1 | /* $Id: HMVMXR0.cpp 71415 2018-03-21 09:29:22Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM VMX (Intel VT-x) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2012-2017 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_HM
|
---|
23 | #include <iprt/x86.h>
|
---|
24 | #include <iprt/asm-amd64-x86.h>
|
---|
25 | #include <iprt/thread.h>
|
---|
26 |
|
---|
27 | #include <VBox/vmm/pdmapi.h>
|
---|
28 | #include <VBox/vmm/dbgf.h>
|
---|
29 | #include <VBox/vmm/iem.h>
|
---|
30 | #include <VBox/vmm/iom.h>
|
---|
31 | #include <VBox/vmm/selm.h>
|
---|
32 | #include <VBox/vmm/tm.h>
|
---|
33 | #include <VBox/vmm/gim.h>
|
---|
34 | #include <VBox/vmm/apic.h>
|
---|
35 | #ifdef VBOX_WITH_REM
|
---|
36 | # include <VBox/vmm/rem.h>
|
---|
37 | #endif
|
---|
38 | #include "HMInternal.h"
|
---|
39 | #include <VBox/vmm/vm.h>
|
---|
40 | #include "HMVMXR0.h"
|
---|
41 | #include "dtrace/VBoxVMM.h"
|
---|
42 |
|
---|
43 | #define HMVMX_USE_IEM_EVENT_REFLECTION
|
---|
44 | #ifdef DEBUG_ramshankar
|
---|
45 | # define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
|
---|
46 | # define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
|
---|
47 | # define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
|
---|
48 | # define HMVMX_ALWAYS_CHECK_GUEST_STATE
|
---|
49 | # define HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
50 | # define HMVMX_ALWAYS_TRAP_PF
|
---|
51 | # define HMVMX_ALWAYS_SWAP_FPU_STATE
|
---|
52 | # define HMVMX_ALWAYS_FLUSH_TLB
|
---|
53 | # define HMVMX_ALWAYS_SWAP_EFER
|
---|
54 | #endif
|
---|
55 |
|
---|
56 |
|
---|
57 | /*********************************************************************************************************************************
|
---|
58 | * Defined Constants And Macros *
|
---|
59 | *********************************************************************************************************************************/
|
---|
60 | /** Use the function table. */
|
---|
61 | #define HMVMX_USE_FUNCTION_TABLE
|
---|
62 |
|
---|
63 | /** Determine which tagged-TLB flush handler to use. */
|
---|
64 | #define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
|
---|
65 | #define HMVMX_FLUSH_TAGGED_TLB_EPT 1
|
---|
66 | #define HMVMX_FLUSH_TAGGED_TLB_VPID 2
|
---|
67 | #define HMVMX_FLUSH_TAGGED_TLB_NONE 3
|
---|
68 |
|
---|
69 | /** @name Updated-guest-state flags.
|
---|
70 | * @{ */
|
---|
71 | #define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
|
---|
72 | #define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
|
---|
73 | #define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
|
---|
74 | #define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
|
---|
75 | #define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
|
---|
76 | #define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
|
---|
77 | #define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
|
---|
78 | #define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
|
---|
79 | #define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
|
---|
80 | #define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
|
---|
81 | #define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
|
---|
82 | #define HMVMX_UPDATED_GUEST_DR7 RT_BIT(11)
|
---|
83 | #define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
|
---|
84 | #define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
|
---|
85 | #define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
|
---|
86 | #define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
|
---|
87 | #define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
|
---|
88 | #define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
|
---|
89 | #define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
|
---|
90 | #define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
|
---|
91 | #define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
|
---|
92 | | HMVMX_UPDATED_GUEST_RSP \
|
---|
93 | | HMVMX_UPDATED_GUEST_RFLAGS \
|
---|
94 | | HMVMX_UPDATED_GUEST_CR0 \
|
---|
95 | | HMVMX_UPDATED_GUEST_CR3 \
|
---|
96 | | HMVMX_UPDATED_GUEST_CR4 \
|
---|
97 | | HMVMX_UPDATED_GUEST_GDTR \
|
---|
98 | | HMVMX_UPDATED_GUEST_IDTR \
|
---|
99 | | HMVMX_UPDATED_GUEST_LDTR \
|
---|
100 | | HMVMX_UPDATED_GUEST_TR \
|
---|
101 | | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
|
---|
102 | | HMVMX_UPDATED_GUEST_DR7 \
|
---|
103 | | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
|
---|
104 | | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
|
---|
105 | | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
|
---|
106 | | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
|
---|
107 | | HMVMX_UPDATED_GUEST_LAZY_MSRS \
|
---|
108 | | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
|
---|
109 | | HMVMX_UPDATED_GUEST_INTR_STATE \
|
---|
110 | | HMVMX_UPDATED_GUEST_APIC_STATE)
|
---|
111 | /** @} */
|
---|
112 |
|
---|
113 | /** @name
|
---|
114 | * Flags to skip redundant reads of some common VMCS fields that are not part of
|
---|
115 | * the guest-CPU state but are in the transient structure.
|
---|
116 | */
|
---|
117 | #define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
|
---|
118 | #define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
|
---|
119 | #define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
|
---|
120 | #define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
|
---|
121 | #define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
|
---|
122 | #define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
|
---|
123 | #define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
|
---|
124 | /** @} */
|
---|
125 |
|
---|
126 | /** @name
|
---|
127 | * States of the VMCS.
|
---|
128 | *
|
---|
129 | * This does not reflect all possible VMCS states but currently only those
|
---|
130 | * needed for maintaining the VMCS consistently even when thread-context hooks
|
---|
131 | * are used. Maybe later this can be extended (i.e. Nested Virtualization).
|
---|
132 | */
|
---|
133 | #define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
|
---|
134 | #define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
|
---|
135 | #define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
|
---|
136 | /** @} */
|
---|
137 |
|
---|
138 | /**
|
---|
139 | * Exception bitmap mask for real-mode guests (real-on-v86).
|
---|
140 | *
|
---|
141 | * We need to intercept all exceptions manually except:
|
---|
142 | * - \#NM, \#MF handled in hmR0VmxLoadSharedCR0().
|
---|
143 | * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
|
---|
144 | * due to bugs in Intel CPUs.
|
---|
145 | * - \#PF need not be intercepted even in real-mode if we have Nested Paging
|
---|
146 | * support.
|
---|
147 | */
|
---|
148 | #define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
|
---|
149 | | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
|
---|
150 | | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
|
---|
151 | | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
|
---|
152 | | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
|
---|
153 | /* RT_BIT(X86_XCPT_MF) always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
|
---|
154 | | RT_BIT(X86_XCPT_XF))
|
---|
155 |
|
---|
156 | /**
|
---|
157 | * Exception bitmap mask for all contributory exceptions.
|
---|
158 | *
|
---|
159 | * Page fault is deliberately excluded here as it's conditional as to whether
|
---|
160 | * it's contributory or benign. Page faults are handled separately.
|
---|
161 | */
|
---|
162 | #define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
|
---|
163 | | RT_BIT(X86_XCPT_DE))
|
---|
164 |
|
---|
165 | /** Maximum VM-instruction error number. */
|
---|
166 | #define HMVMX_INSTR_ERROR_MAX 28
|
---|
167 |
|
---|
168 | /** Profiling macro. */
|
---|
169 | #ifdef HM_PROFILE_EXIT_DISPATCH
|
---|
170 | # define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
|
---|
171 | # define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
|
---|
172 | #else
|
---|
173 | # define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
|
---|
174 | # define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
|
---|
175 | #endif
|
---|
176 |
|
---|
177 | /** Assert that preemption is disabled or covered by thread-context hooks. */
|
---|
178 | #define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
|
---|
179 | || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
180 |
|
---|
181 | /** Assert that we haven't migrated CPUs when thread-context hooks are not
|
---|
182 | * used. */
|
---|
183 | #define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
|
---|
184 | || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
|
---|
185 | ("Illegal migration! Entered on CPU %u Current %u\n", \
|
---|
186 | pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
|
---|
187 |
|
---|
188 | /** Helper macro for VM-exit handlers called unexpectedly. */
|
---|
189 | #define HMVMX_RETURN_UNEXPECTED_EXIT() \
|
---|
190 | do { \
|
---|
191 | pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
|
---|
192 | return VERR_VMX_UNEXPECTED_EXIT; \
|
---|
193 | } while (0)
|
---|
194 |
|
---|
195 |
|
---|
196 | /*********************************************************************************************************************************
|
---|
197 | * Structures and Typedefs *
|
---|
198 | *********************************************************************************************************************************/
|
---|
199 | /**
|
---|
200 | * VMX transient state.
|
---|
201 | *
|
---|
202 | * A state structure for holding miscellaneous information across
|
---|
203 | * VMX non-root operation and restored after the transition.
|
---|
204 | */
|
---|
205 | typedef struct VMXTRANSIENT
|
---|
206 | {
|
---|
207 | /** The host's rflags/eflags. */
|
---|
208 | RTCCUINTREG fEFlags;
|
---|
209 | #if HC_ARCH_BITS == 32
|
---|
210 | uint32_t u32Alignment0;
|
---|
211 | #endif
|
---|
212 | /** The guest's TPR value used for TPR shadowing. */
|
---|
213 | uint8_t u8GuestTpr;
|
---|
214 | /** Alignment. */
|
---|
215 | uint8_t abAlignment0[7];
|
---|
216 |
|
---|
217 | /** The basic VM-exit reason. */
|
---|
218 | uint16_t uExitReason;
|
---|
219 | /** Alignment. */
|
---|
220 | uint16_t u16Alignment0;
|
---|
221 | /** The VM-exit interruption error code. */
|
---|
222 | uint32_t uExitIntErrorCode;
|
---|
223 | /** The VM-exit exit code qualification. */
|
---|
224 | uint64_t uExitQualification;
|
---|
225 |
|
---|
226 | /** The VM-exit interruption-information field. */
|
---|
227 | uint32_t uExitIntInfo;
|
---|
228 | /** The VM-exit instruction-length field. */
|
---|
229 | uint32_t cbInstr;
|
---|
230 | /** The VM-exit instruction-information field. */
|
---|
231 | union
|
---|
232 | {
|
---|
233 | /** Plain unsigned int representation. */
|
---|
234 | uint32_t u;
|
---|
235 | /** INS and OUTS information. */
|
---|
236 | struct
|
---|
237 | {
|
---|
238 | uint32_t u7Reserved0 : 7;
|
---|
239 | /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
|
---|
240 | uint32_t u3AddrSize : 3;
|
---|
241 | uint32_t u5Reserved1 : 5;
|
---|
242 | /** The segment register (X86_SREG_XXX). */
|
---|
243 | uint32_t iSegReg : 3;
|
---|
244 | uint32_t uReserved2 : 14;
|
---|
245 | } StrIo;
|
---|
246 | /** INVEPT, INVVPID, INVPCID information. */
|
---|
247 | struct
|
---|
248 | {
|
---|
249 | /** Scaling; 0=no scaling, 1=scale-by-2, 2=scale-by-4, 3=scale-by-8. */
|
---|
250 | uint32_t u2Scaling : 2;
|
---|
251 | uint32_t u5Reserved0 : 5;
|
---|
252 | /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
|
---|
253 | uint32_t u3AddrSize : 3;
|
---|
254 | uint32_t u1Reserved0 : 1;
|
---|
255 | uint32_t u4Reserved0 : 4;
|
---|
256 | /** The segment register (X86_SREG_XXX). */
|
---|
257 | uint32_t iSegReg : 3;
|
---|
258 | /** The index register (X86_GREG_XXX). */
|
---|
259 | uint32_t iIdxReg : 4;
|
---|
260 | /** Set if index register is invalid. */
|
---|
261 | uint32_t fIdxRegValid : 1;
|
---|
262 | /** The base register (X86_GREG_XXX). */
|
---|
263 | uint32_t iBaseReg : 4;
|
---|
264 | /** Set if base register is invalid. */
|
---|
265 | uint32_t fBaseRegValid : 1;
|
---|
266 | /** Register 2 (X86_GREG_XXX). */
|
---|
267 | uint32_t iReg2 : 4;
|
---|
268 | } Inv;
|
---|
269 | } ExitInstrInfo;
|
---|
270 | /** Whether the VM-entry failed or not. */
|
---|
271 | bool fVMEntryFailed;
|
---|
272 | /** Alignment. */
|
---|
273 | uint8_t abAlignment1[3];
|
---|
274 |
|
---|
275 | /** The VM-entry interruption-information field. */
|
---|
276 | uint32_t uEntryIntInfo;
|
---|
277 | /** The VM-entry exception error code field. */
|
---|
278 | uint32_t uEntryXcptErrorCode;
|
---|
279 | /** The VM-entry instruction length field. */
|
---|
280 | uint32_t cbEntryInstr;
|
---|
281 |
|
---|
282 | /** IDT-vectoring information field. */
|
---|
283 | uint32_t uIdtVectoringInfo;
|
---|
284 | /** IDT-vectoring error code. */
|
---|
285 | uint32_t uIdtVectoringErrorCode;
|
---|
286 |
|
---|
287 | /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
|
---|
288 | uint32_t fVmcsFieldsRead;
|
---|
289 |
|
---|
290 | /** Whether the guest FPU was active at the time of VM-exit. */
|
---|
291 | bool fWasGuestFPUStateActive;
|
---|
292 | /** Whether the guest debug state was active at the time of VM-exit. */
|
---|
293 | bool fWasGuestDebugStateActive;
|
---|
294 | /** Whether the hyper debug state was active at the time of VM-exit. */
|
---|
295 | bool fWasHyperDebugStateActive;
|
---|
296 | /** Whether TSC-offsetting should be setup before VM-entry. */
|
---|
297 | bool fUpdateTscOffsettingAndPreemptTimer;
|
---|
298 | /** Whether the VM-exit was caused by a page-fault during delivery of a
|
---|
299 | * contributory exception or a page-fault. */
|
---|
300 | bool fVectoringDoublePF;
|
---|
301 | /** Whether the VM-exit was caused by a page-fault during delivery of an
|
---|
302 | * external interrupt or NMI. */
|
---|
303 | bool fVectoringPF;
|
---|
304 | } VMXTRANSIENT;
|
---|
305 | AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
|
---|
306 | AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
|
---|
307 | AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
|
---|
308 | AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
|
---|
309 | AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
|
---|
310 | /** Pointer to VMX transient state. */
|
---|
311 | typedef VMXTRANSIENT *PVMXTRANSIENT;
|
---|
312 |
|
---|
313 |
|
---|
314 | /**
|
---|
315 | * MSR-bitmap read permissions.
|
---|
316 | */
|
---|
317 | typedef enum VMXMSREXITREAD
|
---|
318 | {
|
---|
319 | /** Reading this MSR causes a VM-exit. */
|
---|
320 | VMXMSREXIT_INTERCEPT_READ = 0xb,
|
---|
321 | /** Reading this MSR does not cause a VM-exit. */
|
---|
322 | VMXMSREXIT_PASSTHRU_READ
|
---|
323 | } VMXMSREXITREAD;
|
---|
324 | /** Pointer to MSR-bitmap read permissions. */
|
---|
325 | typedef VMXMSREXITREAD* PVMXMSREXITREAD;
|
---|
326 |
|
---|
327 | /**
|
---|
328 | * MSR-bitmap write permissions.
|
---|
329 | */
|
---|
330 | typedef enum VMXMSREXITWRITE
|
---|
331 | {
|
---|
332 | /** Writing to this MSR causes a VM-exit. */
|
---|
333 | VMXMSREXIT_INTERCEPT_WRITE = 0xd,
|
---|
334 | /** Writing to this MSR does not cause a VM-exit. */
|
---|
335 | VMXMSREXIT_PASSTHRU_WRITE
|
---|
336 | } VMXMSREXITWRITE;
|
---|
337 | /** Pointer to MSR-bitmap write permissions. */
|
---|
338 | typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
|
---|
339 |
|
---|
340 |
|
---|
341 | /**
|
---|
342 | * VMX VM-exit handler.
|
---|
343 | *
|
---|
344 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
345 | * @param pVCpu The cross context virtual CPU structure.
|
---|
346 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
347 | * out-of-sync. Make sure to update the required
|
---|
348 | * fields before using them.
|
---|
349 | * @param pVmxTransient Pointer to the VMX-transient structure.
|
---|
350 | */
|
---|
351 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
352 | typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
353 | #else
|
---|
354 | typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
355 | /** Pointer to VM-exit handler. */
|
---|
356 | typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
|
---|
357 | #endif
|
---|
358 |
|
---|
359 | /**
|
---|
360 | * VMX VM-exit handler, non-strict status code.
|
---|
361 | *
|
---|
362 | * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
|
---|
363 | *
|
---|
364 | * @returns VBox status code, no informational status code returned.
|
---|
365 | * @param pVCpu The cross context virtual CPU structure.
|
---|
366 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
367 | * out-of-sync. Make sure to update the required
|
---|
368 | * fields before using them.
|
---|
369 | * @param pVmxTransient Pointer to the VMX-transient structure.
|
---|
370 | *
|
---|
371 | * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
|
---|
372 | * use of that status code will be replaced with VINF_EM_SOMETHING
|
---|
373 | * later when switching over to IEM.
|
---|
374 | */
|
---|
375 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
376 | typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
377 | #else
|
---|
378 | typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
|
---|
379 | #endif
|
---|
380 |
|
---|
381 |
|
---|
382 | /*********************************************************************************************************************************
|
---|
383 | * Internal Functions *
|
---|
384 | *********************************************************************************************************************************/
|
---|
385 | static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
|
---|
386 | static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
|
---|
387 | static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
|
---|
388 | static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
|
---|
389 | uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
|
---|
390 | bool fStepping, uint32_t *puIntState);
|
---|
391 | #if HC_ARCH_BITS == 32
|
---|
392 | static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
|
---|
393 | #endif
|
---|
394 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
395 | DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
|
---|
396 | # define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
|
---|
397 | # define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
|
---|
398 | #else
|
---|
399 | # define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
|
---|
400 | # define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
|
---|
401 | #endif
|
---|
402 |
|
---|
403 |
|
---|
404 | /** @name VM-exit handlers.
|
---|
405 | * @{
|
---|
406 | */
|
---|
407 | static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
|
---|
408 | static FNVMXEXITHANDLER hmR0VmxExitExtInt;
|
---|
409 | static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
|
---|
410 | static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
|
---|
411 | static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
|
---|
412 | static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
|
---|
413 | static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
|
---|
414 | static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
|
---|
415 | static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
|
---|
416 | static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
|
---|
417 | static FNVMXEXITHANDLER hmR0VmxExitCpuid;
|
---|
418 | static FNVMXEXITHANDLER hmR0VmxExitGetsec;
|
---|
419 | static FNVMXEXITHANDLER hmR0VmxExitHlt;
|
---|
420 | static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
|
---|
421 | static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
|
---|
422 | static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
|
---|
423 | static FNVMXEXITHANDLER hmR0VmxExitVmcall;
|
---|
424 | static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
|
---|
425 | static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
|
---|
426 | static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
|
---|
427 | static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
|
---|
428 | static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
|
---|
429 | static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
|
---|
430 | static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
|
---|
431 | static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
|
---|
432 | static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
|
---|
433 | static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
|
---|
434 | static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
|
---|
435 | static FNVMXEXITHANDLER hmR0VmxExitMwait;
|
---|
436 | static FNVMXEXITHANDLER hmR0VmxExitMtf;
|
---|
437 | static FNVMXEXITHANDLER hmR0VmxExitMonitor;
|
---|
438 | static FNVMXEXITHANDLER hmR0VmxExitPause;
|
---|
439 | static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
|
---|
440 | static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
|
---|
441 | static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
|
---|
442 | static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
|
---|
443 | static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
|
---|
444 | static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
|
---|
445 | static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
|
---|
446 | static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
|
---|
447 | static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
|
---|
448 | static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
|
---|
449 | static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
|
---|
450 | static FNVMXEXITHANDLER hmR0VmxExitRdrand;
|
---|
451 | static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
|
---|
452 | /** @} */
|
---|
453 |
|
---|
454 | static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
455 | static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
456 | static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
457 | static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
458 | static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
459 | static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
460 | static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
461 | static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
462 | static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
|
---|
463 |
|
---|
464 |
|
---|
465 | /*********************************************************************************************************************************
|
---|
466 | * Global Variables *
|
---|
467 | *********************************************************************************************************************************/
|
---|
468 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
469 |
|
---|
470 | /**
|
---|
471 | * VMX_EXIT dispatch table.
|
---|
472 | */
|
---|
473 | static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
|
---|
474 | {
|
---|
475 | /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
|
---|
476 | /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
|
---|
477 | /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
|
---|
478 | /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
|
---|
479 | /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
|
---|
480 | /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
|
---|
481 | /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
|
---|
482 | /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
|
---|
483 | /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
|
---|
484 | /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
|
---|
485 | /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
|
---|
486 | /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
|
---|
487 | /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
|
---|
488 | /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
|
---|
489 | /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
|
---|
490 | /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
|
---|
491 | /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
|
---|
492 | /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
|
---|
493 | /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
|
---|
494 | /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
|
---|
495 | /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
|
---|
496 | /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
|
---|
497 | /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
|
---|
498 | /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
|
---|
499 | /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
|
---|
500 | /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
|
---|
501 | /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
|
---|
502 | /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
|
---|
503 | /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
|
---|
504 | /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
|
---|
505 | /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
|
---|
506 | /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
|
---|
507 | /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
|
---|
508 | /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
|
---|
509 | /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
|
---|
510 | /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
511 | /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
|
---|
512 | /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
|
---|
513 | /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
514 | /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
|
---|
515 | /* 40 UNDEFINED */ hmR0VmxExitPause,
|
---|
516 | /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
|
---|
517 | /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
|
---|
518 | /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
|
---|
519 | /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
|
---|
520 | /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
521 | /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
|
---|
522 | /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
|
---|
523 | /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
|
---|
524 | /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
|
---|
525 | /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
|
---|
526 | /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
|
---|
527 | /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
|
---|
528 | /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
|
---|
529 | /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
|
---|
530 | /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
|
---|
531 | /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
|
---|
532 | /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
|
---|
533 | /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
|
---|
534 | /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
|
---|
535 | /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
|
---|
536 | /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
|
---|
537 | /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
|
---|
538 | /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
|
---|
539 | /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
|
---|
540 | };
|
---|
541 | #endif /* HMVMX_USE_FUNCTION_TABLE */
|
---|
542 |
|
---|
543 | #ifdef VBOX_STRICT
|
---|
544 | static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
|
---|
545 | {
|
---|
546 | /* 0 */ "(Not Used)",
|
---|
547 | /* 1 */ "VMCALL executed in VMX root operation.",
|
---|
548 | /* 2 */ "VMCLEAR with invalid physical address.",
|
---|
549 | /* 3 */ "VMCLEAR with VMXON pointer.",
|
---|
550 | /* 4 */ "VMLAUNCH with non-clear VMCS.",
|
---|
551 | /* 5 */ "VMRESUME with non-launched VMCS.",
|
---|
552 | /* 6 */ "VMRESUME after VMXOFF",
|
---|
553 | /* 7 */ "VM-entry with invalid control fields.",
|
---|
554 | /* 8 */ "VM-entry with invalid host state fields.",
|
---|
555 | /* 9 */ "VMPTRLD with invalid physical address.",
|
---|
556 | /* 10 */ "VMPTRLD with VMXON pointer.",
|
---|
557 | /* 11 */ "VMPTRLD with incorrect revision identifier.",
|
---|
558 | /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
|
---|
559 | /* 13 */ "VMWRITE to read-only VMCS component.",
|
---|
560 | /* 14 */ "(Not Used)",
|
---|
561 | /* 15 */ "VMXON executed in VMX root operation.",
|
---|
562 | /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
|
---|
563 | /* 17 */ "VM-entry with non-launched executing VMCS.",
|
---|
564 | /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
|
---|
565 | /* 19 */ "VMCALL with non-clear VMCS.",
|
---|
566 | /* 20 */ "VMCALL with invalid VM-exit control fields.",
|
---|
567 | /* 21 */ "(Not Used)",
|
---|
568 | /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
|
---|
569 | /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
|
---|
570 | /* 24 */ "VMCALL with invalid SMM-monitor features.",
|
---|
571 | /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
|
---|
572 | /* 26 */ "VM-entry with events blocked by MOV SS.",
|
---|
573 | /* 27 */ "(Not Used)",
|
---|
574 | /* 28 */ "Invalid operand to INVEPT/INVVPID."
|
---|
575 | };
|
---|
576 | #endif /* VBOX_STRICT */
|
---|
577 |
|
---|
578 |
|
---|
579 |
|
---|
580 | /**
|
---|
581 | * Updates the VM's last error record.
|
---|
582 | *
|
---|
583 | * If there was a VMX instruction error, reads the error data from the VMCS and
|
---|
584 | * updates VCPU's last error record as well.
|
---|
585 | *
|
---|
586 | * @param pVM The cross context VM structure.
|
---|
587 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
588 | * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
|
---|
589 | * VERR_VMX_INVALID_VMCS_FIELD.
|
---|
590 | * @param rc The error code.
|
---|
591 | */
|
---|
592 | static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
|
---|
593 | {
|
---|
594 | AssertPtr(pVM);
|
---|
595 | if ( rc == VERR_VMX_INVALID_VMCS_FIELD
|
---|
596 | || rc == VERR_VMX_UNABLE_TO_START_VM)
|
---|
597 | {
|
---|
598 | AssertPtrReturnVoid(pVCpu);
|
---|
599 | VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
|
---|
600 | }
|
---|
601 | pVM->hm.s.lLastError = rc;
|
---|
602 | }
|
---|
603 |
|
---|
604 |
|
---|
605 | /**
|
---|
606 | * Reads the VM-entry interruption-information field from the VMCS into the VMX
|
---|
607 | * transient structure.
|
---|
608 | *
|
---|
609 | * @returns VBox status code.
|
---|
610 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
611 | *
|
---|
612 | * @remarks No-long-jump zone!!!
|
---|
613 | */
|
---|
614 | DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
615 | {
|
---|
616 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
|
---|
617 | AssertRCReturn(rc, rc);
|
---|
618 | return VINF_SUCCESS;
|
---|
619 | }
|
---|
620 |
|
---|
621 |
|
---|
622 | #ifdef VBOX_STRICT
|
---|
623 | /**
|
---|
624 | * Reads the VM-entry exception error code field from the VMCS into
|
---|
625 | * the VMX transient structure.
|
---|
626 | *
|
---|
627 | * @returns VBox status code.
|
---|
628 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
629 | *
|
---|
630 | * @remarks No-long-jump zone!!!
|
---|
631 | */
|
---|
632 | DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
633 | {
|
---|
634 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
|
---|
635 | AssertRCReturn(rc, rc);
|
---|
636 | return VINF_SUCCESS;
|
---|
637 | }
|
---|
638 | #endif /* VBOX_STRICT */
|
---|
639 |
|
---|
640 |
|
---|
641 | #ifdef VBOX_STRICT
|
---|
642 | /**
|
---|
643 | * Reads the VM-entry exception error code field from the VMCS into
|
---|
644 | * the VMX transient structure.
|
---|
645 | *
|
---|
646 | * @returns VBox status code.
|
---|
647 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
648 | *
|
---|
649 | * @remarks No-long-jump zone!!!
|
---|
650 | */
|
---|
651 | DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
652 | {
|
---|
653 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
|
---|
654 | AssertRCReturn(rc, rc);
|
---|
655 | return VINF_SUCCESS;
|
---|
656 | }
|
---|
657 | #endif /* VBOX_STRICT */
|
---|
658 |
|
---|
659 |
|
---|
660 | /**
|
---|
661 | * Reads the VM-exit interruption-information field from the VMCS into the VMX
|
---|
662 | * transient structure.
|
---|
663 | *
|
---|
664 | * @returns VBox status code.
|
---|
665 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
666 | */
|
---|
667 | DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
668 | {
|
---|
669 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
|
---|
670 | {
|
---|
671 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
|
---|
672 | AssertRCReturn(rc, rc);
|
---|
673 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
|
---|
674 | }
|
---|
675 | return VINF_SUCCESS;
|
---|
676 | }
|
---|
677 |
|
---|
678 |
|
---|
679 | /**
|
---|
680 | * Reads the VM-exit interruption error code from the VMCS into the VMX
|
---|
681 | * transient structure.
|
---|
682 | *
|
---|
683 | * @returns VBox status code.
|
---|
684 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
685 | */
|
---|
686 | DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
687 | {
|
---|
688 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
|
---|
689 | {
|
---|
690 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
|
---|
691 | AssertRCReturn(rc, rc);
|
---|
692 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
|
---|
693 | }
|
---|
694 | return VINF_SUCCESS;
|
---|
695 | }
|
---|
696 |
|
---|
697 |
|
---|
698 | /**
|
---|
699 | * Reads the VM-exit instruction length field from the VMCS into the VMX
|
---|
700 | * transient structure.
|
---|
701 | *
|
---|
702 | * @returns VBox status code.
|
---|
703 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
704 | */
|
---|
705 | DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
706 | {
|
---|
707 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
|
---|
708 | {
|
---|
709 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
|
---|
710 | AssertRCReturn(rc, rc);
|
---|
711 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
|
---|
712 | }
|
---|
713 | return VINF_SUCCESS;
|
---|
714 | }
|
---|
715 |
|
---|
716 |
|
---|
717 | /**
|
---|
718 | * Reads the VM-exit instruction-information field from the VMCS into
|
---|
719 | * the VMX transient structure.
|
---|
720 | *
|
---|
721 | * @returns VBox status code.
|
---|
722 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
723 | */
|
---|
724 | DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
725 | {
|
---|
726 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
|
---|
727 | {
|
---|
728 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
|
---|
729 | AssertRCReturn(rc, rc);
|
---|
730 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
|
---|
731 | }
|
---|
732 | return VINF_SUCCESS;
|
---|
733 | }
|
---|
734 |
|
---|
735 |
|
---|
736 | /**
|
---|
737 | * Reads the exit code qualification from the VMCS into the VMX transient
|
---|
738 | * structure.
|
---|
739 | *
|
---|
740 | * @returns VBox status code.
|
---|
741 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
742 | * calling EMT. (Required for the VMCS cache case.)
|
---|
743 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
744 | */
|
---|
745 | DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
746 | {
|
---|
747 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
|
---|
748 | {
|
---|
749 | int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
|
---|
750 | AssertRCReturn(rc, rc);
|
---|
751 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
|
---|
752 | }
|
---|
753 | return VINF_SUCCESS;
|
---|
754 | }
|
---|
755 |
|
---|
756 |
|
---|
757 | /**
|
---|
758 | * Reads the IDT-vectoring information field from the VMCS into the VMX
|
---|
759 | * transient structure.
|
---|
760 | *
|
---|
761 | * @returns VBox status code.
|
---|
762 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
763 | *
|
---|
764 | * @remarks No-long-jump zone!!!
|
---|
765 | */
|
---|
766 | DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
767 | {
|
---|
768 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
|
---|
769 | {
|
---|
770 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
|
---|
771 | AssertRCReturn(rc, rc);
|
---|
772 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
|
---|
773 | }
|
---|
774 | return VINF_SUCCESS;
|
---|
775 | }
|
---|
776 |
|
---|
777 |
|
---|
778 | /**
|
---|
779 | * Reads the IDT-vectoring error code from the VMCS into the VMX
|
---|
780 | * transient structure.
|
---|
781 | *
|
---|
782 | * @returns VBox status code.
|
---|
783 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
784 | */
|
---|
785 | DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
786 | {
|
---|
787 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
|
---|
788 | {
|
---|
789 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
|
---|
790 | AssertRCReturn(rc, rc);
|
---|
791 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
|
---|
792 | }
|
---|
793 | return VINF_SUCCESS;
|
---|
794 | }
|
---|
795 |
|
---|
796 |
|
---|
797 | /**
|
---|
798 | * Enters VMX root mode operation on the current CPU.
|
---|
799 | *
|
---|
800 | * @returns VBox status code.
|
---|
801 | * @param pVM The cross context VM structure. Can be
|
---|
802 | * NULL, after a resume.
|
---|
803 | * @param HCPhysCpuPage Physical address of the VMXON region.
|
---|
804 | * @param pvCpuPage Pointer to the VMXON region.
|
---|
805 | */
|
---|
806 | static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
|
---|
807 | {
|
---|
808 | Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
|
---|
809 | Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
|
---|
810 | Assert(pvCpuPage);
|
---|
811 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
812 |
|
---|
813 | if (pVM)
|
---|
814 | {
|
---|
815 | /* Write the VMCS revision dword to the VMXON region. */
|
---|
816 | *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
|
---|
817 | }
|
---|
818 |
|
---|
819 | /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
|
---|
820 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
821 |
|
---|
822 | /* Enable the VMX bit in CR4 if necessary. */
|
---|
823 | RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
|
---|
824 |
|
---|
825 | /* Enter VMX root mode. */
|
---|
826 | int rc = VMXEnable(HCPhysCpuPage);
|
---|
827 | if (RT_FAILURE(rc))
|
---|
828 | {
|
---|
829 | if (!(uOldCr4 & X86_CR4_VMXE))
|
---|
830 | SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
|
---|
831 |
|
---|
832 | if (pVM)
|
---|
833 | pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
|
---|
834 | }
|
---|
835 |
|
---|
836 | /* Restore interrupts. */
|
---|
837 | ASMSetFlags(fEFlags);
|
---|
838 | return rc;
|
---|
839 | }
|
---|
840 |
|
---|
841 |
|
---|
842 | /**
|
---|
843 | * Exits VMX root mode operation on the current CPU.
|
---|
844 | *
|
---|
845 | * @returns VBox status code.
|
---|
846 | */
|
---|
847 | static int hmR0VmxLeaveRootMode(void)
|
---|
848 | {
|
---|
849 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
850 |
|
---|
851 | /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
|
---|
852 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
853 |
|
---|
854 | /* If we're for some reason not in VMX root mode, then don't leave it. */
|
---|
855 | RTCCUINTREG uHostCR4 = ASMGetCR4();
|
---|
856 |
|
---|
857 | int rc;
|
---|
858 | if (uHostCR4 & X86_CR4_VMXE)
|
---|
859 | {
|
---|
860 | /* Exit VMX root mode and clear the VMX bit in CR4. */
|
---|
861 | VMXDisable();
|
---|
862 | SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
|
---|
863 | rc = VINF_SUCCESS;
|
---|
864 | }
|
---|
865 | else
|
---|
866 | rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
|
---|
867 |
|
---|
868 | /* Restore interrupts. */
|
---|
869 | ASMSetFlags(fEFlags);
|
---|
870 | return rc;
|
---|
871 | }
|
---|
872 |
|
---|
873 |
|
---|
874 | /**
|
---|
875 | * Allocates and maps one physically contiguous page. The allocated page