;
8261
8262 /* Restore longjmp state. */
8263 VMMRZCallRing3Enable(pVCpu);
8264 break;
8265 }
8266
8267 default:
8268 break;
8269 }
8270}
8271
8272
8273/**
8274 * Saves the host state in the VMCS host-state.
8275 * Sets up the VM-exit MSR-load area.
8276 *
8277 * The CPU state will be loaded from these fields on every successful VM-exit.
8278 *
8279 * @returns VBox status code.
8280 * @param pVM The cross context VM structure.
8281 * @param pVCpu The cross context virtual CPU structure.
8282 *
8283 * @remarks No-long-jump zone!!!
8284 */
8285static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8286{
8287 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8288
8289 int rc = VINF_SUCCESS;
8290 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8291 {
8292 rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8293 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8294
8295 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8296 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8297
8298 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8299 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8300
8301 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8302 }
8303 return rc;
8304}
8305
8306
8307/**
8308 * Saves the host state in the VMCS host-state.
8309 *
8310 * @returns VBox status code.
8311 * @param pVM The cross context VM structure.
8312 * @param pVCpu The cross context virtual CPU structure.
8313 *
8314 * @remarks No-long-jump zone!!!
8315 */
8316VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8317{
8318 AssertPtr(pVM);
8319 AssertPtr(pVCpu);
8320
8321 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8322
8323 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8324 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8325 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8326 return hmR0VmxSaveHostState(pVM, pVCpu);
8327}
8328
8329
8330/**
8331 * Loads the guest state into the VMCS guest-state area.
8332 *
8333 * The will typically be done before VM-entry when the guest-CPU state and the
8334 * VMCS state may potentially be out of sync.
8335 *
8336 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8337 * VM-entry controls.
8338 * Sets up the appropriate VMX non-root function to execute guest code based on
8339 * the guest CPU mode.
8340 *
8341 * @returns VBox strict status code.
8342 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8343 * without unrestricted guest access and the VMMDev is not presently
8344 * mapped (e.g. EFI32).
8345 *
8346 * @param pVM The cross context VM structure.
8347 * @param pVCpu The cross context virtual CPU structure.
8348 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8349 * out-of-sync. Make sure to update the required fields
8350 * before using them.
8351 *
8352 * @remarks No-long-jump zone!!! (Disables and enables long jmps for itself,
8353 * caller disables then again on successfull return. Confusing.)
8354 */
8355static VBOXSTRICTRC hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8356{
8357 AssertPtr(pVM);
8358 AssertPtr(pVCpu);
8359 AssertPtr(pMixedCtx);
8360 HMVMX_ASSERT_PREEMPT_SAFE();
8361
8362 VMMRZCallRing3Disable(pVCpu);
8363 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8364
8365 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8366
8367 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8368
8369 /* Determine real-on-v86 mode. */
8370 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8371 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8372 && CPUMIsGuestInRealModeEx(pMixedCtx))
8373 {
8374 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8375 }
8376
8377 /*
8378 * Load the guest-state into the VMCS.
8379 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8380 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8381 */
8382 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8383 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8384
8385 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8386 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8387 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8388
8389 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8390 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8391 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8392
8393 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8394 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8395
8396 VBOXSTRICTRC rcStrict = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8397 if (rcStrict == VINF_SUCCESS)
8398 { /* likely */ }
8399 else
8400 {
8401 VMMRZCallRing3Enable(pVCpu);
8402 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8403 return rcStrict;
8404 }
8405
8406 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8407 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8408 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8409
8410 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8411 determine we don't have to swap EFER after all. */
8412 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8413 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadSharedMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8414
8415 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8416 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8417
8418 rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
8419 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8420
8421 /*
8422 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8423 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8424 */
8425 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8426 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8427
8428 /* Clear any unused and reserved bits. */
8429 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8430
8431 VMMRZCallRing3Enable(pVCpu);
8432
8433 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8434 return rc;
8435}
8436
8437
8438/**
8439 * Loads the state shared between the host and guest into the VMCS.
8440 *
8441 * @param pVM The cross context VM structure.
8442 * @param pVCpu The cross context virtual CPU structure.
8443 * @param pCtx Pointer to the guest-CPU context.
8444 *
8445 * @remarks No-long-jump zone!!!
8446 */
8447static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8448{
8449 NOREF(pVM);
8450
8451 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8452 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8453
8454 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8455 {
8456 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8457 AssertRC(rc);
8458 }
8459
8460 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8461 {
8462 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8463 AssertRC(rc);
8464
8465 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8466 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8467 {
8468 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8469 AssertRC(rc);
8470 }
8471 }
8472
8473 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8474 {
8475 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8476 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8477 }
8478
8479 /* Loading CR0, debug state might have changed intercepts, update VMCS. */
8480 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
8481 {
8482 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
8483 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
8484 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
8485 AssertRC(rc);
8486 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
8487 }
8488
8489 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8490 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8491}
8492
8493
8494/**
8495 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8496 *
8497 * @returns Strict VBox status code (i.e. informational status codes too).
8498 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8499 * without unrestricted guest access and the VMMDev is not presently
8500 * mapped (e.g. EFI32).
8501 *
8502 * @param pVM The cross context VM structure.
8503 * @param pVCpu The cross context virtual CPU structure.
8504 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8505 * out-of-sync. Make sure to update the required fields
8506 * before using them.
8507 */
8508static VBOXSTRICTRC hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8509{
8510 HMVMX_ASSERT_PREEMPT_SAFE();
8511
8512 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8513#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8514 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8515#endif
8516
8517 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8518 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8519 {
8520 rcStrict = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8521 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8522 { /* likely */}
8523 else
8524 {
8525 AssertMsgFailedReturn(("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestRip failed! rc=%Rrc\n",
8526 VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8527 }
8528 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8529 }
8530 else if (HMCPU_CF_VALUE(pVCpu))
8531 {
8532 rcStrict = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8533 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8534 { /* likely */}
8535 else
8536 {
8537 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM,
8538 ("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestState failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8539 return rcStrict;
8540 }
8541 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8542 }
8543
8544 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8545 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8546 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8547 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8548 return rcStrict;
8549}
8550
8551
8552/**
8553 * Does the preparations before executing guest code in VT-x.
8554 *
8555 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8556 * recompiler/IEM. We must be cautious what we do here regarding committing
8557 * guest-state information into the VMCS assuming we assuredly execute the
8558 * guest in VT-x mode.
8559 *
8560 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8561 * the common-state (TRPM/forceflags), we must undo those changes so that the
8562 * recompiler/IEM can (and should) use them when it resumes guest execution.
8563 * Otherwise such operations must be done when we can no longer exit to ring-3.
8564 *
8565 * @returns Strict VBox status code (i.e. informational status codes too).
8566 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8567 * have been disabled.
8568 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8569 * double-fault into the guest.
8570 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8571 * dispatched directly.
8572 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8573 *
8574 * @param pVM The cross context VM structure.
8575 * @param pVCpu The cross context virtual CPU structure.
8576 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8577 * out-of-sync. Make sure to update the required fields
8578 * before using them.
8579 * @param pVmxTransient Pointer to the VMX transient structure.
8580 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8581 * us ignore some of the reasons for returning to
8582 * ring-3, and return VINF_EM_DBG_STEPPED if event
8583 * dispatching took place.
8584 */
8585static VBOXSTRICTRC hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8586{
8587 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8588
8589#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8590 PGMRZDynMapFlushAutoSet(pVCpu);
8591#endif
8592
8593 /* Check force flag actions that might require us to go back to ring-3. */
8594 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx, fStepping);
8595 if (rcStrict == VINF_SUCCESS)
8596 { /* FFs doesn't get set all the time. */ }
8597 else
8598 return rcStrict;
8599
8600#ifndef IEM_VERIFICATION_MODE_FULL
8601 /* Setup the Virtualized APIC accesses. pMixedCtx->msrApicBase is always up-to-date. It's not part of the VMCS. */
8602 if ( pVCpu->hm.s.vmx.u64MsrApicBase != pMixedCtx->msrApicBase
8603 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
8604 {
8605 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8606 RTGCPHYS GCPhysApicBase;
8607 GCPhysApicBase = pMixedCtx->msrApicBase;
8608 GCPhysApicBase &= PAGE_BASE_GC_MASK;
8609
8610 /* Unalias any existing mapping. */
8611 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8612 AssertRCReturn(rc, rc);
8613
8614 /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
8615 Log4(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGp\n", GCPhysApicBase));
8616 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8617 AssertRCReturn(rc, rc);
8618
8619 pVCpu->hm.s.vmx.u64MsrApicBase = pMixedCtx->msrApicBase;
8620 }
8621#endif /* !IEM_VERIFICATION_MODE_FULL */
8622
8623 if (TRPMHasTrap(pVCpu))
8624 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8625 uint32_t uIntrState = hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8626
8627 /*
8628 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8629 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8630 */
8631 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, uIntrState, fStepping);
8632 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8633 { /* likely */ }
8634 else
8635 {
8636 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8637 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8638 return rcStrict;
8639 }
8640
8641 /*
8642 * Load the guest state bits, we can handle longjmps/getting preempted here.
8643 *
8644 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8645 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8646 * Hence, this needs to be done -after- injection of events.
8647 */
8648 rcStrict = hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8649 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8650 { /* likely */ }
8651 else
8652 return rcStrict;
8653
8654 /*
8655 * No longjmps to ring-3 from this point on!!!
8656 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8657 * This also disables flushing of the R0-logger instance (if any).
8658 */
8659 VMMRZCallRing3Disable(pVCpu);
8660
8661 /*
8662 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8663 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8664 *
8665 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8666 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8667 *
8668 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8669 * executing guest code.
8670 */
8671 pVmxTransient->fEFlags = ASMIntDisableFlags();
8672
8673 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8674 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8675 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8676 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8677 {
8678 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8679 {
8680 /* We've injected any pending events. This is really the point of no return (to ring-3). */
8681 pVCpu->hm.s.Event.fPending = false;
8682
8683 return VINF_SUCCESS;
8684 }
8685
8686 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8687 rcStrict = VINF_EM_RAW_INTERRUPT;
8688 }
8689 else
8690 {
8691 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8692 rcStrict = VINF_EM_RAW_TO_R3;
8693 }
8694
8695 ASMSetFlags(pVmxTransient->fEFlags);
8696 VMMRZCallRing3Enable(pVCpu);
8697
8698 return rcStrict;
8699}
8700
8701
8702/**
8703 * Prepares to run guest code in VT-x and we've committed to doing so. This
8704 * means there is no backing out to ring-3 or anywhere else at this
8705 * point.
8706 *
8707 * @param pVM The cross context VM structure.
8708 * @param pVCpu The cross context virtual CPU structure.
8709 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8710 * out-of-sync. Make sure to update the required fields
8711 * before using them.
8712 * @param pVmxTransient Pointer to the VMX transient structure.
8713 *
8714 * @remarks Called with preemption disabled.
8715 * @remarks No-long-jump zone!!!
8716 */
8717static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8718{
8719 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8720 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8721 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8722
8723 /*
8724 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8725 */
8726 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8727 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8728
8729#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8730 if (!CPUMIsGuestFPUStateActive(pVCpu))
8731 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8732 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8733 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8734#endif
8735
8736 if ( pVCpu->hm.s.fPreloadGuestFpu
8737 && !CPUMIsGuestFPUStateActive(pVCpu))
8738 {
8739 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8740 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8741 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
8742 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8743 }
8744
8745 /*
8746 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8747 */
8748 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8749 && pVCpu->hm.s.vmx.cMsrs > 0)
8750 {
8751 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8752 }
8753
8754 /*
8755 * Load the host state bits as we may've been preempted (only happens when
8756 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8757 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8758 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8759 * See @bugref{8432}.
8760 */
8761 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8762 {
8763 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
8764 AssertRC(rc);
8765 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptSaveHostState);
8766 }
8767 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
8768
8769 /*
8770 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
8771 */
8772 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
8773 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
8774 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8775
8776 /* Store status of the shared guest-host state at the time of VM-entry. */
8777#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8778 if (CPUMIsGuestInLongModeEx(pMixedCtx))
8779 {
8780 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8781 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8782 }
8783 else
8784#endif
8785 {
8786 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8787 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8788 }
8789 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
8790
8791 /*
8792 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8793 */
8794 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8795 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
8796
8797 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
8798 RTCPUID idCurrentCpu = pCpu->idCpu;
8799 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8800 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8801 {
8802 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
8803 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8804 }
8805
8806 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8807 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8808 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8809 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8810
8811 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8812
8813 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8814 to start executing. */
8815
8816 /*
8817 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8818 */
8819 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
8820 {
8821 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8822 {
8823 bool fMsrUpdated;
8824 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
8825 AssertRC(rc2);
8826 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
8827
8828 rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8829 &fMsrUpdated);
8830 AssertRC(rc2);
8831 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8832
8833 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8834 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8835 }
8836 else
8837 {
8838 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8839 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8840 }
8841 }
8842
8843#ifdef VBOX_STRICT
8844 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8845 hmR0VmxCheckHostEferMsr(pVCpu);
8846 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8847#endif
8848#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8849 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
8850 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8851 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8852#endif
8853}
8854
8855
8856/**
8857 * Performs some essential restoration of state after running guest code in
8858 * VT-x.
8859 *
8860 * @param pVM The cross context VM structure.
8861 * @param pVCpu The cross context virtual CPU structure.
8862 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8863 * out-of-sync. Make sure to update the required fields
8864 * before using them.
8865 * @param pVmxTransient Pointer to the VMX transient structure.
8866 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8867 *
8868 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8869 *
8870 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8871 * unconditionally when it is safe to do so.
8872 */
8873static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8874{
8875 NOREF(pVM);
8876
8877 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8878
8879 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8880 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8881 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
8882 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8883 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8884 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8885
8886 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8887 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
8888
8889 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
8890 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8891 Assert(!ASMIntAreEnabled());
8892 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8893
8894#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8895 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVM, pVCpu))
8896 {
8897 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8898 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8899 }
8900#endif
8901
8902#if HC_ARCH_BITS == 64
8903 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8904#endif
8905#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8906 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8907 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8908 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8909#else
8910 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8911#endif
8912#ifdef VBOX_STRICT
8913 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8914#endif
8915 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8916 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
8917
8918 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8919 uint32_t uExitReason;
8920 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8921 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8922 AssertRC(rc);
8923 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8924 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8925
8926 /* Update the VM-exit history array. */
8927 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
8928
8929 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
8930 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
8931 {
8932 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
8933 pVmxTransient->fVMEntryFailed));
8934 return;
8935 }
8936
8937 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
8938 {
8939 /** @todo We can optimize this by only syncing with our force-flags when
8940 * really needed and keeping the VMCS state as it is for most
8941 * VM-exits. */
8942 /* Update the guest interruptibility-state from the VMCS. */
8943 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
8944
8945#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8946 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8947 AssertRC(rc);
8948#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8949 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8950 AssertRC(rc);
8951#endif
8952
8953 /*
8954 * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
8955 * we eventually get a VM-exit for any reason. This maybe expensive as PDMApicSetTPR() can longjmp to ring-3 and which is
8956 * why it's done here as it's easier and no less efficient to deal with it here than making hmR0VmxSaveGuestState()
8957 * cope with longjmps safely (see VMCPU_FF_HM_UPDATE_CR3 handling).
8958 */
8959 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8960 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
8961 {
8962 rc = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
8963 AssertRC(rc);
8964 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
8965 }
8966 }
8967}
8968
8969
8970/**
8971 * Runs the guest code using VT-x the normal way.
8972 *
8973 * @returns VBox status code.
8974 * @param pVM The cross context VM structure.
8975 * @param pVCpu The cross context virtual CPU structure.
8976 * @param pCtx Pointer to the guest-CPU context.
8977 *
8978 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8979 */
8980static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8981{
8982 VMXTRANSIENT VmxTransient;
8983 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8984 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8985 uint32_t cLoops = 0;
8986
8987 for (;; cLoops++)
8988 {
8989 Assert(!HMR0SuspendPending());
8990 HMVMX_ASSERT_CPU_SAFE();
8991
8992 /* Preparatory work for running guest code, this may force us to return
8993 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8994 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8995 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
8996 if (rcStrict != VINF_SUCCESS)
8997 break;
8998
8999 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
9000 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
9001 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
9002
9003 /* Restore any residual host-state and save any bits shared between host
9004 and guest into the guest-CPU state. Re-enables interrupts! */
9005 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, VBOXSTRICTRC_TODO(rcStrict));
9006
9007 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
9008 if (RT_SUCCESS(rcRun))
9009 { /* very likely */ }
9010 else
9011 {
9012 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
9013 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
9014 return rcRun;
9015 }
9016
9017 /* Profile the VM-exit. */
9018 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
9019 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
9020 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
9021 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
9022 HMVMX_START_EXIT_DISPATCH_PROF();
9023
9024 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
9025
9026 /* Handle the VM-exit. */
9027#ifdef HMVMX_USE_FUNCTION_TABLE
9028 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
9029#else
9030 rcStrict = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
9031#endif
9032 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9033 if (rcStrict == VINF_SUCCESS)
9034 {
9035 if (cLoops <= pVM->hm.s.cMaxResumeLoops)
9036 continue; /* likely */
9037 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9038 rcStrict = VINF_EM_RAW_INTERRUPT;
9039 }
9040 break;
9041 }
9042
9043 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9044 return rcStrict;
9045}
9046
9047
9048
9049/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
9050 * probes.
9051 *
9052 * The following few functions and associated structure contains the bloat
9053 * necessary for providing detailed debug events and dtrace probes as well as
9054 * reliable host side single stepping. This works on the principle of
9055 * "subclassing" the normal execution loop and workers. We replace the loop
9056 * method completely and override selected helpers to add necessary adjustments
9057 * to their core operation.
9058 *
9059 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9060 * any performance for debug and analysis features.
9061 *
9062 * @{
9063 */
9064
9065typedef struct VMXRUNDBGSTATE
9066{
9067 /** The RIP we started executing at. This is for detecting that we stepped. */
9068 uint64_t uRipStart;
9069 /** The CS we started executing with. */
9070 uint16_t uCsStart;
9071
9072 /** Whether we've actually modified the 1st execution control field. */
9073 bool fModifiedProcCtls : 1;
9074 /** Whether we've actually modified the 2nd execution control field. */
9075 bool fModifiedProcCtls2 : 1;
9076 /** Whether we've actually modified the exception bitmap. */
9077 bool fModifiedXcptBitmap : 1;
9078
9079 /** We desire the modified the CR0 mask to be cleared. */
9080 bool fClearCr0Mask : 1;
9081 /** We desire the modified the CR4 mask to be cleared. */
9082 bool fClearCr4Mask : 1;
9083 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9084 uint32_t fCpe1Extra;
9085 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9086 uint32_t fCpe1Unwanted;
9087 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9088 uint32_t fCpe2Extra;
9089 /** Extra stuff we need in */
9090 uint32_t bmXcptExtra;
9091 /** The sequence number of the Dtrace provider settings the state was
9092 * configured against. */
9093 uint32_t uDtraceSettingsSeqNo;
9094 /** Exits to check (one bit per exit). */
9095 uint32_t bmExitsToCheck[3];
9096
9097 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9098 uint32_t fProcCtlsInitial;
9099 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9100 uint32_t fProcCtls2Initial;
9101 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9102 uint32_t bmXcptInitial;
9103} VMXRUNDBGSTATE;
9104AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9105typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9106
9107
9108/**
9109 * Initializes the VMXRUNDBGSTATE structure.
9110 *
9111 * @param pVCpu The cross context virtual CPU structure of the
9112 * calling EMT.
9113 * @param pCtx The CPU register context to go with @a pVCpu.
9114 * @param pDbgState The structure to initialize.
9115 */
9116DECLINLINE(void) hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PCCPUMCTX pCtx, PVMXRUNDBGSTATE pDbgState)
9117{
9118 pDbgState->uRipStart = pCtx->rip;
9119 pDbgState->uCsStart = pCtx->cs.Sel;
9120
9121 pDbgState->fModifiedProcCtls = false;
9122 pDbgState->fModifiedProcCtls2 = false;
9123 pDbgState->fModifiedXcptBitmap = false;
9124 pDbgState->fClearCr0Mask = false;
9125 pDbgState->fClearCr4Mask = false;
9126 pDbgState->fCpe1Extra = 0;
9127 pDbgState->fCpe1Unwanted = 0;
9128 pDbgState->fCpe2Extra = 0;
9129 pDbgState->bmXcptExtra = 0;
9130 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9131 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9132 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9133}
9134
9135
9136/**
9137 * Updates the VMSC fields with changes requested by @a pDbgState.
9138 *
9139 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9140 * immediately before executing guest code, i.e. when interrupts are disabled.
9141 * We don't check status codes here as we cannot easily assert or return in the
9142 * latter case.
9143 *
9144 * @param pVCpu The cross context virtual CPU structure.
9145 * @param pDbgState The debug state.
9146 */
9147DECLINLINE(void) hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9148{
9149 /*
9150 * Ensure desired flags in VMCS control fields are set.
9151 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9152 *
9153 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9154 * there should be no stale data in pCtx at this point.
9155 */
9156 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9157 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9158 {
9159 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9160 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9161 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9162 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9163 pDbgState->fModifiedProcCtls = true;
9164 }
9165
9166 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9167 {
9168 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9169 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9170 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9171 pDbgState->fModifiedProcCtls2 = true;
9172 }
9173
9174 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9175 {
9176 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9177 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9178 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9179 pDbgState->fModifiedXcptBitmap = true;
9180 }
9181
9182 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32CR0Mask != 0)
9183 {
9184 pVCpu->hm.s.vmx.u32CR0Mask = 0;
9185 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9186 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9187 }
9188
9189 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32CR4Mask != 0)
9190 {
9191 pVCpu->hm.s.vmx.u32CR4Mask = 0;
9192 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9193 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9194 }
9195}
9196
9197
9198DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9199{
9200 /*
9201 * Restore exit control settings as we may not reenter this function the
9202 * next time around.
9203 */
9204 /* We reload the initial value, trigger what we can of recalculations the
9205 next time around. From the looks of things, that's all that's required atm. */
9206 if (pDbgState->fModifiedProcCtls)
9207 {
9208 if (!(pDbgState->fProcCtlsInitial & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9209 pDbgState->fProcCtlsInitial |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9210 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9211 AssertRCReturn(rc2, rc2);
9212 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9213 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_DEBUG);
9214 }
9215
9216 /* We're currently the only ones messing with this one, so just restore the
9217 cached value and reload the field. */
9218 if ( pDbgState->fModifiedProcCtls2
9219 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9220 {
9221 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9222 AssertRCReturn(rc2, rc2);
9223 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9224 }
9225
9226 /* If we've modified the exception bitmap, we restore it and trigger
9227 reloading and partial recalculation the next time around. */
9228 if (pDbgState->fModifiedXcptBitmap)
9229 {
9230 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9231 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS | HM_CHANGED_GUEST_CR0);
9232 }
9233
9234 /* We assume hmR0VmxLoadSharedCR0 will recalculate and load the CR0 mask. */
9235 if (pDbgState->fClearCr0Mask)
9236 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9237
9238 /* We assume hmR0VmxLoadGuestCR3AndCR4 will recalculate and load the CR4 mask. */
9239 if (pDbgState->fClearCr4Mask)
9240 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9241
9242 return rcStrict;
9243}
9244
9245
9246/**
9247 * Configures VM-exit controls for current DBGF and DTrace settings.
9248 *
9249 * This updates @a pDbgState and the VMCS execution control fields to reflect
9250 * the necessary exits demanded by DBGF and DTrace.
9251 *
9252 * @param pVM The cross context VM structure.
9253 * @param pVCpu The cross context virtual CPU structure.
9254 * @param pCtx Pointer to the guest-CPU context.
9255 * @param pDbgState The debug state.
9256 * @param pVmxTransient Pointer to the VMX transient structure. May update
9257 * fUpdateTscOffsettingAndPreemptTimer.
9258 */
9259static void hmR0VmxPreRunGuestDebugStateUpdate(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
9260 PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9261{
9262 /*
9263 * Take down the dtrace serial number so we can spot changes.
9264 */
9265 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9266 ASMCompilerBarrier();
9267
9268 /*
9269 * We'll rebuild most of the middle block of data members (holding the
9270 * current settings) as we go along here, so start by clearing it all.
9271 */
9272 pDbgState->bmXcptExtra = 0;
9273 pDbgState->fCpe1Extra = 0;
9274 pDbgState->fCpe1Unwanted = 0;
9275 pDbgState->fCpe2Extra = 0;
9276 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9277 pDbgState->bmExitsToCheck[i] = 0;
9278
9279 /*
9280 * Software interrupts (INT XXh) - no idea how to trigger these...
9281 */
9282 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9283 || VBOXVMM_INT_SOFTWARE_ENABLED())
9284 {
9285 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9286 }
9287
9288 /*
9289 * Exception bitmap and XCPT events+probes.
9290 */
9291 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9292 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9293 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9294
9295 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9296 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9297 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9298 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9299 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9300 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9301 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9302 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9303 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9304 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9305 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9306 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9307 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9308 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9309 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9310 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9311 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9312 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9313
9314 if (pDbgState->bmXcptExtra)
9315 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9316
9317 /*
9318 * Process events and probes for VM exits, making sure we get the wanted exits.
9319 *
9320 * Note! This is the reverse of waft hmR0VmxHandleExitDtraceEvents does.
9321 * So, when adding/changing/removing please don't forget to update it.
9322 *
9323 * Some of the macros are picking up local variables to save horizontal space,
9324 * (being able to see it in a table is the lesser evil here).
9325 */
9326#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9327 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9328 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9329#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9330 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9331 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9332 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9333 } else do { } while (0)
9334#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9335 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9336 { \
9337 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9338 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9339 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9340 } else do { } while (0)
9341#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9342 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9343 { \
9344 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9345 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9346 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9347 } else do { } while (0)
9348#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9349 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9350 { \
9351 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9352 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9353 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9354 } else do { } while (0)
9355
9356 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9357 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9358 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9359 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9360 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9361
9362 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9363 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9364 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9365 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9366 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT); /* paranoia */
9367 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9368 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9369 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9370 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9371 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9372 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
9373 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9374 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9375 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9376 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9377 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9378 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9379 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9380 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9381 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9382 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9383 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9384 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9385 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9386 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9387 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9388 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9389 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9390 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9391 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9392 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9393 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9394 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9395 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9396 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9397 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9398
9399 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9400 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9401 {
9402 int rc2 = hmR0VmxSaveGuestCR0(pVCpu, pCtx);
9403 rc2 |= hmR0VmxSaveGuestCR4(pVCpu, pCtx);
9404 rc2 |= hmR0VmxSaveGuestApicState(pVCpu, pCtx);
9405 AssertRC(rc2);
9406
9407#if 0 /** @todo fix me */
9408 pDbgState->fClearCr0Mask = true;
9409 pDbgState->fClearCr4Mask = true;
9410#endif
9411 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9412 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT;
9413 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9414 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT;
9415 pDbgState->fCpe1Unwanted |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* risky? */
9416 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9417 require clearing here and in the loop if we start using it. */
9418 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9419 }
9420 else
9421 {
9422 if (pDbgState->fClearCr0Mask)
9423 {
9424 pDbgState->fClearCr0Mask = false;
9425 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9426 }
9427 if (pDbgState->fClearCr4Mask)
9428 {
9429 pDbgState->fClearCr4Mask = false;
9430 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9431 }
9432 }
9433 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9434 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9435
9436 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9437 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9438 {
9439 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9440 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9441 }
9442 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9443 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9444
9445 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS); /* risky clearing this? */
9446 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9447 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
9448 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9449 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT); /* paranoia */
9450 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9451 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT); /* paranoia */
9452 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9453#if 0 /** @todo too slow, fix handler. */
9454 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
9455#endif
9456 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9457
9458 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9459 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9460 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9461 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9462 {
9463 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9464 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9465 }
9466 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9467 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9468 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9469 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9470
9471 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9472 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9473 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9474 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9475 {
9476 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9477 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9478 }
9479 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9480 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9481 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9482 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9483
9484 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9485 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9486 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9487 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9488 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9489 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9490 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
9491 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9492 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9493 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9494 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
9495 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9496 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9497 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9498 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9499 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9500 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
9501 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9502 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9503 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9504 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9505 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9506
9507#undef IS_EITHER_ENABLED
9508#undef SET_ONLY_XBM_IF_EITHER_EN
9509#undef SET_CPE1_XBM_IF_EITHER_EN
9510#undef SET_CPEU_XBM_IF_EITHER_EN
9511#undef SET_CPE2_XBM_IF_EITHER_EN
9512
9513 /*
9514 * Sanitize the control stuff.
9515 */
9516 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
9517 if (pDbgState->fCpe2Extra)
9518 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
9519 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
9520 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
9521 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9522 {
9523 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9524 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9525 }
9526
9527 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9528 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9529 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9530 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9531}
9532
9533
9534/**
9535 * Fires off DBGF events and dtrace probes for an exit, when it's appropriate.
9536 *
9537 * The caller has checked exit against the VMXRUNDBGSTATE::bmExitsToCheck
9538 * bitmap. The caller has checked for NMIs already, so we don't have to do that
9539 * either.
9540 *
9541 * @returns Strict VBox status code (i.e. informational status codes too).
9542 * @param pVM The cross context VM structure.
9543 * @param pVCpu The cross context virtual CPU structure.
9544 * @param pMixedCtx Pointer to the guest-CPU context.
9545 * @param pVmxTransient Pointer to the VMX-transient structure.
9546 * @param uExitReason The VM-exit reason.
9547 *
9548 * @remarks The name of this function is displayed by dtrace, so keep it short
9549 * and to the point. No longer than 33 chars long, please.
9550 */
9551static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx,
9552 PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9553{
9554 /*
9555 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9556 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9557 *
9558 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9559 * does. Must add/change/remove both places. Same ordering, please.
9560 *
9561 * Added/removed events must also be reflected in the next section
9562 * where we dispatch dtrace events.
9563 */
9564 bool fDtrace1 = false;
9565 bool fDtrace2 = false;
9566 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9567 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9568 uint32_t uEventArg = 0;
9569#define SET_EXIT(a_EventSubName) \
9570 do { \
9571 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9572 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9573 } while (0)
9574#define SET_BOTH(a_EventSubName) \
9575 do { \
9576 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9577 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9578 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9579 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9580 } while (0)
9581 switch (uExitReason)
9582 {
9583 case VMX_EXIT_MTF:
9584 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9585
9586 case VMX_EXIT_XCPT_OR_NMI:
9587 {
9588 uint8_t const idxVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9589 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo))
9590 {
9591 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9592 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT:
9593 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT:
9594 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9595 {
9596 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uExitIntInfo))
9597 {
9598 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9599 uEventArg = pVmxTransient->uExitIntErrorCode;
9600 }
9601 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9602 switch (enmEvent1)
9603 {
9604 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9605 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9606 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9607 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9608 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9609 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9610 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9611 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9612 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9613 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9614 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9615 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9616 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9617 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9618 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9619 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9620 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9621 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9622 default: break;
9623 }
9624 }
9625 else
9626 AssertFailed();
9627 break;
9628
9629 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
9630 uEventArg = idxVector;
9631 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9632 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9633 break;
9634 }
9635 break;
9636 }
9637
9638 case VMX_EXIT_TRIPLE_FAULT:
9639 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9640 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9641 break;
9642 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9643 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9644 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9645 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9646 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9647
9648 /* Instruction specific VM-exits: */
9649 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9650 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9651 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9652 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9653 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9654 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9655 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9656 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9657 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9658 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9659 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9660 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9661 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9662 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9663 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9664 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9665 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9666 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9667 case VMX_EXIT_MOV_CRX:
9668 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9669/** @todo r=bird: I feel these macros aren't very descriptive and needs to be at least 30 chars longer! ;-)
9670* Sensible abbreviations strongly recommended here because even with 130 columns this stuff get too wide! */
9671 if ( VMX_EXIT_QUALIFICATION_CRX_ACCESS(pVmxTransient->uExitQualification)
9672 == VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ)
9673 SET_BOTH(CRX_READ);
9674 else
9675 SET_BOTH(CRX_WRITE);
9676 uEventArg = VMX_EXIT_QUALIFICATION_CRX_REGISTER(pVmxTransient->uExitQualification);
9677 break;
9678 case VMX_EXIT_MOV_DRX:
9679 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9680 if ( VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification)
9681 == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_READ)
9682 SET_BOTH(DRX_READ);
9683 else
9684 SET_BOTH(DRX_WRITE);
9685 uEventArg = VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification);
9686 break;
9687 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9688 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9689 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9690 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9691 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9692 case VMX_EXIT_XDTR_ACCESS:
9693 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9694 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_XDTR_INSINFO_INSTR_ID))
9695 {
9696 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9697 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9698 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9699 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9700 }
9701 break;
9702
9703 case VMX_EXIT_TR_ACCESS:
9704 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9705 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_YYTR_INSINFO_INSTR_ID))
9706 {
9707 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9708 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9709 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9710 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9711 }
9712 break;
9713
9714 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9715 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9716 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9717 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9718 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9719 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9720 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9721 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9722 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9723 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9724 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9725
9726 /* Events that aren't relevant at this point. */
9727 case VMX_EXIT_EXT_INT:
9728 case VMX_EXIT_INT_WINDOW:
9729 case VMX_EXIT_NMI_WINDOW:
9730 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9731 case VMX_EXIT_PREEMPT_TIMER:
9732 case VMX_EXIT_IO_INSTR:
9733 break;
9734
9735 /* Errors and unexpected events. */
9736 case VMX_EXIT_INIT_SIGNAL:
9737 case VMX_EXIT_SIPI:
9738 case VMX_EXIT_IO_SMI:
9739 case VMX_EXIT_SMI:
9740 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9741 case VMX_EXIT_ERR_MSR_LOAD:
9742 case VMX_EXIT_ERR_MACHINE_CHECK:
9743 break;
9744
9745 default:
9746 AssertMsgFailed(("Unexpected exit=%#x\n", uExitReason));
9747 break;
9748 }
9749#undef SET_BOTH
9750#undef SET_EXIT
9751
9752 /*
9753 * Dtrace tracepoints go first. We do them here at once so we don't
9754 * have to copy the guest state saving and stuff a few dozen times.
9755 * Down side is that we've got to repeat the switch, though this time
9756 * we use enmEvent since the probes are a subset of what DBGF does.
9757 */
9758 if (fDtrace1 || fDtrace2)
9759 {
9760 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9761 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9762 switch (enmEvent1)
9763 {
9764 /** @todo consider which extra parameters would be helpful for each probe. */
9765 case DBGFEVENT_END: break;
9766 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pMixedCtx); break;
9767 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pMixedCtx, pMixedCtx->dr[6]); break;
9768 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pMixedCtx); break;
9769 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pMixedCtx); break;
9770 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pMixedCtx); break;
9771 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pMixedCtx); break;
9772 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pMixedCtx); break;
9773 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pMixedCtx); break;
9774 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pMixedCtx, uEventArg); break;
9775 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pMixedCtx, uEventArg); break;
9776 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pMixedCtx, uEventArg); break;
9777 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pMixedCtx, uEventArg); break;
9778 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pMixedCtx, uEventArg, pMixedCtx->cr2); break;
9779 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pMixedCtx); break;
9780 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pMixedCtx); break;
9781 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pMixedCtx); break;
9782 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pMixedCtx); break;
9783 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pMixedCtx, uEventArg); break;
9784 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9785 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
9786 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pMixedCtx); break;
9787 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pMixedCtx); break;
9788 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pMixedCtx); break;
9789 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pMixedCtx); break;
9790 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pMixedCtx); break;
9791 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pMixedCtx); break;
9792 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pMixedCtx); break;
9793 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9794 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9795 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9796 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9797 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
9798 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
9799 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
9800 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pMixedCtx); break;
9801 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pMixedCtx); break;
9802 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pMixedCtx); break;
9803 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pMixedCtx); break;
9804 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pMixedCtx); break;
9805 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pMixedCtx); break;
9806 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pMixedCtx); break;
9807 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pMixedCtx); break;
9808 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pMixedCtx); break;
9809 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pMixedCtx); break;
9810 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pMixedCtx); break;
9811 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pMixedCtx); break;
9812 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pMixedCtx); break;
9813 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pMixedCtx); break;
9814 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pMixedCtx); break;
9815 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pMixedCtx); break;
9816 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pMixedCtx); break;
9817 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pMixedCtx); break;
9818 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pMixedCtx); break;
9819 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
9820 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
9821 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
9822 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pMixedCtx); break;
9823 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pMixedCtx); break;
9824 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pMixedCtx); break;
9825 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pMixedCtx); break;
9826 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pMixedCtx); break;
9827 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pMixedCtx); break;
9828 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pMixedCtx); break;
9829 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pMixedCtx); break;
9830 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pMixedCtx); break;
9831 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pMixedCtx); break;
9832 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9833 }
9834 switch (enmEvent2)
9835 {
9836 /** @todo consider which extra parameters would be helpful for each probe. */
9837 case DBGFEVENT_END: break;
9838 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pMixedCtx); break;
9839 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
9840 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pMixedCtx); break;
9841 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pMixedCtx); break;
9842 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pMixedCtx); break;
9843 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pMixedCtx); break;
9844 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pMixedCtx); break;
9845 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pMixedCtx); break;
9846 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pMixedCtx); break;
9847 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9848 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9849 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9850 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9851 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
9852 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
9853 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
9854 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pMixedCtx); break;
9855 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pMixedCtx); break;
9856 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pMixedCtx); break;
9857 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pMixedCtx); break;
9858 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pMixedCtx); break;
9859 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pMixedCtx); break;
9860 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pMixedCtx); break;
9861 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pMixedCtx); break;
9862 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pMixedCtx); break;
9863 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pMixedCtx); break;
9864 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pMixedCtx); break;
9865 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pMixedCtx); break;
9866 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pMixedCtx); break;
9867 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pMixedCtx); break;
9868 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pMixedCtx); break;
9869 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pMixedCtx); break;
9870 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pMixedCtx); break;
9871 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pMixedCtx); break;
9872 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pMixedCtx); break;
9873 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
9874 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
9875 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
9876 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pMixedCtx); break;
9877 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pMixedCtx); break;
9878 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pMixedCtx); break;
9879 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pMixedCtx); break;
9880 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pMixedCtx); break;
9881 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pMixedCtx); break;
9882 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pMixedCtx); break;
9883 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pMixedCtx); break;
9884 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pMixedCtx); break;
9885 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pMixedCtx); break;
9886 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pMixedCtx); break;
9887 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pMixedCtx); break;
9888 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pMixedCtx); break;
9889 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pMixedCtx); break;
9890 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9891 }
9892 }
9893
9894 /*
9895 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9896 * the DBGF call will do a full check).
9897 *
9898 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9899 * Note! If we have to events, we prioritize the first, i.e. the instruction
9900 * one, in order to avoid event nesting.
9901 */
9902 if ( enmEvent1 != DBGFEVENT_END
9903 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9904 {
9905 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent1, uEventArg, DBGFEVENTCTX_HM);
9906 if (rcStrict != VINF_SUCCESS)
9907 return rcStrict;
9908 }
9909 else if ( enmEvent2 != DBGFEVENT_END
9910 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9911 {
9912 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent2, uEventArg, DBGFEVENTCTX_HM);
9913 if (rcStrict != VINF_SUCCESS)
9914 return rcStrict;
9915 }
9916
9917 return VINF_SUCCESS;
9918}
9919
9920
9921/**
9922 * Single-stepping VM-exit filtering.
9923 *
9924 * This is preprocessing the exits and deciding whether we've gotten far enough
9925 * to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit handling is
9926 * performed.
9927 *
9928 * @returns Strict VBox status code (i.e. informational status codes too).
9929 * @param pVM The cross context VM structure.
9930 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9931 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
9932 * out-of-sync. Make sure to update the required
9933 * fields before using them.
9934 * @param pVmxTransient Pointer to the VMX-transient structure.
9935 * @param uExitReason The VM-exit reason.
9936 * @param pDbgState The debug state.
9937 */
9938DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
9939 uint32_t uExitReason, PVMXRUNDBGSTATE pDbgState)
9940{
9941 /*
9942 * Expensive (saves context) generic dtrace exit probe.
9943 */
9944 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9945 { /* more likely */ }
9946 else
9947 {
9948 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9949 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9950 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pMixedCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQualification);
9951 }
9952
9953 /*
9954 * Check for host NMI, just to get that out of the way.
9955 */
9956 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9957 { /* normally likely */ }
9958 else
9959 {
9960 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9961 AssertRCReturn(rc2, rc2);
9962 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
9963 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9964 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
9965 }
9966
9967 /*
9968 * Check for single stepping event if we're stepping.
9969 */
9970 if (pVCpu->hm.s.fSingleInstruction)
9971 {
9972 switch (uExitReason)
9973 {
9974 case VMX_EXIT_MTF:
9975 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9976
9977 /* Various events: */
9978 case VMX_EXIT_XCPT_OR_NMI:
9979 case VMX_EXIT_EXT_INT:
9980 case VMX_EXIT_TRIPLE_FAULT:
9981 case VMX_EXIT_INT_WINDOW:
9982 case VMX_EXIT_NMI_WINDOW:
9983 case VMX_EXIT_TASK_SWITCH:
9984 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9985 case VMX_EXIT_APIC_ACCESS:
9986 case VMX_EXIT_EPT_VIOLATION:
9987 case VMX_EXIT_EPT_MISCONFIG:
9988 case VMX_EXIT_PREEMPT_TIMER:
9989
9990 /* Instruction specific VM-exits: */
9991 case VMX_EXIT_CPUID:
9992 case VMX_EXIT_GETSEC:
9993 case VMX_EXIT_HLT:
9994 case VMX_EXIT_INVD:
9995 case VMX_EXIT_INVLPG:
9996 case VMX_EXIT_RDPMC:
9997 case VMX_EXIT_RDTSC:
9998 case VMX_EXIT_RSM:
9999 case VMX_EXIT_VMCALL:
10000 case VMX_EXIT_VMCLEAR:
10001 case VMX_EXIT_VMLAUNCH:
10002 case VMX_EXIT_VMPTRLD:
10003 case VMX_EXIT_VMPTRST:
10004 case VMX_EXIT_VMREAD:
10005 case VMX_EXIT_VMRESUME:
10006 case VMX_EXIT_VMWRITE:
10007 case VMX_EXIT_VMXOFF:
10008 case VMX_EXIT_VMXON:
10009 case VMX_EXIT_MOV_CRX:
10010 case VMX_EXIT_MOV_DRX:
10011 case VMX_EXIT_IO_INSTR:
10012 case VMX_EXIT_RDMSR:
10013 case VMX_EXIT_WRMSR:
10014 case VMX_EXIT_MWAIT:
10015 case VMX_EXIT_MONITOR:
10016 case VMX_EXIT_PAUSE:
10017 case VMX_EXIT_XDTR_ACCESS:
10018 case VMX_EXIT_TR_ACCESS:
10019 case VMX_EXIT_INVEPT:
10020 case VMX_EXIT_RDTSCP:
10021 case VMX_EXIT_INVVPID:
10022 case VMX_EXIT_WBINVD:
10023 case VMX_EXIT_XSETBV:
10024 case VMX_EXIT_RDRAND:
10025 case VMX_EXIT_INVPCID:
10026 case VMX_EXIT_VMFUNC:
10027 case VMX_EXIT_RDSEED:
10028 case VMX_EXIT_XSAVES:
10029 case VMX_EXIT_XRSTORS:
10030 {
10031 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10032 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10033 AssertRCReturn(rc2, rc2);
10034 if ( pMixedCtx->rip != pDbgState->uRipStart
10035 || pMixedCtx->cs.Sel != pDbgState->uCsStart)
10036 return VINF_EM_DBG_STEPPED;
10037 break;
10038 }
10039
10040 /* Errors and unexpected events: */
10041 case VMX_EXIT_INIT_SIGNAL:
10042 case VMX_EXIT_SIPI:
10043 case VMX_EXIT_IO_SMI:
10044 case VMX_EXIT_SMI:
10045 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10046 case VMX_EXIT_ERR_MSR_LOAD:
10047 case VMX_EXIT_ERR_MACHINE_CHECK:
10048 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
10049 break;
10050
10051 default:
10052 AssertMsgFailed(("Unexpected exit=%#x\n", uExitReason));
10053 break;
10054 }
10055 }
10056
10057 /*
10058 * Check for debugger event breakpoints and dtrace probes.
10059 */
10060 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10061 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10062 {
10063 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVM, pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10064 if (rcStrict != VINF_SUCCESS)
10065 return rcStrict;
10066 }
10067
10068 /*
10069 * Normal processing.
10070 */
10071#ifdef HMVMX_USE_FUNCTION_TABLE
10072 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
10073#else
10074 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10075#endif
10076}
10077
10078
10079/**
10080 * Single steps guest code using VT-x.
10081 *
10082 * @returns Strict VBox status code (i.e. informational status codes too).
10083 * @param pVM The cross context VM structure.
10084 * @param pVCpu The cross context virtual CPU structure.
10085 * @param pCtx Pointer to the guest-CPU context.
10086 *
10087 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10088 */
10089static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10090{
10091 VMXTRANSIENT VmxTransient;
10092 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10093
10094 /* Set HMCPU indicators. */
10095 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10096 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10097 pVCpu->hm.s.fDebugWantRdTscExit = false;
10098 pVCpu->hm.s.fUsingDebugLoop = true;
10099
10100 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10101 VMXRUNDBGSTATE DbgState;
10102 hmR0VmxRunDebugStateInit(pVCpu, pCtx, &DbgState);
10103 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10104
10105 /*
10106 * The loop.
10107 */
10108 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10109 for (uint32_t cLoops = 0; ; cLoops++)
10110 {
10111 Assert(!HMR0SuspendPending());
10112 HMVMX_ASSERT_CPU_SAFE();
10113 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10114
10115 /*
10116 * Preparatory work for running guest code, this may force us to return
10117 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10118 */
10119 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10120 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10121 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, fStepping);
10122 if (rcStrict != VINF_SUCCESS)
10123 break;
10124
10125 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
10126 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10127
10128 /*
10129 * Now we can run the guest code.
10130 */
10131 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
10132
10133 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
10134
10135 /*
10136 * Restore any residual host-state and save any bits shared between host
10137 * and guest into the guest-CPU state. Re-enables interrupts!
10138 */
10139 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, VBOXSTRICTRC_TODO(rcStrict));
10140
10141 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10142 if (RT_SUCCESS(rcRun))
10143 { /* very likely */ }
10144 else
10145 {
10146 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
10147 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
10148 return rcRun;
10149 }
10150
10151 /* Profile the VM-exit. */
10152 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10153 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10154 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10155 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
10156 HMVMX_START_EXIT_DISPATCH_PROF();
10157
10158 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
10159
10160 /*
10161 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10162 */
10163 rcStrict = hmR0VmxRunDebugHandleExit(pVM, pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, &DbgState);
10164 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
10165 if (rcStrict != VINF_SUCCESS)
10166 break;
10167 if (cLoops > pVM->hm.s.cMaxResumeLoops)
10168 {
10169 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10170 rcStrict = VINF_EM_RAW_INTERRUPT;
10171 break;
10172 }
10173
10174 /*
10175 * Stepping: Did the RIP change, if so, consider it a single step.
10176 * Otherwise, make sure one of the TFs gets set.
10177 */
10178 if (fStepping)
10179 {
10180 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
10181 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
10182 AssertRCReturn(rc2, rc2);
10183 if ( pCtx->rip != DbgState.uRipStart
10184 || pCtx->cs.Sel != DbgState.uCsStart)
10185 {
10186 rcStrict = VINF_EM_DBG_STEPPED;
10187 break;
10188 }
10189 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10190 }
10191
10192 /*
10193 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10194 */
10195 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10196 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10197 }
10198
10199 /*
10200 * Clear the X86_EFL_TF if necessary.
10201 */
10202 if (pVCpu->hm.s.fClearTrapFlag)
10203 {
10204 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
10205 AssertRCReturn(rc2, rc2);
10206 pVCpu->hm.s.fClearTrapFlag = false;
10207 pCtx->eflags.Bits.u1TF = 0;
10208 }
10209 /** @todo there seems to be issues with the resume flag when the monitor trap
10210 * flag is pending without being used. Seen early in bios init when
10211 * accessing APIC page in protected mode. */
10212
10213 /*
10214 * Restore VM-exit control settings as we may not reenter this function the
10215 * next time around.
10216 */
10217 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10218
10219 /* Restore HMCPU indicators. */
10220 pVCpu->hm.s.fUsingDebugLoop = false;
10221 pVCpu->hm.s.fDebugWantRdTscExit = false;
10222 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10223
10224 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10225 return rcStrict;
10226}
10227
10228
10229/** @} */
10230
10231
10232/**
10233 * Checks if any expensive dtrace probes are enabled and we should go to the
10234 * debug loop.
10235 *
10236 * @returns true if we should use debug loop, false if not.
10237 */
10238static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10239{
10240 /* It's probably faster to OR the raw 32-bit counter variables together.
10241 Since the variables are in an array and the probes are next to one
10242 another (more or less), we have good locality. So, better read
10243 eight-nine cache lines ever time and only have one conditional, than
10244 128+ conditionals, right? */
10245 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10246 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10247 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10248 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10249 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10250 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10251 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10252 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10253 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10254 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10255 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10256 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10257 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10258 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10259 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10260 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10261 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10262 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10263 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10264 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10265 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10266 ) != 0
10267 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10268 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10269 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10270 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10271 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10272 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10273 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10274 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10275 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10276 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10277 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10278 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10279 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10280 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10281 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10282 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10283 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10284 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10285 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10286 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10287 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10288 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10289 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10290 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10291 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10292 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10293 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10294 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10295 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10296 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10297 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10298 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10299 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10300 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10301 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10302 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10303 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10304 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10305 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10306 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10307 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10308 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10309 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10310 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10311 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10312 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10313 ) != 0
10314 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10315 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10316 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10317 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10318 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10319 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10320 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10321 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10322 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10323 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10324 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10325 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10326 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10327 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10328 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10329 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10330 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10331 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10332 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10333 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10334 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10335 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10336 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10337 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10338 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10339 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10340 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10341 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10342 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10343 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10344 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10345 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10346 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10347 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10348 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10349 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10350 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10351 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10352 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10353 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10354 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10355 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10356 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10357 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10358 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10359 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10360 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10361 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10362 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10363 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10364 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10365 ) != 0;
10366}
10367
10368
10369/**
10370 * Runs the guest code using VT-x.
10371 *
10372 * @returns Strict VBox status code (i.e. informational status codes too).
10373 * @param pVM The cross context VM structure.
10374 * @param pVCpu The cross context virtual CPU structure.
10375 * @param pCtx Pointer to the guest-CPU context.
10376 */
10377VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10378{
10379 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10380 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
10381 HMVMX_ASSERT_PREEMPT_SAFE();
10382
10383 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10384
10385 VBOXSTRICTRC rcStrict;
10386 if ( !pVCpu->hm.s.fUseDebugLoop
10387 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10388 && !DBGFIsStepping(pVCpu) )
10389 rcStrict = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
10390 else
10391 rcStrict = hmR0VmxRunGuestCodeDebug(pVM, pVCpu, pCtx);
10392
10393 if (rcStrict == VERR_EM_INTERPRETER)
10394 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10395 else if (rcStrict == VINF_EM_RESET)
10396 rcStrict = VINF_EM_TRIPLE_FAULT;
10397
10398 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rcStrict);
10399 if (RT_FAILURE(rc2))
10400 {
10401 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10402 rcStrict = rc2;
10403 }
10404 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10405 return rcStrict;
10406}
10407
10408
10409#ifndef HMVMX_USE_FUNCTION_TABLE
10410DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10411{
10412# ifdef DEBUG_ramshankar
10413# define RETURN_EXIT_CALL(a_CallExpr) \
10414 do { \
10415 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); \
10416 VBOXSTRICTRC rcStrict = a_CallExpr; \
10417 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); \
10418 return rcStrict; \
10419 } while (0)
10420# else
10421# define RETURN_EXIT_CALL(a_CallExpr) return a_CallExpr
10422# endif
10423 switch (rcReason)
10424 {
10425 case VMX_EXIT_EPT_MISCONFIG: RETURN_EXIT_CALL(hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient));
10426 case VMX_EXIT_EPT_VIOLATION: RETURN_EXIT_CALL(hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient));
10427 case VMX_EXIT_IO_INSTR: RETURN_EXIT_CALL(hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient));
10428 case VMX_EXIT_CPUID: RETURN_EXIT_CALL(hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient));
10429 case VMX_EXIT_RDTSC: RETURN_EXIT_CALL(hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient));
10430 case VMX_EXIT_RDTSCP: RETURN_EXIT_CALL(hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient));
10431 case VMX_EXIT_APIC_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient));
10432 case VMX_EXIT_XCPT_OR_NMI: RETURN_EXIT_CALL(hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient));
10433 case VMX_EXIT_MOV_CRX: RETURN_EXIT_CALL(hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient));
10434 case VMX_EXIT_EXT_INT: RETURN_EXIT_CALL(hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient));
10435 case VMX_EXIT_INT_WINDOW: RETURN_EXIT_CALL(hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient));
10436 case VMX_EXIT_MWAIT: RETURN_EXIT_CALL(hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient));
10437 case VMX_EXIT_MONITOR: RETURN_EXIT_CALL(hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient));
10438 case VMX_EXIT_TASK_SWITCH: RETURN_EXIT_CALL(hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient));
10439 case VMX_EXIT_PREEMPT_TIMER: RETURN_EXIT_CALL(hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient));
10440 case VMX_EXIT_RDMSR: RETURN_EXIT_CALL(hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient));
10441 case VMX_EXIT_WRMSR: RETURN_EXIT_CALL(hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient));
10442 case VMX_EXIT_MOV_DRX: RETURN_EXIT_CALL(hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient));
10443 case VMX_EXIT_TPR_BELOW_THRESHOLD: RETURN_EXIT_CALL(hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient));
10444 case VMX_EXIT_HLT: RETURN_EXIT_CALL(hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient));
10445 case VMX_EXIT_INVD: RETURN_EXIT_CALL(hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient));
10446 case VMX_EXIT_INVLPG: RETURN_EXIT_CALL(hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient));
10447 case VMX_EXIT_RSM: RETURN_EXIT_CALL(hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient));
10448 case VMX_EXIT_MTF: RETURN_EXIT_CALL(hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient));
10449 case VMX_EXIT_PAUSE: RETURN_EXIT_CALL(hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient));
10450 case VMX_EXIT_XDTR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10451 case VMX_EXIT_TR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10452 case VMX_EXIT_WBINVD: RETURN_EXIT_CALL(hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient));
10453 case VMX_EXIT_XSETBV: RETURN_EXIT_CALL(hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient));
10454 case VMX_EXIT_RDRAND: RETURN_EXIT_CALL(hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient));
10455 case VMX_EXIT_INVPCID: RETURN_EXIT_CALL(hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient));
10456 case VMX_EXIT_GETSEC: RETURN_EXIT_CALL(hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient));
10457 case VMX_EXIT_RDPMC: RETURN_EXIT_CALL(hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient));
10458 case VMX_EXIT_VMCALL: RETURN_EXIT_CALL(hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient));
10459
10460 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient);
10461 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient);
10462 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient);
10463 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient);
10464 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient);
10465 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient);
10466 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient);
10467 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient);
10468 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient);
10469
10470 case VMX_EXIT_VMCLEAR:
10471 case VMX_EXIT_VMLAUNCH:
10472 case VMX_EXIT_VMPTRLD:
10473 case VMX_EXIT_VMPTRST:
10474 case VMX_EXIT_VMREAD:
10475 case VMX_EXIT_VMRESUME:
10476 case VMX_EXIT_VMWRITE:
10477 case VMX_EXIT_VMXOFF:
10478 case VMX_EXIT_VMXON:
10479 case VMX_EXIT_INVEPT:
10480 case VMX_EXIT_INVVPID:
10481 case VMX_EXIT_VMFUNC:
10482 case VMX_EXIT_XSAVES:
10483 case VMX_EXIT_XRSTORS:
10484 return hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
10485 case VMX_EXIT_RESERVED_60:
10486 case VMX_EXIT_RDSEED: /* only spurious exits, so undefined */
10487 case VMX_EXIT_RESERVED_62:
10488 default:
10489 return hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
10490 }
10491#undef RETURN_EXIT_CALL
10492}
10493#endif /* !HMVMX_USE_FUNCTION_TABLE */
10494
10495
10496#ifdef VBOX_STRICT
10497/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10498# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10499 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10500
10501# define HMVMX_ASSERT_PREEMPT_CPUID() \
10502 do { \
10503 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10504 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10505 } while (0)
10506
10507# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10508 do { \
10509 AssertPtr(pVCpu); \
10510 AssertPtr(pMixedCtx); \
10511 AssertPtr(pVmxTransient); \
10512 Assert(pVmxTransient->fVMEntryFailed == false); \
10513 Assert(ASMIntAreEnabled()); \
10514 HMVMX_ASSERT_PREEMPT_SAFE(); \
10515 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10516 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
10517 HMVMX_ASSERT_PREEMPT_SAFE(); \
10518 if (VMMR0IsLogFlushDisabled(pVCpu)) \
10519 HMVMX_ASSERT_PREEMPT_CPUID(); \
10520 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10521 } while (0)
10522
10523# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
10524 do { \
10525 Log4Func(("\n")); \
10526 } while (0)
10527#else /* nonstrict builds: */
10528# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10529 do { \
10530 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10531 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
10532 } while (0)
10533# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
10534#endif
10535
10536
10537/**
10538 * Advances the guest RIP by the specified number of bytes.
10539 *
10540 * @param pVCpu The cross context virtual CPU structure.
10541 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10542 * out-of-sync. Make sure to update the required fields
10543 * before using them.
10544 * @param cbInstr Number of bytes to advance the RIP by.
10545 *
10546 * @remarks No-long-jump zone!!!
10547 */
10548DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
10549{
10550 /* Advance the RIP. */
10551 pMixedCtx->rip += cbInstr;
10552 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10553
10554 /* Update interrupt inhibition. */
10555 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10556 && pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
10557 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10558}
10559
10560
10561/**
10562 * Advances the guest RIP after reading it from the VMCS.
10563 *
10564 * @returns VBox status code, no informational status codes.
10565 * @param pVCpu The cross context virtual CPU structure.
10566 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10567 * out-of-sync. Make sure to update the required fields
10568 * before using them.
10569 * @param pVmxTransient Pointer to the VMX transient structure.
10570 *
10571 * @remarks No-long-jump zone!!!
10572 */
10573static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10574{
10575 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10576 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10577 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10578 AssertRCReturn(rc, rc);
10579
10580 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, pVmxTransient->cbInstr);
10581
10582 /*
10583 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10584 * pending debug exception field as it takes care of priority of events.
10585 *
10586 * See Intel spec. 32.2.1 "Debug Exceptions".
10587 */
10588 if ( !pVCpu->hm.s.fSingleInstruction
10589 && pMixedCtx->eflags.Bits.u1TF)
10590 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10591
10592 return VINF_SUCCESS;
10593}
10594
10595
10596/**
10597 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10598 * and update error record fields accordingly.
10599 *
10600 * @return VMX_IGS_* return codes.
10601 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10602 * wrong with the guest state.
10603 *
10604 * @param pVM The cross context VM structure.
10605 * @param pVCpu The cross context virtual CPU structure.
10606 * @param pCtx Pointer to the guest-CPU state.
10607 *
10608 * @remarks This function assumes our cache of the VMCS controls
10609 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10610 */
10611static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10612{
10613#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10614#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10615 uError = (err); \
10616 break; \
10617 } else do { } while (0)
10618
10619 int rc;
10620 uint32_t uError = VMX_IGS_ERROR;
10621 uint32_t u32Val;
10622 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10623
10624 do
10625 {
10626 /*
10627 * CR0.
10628 */
10629 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10630 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10631 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10632 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10633 if (fUnrestrictedGuest)
10634 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
10635
10636 uint32_t u32GuestCR0;
10637 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
10638 AssertRCBreak(rc);
10639 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
10640 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
10641 if ( !fUnrestrictedGuest
10642 && (u32GuestCR0 & X86_CR0_PG)
10643 && !(u32GuestCR0 & X86_CR0_PE))
10644 {
10645 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10646 }
10647
10648 /*
10649 * CR4.
10650 */
10651 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10652 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10653
10654 uint32_t u32GuestCR4;
10655 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
10656 AssertRCBreak(rc);
10657 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
10658 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
10659
10660 /*
10661 * IA32_DEBUGCTL MSR.
10662 */
10663 uint64_t u64Val;
10664 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10665 AssertRCBreak(rc);
10666 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10667 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10668 {
10669 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10670 }
10671 uint64_t u64DebugCtlMsr = u64Val;
10672
10673#ifdef VBOX_STRICT
10674 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10675 AssertRCBreak(rc);
10676 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10677#endif
10678 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
10679
10680 /*
10681 * RIP and RFLAGS.
10682 */
10683 uint32_t u32Eflags;
10684#if HC_ARCH_BITS == 64
10685 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10686 AssertRCBreak(rc);
10687 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10688 if ( !fLongModeGuest
10689 || !pCtx->cs.Attr.n.u1Long)
10690 {
10691 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10692 }
10693 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10694 * must be identical if the "IA-32e mode guest" VM-entry
10695 * control is 1 and CS.L is 1. No check applies if the
10696 * CPU supports 64 linear-address bits. */
10697
10698 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10699 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10700 AssertRCBreak(rc);
10701 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10702 VMX_IGS_RFLAGS_RESERVED);
10703 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10704 u32Eflags = u64Val;
10705#else
10706 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10707 AssertRCBreak(rc);
10708 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10709 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10710#endif
10711
10712 if ( fLongModeGuest
10713 || ( fUnrestrictedGuest
10714 && !(u32GuestCR0 & X86_CR0_PE)))
10715 {
10716 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10717 }
10718
10719 uint32_t u32EntryInfo;
10720 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10721 AssertRCBreak(rc);
10722 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
10723 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
10724 {
10725 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10726 }
10727
10728 /*
10729 * 64-bit checks.
10730 */
10731#if HC_ARCH_BITS == 64
10732 if (fLongModeGuest)
10733 {
10734 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10735 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10736 }
10737
10738 if ( !fLongModeGuest
10739 && (u32GuestCR4 & X86_CR4_PCIDE))
10740 {
10741 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10742 }
10743
10744 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10745 * 51:32 beyond the processor's physical-address width are 0. */
10746
10747 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10748 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10749 {
10750 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10751 }
10752
10753 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10754 AssertRCBreak(rc);
10755 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10756
10757 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10758 AssertRCBreak(rc);
10759 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10760#endif
10761
10762 /*
10763 * PERF_GLOBAL MSR.
10764 */
10765 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
10766 {
10767 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10768 AssertRCBreak(rc);
10769 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10770 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10771 }
10772
10773 /*
10774 * PAT MSR.
10775 */
10776 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
10777 {
10778 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10779 AssertRCBreak(rc);
10780 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10781 for (unsigned i = 0; i < 8; i++)
10782 {
10783 uint8_t u8Val = (u64Val & 0xff);
10784 if ( u8Val != 0 /* UC */
10785 && u8Val != 1 /* WC */
10786 && u8Val != 4 /* WT */
10787 && u8Val != 5 /* WP */
10788 && u8Val != 6 /* WB */
10789 && u8Val != 7 /* UC- */)
10790 {
10791 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10792 }
10793 u64Val >>= 8;
10794 }
10795 }
10796
10797 /*
10798 * EFER MSR.
10799 */
10800 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
10801 {
10802 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10803 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10804 AssertRCBreak(rc);
10805 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10806 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10807 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10808 & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
10809 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10810 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10811 || !(u32GuestCR0 & X86_CR0_PG)
10812 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10813 VMX_IGS_EFER_LMA_LME_MISMATCH);
10814 }
10815
10816 /*
10817 * Segment registers.
10818 */
10819 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10820 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10821 if (!(u32Eflags & X86_EFL_VM))
10822 {
10823 /* CS */
10824 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10825 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10826 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10827 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10828 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10829 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10830 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10831 /* CS cannot be loaded with NULL in protected mode. */
10832 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10833 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10834 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10835 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10836 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10837 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10838 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10839 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10840 else
10841 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10842
10843 /* SS */
10844 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10845 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10846 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10847 if ( !(pCtx->cr0 & X86_CR0_PE)
10848 || pCtx->cs.Attr.n.u4Type == 3)
10849 {
10850 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10851 }
10852 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10853 {
10854 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10855 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10856 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10857 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10858 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10859 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10860 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10861 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10862 }
10863
10864 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
10865 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10866 {
10867 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10868 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10869 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10870 || pCtx->ds.Attr.n.u4Type > 11
10871 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10872 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10873 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10874 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10875 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10876 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10877 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10878 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10879 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10880 }
10881 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10882 {
10883 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10884 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10885 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10886 || pCtx->es.Attr.n.u4Type > 11
10887 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10888 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10889 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10890 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10891 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10892 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10893 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10894 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10895 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10896 }
10897 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10898 {
10899 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10900 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10901 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10902 || pCtx->fs.Attr.n.u4Type > 11
10903 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10904 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10905 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10906 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10907 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10908 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10909 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10910 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10911 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10912 }
10913 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10914 {
10915 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10916 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10917 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10918 || pCtx->gs.Attr.n.u4Type > 11
10919 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10920 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10921 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10922 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10923 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10924 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10925 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10926 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10927 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10928 }
10929 /* 64-bit capable CPUs. */
10930#if HC_ARCH_BITS == 64
10931 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10932 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10933 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10934 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10935 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10936 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
10937 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10938 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
10939 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10940 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
10941 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10942#endif
10943 }
10944 else
10945 {
10946 /* V86 mode checks. */
10947 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10948 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10949 {
10950 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10951 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10952 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10953 }
10954 else
10955 {
10956 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10957 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10958 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10959 }
10960
10961 /* CS */
10962 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10963 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10964 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10965 /* SS */
10966 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10967 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10968 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10969 /* DS */
10970 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10971 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10972 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10973 /* ES */
10974 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10975 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10976 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10977 /* FS */
10978 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10979 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10980 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10981 /* GS */
10982 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10983 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10984 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10985 /* 64-bit capable CPUs. */
10986#if HC_ARCH_BITS == 64
10987 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10988 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10989 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10990 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10991 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10992 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
10993 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10994 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
10995 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10996 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
10997 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10998#endif
10999 }
11000
11001 /*
11002 * TR.
11003 */
11004 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
11005 /* 64-bit capable CPUs. */
11006#if HC_ARCH_BITS == 64
11007 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
11008#endif
11009 if (fLongModeGuest)
11010 {
11011 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
11012 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
11013 }
11014 else
11015 {
11016 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
11017 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
11018 VMX_IGS_TR_ATTR_TYPE_INVALID);
11019 }
11020 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
11021 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
11022 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
11023 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
11024 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11025 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
11026 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11027 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
11028
11029 /*
11030 * GDTR and IDTR.
11031 */
11032#if HC_ARCH_BITS == 64
11033 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
11034 AssertRCBreak(rc);
11035 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
11036
11037 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
11038 AssertRCBreak(rc);
11039 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
11040#endif
11041
11042 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
11043 AssertRCBreak(rc);
11044 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11045
11046 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
11047 AssertRCBreak(rc);
11048 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11049
11050 /*
11051 * Guest Non-Register State.
11052 */
11053 /* Activity State. */
11054 uint32_t u32ActivityState;
11055 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
11056 AssertRCBreak(rc);
11057 HMVMX_CHECK_BREAK( !u32ActivityState
11058 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
11059 VMX_IGS_ACTIVITY_STATE_INVALID);
11060 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
11061 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
11062 uint32_t u32IntrState;
11063 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
11064 AssertRCBreak(rc);
11065 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
11066 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11067 {
11068 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11069 }
11070
11071 /** @todo Activity state and injecting interrupts. Left as a todo since we
11072 * currently don't use activity states but ACTIVE. */
11073
11074 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11075 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11076
11077 /* Guest interruptibility-state. */
11078 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11079 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11080 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
11081 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11082 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11083 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11084 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11085 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11086 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11087 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
11088 {
11089 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11090 {
11091 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11092 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11093 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11094 }
11095 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11096 {
11097 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11098 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11099 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11100 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11101 }
11102 }
11103 /** @todo Assumes the processor is not in SMM. */
11104 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11105 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11106 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11107 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11108 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11109 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
11110 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11111 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11112 {
11113 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
11114 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11115 }
11116
11117 /* Pending debug exceptions. */
11118#if HC_ARCH_BITS == 64
11119 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
11120 AssertRCBreak(rc);
11121 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11122 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11123 u32Val = u64Val; /* For pending debug exceptions checks below. */
11124#else
11125 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
11126 AssertRCBreak(rc);
11127 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11128 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11129#endif
11130
11131 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11132 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
11133 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11134 {
11135 if ( (u32Eflags & X86_EFL_TF)
11136 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11137 {
11138 /* Bit 14 is PendingDebug.BS. */
11139 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11140 }
11141 if ( !(u32Eflags & X86_EFL_TF)
11142 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11143 {
11144 /* Bit 14 is PendingDebug.BS. */
11145 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11146 }
11147 }
11148
11149 /* VMCS link pointer. */
11150 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11151 AssertRCBreak(rc);
11152 if (u64Val != UINT64_C(0xffffffffffffffff))
11153 {
11154 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11155 /** @todo Bits beyond the processor's physical-address width MBZ. */
11156 /** @todo 32-bit located in memory referenced by value of this field (as a
11157 * physical address) must contain the processor's VMCS revision ID. */
11158 /** @todo SMM checks. */
11159 }
11160
11161 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11162 * not using Nested Paging? */
11163 if ( pVM->hm.s.fNestedPaging
11164 && !fLongModeGuest
11165 && CPUMIsGuestInPAEModeEx(pCtx))
11166 {
11167 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11168 AssertRCBreak(rc);
11169 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11170
11171 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11172 AssertRCBreak(rc);
11173 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11174
11175 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11176 AssertRCBreak(rc);
11177 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11178
11179 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11180 AssertRCBreak(rc);
11181 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11182 }
11183
11184 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11185 if (uError == VMX_IGS_ERROR)
11186 uError = VMX_IGS_REASON_NOT_FOUND;
11187 } while (0);
11188
11189 pVCpu->hm.s.u32HMError = uError;
11190 return uError;
11191
11192#undef HMVMX_ERROR_BREAK
11193#undef HMVMX_CHECK_BREAK
11194}
11195
11196/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11197/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11198/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11199
11200/** @name VM-exit handlers.
11201 * @{
11202 */
11203
11204/**
11205 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11206 */
11207HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11208{
11209 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11210 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11211 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11212 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11213 return VINF_SUCCESS;
11214 return VINF_EM_RAW_INTERRUPT;
11215}
11216
11217
11218/**
11219 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11220 */
11221HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11222{
11223 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11224 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11225
11226 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11227 AssertRCReturn(rc, rc);
11228
11229 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
11230 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
11231 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
11232 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11233
11234 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11235 {
11236 /*
11237 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
11238 * anything we inject is not going to cause a VM-exit directly for the event being injected.
11239 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11240 *
11241 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
11242 */
11243 VMXDispatchHostNmi();
11244 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11245 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11246 return VINF_SUCCESS;
11247 }
11248
11249 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11250 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11251 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11252 { /* likely */ }
11253 else
11254 {
11255 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11256 rcStrictRc1 = VINF_SUCCESS;
11257 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11258 return rcStrictRc1;
11259 }
11260
11261 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11262 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
11263 switch (uIntType)
11264 {
11265 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11266 Assert(uVector == X86_XCPT_DB);
11267 /* no break */
11268 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11269 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
11270 /* no break */
11271 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
11272 {
11273 /*
11274 * If there's any exception caused as a result of event injection, go back to
11275 * the interpreter. The page-fault case is complicated and we manually handle
11276 * any currently pending event in hmR0VmxExitXcptPF. Nested #ACs are already
11277 * handled in hmR0VmxCheckExitDueToEventDelivery.
11278 */
11279 if (!pVCpu->hm.s.Event.fPending)
11280 { /* likely */ }
11281 else if ( uVector != X86_XCPT_PF
11282 && uVector != X86_XCPT_AC)
11283 {
11284 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
11285 rc = VERR_EM_INTERPRETER;
11286 break;
11287 }
11288
11289 switch (uVector)
11290 {
11291 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
11292 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
11293 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
11294 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
11295 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
11296 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
11297 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pMixedCtx, pVmxTransient); break;
11298
11299 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11300 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11301 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11302 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11303 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11304 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11305 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11306 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11307 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11308 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11309 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11310 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11311 default:
11312 {
11313 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11314 AssertRCReturn(rc, rc);
11315
11316 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11317 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11318 {
11319 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11320 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11321 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11322
11323 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11324 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11325 AssertRCReturn(rc, rc);
11326 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11327 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11328 0 /* GCPtrFaultAddress */);
11329 AssertRCReturn(rc, rc);
11330 }
11331 else
11332 {
11333 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11334 pVCpu->hm.s.u32HMError = uVector;
11335 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11336 }
11337 break;
11338 }
11339 }
11340 break;
11341 }
11342
11343 default:
11344 {
11345 pVCpu->hm.s.u32HMError = uExitIntInfo;
11346 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11347 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
11348 break;
11349 }
11350 }
11351 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11352 return rc;
11353}
11354
11355
11356/**
11357 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11358 */
11359HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11360{
11361 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11362
11363 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11364 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11365
11366 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11367 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11368 return VINF_SUCCESS;
11369}
11370
11371
11372/**
11373 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11374 */
11375HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11376{
11377 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11378 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
11379 {
11380 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11381 HMVMX_RETURN_UNEXPECTED_EXIT();
11382 }
11383
11384 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11385
11386 /*
11387 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11388 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11389 */
11390 uint32_t uIntrState = 0;
11391 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11392 AssertRCReturn(rc, rc);
11393
11394 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
11395 if ( fBlockSti
11396 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11397 {
11398 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11399 }
11400
11401 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11402 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11403
11404 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11405 return VINF_SUCCESS;
11406}
11407
11408
11409/**
11410 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11411 */
11412HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11413{
11414 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11415 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
11416 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11417}
11418
11419
11420/**
11421 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11422 */
11423HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11424{
11425 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11426 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
11427 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11428}
11429
11430
11431/**
11432 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11433 */
11434HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11435{
11436 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11437 PVM pVM = pVCpu->CTX_SUFF(pVM);
11438 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11439 if (RT_LIKELY(rc == VINF_SUCCESS))
11440 {
11441 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11442 Assert(pVmxTransient->cbInstr == 2);
11443 }
11444 else
11445 {
11446 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
11447 rc = VERR_EM_INTERPRETER;
11448 }
11449 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
11450 return rc;
11451}
11452
11453
11454/**
11455 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11456 */
11457HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11458{
11459 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11460 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11461 AssertRCReturn(rc, rc);
11462
11463 if (pMixedCtx->cr4 & X86_CR4_SMXE)
11464 return VINF_EM_RAW_EMULATE_INSTR;
11465
11466 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11467 HMVMX_RETURN_UNEXPECTED_EXIT();
11468}
11469
11470
11471/**
11472 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11473 */
11474HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11475{
11476 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11477 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11478 AssertRCReturn(rc, rc);
11479
11480 PVM pVM = pVCpu->CTX_SUFF(pVM);
11481 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11482 if (RT_LIKELY(rc == VINF_SUCCESS))
11483 {
11484 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11485 Assert(pVmxTransient->cbInstr == 2);
11486 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11487 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11488 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11489 }
11490 else
11491 rc = VERR_EM_INTERPRETER;
11492 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11493 return rc;
11494}
11495
11496
11497/**
11498 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11499 */
11500HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11501{
11502 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11503 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11504 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
11505 AssertRCReturn(rc, rc);
11506
11507 PVM pVM = pVCpu->CTX_SUFF(pVM);
11508 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
11509 if (RT_SUCCESS(rc))
11510 {
11511 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11512 Assert(pVmxTransient->cbInstr == 3);
11513 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11514 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11515 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11516 }
11517 else
11518 {
11519 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
11520 rc = VERR_EM_INTERPRETER;
11521 }
11522 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11523 return rc;
11524}
11525
11526
11527/**
11528 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11529 */
11530HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11531{
11532 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11533 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11534 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11535 AssertRCReturn(rc, rc);
11536
11537 PVM pVM = pVCpu->CTX_SUFF(pVM);
11538 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11539 if (RT_LIKELY(rc == VINF_SUCCESS))
11540 {
11541 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11542 Assert(pVmxTransient->cbInstr == 2);
11543 }
11544 else
11545 {
11546 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11547 rc = VERR_EM_INTERPRETER;
11548 }
11549 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
11550 return rc;
11551}
11552
11553
11554/**
11555 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11556 */
11557HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11558{
11559 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11560 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
11561
11562 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11563 if (pVCpu->hm.s.fHypercallsEnabled)
11564 {
11565#if 0
11566 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11567#else
11568 /* Aggressive state sync. for now. */
11569 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11570 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
11571 AssertRCReturn(rc, rc);
11572#endif
11573
11574 /* Perform the hypercall. */
11575 rcStrict = GIMHypercall(pVCpu, pMixedCtx);
11576 if (rcStrict == VINF_SUCCESS)
11577 {
11578 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11579 AssertRCReturn(rc, rc);
11580 }
11581 else
11582 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11583 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11584 || RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
11585
11586 /* If the hypercall changes anything other than guest's general-purpose registers,
11587 we would need to reload the guest changed bits here before VM-entry. */
11588 }
11589 else
11590 Log4(("hmR0VmxExitVmcall: Hypercalls not enabled\n"));
11591
11592 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11593 if (RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)))
11594 {
11595 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11596 rcStrict = VINF_SUCCESS;
11597 }
11598
11599 return rcStrict;
11600}
11601
11602
11603/**
11604 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11605 */
11606HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11607{
11608 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11609 PVM pVM = pVCpu->CTX_SUFF(pVM);
11610 Assert(!pVM->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11611
11612 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11613 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11614 AssertRCReturn(rc, rc);
11615
11616 VBOXSTRICTRC rcStrict = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
11617 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11618 rcStrict = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11619 else
11620 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
11621 pVmxTransient->uExitQualification, VBOXSTRICTRC_VAL(rcStrict)));
11622 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
11623 return rcStrict;
11624}
11625
11626
11627/**
11628 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11629 */
11630HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11631{
11632 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11633 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11634 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11635 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11636 AssertRCReturn(rc, rc);
11637
11638 PVM pVM = pVCpu->CTX_SUFF(pVM);
11639 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11640 if (RT_LIKELY(rc == VINF_SUCCESS))
11641 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11642 else
11643 {
11644 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11645 rc = VERR_EM_INTERPRETER;
11646 }
11647 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11648 return rc;
11649}
11650
11651
11652/**
11653 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11654 */
11655HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11656{
11657 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11658 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11659 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11660 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11661 AssertRCReturn(rc, rc);
11662
11663 PVM pVM = pVCpu->CTX_SUFF(pVM);
11664 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11665 rc = VBOXSTRICTRC_VAL(rc2);
11666 if (RT_LIKELY( rc == VINF_SUCCESS
11667 || rc == VINF_EM_HALT))
11668 {
11669 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11670 AssertRCReturn(rc3, rc3);
11671
11672 if ( rc == VINF_EM_HALT
11673 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
11674 {
11675 rc = VINF_SUCCESS;
11676 }
11677 }
11678 else
11679 {
11680 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11681 rc = VERR_EM_INTERPRETER;
11682 }
11683 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11684 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11685 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11686 return rc;
11687}
11688
11689
11690/**
11691 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11692 */
11693HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11694{
11695 /*
11696 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
11697 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
11698 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
11699 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
11700 */
11701 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11702 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11703 HMVMX_RETURN_UNEXPECTED_EXIT();
11704}
11705
11706
11707/**
11708 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11709 */
11710HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11711{
11712 /*
11713 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
11714 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
11715 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
11716 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
11717 */
11718 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11719 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11720 HMVMX_RETURN_UNEXPECTED_EXIT();
11721}
11722
11723
11724/**
11725 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11726 */
11727HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11728{
11729 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11730 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11731 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11732 HMVMX_RETURN_UNEXPECTED_EXIT();
11733}
11734
11735
11736/**
11737 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11738 */
11739HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11740{
11741 /*
11742 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
11743 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
11744 * See Intel spec. 25.3 "Other Causes of VM-exits".
11745 */
11746 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11747 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11748 HMVMX_RETURN_UNEXPECTED_EXIT();
11749}
11750
11751
11752/**
11753 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11754 * VM-exit.
11755 */
11756HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11757{
11758 /*
11759 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11760 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11761 *
11762 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11763 * See Intel spec. "23.8 Restrictions on VMX operation".
11764 */
11765 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11766 return VINF_SUCCESS;
11767}
11768
11769
11770/**
11771 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11772 * VM-exit.
11773 */
11774HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11775{
11776 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11777 return VINF_EM_RESET;
11778}
11779
11780
11781/**
11782 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11783 */
11784HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11785{
11786 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11787 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
11788
11789 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11790 AssertRCReturn(rc, rc);
11791
11792 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
11793 rc = VINF_SUCCESS;
11794 else
11795 rc = VINF_EM_HALT;
11796
11797 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11798 if (rc != VINF_SUCCESS)
11799 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11800 return rc;
11801}
11802
11803
11804/**
11805 * VM-exit handler for instructions that result in a \#UD exception delivered to
11806 * the guest.
11807 */
11808HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11809{
11810 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11811 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11812 return VINF_SUCCESS;
11813}
11814
11815
11816/**
11817 * VM-exit handler for expiry of the VMX preemption timer.
11818 */
11819HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11820{
11821 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11822
11823 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11824 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11825
11826 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11827 PVM pVM = pVCpu->CTX_SUFF(pVM);
11828 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11829 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11830 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11831}
11832
11833
11834/**
11835 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11836 */
11837HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11838{
11839 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11840
11841 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11842 rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
11843 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11844 AssertRCReturn(rc, rc);
11845
11846 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11847 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
11848
11849 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
11850
11851 return rcStrict;
11852}
11853
11854
11855/**
11856 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11857 */
11858HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11859{
11860 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11861
11862 /* The guest should not invalidate the host CPU's TLBs, fallback to interpreter. */
11863 /** @todo implement EMInterpretInvpcid() */
11864 return VERR_EM_INTERPRETER;
11865}
11866
11867
11868/**
11869 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11870 * Error VM-exit.
11871 */
11872HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11873{
11874 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11875 AssertRCReturn(rc, rc);
11876
11877 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11878 AssertRCReturn(rc, rc);
11879
11880 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11881 NOREF(uInvalidReason);
11882
11883#ifdef VBOX_STRICT
11884 uint32_t uIntrState;
11885 RTHCUINTREG uHCReg;
11886 uint64_t u64Val;
11887 uint32_t u32Val;
11888
11889 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11890 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11891 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11892 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11893 AssertRCReturn(rc, rc);
11894
11895 Log4(("uInvalidReason %u\n", uInvalidReason));
11896 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11897 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11898 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11899 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
11900
11901 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11902 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11903 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11904 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11905 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11906 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11907 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11908 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11909 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11910 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11911 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11912 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11913#else
11914 NOREF(pVmxTransient);
11915#endif
11916
11917 HMDumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11918 return VERR_VMX_INVALID_GUEST_STATE;
11919}
11920
11921
11922/**
11923 * VM-exit handler for VM-entry failure due to an MSR-load
11924 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11925 */
11926HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11927{
11928 NOREF(pVmxTransient);
11929 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
11930 HMVMX_RETURN_UNEXPECTED_EXIT();
11931}
11932
11933
11934/**
11935 * VM-exit handler for VM-entry failure due to a machine-check event
11936 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11937 */
11938HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11939{
11940 NOREF(pVmxTransient);
11941 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
11942 HMVMX_RETURN_UNEXPECTED_EXIT();
11943}
11944
11945
11946/**
11947 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11948 * theory.
11949 */
11950HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11951{
11952 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
11953 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
11954 return VERR_VMX_UNDEFINED_EXIT_CODE;
11955}
11956
11957
11958/**
11959 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11960 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11961 * Conditional VM-exit.
11962 */
11963HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11964{
11965 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11966
11967 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
11968 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11969 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
11970 return VERR_EM_INTERPRETER;
11971 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11972 HMVMX_RETURN_UNEXPECTED_EXIT();
11973}
11974
11975
11976/**
11977 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11978 */
11979HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11980{
11981 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11982
11983 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
11984 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
11985 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
11986 return VERR_EM_INTERPRETER;
11987 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11988 HMVMX_RETURN_UNEXPECTED_EXIT();
11989}
11990
11991
11992/**
11993 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11994 */
11995HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11996{
11997 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11998
11999 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
12000 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12001 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12002 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12003 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12004 {
12005 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12006 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12007 }
12008 AssertRCReturn(rc, rc);
12009 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
12010
12011#ifdef VBOX_STRICT
12012 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
12013 {
12014 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
12015 && pMixedCtx->ecx != MSR_K6_EFER)
12016 {
12017 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12018 pMixedCtx->ecx));
12019 HMVMX_RETURN_UNEXPECTED_EXIT();
12020 }
12021 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12022 {
12023 VMXMSREXITREAD enmRead;
12024 VMXMSREXITWRITE enmWrite;
12025 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12026 AssertRCReturn(rc2, rc2);
12027 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
12028 {
12029 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12030 HMVMX_RETURN_UNEXPECTED_EXIT();
12031 }
12032 }
12033 }
12034#endif
12035
12036 PVM pVM = pVCpu->CTX_SUFF(pVM);
12037 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12038 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
12039 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
12040 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
12041 if (RT_SUCCESS(rc))
12042 {
12043 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12044 Assert(pVmxTransient->cbInstr == 2);
12045 }
12046 return rc;
12047}
12048
12049
12050/**
12051 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12052 */
12053HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12054{
12055 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12056 PVM pVM = pVCpu->CTX_SUFF(pVM);
12057 int rc = VINF_SUCCESS;
12058
12059 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
12060 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12061 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12062 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12063 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12064 {
12065 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12066 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12067 }
12068 AssertRCReturn(rc, rc);
12069 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
12070
12071 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12072 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
12073 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12074
12075 if (RT_SUCCESS(rc))
12076 {
12077 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12078
12079 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12080 if ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
12081 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END)
12082 {
12083 /* We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12084 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
12085 EMInterpretWrmsr() changes it. */
12086 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12087 }
12088 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12089 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12090 else if (pMixedCtx->ecx == MSR_K6_EFER)
12091 {
12092 /*
12093 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12094 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12095 * the other bits as well, SCE and NXE. See @bugref{7368}.
12096 */
12097 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
12098 }
12099
12100 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12101 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12102 {
12103 switch (pMixedCtx->ecx)
12104 {
12105 case MSR_IA32_SYSENTER_CS: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12106 case MSR_IA32_SYSENTER_EIP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12107 case MSR_IA32_SYSENTER_ESP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12108 case MSR_K8_FS_BASE: /* no break */
12109 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
12110 case MSR_K6_EFER: /* already handled above */ break;
12111 default:
12112 {
12113 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12114 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12115 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12116 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
12117 break;
12118 }
12119 }
12120 }
12121#ifdef VBOX_STRICT
12122 else
12123 {
12124 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12125 switch (pMixedCtx->ecx)
12126 {
12127 case MSR_IA32_SYSENTER_CS:
12128 case MSR_IA32_SYSENTER_EIP:
12129 case MSR_IA32_SYSENTER_ESP:
12130 case MSR_K8_FS_BASE:
12131 case MSR_K8_GS_BASE:
12132 {
12133 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
12134 HMVMX_RETURN_UNEXPECTED_EXIT();
12135 }
12136
12137 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12138 default:
12139 {
12140 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12141 {
12142 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
12143 if (pMixedCtx->ecx != MSR_K6_EFER)
12144 {
12145 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12146 pMixedCtx->ecx));
12147 HMVMX_RETURN_UNEXPECTED_EXIT();
12148 }
12149 }
12150
12151 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12152 {
12153 VMXMSREXITREAD enmRead;
12154 VMXMSREXITWRITE enmWrite;
12155 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12156 AssertRCReturn(rc2, rc2);
12157 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12158 {
12159 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12160 HMVMX_RETURN_UNEXPECTED_EXIT();
12161 }
12162 }
12163 break;
12164 }
12165 }
12166 }
12167#endif /* VBOX_STRICT */
12168 }
12169 return rc;
12170}
12171
12172
12173/**
12174 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12175 */
12176HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12177{
12178 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12179
12180 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
12181 return VINF_EM_RAW_INTERRUPT;
12182}
12183
12184
12185/**
12186 * VM-exit handler for when the TPR value is lowered below the specified
12187 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12188 */
12189HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12190{
12191 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12192 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
12193
12194 /*
12195 * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
12196 * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectPendingEvent() and
12197 * resume guest execution.
12198 */
12199 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12200 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12201 return VINF_SUCCESS;
12202}
12203
12204
12205/**
12206 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12207 * VM-exit.
12208 *
12209 * @retval VINF_SUCCESS when guest execution can continue.
12210 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
12211 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12212 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12213 * interpreter.
12214 */
12215HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12216{
12217 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12218 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12219 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12220 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12221 AssertRCReturn(rc, rc);
12222
12223 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
12224 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
12225 PVM pVM = pVCpu->CTX_SUFF(pVM);
12226 VBOXSTRICTRC rcStrict;
12227 rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
12228 switch (uAccessType)
12229 {
12230 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
12231 {
12232 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12233 AssertRCReturn(rc, rc);
12234
12235 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
12236 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12237 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
12238 AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
12239 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12240 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
12241 {
12242 case 0: /* CR0 */
12243 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12244 Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
12245 break;
12246 case 2: /* CR2 */
12247 /* Nothing to do here, CR2 it's not part of the VMCS. */
12248 break;
12249 case 3: /* CR3 */
12250 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx) || pVCpu->hm.s.fUsingDebugLoop);
12251 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
12252 Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
12253 break;
12254 case 4: /* CR4 */
12255 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
12256 Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
12257 VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12258 break;
12259 case 8: /* CR8 */
12260 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12261 /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
12262 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12263 break;
12264 default:
12265 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
12266 break;
12267 }
12268
12269 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12270 break;
12271 }
12272
12273 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
12274 {
12275 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12276 AssertRCReturn(rc, rc);
12277
12278 Assert( !pVM->hm.s.fNestedPaging
12279 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
12280 || pVCpu->hm.s.fUsingDebugLoop
12281 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
12282
12283 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12284 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
12285 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12286
12287 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
12288 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
12289 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
12290 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12291 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12292 Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12293 VBOXSTRICTRC_VAL(rcStrict)));
12294 break;
12295 }
12296
12297 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12298 {
12299 AssertRCReturn(rc, rc);
12300 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12301 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12302 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12303 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12304 Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12305 break;
12306 }
12307
12308 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12309 {
12310 AssertRCReturn(rc, rc);
12311 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
12312 VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
12313 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE,
12314 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12315 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12316 Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12317 break;
12318 }
12319
12320 default:
12321 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12322 VERR_VMX_UNEXPECTED_EXCEPTION);
12323 }
12324
12325 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12326 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12327 NOREF(pVM);
12328 return rcStrict;
12329}
12330
12331
12332/**
12333 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12334 * VM-exit.
12335 */
12336HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12337{
12338 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12339 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12340
12341 int rc2 = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12342 rc2 |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12343 rc2 |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
12344 rc2 |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
12345 rc2 |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
12346 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
12347 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12348 AssertRCReturn(rc2, rc2);
12349
12350 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12351 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
12352 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
12353 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
12354 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
12355 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
12356 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12357 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12358 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12359
12360 /* I/O operation lookup arrays. */
12361 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12362 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
12363
12364 VBOXSTRICTRC rcStrict;
12365 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12366 uint32_t const cbInstr = pVmxTransient->cbInstr;
12367 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12368 PVM pVM = pVCpu->CTX_SUFF(pVM);
12369 if (fIOString)
12370 {
12371#ifdef VBOX_WITH_2ND_IEM_STEP /* This used to gurus with debian 32-bit guest without NP (on ATA reads).
12372 See @bugref{5752#c158}. Should work now. */
12373 /*
12374 * INS/OUTS - I/O String instruction.
12375 *
12376 * Use instruction-information if available, otherwise fall back on
12377 * interpreting the instruction.
12378 */
12379 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue,
12380 fIOWrite ? 'w' : 'r'));
12381 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
12382 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
12383 {
12384 rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12385 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12386 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12387 AssertRCReturn(rc2, rc2);
12388 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12389 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12390 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12391 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
12392 if (fIOWrite)
12393 {
12394 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12395 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12396 }
12397 else
12398 {
12399 /*
12400 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12401 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12402 * See Intel Instruction spec. for "INS".
12403 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12404 */
12405 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12406 }
12407 }
12408 else
12409 {
12410 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12411 rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12412 AssertRCReturn(rc2, rc2);
12413 rcStrict = IEMExecOne(pVCpu);
12414 }
12415 /** @todo IEM needs to be setting these flags somehow. */
12416 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12417 fUpdateRipAlready = true;
12418#else
12419 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
12420 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
12421 if (RT_SUCCESS(rcStrict))
12422 {
12423 if (fIOWrite)
12424 {
12425 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12426 (DISCPUMODE)pDis->uAddrMode, cbValue);
12427 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
12428 }
12429 else
12430 {
12431 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12432 (DISCPUMODE)pDis->uAddrMode, cbValue);
12433 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
12434 }
12435 }
12436 else
12437 {
12438 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict),
12439 pMixedCtx->rip));
12440 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12441 }
12442#endif
12443 }
12444 else
12445 {
12446 /*
12447 * IN/OUT - I/O instruction.
12448 */
12449 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12450 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12451 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
12452 if (fIOWrite)
12453 {
12454 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
12455 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12456 }
12457 else
12458 {
12459 uint32_t u32Result = 0;
12460 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12461 if (IOM_SUCCESS(rcStrict))
12462 {
12463 /* Save result of I/O IN instr. in AL/AX/EAX. */
12464 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12465 }
12466 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12467 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
12468 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12469 }
12470 }
12471
12472 if (IOM_SUCCESS(rcStrict))
12473 {
12474 if (!fUpdateRipAlready)
12475 {
12476 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, cbInstr);
12477 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12478 }
12479
12480 /*
12481 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
12482 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12483 */
12484 if (fIOString)
12485 {
12486 /** @todo Single-step for INS/OUTS with REP prefix? */
12487 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12488 }
12489 else if ( !fDbgStepping
12490 && fGstStepping)
12491 {
12492 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12493 }
12494
12495 /*
12496 * If any I/O breakpoints are armed, we need to check if one triggered
12497 * and take appropriate action.
12498 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12499 */
12500 rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12501 AssertRCReturn(rc2, rc2);
12502
12503 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12504 * execution engines about whether hyper BPs and such are pending. */
12505 uint32_t const uDr7 = pMixedCtx->dr[7];
12506 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12507 && X86_DR7_ANY_RW_IO(uDr7)
12508 && (pMixedCtx->cr4 & X86_CR4_DE))
12509 || DBGFBpIsHwIoArmed(pVM)))
12510 {
12511 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12512
12513 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12514 VMMRZCallRing3Disable(pVCpu);
12515 HM_DISABLE_PREEMPT();
12516
12517 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12518
12519 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
12520 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12521 {
12522 /* Raise #DB. */
12523 if (fIsGuestDbgActive)
12524 ASMSetDR6(pMixedCtx->dr[6]);
12525 if (pMixedCtx->dr[7] != uDr7)
12526 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12527
12528 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
12529 }
12530 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12531 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12532 else if ( rcStrict2 != VINF_SUCCESS
12533 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12534 rcStrict = rcStrict2;
12535 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12536
12537 HM_RESTORE_PREEMPT();
12538 VMMRZCallRing3Enable(pVCpu);
12539 }
12540 }
12541
12542#ifdef VBOX_STRICT
12543 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12544 Assert(!fIOWrite);
12545 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
12546 Assert(fIOWrite);
12547 else
12548 {
12549#if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12550 * statuses, that the VMM device and some others may return. See
12551 * IOM_SUCCESS() for guidance. */
12552 AssertMsg( RT_FAILURE(rcStrict)
12553 || rcStrict == VINF_SUCCESS
12554 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12555 || rcStrict == VINF_EM_DBG_BREAKPOINT
12556 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12557 || rcStrict == VINF_EM_RAW_TO_R3
12558 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12559#endif
12560 }
12561#endif
12562
12563 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12564 return rcStrict;
12565}
12566
12567
12568/**
12569 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12570 * VM-exit.
12571 */
12572HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12573{
12574 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12575
12576 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12577 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12578 AssertRCReturn(rc, rc);
12579 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
12580 {
12581 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12582 AssertRCReturn(rc, rc);
12583 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
12584 {
12585 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12586
12587 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12588 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
12589
12590 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
12591 Assert(!pVCpu->hm.s.Event.fPending);
12592 pVCpu->hm.s.Event.fPending = true;
12593 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
12594 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12595 AssertRCReturn(rc, rc);
12596 if (fErrorCodeValid)
12597 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12598 else
12599 pVCpu->hm.s.Event.u32ErrCode = 0;
12600 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12601 && uVector == X86_XCPT_PF)
12602 {
12603 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
12604 }
12605
12606 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
12607 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12608 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12609 }
12610 }
12611
12612 /* Fall back to the interpreter to emulate the task-switch. */
12613 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12614 return VERR_EM_INTERPRETER;
12615}
12616
12617
12618/**
12619 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12620 */
12621HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12622{
12623 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12624 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
12625 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
12626 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12627 AssertRCReturn(rc, rc);
12628 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12629 return VINF_EM_DBG_STEPPED;
12630}
12631
12632
12633/**
12634 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12635 */
12636HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12637{
12638 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12639
12640 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12641
12642 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12643 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12644 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12645 {
12646 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12647 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12648 {
12649 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12650 return VERR_EM_INTERPRETER;
12651 }
12652 }
12653 else
12654 {
12655 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12656 rcStrict1 = VINF_SUCCESS;
12657 return rcStrict1;
12658 }
12659
12660#if 0
12661 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
12662 * just sync the whole thing. */
12663 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12664#else
12665 /* Aggressive state sync. for now. */
12666 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12667 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12668 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12669#endif
12670 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12671 AssertRCReturn(rc, rc);
12672
12673 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12674 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
12675 VBOXSTRICTRC rcStrict2;
12676 switch (uAccessType)
12677 {
12678 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12679 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12680 {
12681 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
12682 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != 0x80,
12683 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12684
12685 RTGCPHYS GCPhys = pMixedCtx->msrApicBase; /* Always up-to-date, msrApicBase is not part of the VMCS. */
12686 GCPhys &= PAGE_BASE_GC_MASK;
12687 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
12688 PVM pVM = pVCpu->CTX_SUFF(pVM);
12689 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12690 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
12691
12692 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12693 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12694 CPUMCTX2CORE(pMixedCtx), GCPhys);
12695 Log4(("ApicAccess rcStrict2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
12696 if ( rcStrict2 == VINF_SUCCESS
12697 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12698 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12699 {
12700 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12701 | HM_CHANGED_GUEST_RSP
12702 | HM_CHANGED_GUEST_RFLAGS
12703 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12704 rcStrict2 = VINF_SUCCESS;
12705 }
12706 break;
12707 }
12708
12709 default:
12710 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
12711 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12712 break;
12713 }
12714
12715 if (rcStrict2 != VINF_SUCCESS)
12716 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12717 return rcStrict2;
12718}
12719
12720
12721/**
12722 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12723 * VM-exit.
12724 */
12725HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12726{
12727 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12728
12729 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12730 if (pVmxTransient->fWasGuestDebugStateActive)
12731 {
12732 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12733 HMVMX_RETURN_UNEXPECTED_EXIT();
12734 }
12735
12736 if ( !pVCpu->hm.s.fSingleInstruction
12737 && !pVmxTransient->fWasHyperDebugStateActive)
12738 {
12739 Assert(!DBGFIsStepping(pVCpu));
12740 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12741
12742 /* Don't intercept MOV DRx any more. */
12743 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
12744 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12745 AssertRCReturn(rc, rc);
12746
12747 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12748 VMMRZCallRing3Disable(pVCpu);
12749 HM_DISABLE_PREEMPT();
12750
12751 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12752 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12753 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12754
12755 HM_RESTORE_PREEMPT();
12756 VMMRZCallRing3Enable(pVCpu);
12757
12758#ifdef VBOX_WITH_STATISTICS
12759 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12760 AssertRCReturn(rc, rc);
12761 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
12762 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12763 else
12764 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12765#endif
12766 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12767 return VINF_SUCCESS;
12768 }
12769
12770 /*
12771 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12772 * Update the segment registers and DR7 from the CPU.
12773 */
12774 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12775 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12776 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12777 AssertRCReturn(rc, rc);
12778 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
12779
12780 PVM pVM = pVCpu->CTX_SUFF(pVM);
12781 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
12782 {
12783 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
12784 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
12785 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
12786 if (RT_SUCCESS(rc))
12787 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12788 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12789 }
12790 else
12791 {
12792 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
12793 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
12794 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
12795 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12796 }
12797
12798 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12799 if (RT_SUCCESS(rc))
12800 {
12801 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12802 AssertRCReturn(rc2, rc2);
12803 return VINF_SUCCESS;
12804 }
12805 return rc;
12806}
12807
12808
12809/**
12810 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12811 * Conditional VM-exit.
12812 */
12813HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12814{
12815 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12816 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12817
12818 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12819 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12820 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12821 {
12822 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12823 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12824 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12825 {
12826 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12827 return VERR_EM_INTERPRETER;
12828 }
12829 }
12830 else
12831 {
12832 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12833 rcStrict1 = VINF_SUCCESS;
12834 return rcStrict1;
12835 }
12836
12837 RTGCPHYS GCPhys = 0;
12838 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
12839
12840#if 0
12841 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
12842#else
12843 /* Aggressive state sync. for now. */
12844 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12845 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12846 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12847#endif
12848 AssertRCReturn(rc, rc);
12849
12850 /*
12851 * If we succeed, resume guest execution.
12852 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12853 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12854 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12855 * weird case. See @bugref{6043}.
12856 */
12857 PVM pVM = pVCpu->CTX_SUFF(pVM);
12858 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
12859 Log4(("EPT misconfig at %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pMixedCtx->rip, VBOXSTRICTRC_VAL(rcStrict2)));
12860 if ( rcStrict2 == VINF_SUCCESS
12861 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12862 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12863 {
12864 /* Successfully handled MMIO operation. */
12865 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12866 | HM_CHANGED_GUEST_RSP
12867 | HM_CHANGED_GUEST_RFLAGS
12868 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12869 return VINF_SUCCESS;
12870 }
12871 return rcStrict2;
12872}
12873
12874
12875/**
12876 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12877 * VM-exit.
12878 */
12879HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12880{
12881 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12882 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12883
12884 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12885 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12886 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12887 {
12888 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12889 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12890 Log4(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12891 }
12892 else
12893 {
12894 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12895 rcStrict1 = VINF_SUCCESS;
12896 return rcStrict1;
12897 }
12898
12899 RTGCPHYS GCPhys = 0;
12900 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
12901 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12902#if 0
12903 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
12904#else
12905 /* Aggressive state sync. for now. */
12906 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12907 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12908 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12909#endif
12910 AssertRCReturn(rc, rc);
12911
12912 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12913 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
12914
12915 RTGCUINT uErrorCode = 0;
12916 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
12917 uErrorCode |= X86_TRAP_PF_ID;
12918 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
12919 uErrorCode |= X86_TRAP_PF_RW;
12920 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
12921 uErrorCode |= X86_TRAP_PF_P;
12922
12923 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12924
12925 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
12926 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
12927
12928 /* Handle the pagefault trap for the nested shadow table. */
12929 PVM pVM = pVCpu->CTX_SUFF(pVM);
12930 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
12931 TRPMResetTrap(pVCpu);
12932
12933 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12934 if ( rcStrict2 == VINF_SUCCESS
12935 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12936 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12937 {
12938 /* Successfully synced our nested page tables. */
12939 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12940 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12941 | HM_CHANGED_GUEST_RSP
12942 | HM_CHANGED_GUEST_RFLAGS);
12943 return VINF_SUCCESS;
12944 }
12945
12946 Log4(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12947 return rcStrict2;
12948}
12949
12950/** @} */
12951
12952/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12953/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
12954/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12955
12956/** @name VM-exit exception handlers.
12957 * @{
12958 */
12959
12960/**
12961 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
12962 */
12963static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12964{
12965 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
12966 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
12967
12968 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12969 AssertRCReturn(rc, rc);
12970
12971 if (!(pMixedCtx->cr0 & X86_CR0_NE))
12972 {
12973 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
12974 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
12975
12976 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
12977 * provides VM-exit instruction length. If this causes problem later,
12978 * disassemble the instruction like it's done on AMD-V. */
12979 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12980 AssertRCReturn(rc2, rc2);
12981 return rc;
12982 }
12983
12984 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
12985 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
12986 return rc;
12987}
12988
12989
12990/**
12991 * VM-exit exception handler for \#BP (Breakpoint exception).
12992 */
12993static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12994{
12995 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
12996 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
12997
12998 /** @todo Try optimize this by not saving the entire guest state unless
12999 * really needed. */
13000 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13001 AssertRCReturn(rc, rc);
13002
13003 PVM pVM = pVCpu->CTX_SUFF(pVM);
13004 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
13005 if (rc == VINF_EM_RAW_GUEST_TRAP)
13006 {
13007 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13008 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13009 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13010 AssertRCReturn(rc, rc);
13011
13012 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13013 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13014 }
13015
13016 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13017 return rc;
13018}
13019
13020
13021/**
13022 * VM-exit exception handler for \#AC (alignment check exception).
13023 */
13024static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13025{
13026 RT_NOREF_PV(pMixedCtx);
13027 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13028
13029 /*
13030 * Re-inject it. We'll detect any nesting before getting here.
13031 */
13032 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13033 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13034 AssertRCReturn(rc, rc);
13035 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13036
13037 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13038 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13039 return VINF_SUCCESS;
13040}
13041
13042
13043/**
13044 * VM-exit exception handler for \#DB (Debug exception).
13045 */
13046static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13047{
13048 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13049 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13050 Log6(("XcptDB\n"));
13051
13052 /*
13053 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13054 * for processing.
13055 */
13056 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13057 AssertRCReturn(rc, rc);
13058
13059 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13060 uint64_t uDR6 = X86_DR6_INIT_VAL;
13061 uDR6 |= ( pVmxTransient->uExitQualification
13062 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13063
13064 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13065 if (rc == VINF_EM_RAW_GUEST_TRAP)
13066 {
13067 /*
13068 * The exception was for the guest. Update DR6, DR7.GD and
13069 * IA32_DEBUGCTL.LBR before forwarding it.
13070 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13071 */
13072 VMMRZCallRing3Disable(pVCpu);
13073 HM_DISABLE_PREEMPT();
13074
13075 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
13076 pMixedCtx->dr[6] |= uDR6;
13077 if (CPUMIsGuestDebugStateActive(pVCpu))
13078 ASMSetDR6(pMixedCtx->dr[6]);
13079
13080 HM_RESTORE_PREEMPT();
13081 VMMRZCallRing3Enable(pVCpu);
13082
13083 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13084 AssertRCReturn(rc, rc);
13085
13086 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13087 pMixedCtx->dr[7] &= ~X86_DR7_GD;
13088
13089 /* Paranoia. */
13090 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13091 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
13092
13093 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
13094 AssertRCReturn(rc, rc);
13095
13096 /*
13097 * Raise #DB in the guest.
13098 *
13099 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
13100 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
13101 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
13102 *
13103 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
13104 */
13105 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13106 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13107 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13108 AssertRCReturn(rc, rc);
13109 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13110 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13111 return VINF_SUCCESS;
13112 }
13113
13114 /*
13115 * Not a guest trap, must be a hypervisor related debug event then.
13116 * Update DR6 in case someone is interested in it.
13117 */
13118 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13119 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13120 CPUMSetHyperDR6(pVCpu, uDR6);
13121
13122 return rc;
13123}
13124
13125
13126/**
13127 * VM-exit exception handler for \#NM (Device-not-available exception: floating
13128 * point exception).
13129 */
13130static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13131{
13132 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13133
13134 /* We require CR0 and EFER. EFER is always up-to-date. */
13135 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13136 AssertRCReturn(rc, rc);
13137
13138 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
13139 VMMRZCallRing3Disable(pVCpu);
13140 HM_DISABLE_PREEMPT();
13141
13142 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
13143 if (pVmxTransient->fWasGuestFPUStateActive)
13144 {
13145 rc = VINF_EM_RAW_GUEST_TRAP;
13146 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
13147 }
13148 else
13149 {
13150#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13151 Assert(!pVmxTransient->fWasGuestFPUStateActive || pVCpu->hm.s.fUsingDebugLoop);
13152#endif
13153 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu);
13154 Assert( rc == VINF_EM_RAW_GUEST_TRAP
13155 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
13156 if (rc == VINF_CPUM_HOST_CR0_MODIFIED)
13157 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
13158 }
13159
13160 HM_RESTORE_PREEMPT();
13161 VMMRZCallRing3Enable(pVCpu);
13162
13163 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
13164 {
13165 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
13166 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
13167 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
13168 pVCpu->hm.s.fPreloadGuestFpu = true;
13169 }
13170 else
13171 {
13172 /* Forward #NM to the guest. */
13173 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
13174 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13175 AssertRCReturn(rc, rc);
13176 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13177 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
13178 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
13179 }
13180
13181 return VINF_SUCCESS;
13182}
13183
13184
13185/**
13186 * VM-exit exception handler for \#GP (General-protection exception).
13187 *
13188 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13189 */
13190static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13191{
13192 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13193 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13194
13195 int rc;
13196 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13197 { /* likely */ }
13198 else
13199 {
13200#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13201 Assert(pVCpu->hm.s.fUsingDebugLoop);
13202#endif
13203 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13204 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13205 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13206 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13207 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13208 AssertRCReturn(rc, rc);
13209 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
13210 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
13211 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13212 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13213 return rc;
13214 }
13215
13216 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
13217 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13218
13219 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
13220 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13221 AssertRCReturn(rc, rc);
13222
13223 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
13224 uint32_t cbOp = 0;
13225 PVM pVM = pVCpu->CTX_SUFF(pVM);
13226 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
13227 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
13228 if (RT_SUCCESS(rc))
13229 {
13230 rc = VINF_SUCCESS;
13231 Assert(cbOp == pDis->cbInstr);
13232 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13233 switch (pDis->pCurInstr->uOpcode)
13234 {
13235 case OP_CLI:
13236 {
13237 pMixedCtx->eflags.Bits.u1IF = 0;
13238 pMixedCtx->eflags.Bits.u1RF = 0;
13239 pMixedCtx->rip += pDis->cbInstr;
13240 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13241 if ( !fDbgStepping
13242 && pMixedCtx->eflags.Bits.u1TF)
13243 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13244 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
13245 break;
13246 }
13247
13248 case OP_STI:
13249 {
13250 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
13251 pMixedCtx->eflags.Bits.u1IF = 1;
13252 pMixedCtx->eflags.Bits.u1RF = 0;
13253 pMixedCtx->rip += pDis->cbInstr;
13254 if (!fOldIF)
13255 {
13256 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
13257 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
13258 }
13259 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13260 if ( !fDbgStepping
13261 && pMixedCtx->eflags.Bits.u1TF)
13262 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13263 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
13264 break;
13265 }
13266
13267 case OP_HLT:
13268 {
13269 rc = VINF_EM_HALT;
13270 pMixedCtx->rip += pDis->cbInstr;
13271 pMixedCtx->eflags.Bits.u1RF = 0;
13272 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13273 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
13274 break;
13275 }
13276
13277 case OP_POPF:
13278 {
13279 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13280 uint32_t cbParm;
13281 uint32_t uMask;
13282 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13283 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13284 {
13285 cbParm = 4;
13286 uMask = 0xffffffff;
13287 }
13288 else
13289 {
13290 cbParm = 2;
13291 uMask = 0xffff;
13292 }
13293
13294 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
13295 RTGCPTR GCPtrStack = 0;
13296 X86EFLAGS Eflags;
13297 Eflags.u32 = 0;
13298 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13299 &GCPtrStack);
13300 if (RT_SUCCESS(rc))
13301 {
13302 Assert(sizeof(Eflags.u32) >= cbParm);
13303 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
13304 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13305 }
13306 if (RT_FAILURE(rc))
13307 {
13308 rc = VERR_EM_INTERPRETER;
13309 break;
13310 }
13311 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
13312 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
13313 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
13314 pMixedCtx->esp += cbParm;
13315 pMixedCtx->esp &= uMask;
13316 pMixedCtx->rip += pDis->cbInstr;
13317 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13318 | HM_CHANGED_GUEST_RSP
13319 | HM_CHANGED_GUEST_RFLAGS);
13320 /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
13321 POPF restores EFLAGS.TF. */
13322 if ( !fDbgStepping
13323 && fGstStepping)
13324 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13325 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
13326 break;
13327 }
13328
13329 case OP_PUSHF:
13330 {
13331 uint32_t cbParm;
13332 uint32_t uMask;
13333 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13334 {
13335 cbParm = 4;
13336 uMask = 0xffffffff;
13337 }
13338 else
13339 {
13340 cbParm = 2;
13341 uMask = 0xffff;
13342 }
13343
13344 /* Get the stack pointer & push the contents of eflags onto the stack. */
13345 RTGCPTR GCPtrStack = 0;
13346 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
13347 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
13348 if (RT_FAILURE(rc))
13349 {
13350 rc = VERR_EM_INTERPRETER;
13351 break;
13352 }
13353 X86EFLAGS Eflags = pMixedCtx->eflags;
13354 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
13355 Eflags.Bits.u1RF = 0;
13356 Eflags.Bits.u1VM = 0;
13357
13358 rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
13359 if (RT_UNLIKELY(rc != VINF_SUCCESS))
13360 {
13361 AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
13362 rc = VERR_EM_INTERPRETER;
13363 break;
13364 }
13365 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
13366 pMixedCtx->esp -= cbParm;
13367 pMixedCtx->esp &= uMask;
13368 pMixedCtx->rip += pDis->cbInstr;
13369 pMixedCtx->eflags.Bits.u1RF = 0;
13370 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13371 | HM_CHANGED_GUEST_RSP
13372 | HM_CHANGED_GUEST_RFLAGS);
13373 if ( !fDbgStepping
13374 && pMixedCtx->eflags.Bits.u1TF)
13375 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13376 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
13377 break;
13378 }
13379
13380 case OP_IRET:
13381 {
13382 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
13383 * instruction reference. */
13384 RTGCPTR GCPtrStack = 0;
13385 uint32_t uMask = 0xffff;
13386 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13387 uint16_t aIretFrame[3];
13388 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
13389 {
13390 rc = VERR_EM_INTERPRETER;
13391 break;
13392 }
13393 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13394 &GCPtrStack);
13395 if (RT_SUCCESS(rc))
13396 {
13397 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
13398 PGMACCESSORIGIN_HM));
13399 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13400 }
13401 if (RT_FAILURE(rc))
13402 {
13403 rc = VERR_EM_INTERPRETER;
13404 break;
13405 }
13406 pMixedCtx->eip = 0;
13407 pMixedCtx->ip = aIretFrame[0];
13408 pMixedCtx->cs.Sel = aIretFrame[1];
13409 pMixedCtx->cs.ValidSel = aIretFrame[1];
13410 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
13411 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
13412 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
13413 pMixedCtx->sp += sizeof(aIretFrame);
13414 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13415 | HM_CHANGED_GUEST_SEGMENT_REGS
13416 | HM_CHANGED_GUEST_RSP
13417 | HM_CHANGED_GUEST_RFLAGS);
13418 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
13419 if ( !fDbgStepping
13420 && fGstStepping)
13421 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13422 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
13423 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
13424 break;
13425 }
13426
13427 case OP_INT:
13428 {
13429 uint16_t uVector = pDis->Param1.uValue & 0xff;
13430 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
13431 /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13432 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13433 break;
13434 }
13435
13436 case OP_INTO:
13437 {
13438 if (pMixedCtx->eflags.Bits.u1OF)
13439 {
13440 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
13441 /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13442 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13443 }
13444 else
13445 {
13446 pMixedCtx->eflags.Bits.u1RF = 0;
13447 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
13448 }
13449 break;
13450 }
13451
13452 default:
13453 {
13454 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
13455 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
13456 EMCODETYPE_SUPERVISOR);
13457 rc = VBOXSTRICTRC_VAL(rc2);
13458 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13459 /** @todo We have to set pending-debug exceptions here when the guest is
13460 * single-stepping depending on the instruction that was interpreted. */
13461 Log4(("#GP rc=%Rrc\n", rc));
13462 break;
13463 }
13464 }
13465 }
13466 else
13467 rc = VERR_EM_INTERPRETER;
13468
13469 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
13470 ("#GP Unexpected rc=%Rrc\n", rc));
13471 return rc;
13472}
13473
13474
13475/**
13476 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13477 * the exception reported in the VMX transient structure back into the VM.
13478 *
13479 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13480 * up-to-date.
13481 */
13482static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13483{
13484 RT_NOREF_PV(pMixedCtx);
13485 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13486#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13487 Assert(pVCpu->hm.s.fUsingDebugLoop);
13488#endif
13489
13490 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13491 hmR0VmxCheckExitDueToEventDelivery(). */
13492 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13493 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13494 AssertRCReturn(rc, rc);
13495 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13496
13497#ifdef DEBUG_ramshankar
13498 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13499 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13500 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13501#endif
13502
13503 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13504 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13505 return VINF_SUCCESS;
13506}
13507
13508
13509/**
13510 * VM-exit exception handler for \#PF (Page-fault exception).
13511 */
13512static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13513{
13514 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13515 PVM pVM = pVCpu->CTX_SUFF(pVM);
13516 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13517 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13518 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13519 AssertRCReturn(rc, rc);
13520
13521 if (!pVM->hm.s.fNestedPaging)
13522 { /* likely */ }
13523 else
13524 {
13525#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13526 Assert(pVCpu->hm.s.fUsingDebugLoop);
13527#endif
13528 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13529 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13530 {
13531 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13532 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13533 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
13534 }
13535 else
13536 {
13537 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13538 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13539 Log4(("Pending #DF due to vectoring #PF. NP\n"));
13540 }
13541 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13542 return rc;
13543 }
13544
13545 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13546 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13547 if (pVmxTransient->fVectoringPF)
13548 {
13549 Assert(pVCpu->hm.s.Event.fPending);
13550 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13551 }
13552
13553 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13554 AssertRCReturn(rc, rc);
13555
13556 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
13557 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
13558
13559 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13560 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
13561 (RTGCPTR)pVmxTransient->uExitQualification);
13562
13563 Log4(("#PF: rc=%Rrc\n", rc));
13564 if (rc == VINF_SUCCESS)
13565 {
13566#if 0
13567 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
13568 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
13569 * memory? We don't update the whole state here... */
13570 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13571 | HM_CHANGED_GUEST_RSP
13572 | HM_CHANGED_GUEST_RFLAGS
13573 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13574#else
13575 /*
13576 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13577 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13578 */
13579 /** @todo take advantage of CPUM changed flags instead of brute forcing. */
13580 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13581#endif
13582 TRPMResetTrap(pVCpu);
13583 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13584 return rc;
13585 }
13586
13587 if (rc == VINF_EM_RAW_GUEST_TRAP)
13588 {
13589 if (!pVmxTransient->fVectoringDoublePF)
13590 {
13591 /* It's a guest page fault and needs to be reflected to the guest. */
13592 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13593 TRPMResetTrap(pVCpu);
13594 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13595 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13596 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13597 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
13598 }
13599 else
13600 {
13601 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13602 TRPMResetTrap(pVCpu);
13603 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13604 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13605 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
13606 }
13607
13608 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13609 return VINF_SUCCESS;
13610 }
13611
13612 TRPMResetTrap(pVCpu);
13613 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13614 return rc;
13615}
13616
13617/** @} */
13618
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette