VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 66819

Last change on this file since 66819 was 66790, checked in by vboxsync, 8 years ago

VMM/HMVMXR0: Fixes while using the IEM event reflection logic.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 597.1 KB
Line 
1/* $Id: HMVMXR0.cpp 66790 2017-05-04 12:27:56Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/x86.h>
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/selm.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#ifdef VBOX_WITH_REM
36# include <VBox/vmm/rem.h>
37#endif
38#include "HMInternal.h"
39#include <VBox/vmm/vm.h>
40#include "HMVMXR0.h"
41#include "dtrace/VBoxVMM.h"
42
43#define HMVMX_USE_IEM_EVENT_REFLECTION
44#ifdef DEBUG_ramshankar
45# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
46# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
47# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_CHECK_GUEST_STATE
49# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
50# define HMVMX_ALWAYS_TRAP_PF
51# define HMVMX_ALWAYS_SWAP_FPU_STATE
52# define HMVMX_ALWAYS_FLUSH_TLB
53# define HMVMX_ALWAYS_SWAP_EFER
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name Updated-guest-state flags.
70 * @{ */
71#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
72#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
73#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
74#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
75#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
76#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
77#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
78#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
79#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
80#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
81#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
82#define HMVMX_UPDATED_GUEST_DR7 RT_BIT(11)
83#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
84#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
85#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
86#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
87#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
88#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
89#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
90#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
91#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
92 | HMVMX_UPDATED_GUEST_RSP \
93 | HMVMX_UPDATED_GUEST_RFLAGS \
94 | HMVMX_UPDATED_GUEST_CR0 \
95 | HMVMX_UPDATED_GUEST_CR3 \
96 | HMVMX_UPDATED_GUEST_CR4 \
97 | HMVMX_UPDATED_GUEST_GDTR \
98 | HMVMX_UPDATED_GUEST_IDTR \
99 | HMVMX_UPDATED_GUEST_LDTR \
100 | HMVMX_UPDATED_GUEST_TR \
101 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
102 | HMVMX_UPDATED_GUEST_DR7 \
103 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
104 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
105 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
106 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
107 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
108 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
109 | HMVMX_UPDATED_GUEST_INTR_STATE \
110 | HMVMX_UPDATED_GUEST_APIC_STATE)
111/** @} */
112
113/** @name
114 * Flags to skip redundant reads of some common VMCS fields that are not part of
115 * the guest-CPU state but are in the transient structure.
116 */
117#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
118#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
119#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
120#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
124/** @} */
125
126/** @name
127 * States of the VMCS.
128 *
129 * This does not reflect all possible VMCS states but currently only those
130 * needed for maintaining the VMCS consistently even when thread-context hooks
131 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
132 */
133#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
134#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
135#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
136/** @} */
137
138/**
139 * Exception bitmap mask for real-mode guests (real-on-v86).
140 *
141 * We need to intercept all exceptions manually except:
142 * - \#NM, \#MF handled in hmR0VmxLoadSharedCR0().
143 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
144 * due to bugs in Intel CPUs.
145 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
146 * support.
147 */
148#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
149 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
150 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
151 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
152 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
153 /* RT_BIT(X86_XCPT_MF) always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
154 | RT_BIT(X86_XCPT_XF))
155
156/**
157 * Exception bitmap mask for all contributory exceptions.
158 *
159 * Page fault is deliberately excluded here as it's conditional as to whether
160 * it's contributory or benign. Page faults are handled separately.
161 */
162#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
163 | RT_BIT(X86_XCPT_DE))
164
165/** Maximum VM-instruction error number. */
166#define HMVMX_INSTR_ERROR_MAX 28
167
168/** Profiling macro. */
169#ifdef HM_PROFILE_EXIT_DISPATCH
170# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
171# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
172#else
173# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
174# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
175#endif
176
177/** Assert that preemption is disabled or covered by thread-context hooks. */
178#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
179 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
180
181/** Assert that we haven't migrated CPUs when thread-context hooks are not
182 * used. */
183#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
184 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
185 ("Illegal migration! Entered on CPU %u Current %u\n", \
186 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
187
188/** Helper macro for VM-exit handlers called unexpectedly. */
189#define HMVMX_RETURN_UNEXPECTED_EXIT() \
190 do { \
191 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
192 return VERR_VMX_UNEXPECTED_EXIT; \
193 } while (0)
194
195
196/*********************************************************************************************************************************
197* Structures and Typedefs *
198*********************************************************************************************************************************/
199/**
200 * VMX transient state.
201 *
202 * A state structure for holding miscellaneous information across
203 * VMX non-root operation and restored after the transition.
204 */
205typedef struct VMXTRANSIENT
206{
207 /** The host's rflags/eflags. */
208 RTCCUINTREG fEFlags;
209#if HC_ARCH_BITS == 32
210 uint32_t u32Alignment0;
211#endif
212 /** The guest's TPR value used for TPR shadowing. */
213 uint8_t u8GuestTpr;
214 /** Alignment. */
215 uint8_t abAlignment0[7];
216
217 /** The basic VM-exit reason. */
218 uint16_t uExitReason;
219 /** Alignment. */
220 uint16_t u16Alignment0;
221 /** The VM-exit interruption error code. */
222 uint32_t uExitIntErrorCode;
223 /** The VM-exit exit code qualification. */
224 uint64_t uExitQualification;
225
226 /** The VM-exit interruption-information field. */
227 uint32_t uExitIntInfo;
228 /** The VM-exit instruction-length field. */
229 uint32_t cbInstr;
230 /** The VM-exit instruction-information field. */
231 union
232 {
233 /** Plain unsigned int representation. */
234 uint32_t u;
235 /** INS and OUTS information. */
236 struct
237 {
238 uint32_t u7Reserved0 : 7;
239 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
240 uint32_t u3AddrSize : 3;
241 uint32_t u5Reserved1 : 5;
242 /** The segment register (X86_SREG_XXX). */
243 uint32_t iSegReg : 3;
244 uint32_t uReserved2 : 14;
245 } StrIo;
246 } ExitInstrInfo;
247 /** Whether the VM-entry failed or not. */
248 bool fVMEntryFailed;
249 /** Alignment. */
250 uint8_t abAlignment1[3];
251
252 /** The VM-entry interruption-information field. */
253 uint32_t uEntryIntInfo;
254 /** The VM-entry exception error code field. */
255 uint32_t uEntryXcptErrorCode;
256 /** The VM-entry instruction length field. */
257 uint32_t cbEntryInstr;
258
259 /** IDT-vectoring information field. */
260 uint32_t uIdtVectoringInfo;
261 /** IDT-vectoring error code. */
262 uint32_t uIdtVectoringErrorCode;
263
264 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
265 uint32_t fVmcsFieldsRead;
266
267 /** Whether the guest FPU was active at the time of VM-exit. */
268 bool fWasGuestFPUStateActive;
269 /** Whether the guest debug state was active at the time of VM-exit. */
270 bool fWasGuestDebugStateActive;
271 /** Whether the hyper debug state was active at the time of VM-exit. */
272 bool fWasHyperDebugStateActive;
273 /** Whether TSC-offsetting should be setup before VM-entry. */
274 bool fUpdateTscOffsettingAndPreemptTimer;
275 /** Whether the VM-exit was caused by a page-fault during delivery of a
276 * contributory exception or a page-fault. */
277 bool fVectoringDoublePF;
278 /** Whether the VM-exit was caused by a page-fault during delivery of an
279 * external interrupt or NMI. */
280 bool fVectoringPF;
281} VMXTRANSIENT;
282AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
283AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
284AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
285AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
286AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
287/** Pointer to VMX transient state. */
288typedef VMXTRANSIENT *PVMXTRANSIENT;
289
290
291/**
292 * MSR-bitmap read permissions.
293 */
294typedef enum VMXMSREXITREAD
295{
296 /** Reading this MSR causes a VM-exit. */
297 VMXMSREXIT_INTERCEPT_READ = 0xb,
298 /** Reading this MSR does not cause a VM-exit. */
299 VMXMSREXIT_PASSTHRU_READ
300} VMXMSREXITREAD;
301/** Pointer to MSR-bitmap read permissions. */
302typedef VMXMSREXITREAD* PVMXMSREXITREAD;
303
304/**
305 * MSR-bitmap write permissions.
306 */
307typedef enum VMXMSREXITWRITE
308{
309 /** Writing to this MSR causes a VM-exit. */
310 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
311 /** Writing to this MSR does not cause a VM-exit. */
312 VMXMSREXIT_PASSTHRU_WRITE
313} VMXMSREXITWRITE;
314/** Pointer to MSR-bitmap write permissions. */
315typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
316
317
318/**
319 * VMX VM-exit handler.
320 *
321 * @returns Strict VBox status code (i.e. informational status codes too).
322 * @param pVCpu The cross context virtual CPU structure.
323 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
324 * out-of-sync. Make sure to update the required
325 * fields before using them.
326 * @param pVmxTransient Pointer to the VMX-transient structure.
327 */
328#ifndef HMVMX_USE_FUNCTION_TABLE
329typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
330#else
331typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
332/** Pointer to VM-exit handler. */
333typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
334#endif
335
336/**
337 * VMX VM-exit handler, non-strict status code.
338 *
339 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
340 *
341 * @returns VBox status code, no informational status code returned.
342 * @param pVCpu The cross context virtual CPU structure.
343 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
344 * out-of-sync. Make sure to update the required
345 * fields before using them.
346 * @param pVmxTransient Pointer to the VMX-transient structure.
347 *
348 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
349 * use of that status code will be replaced with VINF_EM_SOMETHING
350 * later when switching over to IEM.
351 */
352#ifndef HMVMX_USE_FUNCTION_TABLE
353typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
354#else
355typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
356#endif
357
358
359/*********************************************************************************************************************************
360* Internal Functions *
361*********************************************************************************************************************************/
362static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
363static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
364static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
365static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
366 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
367 bool fStepping, uint32_t *puIntState);
368#if HC_ARCH_BITS == 32
369static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
370#endif
371#ifndef HMVMX_USE_FUNCTION_TABLE
372DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
373# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
374# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
375#else
376# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
377# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
378#endif
379
380
381/** @name VM-exit handlers.
382 * @{
383 */
384static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
385static FNVMXEXITHANDLER hmR0VmxExitExtInt;
386static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
387static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
393static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
394static FNVMXEXITHANDLER hmR0VmxExitCpuid;
395static FNVMXEXITHANDLER hmR0VmxExitGetsec;
396static FNVMXEXITHANDLER hmR0VmxExitHlt;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
398static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
399static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
400static FNVMXEXITHANDLER hmR0VmxExitVmcall;
401static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
402static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
404static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
405static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
406static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
407static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
408static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
410static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
411static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
412static FNVMXEXITHANDLER hmR0VmxExitMwait;
413static FNVMXEXITHANDLER hmR0VmxExitMtf;
414static FNVMXEXITHANDLER hmR0VmxExitMonitor;
415static FNVMXEXITHANDLER hmR0VmxExitPause;
416static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
417static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
418static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
419static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
420static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
421static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
422static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
423static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
424static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
425static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
426static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
427static FNVMXEXITHANDLER hmR0VmxExitRdrand;
428static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
429/** @} */
430
431static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
432static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
433static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
434static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
435static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
436static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
437static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
438static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
439static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
440
441
442/*********************************************************************************************************************************
443* Global Variables *
444*********************************************************************************************************************************/
445#ifdef HMVMX_USE_FUNCTION_TABLE
446
447/**
448 * VMX_EXIT dispatch table.
449 */
450static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
451{
452 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
453 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
454 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
455 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
456 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
457 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
458 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
459 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
460 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
461 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
462 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
463 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
464 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
465 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
466 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
467 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
468 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
469 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
470 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
471 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
472 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
473 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
474 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
475 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
476 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
477 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
478 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
479 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
480 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
481 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
482 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
483 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
484 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
485 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
486 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
487 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
488 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
489 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
490 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
491 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
492 /* 40 UNDEFINED */ hmR0VmxExitPause,
493 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
494 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
495 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
496 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
497 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
498 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
499 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
500 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
501 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
502 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
503 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
504 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
505 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
506 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
507 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
508 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
509 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
510 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
511 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
512 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
513 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
514 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
515 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
516 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
517};
518#endif /* HMVMX_USE_FUNCTION_TABLE */
519
520#ifdef VBOX_STRICT
521static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
522{
523 /* 0 */ "(Not Used)",
524 /* 1 */ "VMCALL executed in VMX root operation.",
525 /* 2 */ "VMCLEAR with invalid physical address.",
526 /* 3 */ "VMCLEAR with VMXON pointer.",
527 /* 4 */ "VMLAUNCH with non-clear VMCS.",
528 /* 5 */ "VMRESUME with non-launched VMCS.",
529 /* 6 */ "VMRESUME after VMXOFF",
530 /* 7 */ "VM-entry with invalid control fields.",
531 /* 8 */ "VM-entry with invalid host state fields.",
532 /* 9 */ "VMPTRLD with invalid physical address.",
533 /* 10 */ "VMPTRLD with VMXON pointer.",
534 /* 11 */ "VMPTRLD with incorrect revision identifier.",
535 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
536 /* 13 */ "VMWRITE to read-only VMCS component.",
537 /* 14 */ "(Not Used)",
538 /* 15 */ "VMXON executed in VMX root operation.",
539 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
540 /* 17 */ "VM-entry with non-launched executing VMCS.",
541 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
542 /* 19 */ "VMCALL with non-clear VMCS.",
543 /* 20 */ "VMCALL with invalid VM-exit control fields.",
544 /* 21 */ "(Not Used)",
545 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
546 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
547 /* 24 */ "VMCALL with invalid SMM-monitor features.",
548 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
549 /* 26 */ "VM-entry with events blocked by MOV SS.",
550 /* 27 */ "(Not Used)",
551 /* 28 */ "Invalid operand to INVEPT/INVVPID."
552};
553#endif /* VBOX_STRICT */
554
555
556
557/**
558 * Updates the VM's last error record.
559 *
560 * If there was a VMX instruction error, reads the error data from the VMCS and
561 * updates VCPU's last error record as well.
562 *
563 * @param pVM The cross context VM structure.
564 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
565 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
566 * VERR_VMX_INVALID_VMCS_FIELD.
567 * @param rc The error code.
568 */
569static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
570{
571 AssertPtr(pVM);
572 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
573 || rc == VERR_VMX_UNABLE_TO_START_VM)
574 {
575 AssertPtrReturnVoid(pVCpu);
576 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
577 }
578 pVM->hm.s.lLastError = rc;
579}
580
581
582/**
583 * Reads the VM-entry interruption-information field from the VMCS into the VMX
584 * transient structure.
585 *
586 * @returns VBox status code.
587 * @param pVmxTransient Pointer to the VMX transient structure.
588 *
589 * @remarks No-long-jump zone!!!
590 */
591DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
592{
593 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
594 AssertRCReturn(rc, rc);
595 return VINF_SUCCESS;
596}
597
598
599#ifdef VBOX_STRICT
600/**
601 * Reads the VM-entry exception error code field from the VMCS into
602 * the VMX transient structure.
603 *
604 * @returns VBox status code.
605 * @param pVmxTransient Pointer to the VMX transient structure.
606 *
607 * @remarks No-long-jump zone!!!
608 */
609DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
610{
611 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
612 AssertRCReturn(rc, rc);
613 return VINF_SUCCESS;
614}
615#endif /* VBOX_STRICT */
616
617
618#ifdef VBOX_STRICT
619/**
620 * Reads the VM-entry exception error code field from the VMCS into
621 * the VMX transient structure.
622 *
623 * @returns VBox status code.
624 * @param pVmxTransient Pointer to the VMX transient structure.
625 *
626 * @remarks No-long-jump zone!!!
627 */
628DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
629{
630 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
631 AssertRCReturn(rc, rc);
632 return VINF_SUCCESS;
633}
634#endif /* VBOX_STRICT */
635
636
637/**
638 * Reads the VM-exit interruption-information field from the VMCS into the VMX
639 * transient structure.
640 *
641 * @returns VBox status code.
642 * @param pVmxTransient Pointer to the VMX transient structure.
643 */
644DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
645{
646 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
647 {
648 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
649 AssertRCReturn(rc, rc);
650 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
651 }
652 return VINF_SUCCESS;
653}
654
655
656/**
657 * Reads the VM-exit interruption error code from the VMCS into the VMX
658 * transient structure.
659 *
660 * @returns VBox status code.
661 * @param pVmxTransient Pointer to the VMX transient structure.
662 */
663DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
664{
665 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
666 {
667 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
668 AssertRCReturn(rc, rc);
669 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
670 }
671 return VINF_SUCCESS;
672}
673
674
675/**
676 * Reads the VM-exit instruction length field from the VMCS into the VMX
677 * transient structure.
678 *
679 * @returns VBox status code.
680 * @param pVmxTransient Pointer to the VMX transient structure.
681 */
682DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
683{
684 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
685 {
686 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
687 AssertRCReturn(rc, rc);
688 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
689 }
690 return VINF_SUCCESS;
691}
692
693
694/**
695 * Reads the VM-exit instruction-information field from the VMCS into
696 * the VMX transient structure.
697 *
698 * @returns VBox status code.
699 * @param pVmxTransient Pointer to the VMX transient structure.
700 */
701DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
702{
703 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
704 {
705 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
706 AssertRCReturn(rc, rc);
707 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
708 }
709 return VINF_SUCCESS;
710}
711
712
713/**
714 * Reads the exit code qualification from the VMCS into the VMX transient
715 * structure.
716 *
717 * @returns VBox status code.
718 * @param pVCpu The cross context virtual CPU structure of the
719 * calling EMT. (Required for the VMCS cache case.)
720 * @param pVmxTransient Pointer to the VMX transient structure.
721 */
722DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
723{
724 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
725 {
726 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
727 AssertRCReturn(rc, rc);
728 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
729 }
730 return VINF_SUCCESS;
731}
732
733
734/**
735 * Reads the IDT-vectoring information field from the VMCS into the VMX
736 * transient structure.
737 *
738 * @returns VBox status code.
739 * @param pVmxTransient Pointer to the VMX transient structure.
740 *
741 * @remarks No-long-jump zone!!!
742 */
743DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
744{
745 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
746 {
747 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
748 AssertRCReturn(rc, rc);
749 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
750 }
751 return VINF_SUCCESS;
752}
753
754
755/**
756 * Reads the IDT-vectoring error code from the VMCS into the VMX
757 * transient structure.
758 *
759 * @returns VBox status code.
760 * @param pVmxTransient Pointer to the VMX transient structure.
761 */
762DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
763{
764 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
765 {
766 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
767 AssertRCReturn(rc, rc);
768 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
769 }
770 return VINF_SUCCESS;
771}
772
773
774/**
775 * Enters VMX root mode operation on the current CPU.
776 *
777 * @returns VBox status code.
778 * @param pVM The cross context VM structure. Can be
779 * NULL, after a resume.
780 * @param HCPhysCpuPage Physical address of the VMXON region.
781 * @param pvCpuPage Pointer to the VMXON region.
782 */
783static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
784{
785 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
786 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
787 Assert(pvCpuPage);
788 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
789
790 if (pVM)
791 {
792 /* Write the VMCS revision dword to the VMXON region. */
793 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
794 }
795
796 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
797 RTCCUINTREG fEFlags = ASMIntDisableFlags();
798
799 /* Enable the VMX bit in CR4 if necessary. */
800 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
801
802 /* Enter VMX root mode. */
803 int rc = VMXEnable(HCPhysCpuPage);
804 if (RT_FAILURE(rc))
805 {
806 if (!(uOldCr4 & X86_CR4_VMXE))
807 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
808
809 if (pVM)
810 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
811 }
812
813 /* Restore interrupts. */
814 ASMSetFlags(fEFlags);
815 return rc;
816}
817
818
819/**
820 * Exits VMX root mode operation on the current CPU.
821 *
822 * @returns VBox status code.
823 */
824static int hmR0VmxLeaveRootMode(void)
825{
826 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
827
828 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
829 RTCCUINTREG fEFlags = ASMIntDisableFlags();
830
831 /* If we're for some reason not in VMX root mode, then don't leave it. */
832 RTCCUINTREG uHostCR4 = ASMGetCR4();
833
834 int rc;
835 if (uHostCR4 & X86_CR4_VMXE)
836 {
837 /* Exit VMX root mode and clear the VMX bit in CR4. */
838 VMXDisable();
839 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
840 rc = VINF_SUCCESS;
841 }
842 else
843 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
844
845 /* Restore interrupts. */
846 ASMSetFlags(fEFlags);
847 return rc;
848}
849
850
851/**
852 * Allocates and maps one physically contiguous page. The allocated page is
853 * zero'd out. (Used by various VT-x structures).
854 *
855 * @returns IPRT status code.
856 * @param pMemObj Pointer to the ring-0 memory object.
857 * @param ppVirt Where to store the virtual address of the
858 * allocation.
859 * @param pHCPhys Where to store the physical address of the
860 * allocation.
861 */
862DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
863{
864 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
865 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
866 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
867
868 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
869 if (RT_FAILURE(rc))
870 return rc;
871 *ppVirt = RTR0MemObjAddress(*pMemObj);
872 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
873 ASMMemZero32(*ppVirt, PAGE_SIZE);
874 return VINF_SUCCESS;
875}
876
877
878/**
879 * Frees and unmaps an allocated physical page.
880 *
881 * @param pMemObj Pointer to the ring-0 memory object.
882 * @param ppVirt Where to re-initialize the virtual address of
883 * allocation as 0.
884 * @param pHCPhys Where to re-initialize the physical address of the
885 * allocation as 0.
886 */
887DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
888{
889 AssertPtr(pMemObj);
890 AssertPtr(ppVirt);
891 AssertPtr(pHCPhys);
892 if (*pMemObj != NIL_RTR0MEMOBJ)
893 {
894 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
895 AssertRC(rc);
896 *pMemObj = NIL_RTR0MEMOBJ;
897 *ppVirt = 0;
898 *pHCPhys = 0;
899 }
900}
901
902
903/**
904 * Worker function to free VT-x related structures.
905 *
906 * @returns IPRT status code.
907 * @param pVM The cross context VM structure.
908 */
909static void hmR0VmxStructsFree(PVM pVM)
910{
911 for (VMCPUID i = 0; i < pVM->cCpus; i++)
912 {
913 PVMCPU pVCpu = &pVM->aCpus[i];
914 AssertPtr(pVCpu);
915
916 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
917 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
918
919 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
920 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
921
922 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
923 }
924
925 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
926#ifdef VBOX_WITH_CRASHDUMP_MAGIC
927 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
928#endif
929}
930
931
932/**
933 * Worker function to allocate VT-x related VM structures.
934 *
935 * @returns IPRT status code.
936 * @param pVM The cross context VM structure.
937 */
938static int hmR0VmxStructsAlloc(PVM pVM)
939{
940 /*
941 * Initialize members up-front so we can cleanup properly on allocation failure.
942 */
943#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
944 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
945 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
946 pVM->hm.s.vmx.HCPhys##a_Name = 0;
947
948#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
949 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
950 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
951 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
952
953#ifdef VBOX_WITH_CRASHDUMP_MAGIC
954 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
955#endif
956 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
957
958 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
959 for (VMCPUID i = 0; i < pVM->cCpus; i++)
960 {
961 PVMCPU pVCpu = &pVM->aCpus[i];
962 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
963 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
964 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
965 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
966 }
967#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
968#undef VMXLOCAL_INIT_VM_MEMOBJ
969
970 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
971 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
972 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
973 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
974
975 /*
976 * Allocate all the VT-x structures.
977 */
978 int rc = VINF_SUCCESS;
979#ifdef VBOX_WITH_CRASHDUMP_MAGIC
980 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
981 if (RT_FAILURE(rc))
982 goto cleanup;
983 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
984 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
985#endif
986
987 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
988 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
989 {
990 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
991 &pVM->hm.s.vmx.HCPhysApicAccess);
992 if (RT_FAILURE(rc))
993 goto cleanup;
994 }
995
996 /*
997 * Initialize per-VCPU VT-x structures.
998 */
999 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1000 {
1001 PVMCPU pVCpu = &pVM->aCpus[i];
1002 AssertPtr(pVCpu);
1003
1004 /* Allocate the VM control structure (VMCS). */
1005 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1006 if (RT_FAILURE(rc))
1007 goto cleanup;
1008
1009 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
1010 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
1011 {
1012 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1013 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1014 if (RT_FAILURE(rc))
1015 goto cleanup;
1016 }
1017
1018 /*
1019 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1020 * transparent accesses of specific MSRs.
1021 *
1022 * If the condition for enabling MSR bitmaps changes here, don't forget to
1023 * update HMAreMsrBitmapsAvailable().
1024 */
1025 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1026 {
1027 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1028 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1029 if (RT_FAILURE(rc))
1030 goto cleanup;
1031 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1032 }
1033
1034 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1035 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1036 if (RT_FAILURE(rc))
1037 goto cleanup;
1038
1039 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1040 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1041 if (RT_FAILURE(rc))
1042 goto cleanup;
1043 }
1044
1045 return VINF_SUCCESS;
1046
1047cleanup:
1048 hmR0VmxStructsFree(pVM);
1049 return rc;
1050}
1051
1052
1053/**
1054 * Does global VT-x initialization (called during module initialization).
1055 *
1056 * @returns VBox status code.
1057 */
1058VMMR0DECL(int) VMXR0GlobalInit(void)
1059{
1060#ifdef HMVMX_USE_FUNCTION_TABLE
1061 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1062# ifdef VBOX_STRICT
1063 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1064 Assert(g_apfnVMExitHandlers[i]);
1065# endif
1066#endif
1067 return VINF_SUCCESS;
1068}
1069
1070
1071/**
1072 * Does global VT-x termination (called during module termination).
1073 */
1074VMMR0DECL(void) VMXR0GlobalTerm()
1075{
1076 /* Nothing to do currently. */
1077}
1078
1079
1080/**
1081 * Sets up and activates VT-x on the current CPU.
1082 *
1083 * @returns VBox status code.
1084 * @param pCpu Pointer to the global CPU info struct.
1085 * @param pVM The cross context VM structure. Can be
1086 * NULL after a host resume operation.
1087 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1088 * fEnabledByHost is @c true).
1089 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1090 * @a fEnabledByHost is @c true).
1091 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1092 * enable VT-x on the host.
1093 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1094 */
1095VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1096 void *pvMsrs)
1097{
1098 Assert(pCpu);
1099 Assert(pvMsrs);
1100 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1101
1102 /* Enable VT-x if it's not already enabled by the host. */
1103 if (!fEnabledByHost)
1104 {
1105 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1106 if (RT_FAILURE(rc))
1107 return rc;
1108 }
1109
1110 /*
1111 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1112 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1113 */
1114 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1115 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1116 {
1117 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1118 pCpu->fFlushAsidBeforeUse = false;
1119 }
1120 else
1121 pCpu->fFlushAsidBeforeUse = true;
1122
1123 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1124 ++pCpu->cTlbFlushes;
1125
1126 return VINF_SUCCESS;
1127}
1128
1129
1130/**
1131 * Deactivates VT-x on the current CPU.
1132 *
1133 * @returns VBox status code.
1134 * @param pCpu Pointer to the global CPU info struct.
1135 * @param pvCpuPage Pointer to the VMXON region.
1136 * @param HCPhysCpuPage Physical address of the VMXON region.
1137 *
1138 * @remarks This function should never be called when SUPR0EnableVTx() or
1139 * similar was used to enable VT-x on the host.
1140 */
1141VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1142{
1143 NOREF(pCpu);
1144 NOREF(pvCpuPage);
1145 NOREF(HCPhysCpuPage);
1146
1147 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1148 return hmR0VmxLeaveRootMode();
1149}
1150
1151
1152/**
1153 * Sets the permission bits for the specified MSR in the MSR bitmap.
1154 *
1155 * @param pVCpu The cross context virtual CPU structure.
1156 * @param uMsr The MSR value.
1157 * @param enmRead Whether reading this MSR causes a VM-exit.
1158 * @param enmWrite Whether writing this MSR causes a VM-exit.
1159 */
1160static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1161{
1162 int32_t iBit;
1163 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1164
1165 /*
1166 * Layout:
1167 * 0x000 - 0x3ff - Low MSR read bits
1168 * 0x400 - 0x7ff - High MSR read bits
1169 * 0x800 - 0xbff - Low MSR write bits
1170 * 0xc00 - 0xfff - High MSR write bits
1171 */
1172 if (uMsr <= 0x00001FFF)
1173 iBit = uMsr;
1174 else if (uMsr - UINT32_C(0xC0000000) <= UINT32_C(0x00001FFF))
1175 {
1176 iBit = uMsr - UINT32_C(0xC0000000);
1177 pbMsrBitmap += 0x400;
1178 }
1179 else
1180 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1181
1182 Assert(iBit <= 0x1fff);
1183 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1184 ASMBitSet(pbMsrBitmap, iBit);
1185 else
1186 ASMBitClear(pbMsrBitmap, iBit);
1187
1188 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1189 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1190 else
1191 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1192}
1193
1194
1195#ifdef VBOX_STRICT
1196/**
1197 * Gets the permission bits for the specified MSR in the MSR bitmap.
1198 *
1199 * @returns VBox status code.
1200 * @retval VINF_SUCCESS if the specified MSR is found.
1201 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1202 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1203 *
1204 * @param pVCpu The cross context virtual CPU structure.
1205 * @param uMsr The MSR.
1206 * @param penmRead Where to store the read permissions.
1207 * @param penmWrite Where to store the write permissions.
1208 */
1209static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1210{
1211 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1212 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1213 int32_t iBit;
1214 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1215
1216 /* See hmR0VmxSetMsrPermission() for the layout. */
1217 if (uMsr <= 0x00001FFF)
1218 iBit = uMsr;
1219 else if ( uMsr >= 0xC0000000
1220 && uMsr <= 0xC0001FFF)
1221 {
1222 iBit = (uMsr - 0xC0000000);
1223 pbMsrBitmap += 0x400;
1224 }
1225 else
1226 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1227
1228 Assert(iBit <= 0x1fff);
1229 if (ASMBitTest(pbMsrBitmap, iBit))
1230 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1231 else
1232 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1233
1234 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1235 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1236 else
1237 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1238 return VINF_SUCCESS;
1239}
1240#endif /* VBOX_STRICT */
1241
1242
1243/**
1244 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1245 * area.
1246 *
1247 * @returns VBox status code.
1248 * @param pVCpu The cross context virtual CPU structure.
1249 * @param cMsrs The number of MSRs.
1250 */
1251DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1252{
1253 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1254 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1255 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1256 {
1257 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1258 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1259 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1260 }
1261
1262 /* Update number of guest MSRs to load/store across the world-switch. */
1263 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1264 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1265
1266 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1267 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1268 AssertRCReturn(rc, rc);
1269
1270 /* Update the VCPU's copy of the MSR count. */
1271 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1272
1273 return VINF_SUCCESS;
1274}
1275
1276
1277/**
1278 * Adds a new (or updates the value of an existing) guest/host MSR
1279 * pair to be swapped during the world-switch as part of the
1280 * auto-load/store MSR area in the VMCS.
1281 *
1282 * @returns VBox status code.
1283 * @param pVCpu The cross context virtual CPU structure.
1284 * @param uMsr The MSR.
1285 * @param uGuestMsrValue Value of the guest MSR.
1286 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1287 * necessary.
1288 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1289 * its value was updated. Optional, can be NULL.
1290 */
1291static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1292 bool *pfAddedAndUpdated)
1293{
1294 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1295 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1296 uint32_t i;
1297 for (i = 0; i < cMsrs; i++)
1298 {
1299 if (pGuestMsr->u32Msr == uMsr)
1300 break;
1301 pGuestMsr++;
1302 }
1303
1304 bool fAdded = false;
1305 if (i == cMsrs)
1306 {
1307 ++cMsrs;
1308 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1309 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1310
1311 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1312 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1313 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1314
1315 fAdded = true;
1316 }
1317
1318 /* Update the MSR values in the auto-load/store MSR area. */
1319 pGuestMsr->u32Msr = uMsr;
1320 pGuestMsr->u64Value = uGuestMsrValue;
1321
1322 /* Create/update the MSR slot in the host MSR area. */
1323 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1324 pHostMsr += i;
1325 pHostMsr->u32Msr = uMsr;
1326
1327 /*
1328 * Update the host MSR only when requested by the caller AND when we're
1329 * adding it to the auto-load/store area. Otherwise, it would have been
1330 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1331 */
1332 bool fUpdatedMsrValue = false;
1333 if ( fAdded
1334 && fUpdateHostMsr)
1335 {
1336 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1337 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1338 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1339 fUpdatedMsrValue = true;
1340 }
1341
1342 if (pfAddedAndUpdated)
1343 *pfAddedAndUpdated = fUpdatedMsrValue;
1344 return VINF_SUCCESS;
1345}
1346
1347
1348/**
1349 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1350 * auto-load/store MSR area in the VMCS.
1351 *
1352 * @returns VBox status code.
1353 * @param pVCpu The cross context virtual CPU structure.
1354 * @param uMsr The MSR.
1355 */
1356static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1357{
1358 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1359 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1360 for (uint32_t i = 0; i < cMsrs; i++)
1361 {
1362 /* Find the MSR. */
1363 if (pGuestMsr->u32Msr == uMsr)
1364 {
1365 /* If it's the last MSR, simply reduce the count. */
1366 if (i == cMsrs - 1)
1367 {
1368 --cMsrs;
1369 break;
1370 }
1371
1372 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1373 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1374 pLastGuestMsr += cMsrs - 1;
1375 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1376 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1377
1378 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1379 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1380 pLastHostMsr += cMsrs - 1;
1381 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1382 pHostMsr->u64Value = pLastHostMsr->u64Value;
1383 --cMsrs;
1384 break;
1385 }
1386 pGuestMsr++;
1387 }
1388
1389 /* Update the VMCS if the count changed (meaning the MSR was found). */
1390 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1391 {
1392 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1393 AssertRCReturn(rc, rc);
1394
1395 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1396 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1397 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1398
1399 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1400 return VINF_SUCCESS;
1401 }
1402
1403 return VERR_NOT_FOUND;
1404}
1405
1406
1407/**
1408 * Checks if the specified guest MSR is part of the auto-load/store area in
1409 * the VMCS.
1410 *
1411 * @returns true if found, false otherwise.
1412 * @param pVCpu The cross context virtual CPU structure.
1413 * @param uMsr The MSR to find.
1414 */
1415static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1416{
1417 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1418 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1419
1420 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1421 {
1422 if (pGuestMsr->u32Msr == uMsr)
1423 return true;
1424 }
1425 return false;
1426}
1427
1428
1429/**
1430 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1431 *
1432 * @param pVCpu The cross context virtual CPU structure.
1433 *
1434 * @remarks No-long-jump zone!!!
1435 */
1436static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1437{
1438 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1439 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1440 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1441 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1442
1443 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1444 {
1445 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1446
1447 /*
1448 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1449 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1450 */
1451 if (pHostMsr->u32Msr == MSR_K6_EFER)
1452 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1453 else
1454 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1455 }
1456
1457 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1458}
1459
1460
1461/**
1462 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1463 * perform lazy restoration of the host MSRs while leaving VT-x.
1464 *
1465 * @param pVCpu The cross context virtual CPU structure.
1466 *
1467 * @remarks No-long-jump zone!!!
1468 */
1469static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1470{
1471 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1472
1473 /*
1474 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1475 */
1476 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1477 {
1478 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1479#if HC_ARCH_BITS == 64
1480 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1481 {
1482 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1483 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1484 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1485 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1486 }
1487#endif
1488 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1489 }
1490}
1491
1492
1493/**
1494 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1495 * lazily while leaving VT-x.
1496 *
1497 * @returns true if it does, false otherwise.
1498 * @param pVCpu The cross context virtual CPU structure.
1499 * @param uMsr The MSR to check.
1500 */
1501static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1502{
1503 NOREF(pVCpu);
1504#if HC_ARCH_BITS == 64
1505 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1506 {
1507 switch (uMsr)
1508 {
1509 case MSR_K8_LSTAR:
1510 case MSR_K6_STAR:
1511 case MSR_K8_SF_MASK:
1512 case MSR_K8_KERNEL_GS_BASE:
1513 return true;
1514 }
1515 }
1516#else
1517 RT_NOREF(pVCpu, uMsr);
1518#endif
1519 return false;
1520}
1521
1522
1523/**
1524 * Saves a set of guest MSRs back into the guest-CPU context.
1525 *
1526 * @param pVCpu The cross context virtual CPU structure.
1527 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1528 * out-of-sync. Make sure to update the required fields
1529 * before using them.
1530 *
1531 * @remarks No-long-jump zone!!!
1532 */
1533static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1534{
1535 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1536 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1537
1538 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1539 {
1540 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1541#if HC_ARCH_BITS == 64
1542 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1543 {
1544 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1545 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1546 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1547 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1548 }
1549#else
1550 NOREF(pMixedCtx);
1551#endif
1552 }
1553}
1554
1555
1556/**
1557 * Loads a set of guests MSRs to allow read/passthru to the guest.
1558 *
1559 * The name of this function is slightly confusing. This function does NOT
1560 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1561 * common prefix for functions dealing with "lazy restoration" of the shared
1562 * MSRs.
1563 *
1564 * @param pVCpu The cross context virtual CPU structure.
1565 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1566 * out-of-sync. Make sure to update the required fields
1567 * before using them.
1568 *
1569 * @remarks No-long-jump zone!!!
1570 */
1571static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1572{
1573 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1574 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1575
1576 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1577#if HC_ARCH_BITS == 64
1578 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1579 {
1580 /*
1581 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1582 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1583 * we can skip a few MSR writes.
1584 *
1585 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1586 * guest MSR values in the guest-CPU context might be different to what's currently
1587 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1588 * CPU, see @bugref{8728}.
1589 */
1590 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1591 && pMixedCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1592 && pMixedCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1593 && pMixedCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1594 && pMixedCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1595 {
1596#ifdef VBOX_STRICT
1597 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pMixedCtx->msrKERNELGSBASE);
1598 Assert(ASMRdMsr(MSR_K8_LSTAR) == pMixedCtx->msrLSTAR);
1599 Assert(ASMRdMsr(MSR_K6_STAR) == pMixedCtx->msrSTAR);
1600 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pMixedCtx->msrSFMASK);
1601#endif
1602 }
1603 else
1604 {
1605 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
1606 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
1607 ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
1608 ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
1609 }
1610 }
1611#else
1612 RT_NOREF(pMixedCtx);
1613#endif
1614 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1615}
1616
1617
1618/**
1619 * Performs lazy restoration of the set of host MSRs if they were previously
1620 * loaded with guest MSR values.
1621 *
1622 * @param pVCpu The cross context virtual CPU structure.
1623 *
1624 * @remarks No-long-jump zone!!!
1625 * @remarks The guest MSRs should have been saved back into the guest-CPU
1626 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1627 */
1628static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1629{
1630 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1631 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1632
1633 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1634 {
1635 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1636#if HC_ARCH_BITS == 64
1637 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1638 {
1639 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1640 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1641 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1642 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1643 }
1644#endif
1645 }
1646 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1647}
1648
1649
1650/**
1651 * Verifies that our cached values of the VMCS controls are all
1652 * consistent with what's actually present in the VMCS.
1653 *
1654 * @returns VBox status code.
1655 * @param pVCpu The cross context virtual CPU structure.
1656 */
1657static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1658{
1659 uint32_t u32Val;
1660 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1661 AssertRCReturn(rc, rc);
1662 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1663 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1664
1665 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1666 AssertRCReturn(rc, rc);
1667 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1668 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1669
1670 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1671 AssertRCReturn(rc, rc);
1672 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1673 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1674
1675 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1676 AssertRCReturn(rc, rc);
1677 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1678 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1679
1680 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1681 {
1682 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1683 AssertRCReturn(rc, rc);
1684 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1685 ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1686 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1687 }
1688
1689 return VINF_SUCCESS;
1690}
1691
1692
1693#ifdef VBOX_STRICT
1694/**
1695 * Verifies that our cached host EFER value has not changed
1696 * since we cached it.
1697 *
1698 * @param pVCpu The cross context virtual CPU structure.
1699 */
1700static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1701{
1702 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1703
1704 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1705 {
1706 uint64_t u64Val;
1707 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1708 AssertRC(rc);
1709
1710 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1711 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1712 }
1713}
1714
1715
1716/**
1717 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1718 * VMCS are correct.
1719 *
1720 * @param pVCpu The cross context virtual CPU structure.
1721 */
1722static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1723{
1724 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1725
1726 /* Verify MSR counts in the VMCS are what we think it should be. */
1727 uint32_t cMsrs;
1728 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1729 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1730
1731 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1732 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1733
1734 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1735 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1736
1737 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1738 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1739 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1740 {
1741 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1742 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1743 pGuestMsr->u32Msr, cMsrs));
1744
1745 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1746 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1747 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1748
1749 /* Verify that the permissions are as expected in the MSR bitmap. */
1750 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1751 {
1752 VMXMSREXITREAD enmRead;
1753 VMXMSREXITWRITE enmWrite;
1754 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1755 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1756 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1757 {
1758 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1759 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1760 }
1761 else
1762 {
1763 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1764 pGuestMsr->u32Msr, cMsrs));
1765 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1766 pGuestMsr->u32Msr, cMsrs));
1767 }
1768 }
1769 }
1770}
1771#endif /* VBOX_STRICT */
1772
1773
1774/**
1775 * Flushes the TLB using EPT.
1776 *
1777 * @returns VBox status code.
1778 * @param pVCpu The cross context virtual CPU structure of the calling
1779 * EMT. Can be NULL depending on @a enmFlush.
1780 * @param enmFlush Type of flush.
1781 *
1782 * @remarks Caller is responsible for making sure this function is called only
1783 * when NestedPaging is supported and providing @a enmFlush that is
1784 * supported by the CPU.
1785 * @remarks Can be called with interrupts disabled.
1786 */
1787static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1788{
1789 uint64_t au64Descriptor[2];
1790 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1791 au64Descriptor[0] = 0;
1792 else
1793 {
1794 Assert(pVCpu);
1795 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1796 }
1797 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1798
1799 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1800 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1801 rc));
1802 if ( RT_SUCCESS(rc)
1803 && pVCpu)
1804 {
1805 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1806 }
1807}
1808
1809
1810/**
1811 * Flushes the TLB using VPID.
1812 *
1813 * @returns VBox status code.
1814 * @param pVM The cross context VM structure.
1815 * @param pVCpu The cross context virtual CPU structure of the calling
1816 * EMT. Can be NULL depending on @a enmFlush.
1817 * @param enmFlush Type of flush.
1818 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1819 * on @a enmFlush).
1820 *
1821 * @remarks Can be called with interrupts disabled.
1822 */
1823static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1824{
1825 NOREF(pVM);
1826 AssertPtr(pVM);
1827 Assert(pVM->hm.s.vmx.fVpid);
1828
1829 uint64_t au64Descriptor[2];
1830 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1831 {
1832 au64Descriptor[0] = 0;
1833 au64Descriptor[1] = 0;
1834 }
1835 else
1836 {
1837 AssertPtr(pVCpu);
1838 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1839 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1840 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1841 au64Descriptor[1] = GCPtr;
1842 }
1843
1844 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1845 AssertMsg(rc == VINF_SUCCESS,
1846 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1847 if ( RT_SUCCESS(rc)
1848 && pVCpu)
1849 {
1850 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1851 }
1852}
1853
1854
1855/**
1856 * Invalidates a guest page by guest virtual address. Only relevant for
1857 * EPT/VPID, otherwise there is nothing really to invalidate.
1858 *
1859 * @returns VBox status code.
1860 * @param pVM The cross context VM structure.
1861 * @param pVCpu The cross context virtual CPU structure.
1862 * @param GCVirt Guest virtual address of the page to invalidate.
1863 */
1864VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1865{
1866 AssertPtr(pVM);
1867 AssertPtr(pVCpu);
1868 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1869
1870 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1871 if (!fFlushPending)
1872 {
1873 /*
1874 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1875 * See @bugref{6043} and @bugref{6177}.
1876 *
1877 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1878 * function maybe called in a loop with individual addresses.
1879 */
1880 if (pVM->hm.s.vmx.fVpid)
1881 {
1882 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1883 {
1884 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1885 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1886 }
1887 else
1888 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1889 }
1890 else if (pVM->hm.s.fNestedPaging)
1891 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1892 }
1893
1894 return VINF_SUCCESS;
1895}
1896
1897
1898/**
1899 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1900 * otherwise there is nothing really to invalidate.
1901 *
1902 * @returns VBox status code.
1903 * @param pVM The cross context VM structure.
1904 * @param pVCpu The cross context virtual CPU structure.
1905 * @param GCPhys Guest physical address of the page to invalidate.
1906 */
1907VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1908{
1909 NOREF(pVM); NOREF(GCPhys);
1910 LogFlowFunc(("%RGp\n", GCPhys));
1911
1912 /*
1913 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1914 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1915 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1916 */
1917 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1918 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1919 return VINF_SUCCESS;
1920}
1921
1922
1923/**
1924 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1925 * case where neither EPT nor VPID is supported by the CPU.
1926 *
1927 * @param pVM The cross context VM structure.
1928 * @param pVCpu The cross context virtual CPU structure.
1929 * @param pCpu Pointer to the global HM struct.
1930 *
1931 * @remarks Called with interrupts disabled.
1932 */
1933static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1934{
1935 AssertPtr(pVCpu);
1936 AssertPtr(pCpu);
1937 NOREF(pVM);
1938
1939 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1940
1941 Assert(pCpu->idCpu != NIL_RTCPUID);
1942 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1943 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1944 pVCpu->hm.s.fForceTLBFlush = false;
1945 return;
1946}
1947
1948
1949/**
1950 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1951 *
1952 * @param pVM The cross context VM structure.
1953 * @param pVCpu The cross context virtual CPU structure.
1954 * @param pCpu Pointer to the global HM CPU struct.
1955 * @remarks All references to "ASID" in this function pertains to "VPID" in
1956 * Intel's nomenclature. The reason is, to avoid confusion in compare
1957 * statements since the host-CPU copies are named "ASID".
1958 *
1959 * @remarks Called with interrupts disabled.
1960 */
1961static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1962{
1963#ifdef VBOX_WITH_STATISTICS
1964 bool fTlbFlushed = false;
1965# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1966# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1967 if (!fTlbFlushed) \
1968 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1969 } while (0)
1970#else
1971# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1972# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1973#endif
1974
1975 AssertPtr(pVM);
1976 AssertPtr(pCpu);
1977 AssertPtr(pVCpu);
1978 Assert(pCpu->idCpu != NIL_RTCPUID);
1979
1980 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1981 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1982 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1983
1984 /*
1985 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1986 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1987 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1988 */
1989 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1990 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1991 {
1992 ++pCpu->uCurrentAsid;
1993 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1994 {
1995 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1996 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1997 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1998 }
1999
2000 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2001 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2002 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2003
2004 /*
2005 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
2006 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
2007 */
2008 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2009 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2010 HMVMX_SET_TAGGED_TLB_FLUSHED();
2011 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
2012 }
2013
2014 /* Check for explicit TLB flushes. */
2015 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2016 {
2017 /*
2018 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
2019 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
2020 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
2021 * but not guest-physical mappings.
2022 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
2023 */
2024 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2025 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2026 HMVMX_SET_TAGGED_TLB_FLUSHED();
2027 }
2028
2029 pVCpu->hm.s.fForceTLBFlush = false;
2030 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2031
2032 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2033 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2034 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2035 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2036 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2037 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2038 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2039 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2040 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2041
2042 /* Update VMCS with the VPID. */
2043 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2044 AssertRC(rc);
2045
2046#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2047}
2048
2049
2050/**
2051 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2052 *
2053 * @returns VBox status code.
2054 * @param pVM The cross context VM structure.
2055 * @param pVCpu The cross context virtual CPU structure.
2056 * @param pCpu Pointer to the global HM CPU struct.
2057 *
2058 * @remarks Called with interrupts disabled.
2059 */
2060static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2061{
2062 AssertPtr(pVM);
2063 AssertPtr(pVCpu);
2064 AssertPtr(pCpu);
2065 Assert(pCpu->idCpu != NIL_RTCPUID);
2066 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2067 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2068
2069 /*
2070 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2071 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2072 */
2073 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2074 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2075 {
2076 pVCpu->hm.s.fForceTLBFlush = true;
2077 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2078 }
2079
2080 /* Check for explicit TLB flushes. */
2081 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2082 {
2083 pVCpu->hm.s.fForceTLBFlush = true;
2084 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2085 }
2086
2087 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2088 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2089
2090 if (pVCpu->hm.s.fForceTLBFlush)
2091 {
2092 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2093 pVCpu->hm.s.fForceTLBFlush = false;
2094 }
2095}
2096
2097
2098/**
2099 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2100 *
2101 * @returns VBox status code.
2102 * @param pVM The cross context VM structure.
2103 * @param pVCpu The cross context virtual CPU structure.
2104 * @param pCpu Pointer to the global HM CPU struct.
2105 *
2106 * @remarks Called with interrupts disabled.
2107 */
2108static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2109{
2110 AssertPtr(pVM);
2111 AssertPtr(pVCpu);
2112 AssertPtr(pCpu);
2113 Assert(pCpu->idCpu != NIL_RTCPUID);
2114 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2115 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2116
2117 /*
2118 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2119 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2120 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2121 */
2122 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2123 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2124 {
2125 pVCpu->hm.s.fForceTLBFlush = true;
2126 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2127 }
2128
2129 /* Check for explicit TLB flushes. */
2130 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2131 {
2132 /*
2133 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2134 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2135 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2136 */
2137 pVCpu->hm.s.fForceTLBFlush = true;
2138 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2139 }
2140
2141 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2142 if (pVCpu->hm.s.fForceTLBFlush)
2143 {
2144 ++pCpu->uCurrentAsid;
2145 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2146 {
2147 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2148 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2149 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2150 }
2151
2152 pVCpu->hm.s.fForceTLBFlush = false;
2153 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2154 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2155 if (pCpu->fFlushAsidBeforeUse)
2156 {
2157 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2158 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2159 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2160 {
2161 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2162 pCpu->fFlushAsidBeforeUse = false;
2163 }
2164 else
2165 {
2166 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2167 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2168 }
2169 }
2170 }
2171
2172 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2173 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2174 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2175 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2176 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2177 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2178 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2179
2180 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2181 AssertRC(rc);
2182}
2183
2184
2185/**
2186 * Flushes the guest TLB entry based on CPU capabilities.
2187 *
2188 * @param pVCpu The cross context virtual CPU structure.
2189 * @param pCpu Pointer to the global HM CPU struct.
2190 */
2191DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2192{
2193#ifdef HMVMX_ALWAYS_FLUSH_TLB
2194 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2195#endif
2196 PVM pVM = pVCpu->CTX_SUFF(pVM);
2197 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2198 {
2199 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2200 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2201 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2202 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2203 default:
2204 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2205 break;
2206 }
2207
2208 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2209}
2210
2211
2212/**
2213 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2214 * TLB entries from the host TLB before VM-entry.
2215 *
2216 * @returns VBox status code.
2217 * @param pVM The cross context VM structure.
2218 */
2219static int hmR0VmxSetupTaggedTlb(PVM pVM)
2220{
2221 /*
2222 * Determine optimal flush type for Nested Paging.
2223 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2224 * guest execution (see hmR3InitFinalizeR0()).
2225 */
2226 if (pVM->hm.s.fNestedPaging)
2227 {
2228 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2229 {
2230 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2231 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2232 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2233 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2234 else
2235 {
2236 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2237 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2238 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2239 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2240 }
2241
2242 /* Make sure the write-back cacheable memory type for EPT is supported. */
2243 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2244 {
2245 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2246 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2247 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2248 }
2249
2250 /* EPT requires a page-walk length of 4. */
2251 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2252 {
2253 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2254 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2255 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2256 }
2257 }
2258 else
2259 {
2260 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2261 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2262 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2263 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2264 }
2265 }
2266
2267 /*
2268 * Determine optimal flush type for VPID.
2269 */
2270 if (pVM->hm.s.vmx.fVpid)
2271 {
2272 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2273 {
2274 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2275 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2276 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2277 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2278 else
2279 {
2280 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2281 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2282 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2283 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2284 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2285 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2286 pVM->hm.s.vmx.fVpid = false;
2287 }
2288 }
2289 else
2290 {
2291 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2292 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2293 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2294 pVM->hm.s.vmx.fVpid = false;
2295 }
2296 }
2297
2298 /*
2299 * Setup the handler for flushing tagged-TLBs.
2300 */
2301 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2302 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2303 else if (pVM->hm.s.fNestedPaging)
2304 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2305 else if (pVM->hm.s.vmx.fVpid)
2306 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2307 else
2308 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2309 return VINF_SUCCESS;
2310}
2311
2312
2313/**
2314 * Sets up pin-based VM-execution controls in the VMCS.
2315 *
2316 * @returns VBox status code.
2317 * @param pVM The cross context VM structure.
2318 * @param pVCpu The cross context virtual CPU structure.
2319 */
2320static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2321{
2322 AssertPtr(pVM);
2323 AssertPtr(pVCpu);
2324
2325 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2326 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2327
2328 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2329 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2330
2331 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2332 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2333
2334 /* Enable the VMX preemption timer. */
2335 if (pVM->hm.s.vmx.fUsePreemptTimer)
2336 {
2337 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2338 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2339 }
2340
2341#if 0
2342 /* Enable posted-interrupt processing. */
2343 if (pVM->hm.s.fPostedIntrs)
2344 {
2345 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
2346 Assert(pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
2347 val |= VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR;
2348 }
2349#endif
2350
2351 if ((val & zap) != val)
2352 {
2353 LogRel(("hmR0VmxSetupPinCtls: Invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2354 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2355 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2356 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2357 }
2358
2359 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2360 AssertRCReturn(rc, rc);
2361
2362 pVCpu->hm.s.vmx.u32PinCtls = val;
2363 return rc;
2364}
2365
2366
2367/**
2368 * Sets up processor-based VM-execution controls in the VMCS.
2369 *
2370 * @returns VBox status code.
2371 * @param pVM The cross context VM structure.
2372 * @param pVCpu The cross context virtual CPU structure.
2373 */
2374static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2375{
2376 AssertPtr(pVM);
2377 AssertPtr(pVCpu);
2378
2379 int rc = VERR_INTERNAL_ERROR_5;
2380 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2381 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2382
2383 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2384 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2385 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2386 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2387 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2388 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2389 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2390
2391 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2392 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2393 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2394 {
2395 LogRel(("hmR0VmxSetupProcCtls: Unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2396 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2397 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2398 }
2399
2400 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2401 if (!pVM->hm.s.fNestedPaging)
2402 {
2403 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2404 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2405 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2406 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2407 }
2408
2409 /* Use TPR shadowing if supported by the CPU. */
2410 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2411 {
2412 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2413 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2414 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2415 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2416 AssertRCReturn(rc, rc);
2417
2418 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2419 /* CR8 writes cause a VM-exit based on TPR threshold. */
2420 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2421 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2422 }
2423 else
2424 {
2425 /*
2426 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2427 * Set this control only for 64-bit guests.
2428 */
2429 if (pVM->hm.s.fAllow64BitGuests)
2430 {
2431 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2432 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2433 }
2434 }
2435
2436 /* Use MSR-bitmaps if supported by the CPU. */
2437 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2438 {
2439 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2440
2441 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2442 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2443 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2444 AssertRCReturn(rc, rc);
2445
2446 /*
2447 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2448 * automatically using dedicated fields in the VMCS.
2449 */
2450 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2451 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2452 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2453 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2454 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2455
2456#if HC_ARCH_BITS == 64
2457 /*
2458 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2459 */
2460 if (pVM->hm.s.fAllow64BitGuests)
2461 {
2462 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2463 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2464 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2465 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2466 }
2467#endif
2468 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2469 }
2470
2471 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2472 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2473 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2474
2475 if ((val & zap) != val)
2476 {
2477 LogRel(("hmR0VmxSetupProcCtls: Invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2478 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2479 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2480 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2481 }
2482
2483 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2484 AssertRCReturn(rc, rc);
2485
2486 pVCpu->hm.s.vmx.u32ProcCtls = val;
2487
2488 /*
2489 * Secondary processor-based VM-execution controls.
2490 */
2491 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2492 {
2493 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2494 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2495
2496 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2497 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2498
2499 if (pVM->hm.s.fNestedPaging)
2500 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2501 else
2502 {
2503 /*
2504 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2505 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2506 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2507 */
2508 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2509 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2510 }
2511
2512 if (pVM->hm.s.vmx.fVpid)
2513 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2514
2515 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2516 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2517
2518#if 0
2519 if (pVM->hm.s.fVirtApicRegs)
2520 {
2521 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
2522 val |= VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT; /* Enable APIC-register virtualization. */
2523
2524 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
2525 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY; /* Enable virtual-interrupt delivery. */
2526 }
2527#endif
2528
2529 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2530 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2531 * done dynamically. */
2532 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2533 {
2534 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2535 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2536 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2537 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2538 AssertRCReturn(rc, rc);
2539 }
2540
2541 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2542 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2543
2544 if ( pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT
2545 && pVM->hm.s.vmx.cPleGapTicks
2546 && pVM->hm.s.vmx.cPleWindowTicks)
2547 {
2548 val |= VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT; /* Enable pause-loop exiting. */
2549
2550 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2551 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2552 AssertRCReturn(rc, rc);
2553 }
2554
2555 if ((val & zap) != val)
2556 {
2557 LogRel(("hmR0VmxSetupProcCtls: Invalid secondary processor-based VM-execution controls combo! "
2558 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2559 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2560 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2561 }
2562
2563 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2564 AssertRCReturn(rc, rc);
2565
2566 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2567 }
2568 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2569 {
2570 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2571 "available\n"));
2572 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2573 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2574 }
2575
2576 return VINF_SUCCESS;
2577}
2578
2579
2580/**
2581 * Sets up miscellaneous (everything other than Pin & Processor-based
2582 * VM-execution) control fields in the VMCS.
2583 *
2584 * @returns VBox status code.
2585 * @param pVM The cross context VM structure.
2586 * @param pVCpu The cross context virtual CPU structure.
2587 */
2588static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2589{
2590 NOREF(pVM);
2591 AssertPtr(pVM);
2592 AssertPtr(pVCpu);
2593
2594 int rc = VERR_GENERAL_FAILURE;
2595
2596 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2597#if 0
2598 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2599 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2600 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2601
2602 /*
2603 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2604 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2605 * We thus use the exception bitmap to control it rather than use both.
2606 */
2607 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2608 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2609
2610 /** @todo Explore possibility of using IO-bitmaps. */
2611 /* All IO & IOIO instructions cause VM-exits. */
2612 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2613 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2614
2615 /* Initialize the MSR-bitmap area. */
2616 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2617 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2618 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2619 AssertRCReturn(rc, rc);
2620#endif
2621
2622 /* Setup MSR auto-load/store area. */
2623 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2624 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2625 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2626 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2627 AssertRCReturn(rc, rc);
2628
2629 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2630 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2631 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2632 AssertRCReturn(rc, rc);
2633
2634 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2635 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2636 AssertRCReturn(rc, rc);
2637
2638 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2639#if 0
2640 /* Setup debug controls */
2641 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2642 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2643 AssertRCReturn(rc, rc);
2644#endif
2645
2646 return rc;
2647}
2648
2649
2650/**
2651 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2652 *
2653 * We shall setup those exception intercepts that don't change during the
2654 * lifetime of the VM here. The rest are done dynamically while loading the
2655 * guest state.
2656 *
2657 * @returns VBox status code.
2658 * @param pVM The cross context VM structure.
2659 * @param pVCpu The cross context virtual CPU structure.
2660 */
2661static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2662{
2663 AssertPtr(pVM);
2664 AssertPtr(pVCpu);
2665
2666 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2667
2668 uint32_t u32XcptBitmap = 0;
2669
2670 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2671 u32XcptBitmap |= RT_BIT_32(X86_XCPT_AC);
2672
2673 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2674 and writes, and because recursive #DBs can cause the CPU hang, we must always
2675 intercept #DB. */
2676 u32XcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2677
2678 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2679 if (!pVM->hm.s.fNestedPaging)
2680 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2681
2682 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2683 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2684 AssertRCReturn(rc, rc);
2685 return rc;
2686}
2687
2688
2689/**
2690 * Sets up the initial guest-state mask. The guest-state mask is consulted
2691 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2692 * for the nested virtualization case (as it would cause a VM-exit).
2693 *
2694 * @param pVCpu The cross context virtual CPU structure.
2695 */
2696static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2697{
2698 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2699 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2700 return VINF_SUCCESS;
2701}
2702
2703
2704/**
2705 * Does per-VM VT-x initialization.
2706 *
2707 * @returns VBox status code.
2708 * @param pVM The cross context VM structure.
2709 */
2710VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2711{
2712 LogFlowFunc(("pVM=%p\n", pVM));
2713
2714 int rc = hmR0VmxStructsAlloc(pVM);
2715 if (RT_FAILURE(rc))
2716 {
2717 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2718 return rc;
2719 }
2720
2721 return VINF_SUCCESS;
2722}
2723
2724
2725/**
2726 * Does per-VM VT-x termination.
2727 *
2728 * @returns VBox status code.
2729 * @param pVM The cross context VM structure.
2730 */
2731VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2732{
2733 LogFlowFunc(("pVM=%p\n", pVM));
2734
2735#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2736 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2737 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2738#endif
2739 hmR0VmxStructsFree(pVM);
2740 return VINF_SUCCESS;
2741}
2742
2743
2744/**
2745 * Sets up the VM for execution under VT-x.
2746 * This function is only called once per-VM during initialization.
2747 *
2748 * @returns VBox status code.
2749 * @param pVM The cross context VM structure.
2750 */
2751VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2752{
2753 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2754 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2755
2756 LogFlowFunc(("pVM=%p\n", pVM));
2757
2758 /*
2759 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2760 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2761 */
2762 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2763 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2764 || !pVM->hm.s.vmx.pRealModeTSS))
2765 {
2766 LogRel(("VMXR0SetupVM: Invalid real-on-v86 state.\n"));
2767 return VERR_INTERNAL_ERROR;
2768 }
2769
2770 /* Initialize these always, see hmR3InitFinalizeR0().*/
2771 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2772 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2773
2774 /* Setup the tagged-TLB flush handlers. */
2775 int rc = hmR0VmxSetupTaggedTlb(pVM);
2776 if (RT_FAILURE(rc))
2777 {
2778 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2779 return rc;
2780 }
2781
2782 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2783 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2784#if HC_ARCH_BITS == 64
2785 if ( (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2786 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2787 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2788 {
2789 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2790 }
2791#endif
2792
2793 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2794 RTCCUINTREG uHostCR4 = ASMGetCR4();
2795 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2796 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2797
2798 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2799 {
2800 PVMCPU pVCpu = &pVM->aCpus[i];
2801 AssertPtr(pVCpu);
2802 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2803
2804 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2805 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2806
2807 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2808 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2809 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2810
2811 /* Set revision dword at the beginning of the VMCS structure. */
2812 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2813
2814 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2815 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2816 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2817 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2818
2819 /* Load this VMCS as the current VMCS. */
2820 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2821 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2822 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2823
2824 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2825 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2826 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2827
2828 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2829 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2830 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2831
2832 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2833 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2834 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2835
2836 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2837 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2838 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2839
2840 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2841 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2842 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2843
2844#if HC_ARCH_BITS == 32
2845 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2846 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2847 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2848#endif
2849
2850 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2851 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2852 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2853 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2854
2855 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2856
2857 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2858 }
2859
2860 return VINF_SUCCESS;
2861}
2862
2863
2864/**
2865 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2866 * the VMCS.
2867 *
2868 * @returns VBox status code.
2869 * @param pVM The cross context VM structure.
2870 * @param pVCpu The cross context virtual CPU structure.
2871 */
2872DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2873{
2874 NOREF(pVM); NOREF(pVCpu);
2875
2876 RTCCUINTREG uReg = ASMGetCR0();
2877 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2878 AssertRCReturn(rc, rc);
2879
2880 uReg = ASMGetCR3();
2881 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2882 AssertRCReturn(rc, rc);
2883
2884 uReg = ASMGetCR4();
2885 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2886 AssertRCReturn(rc, rc);
2887 return rc;
2888}
2889
2890
2891#if HC_ARCH_BITS == 64
2892/**
2893 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2894 * requirements. See hmR0VmxSaveHostSegmentRegs().
2895 */
2896# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2897 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2898 { \
2899 bool fValidSelector = true; \
2900 if ((selValue) & X86_SEL_LDT) \
2901 { \
2902 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2903 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2904 } \
2905 if (fValidSelector) \
2906 { \
2907 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2908 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2909 } \
2910 (selValue) = 0; \
2911 }
2912#endif
2913
2914
2915/**
2916 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2917 * the host-state area in the VMCS.
2918 *
2919 * @returns VBox status code.
2920 * @param pVM The cross context VM structure.
2921 * @param pVCpu The cross context virtual CPU structure.
2922 */
2923DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2924{
2925 int rc = VERR_INTERNAL_ERROR_5;
2926
2927#if HC_ARCH_BITS == 64
2928 /*
2929 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2930 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2931 *
2932 * This apparently can happen (most likely the FPU changes), deal with it rather than asserting.
2933 * Was observed booting Solaris10u10 32-bit guest.
2934 */
2935 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2936 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2937 {
2938 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2939 pVCpu->idCpu));
2940 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2941 }
2942 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2943#else
2944 RT_NOREF(pVCpu);
2945#endif
2946
2947 /*
2948 * Host DS, ES, FS and GS segment registers.
2949 */
2950#if HC_ARCH_BITS == 64
2951 RTSEL uSelDS = ASMGetDS();
2952 RTSEL uSelES = ASMGetES();
2953 RTSEL uSelFS = ASMGetFS();
2954 RTSEL uSelGS = ASMGetGS();
2955#else
2956 RTSEL uSelDS = 0;
2957 RTSEL uSelES = 0;
2958 RTSEL uSelFS = 0;
2959 RTSEL uSelGS = 0;
2960#endif
2961
2962 /*
2963 * Host CS and SS segment registers.
2964 */
2965 RTSEL uSelCS = ASMGetCS();
2966 RTSEL uSelSS = ASMGetSS();
2967
2968 /*
2969 * Host TR segment register.
2970 */
2971 RTSEL uSelTR = ASMGetTR();
2972
2973#if HC_ARCH_BITS == 64
2974 /*
2975 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2976 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2977 */
2978 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2979 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2980 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2981 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2982# undef VMXLOCAL_ADJUST_HOST_SEG
2983#endif
2984
2985 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2986 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2987 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2988 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2989 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2990 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2991 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2992 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2993 Assert(uSelCS);
2994 Assert(uSelTR);
2995
2996 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2997#if 0
2998 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2999 Assert(uSelSS != 0);
3000#endif
3001
3002 /* Write these host selector fields into the host-state area in the VMCS. */
3003 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
3004 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
3005#if HC_ARCH_BITS == 64
3006 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
3007 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
3008 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
3009 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
3010#else
3011 NOREF(uSelDS);
3012 NOREF(uSelES);
3013 NOREF(uSelFS);
3014 NOREF(uSelGS);
3015#endif
3016 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3017 AssertRCReturn(rc, rc);
3018
3019 /*
3020 * Host GDTR and IDTR.
3021 */
3022 RTGDTR Gdtr;
3023 RTIDTR Idtr;
3024 RT_ZERO(Gdtr);
3025 RT_ZERO(Idtr);
3026 ASMGetGDTR(&Gdtr);
3027 ASMGetIDTR(&Idtr);
3028 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3029 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3030 AssertRCReturn(rc, rc);
3031
3032#if HC_ARCH_BITS == 64
3033 /*
3034 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3035 * maximum limit (0xffff) on every VM-exit.
3036 */
3037 if (Gdtr.cbGdt != 0xffff)
3038 {
3039 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3040 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3041 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3042 }
3043
3044 /*
3045 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3046 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3047 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3048 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3049 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3050 * hosts where we are pretty sure it won't cause trouble.
3051 */
3052# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3053 if (Idtr.cbIdt < 0x0fff)
3054# else
3055 if (Idtr.cbIdt != 0xffff)
3056# endif
3057 {
3058 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3059 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3060 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3061 }
3062#endif
3063
3064 /*
3065 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3066 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3067 */
3068 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3069 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3070 VERR_VMX_INVALID_HOST_STATE);
3071
3072 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3073#if HC_ARCH_BITS == 64
3074 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3075
3076 /*
3077 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3078 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3079 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3080 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3081 *
3082 * [1] See Intel spec. 3.5 "System Descriptor Types".
3083 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3084 */
3085 Assert(pDesc->System.u4Type == 11);
3086 if ( pDesc->System.u16LimitLow != 0x67
3087 || pDesc->System.u4LimitHigh)
3088 {
3089 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3090 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3091 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3092 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3093 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3094
3095 /* Store the GDTR here as we need it while restoring TR. */
3096 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3097 }
3098#else
3099 NOREF(pVM);
3100 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3101#endif
3102 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3103 AssertRCReturn(rc, rc);
3104
3105 /*
3106 * Host FS base and GS base.
3107 */
3108#if HC_ARCH_BITS == 64
3109 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3110 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3111 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3112 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3113 AssertRCReturn(rc, rc);
3114
3115 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3116 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3117 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3118 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3119 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3120#endif
3121 return rc;
3122}
3123
3124
3125/**
3126 * Saves certain host MSRs in the VM-exit MSR-load area and some in the
3127 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3128 * the host after every successful VM-exit.
3129 *
3130 * @returns VBox status code.
3131 * @param pVM The cross context VM structure.
3132 * @param pVCpu The cross context virtual CPU structure.
3133 *
3134 * @remarks No-long-jump zone!!!
3135 */
3136DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3137{
3138 NOREF(pVM);
3139
3140 AssertPtr(pVCpu);
3141 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3142
3143 /*
3144 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3145 * rather than swapping them on every VM-entry.
3146 */
3147 hmR0VmxLazySaveHostMsrs(pVCpu);
3148
3149 /*
3150 * Host Sysenter MSRs.
3151 */
3152 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3153#if HC_ARCH_BITS == 32
3154 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3155 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3156#else
3157 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3158 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3159#endif
3160 AssertRCReturn(rc, rc);
3161
3162 /*
3163 * Host EFER MSR.
3164 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3165 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3166 */
3167 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3168 {
3169 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3170 AssertRCReturn(rc, rc);
3171 }
3172
3173 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3174 * hmR0VmxLoadGuestExitCtls() !! */
3175
3176 return rc;
3177}
3178
3179
3180/**
3181 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3182 *
3183 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3184 * these two bits are handled by VM-entry, see hmR0VmxLoadGuestExitCtls() and
3185 * hmR0VMxLoadGuestEntryCtls().
3186 *
3187 * @returns true if we need to load guest EFER, false otherwise.
3188 * @param pVCpu The cross context virtual CPU structure.
3189 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3190 * out-of-sync. Make sure to update the required fields
3191 * before using them.
3192 *
3193 * @remarks Requires EFER, CR4.
3194 * @remarks No-long-jump zone!!!
3195 */
3196static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3197{
3198#ifdef HMVMX_ALWAYS_SWAP_EFER
3199 return true;
3200#endif
3201
3202#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3203 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3204 if (CPUMIsGuestInLongMode(pVCpu))
3205 return false;
3206#endif
3207
3208 PVM pVM = pVCpu->CTX_SUFF(pVM);
3209 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3210 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3211
3212 /*
3213 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3214 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3215 */
3216 if ( CPUMIsGuestInLongMode(pVCpu)
3217 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3218 {
3219 return true;
3220 }
3221
3222 /*
3223 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3224 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3225 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3226 */
3227 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3228 && (pMixedCtx->cr0 & X86_CR0_PG)
3229 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3230 {
3231 /* Assert that host is PAE capable. */
3232 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3233 return true;
3234 }
3235
3236 /** @todo Check the latest Intel spec. for any other bits,
3237 * like SMEP/SMAP? */
3238 return false;
3239}
3240
3241
3242/**
3243 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3244 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3245 * controls".
3246 *
3247 * @returns VBox status code.
3248 * @param pVCpu The cross context virtual CPU structure.
3249 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3250 * out-of-sync. Make sure to update the required fields
3251 * before using them.
3252 *
3253 * @remarks Requires EFER.
3254 * @remarks No-long-jump zone!!!
3255 */
3256DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3257{
3258 int rc = VINF_SUCCESS;
3259 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3260 {
3261 PVM pVM = pVCpu->CTX_SUFF(pVM);
3262 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3263 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3264
3265 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3266 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3267
3268 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3269 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3270 {
3271 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3272 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3273 }
3274 else
3275 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3276
3277 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3278 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3279 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3280 {
3281 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3282 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3283 }
3284
3285 /*
3286 * The following should -not- be set (since we're not in SMM mode):
3287 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3288 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3289 */
3290
3291 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3292 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3293
3294 if ((val & zap) != val)
3295 {
3296 LogRel(("hmR0VmxLoadGuestEntryCtls: Invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3297 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3298 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3299 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3300 }
3301
3302 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3303 AssertRCReturn(rc, rc);
3304
3305 pVCpu->hm.s.vmx.u32EntryCtls = val;
3306 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3307 }
3308 return rc;
3309}
3310
3311
3312/**
3313 * Sets up the VM-exit controls in the VMCS.
3314 *
3315 * @returns VBox status code.
3316 * @param pVCpu The cross context virtual CPU structure.
3317 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3318 * out-of-sync. Make sure to update the required fields
3319 * before using them.
3320 *
3321 * @remarks Requires EFER.
3322 */
3323DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3324{
3325 NOREF(pMixedCtx);
3326
3327 int rc = VINF_SUCCESS;
3328 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3329 {
3330 PVM pVM = pVCpu->CTX_SUFF(pVM);
3331 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3332 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3333
3334 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3335 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3336
3337 /*
3338 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3339 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3340 */
3341#if HC_ARCH_BITS == 64
3342 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3343 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3344#else
3345 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3346 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3347 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3348 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3349 {
3350 /* The switcher returns to long mode, EFER is managed by the switcher. */
3351 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3352 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3353 }
3354 else
3355 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3356#endif
3357
3358 /* If the newer VMCS fields for managing EFER exists, use it. */
3359 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3360 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3361 {
3362 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3363 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3364 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3365 }
3366
3367 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3368 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3369
3370 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3371 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3372 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3373
3374 if ( pVM->hm.s.vmx.fUsePreemptTimer
3375 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3376 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3377
3378 if ((val & zap) != val)
3379 {
3380 LogRel(("hmR0VmxSetupProcCtls: Invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3381 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3382 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3383 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3384 }
3385
3386 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3387 AssertRCReturn(rc, rc);
3388
3389 pVCpu->hm.s.vmx.u32ExitCtls = val;
3390 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3391 }
3392 return rc;
3393}
3394
3395
3396/**
3397 * Sets the TPR threshold in the VMCS.
3398 *
3399 * @returns VBox status code.
3400 * @param pVCpu The cross context virtual CPU structure.
3401 * @param u32TprThreshold The TPR threshold (task-priority class only).
3402 */
3403DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3404{
3405 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3406 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3407 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3408}
3409
3410
3411/**
3412 * Loads the guest APIC and related state.
3413 *
3414 * @returns VBox status code.
3415 * @param pVCpu The cross context virtual CPU structure.
3416 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3417 * out-of-sync. Make sure to update the required fields
3418 * before using them.
3419 *
3420 * @remarks No-long-jump zone!!!
3421 */
3422DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3423{
3424 NOREF(pMixedCtx);
3425
3426 int rc = VINF_SUCCESS;
3427 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3428 {
3429 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3430 && APICIsEnabled(pVCpu))
3431 {
3432 /*
3433 * Setup TPR shadowing.
3434 */
3435 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3436 {
3437 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3438
3439 bool fPendingIntr = false;
3440 uint8_t u8Tpr = 0;
3441 uint8_t u8PendingIntr = 0;
3442 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3443 AssertRCReturn(rc, rc);
3444
3445 /*
3446 * If there are interrupts pending but masked by the TPR, instruct VT-x to cause a TPR-below-threshold VM-exit
3447 * when the guest lowers its TPR below the priority of the pending interrupt so we can deliver the interrupt.
3448 * If there are no interrupts pending, set threshold to 0 to not cause any TPR-below-threshold VM-exits.
3449 */
3450 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3451 uint32_t u32TprThreshold = 0;
3452 if (fPendingIntr)
3453 {
3454 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3455 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3456 const uint8_t u8TprPriority = u8Tpr >> 4;
3457 if (u8PendingPriority <= u8TprPriority)
3458 u32TprThreshold = u8PendingPriority;
3459 }
3460
3461 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3462 AssertRCReturn(rc, rc);
3463 }
3464 }
3465 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3466 }
3467
3468 return rc;
3469}
3470
3471
3472/**
3473 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3474 *
3475 * @returns Guest's interruptibility-state.
3476 * @param pVCpu The cross context virtual CPU structure.
3477 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3478 * out-of-sync. Make sure to update the required fields
3479 * before using them.
3480 *
3481 * @remarks No-long-jump zone!!!
3482 */
3483DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3484{
3485 /*
3486 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3487 */
3488 uint32_t uIntrState = 0;
3489 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3490 {
3491 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3492 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3493 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3494 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3495 {
3496 if (pMixedCtx->eflags.Bits.u1IF)
3497 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3498 else
3499 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3500 }
3501 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3502 {
3503 /*
3504 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3505 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3506 */
3507 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3508 }
3509 }
3510
3511 /*
3512 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3513 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3514 * setting this would block host-NMIs and IRET will not clear the blocking.
3515 *
3516 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3517 */
3518 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3519 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3520 {
3521 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3522 }
3523
3524 return uIntrState;
3525}
3526
3527
3528/**
3529 * Loads the guest's interruptibility-state into the guest-state area in the
3530 * VMCS.
3531 *
3532 * @returns VBox status code.
3533 * @param pVCpu The cross context virtual CPU structure.
3534 * @param uIntrState The interruptibility-state to set.
3535 */
3536static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3537{
3538 NOREF(pVCpu);
3539 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3540 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3541 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3542 AssertRC(rc);
3543 return rc;
3544}
3545
3546
3547/**
3548 * Loads the exception intercepts required for guest execution in the VMCS.
3549 *
3550 * @returns VBox status code.
3551 * @param pVCpu The cross context virtual CPU structure.
3552 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3553 * out-of-sync. Make sure to update the required fields
3554 * before using them.
3555 */
3556static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3557{
3558 NOREF(pMixedCtx);
3559 int rc = VINF_SUCCESS;
3560 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
3561 {
3562 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
3563 if (pVCpu->hm.s.fGIMTrapXcptUD)
3564 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
3565#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3566 else
3567 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3568#endif
3569
3570 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
3571 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
3572
3573 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3574 AssertRCReturn(rc, rc);
3575
3576 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3577 Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
3578 pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
3579 }
3580 return rc;
3581}
3582
3583
3584/**
3585 * Loads the guest's RIP into the guest-state area in the VMCS.
3586 *
3587 * @returns VBox status code.
3588 * @param pVCpu The cross context virtual CPU structure.
3589 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3590 * out-of-sync. Make sure to update the required fields
3591 * before using them.
3592 *
3593 * @remarks No-long-jump zone!!!
3594 */
3595static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3596{
3597 int rc = VINF_SUCCESS;
3598 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3599 {
3600 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3601 AssertRCReturn(rc, rc);
3602
3603 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3604 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3605 HMCPU_CF_VALUE(pVCpu)));
3606 }
3607 return rc;
3608}
3609
3610
3611/**
3612 * Loads the guest's RSP into the guest-state area in the VMCS.
3613 *
3614 * @returns VBox status code.
3615 * @param pVCpu The cross context virtual CPU structure.
3616 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3617 * out-of-sync. Make sure to update the required fields
3618 * before using them.
3619 *
3620 * @remarks No-long-jump zone!!!
3621 */
3622static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3623{
3624 int rc = VINF_SUCCESS;
3625 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3626 {
3627 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3628 AssertRCReturn(rc, rc);
3629
3630 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3631 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3632 }
3633 return rc;
3634}
3635
3636
3637/**
3638 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3639 *
3640 * @returns VBox status code.
3641 * @param pVCpu The cross context virtual CPU structure.
3642 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3643 * out-of-sync. Make sure to update the required fields
3644 * before using them.
3645 *
3646 * @remarks No-long-jump zone!!!
3647 */
3648static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3649{
3650 int rc = VINF_SUCCESS;
3651 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3652 {
3653 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3654 Let us assert it as such and use 32-bit VMWRITE. */
3655 Assert(!(pMixedCtx->rflags.u64 >> 32));
3656 X86EFLAGS Eflags = pMixedCtx->eflags;
3657 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3658 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3659 * These will never be cleared/set, unless some other part of the VMM
3660 * code is buggy - in which case we're better of finding and fixing
3661 * those bugs than hiding them. */
3662 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3663 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3664 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3665 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3666
3667 /*
3668 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3669 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3670 */
3671 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3672 {
3673 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3674 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3675 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3676 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3677 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3678 }
3679
3680 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3681 AssertRCReturn(rc, rc);
3682
3683 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3684 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3685 }
3686 return rc;
3687}
3688
3689
3690/**
3691 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3692 *
3693 * @returns VBox status code.
3694 * @param pVCpu The cross context virtual CPU structure.
3695 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3696 * out-of-sync. Make sure to update the required fields
3697 * before using them.
3698 *
3699 * @remarks No-long-jump zone!!!
3700 */
3701DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3702{
3703 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3704 rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3705 rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3706 AssertRCReturn(rc, rc);
3707 return rc;
3708}
3709
3710
3711/**
3712 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3713 * CR0 is partially shared with the host and we have to consider the FPU bits.
3714 *
3715 * @returns VBox status code.
3716 * @param pVCpu The cross context virtual CPU structure.
3717 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3718 * out-of-sync. Make sure to update the required fields
3719 * before using them.
3720 *
3721 * @remarks No-long-jump zone!!!
3722 */
3723static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3724{
3725 /*
3726 * Guest CR0.
3727 * Guest FPU.
3728 */
3729 int rc = VINF_SUCCESS;
3730 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3731 {
3732 Assert(!(pMixedCtx->cr0 >> 32));
3733 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3734 PVM pVM = pVCpu->CTX_SUFF(pVM);
3735
3736 /* The guest's view (read access) of its CR0 is unblemished. */
3737 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3738 AssertRCReturn(rc, rc);
3739 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3740
3741 /* Setup VT-x's view of the guest CR0. */
3742 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3743 if (pVM->hm.s.fNestedPaging)
3744 {
3745 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3746 {
3747 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3748 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3749 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3750 }
3751 else
3752 {
3753 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3754 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3755 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3756 }
3757
3758 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3759 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3760 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3761
3762 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3763 AssertRCReturn(rc, rc);
3764 }
3765 else
3766 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3767
3768 /*
3769 * Guest FPU bits.
3770 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3771 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3772 */
3773 u32GuestCR0 |= X86_CR0_NE;
3774 bool fInterceptNM = false;
3775 if (CPUMIsGuestFPUStateActive(pVCpu))
3776 {
3777 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3778 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3779 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3780 }
3781 else
3782 {
3783 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3784 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3785 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3786 }
3787
3788 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3789 bool fInterceptMF = false;
3790 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3791 fInterceptMF = true;
3792
3793 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3794 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3795 {
3796 Assert(PDMVmmDevHeapIsEnabled(pVM));
3797 Assert(pVM->hm.s.vmx.pRealModeTSS);
3798 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3799 fInterceptNM = true;
3800 fInterceptMF = true;
3801 }
3802 else
3803 {
3804 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3805 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3806 }
3807 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3808
3809 if (fInterceptNM)
3810 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3811 else
3812 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3813
3814 if (fInterceptMF)
3815 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3816 else
3817 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3818
3819 /* Additional intercepts for debugging, define these yourself explicitly. */
3820#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3821 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3822 | RT_BIT(X86_XCPT_BP)
3823 | RT_BIT(X86_XCPT_DE)
3824 | RT_BIT(X86_XCPT_NM)
3825 | RT_BIT(X86_XCPT_TS)
3826 | RT_BIT(X86_XCPT_UD)
3827 | RT_BIT(X86_XCPT_NP)
3828 | RT_BIT(X86_XCPT_SS)
3829 | RT_BIT(X86_XCPT_GP)
3830 | RT_BIT(X86_XCPT_PF)
3831 | RT_BIT(X86_XCPT_MF)
3832 ;
3833#elif defined(HMVMX_ALWAYS_TRAP_PF)
3834 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3835#endif
3836
3837 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3838
3839 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3840 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3841 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3842 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3843 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3844 else
3845 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3846
3847 u32GuestCR0 |= uSetCR0;
3848 u32GuestCR0 &= uZapCR0;
3849 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3850
3851 /* Write VT-x's view of the guest CR0 into the VMCS. */
3852 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3853 AssertRCReturn(rc, rc);
3854 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3855 uZapCR0));
3856
3857 /*
3858 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3859 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3860 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3861 */
3862 uint32_t u32CR0Mask = 0;
3863 u32CR0Mask = X86_CR0_PE
3864 | X86_CR0_NE
3865 | X86_CR0_WP
3866 | X86_CR0_PG
3867 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3868 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3869 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3870
3871 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3872 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3873 * and @bugref{6944}. */
3874#if 0
3875 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3876 u32CR0Mask &= ~X86_CR0_PE;
3877#endif
3878 if (pVM->hm.s.fNestedPaging)
3879 u32CR0Mask &= ~X86_CR0_WP;
3880
3881 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3882 if (fInterceptNM)
3883 {
3884 u32CR0Mask |= X86_CR0_TS
3885 | X86_CR0_MP;
3886 }
3887
3888 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3889 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3890 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3891 AssertRCReturn(rc, rc);
3892 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3893
3894 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3895 }
3896 return rc;
3897}
3898
3899
3900/**
3901 * Loads the guest control registers (CR3, CR4) into the guest-state area
3902 * in the VMCS.
3903 *
3904 * @returns VBox strict status code.
3905 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3906 * without unrestricted guest access and the VMMDev is not presently
3907 * mapped (e.g. EFI32).
3908 *
3909 * @param pVCpu The cross context virtual CPU structure.
3910 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3911 * out-of-sync. Make sure to update the required fields
3912 * before using them.
3913 *
3914 * @remarks No-long-jump zone!!!
3915 */
3916static VBOXSTRICTRC hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3917{
3918 int rc = VINF_SUCCESS;
3919 PVM pVM = pVCpu->CTX_SUFF(pVM);
3920
3921 /*
3922 * Guest CR2.
3923 * It's always loaded in the assembler code. Nothing to do here.
3924 */
3925
3926 /*
3927 * Guest CR3.
3928 */
3929 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3930 {
3931 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3932 if (pVM->hm.s.fNestedPaging)
3933 {
3934 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3935
3936 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3937 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3938 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3939 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3940
3941 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3942 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3943 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3944
3945 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3946 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3947 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3948 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3949 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3950 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3951 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3952
3953 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3954 AssertRCReturn(rc, rc);
3955 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3956
3957 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3958 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3959 {
3960 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3961 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3962 {
3963 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3964 AssertRCReturn(rc, rc);
3965 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3966 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3967 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3968 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3969 AssertRCReturn(rc, rc);
3970 }
3971
3972 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3973 have Unrestricted Execution to handle the guest when it's not using paging. */
3974 GCPhysGuestCR3 = pMixedCtx->cr3;
3975 }
3976 else
3977 {
3978 /*
3979 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3980 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3981 * EPT takes care of translating it to host-physical addresses.
3982 */
3983 RTGCPHYS GCPhys;
3984 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3985
3986 /* We obtain it here every time as the guest could have relocated this PCI region. */
3987 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3988 if (RT_SUCCESS(rc))
3989 { /* likely */ }
3990 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3991 {
3992 Log4(("Load[%RU32]: VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n", pVCpu->idCpu));
3993 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3994 }
3995 else
3996 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3997
3998 GCPhysGuestCR3 = GCPhys;
3999 }
4000
4001 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGp (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
4002 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4003 }
4004 else
4005 {
4006 /* Non-nested paging case, just use the hypervisor's CR3. */
4007 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4008
4009 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
4010 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4011 }
4012 AssertRCReturn(rc, rc);
4013
4014 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
4015 }
4016
4017 /*
4018 * Guest CR4.
4019 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4020 */
4021 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
4022 {
4023 Assert(!(pMixedCtx->cr4 >> 32));
4024 uint32_t u32GuestCR4 = pMixedCtx->cr4;
4025
4026 /* The guest's view of its CR4 is unblemished. */
4027 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
4028 AssertRCReturn(rc, rc);
4029 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
4030
4031 /* Setup VT-x's view of the guest CR4. */
4032 /*
4033 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
4034 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
4035 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
4036 */
4037 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4038 {
4039 Assert(pVM->hm.s.vmx.pRealModeTSS);
4040 Assert(PDMVmmDevHeapIsEnabled(pVM));
4041 u32GuestCR4 &= ~X86_CR4_VME;
4042 }
4043
4044 if (pVM->hm.s.fNestedPaging)
4045 {
4046 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4047 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4048 {
4049 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4050 u32GuestCR4 |= X86_CR4_PSE;
4051 /* Our identity mapping is a 32-bit page directory. */
4052 u32GuestCR4 &= ~X86_CR4_PAE;
4053 }
4054 /* else use guest CR4.*/
4055 }
4056 else
4057 {
4058 /*
4059 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4060 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4061 */
4062 switch (pVCpu->hm.s.enmShadowMode)
4063 {
4064 case PGMMODE_REAL: /* Real-mode. */
4065 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4066 case PGMMODE_32_BIT: /* 32-bit paging. */
4067 {
4068 u32GuestCR4 &= ~X86_CR4_PAE;
4069 break;
4070 }
4071
4072 case PGMMODE_PAE: /* PAE paging. */
4073 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4074 {
4075 u32GuestCR4 |= X86_CR4_PAE;
4076 break;
4077 }
4078
4079 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4080 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4081#ifdef VBOX_ENABLE_64_BITS_GUESTS
4082 break;
4083#endif
4084 default:
4085 AssertFailed();
4086 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4087 }
4088 }
4089
4090 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4091 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4092 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4093 u32GuestCR4 |= uSetCR4;
4094 u32GuestCR4 &= uZapCR4;
4095
4096 /* Write VT-x's view of the guest CR4 into the VMCS. */
4097 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4098 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4099 AssertRCReturn(rc, rc);
4100
4101 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4102 uint32_t u32CR4Mask = X86_CR4_VME
4103 | X86_CR4_PAE
4104 | X86_CR4_PGE
4105 | X86_CR4_PSE
4106 | X86_CR4_VMXE;
4107 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4108 u32CR4Mask |= X86_CR4_OSXSAVE;
4109 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4110 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4111 AssertRCReturn(rc, rc);
4112
4113 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4114 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
4115
4116 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4117 }
4118 return rc;
4119}
4120
4121
4122/**
4123 * Loads the guest debug registers into the guest-state area in the VMCS.
4124 *
4125 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4126 *
4127 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4128 *
4129 * @returns VBox status code.
4130 * @param pVCpu The cross context virtual CPU structure.
4131 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4132 * out-of-sync. Make sure to update the required fields
4133 * before using them.
4134 *
4135 * @remarks No-long-jump zone!!!
4136 */
4137static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4138{
4139 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4140 return VINF_SUCCESS;
4141
4142#ifdef VBOX_STRICT
4143 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4144 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4145 {
4146 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4147 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4148 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4149 }
4150#endif
4151
4152 int rc;
4153 PVM pVM = pVCpu->CTX_SUFF(pVM);
4154 bool fSteppingDB = false;
4155 bool fInterceptMovDRx = false;
4156 if (pVCpu->hm.s.fSingleInstruction)
4157 {
4158 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4159 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4160 {
4161 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4162 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4163 AssertRCReturn(rc, rc);
4164 Assert(fSteppingDB == false);
4165 }
4166 else
4167 {
4168 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4169 pVCpu->hm.s.fClearTrapFlag = true;
4170 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4171 fSteppingDB = true;
4172 }
4173 }
4174
4175 if ( fSteppingDB
4176 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4177 {
4178 /*
4179 * Use the combined guest and host DRx values found in the hypervisor
4180 * register set because the debugger has breakpoints active or someone
4181 * is single stepping on the host side without a monitor trap flag.
4182 *
4183 * Note! DBGF expects a clean DR6 state before executing guest code.
4184 */
4185#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4186 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4187 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4188 {
4189 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4190 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4191 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4192 }
4193 else
4194#endif
4195 if (!CPUMIsHyperDebugStateActive(pVCpu))
4196 {
4197 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4198 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4199 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4200 }
4201
4202 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4203 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4204 AssertRCReturn(rc, rc);
4205
4206 pVCpu->hm.s.fUsingHyperDR7 = true;
4207 fInterceptMovDRx = true;
4208 }
4209 else
4210 {
4211 /*
4212 * If the guest has enabled debug registers, we need to load them prior to
4213 * executing guest code so they'll trigger at the right time.
4214 */
4215 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4216 {
4217#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4218 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4219 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4220 {
4221 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4222 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4223 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4224 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4225 }
4226 else
4227#endif
4228 if (!CPUMIsGuestDebugStateActive(pVCpu))
4229 {
4230 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4231 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4232 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4233 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4234 }
4235 Assert(!fInterceptMovDRx);
4236 }
4237 /*
4238 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4239 * must intercept #DB in order to maintain a correct DR6 guest value, and
4240 * because we need to intercept it to prevent nested #DBs from hanging the
4241 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4242 */
4243#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4244 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4245 && !CPUMIsGuestDebugStateActive(pVCpu))
4246#else
4247 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4248#endif
4249 {
4250 fInterceptMovDRx = true;
4251 }
4252
4253 /* Update guest DR7. */
4254 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4255 AssertRCReturn(rc, rc);
4256
4257 pVCpu->hm.s.fUsingHyperDR7 = false;
4258 }
4259
4260 /*
4261 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4262 */
4263 if (fInterceptMovDRx)
4264 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4265 else
4266 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4267 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4268 AssertRCReturn(rc, rc);
4269
4270 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4271 return VINF_SUCCESS;
4272}
4273
4274
4275#ifdef VBOX_STRICT
4276/**
4277 * Strict function to validate segment registers.
4278 *
4279 * @remarks ASSUMES CR0 is up to date.
4280 */
4281static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4282{
4283 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4284 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4285 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4286 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4287 && ( !CPUMIsGuestInRealModeEx(pCtx)
4288 && !CPUMIsGuestInV86ModeEx(pCtx)))
4289 {
4290 /* Protected mode checks */
4291 /* CS */
4292 Assert(pCtx->cs.Attr.n.u1Present);
4293 Assert(!(pCtx->cs.Attr.u & 0xf00));
4294 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4295 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4296 || !(pCtx->cs.Attr.n.u1Granularity));
4297 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4298 || (pCtx->cs.Attr.n.u1Granularity));
4299 /* CS cannot be loaded with NULL in protected mode. */
4300 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4301 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4302 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4303 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4304 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4305 else
4306 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4307 /* SS */
4308 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4309 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4310 if ( !(pCtx->cr0 & X86_CR0_PE)
4311 || pCtx->cs.Attr.n.u4Type == 3)
4312 {
4313 Assert(!pCtx->ss.Attr.n.u2Dpl);
4314 }
4315 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4316 {
4317 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4318 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4319 Assert(pCtx->ss.Attr.n.u1Present);
4320 Assert(!(pCtx->ss.Attr.u & 0xf00));
4321 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4322 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4323 || !(pCtx->ss.Attr.n.u1Granularity));
4324 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4325 || (pCtx->ss.Attr.n.u1Granularity));
4326 }
4327 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4328 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4329 {
4330 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4331 Assert(pCtx->ds.Attr.n.u1Present);
4332 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4333 Assert(!(pCtx->ds.Attr.u & 0xf00));
4334 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4335 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4336 || !(pCtx->ds.Attr.n.u1Granularity));
4337 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4338 || (pCtx->ds.Attr.n.u1Granularity));
4339 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4340 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4341 }
4342 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4343 {
4344 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4345 Assert(pCtx->es.Attr.n.u1Present);
4346 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4347 Assert(!(pCtx->es.Attr.u & 0xf00));
4348 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4349 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4350 || !(pCtx->es.Attr.n.u1Granularity));
4351 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4352 || (pCtx->es.Attr.n.u1Granularity));
4353 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4354 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4355 }
4356 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4357 {
4358 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4359 Assert(pCtx->fs.Attr.n.u1Present);
4360 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4361 Assert(!(pCtx->fs.Attr.u & 0xf00));
4362 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4363 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4364 || !(pCtx->fs.Attr.n.u1Granularity));
4365 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4366 || (pCtx->fs.Attr.n.u1Granularity));
4367 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4368 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4369 }
4370 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4371 {
4372 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4373 Assert(pCtx->gs.Attr.n.u1Present);
4374 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4375 Assert(!(pCtx->gs.Attr.u & 0xf00));
4376 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4377 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4378 || !(pCtx->gs.Attr.n.u1Granularity));
4379 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4380 || (pCtx->gs.Attr.n.u1Granularity));
4381 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4382 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4383 }
4384 /* 64-bit capable CPUs. */
4385# if HC_ARCH_BITS == 64
4386 Assert(!(pCtx->cs.u64Base >> 32));
4387 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4388 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4389 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4390# endif
4391 }
4392 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4393 || ( CPUMIsGuestInRealModeEx(pCtx)
4394 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4395 {
4396 /* Real and v86 mode checks. */
4397 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4398 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4399 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4400 {
4401 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4402 }
4403 else
4404 {
4405 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4406 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4407 }
4408
4409 /* CS */
4410 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4411 Assert(pCtx->cs.u32Limit == 0xffff);
4412 Assert(u32CSAttr == 0xf3);
4413 /* SS */
4414 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4415 Assert(pCtx->ss.u32Limit == 0xffff);
4416 Assert(u32SSAttr == 0xf3);
4417 /* DS */
4418 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4419 Assert(pCtx->ds.u32Limit == 0xffff);
4420 Assert(u32DSAttr == 0xf3);
4421 /* ES */
4422 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4423 Assert(pCtx->es.u32Limit == 0xffff);
4424 Assert(u32ESAttr == 0xf3);
4425 /* FS */
4426 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4427 Assert(pCtx->fs.u32Limit == 0xffff);
4428 Assert(u32FSAttr == 0xf3);
4429 /* GS */
4430 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4431 Assert(pCtx->gs.u32Limit == 0xffff);
4432 Assert(u32GSAttr == 0xf3);
4433 /* 64-bit capable CPUs. */
4434# if HC_ARCH_BITS == 64
4435 Assert(!(pCtx->cs.u64Base >> 32));
4436 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4437 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4438 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4439# endif
4440 }
4441}
4442#endif /* VBOX_STRICT */
4443
4444
4445/**
4446 * Writes a guest segment register into the guest-state area in the VMCS.
4447 *
4448 * @returns VBox status code.
4449 * @param pVCpu The cross context virtual CPU structure.
4450 * @param idxSel Index of the selector in the VMCS.
4451 * @param idxLimit Index of the segment limit in the VMCS.
4452 * @param idxBase Index of the segment base in the VMCS.
4453 * @param idxAccess Index of the access rights of the segment in the VMCS.
4454 * @param pSelReg Pointer to the segment selector.
4455 *
4456 * @remarks No-long-jump zone!!!
4457 */
4458static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4459 uint32_t idxAccess, PCPUMSELREG pSelReg)
4460{
4461 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4462 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4463 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4464 AssertRCReturn(rc, rc);
4465
4466 uint32_t u32Access = pSelReg->Attr.u;
4467 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4468 {
4469 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4470 u32Access = 0xf3;
4471 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4472 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4473 }
4474 else
4475 {
4476 /*
4477 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4478 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4479 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4480 * loaded in protected-mode have their attribute as 0.
4481 */
4482 if (!u32Access)
4483 u32Access = X86DESCATTR_UNUSABLE;
4484 }
4485
4486 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4487 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4488 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4489
4490 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4491 AssertRCReturn(rc, rc);
4492 return rc;
4493}
4494
4495
4496/**
4497 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4498 * into the guest-state area in the VMCS.
4499 *
4500 * @returns VBox status code.
4501 * @param pVCpu The cross context virtual CPU structure.
4502 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4503 * out-of-sync. Make sure to update the required fields
4504 * before using them.
4505 *
4506 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4507 * @remarks No-long-jump zone!!!
4508 */
4509static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4510{
4511 int rc = VERR_INTERNAL_ERROR_5;
4512 PVM pVM = pVCpu->CTX_SUFF(pVM);
4513
4514 /*
4515 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4516 */
4517 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4518 {
4519 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4520 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4521 {
4522 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4523 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4524 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4525 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4526 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4527 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4528 }
4529
4530#ifdef VBOX_WITH_REM
4531 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4532 {
4533 Assert(pVM->hm.s.vmx.pRealModeTSS);
4534 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4535 if ( pVCpu->hm.s.vmx.fWasInRealMode
4536 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4537 {
4538 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4539 in real-mode (e.g. OpenBSD 4.0) */
4540 REMFlushTBs(pVM);
4541 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4542 pVCpu->hm.s.vmx.fWasInRealMode = false;
4543 }
4544 }
4545#endif
4546 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_CS_SEL, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4547 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4548 AssertRCReturn(rc, rc);
4549 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_SS_SEL, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4550 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4551 AssertRCReturn(rc, rc);
4552 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_DS_SEL, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4553 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4554 AssertRCReturn(rc, rc);
4555 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_ES_SEL, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4556 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4557 AssertRCReturn(rc, rc);
4558 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FS_SEL, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4559 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4560 AssertRCReturn(rc, rc);
4561 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_GS_SEL, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4562 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4563 AssertRCReturn(rc, rc);
4564
4565#ifdef VBOX_STRICT
4566 /* Validate. */
4567 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4568#endif
4569
4570 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4571 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4572 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4573 }
4574
4575 /*
4576 * Guest TR.
4577 */
4578 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4579 {
4580 /*
4581 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4582 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4583 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4584 */
4585 uint16_t u16Sel = 0;
4586 uint32_t u32Limit = 0;
4587 uint64_t u64Base = 0;
4588 uint32_t u32AccessRights = 0;
4589
4590 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4591 {
4592 u16Sel = pMixedCtx->tr.Sel;
4593 u32Limit = pMixedCtx->tr.u32Limit;
4594 u64Base = pMixedCtx->tr.u64Base;
4595 u32AccessRights = pMixedCtx->tr.Attr.u;
4596 }
4597 else
4598 {
4599 Assert(pVM->hm.s.vmx.pRealModeTSS);
4600 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4601
4602 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4603 RTGCPHYS GCPhys;
4604 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4605 AssertRCReturn(rc, rc);
4606
4607 X86DESCATTR DescAttr;
4608 DescAttr.u = 0;
4609 DescAttr.n.u1Present = 1;
4610 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4611
4612 u16Sel = 0;
4613 u32Limit = HM_VTX_TSS_SIZE;
4614 u64Base = GCPhys; /* in real-mode phys = virt. */
4615 u32AccessRights = DescAttr.u;
4616 }
4617
4618 /* Validate. */
4619 Assert(!(u16Sel & RT_BIT(2)));
4620 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4621 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4622 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4623 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4624 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4625 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4626 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4627 Assert( (u32Limit & 0xfff) == 0xfff
4628 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4629 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4630 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4631
4632 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4633 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4634 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4635 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4636 AssertRCReturn(rc, rc);
4637
4638 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4639 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4640 }
4641
4642 /*
4643 * Guest GDTR.
4644 */
4645 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4646 {
4647 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
4648 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
4649 AssertRCReturn(rc, rc);
4650
4651 /* Validate. */
4652 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4653
4654 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4655 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4656 }
4657
4658 /*
4659 * Guest LDTR.
4660 */
4661 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4662 {
4663 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4664 uint32_t u32Access = 0;
4665 if (!pMixedCtx->ldtr.Attr.u)
4666 u32Access = X86DESCATTR_UNUSABLE;
4667 else
4668 u32Access = pMixedCtx->ldtr.Attr.u;
4669
4670 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pMixedCtx->ldtr.Sel);
4671 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
4672 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
4673 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4674 AssertRCReturn(rc, rc);
4675
4676 /* Validate. */
4677 if (!(u32Access & X86DESCATTR_UNUSABLE))
4678 {
4679 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4680 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4681 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4682 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4683 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4684 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4685 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4686 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4687 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4688 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4689 }
4690
4691 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4692 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4693 }
4694
4695 /*
4696 * Guest IDTR.
4697 */
4698 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4699 {
4700 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
4701 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
4702 AssertRCReturn(rc, rc);
4703
4704 /* Validate. */
4705 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4706
4707 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4708 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4709 }
4710
4711 return VINF_SUCCESS;
4712}
4713
4714
4715/**
4716 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4717 * areas.
4718 *
4719 * These MSRs will automatically be loaded to the host CPU on every successful
4720 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4721 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4722 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4723 *
4724 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4725 *
4726 * @returns VBox status code.
4727 * @param pVCpu The cross context virtual CPU structure.
4728 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4729 * out-of-sync. Make sure to update the required fields
4730 * before using them.
4731 *
4732 * @remarks No-long-jump zone!!!
4733 */
4734static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4735{
4736 AssertPtr(pVCpu);
4737 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4738
4739 /*
4740 * MSRs that we use the auto-load/store MSR area in the VMCS.
4741 */
4742 PVM pVM = pVCpu->CTX_SUFF(pVM);
4743 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4744 {
4745 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4746#if HC_ARCH_BITS == 32
4747 if (pVM->hm.s.fAllow64BitGuests)
4748 {
4749 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
4750 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
4751 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
4752 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
4753 AssertRCReturn(rc, rc);
4754# ifdef LOG_ENABLED
4755 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4756 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4757 {
4758 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4759 pMsr->u64Value));
4760 }
4761# endif
4762 }
4763#endif
4764 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4765 }
4766
4767 /*
4768 * Guest Sysenter MSRs.
4769 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4770 * VM-exits on WRMSRs for these MSRs.
4771 */
4772 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4773 {
4774 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4775 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4776 }
4777
4778 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4779 {
4780 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4781 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4782 }
4783
4784 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4785 {
4786 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4787 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4788 }
4789
4790 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4791 {
4792 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4793 {
4794 /*
4795 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4796 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4797 */
4798 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4799 {
4800 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4801 AssertRCReturn(rc,rc);
4802 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4803 }
4804 else
4805 {
4806 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
4807 NULL /* pfAddedAndUpdated */);
4808 AssertRCReturn(rc, rc);
4809
4810 /* We need to intercept reads too, see @bugref{7386#c16}. */
4811 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
4812 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4813 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4814 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4815 }
4816 }
4817 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4818 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4819 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4820 }
4821
4822 return VINF_SUCCESS;
4823}
4824
4825
4826/**
4827 * Loads the guest activity state into the guest-state area in the VMCS.
4828 *
4829 * @returns VBox status code.
4830 * @param pVCpu The cross context virtual CPU structure.
4831 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4832 * out-of-sync. Make sure to update the required fields
4833 * before using them.
4834 *
4835 * @remarks No-long-jump zone!!!
4836 */
4837static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4838{
4839 NOREF(pMixedCtx);
4840 /** @todo See if we can make use of other states, e.g.
4841 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4842 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4843 {
4844 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4845 AssertRCReturn(rc, rc);
4846
4847 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4848 }
4849 return VINF_SUCCESS;
4850}
4851
4852
4853#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4854/**
4855 * Check if guest state allows safe use of 32-bit switcher again.
4856 *
4857 * Segment bases and protected mode structures must be 32-bit addressable
4858 * because the 32-bit switcher will ignore high dword when writing these VMCS
4859 * fields. See @bugref{8432} for details.
4860 *
4861 * @returns true if safe, false if must continue to use the 64-bit switcher.
4862 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4863 * out-of-sync. Make sure to update the required fields
4864 * before using them.
4865 *
4866 * @remarks No-long-jump zone!!!
4867 */
4868static bool hmR0VmxIs32BitSwitcherSafe(PCPUMCTX pMixedCtx)
4869{
4870 if (pMixedCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000))
4871 return false;
4872 if (pMixedCtx->idtr.pIdt & UINT64_C(0xffffffff00000000))
4873 return false;
4874 if (pMixedCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000))
4875 return false;
4876 if (pMixedCtx->tr.u64Base & UINT64_C(0xffffffff00000000))
4877 return false;
4878 if (pMixedCtx->es.u64Base & UINT64_C(0xffffffff00000000))
4879 return false;
4880 if (pMixedCtx->cs.u64Base & UINT64_C(0xffffffff00000000))
4881 return false;
4882 if (pMixedCtx->ss.u64Base & UINT64_C(0xffffffff00000000))
4883 return false;
4884 if (pMixedCtx->ds.u64Base & UINT64_C(0xffffffff00000000))
4885 return false;
4886 if (pMixedCtx->fs.u64Base & UINT64_C(0xffffffff00000000))
4887 return false;
4888 if (pMixedCtx->gs.u64Base & UINT64_C(0xffffffff00000000))
4889 return false;
4890 /* All good, bases are 32-bit. */
4891 return true;
4892}
4893#endif
4894
4895
4896/**
4897 * Sets up the appropriate function to run guest code.
4898 *
4899 * @returns VBox status code.
4900 * @param pVCpu The cross context virtual CPU structure.
4901 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4902 * out-of-sync. Make sure to update the required fields
4903 * before using them.
4904 *
4905 * @remarks No-long-jump zone!!!
4906 */
4907static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4908{
4909 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4910 {
4911#ifndef VBOX_ENABLE_64_BITS_GUESTS
4912 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4913#endif
4914 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4915#if HC_ARCH_BITS == 32
4916 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4917 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4918 {
4919 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4920 {
4921 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4922 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4923 | HM_CHANGED_VMX_ENTRY_CTLS
4924 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4925 }
4926 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4927
4928 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4929 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4930 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4931 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 64-bit switcher\n", pVCpu->idCpu));
4932 }
4933#else
4934 /* 64-bit host. */
4935 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4936#endif
4937 }
4938 else
4939 {
4940 /* Guest is not in long mode, use the 32-bit handler. */
4941#if HC_ARCH_BITS == 32
4942 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4943 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4944 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4945 {
4946 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4947 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4948 | HM_CHANGED_VMX_ENTRY_CTLS
4949 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4950 }
4951# ifdef VBOX_ENABLE_64_BITS_GUESTS
4952 /*
4953 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel design, see @bugref{8432#c7}.
4954 * If real-on-v86 mode is active, clear the 64-bit switcher flag because now we know the guest is in a sane
4955 * state where it's safe to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4956 * the much faster 32-bit switcher again.
4957 */
4958 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4959 {
4960 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4961 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher\n", pVCpu->idCpu));
4962 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4963 }
4964 else
4965 {
4966 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4967 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4968 || hmR0VmxIs32BitSwitcherSafe(pMixedCtx))
4969 {
4970 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4971 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4972 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR
4973 | HM_CHANGED_VMX_ENTRY_CTLS
4974 | HM_CHANGED_VMX_EXIT_CTLS
4975 | HM_CHANGED_HOST_CONTEXT);
4976 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher (safe)\n", pVCpu->idCpu));
4977 }
4978 }
4979# else
4980 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4981# endif
4982#else
4983 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4984#endif
4985 }
4986 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4987 return VINF_SUCCESS;
4988}
4989
4990
4991/**
4992 * Wrapper for running the guest code in VT-x.
4993 *
4994 * @returns VBox status code, no informational status codes.
4995 * @param pVM The cross context VM structure.
4996 * @param pVCpu The cross context virtual CPU structure.
4997 * @param pCtx Pointer to the guest-CPU context.
4998 *
4999 * @remarks No-long-jump zone!!!
5000 */
5001DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
5002{
5003 /*
5004 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
5005 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
5006 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
5007 */
5008 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
5009 /** @todo Add stats for resume vs launch. */
5010#ifdef VBOX_WITH_KERNEL_USING_XMM
5011 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
5012#else
5013 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
5014#endif
5015 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
5016 return rc;
5017}
5018
5019
5020/**
5021 * Reports world-switch error and dumps some useful debug info.
5022 *
5023 * @param pVM The cross context VM structure.
5024 * @param pVCpu The cross context virtual CPU structure.
5025 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5026 * @param pCtx Pointer to the guest-CPU context.
5027 * @param pVmxTransient Pointer to the VMX transient structure (only
5028 * exitReason updated).
5029 */
5030static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
5031{
5032 Assert(pVM);
5033 Assert(pVCpu);
5034 Assert(pCtx);
5035 Assert(pVmxTransient);
5036 HMVMX_ASSERT_PREEMPT_SAFE();
5037
5038 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
5039 switch (rcVMRun)
5040 {
5041 case VERR_VMX_INVALID_VMXON_PTR:
5042 AssertFailed();
5043 break;
5044 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5045 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5046 {
5047 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5048 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5049 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
5050 AssertRC(rc);
5051
5052 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5053 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5054 Cannot do it here as we may have been long preempted. */
5055
5056#ifdef VBOX_STRICT
5057 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5058 pVmxTransient->uExitReason));
5059 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
5060 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5061 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5062 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5063 else
5064 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5065 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5066 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5067
5068 /* VMX control bits. */
5069 uint32_t u32Val;
5070 uint64_t u64Val;
5071 RTHCUINTREG uHCReg;
5072 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5073 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5074 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5075 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5076 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
5077 {
5078 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5079 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5080 }
5081 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5082 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5083 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5084 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5085 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5086 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5087 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5088 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5089 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5090 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5091 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5092 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5093 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5094 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5095 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5096 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5097 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5098 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5099 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5100 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5101 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5102 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5103 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5104 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5105 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5106 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5107 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5108 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5109 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5110 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5111 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5112 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5113 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5114 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5115 if (pVM->hm.s.fNestedPaging)
5116 {
5117 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5118 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5119 }
5120
5121 /* Guest bits. */
5122 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5123 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5124 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5125 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5126 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5127 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5128 if (pVM->hm.s.vmx.fVpid)
5129 {
5130 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5131 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5132 }
5133
5134 /* Host bits. */
5135 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5136 Log4(("Host CR0 %#RHr\n", uHCReg));
5137 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5138 Log4(("Host CR3 %#RHr\n", uHCReg));
5139 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5140 Log4(("Host CR4 %#RHr\n", uHCReg));
5141
5142 RTGDTR HostGdtr;
5143 PCX86DESCHC pDesc;
5144 ASMGetGDTR(&HostGdtr);
5145 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5146 Log4(("Host CS %#08x\n", u32Val));
5147 if (u32Val < HostGdtr.cbGdt)
5148 {
5149 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5150 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5151 }
5152
5153 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5154 Log4(("Host DS %#08x\n", u32Val));
5155 if (u32Val < HostGdtr.cbGdt)
5156 {
5157 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5158 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5159 }
5160
5161 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5162 Log4(("Host ES %#08x\n", u32Val));
5163 if (u32Val < HostGdtr.cbGdt)
5164 {
5165 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5166 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5167 }
5168
5169 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5170 Log4(("Host FS %#08x\n", u32Val));
5171 if (u32Val < HostGdtr.cbGdt)
5172 {
5173 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5174 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5175 }
5176
5177 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5178 Log4(("Host GS %#08x\n", u32Val));
5179 if (u32Val < HostGdtr.cbGdt)
5180 {
5181 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5182 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5183 }
5184
5185 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5186 Log4(("Host SS %#08x\n", u32Val));
5187 if (u32Val < HostGdtr.cbGdt)
5188 {
5189 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5190 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5191 }
5192
5193 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5194 Log4(("Host TR %#08x\n", u32Val));
5195 if (u32Val < HostGdtr.cbGdt)
5196 {
5197 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5198 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5199 }
5200
5201 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5202 Log4(("Host TR Base %#RHv\n", uHCReg));
5203 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5204 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5205 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5206 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5207 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5208 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5209 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5210 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5211 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5212 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5213 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5214 Log4(("Host RSP %#RHv\n", uHCReg));
5215 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5216 Log4(("Host RIP %#RHv\n", uHCReg));
5217# if HC_ARCH_BITS == 64
5218 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5219 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5220 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5221 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5222 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5223 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5224# endif
5225#endif /* VBOX_STRICT */
5226 break;
5227 }
5228
5229 default:
5230 /* Impossible */
5231 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5232 break;
5233 }
5234 NOREF(pVM); NOREF(pCtx);
5235}
5236
5237
5238#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5239#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5240# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5241#endif
5242#ifdef VBOX_STRICT
5243static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5244{
5245 switch (idxField)
5246 {
5247 case VMX_VMCS_GUEST_RIP:
5248 case VMX_VMCS_GUEST_RSP:
5249 case VMX_VMCS_GUEST_SYSENTER_EIP:
5250 case VMX_VMCS_GUEST_SYSENTER_ESP:
5251 case VMX_VMCS_GUEST_GDTR_BASE:
5252 case VMX_VMCS_GUEST_IDTR_BASE:
5253 case VMX_VMCS_GUEST_CS_BASE:
5254 case VMX_VMCS_GUEST_DS_BASE:
5255 case VMX_VMCS_GUEST_ES_BASE:
5256 case VMX_VMCS_GUEST_FS_BASE:
5257 case VMX_VMCS_GUEST_GS_BASE:
5258 case VMX_VMCS_GUEST_SS_BASE:
5259 case VMX_VMCS_GUEST_LDTR_BASE:
5260 case VMX_VMCS_GUEST_TR_BASE:
5261 case VMX_VMCS_GUEST_CR3:
5262 return true;
5263 }
5264 return false;
5265}
5266
5267static bool hmR0VmxIsValidReadField(uint32_t idxField)
5268{
5269 switch (idxField)
5270 {
5271 /* Read-only fields. */
5272 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5273 return true;
5274 }
5275 /* Remaining readable fields should also be writable. */
5276 return hmR0VmxIsValidWriteField(idxField);
5277}
5278#endif /* VBOX_STRICT */
5279
5280
5281/**
5282 * Executes the specified handler in 64-bit mode.
5283 *
5284 * @returns VBox status code (no informational status codes).
5285 * @param pVM The cross context VM structure.
5286 * @param pVCpu The cross context virtual CPU structure.
5287 * @param pCtx Pointer to the guest CPU context.
5288 * @param enmOp The operation to perform.
5289 * @param cParams Number of parameters.
5290 * @param paParam Array of 32-bit parameters.
5291 */
5292VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
5293 uint32_t cParams, uint32_t *paParam)
5294{
5295 NOREF(pCtx);
5296
5297 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5298 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5299 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5300 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5301
5302#ifdef VBOX_STRICT
5303 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5304 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5305
5306 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5307 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5308#endif
5309
5310 /* Disable interrupts. */
5311 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5312
5313#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5314 RTCPUID idHostCpu = RTMpCpuId();
5315 CPUMR0SetLApic(pVCpu, idHostCpu);
5316#endif
5317
5318 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5319 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5320
5321 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5322 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5323 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5324
5325 /* Leave VMX Root Mode. */
5326 VMXDisable();
5327
5328 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5329
5330 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5331 CPUMSetHyperEIP(pVCpu, enmOp);
5332 for (int i = (int)cParams - 1; i >= 0; i--)
5333 CPUMPushHyper(pVCpu, paParam[i]);
5334
5335 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5336
5337 /* Call the switcher. */
5338 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5339 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5340
5341 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5342 /* Make sure the VMX instructions don't cause #UD faults. */
5343 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5344
5345 /* Re-enter VMX Root Mode */
5346 int rc2 = VMXEnable(HCPhysCpuPage);
5347 if (RT_FAILURE(rc2))
5348 {
5349 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5350 ASMSetFlags(fOldEFlags);
5351 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5352 return rc2;
5353 }
5354
5355 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5356 AssertRC(rc2);
5357 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5358 Assert(!(ASMGetFlags() & X86_EFL_IF));
5359 ASMSetFlags(fOldEFlags);
5360 return rc;
5361}
5362
5363
5364/**
5365 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5366 * supporting 64-bit guests.
5367 *
5368 * @returns VBox status code.
5369 * @param fResume Whether to VMLAUNCH or VMRESUME.
5370 * @param pCtx Pointer to the guest-CPU context.
5371 * @param pCache Pointer to the VMCS cache.
5372 * @param pVM The cross context VM structure.
5373 * @param pVCpu The cross context virtual CPU structure.
5374 */
5375DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5376{
5377 NOREF(fResume);
5378
5379 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5380 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5381
5382#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5383 pCache->uPos = 1;
5384 pCache->interPD = PGMGetInterPaeCR3(pVM);
5385 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5386#endif
5387
5388#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5389 pCache->TestIn.HCPhysCpuPage = 0;
5390 pCache->TestIn.HCPhysVmcs = 0;
5391 pCache->TestIn.pCache = 0;
5392 pCache->TestOut.HCPhysVmcs = 0;
5393 pCache->TestOut.pCache = 0;
5394 pCache->TestOut.pCtx = 0;
5395 pCache->TestOut.eflags = 0;
5396#else
5397 NOREF(pCache);
5398#endif
5399
5400 uint32_t aParam[10];
5401 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5402 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5403 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5404 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5405 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5406 aParam[5] = 0;
5407 aParam[6] = VM_RC_ADDR(pVM, pVM);
5408 aParam[7] = 0;
5409 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5410 aParam[9] = 0;
5411
5412#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5413 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5414 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5415#endif
5416 int rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5417
5418#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5419 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5420 Assert(pCtx->dr[4] == 10);
5421 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5422#endif
5423
5424#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5425 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5426 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5427 pVCpu->hm.s.vmx.HCPhysVmcs));
5428 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5429 pCache->TestOut.HCPhysVmcs));
5430 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5431 pCache->TestOut.pCache));
5432 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5433 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5434 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5435 pCache->TestOut.pCtx));
5436 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5437#endif
5438 return rc;
5439}
5440
5441
5442/**
5443 * Initialize the VMCS-Read cache.
5444 *
5445 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5446 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5447 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5448 * (those that have a 32-bit FULL & HIGH part).
5449 *
5450 * @returns VBox status code.
5451 * @param pVM The cross context VM structure.
5452 * @param pVCpu The cross context virtual CPU structure.
5453 */
5454static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5455{
5456#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5457{ \
5458 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5459 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5460 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5461 ++cReadFields; \
5462}
5463
5464 AssertPtr(pVM);
5465 AssertPtr(pVCpu);
5466 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5467 uint32_t cReadFields = 0;
5468
5469 /*
5470 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5471 * and serve to indicate exceptions to the rules.
5472 */
5473
5474 /* Guest-natural selector base fields. */
5475#if 0
5476 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5477 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5478 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5479#endif
5480 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5481 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5482 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5483 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5484 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5485 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5486 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5487 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5489 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5490 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5491 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5492#if 0
5493 /* Unused natural width guest-state fields. */
5494 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5495 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5496#endif
5497 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5498 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5499
5500 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5501#if 0
5502 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5503 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5504 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5505 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5506 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5507 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5508 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5509 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5510 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5511#endif
5512
5513 /* Natural width guest-state fields. */
5514 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5515#if 0
5516 /* Currently unused field. */
5517 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5518#endif
5519
5520 if (pVM->hm.s.fNestedPaging)
5521 {
5522 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5523 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5524 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5525 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5526 }
5527 else
5528 {
5529 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5530 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5531 }
5532
5533#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5534 return VINF_SUCCESS;
5535}
5536
5537
5538/**
5539 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5540 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5541 * darwin, running 64-bit guests).
5542 *
5543 * @returns VBox status code.
5544 * @param pVCpu The cross context virtual CPU structure.
5545 * @param idxField The VMCS field encoding.
5546 * @param u64Val 16, 32 or 64-bit value.
5547 */
5548VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5549{
5550 int rc;
5551 switch (idxField)
5552 {
5553 /*
5554 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5555 */
5556 /* 64-bit Control fields. */
5557 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5558 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5559 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5560 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5561 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5562 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5563 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5564 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5565 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5566 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5567 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5568 case VMX_VMCS64_CTRL_EPTP_FULL:
5569 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5570 /* 64-bit Guest-state fields. */
5571 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5572 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5573 case VMX_VMCS64_GUEST_PAT_FULL:
5574 case VMX_VMCS64_GUEST_EFER_FULL:
5575 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5576 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5577 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5578 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5579 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5580 /* 64-bit Host-state fields. */
5581 case VMX_VMCS64_HOST_PAT_FULL:
5582 case VMX_VMCS64_HOST_EFER_FULL:
5583 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5584 {
5585 rc = VMXWriteVmcs32(idxField, u64Val);
5586 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5587 break;
5588 }
5589
5590 /*
5591 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5592 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5593 */
5594 /* Natural-width Guest-state fields. */
5595 case VMX_VMCS_GUEST_CR3:
5596 case VMX_VMCS_GUEST_ES_BASE:
5597 case VMX_VMCS_GUEST_CS_BASE:
5598 case VMX_VMCS_GUEST_SS_BASE:
5599 case VMX_VMCS_GUEST_DS_BASE:
5600 case VMX_VMCS_GUEST_FS_BASE:
5601 case VMX_VMCS_GUEST_GS_BASE:
5602 case VMX_VMCS_GUEST_LDTR_BASE:
5603 case VMX_VMCS_GUEST_TR_BASE:
5604 case VMX_VMCS_GUEST_GDTR_BASE:
5605 case VMX_VMCS_GUEST_IDTR_BASE:
5606 case VMX_VMCS_GUEST_RSP:
5607 case VMX_VMCS_GUEST_RIP:
5608 case VMX_VMCS_GUEST_SYSENTER_ESP:
5609 case VMX_VMCS_GUEST_SYSENTER_EIP:
5610 {
5611 if (!(u64Val >> 32))
5612 {
5613 /* If this field is 64-bit, VT-x will zero out the top bits. */
5614 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5615 }
5616 else
5617 {
5618 /* Assert that only the 32->64 switcher case should ever come here. */
5619 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5620 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5621 }
5622 break;
5623 }
5624
5625 default:
5626 {
5627 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5628 rc = VERR_INVALID_PARAMETER;
5629 break;
5630 }
5631 }
5632 AssertRCReturn(rc, rc);
5633 return rc;
5634}
5635
5636
5637/**
5638 * Queue up a VMWRITE by using the VMCS write cache.
5639 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5640 *
5641 * @param pVCpu The cross context virtual CPU structure.
5642 * @param idxField The VMCS field encoding.
5643 * @param u64Val 16, 32 or 64-bit value.
5644 */
5645VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5646{
5647 AssertPtr(pVCpu);
5648 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5649
5650 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5651 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5652
5653 /* Make sure there are no duplicates. */
5654 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5655 {
5656 if (pCache->Write.aField[i] == idxField)
5657 {
5658 pCache->Write.aFieldVal[i] = u64Val;
5659 return VINF_SUCCESS;
5660 }
5661 }
5662
5663 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5664 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5665 pCache->Write.cValidEntries++;
5666 return VINF_SUCCESS;
5667}
5668#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5669
5670
5671/**
5672 * Sets up the usage of TSC-offsetting and updates the VMCS.
5673 *
5674 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5675 * VMX preemption timer.
5676 *
5677 * @returns VBox status code.
5678 * @param pVM The cross context VM structure.
5679 * @param pVCpu The cross context virtual CPU structure.
5680 *
5681 * @remarks No-long-jump zone!!!
5682 */
5683static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5684{
5685 int rc;
5686 bool fOffsettedTsc;
5687 bool fParavirtTsc;
5688 if (pVM->hm.s.vmx.fUsePreemptTimer)
5689 {
5690 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5691 &fOffsettedTsc, &fParavirtTsc);
5692
5693 /* Make sure the returned values have sane upper and lower boundaries. */
5694 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5695 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5696 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5697 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5698
5699 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5700 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5701 }
5702 else
5703 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5704
5705 /** @todo later optimize this to be done elsewhere and not before every
5706 * VM-entry. */
5707 if (fParavirtTsc)
5708 {
5709 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5710 information before every VM-entry, hence disable it for performance sake. */
5711#if 0
5712 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5713 AssertRC(rc);
5714#endif
5715 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5716 }
5717
5718 if (fOffsettedTsc && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5719 {
5720 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5721 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5722
5723 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5724 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5725 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5726 }
5727 else
5728 {
5729 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5730 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5731 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5732 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5733 }
5734}
5735
5736
5737#ifdef HMVMX_USE_IEM_EVENT_REFLECTION
5738/**
5739 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5740 * VM-exit interruption info type.
5741 *
5742 * @returns The IEM exception flags.
5743 * @param uVector The event vector.
5744 * @param uVmxVectorType The VMX event type.
5745 *
5746 * @remarks This function currently only constructs flags required for
5747 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5748 * and CR2 aspects of an exception are not included).
5749 */
5750static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5751{
5752 uint32_t fIemXcptFlags;
5753 switch (uVmxVectorType)
5754 {
5755 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5756 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5757 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5758 break;
5759
5760 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5761 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5762 break;
5763
5764 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5765 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5766 break;
5767
5768 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5769 {
5770 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5771 if (uVector == X86_XCPT_BP)
5772 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5773 else if (uVector == X86_XCPT_OF)
5774 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5775 else
5776 {
5777 fIemXcptFlags = 0;
5778 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5779 }
5780 break;
5781 }
5782
5783 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5784 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5785 break;
5786
5787 default:
5788 fIemXcptFlags = 0;
5789 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5790 break;
5791 }
5792 return fIemXcptFlags;
5793}
5794
5795#else
5796/**
5797 * Determines if an exception is a contributory exception.
5798 *
5799 * Contributory exceptions are ones which can cause double-faults unless the
5800 * original exception was a benign exception. Page-fault is intentionally not
5801 * included here as it's a conditional contributory exception.
5802 *
5803 * @returns true if the exception is contributory, false otherwise.
5804 * @param uVector The exception vector.
5805 */
5806DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5807{
5808 switch (uVector)
5809 {
5810 case X86_XCPT_GP:
5811 case X86_XCPT_SS:
5812 case X86_XCPT_NP:
5813 case X86_XCPT_TS:
5814 case X86_XCPT_DE:
5815 return true;
5816 default:
5817 break;
5818 }
5819 return false;
5820}
5821#endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
5822
5823
5824/**
5825 * Sets an event as a pending event to be injected into the guest.
5826 *
5827 * @param pVCpu The cross context virtual CPU structure.
5828 * @param u32IntInfo The VM-entry interruption-information field.
5829 * @param cbInstr The VM-entry instruction length in bytes (for software
5830 * interrupts, exceptions and privileged software
5831 * exceptions).
5832 * @param u32ErrCode The VM-entry exception error code.
5833 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5834 * page-fault.
5835 *
5836 * @remarks Statistics counter assumes this is a guest event being injected or
5837 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5838 * always incremented.
5839 */
5840DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5841 RTGCUINTPTR GCPtrFaultAddress)
5842{
5843 Assert(!pVCpu->hm.s.Event.fPending);
5844 pVCpu->hm.s.Event.fPending = true;
5845 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5846 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5847 pVCpu->hm.s.Event.cbInstr = cbInstr;
5848 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5849}
5850
5851
5852/**
5853 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5854 *
5855 * @param pVCpu The cross context virtual CPU structure.
5856 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5857 * out-of-sync. Make sure to update the required fields
5858 * before using them.
5859 */
5860DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5861{
5862 NOREF(pMixedCtx);
5863 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5864 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5865 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5866 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5867}
5868
5869
5870/**
5871 * Handle a condition that occurred while delivering an event through the guest
5872 * IDT.
5873 *
5874 * @returns Strict VBox status code (i.e. informational status codes too).
5875 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5876 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
5877 * to continue execution of the guest which will delivery the \#DF.
5878 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5879 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5880 *
5881 * @param pVCpu The cross context virtual CPU structure.
5882 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5883 * out-of-sync. Make sure to update the required fields
5884 * before using them.
5885 * @param pVmxTransient Pointer to the VMX transient structure.
5886 *
5887 * @remarks No-long-jump zone!!!
5888 */
5889static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5890{
5891 uint32_t const uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5892
5893 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5894 rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5895
5896 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
5897 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5898 {
5899 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5900 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5901#ifdef HMVMX_USE_IEM_EVENT_REFLECTION
5902 /*
5903 * If the event was a software interrupt (generated with INT n) or a software exception (generated
5904 * by INT3/INTO) or a privileged software exception (generated by INT1), we can handle the VM-exit
5905 * and continue guest execution which will re-execute the instruction rather than re-injecting the
5906 * exception, as that can cause premature trips to ring-3 before injection and involve TRPM which
5907 * currently has no way of storing that these exceptions were caused by these instructions
5908 * (ICEBP's #DB poses the problem).
5909 */
5910 IEMXCPTRAISE enmRaise;
5911 IEMXCPTRAISEINFO fRaiseInfo;
5912 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5913 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5914 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
5915 {
5916 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5917 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5918 }
5919 else if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5920 {
5921 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
5922 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
5923 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
5924 /** @todo Make AssertMsgReturn as just AssertMsg later. */
5925 AssertMsgReturn(uExitVectorType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT,
5926 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
5927 uExitVectorType), VERR_VMX_IPE_5);
5928 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5929 }
5930 else
5931 {
5932 /*
5933 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
5934 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
5935 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
5936 */
5937 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5938 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5939 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
5940 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5941 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5942 }
5943
5944 /*
5945 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
5946 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
5947 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
5948 * subsequent VM-entry would fail.
5949 *
5950 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5951 */
5952 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
5953 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5954 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
5955 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
5956 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
5957 {
5958 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5959 }
5960
5961 switch (enmRaise)
5962 {
5963 case IEMXCPTRAISE_CURRENT_XCPT:
5964 case IEMXCPTRAISE_PREV_EVENT:
5965 {
5966 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
5967 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5968 pVmxTransient->fVectoringPF = true;
5969
5970 uint32_t u32ErrCode;
5971 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5972 {
5973 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5974 AssertRCReturn(rc2, rc2);
5975 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5976 }
5977 else
5978 u32ErrCode = 0;
5979
5980 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
5981 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5982 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5983 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5984
5985 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
5986 pVCpu->hm.s.Event.u32ErrCode));
5987 Assert(rcStrict == VINF_SUCCESS);
5988 break;
5989 }
5990
5991 case IEMXCPTRAISE_REEXEC_INSTR:
5992 Assert(rcStrict == VINF_SUCCESS);
5993 break;
5994
5995 case IEMXCPTRAISE_DOUBLE_FAULT:
5996 {
5997 /*
5998 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
5999 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6000 */
6001 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6002 {
6003 pVmxTransient->fVectoringDoublePF = true;
6004 Log4(("IDT: vcpu[%RU32] Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
6005 pMixedCtx->cr2));
6006 rcStrict = VINF_SUCCESS;
6007 }
6008 else
6009 {
6010 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6011 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
6012 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
6013 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
6014 rcStrict = VINF_HM_DOUBLE_FAULT;
6015 }
6016 break;
6017 }
6018
6019 case IEMXCPTRAISE_TRIPLE_FAULT:
6020 {
6021 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
6022 uExitVector));
6023 rcStrict = VINF_EM_RESET;
6024 break;
6025 }
6026
6027 case IEMXCPTRAISE_CPU_HANG:
6028 {
6029 Log4(("IDT: vcpu[%RU32] Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", pVCpu->idCpu, fRaiseInfo));
6030 rcStrict = VERR_EM_GUEST_CPU_HANG;
6031 break;
6032 }
6033
6034 default:
6035 {
6036 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6037 rcStrict = VERR_VMX_IPE_2;
6038 break;
6039 }
6040 }
6041#else
6042 typedef enum
6043 {
6044 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
6045 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
6046 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
6047 VMXREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
6048 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
6049 } VMXREFLECTXCPT;
6050
6051 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
6052 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
6053 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6054 {
6055 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
6056 {
6057 enmReflect = VMXREFLECTXCPT_XCPT;
6058#ifdef VBOX_STRICT
6059 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
6060 && uExitVector == X86_XCPT_PF)
6061 {
6062 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6063 }
6064#endif
6065 if ( uExitVector == X86_XCPT_PF
6066 && uIdtVector == X86_XCPT_PF)
6067 {
6068 pVmxTransient->fVectoringDoublePF = true;
6069 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6070 }
6071 else if ( uExitVector == X86_XCPT_AC
6072 && uIdtVector == X86_XCPT_AC)
6073 {
6074 enmReflect = VMXREFLECTXCPT_HANG;
6075 Log4(("IDT: Nested #AC - Bad guest\n"));
6076 }
6077 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
6078 && hmR0VmxIsContributoryXcpt(uExitVector)
6079 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
6080 || uIdtVector == X86_XCPT_PF))
6081 {
6082 enmReflect = VMXREFLECTXCPT_DF;
6083 }
6084 else if (uIdtVector == X86_XCPT_DF)
6085 enmReflect = VMXREFLECTXCPT_TF;
6086 }
6087 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
6088 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
6089 {
6090 /*
6091 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
6092 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
6093 */
6094 enmReflect = VMXREFLECTXCPT_XCPT;
6095
6096 if (uExitVector == X86_XCPT_PF)
6097 {
6098 pVmxTransient->fVectoringPF = true;
6099 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6100 }
6101 }
6102 }
6103 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6104 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
6105 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
6106 {
6107 /*
6108 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
6109 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
6110 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
6111 */
6112 enmReflect = VMXREFLECTXCPT_XCPT;
6113 }
6114
6115 /*
6116 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
6117 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
6118 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
6119 *
6120 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6121 */
6122 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6123 && enmReflect == VMXREFLECTXCPT_XCPT
6124 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
6125 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6126 {
6127 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6128 }
6129
6130 switch (enmReflect)
6131 {
6132 case VMXREFLECTXCPT_XCPT:
6133 {
6134 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6135 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6136 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
6137
6138 uint32_t u32ErrCode = 0;
6139 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6140 {
6141 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6142 AssertRCReturn(rc2, rc2);
6143 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6144 }
6145
6146 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
6147 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6148 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6149 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
6150 rcStrict = VINF_SUCCESS;
6151 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
6152 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
6153
6154 break;
6155 }
6156
6157 case VMXREFLECTXCPT_DF:
6158 {
6159 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6160 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
6161 rcStrict = VINF_HM_DOUBLE_FAULT;
6162 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
6163 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
6164
6165 break;
6166 }
6167
6168 case VMXREFLECTXCPT_TF:
6169 {
6170 rcStrict = VINF_EM_RESET;
6171 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
6172 uExitVector));
6173 break;
6174 }
6175
6176 case VMXREFLECTXCPT_HANG:
6177 {
6178 rcStrict = VERR_EM_GUEST_CPU_HANG;
6179 break;
6180 }
6181
6182 default:
6183 Assert(rcStrict == VINF_SUCCESS);
6184 break;
6185 }
6186#endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
6187 }
6188 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6189 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6190 && uExitVector != X86_XCPT_DF
6191 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
6192 {
6193 /*
6194 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6195 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6196 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6197 */
6198 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6199 {
6200 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
6201 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6202 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6203 }
6204 }
6205
6206 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6207 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6208 return rcStrict;
6209}
6210
6211
6212/**
6213 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
6214 *
6215 * @returns VBox status code.
6216 * @param pVCpu The cross context virtual CPU structure.
6217 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6218 * out-of-sync. Make sure to update the required fields
6219 * before using them.
6220 *
6221 * @remarks No-long-jump zone!!!
6222 */
6223static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6224{
6225 NOREF(pMixedCtx);
6226
6227 /*
6228 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
6229 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
6230 */
6231 VMMRZCallRing3Disable(pVCpu);
6232 HM_DISABLE_PREEMPT();
6233
6234 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
6235 {
6236#ifndef DEBUG_bird /** @todo this triggers running bs3-cpu-generated-1.img with --debug-command-line
6237 * and 'dbgc-init' containing:
6238 * sxe "xcpt_de"
6239 * sxe "xcpt_bp"
6240 * sxi "xcpt_gp"
6241 * sxi "xcpt_ss"
6242 * sxi "xcpt_np"
6243 */
6244 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
6245#endif
6246 uint32_t uVal = 0;
6247 uint32_t uShadow = 0;
6248 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
6249 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
6250 AssertRCReturn(rc, rc);
6251
6252 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
6253 CPUMSetGuestCR0(pVCpu, uVal);
6254 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
6255 }
6256
6257 HM_RESTORE_PREEMPT();
6258 VMMRZCallRing3Enable(pVCpu);
6259 return VINF_SUCCESS;
6260}
6261
6262
6263/**
6264 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
6265 *
6266 * @returns VBox status code.
6267 * @param pVCpu The cross context virtual CPU structure.
6268 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6269 * out-of-sync. Make sure to update the required fields
6270 * before using them.
6271 *
6272 * @remarks No-long-jump zone!!!
6273 */
6274static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6275{
6276 NOREF(pMixedCtx);
6277
6278 int rc = VINF_SUCCESS;
6279 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
6280 {
6281 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4));
6282 uint32_t uVal = 0;
6283 uint32_t uShadow = 0;
6284 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
6285 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
6286 AssertRCReturn(rc, rc);
6287
6288 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
6289 CPUMSetGuestCR4(pVCpu, uVal);
6290 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
6291 }
6292 return rc;
6293}
6294
6295
6296/**
6297 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
6298 *
6299 * @returns VBox status code.
6300 * @param pVCpu The cross context virtual CPU structure.
6301 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6302 * out-of-sync. Make sure to update the required fields
6303 * before using them.
6304 *
6305 * @remarks No-long-jump zone!!!
6306 */
6307static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6308{
6309 int rc = VINF_SUCCESS;
6310 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6311 {
6312 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP));
6313 uint64_t u64Val = 0;
6314 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6315 AssertRCReturn(rc, rc);
6316
6317 pMixedCtx->rip = u64Val;
6318 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6319 }
6320 return rc;
6321}
6322
6323
6324/**
6325 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6326 *
6327 * @returns VBox status code.
6328 * @param pVCpu The cross context virtual CPU structure.
6329 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6330 * out-of-sync. Make sure to update the required fields
6331 * before using them.
6332 *
6333 * @remarks No-long-jump zone!!!
6334 */
6335static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6336{
6337 int rc = VINF_SUCCESS;
6338 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6339 {
6340 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP));
6341 uint64_t u64Val = 0;
6342 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6343 AssertRCReturn(rc, rc);
6344
6345 pMixedCtx->rsp = u64Val;
6346 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6347 }
6348 return rc;
6349}
6350
6351
6352/**
6353 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6354 *
6355 * @returns VBox status code.
6356 * @param pVCpu The cross context virtual CPU structure.
6357 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6358 * out-of-sync. Make sure to update the required fields
6359 * before using them.
6360 *
6361 * @remarks No-long-jump zone!!!
6362 */
6363static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6364{
6365 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6366 {
6367 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS));
6368 uint32_t uVal = 0;
6369 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6370 AssertRCReturn(rc, rc);
6371
6372 pMixedCtx->eflags.u32 = uVal;
6373 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6374 {
6375 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6376 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6377
6378 pMixedCtx->eflags.Bits.u1VM = 0;
6379 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6380 }
6381
6382 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6383 }
6384 return VINF_SUCCESS;
6385}
6386
6387
6388/**
6389 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6390 * guest-CPU context.
6391 */
6392DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6393{
6394 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6395 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6396 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6397 return rc;
6398}
6399
6400
6401/**
6402 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6403 * from the guest-state area in the VMCS.
6404 *
6405 * @param pVCpu The cross context virtual CPU structure.
6406 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6407 * out-of-sync. Make sure to update the required fields
6408 * before using them.
6409 *
6410 * @remarks No-long-jump zone!!!
6411 */
6412static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6413{
6414 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6415 {
6416 uint32_t uIntrState = 0;
6417 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6418 AssertRC(rc);
6419
6420 if (!uIntrState)
6421 {
6422 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6423 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6424
6425 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6426 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6427 }
6428 else
6429 {
6430 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6431 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6432 {
6433 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6434 AssertRC(rc);
6435 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6436 AssertRC(rc);
6437
6438 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6439 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6440 }
6441 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6442 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6443
6444 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6445 {
6446 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6447 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6448 }
6449 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6450 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6451 }
6452
6453 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6454 }
6455}
6456
6457
6458/**
6459 * Saves the guest's activity state.
6460 *
6461 * @returns VBox status code.
6462 * @param pVCpu The cross context virtual CPU structure.
6463 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6464 * out-of-sync. Make sure to update the required fields
6465 * before using them.
6466 *
6467 * @remarks No-long-jump zone!!!
6468 */
6469static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6470{
6471 NOREF(pMixedCtx);
6472 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6473 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6474 return VINF_SUCCESS;
6475}
6476
6477
6478/**
6479 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6480 * the current VMCS into the guest-CPU context.
6481 *
6482 * @returns VBox status code.
6483 * @param pVCpu The cross context virtual CPU structure.
6484 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6485 * out-of-sync. Make sure to update the required fields
6486 * before using them.
6487 *
6488 * @remarks No-long-jump zone!!!
6489 */
6490static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6491{
6492 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6493 {
6494 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR));
6495 uint32_t u32Val = 0;
6496 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6497 pMixedCtx->SysEnter.cs = u32Val;
6498 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6499 }
6500
6501 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6502 {
6503 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR));
6504 uint64_t u64Val = 0;
6505 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6506 pMixedCtx->SysEnter.eip = u64Val;
6507 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6508 }
6509 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6510 {
6511 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR));
6512 uint64_t u64Val = 0;
6513 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6514 pMixedCtx->SysEnter.esp = u64Val;
6515 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6516 }
6517 return VINF_SUCCESS;
6518}
6519
6520
6521/**
6522 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6523 * the CPU back into the guest-CPU context.
6524 *
6525 * @returns VBox status code.
6526 * @param pVCpu The cross context virtual CPU structure.
6527 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6528 * out-of-sync. Make sure to update the required fields
6529 * before using them.
6530 *
6531 * @remarks No-long-jump zone!!!
6532 */
6533static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6534{
6535 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6536 VMMRZCallRing3Disable(pVCpu);
6537 HM_DISABLE_PREEMPT();
6538
6539 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6540 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6541 {
6542 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS));
6543 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6544 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6545 }
6546
6547 HM_RESTORE_PREEMPT();
6548 VMMRZCallRing3Enable(pVCpu);
6549
6550 return VINF_SUCCESS;
6551}
6552
6553
6554/**
6555 * Saves the auto load/store'd guest MSRs from the current VMCS into
6556 * the guest-CPU context.
6557 *
6558 * @returns VBox status code.
6559 * @param pVCpu The cross context virtual CPU structure.
6560 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6561 * out-of-sync. Make sure to update the required fields
6562 * before using them.
6563 *
6564 * @remarks No-long-jump zone!!!
6565 */
6566static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6567{
6568 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6569 return VINF_SUCCESS;
6570
6571 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS));
6572 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6573 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6574 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6575 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6576 {
6577 switch (pMsr->u32Msr)
6578 {
6579 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6580 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6581 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6582 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6583 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6584 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6585 break;
6586
6587 default:
6588 {
6589 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6590 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6591 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6592 }
6593 }
6594 }
6595
6596 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6597 return VINF_SUCCESS;
6598}
6599
6600
6601/**
6602 * Saves the guest control registers from the current VMCS into the guest-CPU
6603 * context.
6604 *
6605 * @returns VBox status code.
6606 * @param pVCpu The cross context virtual CPU structure.
6607 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6608 * out-of-sync. Make sure to update the required fields
6609 * before using them.
6610 *
6611 * @remarks No-long-jump zone!!!
6612 */
6613static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6614{
6615 /* Guest CR0. Guest FPU. */
6616 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6617 AssertRCReturn(rc, rc);
6618
6619 /* Guest CR4. */
6620 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6621 AssertRCReturn(rc, rc);
6622
6623 /* Guest CR2 - updated always during the world-switch or in #PF. */
6624 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6625 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6626 {
6627 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3));
6628 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6629 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6630
6631 PVM pVM = pVCpu->CTX_SUFF(pVM);
6632 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6633 || ( pVM->hm.s.fNestedPaging
6634 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6635 {
6636 uint64_t u64Val = 0;
6637 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6638 if (pMixedCtx->cr3 != u64Val)
6639 {
6640 CPUMSetGuestCR3(pVCpu, u64Val);
6641 if (VMMRZCallRing3IsEnabled(pVCpu))
6642 {
6643 PGMUpdateCR3(pVCpu, u64Val);
6644 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6645 }
6646 else
6647 {
6648 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6649 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6650 }
6651 }
6652
6653 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6654 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6655 {
6656 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6657 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6658 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6659 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6660 AssertRCReturn(rc, rc);
6661
6662 if (VMMRZCallRing3IsEnabled(pVCpu))
6663 {
6664 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6665 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6666 }
6667 else
6668 {
6669 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6670 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6671 }
6672 }
6673 }
6674
6675 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6676 }
6677
6678 /*
6679 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6680 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6681 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6682 *
6683 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6684 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6685 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6686 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6687 *
6688 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6689 */
6690 if (VMMRZCallRing3IsEnabled(pVCpu))
6691 {
6692 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6693 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6694
6695 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6696 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6697
6698 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6699 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6700 }
6701
6702 return rc;
6703}
6704
6705
6706/**
6707 * Reads a guest segment register from the current VMCS into the guest-CPU
6708 * context.
6709 *
6710 * @returns VBox status code.
6711 * @param pVCpu The cross context virtual CPU structure.
6712 * @param idxSel Index of the selector in the VMCS.
6713 * @param idxLimit Index of the segment limit in the VMCS.
6714 * @param idxBase Index of the segment base in the VMCS.
6715 * @param idxAccess Index of the access rights of the segment in the VMCS.
6716 * @param pSelReg Pointer to the segment selector.
6717 *
6718 * @remarks No-long-jump zone!!!
6719 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6720 * macro as that takes care of whether to read from the VMCS cache or
6721 * not.
6722 */
6723DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6724 PCPUMSELREG pSelReg)
6725{
6726 NOREF(pVCpu);
6727
6728 uint32_t u32Val = 0;
6729 int rc = VMXReadVmcs32(idxSel, &u32Val);
6730 AssertRCReturn(rc, rc);
6731 pSelReg->Sel = (uint16_t)u32Val;
6732 pSelReg->ValidSel = (uint16_t)u32Val;
6733 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6734
6735 rc = VMXReadVmcs32(idxLimit, &u32Val);
6736 AssertRCReturn(rc, rc);
6737 pSelReg->u32Limit = u32Val;
6738
6739 uint64_t u64Val = 0;
6740 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6741 AssertRCReturn(rc, rc);
6742 pSelReg->u64Base = u64Val;
6743
6744 rc = VMXReadVmcs32(idxAccess, &u32Val);
6745 AssertRCReturn(rc, rc);
6746 pSelReg->Attr.u = u32Val;
6747
6748 /*
6749 * If VT-x marks the segment as unusable, most other bits remain undefined:
6750 * - For CS the L, D and G bits have meaning.
6751 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6752 * - For the remaining data segments no bits are defined.
6753 *
6754 * The present bit and the unusable bit has been observed to be set at the
6755 * same time (the selector was supposed to be invalid as we started executing
6756 * a V8086 interrupt in ring-0).
6757 *
6758 * What should be important for the rest of the VBox code, is that the P bit is
6759 * cleared. Some of the other VBox code recognizes the unusable bit, but
6760 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6761 * safe side here, we'll strip off P and other bits we don't care about. If
6762 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6763 *
6764 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6765 */
6766 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6767 {
6768 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6769
6770 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6771 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6772 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6773
6774 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6775#ifdef DEBUG_bird
6776 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6777 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6778 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6779#endif
6780 }
6781 return VINF_SUCCESS;
6782}
6783
6784
6785#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6786# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6787 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6788 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6789#else
6790# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6791 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6792 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6793#endif
6794
6795
6796/**
6797 * Saves the guest segment registers from the current VMCS into the guest-CPU
6798 * context.
6799 *
6800 * @returns VBox status code.
6801 * @param pVCpu The cross context virtual CPU structure.
6802 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6803 * out-of-sync. Make sure to update the required fields
6804 * before using them.
6805 *
6806 * @remarks No-long-jump zone!!!
6807 */
6808static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6809{
6810 /* Guest segment registers. */
6811 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6812 {
6813 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS));
6814 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6815 AssertRCReturn(rc, rc);
6816
6817 rc = VMXLOCAL_READ_SEG(CS, cs);
6818 rc |= VMXLOCAL_READ_SEG(SS, ss);
6819 rc |= VMXLOCAL_READ_SEG(DS, ds);
6820 rc |= VMXLOCAL_READ_SEG(ES, es);
6821 rc |= VMXLOCAL_READ_SEG(FS, fs);
6822 rc |= VMXLOCAL_READ_SEG(GS, gs);
6823 AssertRCReturn(rc, rc);
6824
6825 /* Restore segment attributes for real-on-v86 mode hack. */
6826 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6827 {
6828 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6829 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6830 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6831 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6832 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6833 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6834 }
6835 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6836 }
6837
6838 return VINF_SUCCESS;
6839}
6840
6841
6842/**
6843 * Saves the guest descriptor table registers and task register from the current
6844 * VMCS into the guest-CPU context.
6845 *
6846 * @returns VBox status code.
6847 * @param pVCpu The cross context virtual CPU structure.
6848 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6849 * out-of-sync. Make sure to update the required fields
6850 * before using them.
6851 *
6852 * @remarks No-long-jump zone!!!
6853 */
6854static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6855{
6856 int rc = VINF_SUCCESS;
6857
6858 /* Guest LDTR. */
6859 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6860 {
6861 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR));
6862 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6863 AssertRCReturn(rc, rc);
6864 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6865 }
6866
6867 /* Guest GDTR. */
6868 uint64_t u64Val = 0;
6869 uint32_t u32Val = 0;
6870 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6871 {
6872 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR));
6873 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6874 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6875 pMixedCtx->gdtr.pGdt = u64Val;
6876 pMixedCtx->gdtr.cbGdt = u32Val;
6877 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6878 }
6879
6880 /* Guest IDTR. */
6881 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6882 {
6883 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR));
6884 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6885 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6886 pMixedCtx->idtr.pIdt = u64Val;
6887 pMixedCtx->idtr.cbIdt = u32Val;
6888 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6889 }
6890
6891 /* Guest TR. */
6892 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6893 {
6894 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR));
6895 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6896 AssertRCReturn(rc, rc);
6897
6898 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6899 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6900 {
6901 rc = VMXLOCAL_READ_SEG(TR, tr);
6902 AssertRCReturn(rc, rc);
6903 }
6904 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6905 }
6906 return rc;
6907}
6908
6909#undef VMXLOCAL_READ_SEG
6910
6911
6912/**
6913 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6914 * context.
6915 *
6916 * @returns VBox status code.
6917 * @param pVCpu The cross context virtual CPU structure.
6918 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6919 * out-of-sync. Make sure to update the required fields
6920 * before using them.
6921 *
6922 * @remarks No-long-jump zone!!!
6923 */
6924static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6925{
6926 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7))
6927 {
6928 if (!pVCpu->hm.s.fUsingHyperDR7)
6929 {
6930 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6931 uint32_t u32Val;
6932 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6933 pMixedCtx->dr[7] = u32Val;
6934 }
6935
6936 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7);
6937 }
6938 return VINF_SUCCESS;
6939}
6940
6941
6942/**
6943 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6944 *
6945 * @returns VBox status code.
6946 * @param pVCpu The cross context virtual CPU structure.
6947 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6948 * out-of-sync. Make sure to update the required fields
6949 * before using them.
6950 *
6951 * @remarks No-long-jump zone!!!
6952 */
6953static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6954{
6955 NOREF(pMixedCtx);
6956
6957 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6958 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6959 return VINF_SUCCESS;
6960}
6961
6962
6963/**
6964 * Saves the entire guest state from the currently active VMCS into the
6965 * guest-CPU context.
6966 *
6967 * This essentially VMREADs all guest-data.
6968 *
6969 * @returns VBox status code.
6970 * @param pVCpu The cross context virtual CPU structure.
6971 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6972 * out-of-sync. Make sure to update the required fields
6973 * before using them.
6974 */
6975static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6976{
6977 Assert(pVCpu);
6978 Assert(pMixedCtx);
6979
6980 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6981 return VINF_SUCCESS;
6982
6983 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6984 again on the ring-3 callback path, there is no real need to. */
6985 if (VMMRZCallRing3IsEnabled(pVCpu))
6986 VMMR0LogFlushDisable(pVCpu);
6987 else
6988 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6989 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6990
6991 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6992 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6993
6994 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6995 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6996
6997 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6998 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6999
7000 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
7001 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7002
7003 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
7004 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7005
7006 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
7007 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7008
7009 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7010 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7011
7012 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
7013 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7014
7015 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
7016 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7017
7018 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
7019 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7020
7021 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
7022 ("Missed guest state bits while saving state; missing %RX32 (got %RX32, want %RX32) - check log for any previous errors!\n",
7023 HMVMX_UPDATED_GUEST_ALL ^ HMVMXCPU_GST_VALUE(pVCpu), HMVMXCPU_GST_VALUE(pVCpu), HMVMX_UPDATED_GUEST_ALL));
7024
7025 if (VMMRZCallRing3IsEnabled(pVCpu))
7026 VMMR0LogFlushEnable(pVCpu);
7027
7028 return VINF_SUCCESS;
7029}
7030
7031
7032/**
7033 * Saves basic guest registers needed for IEM instruction execution.
7034 *
7035 * @returns VBox status code (OR-able).
7036 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7037 * @param pMixedCtx Pointer to the CPU context of the guest.
7038 * @param fMemory Whether the instruction being executed operates on
7039 * memory or not. Only CR0 is synced up if clear.
7040 * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
7041 */
7042static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
7043{
7044 /*
7045 * We assume all general purpose registers other than RSP are available.
7046 *
7047 * - RIP is a must, as it will be incremented or otherwise changed.
7048 * - RFLAGS are always required to figure the CPL.
7049 * - RSP isn't always required, however it's a GPR, so frequently required.
7050 * - SS and CS are the only segment register needed if IEM doesn't do memory
7051 * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
7052 * - CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
7053 * be required for memory accesses.
7054 *
7055 * Note! Before IEM dispatches an exception, it will call us to sync in everything.
7056 */
7057 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
7058 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7059 if (fNeedRsp)
7060 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
7061 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7062 if (!fMemory)
7063 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7064 else
7065 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7066 AssertRCReturn(rc, rc);
7067 return rc;
7068}
7069
7070
7071/**
7072 * Ensures that we've got a complete basic guest-context.
7073 *
7074 * This excludes the FPU, SSE, AVX, and similar extended state. The interface
7075 * is for the interpreter.
7076 *
7077 * @returns VBox status code.
7078 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7079 * @param pMixedCtx Pointer to the guest-CPU context which may have data
7080 * needing to be synced in.
7081 * @thread EMT(pVCpu)
7082 */
7083VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7084{
7085 /* Note! Since this is only applicable to VT-x, the implementation is placed
7086 in the VT-x part of the sources instead of the generic stuff. */
7087 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
7088 {
7089 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7090 /*
7091 * For now, imply that the caller might change everything too. Do this after
7092 * saving the guest state so as to not trigger assertions.
7093 */
7094 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7095 return rc;
7096 }
7097 return VINF_SUCCESS;
7098}
7099
7100
7101/**
7102 * Check per-VM and per-VCPU force flag actions that require us to go back to
7103 * ring-3 for one reason or another.
7104 *
7105 * @returns Strict VBox status code (i.e. informational status codes too)
7106 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7107 * ring-3.
7108 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7109 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7110 * interrupts)
7111 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7112 * all EMTs to be in ring-3.
7113 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7114 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7115 * to the EM loop.
7116 *
7117 * @param pVM The cross context VM structure.
7118 * @param pVCpu The cross context virtual CPU structure.
7119 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7120 * out-of-sync. Make sure to update the required fields
7121 * before using them.
7122 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
7123 */
7124static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
7125{
7126 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7127
7128 /*
7129 * Anything pending? Should be more likely than not if we're doing a good job.
7130 */
7131 if ( !fStepping
7132 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7133 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7134 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7135 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7136 return VINF_SUCCESS;
7137
7138 /* We need the control registers now, make sure the guest-CPU context is updated. */
7139 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7140 AssertRCReturn(rc3, rc3);
7141
7142 /* Pending HM CR3 sync. */
7143 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7144 {
7145 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
7146 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
7147 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
7148 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7149 }
7150
7151 /* Pending HM PAE PDPEs. */
7152 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7153 {
7154 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7155 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7156 }
7157
7158 /* Pending PGM C3 sync. */
7159 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7160 {
7161 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
7162 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7163 if (rcStrict2 != VINF_SUCCESS)
7164 {
7165 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
7166 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
7167 return rcStrict2;
7168 }
7169 }
7170
7171 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7172 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
7173 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7174 {
7175 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7176 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
7177 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
7178 return rc2;
7179 }
7180
7181 /* Pending VM request packets, such as hardware interrupts. */
7182 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
7183 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
7184 {
7185 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
7186 return VINF_EM_PENDING_REQUEST;
7187 }
7188
7189 /* Pending PGM pool flushes. */
7190 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7191 {
7192 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
7193 return VINF_PGM_POOL_FLUSH_PENDING;
7194 }
7195
7196 /* Pending DMA requests. */
7197 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
7198 {
7199 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
7200 return VINF_EM_RAW_TO_R3;
7201 }
7202
7203 return VINF_SUCCESS;
7204}
7205
7206
7207/**
7208 * Converts any TRPM trap into a pending HM event. This is typically used when
7209 * entering from ring-3 (not longjmp returns).
7210 *
7211 * @param pVCpu The cross context virtual CPU structure.
7212 */
7213static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
7214{
7215 Assert(TRPMHasTrap(pVCpu));
7216 Assert(!pVCpu->hm.s.Event.fPending);
7217
7218 uint8_t uVector;
7219 TRPMEVENT enmTrpmEvent;
7220 RTGCUINT uErrCode;
7221 RTGCUINTPTR GCPtrFaultAddress;
7222 uint8_t cbInstr;
7223
7224 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7225 AssertRC(rc);
7226
7227 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7228 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7229 if (enmTrpmEvent == TRPM_TRAP)
7230 {
7231 switch (uVector)
7232 {
7233 case X86_XCPT_NMI:
7234 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7235 break;
7236
7237 case X86_XCPT_BP:
7238 case X86_XCPT_OF:
7239 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7240 break;
7241
7242 case X86_XCPT_PF:
7243 case X86_XCPT_DF:
7244 case X86_XCPT_TS:
7245 case X86_XCPT_NP:
7246 case X86_XCPT_SS:
7247 case X86_XCPT_GP:
7248 case X86_XCPT_AC:
7249 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7250 /* fall thru */
7251 default:
7252 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7253 break;
7254 }
7255 }
7256 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7257 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7258 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7259 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7260 else
7261 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7262
7263 rc = TRPMResetTrap(pVCpu);
7264 AssertRC(rc);
7265 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7266 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7267
7268 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7269}
7270
7271
7272/**
7273 * Converts the pending HM event into a TRPM trap.
7274 *
7275 * @param pVCpu The cross context virtual CPU structure.
7276 */
7277static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7278{
7279 Assert(pVCpu->hm.s.Event.fPending);
7280
7281 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7282 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7283 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
7284 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7285
7286 /* If a trap was already pending, we did something wrong! */
7287 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7288
7289 TRPMEVENT enmTrapType;
7290 switch (uVectorType)
7291 {
7292 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7293 enmTrapType = TRPM_HARDWARE_INT;
7294 break;
7295
7296 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7297 enmTrapType = TRPM_SOFTWARE_INT;
7298 break;
7299
7300 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7301 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7302 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7303 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7304 enmTrapType = TRPM_TRAP;
7305 break;
7306
7307 default:
7308 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7309 enmTrapType = TRPM_32BIT_HACK;
7310 break;
7311 }
7312
7313 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7314
7315 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7316 AssertRC(rc);
7317
7318 if (fErrorCodeValid)
7319 TRPMSetErrorCode(pVCpu, uErrorCode);
7320
7321 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7322 && uVector == X86_XCPT_PF)
7323 {
7324 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7325 }
7326 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7327 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7328 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7329 {
7330 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7331 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7332 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7333 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7334 }
7335
7336 /* Clear any pending events from the VMCS. */
7337 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
7338 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc);
7339
7340 /* We're now done converting the pending event. */
7341 pVCpu->hm.s.Event.fPending = false;
7342}
7343
7344
7345/**
7346 * Does the necessary state syncing before returning to ring-3 for any reason
7347 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7348 *
7349 * @returns VBox status code.
7350 * @param pVCpu The cross context virtual CPU structure.
7351 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7352 * be out-of-sync. Make sure to update the required
7353 * fields before using them.
7354 * @param fSaveGuestState Whether to save the guest state or not.
7355 *
7356 * @remarks No-long-jmp zone!!!
7357 */
7358static int hmR0VmxLeave(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
7359{
7360 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7361 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7362
7363 RTCPUID idCpu = RTMpCpuId();
7364 Log4Func(("HostCpuId=%u\n", idCpu));
7365
7366 /*
7367 * !!! IMPORTANT !!!
7368 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7369 */
7370
7371 /* Save the guest state if necessary. */
7372 if ( fSaveGuestState
7373 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
7374 {
7375 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7376 AssertRCReturn(rc, rc);
7377 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7378 }
7379
7380 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
7381 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
7382 {
7383 /* We shouldn't reload CR0 without saving it first. */
7384 if (!fSaveGuestState)
7385 {
7386 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7387 AssertRCReturn(rc, rc);
7388 }
7389 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7390 }
7391
7392 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7393#ifdef VBOX_STRICT
7394 if (CPUMIsHyperDebugStateActive(pVCpu))
7395 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7396#endif
7397 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7398 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7399 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7400 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7401
7402#if HC_ARCH_BITS == 64
7403 /* Restore host-state bits that VT-x only restores partially. */
7404 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7405 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7406 {
7407 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7408 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7409 }
7410 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7411#endif
7412
7413 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7414 if (pVCpu->hm.s.vmx.fLazyMsrs)
7415 {
7416 /* We shouldn't reload the guest MSRs without saving it first. */
7417 if (!fSaveGuestState)
7418 {
7419 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7420 AssertRCReturn(rc, rc);
7421 }
7422 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7423 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7424 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7425 }
7426
7427 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7428 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7429
7430 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7431 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7432 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7433 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7434 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7435 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7436 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7437 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7438
7439 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7440
7441 /** @todo This partially defeats the purpose of having preemption hooks.
7442 * The problem is, deregistering the hooks should be moved to a place that
7443 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7444 * context.
7445 */
7446 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7447 {
7448 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7449 AssertRCReturn(rc, rc);
7450
7451 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7452 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7453 }
7454 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7455 NOREF(idCpu);
7456
7457 return VINF_SUCCESS;
7458}
7459
7460
7461/**
7462 * Leaves the VT-x session.
7463 *
7464 * @returns VBox status code.
7465 * @param pVCpu The cross context virtual CPU structure.
7466 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7467 * out-of-sync. Make sure to update the required fields
7468 * before using them.
7469 *
7470 * @remarks No-long-jmp zone!!!
7471 */
7472DECLINLINE(int) hmR0VmxLeaveSession(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7473{
7474 HM_DISABLE_PREEMPT();
7475 HMVMX_ASSERT_CPU_SAFE();
7476 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7477 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7478
7479 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7480 and done this from the VMXR0ThreadCtxCallback(). */
7481 if (!pVCpu->hm.s.fLeaveDone)
7482 {
7483 int rc2 = hmR0VmxLeave(pVCpu, pMixedCtx, true /* fSaveGuestState */);
7484 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7485 pVCpu->hm.s.fLeaveDone = true;
7486 }
7487 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7488
7489 /*
7490 * !!! IMPORTANT !!!
7491 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7492 */
7493
7494 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7495 /** @todo Deregistering here means we need to VMCLEAR always
7496 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7497 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7498 VMMR0ThreadCtxHookDisable(pVCpu);
7499
7500 /* Leave HM context. This takes care of local init (term). */
7501 int rc = HMR0LeaveCpu(pVCpu);
7502
7503 HM_RESTORE_PREEMPT();
7504 return rc;
7505}
7506
7507
7508/**
7509 * Does the necessary state syncing before doing a longjmp to ring-3.
7510 *
7511 * @returns VBox status code.
7512 * @param pVCpu The cross context virtual CPU structure.
7513 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7514 * out-of-sync. Make sure to update the required fields
7515 * before using them.
7516 *
7517 * @remarks No-long-jmp zone!!!
7518 */
7519DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7520{
7521 return hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7522}
7523
7524
7525/**
7526 * Take necessary actions before going back to ring-3.
7527 *
7528 * An action requires us to go back to ring-3. This function does the necessary
7529 * steps before we can safely return to ring-3. This is not the same as longjmps
7530 * to ring-3, this is voluntary and prepares the guest so it may continue
7531 * executing outside HM (recompiler/IEM).
7532 *
7533 * @returns VBox status code.
7534 * @param pVM The cross context VM structure.
7535 * @param pVCpu The cross context virtual CPU structure.
7536 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7537 * out-of-sync. Make sure to update the required fields
7538 * before using them.
7539 * @param rcExit The reason for exiting to ring-3. Can be
7540 * VINF_VMM_UNKNOWN_RING3_CALL.
7541 */
7542static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, VBOXSTRICTRC rcExit)
7543{
7544 Assert(pVM);
7545 Assert(pVCpu);
7546 Assert(pMixedCtx);
7547 HMVMX_ASSERT_PREEMPT_SAFE();
7548
7549 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7550 {
7551 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7552 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7553 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7554 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7555 }
7556
7557 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7558 VMMRZCallRing3Disable(pVCpu);
7559 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcExit)));
7560
7561 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7562 if (pVCpu->hm.s.Event.fPending)
7563 {
7564 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7565 Assert(!pVCpu->hm.s.Event.fPending);
7566 }
7567
7568 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7569 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7570
7571 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7572 and if we're injecting an event we should have a TRPM trap pending. */
7573 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7574#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a tripple fault in progress. */
7575 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7576#endif
7577
7578 /* Save guest state and restore host state bits. */
7579 int rc = hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7580 AssertRCReturn(rc, rc);
7581 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7582 /* Thread-context hooks are unregistered at this point!!! */
7583
7584 /* Sync recompiler state. */
7585 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7586 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7587 | CPUM_CHANGED_LDTR
7588 | CPUM_CHANGED_GDTR
7589 | CPUM_CHANGED_IDTR
7590 | CPUM_CHANGED_TR
7591 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7592 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7593 if ( pVM->hm.s.fNestedPaging
7594 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7595 {
7596 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7597 }
7598
7599 Assert(!pVCpu->hm.s.fClearTrapFlag);
7600
7601 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7602 if (rcExit != VINF_EM_RAW_INTERRUPT)
7603 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7604
7605 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7606
7607 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7608 VMMRZCallRing3RemoveNotification(pVCpu);
7609 VMMRZCallRing3Enable(pVCpu);
7610
7611 return rc;
7612}
7613
7614
7615/**
7616 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7617 * longjump to ring-3 and possibly get preempted.
7618 *
7619 * @returns VBox status code.
7620 * @param pVCpu The cross context virtual CPU structure.
7621 * @param enmOperation The operation causing the ring-3 longjump.
7622 * @param pvUser Opaque pointer to the guest-CPU context. The data
7623 * may be out-of-sync. Make sure to update the required
7624 * fields before using them.
7625 */
7626static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7627{
7628 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7629 {
7630 /*
7631 * !!! IMPORTANT !!!
7632 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7633 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7634 */
7635 VMMRZCallRing3RemoveNotification(pVCpu);
7636 VMMRZCallRing3Disable(pVCpu);
7637 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7638 RTThreadPreemptDisable(&PreemptState);
7639
7640 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7641 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7642
7643#if HC_ARCH_BITS == 64
7644 /* Restore host-state bits that VT-x only restores partially. */
7645 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7646 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7647 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7648 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7649#endif
7650 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7651 if (pVCpu->hm.s.vmx.fLazyMsrs)
7652 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7653
7654 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7655 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7656 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7657 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7658 {
7659 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7660 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7661 }
7662
7663 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7664 VMMR0ThreadCtxHookDisable(pVCpu);
7665 HMR0LeaveCpu(pVCpu);
7666 RTThreadPreemptRestore(&PreemptState);
7667 return VINF_SUCCESS;
7668 }
7669
7670 Assert(pVCpu);
7671 Assert(pvUser);
7672 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7673 HMVMX_ASSERT_PREEMPT_SAFE();
7674
7675 VMMRZCallRing3Disable(pVCpu);
7676 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7677
7678 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7679 enmOperation));
7680
7681 int rc = hmR0VmxLongJmpToRing3(pVCpu, (PCPUMCTX)pvUser);
7682 AssertRCReturn(rc, rc);
7683
7684 VMMRZCallRing3Enable(pVCpu);
7685 return VINF_SUCCESS;
7686}
7687
7688
7689/**
7690 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7691 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7692 *
7693 * @param pVCpu The cross context virtual CPU structure.
7694 */
7695DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7696{
7697 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7698 {
7699 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7700 {
7701 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7702 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7703 AssertRC(rc);
7704 Log4(("Setup interrupt-window exiting\n"));
7705 }
7706 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7707}
7708
7709
7710/**
7711 * Clears the interrupt-window exiting control in the VMCS.
7712 *
7713 * @param pVCpu The cross context virtual CPU structure.
7714 */
7715DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7716{
7717 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7718 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7719 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7720 AssertRC(rc);
7721 Log4(("Cleared interrupt-window exiting\n"));
7722}
7723
7724
7725/**
7726 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7727 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7728 *
7729 * @param pVCpu The cross context virtual CPU structure.
7730 */
7731DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7732{
7733 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7734 {
7735 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7736 {
7737 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7738 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7739 AssertRC(rc);
7740 Log4(("Setup NMI-window exiting\n"));
7741 }
7742 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7743}
7744
7745
7746/**
7747 * Clears the NMI-window exiting control in the VMCS.
7748 *
7749 * @param pVCpu The cross context virtual CPU structure.
7750 */
7751DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7752{
7753 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7754 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7755 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7756 AssertRC(rc);
7757 Log4(("Cleared NMI-window exiting\n"));
7758}
7759
7760
7761/**
7762 * Evaluates the event to be delivered to the guest and sets it as the pending
7763 * event.
7764 *
7765 * @returns The VT-x guest-interruptibility state.
7766 * @param pVCpu The cross context virtual CPU structure.
7767 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7768 * out-of-sync. Make sure to update the required fields
7769 * before using them.
7770 */
7771static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7772{
7773 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7774 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7775 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7776 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7777 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7778
7779 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7780 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7781 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7782 Assert(!TRPMHasTrap(pVCpu));
7783
7784 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7785 APICUpdatePendingInterrupts(pVCpu);
7786
7787 /*
7788 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7789 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7790 */
7791 /** @todo SMI. SMIs take priority over NMIs. */
7792 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7793 {
7794 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7795 if ( !pVCpu->hm.s.Event.fPending
7796 && !fBlockNmi
7797 && !fBlockSti
7798 && !fBlockMovSS)
7799 {
7800 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7801 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7802 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7803
7804 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7805 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7806 }
7807 else
7808 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7809 }
7810 /*
7811 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7812 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7813 */
7814 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7815 && !pVCpu->hm.s.fSingleInstruction)
7816 {
7817 Assert(!DBGFIsStepping(pVCpu));
7818 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7819 AssertRC(rc);
7820 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7821 if ( !pVCpu->hm.s.Event.fPending
7822 && !fBlockInt
7823 && !fBlockSti
7824 && !fBlockMovSS)
7825 {
7826 uint8_t u8Interrupt;
7827 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7828 if (RT_SUCCESS(rc))
7829 {
7830 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7831 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7832 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7833
7834 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7835 }
7836 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7837 {
7838 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7839 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7840 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7841
7842 /*
7843 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7844 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7845 * need to re-set this force-flag here.
7846 */
7847 }
7848 else
7849 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7850 }
7851 else
7852 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7853 }
7854
7855 return uIntrState;
7856}
7857
7858
7859/**
7860 * Sets a pending-debug exception to be delivered to the guest if the guest is
7861 * single-stepping in the VMCS.
7862 *
7863 * @param pVCpu The cross context virtual CPU structure.
7864 */
7865DECLINLINE(void) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7866{
7867 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS)); NOREF(pVCpu);
7868 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7869 AssertRC(rc);
7870}
7871
7872
7873/**
7874 * Injects any pending events into the guest if the guest is in a state to
7875 * receive them.
7876 *
7877 * @returns Strict VBox status code (i.e. informational status codes too).
7878 * @param pVCpu The cross context virtual CPU structure.
7879 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7880 * out-of-sync. Make sure to update the required fields
7881 * before using them.
7882 * @param uIntrState The VT-x guest-interruptibility state.
7883 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7884 * return VINF_EM_DBG_STEPPED if the event was
7885 * dispatched directly.
7886 */
7887static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t uIntrState, bool fStepping)
7888{
7889 HMVMX_ASSERT_PREEMPT_SAFE();
7890 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7891
7892 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7893 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7894
7895 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7896 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7897 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7898 Assert(!TRPMHasTrap(pVCpu));
7899
7900 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7901 if (pVCpu->hm.s.Event.fPending)
7902 {
7903 /*
7904 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7905 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7906 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7907 *
7908 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7909 */
7910 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7911#ifdef VBOX_STRICT
7912 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7913 {
7914 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7915 Assert(!fBlockInt);
7916 Assert(!fBlockSti);
7917 Assert(!fBlockMovSS);
7918 }
7919 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7920 {
7921 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7922 Assert(!fBlockSti);
7923 Assert(!fBlockMovSS);
7924 Assert(!fBlockNmi);
7925 }
7926#endif
7927 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7928 (uint8_t)uIntType));
7929 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7930 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress,
7931 fStepping, &uIntrState);
7932 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7933
7934 /* Update the interruptibility-state as it could have been changed by
7935 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7936 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7937 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7938
7939 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7940 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7941 else
7942 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7943 }
7944
7945 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7946 if ( fBlockSti
7947 || fBlockMovSS)
7948 {
7949 if (!pVCpu->hm.s.fSingleInstruction)
7950 {
7951 /*
7952 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7953 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7954 * See Intel spec. 27.3.4 "Saving Non-Register State".
7955 */
7956 Assert(!DBGFIsStepping(pVCpu));
7957 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7958 AssertRCReturn(rc2, rc2);
7959 if (pMixedCtx->eflags.Bits.u1TF)
7960 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7961 }
7962 else if (pMixedCtx->eflags.Bits.u1TF)
7963 {
7964 /*
7965 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7966 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7967 */
7968 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7969 uIntrState = 0;
7970 }
7971 }
7972
7973 /*
7974 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7975 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7976 */
7977 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7978 AssertRC(rc2);
7979
7980 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7981 NOREF(fBlockMovSS); NOREF(fBlockSti);
7982 return rcStrict;
7983}
7984
7985
7986/**
7987 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7988 *
7989 * @param pVCpu The cross context virtual CPU structure.
7990 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7991 * out-of-sync. Make sure to update the required fields
7992 * before using them.
7993 */
7994DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7995{
7996 NOREF(pMixedCtx);
7997 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7998 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7999}
8000
8001
8002/**
8003 * Injects a double-fault (\#DF) exception into the VM.
8004 *
8005 * @returns Strict VBox status code (i.e. informational status codes too).
8006 * @param pVCpu The cross context virtual CPU structure.
8007 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8008 * out-of-sync. Make sure to update the required fields
8009 * before using them.
8010 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
8011 * and should return VINF_EM_DBG_STEPPED if the event
8012 * is injected directly (register modified by us, not
8013 * by hardware on VM-entry).
8014 * @param puIntrState Pointer to the current guest interruptibility-state.
8015 * This interruptibility-state will be updated if
8016 * necessary. This cannot not be NULL.
8017 */
8018DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
8019{
8020 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
8021 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8022 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8023 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
8024 fStepping, puIntrState);
8025}
8026
8027
8028/**
8029 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
8030 *
8031 * @param pVCpu The cross context virtual CPU structure.
8032 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8033 * out-of-sync. Make sure to update the required fields
8034 * before using them.
8035 */
8036DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8037{
8038 NOREF(pMixedCtx);
8039 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
8040 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8041 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8042}
8043
8044
8045/**
8046 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
8047 *
8048 * @param pVCpu The cross context virtual CPU structure.
8049 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8050 * out-of-sync. Make sure to update the required fields
8051 * before using them.
8052 * @param cbInstr The value of RIP that is to be pushed on the guest
8053 * stack.
8054 */
8055DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
8056{
8057 NOREF(pMixedCtx);
8058 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
8059 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8060 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8061}
8062
8063
8064/**
8065 * Injects a general-protection (\#GP) fault into the VM.
8066 *
8067 * @returns Strict VBox status code (i.e. informational status codes too).
8068 * @param pVCpu The cross context virtual CPU structure.
8069 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8070 * out-of-sync. Make sure to update the required fields
8071 * before using them.
8072 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
8073 * mode, i.e. in real-mode it's not valid).
8074 * @param u32ErrorCode The error code associated with the \#GP.
8075 * @param fStepping Whether we're running in
8076 * hmR0VmxRunGuestCodeStep() and should return
8077 * VINF_EM_DBG_STEPPED if the event is injected
8078 * directly (register modified by us, not by
8079 * hardware on VM-entry).
8080 * @param puIntrState Pointer to the current guest interruptibility-state.
8081 * This interruptibility-state will be updated if
8082 * necessary. This cannot not be NULL.
8083 */
8084DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
8085 bool fStepping, uint32_t *puIntrState)
8086{
8087 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
8088 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8089 if (fErrorCodeValid)
8090 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8091 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
8092 fStepping, puIntrState);
8093}
8094
8095
8096#if 0 /* unused */
8097/**
8098 * Sets a general-protection (\#GP) exception as pending-for-injection into the
8099 * VM.
8100 *
8101 * @param pVCpu The cross context virtual CPU structure.
8102 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8103 * out-of-sync. Make sure to update the required fields
8104 * before using them.
8105 * @param u32ErrorCode The error code associated with the \#GP.
8106 */
8107DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
8108{
8109 NOREF(pMixedCtx);
8110 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
8111 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8112 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8113 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
8114}
8115#endif /* unused */
8116
8117
8118/**
8119 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
8120 *
8121 * @param pVCpu The cross context virtual CPU structure.
8122 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8123 * out-of-sync. Make sure to update the required fields
8124 * before using them.
8125 * @param uVector The software interrupt vector number.
8126 * @param cbInstr The value of RIP that is to be pushed on the guest
8127 * stack.
8128 */
8129DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
8130{
8131 NOREF(pMixedCtx);
8132 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
8133 if ( uVector == X86_XCPT_BP
8134 || uVector == X86_XCPT_OF)
8135 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8136 else
8137 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8138 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8139}
8140
8141
8142/**
8143 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8144 * stack.
8145 *
8146 * @returns Strict VBox status code (i.e. informational status codes too).
8147 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8148 * @param pVM The cross context VM structure.
8149 * @param pMixedCtx Pointer to the guest-CPU context.
8150 * @param uValue The value to push to the guest stack.
8151 */
8152DECLINLINE(VBOXSTRICTRC) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
8153{
8154 /*
8155 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8156 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8157 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8158 */
8159 if (pMixedCtx->sp == 1)
8160 return VINF_EM_RESET;
8161 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8162 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
8163 AssertRC(rc);
8164 return rc;
8165}
8166
8167
8168/**
8169 * Injects an event into the guest upon VM-entry by updating the relevant fields
8170 * in the VM-entry area in the VMCS.
8171 *
8172 * @returns Strict VBox status code (i.e. informational status codes too).
8173 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8174 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8175 *
8176 * @param pVCpu The cross context virtual CPU structure.
8177 * @param pMixedCtx Pointer to the guest-CPU context. The data may
8178 * be out-of-sync. Make sure to update the required
8179 * fields before using them.
8180 * @param u64IntInfo The VM-entry interruption-information field.
8181 * @param cbInstr The VM-entry instruction length in bytes (for
8182 * software interrupts, exceptions and privileged
8183 * software exceptions).
8184 * @param u32ErrCode The VM-entry exception error code.
8185 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
8186 * @param puIntrState Pointer to the current guest interruptibility-state.
8187 * This interruptibility-state will be updated if
8188 * necessary. This cannot not be NULL.
8189 * @param fStepping Whether we're running in
8190 * hmR0VmxRunGuestCodeStep() and should return
8191 * VINF_EM_DBG_STEPPED if the event is injected
8192 * directly (register modified by us, not by
8193 * hardware on VM-entry).
8194 *
8195 * @remarks Requires CR0!
8196 */
8197static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
8198 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping,
8199 uint32_t *puIntrState)
8200{
8201 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8202 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
8203 Assert(puIntrState);
8204 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
8205
8206 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
8207 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
8208
8209#ifdef VBOX_STRICT
8210 /* Validate the error-code-valid bit for hardware exceptions. */
8211 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
8212 {
8213 switch (uVector)
8214 {
8215 case X86_XCPT_PF:
8216 case X86_XCPT_DF:
8217 case X86_XCPT_TS:
8218 case X86_XCPT_NP:
8219 case X86_XCPT_SS:
8220 case X86_XCPT_GP:
8221 case X86_XCPT_AC:
8222 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
8223 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8224 /* fall thru */
8225 default:
8226 break;
8227 }
8228 }
8229#endif
8230
8231 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8232 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8233 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
8234
8235 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8236
8237 /* We require CR0 to check if the guest is in real-mode. */
8238 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8239 AssertRCReturn(rc, rc);
8240
8241 /*
8242 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
8243 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
8244 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
8245 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8246 */
8247 if (CPUMIsGuestInRealModeEx(pMixedCtx))
8248 {
8249 PVM pVM = pVCpu->CTX_SUFF(pVM);
8250 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
8251 {
8252 Assert(PDMVmmDevHeapIsEnabled(pVM));
8253 Assert(pVM->hm.s.vmx.pRealModeTSS);
8254
8255 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
8256 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8257 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
8258 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8259 AssertRCReturn(rc, rc);
8260 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
8261
8262 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8263 size_t const cbIdtEntry = sizeof(X86IDTR16);
8264 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
8265 {
8266 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8267 if (uVector == X86_XCPT_DF)
8268 return VINF_EM_RESET;
8269
8270 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
8271 if (uVector == X86_XCPT_GP)
8272 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
8273
8274 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
8275 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
8276 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
8277 fStepping, puIntrState);
8278 }
8279
8280 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8281 uint16_t uGuestIp = pMixedCtx->ip;
8282 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
8283 {
8284 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8285 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8286 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8287 }
8288 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
8289 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8290
8291 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8292 X86IDTR16 IdtEntry;
8293 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
8294 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8295 AssertRCReturn(rc, rc);
8296
8297 /* Construct the stack frame for the interrupt/exception handler. */
8298 VBOXSTRICTRC rcStrict;
8299 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
8300 if (rcStrict == VINF_SUCCESS)
8301 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
8302 if (rcStrict == VINF_SUCCESS)
8303 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
8304
8305 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8306 if (rcStrict == VINF_SUCCESS)
8307 {
8308 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8309 pMixedCtx->rip = IdtEntry.offSel;
8310 pMixedCtx->cs.Sel = IdtEntry.uSel;
8311 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
8312 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8313 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8314 && uVector == X86_XCPT_PF)
8315 pMixedCtx->cr2 = GCPtrFaultAddress;
8316
8317 /* If any other guest-state bits are changed here, make sure to update
8318 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
8319 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
8320 | HM_CHANGED_GUEST_RIP
8321 | HM_CHANGED_GUEST_RFLAGS
8322 | HM_CHANGED_GUEST_RSP);
8323
8324 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
8325 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8326 {
8327 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8328 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8329 Log4(("Clearing inhibition due to STI.\n"));
8330 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
8331 }
8332 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8333 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
8334
8335 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
8336 it, if we are returning to ring-3 before executing guest code. */
8337 pVCpu->hm.s.Event.fPending = false;
8338
8339 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
8340 if (fStepping)
8341 rcStrict = VINF_EM_DBG_STEPPED;
8342 }
8343 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8344 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8345 return rcStrict;
8346 }
8347
8348 /*
8349 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
8350 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8351 */
8352 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8353 }
8354
8355 /* Validate. */
8356 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8357 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8358 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8359
8360 /* Inject. */
8361 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8362 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
8363 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8364 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8365
8366 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8367 && uVector == X86_XCPT_PF)
8368 pMixedCtx->cr2 = GCPtrFaultAddress;
8369
8370 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
8371 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
8372
8373 AssertRCReturn(rc, rc);
8374 return VINF_SUCCESS;
8375}
8376
8377
8378/**
8379 * Clears the interrupt-window exiting control in the VMCS and if necessary
8380 * clears the current event in the VMCS as well.
8381 *
8382 * @returns VBox status code.
8383 * @param pVCpu The cross context virtual CPU structure.
8384 *
8385 * @remarks Use this function only to clear events that have not yet been
8386 * delivered to the guest but are injected in the VMCS!
8387 * @remarks No-long-jump zone!!!
8388 */
8389static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8390{
8391 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8392
8393 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8394 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8395
8396 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8397 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8398}
8399
8400
8401/**
8402 * Enters the VT-x session.
8403 *
8404 * @returns VBox status code.
8405 * @param pVM The cross context VM structure.
8406 * @param pVCpu The cross context virtual CPU structure.
8407 * @param pCpu Pointer to the CPU info struct.
8408 */
8409VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8410{
8411 AssertPtr(pVM);
8412 AssertPtr(pVCpu);
8413 Assert(pVM->hm.s.vmx.fSupported);
8414 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8415 NOREF(pCpu); NOREF(pVM);
8416
8417 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8418 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8419
8420#ifdef VBOX_STRICT
8421 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8422 RTCCUINTREG uHostCR4 = ASMGetCR4();
8423 if (!(uHostCR4 & X86_CR4_VMXE))
8424 {
8425 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8426 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8427 }
8428#endif
8429
8430 /*
8431 * Load the VCPU's VMCS as the current (and active) one.
8432 */
8433 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8434 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8435 if (RT_FAILURE(rc))
8436 return rc;
8437
8438 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8439 pVCpu->hm.s.fLeaveDone = false;
8440 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8441
8442 return VINF_SUCCESS;
8443}
8444
8445
8446/**
8447 * The thread-context callback (only on platforms which support it).
8448 *
8449 * @param enmEvent The thread-context event.
8450 * @param pVCpu The cross context virtual CPU structure.
8451 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8452 * @thread EMT(pVCpu)
8453 */
8454VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8455{
8456 NOREF(fGlobalInit);
8457
8458 switch (enmEvent)
8459 {
8460 case RTTHREADCTXEVENT_OUT:
8461 {
8462 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8463 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8464 VMCPU_ASSERT_EMT(pVCpu);
8465
8466 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8467
8468 /* No longjmps (logger flushes, locks) in this fragile context. */
8469 VMMRZCallRing3Disable(pVCpu);
8470 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8471
8472 /*
8473 * Restore host-state (FPU, debug etc.)
8474 */
8475 if (!pVCpu->hm.s.fLeaveDone)
8476 {
8477 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8478 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8479 hmR0VmxLeave(pVCpu, pMixedCtx, false /* fSaveGuestState */);
8480 pVCpu->hm.s.fLeaveDone = true;
8481 }
8482
8483 /* Leave HM context, takes care of local init (term). */
8484 int rc = HMR0LeaveCpu(pVCpu);
8485 AssertRC(rc); NOREF(rc);
8486
8487 /* Restore longjmp state. */
8488 VMMRZCallRing3Enable(pVCpu);
8489 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8490 break;
8491 }
8492
8493 case RTTHREADCTXEVENT_IN:
8494 {
8495 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8496 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8497 VMCPU_ASSERT_EMT(pVCpu);
8498
8499 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8500 VMMRZCallRing3Disable(pVCpu);
8501 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8502
8503 /* Initialize the bare minimum state required for HM. This takes care of
8504 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8505 int rc = HMR0EnterCpu(pVCpu);
8506 AssertRC(rc);
8507 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8508
8509 /* Load the active VMCS as the current one. */
8510 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8511 {
8512 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8513 AssertRC(rc); NOREF(rc);
8514 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8515 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8516 }
8517 pVCpu->hm.s.fLeaveDone = false;
8518
8519 /* Restore longjmp state. */
8520 VMMRZCallRing3Enable(pVCpu);
8521 break;
8522 }
8523
8524 default:
8525 break;
8526 }
8527}
8528
8529
8530/**
8531 * Saves the host state in the VMCS host-state.
8532 * Sets up the VM-exit MSR-load area.
8533 *
8534 * The CPU state will be loaded from these fields on every successful VM-exit.
8535 *
8536 * @returns VBox status code.
8537 * @param pVM The cross context VM structure.
8538 * @param pVCpu The cross context virtual CPU structure.
8539 *
8540 * @remarks No-long-jump zone!!!
8541 */
8542static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8543{
8544 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8545
8546 int rc = VINF_SUCCESS;
8547 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8548 {
8549 rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8550 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8551
8552 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8553 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8554
8555 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8556 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8557
8558 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8559 }
8560 return rc;
8561}
8562
8563
8564/**
8565 * Saves the host state in the VMCS host-state.
8566 *
8567 * @returns VBox status code.
8568 * @param pVM The cross context VM structure.
8569 * @param pVCpu The cross context virtual CPU structure.
8570 *
8571 * @remarks No-long-jump zone!!!
8572 */
8573VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8574{
8575 AssertPtr(pVM);
8576 AssertPtr(pVCpu);
8577
8578 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8579
8580 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8581 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8582 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8583 return hmR0VmxSaveHostState(pVM, pVCpu);
8584}
8585
8586
8587/**
8588 * Loads the guest state into the VMCS guest-state area.
8589 *
8590 * The will typically be done before VM-entry when the guest-CPU state and the
8591 * VMCS state may potentially be out of sync.
8592 *
8593 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8594 * VM-entry controls.
8595 * Sets up the appropriate VMX non-root function to execute guest code based on
8596 * the guest CPU mode.
8597 *
8598 * @returns VBox strict status code.
8599 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8600 * without unrestricted guest access and the VMMDev is not presently
8601 * mapped (e.g. EFI32).
8602 *
8603 * @param pVM The cross context VM structure.
8604 * @param pVCpu The cross context virtual CPU structure.
8605 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8606 * out-of-sync. Make sure to update the required fields
8607 * before using them.
8608 *
8609 * @remarks No-long-jump zone!!!
8610 */
8611static VBOXSTRICTRC hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8612{
8613 AssertPtr(pVM);
8614 AssertPtr(pVCpu);
8615 AssertPtr(pMixedCtx);
8616 HMVMX_ASSERT_PREEMPT_SAFE();
8617
8618 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8619
8620 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8621
8622 /* Determine real-on-v86 mode. */
8623 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8624 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8625 && CPUMIsGuestInRealModeEx(pMixedCtx))
8626 {
8627 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8628 }
8629
8630 /*
8631 * Load the guest-state into the VMCS.
8632 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8633 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8634 */
8635 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8636 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8637
8638 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8639 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8640 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8641
8642 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8643 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8644 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8645
8646 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8647 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8648
8649 VBOXSTRICTRC rcStrict = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8650 if (rcStrict == VINF_SUCCESS)
8651 { /* likely */ }
8652 else
8653 {
8654 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8655 return rcStrict;
8656 }
8657
8658 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8659 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8660 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8661
8662 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8663 determine we don't have to swap EFER after all. */
8664 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8665 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8666
8667 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8668 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8669
8670 rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
8671 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8672
8673 /*
8674 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8675 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8676 */
8677 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8678 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8679
8680 /* Clear any unused and reserved bits. */
8681 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8682
8683 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8684 return rc;
8685}
8686
8687
8688/**
8689 * Loads the state shared between the host and guest into the VMCS.
8690 *
8691 * @param pVM The cross context VM structure.
8692 * @param pVCpu The cross context virtual CPU structure.
8693 * @param pCtx Pointer to the guest-CPU context.
8694 *
8695 * @remarks No-long-jump zone!!!
8696 */
8697static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8698{
8699 NOREF(pVM);
8700
8701 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8702 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8703
8704 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8705 {
8706 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8707 AssertRC(rc);
8708 }
8709
8710 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8711 {
8712 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8713 AssertRC(rc);
8714
8715 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8716 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8717 {
8718 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8719 AssertRC(rc);
8720 }
8721 }
8722
8723 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8724 {
8725 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8726 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8727 }
8728
8729 /* Loading CR0, debug state might have changed intercepts, update VMCS. */
8730 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
8731 {
8732 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
8733 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
8734 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
8735 AssertRC(rc);
8736 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
8737 }
8738
8739 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8740 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8741}
8742
8743
8744/**
8745 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8746 *
8747 * @returns Strict VBox status code (i.e. informational status codes too).
8748 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8749 * without unrestricted guest access and the VMMDev is not presently
8750 * mapped (e.g. EFI32).
8751 *
8752 * @param pVM The cross context VM structure.
8753 * @param pVCpu The cross context virtual CPU structure.
8754 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8755 * out-of-sync. Make sure to update the required fields
8756 * before using them.
8757 *
8758 * @remarks No-long-jump zone!!!
8759 */
8760static VBOXSTRICTRC hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8761{
8762 HMVMX_ASSERT_PREEMPT_SAFE();
8763 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8764 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8765
8766 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8767#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8768 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8769#endif
8770
8771 /*
8772 * RIP is what changes the most often and hence if it's the only bit needing to be
8773 * updated, we shall handle it early for performance reasons.
8774 */
8775 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8776 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8777 {
8778 rcStrict = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8779 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8780 { /* likely */}
8781 else
8782 {
8783 AssertMsgFailedReturn(("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestRip failed! rc=%Rrc\n",
8784 VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8785 }
8786 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8787 }
8788 else if (HMCPU_CF_VALUE(pVCpu))
8789 {
8790 rcStrict = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8791 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8792 { /* likely */}
8793 else
8794 {
8795 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM,
8796 ("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestState failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8797 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8798 return rcStrict;
8799 }
8800 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8801 }
8802
8803 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8804 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8805 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8806 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8807 return rcStrict;
8808}
8809
8810
8811/**
8812 * Does the preparations before executing guest code in VT-x.
8813 *
8814 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8815 * recompiler/IEM. We must be cautious what we do here regarding committing
8816 * guest-state information into the VMCS assuming we assuredly execute the
8817 * guest in VT-x mode.
8818 *
8819 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8820 * the common-state (TRPM/forceflags), we must undo those changes so that the
8821 * recompiler/IEM can (and should) use them when it resumes guest execution.
8822 * Otherwise such operations must be done when we can no longer exit to ring-3.
8823 *
8824 * @returns Strict VBox status code (i.e. informational status codes too).
8825 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8826 * have been disabled.
8827 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8828 * double-fault into the guest.
8829 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8830 * dispatched directly.
8831 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8832 *
8833 * @param pVM The cross context VM structure.
8834 * @param pVCpu The cross context virtual CPU structure.
8835 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8836 * out-of-sync. Make sure to update the required fields
8837 * before using them.
8838 * @param pVmxTransient Pointer to the VMX transient structure.
8839 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8840 * us ignore some of the reasons for returning to
8841 * ring-3, and return VINF_EM_DBG_STEPPED if event
8842 * dispatching took place.
8843 */
8844static VBOXSTRICTRC hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8845{
8846 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8847
8848#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8849 PGMRZDynMapFlushAutoSet(pVCpu);
8850#endif
8851
8852 /* Check force flag actions that might require us to go back to ring-3. */
8853 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx, fStepping);
8854 if (rcStrict == VINF_SUCCESS)
8855 { /* FFs doesn't get set all the time. */ }
8856 else
8857 return rcStrict;
8858
8859#ifndef IEM_VERIFICATION_MODE_FULL
8860 /*
8861 * Setup the virtualized-APIC accesses.
8862 *
8863 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8864 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8865 *
8866 * This is the reason we do it here and not in hmR0VmxLoadGuestState().
8867 */
8868 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8869 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
8870 && PDMHasApic(pVM))
8871 {
8872 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8873 Assert(u64MsrApicBase);
8874 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8875
8876 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8877
8878 /* Unalias any existing mapping. */
8879 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8880 AssertRCReturn(rc, rc);
8881
8882 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8883 Log4(("hmR0VmxPreRunGuest: VCPU%u: Mapped HC APIC-access page at %#RGp\n", pVCpu->idCpu, GCPhysApicBase));
8884 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8885 AssertRCReturn(rc, rc);
8886
8887 /* Update the per-VCPU cache of the APIC base MSR. */
8888 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8889 }
8890#endif /* !IEM_VERIFICATION_MODE_FULL */
8891
8892 if (TRPMHasTrap(pVCpu))
8893 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8894 uint32_t uIntrState = hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8895
8896 /*
8897 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8898 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8899 */
8900 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, uIntrState, fStepping);
8901 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8902 { /* likely */ }
8903 else
8904 {
8905 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8906 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8907 return rcStrict;
8908 }
8909
8910 /*
8911 * No longjmps to ring-3 from this point on!!!
8912 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8913 * This also disables flushing of the R0-logger instance (if any).
8914 */
8915 VMMRZCallRing3Disable(pVCpu);
8916
8917 /*
8918 * Load the guest state bits.
8919 *
8920 * We cannot perform longjmps while loading the guest state because we do not preserve the
8921 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8922 * CPU migration.
8923 *
8924 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8925 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8926 * Hence, loading of the guest state needs to be done -after- injection of events.
8927 */
8928 rcStrict = hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8929 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8930 { /* likely */ }
8931 else
8932 {
8933 VMMRZCallRing3Enable(pVCpu);
8934 return rcStrict;
8935 }
8936
8937 /*
8938 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8939 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8940 *
8941 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8942 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8943 *
8944 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8945 * executing guest code.
8946 */
8947 pVmxTransient->fEFlags = ASMIntDisableFlags();
8948
8949 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8950 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8951 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8952 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8953 {
8954 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8955 {
8956 pVCpu->hm.s.Event.fPending = false;
8957
8958 /*
8959 * We've injected any pending events. This is really the point of no return (to ring-3).
8960 *
8961 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8962 * returns from this function, so don't enable them here.
8963 */
8964 return VINF_SUCCESS;
8965 }
8966
8967 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8968 rcStrict = VINF_EM_RAW_INTERRUPT;
8969 }
8970 else
8971 {
8972 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8973 rcStrict = VINF_EM_RAW_TO_R3;
8974 }
8975
8976 ASMSetFlags(pVmxTransient->fEFlags);
8977 VMMRZCallRing3Enable(pVCpu);
8978
8979 return rcStrict;
8980}
8981
8982
8983/**
8984 * Prepares to run guest code in VT-x and we've committed to doing so. This
8985 * means there is no backing out to ring-3 or anywhere else at this
8986 * point.
8987 *
8988 * @param pVM The cross context VM structure.
8989 * @param pVCpu The cross context virtual CPU structure.
8990 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8991 * out-of-sync. Make sure to update the required fields
8992 * before using them.
8993 * @param pVmxTransient Pointer to the VMX transient structure.
8994 *
8995 * @remarks Called with preemption disabled.
8996 * @remarks No-long-jump zone!!!
8997 */
8998static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8999{
9000 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9001 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9002 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9003
9004 /*
9005 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
9006 */
9007 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
9008 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
9009
9010#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
9011 if (!CPUMIsGuestFPUStateActive(pVCpu))
9012 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
9013 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
9014 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9015#endif
9016
9017 if ( pVCpu->hm.s.fPreloadGuestFpu
9018 && !CPUMIsGuestFPUStateActive(pVCpu))
9019 {
9020 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
9021 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
9022 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
9023 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9024 }
9025
9026 /*
9027 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
9028 */
9029 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
9030 && pVCpu->hm.s.vmx.cMsrs > 0)
9031 {
9032 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
9033 }
9034
9035 /*
9036 * Load the host state bits as we may've been preempted (only happens when
9037 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
9038 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
9039 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
9040 * See @bugref{8432}.
9041 */
9042 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
9043 {
9044 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
9045 AssertRC(rc);
9046 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptSaveHostState);
9047 }
9048 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
9049
9050 /*
9051 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
9052 */
9053 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
9054 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
9055 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
9056
9057 /* Store status of the shared guest-host state at the time of VM-entry. */
9058#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
9059 if (CPUMIsGuestInLongModeEx(pMixedCtx))
9060 {
9061 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
9062 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
9063 }
9064 else
9065#endif
9066 {
9067 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
9068 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
9069 }
9070 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
9071
9072 /*
9073 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
9074 */
9075 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9076 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
9077
9078 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
9079 RTCPUID idCurrentCpu = pCpu->idCpu;
9080 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
9081 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
9082 {
9083 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
9084 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
9085 }
9086
9087 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
9088 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
9089 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
9090 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
9091
9092 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
9093
9094 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
9095 to start executing. */
9096
9097 /*
9098 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
9099 */
9100 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
9101 {
9102 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9103 {
9104 bool fMsrUpdated;
9105 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
9106 AssertRC(rc2);
9107 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
9108
9109 rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
9110 &fMsrUpdated);
9111 AssertRC(rc2);
9112 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
9113
9114 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
9115 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
9116 }
9117 else
9118 {
9119 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
9120 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
9121 }
9122 }
9123
9124#ifdef VBOX_STRICT
9125 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
9126 hmR0VmxCheckHostEferMsr(pVCpu);
9127 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
9128#endif
9129#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
9130 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
9131 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
9132 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
9133#endif
9134}
9135
9136
9137/**
9138 * Performs some essential restoration of state after running guest code in
9139 * VT-x.
9140 *
9141 * @param pVM The cross context VM structure.
9142 * @param pVCpu The cross context virtual CPU structure.
9143 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
9144 * out-of-sync. Make sure to update the required fields
9145 * before using them.
9146 * @param pVmxTransient Pointer to the VMX transient structure.
9147 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
9148 *
9149 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
9150 *
9151 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
9152 * unconditionally when it is safe to do so.
9153 */
9154static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
9155{
9156 NOREF(pVM);
9157
9158 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9159
9160 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
9161 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
9162 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
9163 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
9164 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
9165 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
9166
9167 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9168 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
9169
9170 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
9171 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
9172 Assert(!ASMIntAreEnabled());
9173 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
9174
9175#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
9176 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVM, pVCpu))
9177 {
9178 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9179 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9180 }
9181#endif
9182
9183#if HC_ARCH_BITS == 64
9184 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
9185#endif
9186#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
9187 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
9188 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
9189 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
9190#else
9191 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
9192#endif
9193#ifdef VBOX_STRICT
9194 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
9195#endif
9196 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
9197 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
9198
9199 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
9200 uint32_t uExitReason;
9201 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
9202 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
9203 AssertRC(rc);
9204 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
9205 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
9206
9207 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
9208 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
9209 {
9210 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
9211 pVmxTransient->fVMEntryFailed));
9212 return;
9213 }
9214
9215 /*
9216 * Update the VM-exit history array here even if the VM-entry failed due to:
9217 * - Invalid guest state.
9218 * - MSR loading.
9219 * - Machine-check event.
9220 *
9221 * In any of the above cases we will still have a "valid" VM-exit reason
9222 * despite @a fVMEntryFailed being false.
9223 *
9224 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
9225 */
9226 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
9227
9228 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
9229 {
9230 /** @todo We can optimize this by only syncing with our force-flags when
9231 * really needed and keeping the VMCS state as it is for most
9232 * VM-exits. */
9233 /* Update the guest interruptibility-state from the VMCS. */
9234 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
9235
9236#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
9237 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9238 AssertRC(rc);
9239#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
9240 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9241 AssertRC(rc);
9242#endif
9243
9244 /*
9245 * Sync the TPR shadow with our APIC state.
9246 */
9247 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9248 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
9249 {
9250 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
9251 AssertRC(rc);
9252 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
9253 }
9254 }
9255}
9256
9257
9258/**
9259 * Runs the guest code using VT-x the normal way.
9260 *
9261 * @returns VBox status code.
9262 * @param pVM The cross context VM structure.
9263 * @param pVCpu The cross context virtual CPU structure.
9264 * @param pCtx Pointer to the guest-CPU context.
9265 *
9266 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
9267 */
9268static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9269{
9270 VMXTRANSIENT VmxTransient;
9271 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
9272 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
9273 uint32_t cLoops = 0;
9274
9275 for (;; cLoops++)
9276 {
9277 Assert(!HMR0SuspendPending());
9278 HMVMX_ASSERT_CPU_SAFE();
9279
9280 /* Preparatory work for running guest code, this may force us to return
9281 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
9282 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
9283 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
9284 if (rcStrict != VINF_SUCCESS)
9285 break;
9286
9287 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
9288 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
9289 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
9290
9291 /* Restore any residual host-state and save any bits shared between host
9292 and guest into the guest-CPU state. Re-enables interrupts! */
9293 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
9294
9295 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
9296 if (RT_SUCCESS(rcRun))
9297 { /* very likely */ }
9298 else
9299 {
9300 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
9301 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
9302 return rcRun;
9303 }
9304
9305 /* Profile the VM-exit. */
9306 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
9307 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
9308 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
9309 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
9310 HMVMX_START_EXIT_DISPATCH_PROF();
9311
9312 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
9313
9314 /* Handle the VM-exit. */
9315#ifdef HMVMX_USE_FUNCTION_TABLE
9316 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
9317#else
9318 rcStrict = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
9319#endif
9320 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9321 if (rcStrict == VINF_SUCCESS)
9322 {
9323 if (cLoops <= pVM->hm.s.cMaxResumeLoops)
9324 continue; /* likely */
9325 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9326 rcStrict = VINF_EM_RAW_INTERRUPT;
9327 }
9328 break;
9329 }
9330
9331 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9332 return rcStrict;
9333}
9334
9335
9336
9337/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
9338 * probes.
9339 *
9340 * The following few functions and associated structure contains the bloat
9341 * necessary for providing detailed debug events and dtrace probes as well as
9342 * reliable host side single stepping. This works on the principle of
9343 * "subclassing" the normal execution loop and workers. We replace the loop
9344 * method completely and override selected helpers to add necessary adjustments
9345 * to their core operation.
9346 *
9347 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9348 * any performance for debug and analysis features.
9349 *
9350 * @{
9351 */
9352
9353/**
9354 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
9355 * the debug run loop.
9356 */
9357typedef struct VMXRUNDBGSTATE
9358{
9359 /** The RIP we started executing at. This is for detecting that we stepped. */
9360 uint64_t uRipStart;
9361 /** The CS we started executing with. */
9362 uint16_t uCsStart;
9363
9364 /** Whether we've actually modified the 1st execution control field. */
9365 bool fModifiedProcCtls : 1;
9366 /** Whether we've actually modified the 2nd execution control field. */
9367 bool fModifiedProcCtls2 : 1;
9368 /** Whether we've actually modified the exception bitmap. */
9369 bool fModifiedXcptBitmap : 1;
9370
9371 /** We desire the modified the CR0 mask to be cleared. */
9372 bool fClearCr0Mask : 1;
9373 /** We desire the modified the CR4 mask to be cleared. */
9374 bool fClearCr4Mask : 1;
9375 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9376 uint32_t fCpe1Extra;
9377 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9378 uint32_t fCpe1Unwanted;
9379 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9380 uint32_t fCpe2Extra;
9381 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9382 uint32_t bmXcptExtra;
9383 /** The sequence number of the Dtrace provider settings the state was
9384 * configured against. */
9385 uint32_t uDtraceSettingsSeqNo;
9386 /** VM-exits to check (one bit per VM-exit). */
9387 uint32_t bmExitsToCheck[3];
9388
9389 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9390 uint32_t fProcCtlsInitial;
9391 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9392 uint32_t fProcCtls2Initial;
9393 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9394 uint32_t bmXcptInitial;
9395} VMXRUNDBGSTATE;
9396AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9397typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9398
9399
9400/**
9401 * Initializes the VMXRUNDBGSTATE structure.
9402 *
9403 * @param pVCpu The cross context virtual CPU structure of the
9404 * calling EMT.
9405 * @param pCtx The CPU register context to go with @a pVCpu.
9406 * @param pDbgState The structure to initialize.
9407 */
9408DECLINLINE(void) hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PCCPUMCTX pCtx, PVMXRUNDBGSTATE pDbgState)
9409{
9410 pDbgState->uRipStart = pCtx->rip;
9411 pDbgState->uCsStart = pCtx->cs.Sel;
9412
9413 pDbgState->fModifiedProcCtls = false;
9414 pDbgState->fModifiedProcCtls2 = false;
9415 pDbgState->fModifiedXcptBitmap = false;
9416 pDbgState->fClearCr0Mask = false;
9417 pDbgState->fClearCr4Mask = false;
9418 pDbgState->fCpe1Extra = 0;
9419 pDbgState->fCpe1Unwanted = 0;
9420 pDbgState->fCpe2Extra = 0;
9421 pDbgState->bmXcptExtra = 0;
9422 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9423 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9424 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9425}
9426
9427
9428/**
9429 * Updates the VMSC fields with changes requested by @a pDbgState.
9430 *
9431 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9432 * immediately before executing guest code, i.e. when interrupts are disabled.
9433 * We don't check status codes here as we cannot easily assert or return in the
9434 * latter case.
9435 *
9436 * @param pVCpu The cross context virtual CPU structure.
9437 * @param pDbgState The debug state.
9438 */
9439DECLINLINE(void) hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9440{
9441 /*
9442 * Ensure desired flags in VMCS control fields are set.
9443 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9444 *
9445 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9446 * there should be no stale data in pCtx at this point.
9447 */
9448 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9449 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9450 {
9451 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9452 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9453 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9454 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9455 pDbgState->fModifiedProcCtls = true;
9456 }
9457
9458 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9459 {
9460 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9461 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9462 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9463 pDbgState->fModifiedProcCtls2 = true;
9464 }
9465
9466 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9467 {
9468 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9469 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9470 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9471 pDbgState->fModifiedXcptBitmap = true;
9472 }
9473
9474 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32CR0Mask != 0)
9475 {
9476 pVCpu->hm.s.vmx.u32CR0Mask = 0;
9477 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9478 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9479 }
9480
9481 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32CR4Mask != 0)
9482 {
9483 pVCpu->hm.s.vmx.u32CR4Mask = 0;
9484 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9485 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9486 }
9487}
9488
9489
9490DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9491{
9492 /*
9493 * Restore VM-exit control settings as we may not reenter this function the
9494 * next time around.
9495 */
9496 /* We reload the initial value, trigger what we can of recalculations the
9497 next time around. From the looks of things, that's all that's required atm. */
9498 if (pDbgState->fModifiedProcCtls)
9499 {
9500 if (!(pDbgState->fProcCtlsInitial & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9501 pDbgState->fProcCtlsInitial |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9502 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9503 AssertRCReturn(rc2, rc2);
9504 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9505 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_DEBUG);
9506 }
9507
9508 /* We're currently the only ones messing with this one, so just restore the
9509 cached value and reload the field. */
9510 if ( pDbgState->fModifiedProcCtls2
9511 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9512 {
9513 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9514 AssertRCReturn(rc2, rc2);
9515 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9516 }
9517
9518 /* If we've modified the exception bitmap, we restore it and trigger
9519 reloading and partial recalculation the next time around. */
9520 if (pDbgState->fModifiedXcptBitmap)
9521 {
9522 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9523 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS | HM_CHANGED_GUEST_CR0);
9524 }
9525
9526 /* We assume hmR0VmxLoadSharedCR0 will recalculate and load the CR0 mask. */
9527 if (pDbgState->fClearCr0Mask)
9528 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9529
9530 /* We assume hmR0VmxLoadGuestCR3AndCR4 will recalculate and load the CR4 mask. */
9531 if (pDbgState->fClearCr4Mask)
9532 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9533
9534 return rcStrict;
9535}
9536
9537
9538/**
9539 * Configures VM-exit controls for current DBGF and DTrace settings.
9540 *
9541 * This updates @a pDbgState and the VMCS execution control fields to reflect
9542 * the necessary VM-exits demanded by DBGF and DTrace.
9543 *
9544 * @param pVM The cross context VM structure.
9545 * @param pVCpu The cross context virtual CPU structure.
9546 * @param pCtx Pointer to the guest-CPU context.
9547 * @param pDbgState The debug state.
9548 * @param pVmxTransient Pointer to the VMX transient structure. May update
9549 * fUpdateTscOffsettingAndPreemptTimer.
9550 */
9551static void hmR0VmxPreRunGuestDebugStateUpdate(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
9552 PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9553{
9554 /*
9555 * Take down the dtrace serial number so we can spot changes.
9556 */
9557 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9558 ASMCompilerBarrier();
9559
9560 /*
9561 * We'll rebuild most of the middle block of data members (holding the
9562 * current settings) as we go along here, so start by clearing it all.
9563 */
9564 pDbgState->bmXcptExtra = 0;
9565 pDbgState->fCpe1Extra = 0;
9566 pDbgState->fCpe1Unwanted = 0;
9567 pDbgState->fCpe2Extra = 0;
9568 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9569 pDbgState->bmExitsToCheck[i] = 0;
9570
9571 /*
9572 * Software interrupts (INT XXh) - no idea how to trigger these...
9573 */
9574 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9575 || VBOXVMM_INT_SOFTWARE_ENABLED())
9576 {
9577 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9578 }
9579
9580 /*
9581 * INT3 breakpoints - triggered by #BP exceptions.
9582 */
9583 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9584 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9585
9586 /*
9587 * Exception bitmap and XCPT events+probes.
9588 */
9589 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9590 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9591 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9592
9593 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9594 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9595 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9596 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9597 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9598 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9599 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9600 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9601 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9602 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9603 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9604 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9605 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9606 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9607 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9608 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9609 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9610 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9611
9612 if (pDbgState->bmXcptExtra)
9613 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9614
9615 /*
9616 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9617 *
9618 * Note! This is the reverse of waft hmR0VmxHandleExitDtraceEvents does.
9619 * So, when adding/changing/removing please don't forget to update it.
9620 *
9621 * Some of the macros are picking up local variables to save horizontal space,
9622 * (being able to see it in a table is the lesser evil here).
9623 */
9624#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9625 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9626 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9627#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9628 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9629 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9630 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9631 } else do { } while (0)
9632#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9633 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9634 { \
9635 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9636 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9637 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9638 } else do { } while (0)
9639#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9640 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9641 { \
9642 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9643 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9644 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9645 } else do { } while (0)
9646#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9647 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9648 { \
9649 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9650 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9651 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9652 } else do { } while (0)
9653
9654 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9655 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9656 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9657 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9658 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9659
9660 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9661 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9662 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9663 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9664 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT); /* paranoia */
9665 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9666 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9667 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9668 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9669 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9670 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
9671 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9672 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9673 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9674 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9675 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9676 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9677 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9678 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9679 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9680 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9681 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9682 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9683 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9684 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9685 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9686 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9687 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9688 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9689 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9690 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9691 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9692 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9693 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9694 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9695 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9696
9697 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9698 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9699 {
9700 int rc2 = hmR0VmxSaveGuestCR0(pVCpu, pCtx);
9701 rc2 |= hmR0VmxSaveGuestCR4(pVCpu, pCtx);
9702 rc2 |= hmR0VmxSaveGuestApicState(pVCpu, pCtx);
9703 AssertRC(rc2);
9704
9705#if 0 /** @todo fix me */
9706 pDbgState->fClearCr0Mask = true;
9707 pDbgState->fClearCr4Mask = true;
9708#endif
9709 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9710 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT;
9711 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9712 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT;
9713 pDbgState->fCpe1Unwanted |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* risky? */
9714 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9715 require clearing here and in the loop if we start using it. */
9716 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9717 }
9718 else
9719 {
9720 if (pDbgState->fClearCr0Mask)
9721 {
9722 pDbgState->fClearCr0Mask = false;
9723 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9724 }
9725 if (pDbgState->fClearCr4Mask)
9726 {
9727 pDbgState->fClearCr4Mask = false;
9728 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9729 }
9730 }
9731 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9732 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9733
9734 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9735 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9736 {
9737 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9738 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9739 }
9740 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9741 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9742
9743 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS); /* risky clearing this? */
9744 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9745 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
9746 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9747 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT); /* paranoia */
9748 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9749 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT); /* paranoia */
9750 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9751#if 0 /** @todo too slow, fix handler. */
9752 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
9753#endif
9754 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9755
9756 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9757 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9758 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9759 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9760 {
9761 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9762 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9763 }
9764 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9765 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9766 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9767 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9768
9769 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9770 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9771 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9772 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9773 {
9774 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9775 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9776 }
9777 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9778 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9779 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9780 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9781
9782 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9783 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9784 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9785 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9786 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9787 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9788 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
9789 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9790 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9791 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9792 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
9793 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9794 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9795 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9796 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9797 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9798 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
9799 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9800 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9801 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9802 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9803 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9804
9805#undef IS_EITHER_ENABLED
9806#undef SET_ONLY_XBM_IF_EITHER_EN
9807#undef SET_CPE1_XBM_IF_EITHER_EN
9808#undef SET_CPEU_XBM_IF_EITHER_EN
9809#undef SET_CPE2_XBM_IF_EITHER_EN
9810
9811 /*
9812 * Sanitize the control stuff.
9813 */
9814 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
9815 if (pDbgState->fCpe2Extra)
9816 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
9817 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
9818 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
9819 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9820 {
9821 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9822 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9823 }
9824
9825 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9826 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9827 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9828 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9829}
9830
9831
9832/**
9833 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9834 * appropriate.
9835 *
9836 * The caller has checked the VM-exit against the
9837 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9838 * already, so we don't have to do that either.
9839 *
9840 * @returns Strict VBox status code (i.e. informational status codes too).
9841 * @param pVM The cross context VM structure.
9842 * @param pVCpu The cross context virtual CPU structure.
9843 * @param pMixedCtx Pointer to the guest-CPU context.
9844 * @param pVmxTransient Pointer to the VMX-transient structure.
9845 * @param uExitReason The VM-exit reason.
9846 *
9847 * @remarks The name of this function is displayed by dtrace, so keep it short
9848 * and to the point. No longer than 33 chars long, please.
9849 */
9850static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx,
9851 PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9852{
9853 /*
9854 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9855 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9856 *
9857 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9858 * does. Must add/change/remove both places. Same ordering, please.
9859 *
9860 * Added/removed events must also be reflected in the next section
9861 * where we dispatch dtrace events.
9862 */
9863 bool fDtrace1 = false;
9864 bool fDtrace2 = false;
9865 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9866 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9867 uint32_t uEventArg = 0;
9868#define SET_EXIT(a_EventSubName) \
9869 do { \
9870 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9871 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9872 } while (0)
9873#define SET_BOTH(a_EventSubName) \
9874 do { \
9875 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9876 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9877 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9878 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9879 } while (0)
9880 switch (uExitReason)
9881 {
9882 case VMX_EXIT_MTF:
9883 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9884
9885 case VMX_EXIT_XCPT_OR_NMI:
9886 {
9887 uint8_t const idxVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9888 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo))
9889 {
9890 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9891 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT:
9892 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT:
9893 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9894 {
9895 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uExitIntInfo))
9896 {
9897 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9898 uEventArg = pVmxTransient->uExitIntErrorCode;
9899 }
9900 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9901 switch (enmEvent1)
9902 {
9903 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9904 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9905 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9906 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9907 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9908 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9909 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9910 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9911 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9912 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9913 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9914 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9915 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9916 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9917 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9918 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9919 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9920 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9921 default: break;
9922 }
9923 }
9924 else
9925 AssertFailed();
9926 break;
9927
9928 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
9929 uEventArg = idxVector;
9930 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9931 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9932 break;
9933 }
9934 break;
9935 }
9936
9937 case VMX_EXIT_TRIPLE_FAULT:
9938 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9939 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9940 break;
9941 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9942 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9943 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9944 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9945 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9946
9947 /* Instruction specific VM-exits: */
9948 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9949 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9950 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9951 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9952 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9953 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9954 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9955 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9956 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9957 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9958 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9959 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9960 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9961 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9962 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9963 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9964 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9965 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9966 case VMX_EXIT_MOV_CRX:
9967 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9968/** @todo r=bird: I feel these macros aren't very descriptive and needs to be at least 30 chars longer! ;-)
9969* Sensible abbreviations strongly recommended here because even with 130 columns this stuff get too wide! */
9970 if ( VMX_EXIT_QUALIFICATION_CRX_ACCESS(pVmxTransient->uExitQualification)
9971 == VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ)
9972 SET_BOTH(CRX_READ);
9973 else
9974 SET_BOTH(CRX_WRITE);
9975 uEventArg = VMX_EXIT_QUALIFICATION_CRX_REGISTER(pVmxTransient->uExitQualification);
9976 break;
9977 case VMX_EXIT_MOV_DRX:
9978 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9979 if ( VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification)
9980 == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_READ)
9981 SET_BOTH(DRX_READ);
9982 else
9983 SET_BOTH(DRX_WRITE);
9984 uEventArg = VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification);
9985 break;
9986 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9987 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9988 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9989 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9990 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9991 case VMX_EXIT_XDTR_ACCESS:
9992 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9993 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_XDTR_INSINFO_INSTR_ID))
9994 {
9995 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9996 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9997 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9998 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9999 }
10000 break;
10001
10002 case VMX_EXIT_TR_ACCESS:
10003 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
10004 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_YYTR_INSINFO_INSTR_ID))
10005 {
10006 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
10007 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
10008 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
10009 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
10010 }
10011 break;
10012
10013 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
10014 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
10015 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
10016 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
10017 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
10018 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
10019 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
10020 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
10021 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
10022 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
10023 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
10024
10025 /* Events that aren't relevant at this point. */
10026 case VMX_EXIT_EXT_INT:
10027 case VMX_EXIT_INT_WINDOW:
10028 case VMX_EXIT_NMI_WINDOW:
10029 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10030 case VMX_EXIT_PREEMPT_TIMER:
10031 case VMX_EXIT_IO_INSTR:
10032 break;
10033
10034 /* Errors and unexpected events. */
10035 case VMX_EXIT_INIT_SIGNAL:
10036 case VMX_EXIT_SIPI:
10037 case VMX_EXIT_IO_SMI:
10038 case VMX_EXIT_SMI:
10039 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10040 case VMX_EXIT_ERR_MSR_LOAD:
10041 case VMX_EXIT_ERR_MACHINE_CHECK:
10042 break;
10043
10044 default:
10045 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
10046 break;
10047 }
10048#undef SET_BOTH
10049#undef SET_EXIT
10050
10051 /*
10052 * Dtrace tracepoints go first. We do them here at once so we don't
10053 * have to copy the guest state saving and stuff a few dozen times.
10054 * Down side is that we've got to repeat the switch, though this time
10055 * we use enmEvent since the probes are a subset of what DBGF does.
10056 */
10057 if (fDtrace1 || fDtrace2)
10058 {
10059 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10060 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10061 switch (enmEvent1)
10062 {
10063 /** @todo consider which extra parameters would be helpful for each probe. */
10064 case DBGFEVENT_END: break;
10065 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pMixedCtx); break;
10066 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pMixedCtx, pMixedCtx->dr[6]); break;
10067 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pMixedCtx); break;
10068 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pMixedCtx); break;
10069 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pMixedCtx); break;
10070 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pMixedCtx); break;
10071 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pMixedCtx); break;
10072 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pMixedCtx); break;
10073 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pMixedCtx, uEventArg); break;
10074 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pMixedCtx, uEventArg); break;
10075 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pMixedCtx, uEventArg); break;
10076 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pMixedCtx, uEventArg); break;
10077 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pMixedCtx, uEventArg, pMixedCtx->cr2); break;
10078 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pMixedCtx); break;
10079 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pMixedCtx); break;
10080 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pMixedCtx); break;
10081 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pMixedCtx); break;
10082 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pMixedCtx, uEventArg); break;
10083 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10084 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
10085 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pMixedCtx); break;
10086 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pMixedCtx); break;
10087 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pMixedCtx); break;
10088 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pMixedCtx); break;
10089 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pMixedCtx); break;
10090 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pMixedCtx); break;
10091 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pMixedCtx); break;
10092 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10093 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10094 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10095 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10096 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
10097 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
10098 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
10099 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pMixedCtx); break;
10100 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pMixedCtx); break;
10101 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pMixedCtx); break;
10102 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pMixedCtx); break;
10103 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pMixedCtx); break;
10104 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pMixedCtx); break;
10105 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pMixedCtx); break;
10106 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pMixedCtx); break;
10107 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pMixedCtx); break;
10108 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pMixedCtx); break;
10109 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pMixedCtx); break;
10110 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pMixedCtx); break;
10111 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pMixedCtx); break;
10112 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pMixedCtx); break;
10113 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pMixedCtx); break;
10114 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pMixedCtx); break;
10115 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pMixedCtx); break;
10116 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pMixedCtx); break;
10117 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pMixedCtx); break;
10118 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
10119 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
10120 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
10121 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pMixedCtx); break;
10122 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pMixedCtx); break;
10123 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pMixedCtx); break;
10124 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pMixedCtx); break;
10125 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pMixedCtx); break;
10126 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pMixedCtx); break;
10127 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pMixedCtx); break;
10128 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pMixedCtx); break;
10129 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pMixedCtx); break;
10130 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pMixedCtx); break;
10131 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
10132 }
10133 switch (enmEvent2)
10134 {
10135 /** @todo consider which extra parameters would be helpful for each probe. */
10136 case DBGFEVENT_END: break;
10137 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pMixedCtx); break;
10138 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
10139 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pMixedCtx); break;
10140 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pMixedCtx); break;
10141 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pMixedCtx); break;
10142 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pMixedCtx); break;
10143 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pMixedCtx); break;
10144 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pMixedCtx); break;
10145 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pMixedCtx); break;
10146 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10147 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10148 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10149 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10150 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
10151 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
10152 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
10153 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pMixedCtx); break;
10154 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pMixedCtx); break;
10155 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pMixedCtx); break;
10156 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pMixedCtx); break;
10157 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pMixedCtx); break;
10158 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pMixedCtx); break;
10159 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pMixedCtx); break;
10160 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pMixedCtx); break;
10161 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pMixedCtx); break;
10162 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pMixedCtx); break;
10163 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pMixedCtx); break;
10164 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pMixedCtx); break;
10165 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pMixedCtx); break;
10166 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pMixedCtx); break;
10167 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pMixedCtx); break;
10168 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pMixedCtx); break;
10169 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pMixedCtx); break;
10170 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pMixedCtx); break;
10171 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pMixedCtx); break;
10172 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
10173 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
10174 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
10175 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pMixedCtx); break;
10176 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pMixedCtx); break;
10177 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pMixedCtx); break;
10178 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pMixedCtx); break;
10179 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pMixedCtx); break;
10180 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pMixedCtx); break;
10181 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pMixedCtx); break;
10182 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pMixedCtx); break;
10183 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pMixedCtx); break;
10184 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pMixedCtx); break;
10185 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pMixedCtx); break;
10186 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pMixedCtx); break;
10187 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pMixedCtx); break;
10188 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pMixedCtx); break;
10189 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
10190 }
10191 }
10192
10193 /*
10194 * Fire of the DBGF event, if enabled (our check here is just a quick one,
10195 * the DBGF call will do a full check).
10196 *
10197 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
10198 * Note! If we have to events, we prioritize the first, i.e. the instruction
10199 * one, in order to avoid event nesting.
10200 */
10201 if ( enmEvent1 != DBGFEVENT_END
10202 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
10203 {
10204 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent1, uEventArg, DBGFEVENTCTX_HM);
10205 if (rcStrict != VINF_SUCCESS)
10206 return rcStrict;
10207 }
10208 else if ( enmEvent2 != DBGFEVENT_END
10209 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
10210 {
10211 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent2, uEventArg, DBGFEVENTCTX_HM);
10212 if (rcStrict != VINF_SUCCESS)
10213 return rcStrict;
10214 }
10215
10216 return VINF_SUCCESS;
10217}
10218
10219
10220/**
10221 * Single-stepping VM-exit filtering.
10222 *
10223 * This is preprocessing the VM-exits and deciding whether we've gotten far
10224 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
10225 * handling is performed.
10226 *
10227 * @returns Strict VBox status code (i.e. informational status codes too).
10228 * @param pVM The cross context VM structure.
10229 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
10230 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
10231 * out-of-sync. Make sure to update the required
10232 * fields before using them.
10233 * @param pVmxTransient Pointer to the VMX-transient structure.
10234 * @param uExitReason The VM-exit reason.
10235 * @param pDbgState The debug state.
10236 */
10237DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
10238 uint32_t uExitReason, PVMXRUNDBGSTATE pDbgState)
10239{
10240 /*
10241 * Expensive (saves context) generic dtrace VM-exit probe.
10242 */
10243 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
10244 { /* more likely */ }
10245 else
10246 {
10247 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10248 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10249 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pMixedCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQualification);
10250 }
10251
10252 /*
10253 * Check for host NMI, just to get that out of the way.
10254 */
10255 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
10256 { /* normally likely */ }
10257 else
10258 {
10259 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
10260 AssertRCReturn(rc2, rc2);
10261 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
10262 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
10263 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
10264 }
10265
10266 /*
10267 * Check for single stepping event if we're stepping.
10268 */
10269 if (pVCpu->hm.s.fSingleInstruction)
10270 {
10271 switch (uExitReason)
10272 {
10273 case VMX_EXIT_MTF:
10274 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
10275
10276 /* Various events: */
10277 case VMX_EXIT_XCPT_OR_NMI:
10278 case VMX_EXIT_EXT_INT:
10279 case VMX_EXIT_TRIPLE_FAULT:
10280 case VMX_EXIT_INT_WINDOW:
10281 case VMX_EXIT_NMI_WINDOW:
10282 case VMX_EXIT_TASK_SWITCH:
10283 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10284 case VMX_EXIT_APIC_ACCESS:
10285 case VMX_EXIT_EPT_VIOLATION:
10286 case VMX_EXIT_EPT_MISCONFIG:
10287 case VMX_EXIT_PREEMPT_TIMER:
10288
10289 /* Instruction specific VM-exits: */
10290 case VMX_EXIT_CPUID:
10291 case VMX_EXIT_GETSEC:
10292 case VMX_EXIT_HLT:
10293 case VMX_EXIT_INVD:
10294 case VMX_EXIT_INVLPG:
10295 case VMX_EXIT_RDPMC:
10296 case VMX_EXIT_RDTSC:
10297 case VMX_EXIT_RSM:
10298 case VMX_EXIT_VMCALL:
10299 case VMX_EXIT_VMCLEAR:
10300 case VMX_EXIT_VMLAUNCH:
10301 case VMX_EXIT_VMPTRLD:
10302 case VMX_EXIT_VMPTRST:
10303 case VMX_EXIT_VMREAD:
10304 case VMX_EXIT_VMRESUME:
10305 case VMX_EXIT_VMWRITE:
10306 case VMX_EXIT_VMXOFF:
10307 case VMX_EXIT_VMXON:
10308 case VMX_EXIT_MOV_CRX:
10309 case VMX_EXIT_MOV_DRX:
10310 case VMX_EXIT_IO_INSTR:
10311 case VMX_EXIT_RDMSR:
10312 case VMX_EXIT_WRMSR:
10313 case VMX_EXIT_MWAIT:
10314 case VMX_EXIT_MONITOR:
10315 case VMX_EXIT_PAUSE:
10316 case VMX_EXIT_XDTR_ACCESS:
10317 case VMX_EXIT_TR_ACCESS:
10318 case VMX_EXIT_INVEPT:
10319 case VMX_EXIT_RDTSCP:
10320 case VMX_EXIT_INVVPID:
10321 case VMX_EXIT_WBINVD:
10322 case VMX_EXIT_XSETBV:
10323 case VMX_EXIT_RDRAND:
10324 case VMX_EXIT_INVPCID:
10325 case VMX_EXIT_VMFUNC:
10326 case VMX_EXIT_RDSEED:
10327 case VMX_EXIT_XSAVES:
10328 case VMX_EXIT_XRSTORS:
10329 {
10330 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10331 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10332 AssertRCReturn(rc2, rc2);
10333 if ( pMixedCtx->rip != pDbgState->uRipStart
10334 || pMixedCtx->cs.Sel != pDbgState->uCsStart)
10335 return VINF_EM_DBG_STEPPED;
10336 break;
10337 }
10338
10339 /* Errors and unexpected events: */
10340 case VMX_EXIT_INIT_SIGNAL:
10341 case VMX_EXIT_SIPI:
10342 case VMX_EXIT_IO_SMI:
10343 case VMX_EXIT_SMI:
10344 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10345 case VMX_EXIT_ERR_MSR_LOAD:
10346 case VMX_EXIT_ERR_MACHINE_CHECK:
10347 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
10348 break;
10349
10350 default:
10351 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
10352 break;
10353 }
10354 }
10355
10356 /*
10357 * Check for debugger event breakpoints and dtrace probes.
10358 */
10359 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10360 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10361 {
10362 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVM, pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10363 if (rcStrict != VINF_SUCCESS)
10364 return rcStrict;
10365 }
10366
10367 /*
10368 * Normal processing.
10369 */
10370#ifdef HMVMX_USE_FUNCTION_TABLE
10371 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
10372#else
10373 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10374#endif
10375}
10376
10377
10378/**
10379 * Single steps guest code using VT-x.
10380 *
10381 * @returns Strict VBox status code (i.e. informational status codes too).
10382 * @param pVM The cross context VM structure.
10383 * @param pVCpu The cross context virtual CPU structure.
10384 * @param pCtx Pointer to the guest-CPU context.
10385 *
10386 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10387 */
10388static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10389{
10390 VMXTRANSIENT VmxTransient;
10391 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10392
10393 /* Set HMCPU indicators. */
10394 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10395 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10396 pVCpu->hm.s.fDebugWantRdTscExit = false;
10397 pVCpu->hm.s.fUsingDebugLoop = true;
10398
10399 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10400 VMXRUNDBGSTATE DbgState;
10401 hmR0VmxRunDebugStateInit(pVCpu, pCtx, &DbgState);
10402 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10403
10404 /*
10405 * The loop.
10406 */
10407 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10408 for (uint32_t cLoops = 0; ; cLoops++)
10409 {
10410 Assert(!HMR0SuspendPending());
10411 HMVMX_ASSERT_CPU_SAFE();
10412 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10413
10414 /*
10415 * Preparatory work for running guest code, this may force us to return
10416 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10417 */
10418 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10419 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10420 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, fStepping);
10421 if (rcStrict != VINF_SUCCESS)
10422 break;
10423
10424 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
10425 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10426
10427 /*
10428 * Now we can run the guest code.
10429 */
10430 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
10431
10432 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
10433
10434 /*
10435 * Restore any residual host-state and save any bits shared between host
10436 * and guest into the guest-CPU state. Re-enables interrupts!
10437 */
10438 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
10439
10440 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10441 if (RT_SUCCESS(rcRun))
10442 { /* very likely */ }
10443 else
10444 {
10445 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
10446 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
10447 return rcRun;
10448 }
10449
10450 /* Profile the VM-exit. */
10451 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10452 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10453 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10454 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
10455 HMVMX_START_EXIT_DISPATCH_PROF();
10456
10457 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
10458
10459 /*
10460 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10461 */
10462 rcStrict = hmR0VmxRunDebugHandleExit(pVM, pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, &DbgState);
10463 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
10464 if (rcStrict != VINF_SUCCESS)
10465 break;
10466 if (cLoops > pVM->hm.s.cMaxResumeLoops)
10467 {
10468 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10469 rcStrict = VINF_EM_RAW_INTERRUPT;
10470 break;
10471 }
10472
10473 /*
10474 * Stepping: Did the RIP change, if so, consider it a single step.
10475 * Otherwise, make sure one of the TFs gets set.
10476 */
10477 if (fStepping)
10478 {
10479 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
10480 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
10481 AssertRCReturn(rc2, rc2);
10482 if ( pCtx->rip != DbgState.uRipStart
10483 || pCtx->cs.Sel != DbgState.uCsStart)
10484 {
10485 rcStrict = VINF_EM_DBG_STEPPED;
10486 break;
10487 }
10488 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10489 }
10490
10491 /*
10492 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10493 */
10494 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10495 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10496 }
10497
10498 /*
10499 * Clear the X86_EFL_TF if necessary.
10500 */
10501 if (pVCpu->hm.s.fClearTrapFlag)
10502 {
10503 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
10504 AssertRCReturn(rc2, rc2);
10505 pVCpu->hm.s.fClearTrapFlag = false;
10506 pCtx->eflags.Bits.u1TF = 0;
10507 }
10508 /** @todo there seems to be issues with the resume flag when the monitor trap
10509 * flag is pending without being used. Seen early in bios init when
10510 * accessing APIC page in protected mode. */
10511
10512 /*
10513 * Restore VM-exit control settings as we may not reenter this function the
10514 * next time around.
10515 */
10516 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10517
10518 /* Restore HMCPU indicators. */
10519 pVCpu->hm.s.fUsingDebugLoop = false;
10520 pVCpu->hm.s.fDebugWantRdTscExit = false;
10521 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10522
10523 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10524 return rcStrict;
10525}
10526
10527
10528/** @} */
10529
10530
10531/**
10532 * Checks if any expensive dtrace probes are enabled and we should go to the
10533 * debug loop.
10534 *
10535 * @returns true if we should use debug loop, false if not.
10536 */
10537static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10538{
10539 /* It's probably faster to OR the raw 32-bit counter variables together.
10540 Since the variables are in an array and the probes are next to one
10541 another (more or less), we have good locality. So, better read
10542 eight-nine cache lines ever time and only have one conditional, than
10543 128+ conditionals, right? */
10544 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10545 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10546 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10547 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10548 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10549 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10550 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10551 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10552 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10553 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10554 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10555 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10556 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10557 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10558 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10559 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10560 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10561 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10562 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10563 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10564 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10565 ) != 0
10566 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10567 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10568 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10569 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10570 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10571 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10572 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10573 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10574 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10575 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10576 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10577 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10578 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10579 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10580 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10581 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10582 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10583 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10584 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10585 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10586 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10587 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10588 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10589 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10590 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10591 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10592 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10593 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10594 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10595 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10596 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10597 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10598 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10599 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10600 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10601 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10602 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10603 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10604 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10605 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10606 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10607 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10608 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10609 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10610 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10611 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10612 ) != 0
10613 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10614 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10615 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10616 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10617 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10618 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10619 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10620 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10621 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10622 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10623 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10624 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10625 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10626 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10627 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10628 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10629 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10630 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10631 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10632 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10633 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10634 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10635 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10636 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10637 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10638 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10639 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10640 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10641 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10642 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10643 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10644 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10645 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10646 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10647 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10648 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10649 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10650 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10651 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10652 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10653 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10654 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10655 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10656 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10657 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10658 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10659 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10660 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10661 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10662 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10663 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10664 ) != 0;
10665}
10666
10667
10668/**
10669 * Runs the guest code using VT-x.
10670 *
10671 * @returns Strict VBox status code (i.e. informational status codes too).
10672 * @param pVM The cross context VM structure.
10673 * @param pVCpu The cross context virtual CPU structure.
10674 * @param pCtx Pointer to the guest-CPU context.
10675 */
10676VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10677{
10678 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10679 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
10680 HMVMX_ASSERT_PREEMPT_SAFE();
10681
10682 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10683
10684 VBOXSTRICTRC rcStrict;
10685 if ( !pVCpu->hm.s.fUseDebugLoop
10686 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10687 && !DBGFIsStepping(pVCpu)
10688 && !pVM->dbgf.ro.cEnabledInt3Breakpoints)
10689 rcStrict = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
10690 else
10691 rcStrict = hmR0VmxRunGuestCodeDebug(pVM, pVCpu, pCtx);
10692
10693 if (rcStrict == VERR_EM_INTERPRETER)
10694 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10695 else if (rcStrict == VINF_EM_RESET)
10696 rcStrict = VINF_EM_TRIPLE_FAULT;
10697
10698 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rcStrict);
10699 if (RT_FAILURE(rc2))
10700 {
10701 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10702 rcStrict = rc2;
10703 }
10704 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10705 return rcStrict;
10706}
10707
10708
10709#ifndef HMVMX_USE_FUNCTION_TABLE
10710DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10711{
10712# ifdef DEBUG_ramshankar
10713# define RETURN_EXIT_CALL(a_CallExpr) \
10714 do { \
10715 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); \
10716 VBOXSTRICTRC rcStrict = a_CallExpr; \
10717 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); \
10718 return rcStrict; \
10719 } while (0)
10720# else
10721# define RETURN_EXIT_CALL(a_CallExpr) return a_CallExpr
10722# endif
10723 switch (rcReason)
10724 {
10725 case VMX_EXIT_EPT_MISCONFIG: RETURN_EXIT_CALL(hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient));
10726 case VMX_EXIT_EPT_VIOLATION: RETURN_EXIT_CALL(hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient));
10727 case VMX_EXIT_IO_INSTR: RETURN_EXIT_CALL(hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient));
10728 case VMX_EXIT_CPUID: RETURN_EXIT_CALL(hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient));
10729 case VMX_EXIT_RDTSC: RETURN_EXIT_CALL(hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient));
10730 case VMX_EXIT_RDTSCP: RETURN_EXIT_CALL(hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient));
10731 case VMX_EXIT_APIC_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient));
10732 case VMX_EXIT_XCPT_OR_NMI: RETURN_EXIT_CALL(hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient));
10733 case VMX_EXIT_MOV_CRX: RETURN_EXIT_CALL(hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient));
10734 case VMX_EXIT_EXT_INT: RETURN_EXIT_CALL(hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient));
10735 case VMX_EXIT_INT_WINDOW: RETURN_EXIT_CALL(hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient));
10736 case VMX_EXIT_MWAIT: RETURN_EXIT_CALL(hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient));
10737 case VMX_EXIT_MONITOR: RETURN_EXIT_CALL(hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient));
10738 case VMX_EXIT_TASK_SWITCH: RETURN_EXIT_CALL(hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient));
10739 case VMX_EXIT_PREEMPT_TIMER: RETURN_EXIT_CALL(hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient));
10740 case VMX_EXIT_RDMSR: RETURN_EXIT_CALL(hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient));
10741 case VMX_EXIT_WRMSR: RETURN_EXIT_CALL(hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient));
10742 case VMX_EXIT_MOV_DRX: RETURN_EXIT_CALL(hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient));
10743 case VMX_EXIT_TPR_BELOW_THRESHOLD: RETURN_EXIT_CALL(hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient));
10744 case VMX_EXIT_HLT: RETURN_EXIT_CALL(hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient));
10745 case VMX_EXIT_INVD: RETURN_EXIT_CALL(hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient));
10746 case VMX_EXIT_INVLPG: RETURN_EXIT_CALL(hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient));
10747 case VMX_EXIT_RSM: RETURN_EXIT_CALL(hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient));
10748 case VMX_EXIT_MTF: RETURN_EXIT_CALL(hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient));
10749 case VMX_EXIT_PAUSE: RETURN_EXIT_CALL(hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient));
10750 case VMX_EXIT_XDTR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10751 case VMX_EXIT_TR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10752 case VMX_EXIT_WBINVD: RETURN_EXIT_CALL(hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient));
10753 case VMX_EXIT_XSETBV: RETURN_EXIT_CALL(hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient));
10754 case VMX_EXIT_RDRAND: RETURN_EXIT_CALL(hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient));
10755 case VMX_EXIT_INVPCID: RETURN_EXIT_CALL(hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient));
10756 case VMX_EXIT_GETSEC: RETURN_EXIT_CALL(hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient));
10757 case VMX_EXIT_RDPMC: RETURN_EXIT_CALL(hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient));
10758 case VMX_EXIT_VMCALL: RETURN_EXIT_CALL(hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient));
10759
10760 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient);
10761 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient);
10762 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient);
10763 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient);
10764 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient);
10765 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient);
10766 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient);
10767 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient);
10768 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient);
10769
10770 case VMX_EXIT_VMCLEAR:
10771 case VMX_EXIT_VMLAUNCH:
10772 case VMX_EXIT_VMPTRLD:
10773 case VMX_EXIT_VMPTRST:
10774 case VMX_EXIT_VMREAD:
10775 case VMX_EXIT_VMRESUME:
10776 case VMX_EXIT_VMWRITE:
10777 case VMX_EXIT_VMXOFF:
10778 case VMX_EXIT_VMXON:
10779 case VMX_EXIT_INVEPT:
10780 case VMX_EXIT_INVVPID:
10781 case VMX_EXIT_VMFUNC:
10782 case VMX_EXIT_XSAVES:
10783 case VMX_EXIT_XRSTORS:
10784 return hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
10785 case VMX_EXIT_ENCLS:
10786 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10787 case VMX_EXIT_PML_FULL:
10788 default:
10789 return hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
10790 }
10791#undef RETURN_EXIT_CALL
10792}
10793#endif /* !HMVMX_USE_FUNCTION_TABLE */
10794
10795
10796#ifdef VBOX_STRICT
10797/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10798# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10799 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10800
10801# define HMVMX_ASSERT_PREEMPT_CPUID() \
10802 do { \
10803 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10804 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10805 } while (0)
10806
10807# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10808 do { \
10809 AssertPtr(pVCpu); \
10810 AssertPtr(pMixedCtx); \
10811 AssertPtr(pVmxTransient); \
10812 Assert(pVmxTransient->fVMEntryFailed == false); \
10813 Assert(ASMIntAreEnabled()); \
10814 HMVMX_ASSERT_PREEMPT_SAFE(); \
10815 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10816 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
10817 HMVMX_ASSERT_PREEMPT_SAFE(); \
10818 if (VMMR0IsLogFlushDisabled(pVCpu)) \
10819 HMVMX_ASSERT_PREEMPT_CPUID(); \
10820 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10821 } while (0)
10822
10823# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
10824 do { \
10825 Log4Func(("\n")); \
10826 } while (0)
10827#else /* nonstrict builds: */
10828# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10829 do { \
10830 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10831 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
10832 } while (0)
10833# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
10834#endif
10835
10836
10837/**
10838 * Advances the guest RIP by the specified number of bytes.
10839 *
10840 * @param pVCpu The cross context virtual CPU structure.
10841 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10842 * out-of-sync. Make sure to update the required fields
10843 * before using them.
10844 * @param cbInstr Number of bytes to advance the RIP by.
10845 *
10846 * @remarks No-long-jump zone!!!
10847 */
10848DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
10849{
10850 /* Advance the RIP. */
10851 pMixedCtx->rip += cbInstr;
10852 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10853
10854 /* Update interrupt inhibition. */
10855 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10856 && pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
10857 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10858}
10859
10860
10861/**
10862 * Advances the guest RIP after reading it from the VMCS.
10863 *
10864 * @returns VBox status code, no informational status codes.
10865 * @param pVCpu The cross context virtual CPU structure.
10866 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10867 * out-of-sync. Make sure to update the required fields
10868 * before using them.
10869 * @param pVmxTransient Pointer to the VMX transient structure.
10870 *
10871 * @remarks No-long-jump zone!!!
10872 */
10873static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10874{
10875 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10876 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10877 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10878 AssertRCReturn(rc, rc);
10879
10880 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, pVmxTransient->cbInstr);
10881
10882 /*
10883 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10884 * pending debug exception field as it takes care of priority of events.
10885 *
10886 * See Intel spec. 32.2.1 "Debug Exceptions".
10887 */
10888 if ( !pVCpu->hm.s.fSingleInstruction
10889 && pMixedCtx->eflags.Bits.u1TF)
10890 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10891
10892 return VINF_SUCCESS;
10893}
10894
10895
10896/**
10897 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10898 * and update error record fields accordingly.
10899 *
10900 * @return VMX_IGS_* return codes.
10901 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10902 * wrong with the guest state.
10903 *
10904 * @param pVM The cross context VM structure.
10905 * @param pVCpu The cross context virtual CPU structure.
10906 * @param pCtx Pointer to the guest-CPU state.
10907 *
10908 * @remarks This function assumes our cache of the VMCS controls
10909 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10910 */
10911static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10912{
10913#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10914#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10915 uError = (err); \
10916 break; \
10917 } else do { } while (0)
10918
10919 int rc;
10920 uint32_t uError = VMX_IGS_ERROR;
10921 uint32_t u32Val;
10922 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10923
10924 do
10925 {
10926 /*
10927 * CR0.
10928 */
10929 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10930 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10931 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10932 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10933 if (fUnrestrictedGuest)
10934 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
10935
10936 uint32_t u32GuestCR0;
10937 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
10938 AssertRCBreak(rc);
10939 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
10940 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
10941 if ( !fUnrestrictedGuest
10942 && (u32GuestCR0 & X86_CR0_PG)
10943 && !(u32GuestCR0 & X86_CR0_PE))
10944 {
10945 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10946 }
10947
10948 /*
10949 * CR4.
10950 */
10951 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10952 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10953
10954 uint32_t u32GuestCR4;
10955 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
10956 AssertRCBreak(rc);
10957 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
10958 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
10959
10960 /*
10961 * IA32_DEBUGCTL MSR.
10962 */
10963 uint64_t u64Val;
10964 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10965 AssertRCBreak(rc);
10966 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10967 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10968 {
10969 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10970 }
10971 uint64_t u64DebugCtlMsr = u64Val;
10972
10973#ifdef VBOX_STRICT
10974 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10975 AssertRCBreak(rc);
10976 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10977#endif
10978 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
10979
10980 /*
10981 * RIP and RFLAGS.
10982 */
10983 uint32_t u32Eflags;
10984#if HC_ARCH_BITS == 64
10985 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10986 AssertRCBreak(rc);
10987 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10988 if ( !fLongModeGuest
10989 || !pCtx->cs.Attr.n.u1Long)
10990 {
10991 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10992 }
10993 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10994 * must be identical if the "IA-32e mode guest" VM-entry
10995 * control is 1 and CS.L is 1. No check applies if the
10996 * CPU supports 64 linear-address bits. */
10997
10998 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10999 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
11000 AssertRCBreak(rc);
11001 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
11002 VMX_IGS_RFLAGS_RESERVED);
11003 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
11004 u32Eflags = u64Val;
11005#else
11006 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
11007 AssertRCBreak(rc);
11008 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
11009 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
11010#endif
11011
11012 if ( fLongModeGuest
11013 || ( fUnrestrictedGuest
11014 && !(u32GuestCR0 & X86_CR0_PE)))
11015 {
11016 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
11017 }
11018
11019 uint32_t u32EntryInfo;
11020 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
11021 AssertRCBreak(rc);
11022 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11023 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11024 {
11025 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
11026 }
11027
11028 /*
11029 * 64-bit checks.
11030 */
11031#if HC_ARCH_BITS == 64
11032 if (fLongModeGuest)
11033 {
11034 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
11035 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
11036 }
11037
11038 if ( !fLongModeGuest
11039 && (u32GuestCR4 & X86_CR4_PCIDE))
11040 {
11041 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
11042 }
11043
11044 /** @todo CR3 field must be such that bits 63:52 and bits in the range
11045 * 51:32 beyond the processor's physical-address width are 0. */
11046
11047 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
11048 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
11049 {
11050 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
11051 }
11052
11053 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
11054 AssertRCBreak(rc);
11055 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
11056
11057 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
11058 AssertRCBreak(rc);
11059 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
11060#endif
11061
11062 /*
11063 * PERF_GLOBAL MSR.
11064 */
11065 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
11066 {
11067 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
11068 AssertRCBreak(rc);
11069 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
11070 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
11071 }
11072
11073 /*
11074 * PAT MSR.
11075 */
11076 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
11077 {
11078 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
11079 AssertRCBreak(rc);
11080 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
11081 for (unsigned i = 0; i < 8; i++)
11082 {
11083 uint8_t u8Val = (u64Val & 0xff);
11084 if ( u8Val != 0 /* UC */
11085 && u8Val != 1 /* WC */
11086 && u8Val != 4 /* WT */
11087 && u8Val != 5 /* WP */
11088 && u8Val != 6 /* WB */
11089 && u8Val != 7 /* UC- */)
11090 {
11091 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
11092 }
11093 u64Val >>= 8;
11094 }
11095 }
11096
11097 /*
11098 * EFER MSR.
11099 */
11100 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
11101 {
11102 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
11103 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
11104 AssertRCBreak(rc);
11105 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
11106 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
11107 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
11108 & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
11109 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
11110 HMVMX_CHECK_BREAK( fUnrestrictedGuest
11111 || !(u32GuestCR0 & X86_CR0_PG)
11112 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
11113 VMX_IGS_EFER_LMA_LME_MISMATCH);
11114 }
11115
11116 /*
11117 * Segment registers.
11118 */
11119 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11120 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
11121 if (!(u32Eflags & X86_EFL_VM))
11122 {
11123 /* CS */
11124 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
11125 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
11126 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
11127 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
11128 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
11129 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
11130 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
11131 /* CS cannot be loaded with NULL in protected mode. */
11132 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
11133 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
11134 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
11135 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
11136 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
11137 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
11138 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
11139 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
11140 else
11141 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
11142
11143 /* SS */
11144 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11145 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
11146 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
11147 if ( !(pCtx->cr0 & X86_CR0_PE)
11148 || pCtx->cs.Attr.n.u4Type == 3)
11149 {
11150 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
11151 }
11152 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
11153 {
11154 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
11155 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
11156 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
11157 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
11158 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
11159 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
11160 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
11161 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
11162 }
11163
11164 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
11165 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
11166 {
11167 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
11168 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
11169 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11170 || pCtx->ds.Attr.n.u4Type > 11
11171 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
11172 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
11173 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
11174 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
11175 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
11176 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
11177 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
11178 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11179 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
11180 }
11181 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
11182 {
11183 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
11184 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
11185 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11186 || pCtx->es.Attr.n.u4Type > 11
11187 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
11188 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
11189 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
11190 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
11191 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
11192 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
11193 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
11194 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11195 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
11196 }
11197 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
11198 {
11199 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
11200 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
11201 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11202 || pCtx->fs.Attr.n.u4Type > 11
11203 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
11204 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
11205 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
11206 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
11207 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11208 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
11209 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11210 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11211 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
11212 }
11213 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
11214 {
11215 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
11216 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
11217 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11218 || pCtx->gs.Attr.n.u4Type > 11
11219 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
11220 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
11221 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
11222 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
11223 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11224 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
11225 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11226 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11227 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
11228 }
11229 /* 64-bit capable CPUs. */
11230#if HC_ARCH_BITS == 64
11231 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11232 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11233 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11234 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11235 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11236 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11237 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11238 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11239 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11240 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11241 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11242#endif
11243 }
11244 else
11245 {
11246 /* V86 mode checks. */
11247 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
11248 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11249 {
11250 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
11251 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
11252 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
11253 }
11254 else
11255 {
11256 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
11257 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
11258 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
11259 }
11260
11261 /* CS */
11262 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
11263 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
11264 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
11265 /* SS */
11266 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
11267 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
11268 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
11269 /* DS */
11270 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
11271 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
11272 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
11273 /* ES */
11274 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
11275 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
11276 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
11277 /* FS */
11278 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
11279 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
11280 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
11281 /* GS */
11282 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
11283 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
11284 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
11285 /* 64-bit capable CPUs. */
11286#if HC_ARCH_BITS == 64
11287 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11288 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11289 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11290 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11291 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11292 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11293 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11294 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11295 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11296 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11297 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11298#endif
11299 }
11300
11301 /*
11302 * TR.
11303 */
11304 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
11305 /* 64-bit capable CPUs. */
11306#if HC_ARCH_BITS == 64
11307 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
11308#endif
11309 if (fLongModeGuest)
11310 {
11311 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
11312 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
11313 }
11314 else
11315 {
11316 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
11317 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
11318 VMX_IGS_TR_ATTR_TYPE_INVALID);
11319 }
11320 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
11321 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
11322 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
11323 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
11324 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11325 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
11326 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11327 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
11328
11329 /*
11330 * GDTR and IDTR.
11331 */
11332#if HC_ARCH_BITS == 64
11333 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
11334 AssertRCBreak(rc);
11335 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
11336
11337 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
11338 AssertRCBreak(rc);
11339 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
11340#endif
11341
11342 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
11343 AssertRCBreak(rc);
11344 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11345
11346 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
11347 AssertRCBreak(rc);
11348 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11349
11350 /*
11351 * Guest Non-Register State.
11352 */
11353 /* Activity State. */
11354 uint32_t u32ActivityState;
11355 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
11356 AssertRCBreak(rc);
11357 HMVMX_CHECK_BREAK( !u32ActivityState
11358 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
11359 VMX_IGS_ACTIVITY_STATE_INVALID);
11360 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
11361 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
11362 uint32_t u32IntrState;
11363 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
11364 AssertRCBreak(rc);
11365 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
11366 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11367 {
11368 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11369 }
11370
11371 /** @todo Activity state and injecting interrupts. Left as a todo since we
11372 * currently don't use activity states but ACTIVE. */
11373
11374 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11375 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11376
11377 /* Guest interruptibility-state. */
11378 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11379 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11380 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
11381 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11382 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11383 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11384 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11385 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11386 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11387 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
11388 {
11389 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11390 {
11391 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11392 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11393 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11394 }
11395 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11396 {
11397 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11398 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11399 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11400 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11401 }
11402 }
11403 /** @todo Assumes the processor is not in SMM. */
11404 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11405 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11406 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11407 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11408 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11409 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
11410 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11411 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11412 {
11413 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
11414 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11415 }
11416
11417 /* Pending debug exceptions. */
11418#if HC_ARCH_BITS == 64
11419 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
11420 AssertRCBreak(rc);
11421 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11422 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11423 u32Val = u64Val; /* For pending debug exceptions checks below. */
11424#else
11425 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
11426 AssertRCBreak(rc);
11427 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11428 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11429#endif
11430
11431 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11432 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
11433 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11434 {
11435 if ( (u32Eflags & X86_EFL_TF)
11436 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11437 {
11438 /* Bit 14 is PendingDebug.BS. */
11439 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11440 }
11441 if ( !(u32Eflags & X86_EFL_TF)
11442 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11443 {
11444 /* Bit 14 is PendingDebug.BS. */
11445 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11446 }
11447 }
11448
11449 /* VMCS link pointer. */
11450 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11451 AssertRCBreak(rc);
11452 if (u64Val != UINT64_C(0xffffffffffffffff))
11453 {
11454 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11455 /** @todo Bits beyond the processor's physical-address width MBZ. */
11456 /** @todo 32-bit located in memory referenced by value of this field (as a
11457 * physical address) must contain the processor's VMCS revision ID. */
11458 /** @todo SMM checks. */
11459 }
11460
11461 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11462 * not using Nested Paging? */
11463 if ( pVM->hm.s.fNestedPaging
11464 && !fLongModeGuest
11465 && CPUMIsGuestInPAEModeEx(pCtx))
11466 {
11467 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11468 AssertRCBreak(rc);
11469 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11470
11471 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11472 AssertRCBreak(rc);
11473 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11474
11475 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11476 AssertRCBreak(rc);
11477 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11478
11479 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11480 AssertRCBreak(rc);
11481 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11482 }
11483
11484 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11485 if (uError == VMX_IGS_ERROR)
11486 uError = VMX_IGS_REASON_NOT_FOUND;
11487 } while (0);
11488
11489 pVCpu->hm.s.u32HMError = uError;
11490 return uError;
11491
11492#undef HMVMX_ERROR_BREAK
11493#undef HMVMX_CHECK_BREAK
11494}
11495
11496/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11497/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11498/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11499
11500/** @name VM-exit handlers.
11501 * @{
11502 */
11503
11504/**
11505 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11506 */
11507HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11508{
11509 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11510 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11511 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11512 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11513 return VINF_SUCCESS;
11514 return VINF_EM_RAW_INTERRUPT;
11515}
11516
11517
11518/**
11519 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11520 */
11521HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11522{
11523 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11524 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11525
11526 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11527 AssertRCReturn(rc, rc);
11528
11529 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
11530 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
11531 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
11532 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11533
11534 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11535 {
11536 /*
11537 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
11538 * anything we inject is not going to cause a VM-exit directly for the event being injected.
11539 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11540 *
11541 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
11542 */
11543 VMXDispatchHostNmi();
11544 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11545 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11546 return VINF_SUCCESS;
11547 }
11548
11549 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11550 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11551 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11552 { /* likely */ }
11553 else
11554 {
11555 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11556 rcStrictRc1 = VINF_SUCCESS;
11557 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11558 return rcStrictRc1;
11559 }
11560
11561 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11562 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
11563 switch (uIntType)
11564 {
11565 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11566 Assert(uVector == X86_XCPT_DB);
11567 /* fall thru */
11568 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11569 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
11570 /* fall thru */
11571 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
11572 {
11573 /*
11574 * If there's any exception caused as a result of event injection, go back to
11575 * the interpreter. The page-fault case is complicated and we manually handle
11576 * any currently pending event in hmR0VmxExitXcptPF. Nested #ACs are already
11577 * handled in hmR0VmxCheckExitDueToEventDelivery.
11578 */
11579 if (!pVCpu->hm.s.Event.fPending)
11580 { /* likely */ }
11581 else if ( uVector != X86_XCPT_PF
11582 && uVector != X86_XCPT_AC)
11583 {
11584 /** @todo Why do we need to fallback to the interpreter here? */
11585 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
11586 rc = VERR_EM_INTERPRETER;
11587 break;
11588 }
11589
11590 switch (uVector)
11591 {
11592 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
11593 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
11594 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
11595 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
11596 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
11597 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
11598 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pMixedCtx, pVmxTransient); break;
11599
11600 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11601 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11602 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11603 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11604 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11605 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11606 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11607 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11608 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11609 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11610 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11611 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11612 default:
11613 {
11614 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11615 AssertRCReturn(rc, rc);
11616
11617 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11618 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11619 {
11620 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11621 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11622 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11623
11624 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11625 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11626 AssertRCReturn(rc, rc);
11627 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11628 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11629 0 /* GCPtrFaultAddress */);
11630 AssertRCReturn(rc, rc);
11631 }
11632 else
11633 {
11634 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11635 pVCpu->hm.s.u32HMError = uVector;
11636 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11637 }
11638 break;
11639 }
11640 }
11641 break;
11642 }
11643
11644 default:
11645 {
11646 pVCpu->hm.s.u32HMError = uExitIntInfo;
11647 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11648 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
11649 break;
11650 }
11651 }
11652 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11653 return rc;
11654}
11655
11656
11657/**
11658 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11659 */
11660HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11661{
11662 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11663
11664 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11665 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11666
11667 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11668 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11669 return VINF_SUCCESS;
11670}
11671
11672
11673/**
11674 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11675 */
11676HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11677{
11678 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11679 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
11680 {
11681 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11682 HMVMX_RETURN_UNEXPECTED_EXIT();
11683 }
11684
11685 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11686
11687 /*
11688 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11689 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11690 */
11691 uint32_t uIntrState = 0;
11692 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11693 AssertRCReturn(rc, rc);
11694
11695 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
11696 if ( fBlockSti
11697 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11698 {
11699 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11700 }
11701
11702 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11703 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11704
11705 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11706 return VINF_SUCCESS;
11707}
11708
11709
11710/**
11711 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11712 */
11713HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11714{
11715 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11716 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
11717 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11718}
11719
11720
11721/**
11722 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11723 */
11724HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11725{
11726 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11727 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
11728 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11729}
11730
11731
11732/**
11733 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11734 */
11735HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11736{
11737 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11738 PVM pVM = pVCpu->CTX_SUFF(pVM);
11739 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11740 if (RT_LIKELY(rc == VINF_SUCCESS))
11741 {
11742 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11743 Assert(pVmxTransient->cbInstr == 2);
11744 }
11745 else
11746 {
11747 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
11748 rc = VERR_EM_INTERPRETER;
11749 }
11750 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
11751 return rc;
11752}
11753
11754
11755/**
11756 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11757 */
11758HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11759{
11760 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11761 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11762 AssertRCReturn(rc, rc);
11763
11764 if (pMixedCtx->cr4 & X86_CR4_SMXE)
11765 return VINF_EM_RAW_EMULATE_INSTR;
11766
11767 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11768 HMVMX_RETURN_UNEXPECTED_EXIT();
11769}
11770
11771
11772/**
11773 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11774 */
11775HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11776{
11777 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11778 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11779 AssertRCReturn(rc, rc);
11780
11781 PVM pVM = pVCpu->CTX_SUFF(pVM);
11782 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11783 if (RT_LIKELY(rc == VINF_SUCCESS))
11784 {
11785 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11786 Assert(pVmxTransient->cbInstr == 2);
11787 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11788 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11789 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11790 }
11791 else
11792 rc = VERR_EM_INTERPRETER;
11793 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11794 return rc;
11795}
11796
11797
11798/**
11799 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11800 */
11801HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11802{
11803 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11804 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11805 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
11806 AssertRCReturn(rc, rc);
11807
11808 PVM pVM = pVCpu->CTX_SUFF(pVM);
11809 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
11810 if (RT_SUCCESS(rc))
11811 {
11812 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11813 Assert(pVmxTransient->cbInstr == 3);
11814 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11815 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11816 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11817 }
11818 else
11819 {
11820 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
11821 rc = VERR_EM_INTERPRETER;
11822 }
11823 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11824 return rc;
11825}
11826
11827
11828/**
11829 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11830 */
11831HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11832{
11833 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11834 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11835 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11836 AssertRCReturn(rc, rc);
11837
11838 PVM pVM = pVCpu->CTX_SUFF(pVM);
11839 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11840 if (RT_LIKELY(rc == VINF_SUCCESS))
11841 {
11842 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11843 Assert(pVmxTransient->cbInstr == 2);
11844 }
11845 else
11846 {
11847 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11848 rc = VERR_EM_INTERPRETER;
11849 }
11850 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
11851 return rc;
11852}
11853
11854
11855/**
11856 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11857 */
11858HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11859{
11860 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11861 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
11862
11863 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11864 if (pVCpu->hm.s.fHypercallsEnabled)
11865 {
11866#if 0
11867 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11868#else
11869 /* Aggressive state sync. for now. */
11870 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11871 rc |= hmR0VmxSaveGuestRflags(pVCpu,pMixedCtx); /* For CPL checks in gimHvHypercall() & gimKvmHypercall() */
11872 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
11873 AssertRCReturn(rc, rc);
11874#endif
11875
11876 /* Perform the hypercall. */
11877 rcStrict = GIMHypercall(pVCpu, pMixedCtx);
11878 if (rcStrict == VINF_SUCCESS)
11879 {
11880 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11881 AssertRCReturn(rc, rc);
11882 }
11883 else
11884 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11885 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11886 || RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
11887
11888 /* If the hypercall changes anything other than guest's general-purpose registers,
11889 we would need to reload the guest changed bits here before VM-entry. */
11890 }
11891 else
11892 Log4(("hmR0VmxExitVmcall: Hypercalls not enabled\n"));
11893
11894 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11895 if (RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)))
11896 {
11897 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11898 rcStrict = VINF_SUCCESS;
11899 }
11900
11901 return rcStrict;
11902}
11903
11904
11905/**
11906 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11907 */
11908HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11909{
11910 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11911 PVM pVM = pVCpu->CTX_SUFF(pVM);
11912 Assert(!pVM->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11913
11914 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11915 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11916 AssertRCReturn(rc, rc);
11917
11918 VBOXSTRICTRC rcStrict = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
11919 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11920 rcStrict = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11921 else
11922 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
11923 pVmxTransient->uExitQualification, VBOXSTRICTRC_VAL(rcStrict)));
11924 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
11925 return rcStrict;
11926}
11927
11928
11929/**
11930 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11931 */
11932HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11933{
11934 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11935 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11936 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11937 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11938 AssertRCReturn(rc, rc);
11939
11940 PVM pVM = pVCpu->CTX_SUFF(pVM);
11941 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11942 if (RT_LIKELY(rc == VINF_SUCCESS))
11943 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11944 else
11945 {
11946 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11947 rc = VERR_EM_INTERPRETER;
11948 }
11949 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11950 return rc;
11951}
11952
11953
11954/**
11955 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11956 */
11957HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11958{
11959 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11960 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11961 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11962 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11963 AssertRCReturn(rc, rc);
11964
11965 PVM pVM = pVCpu->CTX_SUFF(pVM);
11966 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11967 rc = VBOXSTRICTRC_VAL(rc2);
11968 if (RT_LIKELY( rc == VINF_SUCCESS
11969 || rc == VINF_EM_HALT))
11970 {
11971 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11972 AssertRCReturn(rc3, rc3);
11973
11974 if ( rc == VINF_EM_HALT
11975 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
11976 {
11977 rc = VINF_SUCCESS;
11978 }
11979 }
11980 else
11981 {
11982 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11983 rc = VERR_EM_INTERPRETER;
11984 }
11985 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11986 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11987 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11988 return rc;
11989}
11990
11991
11992/**
11993 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11994 */
11995HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11996{
11997 /*
11998 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
11999 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
12000 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
12001 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
12002 */
12003 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12004 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12005 HMVMX_RETURN_UNEXPECTED_EXIT();
12006}
12007
12008
12009/**
12010 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
12011 */
12012HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12013{
12014 /*
12015 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
12016 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
12017 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
12018 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
12019 */
12020 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12021 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12022 HMVMX_RETURN_UNEXPECTED_EXIT();
12023}
12024
12025
12026/**
12027 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
12028 */
12029HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12030{
12031 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
12032 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12033 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12034 HMVMX_RETURN_UNEXPECTED_EXIT();
12035}
12036
12037
12038/**
12039 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
12040 */
12041HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12042{
12043 /*
12044 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
12045 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
12046 * See Intel spec. 25.3 "Other Causes of VM-exits".
12047 */
12048 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12049 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12050 HMVMX_RETURN_UNEXPECTED_EXIT();
12051}
12052
12053
12054/**
12055 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
12056 * VM-exit.
12057 */
12058HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12059{
12060 /*
12061 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
12062 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
12063 *
12064 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
12065 * See Intel spec. "23.8 Restrictions on VMX operation".
12066 */
12067 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12068 return VINF_SUCCESS;
12069}
12070
12071
12072/**
12073 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
12074 * VM-exit.
12075 */
12076HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12077{
12078 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12079 return VINF_EM_RESET;
12080}
12081
12082
12083/**
12084 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
12085 */
12086HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12087{
12088 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12089 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
12090
12091 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12092 AssertRCReturn(rc, rc);
12093
12094 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
12095 rc = VINF_SUCCESS;
12096 else
12097 rc = VINF_EM_HALT;
12098
12099 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
12100 if (rc != VINF_SUCCESS)
12101 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
12102 return rc;
12103}
12104
12105
12106/**
12107 * VM-exit handler for instructions that result in a \#UD exception delivered to
12108 * the guest.
12109 */
12110HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12111{
12112 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12113 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
12114 return VINF_SUCCESS;
12115}
12116
12117
12118/**
12119 * VM-exit handler for expiry of the VMX preemption timer.
12120 */
12121HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12122{
12123 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12124
12125 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
12126 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12127
12128 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
12129 PVM pVM = pVCpu->CTX_SUFF(pVM);
12130 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
12131 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
12132 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
12133}
12134
12135
12136/**
12137 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
12138 */
12139HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12140{
12141 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12142
12143 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12144 rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
12145 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
12146 AssertRCReturn(rc, rc);
12147
12148 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
12149 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12150
12151 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
12152
12153 return rcStrict;
12154}
12155
12156
12157/**
12158 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
12159 */
12160HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12161{
12162 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12163
12164 /* The guest should not invalidate the host CPU's TLBs, fallback to interpreter. */
12165 /** @todo implement EMInterpretInvpcid() */
12166 return VERR_EM_INTERPRETER;
12167}
12168
12169
12170/**
12171 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
12172 * Error VM-exit.
12173 */
12174HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12175{
12176 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12177 AssertRCReturn(rc, rc);
12178
12179 rc = hmR0VmxCheckVmcsCtls(pVCpu);
12180 AssertRCReturn(rc, rc);
12181
12182 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
12183 NOREF(uInvalidReason);
12184
12185#ifdef VBOX_STRICT
12186 uint32_t uIntrState;
12187 RTHCUINTREG uHCReg;
12188 uint64_t u64Val;
12189 uint32_t u32Val;
12190
12191 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
12192 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
12193 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
12194 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
12195 AssertRCReturn(rc, rc);
12196
12197 Log4(("uInvalidReason %u\n", uInvalidReason));
12198 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
12199 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
12200 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
12201 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
12202
12203 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
12204 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
12205 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
12206 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
12207 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
12208 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12209 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
12210 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
12211 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
12212 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12213 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
12214 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
12215#else
12216 NOREF(pVmxTransient);
12217#endif
12218
12219 hmR0DumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
12220 return VERR_VMX_INVALID_GUEST_STATE;
12221}
12222
12223
12224/**
12225 * VM-exit handler for VM-entry failure due to an MSR-load
12226 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
12227 */
12228HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12229{
12230 NOREF(pVmxTransient);
12231 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12232 HMVMX_RETURN_UNEXPECTED_EXIT();
12233}
12234
12235
12236/**
12237 * VM-exit handler for VM-entry failure due to a machine-check event
12238 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
12239 */
12240HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12241{
12242 NOREF(pVmxTransient);
12243 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12244 HMVMX_RETURN_UNEXPECTED_EXIT();
12245}
12246
12247
12248/**
12249 * VM-exit handler for all undefined reasons. Should never ever happen.. in
12250 * theory.
12251 */
12252HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12253{
12254 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
12255 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
12256 return VERR_VMX_UNDEFINED_EXIT_CODE;
12257}
12258
12259
12260/**
12261 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
12262 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
12263 * Conditional VM-exit.
12264 */
12265HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12266{
12267 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12268
12269 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
12270 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
12271 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
12272 return VERR_EM_INTERPRETER;
12273 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12274 HMVMX_RETURN_UNEXPECTED_EXIT();
12275}
12276
12277
12278/**
12279 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
12280 */
12281HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12282{
12283 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12284
12285 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
12286 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
12287 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
12288 return VERR_EM_INTERPRETER;
12289 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12290 HMVMX_RETURN_UNEXPECTED_EXIT();
12291}
12292
12293
12294/**
12295 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
12296 */
12297HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12298{
12299 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12300
12301 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
12302 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12303 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12304 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12305 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12306 {
12307 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12308 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12309 }
12310 AssertRCReturn(rc, rc);
12311 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
12312
12313#ifdef VBOX_STRICT
12314 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
12315 {
12316 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
12317 && pMixedCtx->ecx != MSR_K6_EFER)
12318 {
12319 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12320 pMixedCtx->ecx));
12321 HMVMX_RETURN_UNEXPECTED_EXIT();
12322 }
12323 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12324 {
12325 VMXMSREXITREAD enmRead;
12326 VMXMSREXITWRITE enmWrite;
12327 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12328 AssertRCReturn(rc2, rc2);
12329 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
12330 {
12331 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12332 HMVMX_RETURN_UNEXPECTED_EXIT();
12333 }
12334 }
12335 }
12336#endif
12337
12338 PVM pVM = pVCpu->CTX_SUFF(pVM);
12339 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12340 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
12341 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
12342 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
12343 if (RT_SUCCESS(rc))
12344 {
12345 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12346 Assert(pVmxTransient->cbInstr == 2);
12347 }
12348 return rc;
12349}
12350
12351
12352/**
12353 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12354 */
12355HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12356{
12357 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12358 PVM pVM = pVCpu->CTX_SUFF(pVM);
12359 int rc = VINF_SUCCESS;
12360
12361 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
12362 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12363 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12364 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12365 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12366 {
12367 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12368 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12369 }
12370 AssertRCReturn(rc, rc);
12371 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
12372
12373 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12374 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
12375 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12376
12377 if (RT_SUCCESS(rc))
12378 {
12379 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12380
12381 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12382 if ( pMixedCtx->ecx == MSR_IA32_APICBASE
12383 || ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
12384 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END))
12385 {
12386 /*
12387 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12388 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
12389 * EMInterpretWrmsr() changes it.
12390 */
12391 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12392 }
12393 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12394 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12395 else if (pMixedCtx->ecx == MSR_K6_EFER)
12396 {
12397 /*
12398 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12399 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12400 * the other bits as well, SCE and NXE. See @bugref{7368}.
12401 */
12402 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
12403 }
12404
12405 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12406 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12407 {
12408 switch (pMixedCtx->ecx)
12409 {
12410 /*
12411 * For SYSENTER CS, EIP, ESP MSRs, we set both the flags here so we don't accidentally
12412 * overwrite the changed guest-CPU context value while going to ring-3, see @bufref{8745}.
12413 */
12414 case MSR_IA32_SYSENTER_CS:
12415 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
12416 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
12417 break;
12418 case MSR_IA32_SYSENTER_EIP:
12419 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
12420 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
12421 break;
12422 case MSR_IA32_SYSENTER_ESP:
12423 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
12424 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
12425 break;
12426 case MSR_K8_FS_BASE: /* fall thru */
12427 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
12428 case MSR_K6_EFER: /* already handled above */ break;
12429 default:
12430 {
12431 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12432 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12433 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12434 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
12435 break;
12436 }
12437 }
12438 }
12439#ifdef VBOX_STRICT
12440 else
12441 {
12442 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12443 switch (pMixedCtx->ecx)
12444 {
12445 case MSR_IA32_SYSENTER_CS:
12446 case MSR_IA32_SYSENTER_EIP:
12447 case MSR_IA32_SYSENTER_ESP:
12448 case MSR_K8_FS_BASE:
12449 case MSR_K8_GS_BASE:
12450 {
12451 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
12452 HMVMX_RETURN_UNEXPECTED_EXIT();
12453 }
12454
12455 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12456 default:
12457 {
12458 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12459 {
12460 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
12461 if (pMixedCtx->ecx != MSR_K6_EFER)
12462 {
12463 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12464 pMixedCtx->ecx));
12465 HMVMX_RETURN_UNEXPECTED_EXIT();
12466 }
12467 }
12468
12469 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12470 {
12471 VMXMSREXITREAD enmRead;
12472 VMXMSREXITWRITE enmWrite;
12473 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12474 AssertRCReturn(rc2, rc2);
12475 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12476 {
12477 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12478 HMVMX_RETURN_UNEXPECTED_EXIT();
12479 }
12480 }
12481 break;
12482 }
12483 }
12484 }
12485#endif /* VBOX_STRICT */
12486 }
12487 return rc;
12488}
12489
12490
12491/**
12492 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12493 */
12494HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12495{
12496 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12497
12498 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
12499 return VINF_EM_RAW_INTERRUPT;
12500}
12501
12502
12503/**
12504 * VM-exit handler for when the TPR value is lowered below the specified
12505 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12506 */
12507HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12508{
12509 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12510 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
12511
12512 /*
12513 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12514 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12515 */
12516 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12517 return VINF_SUCCESS;
12518}
12519
12520
12521/**
12522 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12523 * VM-exit.
12524 *
12525 * @retval VINF_SUCCESS when guest execution can continue.
12526 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
12527 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12528 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12529 * interpreter.
12530 */
12531HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12532{
12533 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12534 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12535 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12536 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12537 AssertRCReturn(rc, rc);
12538
12539 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
12540 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
12541 PVM pVM = pVCpu->CTX_SUFF(pVM);
12542 VBOXSTRICTRC rcStrict;
12543 rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
12544 switch (uAccessType)
12545 {
12546 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
12547 {
12548 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12549 AssertRCReturn(rc, rc);
12550
12551 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
12552 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12553 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
12554 AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
12555 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12556 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
12557 {
12558 case 0: /* CR0 */
12559 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12560 Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
12561 break;
12562 case 2: /* CR2 */
12563 /* Nothing to do here, CR2 it's not part of the VMCS. */
12564 break;
12565 case 3: /* CR3 */
12566 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx) || pVCpu->hm.s.fUsingDebugLoop);
12567 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
12568 Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
12569 break;
12570 case 4: /* CR4 */
12571 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
12572 Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
12573 VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12574 break;
12575 case 8: /* CR8 */
12576 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12577 /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
12578 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12579 break;
12580 default:
12581 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
12582 break;
12583 }
12584
12585 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12586 break;
12587 }
12588
12589 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
12590 {
12591 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12592 AssertRCReturn(rc, rc);
12593
12594 Assert( !pVM->hm.s.fNestedPaging
12595 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
12596 || pVCpu->hm.s.fUsingDebugLoop
12597 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
12598
12599 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12600 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
12601 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12602
12603 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
12604 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
12605 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
12606 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12607 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12608 Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12609 VBOXSTRICTRC_VAL(rcStrict)));
12610 break;
12611 }
12612
12613 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12614 {
12615 AssertRCReturn(rc, rc);
12616 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12617 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12618 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12619 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12620 Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12621 break;
12622 }
12623
12624 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12625 {
12626 AssertRCReturn(rc, rc);
12627 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
12628 VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
12629 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE,
12630 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12631 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12632 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12633 Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12634 break;
12635 }
12636
12637 default:
12638 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12639 VERR_VMX_UNEXPECTED_EXCEPTION);
12640 }
12641
12642 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12643 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12644 NOREF(pVM);
12645 return rcStrict;
12646}
12647
12648
12649/**
12650 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12651 * VM-exit.
12652 */
12653HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12654{
12655 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12656 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12657
12658 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12659 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12660 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
12661 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
12662 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
12663 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
12664 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12665 AssertRCReturn(rc, rc);
12666
12667 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12668 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
12669 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
12670 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
12671 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
12672 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
12673 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12674 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12675 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12676
12677 /* I/O operation lookup arrays. */
12678 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12679 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
12680
12681 VBOXSTRICTRC rcStrict;
12682 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12683 uint32_t const cbInstr = pVmxTransient->cbInstr;
12684 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12685 PVM pVM = pVCpu->CTX_SUFF(pVM);
12686 if (fIOString)
12687 {
12688#ifdef VBOX_WITH_2ND_IEM_STEP /* This used to gurus with debian 32-bit guest without NP (on ATA reads).
12689 See @bugref{5752#c158}. Should work now. */
12690 /*
12691 * INS/OUTS - I/O String instruction.
12692 *
12693 * Use instruction-information if available, otherwise fall back on
12694 * interpreting the instruction.
12695 */
12696 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue,
12697 fIOWrite ? 'w' : 'r'));
12698 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
12699 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
12700 {
12701 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12702 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12703 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12704 AssertRCReturn(rc2, rc2);
12705 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12706 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12707 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12708 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
12709 if (fIOWrite)
12710 {
12711 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12712 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12713 }
12714 else
12715 {
12716 /*
12717 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12718 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12719 * See Intel Instruction spec. for "INS".
12720 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12721 */
12722 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12723 }
12724 }
12725 else
12726 {
12727 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12728 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12729 AssertRCReturn(rc2, rc2);
12730 rcStrict = IEMExecOne(pVCpu);
12731 }
12732 /** @todo IEM needs to be setting these flags somehow. */
12733 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12734 fUpdateRipAlready = true;
12735#else
12736 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
12737 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
12738 if (RT_SUCCESS(rcStrict))
12739 {
12740 if (fIOWrite)
12741 {
12742 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12743 (DISCPUMODE)pDis->uAddrMode, cbValue);
12744 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
12745 }
12746 else
12747 {
12748 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12749 (DISCPUMODE)pDis->uAddrMode, cbValue);
12750 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
12751 }
12752 }
12753 else
12754 {
12755 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict),
12756 pMixedCtx->rip));
12757 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12758 }
12759#endif
12760 }
12761 else
12762 {
12763 /*
12764 * IN/OUT - I/O instruction.
12765 */
12766 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12767 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12768 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
12769 if (fIOWrite)
12770 {
12771 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
12772 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12773 }
12774 else
12775 {
12776 uint32_t u32Result = 0;
12777 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12778 if (IOM_SUCCESS(rcStrict))
12779 {
12780 /* Save result of I/O IN instr. in AL/AX/EAX. */
12781 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12782 }
12783 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12784 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
12785 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12786 }
12787 }
12788
12789 if (IOM_SUCCESS(rcStrict))
12790 {
12791 if (!fUpdateRipAlready)
12792 {
12793 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, cbInstr);
12794 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12795 }
12796
12797 /*
12798 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
12799 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12800 */
12801 if (fIOString)
12802 {
12803 /** @todo Single-step for INS/OUTS with REP prefix? */
12804 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12805 }
12806 else if ( !fDbgStepping
12807 && fGstStepping)
12808 {
12809 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12810 }
12811
12812 /*
12813 * If any I/O breakpoints are armed, we need to check if one triggered
12814 * and take appropriate action.
12815 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12816 */
12817 int rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12818 AssertRCReturn(rc2, rc2);
12819
12820 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12821 * execution engines about whether hyper BPs and such are pending. */
12822 uint32_t const uDr7 = pMixedCtx->dr[7];
12823 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12824 && X86_DR7_ANY_RW_IO(uDr7)
12825 && (pMixedCtx->cr4 & X86_CR4_DE))
12826 || DBGFBpIsHwIoArmed(pVM)))
12827 {
12828 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12829
12830 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12831 VMMRZCallRing3Disable(pVCpu);
12832 HM_DISABLE_PREEMPT();
12833
12834 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12835
12836 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
12837 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12838 {
12839 /* Raise #DB. */
12840 if (fIsGuestDbgActive)
12841 ASMSetDR6(pMixedCtx->dr[6]);
12842 if (pMixedCtx->dr[7] != uDr7)
12843 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12844
12845 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
12846 }
12847 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12848 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12849 else if ( rcStrict2 != VINF_SUCCESS
12850 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12851 rcStrict = rcStrict2;
12852 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12853
12854 HM_RESTORE_PREEMPT();
12855 VMMRZCallRing3Enable(pVCpu);
12856 }
12857 }
12858
12859#ifdef VBOX_STRICT
12860 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12861 Assert(!fIOWrite);
12862 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
12863 Assert(fIOWrite);
12864 else
12865 {
12866#if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12867 * statuses, that the VMM device and some others may return. See
12868 * IOM_SUCCESS() for guidance. */
12869 AssertMsg( RT_FAILURE(rcStrict)
12870 || rcStrict == VINF_SUCCESS
12871 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12872 || rcStrict == VINF_EM_DBG_BREAKPOINT
12873 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12874 || rcStrict == VINF_EM_RAW_TO_R3
12875 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12876#endif
12877 }
12878#endif
12879
12880 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12881 return rcStrict;
12882}
12883
12884
12885/**
12886 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12887 * VM-exit.
12888 */
12889HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12890{
12891 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12892
12893 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12894 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12895 AssertRCReturn(rc, rc);
12896 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
12897 {
12898 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12899 AssertRCReturn(rc, rc);
12900 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
12901 {
12902 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12903
12904 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12905 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
12906
12907 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
12908 Assert(!pVCpu->hm.s.Event.fPending);
12909 pVCpu->hm.s.Event.fPending = true;
12910 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
12911 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12912 AssertRCReturn(rc, rc);
12913 if (fErrorCodeValid)
12914 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12915 else
12916 pVCpu->hm.s.Event.u32ErrCode = 0;
12917 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12918 && uVector == X86_XCPT_PF)
12919 {
12920 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
12921 }
12922
12923 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
12924 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12925 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12926 }
12927 }
12928
12929 /* Fall back to the interpreter to emulate the task-switch. */
12930 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12931 return VERR_EM_INTERPRETER;
12932}
12933
12934
12935/**
12936 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12937 */
12938HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12939{
12940 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12941 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
12942 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
12943 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12944 AssertRCReturn(rc, rc);
12945 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12946 return VINF_EM_DBG_STEPPED;
12947}
12948
12949
12950/**
12951 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12952 */
12953HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12954{
12955 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12956
12957 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12958
12959 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12960 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12961 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12962 {
12963 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12964 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12965 {
12966 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12967 return VERR_EM_INTERPRETER;
12968 }
12969 }
12970 else
12971 {
12972 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12973 rcStrict1 = VINF_SUCCESS;
12974 return rcStrict1;
12975 }
12976
12977#if 0
12978 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
12979 * just sync the whole thing. */
12980 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12981#else
12982 /* Aggressive state sync. for now. */
12983 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12984 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12985 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12986#endif
12987 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12988 AssertRCReturn(rc, rc);
12989
12990 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12991 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
12992 VBOXSTRICTRC rcStrict2;
12993 switch (uAccessType)
12994 {
12995 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12996 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12997 {
12998 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
12999 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != XAPIC_OFF_TPR,
13000 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
13001
13002 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
13003 GCPhys &= PAGE_BASE_GC_MASK;
13004 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
13005 PVM pVM = pVCpu->CTX_SUFF(pVM);
13006 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
13007 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
13008
13009 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
13010 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
13011 CPUMCTX2CORE(pMixedCtx), GCPhys);
13012 Log4(("ApicAccess rcStrict2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
13013 if ( rcStrict2 == VINF_SUCCESS
13014 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13015 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13016 {
13017 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13018 | HM_CHANGED_GUEST_RSP
13019 | HM_CHANGED_GUEST_RFLAGS
13020 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13021 rcStrict2 = VINF_SUCCESS;
13022 }
13023 break;
13024 }
13025
13026 default:
13027 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
13028 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
13029 break;
13030 }
13031
13032 if (rcStrict2 != VINF_SUCCESS)
13033 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
13034 return rcStrict2;
13035}
13036
13037
13038/**
13039 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
13040 * VM-exit.
13041 */
13042HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13043{
13044 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13045
13046 /* We should -not- get this VM-exit if the guest's debug registers were active. */
13047 if (pVmxTransient->fWasGuestDebugStateActive)
13048 {
13049 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
13050 HMVMX_RETURN_UNEXPECTED_EXIT();
13051 }
13052
13053 if ( !pVCpu->hm.s.fSingleInstruction
13054 && !pVmxTransient->fWasHyperDebugStateActive)
13055 {
13056 Assert(!DBGFIsStepping(pVCpu));
13057 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
13058
13059 /* Don't intercept MOV DRx any more. */
13060 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
13061 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
13062 AssertRCReturn(rc, rc);
13063
13064 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
13065 VMMRZCallRing3Disable(pVCpu);
13066 HM_DISABLE_PREEMPT();
13067
13068 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
13069 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
13070 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
13071
13072 HM_RESTORE_PREEMPT();
13073 VMMRZCallRing3Enable(pVCpu);
13074
13075#ifdef VBOX_WITH_STATISTICS
13076 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13077 AssertRCReturn(rc, rc);
13078 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
13079 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
13080 else
13081 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
13082#endif
13083 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
13084 return VINF_SUCCESS;
13085 }
13086
13087 /*
13088 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
13089 * Update the segment registers and DR7 from the CPU.
13090 */
13091 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13092 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13093 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13094 AssertRCReturn(rc, rc);
13095 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13096
13097 PVM pVM = pVCpu->CTX_SUFF(pVM);
13098 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
13099 {
13100 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
13101 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
13102 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
13103 if (RT_SUCCESS(rc))
13104 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
13105 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
13106 }
13107 else
13108 {
13109 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
13110 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
13111 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
13112 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
13113 }
13114
13115 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
13116 if (RT_SUCCESS(rc))
13117 {
13118 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13119 AssertRCReturn(rc2, rc2);
13120 return VINF_SUCCESS;
13121 }
13122 return rc;
13123}
13124
13125
13126/**
13127 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
13128 * Conditional VM-exit.
13129 */
13130HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13131{
13132 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13133 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
13134
13135 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
13136 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
13137 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
13138 {
13139 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
13140 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
13141 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
13142 {
13143 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
13144 return VERR_EM_INTERPRETER;
13145 }
13146 }
13147 else
13148 {
13149 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
13150 rcStrict1 = VINF_SUCCESS;
13151 return rcStrict1;
13152 }
13153
13154 RTGCPHYS GCPhys = 0;
13155 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
13156
13157#if 0
13158 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
13159#else
13160 /* Aggressive state sync. for now. */
13161 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
13162 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
13163 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13164#endif
13165 AssertRCReturn(rc, rc);
13166
13167 /*
13168 * If we succeed, resume guest execution.
13169 * If we fail in interpreting the instruction because we couldn't get the guest physical address
13170 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
13171 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
13172 * weird case. See @bugref{6043}.
13173 */
13174 PVM pVM = pVCpu->CTX_SUFF(pVM);
13175 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
13176 Log4(("EPT misconfig at %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pMixedCtx->rip, VBOXSTRICTRC_VAL(rcStrict2)));
13177 if ( rcStrict2 == VINF_SUCCESS
13178 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13179 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13180 {
13181 /* Successfully handled MMIO operation. */
13182 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13183 | HM_CHANGED_GUEST_RSP
13184 | HM_CHANGED_GUEST_RFLAGS
13185 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13186 return VINF_SUCCESS;
13187 }
13188 return rcStrict2;
13189}
13190
13191
13192/**
13193 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
13194 * VM-exit.
13195 */
13196HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13197{
13198 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13199 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
13200
13201 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
13202 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
13203 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
13204 {
13205 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
13206 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
13207 Log4(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
13208 }
13209 else
13210 {
13211 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
13212 rcStrict1 = VINF_SUCCESS;
13213 return rcStrict1;
13214 }
13215
13216 RTGCPHYS GCPhys = 0;
13217 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
13218 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13219#if 0
13220 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
13221#else
13222 /* Aggressive state sync. for now. */
13223 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
13224 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
13225 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13226#endif
13227 AssertRCReturn(rc, rc);
13228
13229 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
13230 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
13231
13232 RTGCUINT uErrorCode = 0;
13233 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
13234 uErrorCode |= X86_TRAP_PF_ID;
13235 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
13236 uErrorCode |= X86_TRAP_PF_RW;
13237 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
13238 uErrorCode |= X86_TRAP_PF_P;
13239
13240 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
13241
13242 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
13243 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13244
13245 /* Handle the pagefault trap for the nested shadow table. */
13246 PVM pVM = pVCpu->CTX_SUFF(pVM);
13247 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
13248 TRPMResetTrap(pVCpu);
13249
13250 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
13251 if ( rcStrict2 == VINF_SUCCESS
13252 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13253 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13254 {
13255 /* Successfully synced our nested page tables. */
13256 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
13257 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13258 | HM_CHANGED_GUEST_RSP
13259 | HM_CHANGED_GUEST_RFLAGS);
13260 return VINF_SUCCESS;
13261 }
13262
13263 Log4(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
13264 return rcStrict2;
13265}
13266
13267/** @} */
13268
13269/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13270/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
13271/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13272
13273/** @name VM-exit exception handlers.
13274 * @{
13275 */
13276
13277/**
13278 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13279 */
13280static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13281{
13282 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13283 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13284
13285 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13286 AssertRCReturn(rc, rc);
13287
13288 if (!(pMixedCtx->cr0 & X86_CR0_NE))
13289 {
13290 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13291 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13292
13293 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13294 * provides VM-exit instruction length. If this causes problem later,
13295 * disassemble the instruction like it's done on AMD-V. */
13296 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13297 AssertRCReturn(rc2, rc2);
13298 return rc;
13299 }
13300
13301 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13302 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13303 return rc;
13304}
13305
13306
13307/**
13308 * VM-exit exception handler for \#BP (Breakpoint exception).
13309 */
13310static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13311{
13312 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13313 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13314
13315 /** @todo Try optimize this by not saving the entire guest state unless
13316 * really needed. */
13317 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13318 AssertRCReturn(rc, rc);
13319
13320 PVM pVM = pVCpu->CTX_SUFF(pVM);
13321 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
13322 if (rc == VINF_EM_RAW_GUEST_TRAP)
13323 {
13324 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13325 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13326 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13327 AssertRCReturn(rc, rc);
13328
13329 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13330 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13331 }
13332
13333 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13334 return rc;
13335}
13336
13337
13338/**
13339 * VM-exit exception handler for \#AC (alignment check exception).
13340 */
13341static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13342{
13343 RT_NOREF_PV(pMixedCtx);
13344 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13345
13346 /*
13347 * Re-inject it. We'll detect any nesting before getting here.
13348 */
13349 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13350 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13351 AssertRCReturn(rc, rc);
13352 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13353
13354 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13355 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13356 return VINF_SUCCESS;
13357}
13358
13359
13360/**
13361 * VM-exit exception handler for \#DB (Debug exception).
13362 */
13363static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13364{
13365 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13366 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13367 Log6(("XcptDB\n"));
13368
13369 /*
13370 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13371 * for processing.
13372 */
13373 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13374 AssertRCReturn(rc, rc);
13375
13376 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13377 uint64_t uDR6 = X86_DR6_INIT_VAL;
13378 uDR6 |= ( pVmxTransient->uExitQualification
13379 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13380
13381 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13382 if (rc == VINF_EM_RAW_GUEST_TRAP)
13383 {
13384 /*
13385 * The exception was for the guest. Update DR6, DR7.GD and
13386 * IA32_DEBUGCTL.LBR before forwarding it.
13387 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13388 */
13389 VMMRZCallRing3Disable(pVCpu);
13390 HM_DISABLE_PREEMPT();
13391
13392 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
13393 pMixedCtx->dr[6] |= uDR6;
13394 if (CPUMIsGuestDebugStateActive(pVCpu))
13395 ASMSetDR6(pMixedCtx->dr[6]);
13396
13397 HM_RESTORE_PREEMPT();
13398 VMMRZCallRing3Enable(pVCpu);
13399
13400 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13401 AssertRCReturn(rc, rc);
13402
13403 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13404 pMixedCtx->dr[7] &= ~X86_DR7_GD;
13405
13406 /* Paranoia. */
13407 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13408 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
13409
13410 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
13411 AssertRCReturn(rc, rc);
13412
13413 /*
13414 * Raise #DB in the guest.
13415 *
13416 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
13417 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
13418 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
13419 *
13420 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
13421 */
13422 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13423 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13424 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13425 AssertRCReturn(rc, rc);
13426 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13427 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13428 return VINF_SUCCESS;
13429 }
13430
13431 /*
13432 * Not a guest trap, must be a hypervisor related debug event then.
13433 * Update DR6 in case someone is interested in it.
13434 */
13435 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13436 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13437 CPUMSetHyperDR6(pVCpu, uDR6);
13438
13439 return rc;
13440}
13441
13442
13443/**
13444 * VM-exit exception handler for \#NM (Device-not-available exception: floating
13445 * point exception).
13446 */
13447static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13448{
13449 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13450
13451 /* We require CR0 and EFER. EFER is always up-to-date. */
13452 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13453 AssertRCReturn(rc, rc);
13454
13455 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
13456 VMMRZCallRing3Disable(pVCpu);
13457 HM_DISABLE_PREEMPT();
13458
13459 /* If the guest FPU was active at the time of the #NM VM-exit, then it's a guest fault. */
13460 if (pVmxTransient->fWasGuestFPUStateActive)
13461 {
13462 rc = VINF_EM_RAW_GUEST_TRAP;
13463 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
13464 }
13465 else
13466 {
13467#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13468 Assert(!pVmxTransient->fWasGuestFPUStateActive || pVCpu->hm.s.fUsingDebugLoop);
13469#endif
13470 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu);
13471 Assert( rc == VINF_EM_RAW_GUEST_TRAP
13472 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
13473 if (rc == VINF_CPUM_HOST_CR0_MODIFIED)
13474 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
13475 }
13476
13477 HM_RESTORE_PREEMPT();
13478 VMMRZCallRing3Enable(pVCpu);
13479
13480 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
13481 {
13482 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
13483 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
13484 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
13485 pVCpu->hm.s.fPreloadGuestFpu = true;
13486 }
13487 else
13488 {
13489 /* Forward #NM to the guest. */
13490 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
13491 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13492 AssertRCReturn(rc, rc);
13493 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13494 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
13495 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
13496 }
13497
13498 return VINF_SUCCESS;
13499}
13500
13501
13502/**
13503 * VM-exit exception handler for \#GP (General-protection exception).
13504 *
13505 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13506 */
13507static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13508{
13509 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13510 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13511
13512 int rc;
13513 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13514 { /* likely */ }
13515 else
13516 {
13517#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13518 Assert(pVCpu->hm.s.fUsingDebugLoop);
13519#endif
13520 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13521 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13522 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13523 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13524 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13525 AssertRCReturn(rc, rc);
13526 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
13527 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
13528 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13529 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13530 return rc;
13531 }
13532
13533 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
13534 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13535
13536 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
13537 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13538 AssertRCReturn(rc, rc);
13539
13540 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
13541 uint32_t cbOp = 0;
13542 PVM pVM = pVCpu->CTX_SUFF(pVM);
13543 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
13544 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
13545 if (RT_SUCCESS(rc))
13546 {
13547 rc = VINF_SUCCESS;
13548 Assert(cbOp == pDis->cbInstr);
13549 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13550 switch (pDis->pCurInstr->uOpcode)
13551 {
13552 case OP_CLI:
13553 {
13554 pMixedCtx->eflags.Bits.u1IF = 0;
13555 pMixedCtx->eflags.Bits.u1RF = 0;
13556 pMixedCtx->rip += pDis->cbInstr;
13557 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13558 if ( !fDbgStepping
13559 && pMixedCtx->eflags.Bits.u1TF)
13560 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13561 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
13562 break;
13563 }
13564
13565 case OP_STI:
13566 {
13567 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
13568 pMixedCtx->eflags.Bits.u1IF = 1;
13569 pMixedCtx->eflags.Bits.u1RF = 0;
13570 pMixedCtx->rip += pDis->cbInstr;
13571 if (!fOldIF)
13572 {
13573 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
13574 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
13575 }
13576 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13577 if ( !fDbgStepping
13578 && pMixedCtx->eflags.Bits.u1TF)
13579 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13580 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
13581 break;
13582 }
13583
13584 case OP_HLT:
13585 {
13586 rc = VINF_EM_HALT;
13587 pMixedCtx->rip += pDis->cbInstr;
13588 pMixedCtx->eflags.Bits.u1RF = 0;
13589 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13590 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
13591 break;
13592 }
13593
13594 case OP_POPF:
13595 {
13596 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13597 uint32_t cbParm;
13598 uint32_t uMask;
13599 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13600 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13601 {
13602 cbParm = 4;
13603 uMask = 0xffffffff;
13604 }
13605 else
13606 {
13607 cbParm = 2;
13608 uMask = 0xffff;
13609 }
13610
13611 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
13612 RTGCPTR GCPtrStack = 0;
13613 X86EFLAGS Eflags;
13614 Eflags.u32 = 0;
13615 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13616 &GCPtrStack);
13617 if (RT_SUCCESS(rc))
13618 {
13619 Assert(sizeof(Eflags.u32) >= cbParm);
13620 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
13621 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13622 }
13623 if (RT_FAILURE(rc))
13624 {
13625 rc = VERR_EM_INTERPRETER;
13626 break;
13627 }
13628 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
13629 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
13630 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
13631 pMixedCtx->esp += cbParm;
13632 pMixedCtx->esp &= uMask;
13633 pMixedCtx->rip += pDis->cbInstr;
13634 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13635 | HM_CHANGED_GUEST_RSP
13636 | HM_CHANGED_GUEST_RFLAGS);
13637 /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
13638 POPF restores EFLAGS.TF. */
13639 if ( !fDbgStepping
13640 && fGstStepping)
13641 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13642 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
13643 break;
13644 }
13645
13646 case OP_PUSHF:
13647 {
13648 uint32_t cbParm;
13649 uint32_t uMask;
13650 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13651 {
13652 cbParm = 4;
13653 uMask = 0xffffffff;
13654 }
13655 else
13656 {
13657 cbParm = 2;
13658 uMask = 0xffff;
13659 }
13660
13661 /* Get the stack pointer & push the contents of eflags onto the stack. */
13662 RTGCPTR GCPtrStack = 0;
13663 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
13664 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
13665 if (RT_FAILURE(rc))
13666 {
13667 rc = VERR_EM_INTERPRETER;
13668 break;
13669 }
13670 X86EFLAGS Eflags = pMixedCtx->eflags;
13671 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
13672 Eflags.Bits.u1RF = 0;
13673 Eflags.Bits.u1VM = 0;
13674
13675 rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
13676 if (RT_UNLIKELY(rc != VINF_SUCCESS))
13677 {
13678 AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
13679 rc = VERR_EM_INTERPRETER;
13680 break;
13681 }
13682 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
13683 pMixedCtx->esp -= cbParm;
13684 pMixedCtx->esp &= uMask;
13685 pMixedCtx->rip += pDis->cbInstr;
13686 pMixedCtx->eflags.Bits.u1RF = 0;
13687 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13688 | HM_CHANGED_GUEST_RSP
13689 | HM_CHANGED_GUEST_RFLAGS);
13690 if ( !fDbgStepping
13691 && pMixedCtx->eflags.Bits.u1TF)
13692 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13693 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
13694 break;
13695 }
13696
13697 case OP_IRET:
13698 {
13699 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
13700 * instruction reference. */
13701 RTGCPTR GCPtrStack = 0;
13702 uint32_t uMask = 0xffff;
13703 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13704 uint16_t aIretFrame[3];
13705 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
13706 {
13707 rc = VERR_EM_INTERPRETER;
13708 break;
13709 }
13710 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13711 &GCPtrStack);
13712 if (RT_SUCCESS(rc))
13713 {
13714 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
13715 PGMACCESSORIGIN_HM));
13716 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13717 }
13718 if (RT_FAILURE(rc))
13719 {
13720 rc = VERR_EM_INTERPRETER;
13721 break;
13722 }
13723 pMixedCtx->eip = 0;
13724 pMixedCtx->ip = aIretFrame[0];
13725 pMixedCtx->cs.Sel = aIretFrame[1];
13726 pMixedCtx->cs.ValidSel = aIretFrame[1];
13727 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
13728 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
13729 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
13730 pMixedCtx->sp += sizeof(aIretFrame);
13731 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13732 | HM_CHANGED_GUEST_SEGMENT_REGS
13733 | HM_CHANGED_GUEST_RSP
13734 | HM_CHANGED_GUEST_RFLAGS);
13735 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
13736 if ( !fDbgStepping
13737 && fGstStepping)
13738 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13739 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
13740 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
13741 break;
13742 }
13743
13744 case OP_INT:
13745 {
13746 uint16_t uVector = pDis->Param1.uValue & 0xff;
13747 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
13748 /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13749 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13750 break;
13751 }
13752
13753 case OP_INTO:
13754 {
13755 if (pMixedCtx->eflags.Bits.u1OF)
13756 {
13757 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
13758 /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13759 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13760 }
13761 else
13762 {
13763 pMixedCtx->eflags.Bits.u1RF = 0;
13764 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
13765 }
13766 break;
13767 }
13768
13769 default:
13770 {
13771 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
13772 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
13773 EMCODETYPE_SUPERVISOR);
13774 rc = VBOXSTRICTRC_VAL(rc2);
13775 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13776 /** @todo We have to set pending-debug exceptions here when the guest is
13777 * single-stepping depending on the instruction that was interpreted. */
13778 Log4(("#GP rc=%Rrc\n", rc));
13779 break;
13780 }
13781 }
13782 }
13783 else
13784 rc = VERR_EM_INTERPRETER;
13785
13786 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
13787 ("#GP Unexpected rc=%Rrc\n", rc));
13788 return rc;
13789}
13790
13791
13792/**
13793 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13794 * the exception reported in the VMX transient structure back into the VM.
13795 *
13796 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13797 * up-to-date.
13798 */
13799static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13800{
13801 RT_NOREF_PV(pMixedCtx);
13802 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13803#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13804 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13805 ("uVector=%#04x u32XcptBitmap=%#010RX32\n",
13806 VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13807#endif
13808
13809 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13810 hmR0VmxCheckExitDueToEventDelivery(). */
13811 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13812 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13813 AssertRCReturn(rc, rc);
13814 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13815
13816#ifdef DEBUG_ramshankar
13817 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13818 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13819 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13820#endif
13821
13822 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13823 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13824 return VINF_SUCCESS;
13825}
13826
13827
13828/**
13829 * VM-exit exception handler for \#PF (Page-fault exception).
13830 */
13831static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13832{
13833 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13834 PVM pVM = pVCpu->CTX_SUFF(pVM);
13835 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13836 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13837 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13838 AssertRCReturn(rc, rc);
13839
13840 if (!pVM->hm.s.fNestedPaging)
13841 { /* likely */ }
13842 else
13843 {
13844#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13845 Assert(pVCpu->hm.s.fUsingDebugLoop);
13846#endif
13847 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13848 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13849 {
13850 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13851 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13852 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
13853 }
13854 else
13855 {
13856 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13857 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13858 Log4(("Pending #DF due to vectoring #PF. NP\n"));
13859 }
13860 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13861 return rc;
13862 }
13863
13864 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13865 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13866 if (pVmxTransient->fVectoringPF)
13867 {
13868 Assert(pVCpu->hm.s.Event.fPending);
13869 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13870 }
13871
13872 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13873 AssertRCReturn(rc, rc);
13874
13875 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
13876 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
13877
13878 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13879 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
13880 (RTGCPTR)pVmxTransient->uExitQualification);
13881
13882 Log4(("#PF: rc=%Rrc\n", rc));
13883 if (rc == VINF_SUCCESS)
13884 {
13885#if 0
13886 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
13887 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
13888 * memory? We don't update the whole state here... */
13889 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13890 | HM_CHANGED_GUEST_RSP
13891 | HM_CHANGED_GUEST_RFLAGS
13892 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13893#else
13894 /*
13895 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13896 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13897 */
13898 /** @todo take advantage of CPUM changed flags instead of brute forcing. */
13899 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13900#endif
13901 TRPMResetTrap(pVCpu);
13902 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13903 return rc;
13904 }
13905
13906 if (rc == VINF_EM_RAW_GUEST_TRAP)
13907 {
13908 if (!pVmxTransient->fVectoringDoublePF)
13909 {
13910 /* It's a guest page fault and needs to be reflected to the guest. */
13911 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13912 TRPMResetTrap(pVCpu);
13913 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13914 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13915 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13916 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
13917 }
13918 else
13919 {
13920 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13921 TRPMResetTrap(pVCpu);
13922 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13923 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13924 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
13925 }
13926
13927 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13928 return VINF_SUCCESS;
13929 }
13930
13931 TRPMResetTrap(pVCpu);
13932 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13933 return rc;
13934}
13935
13936/** @} */
13937
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette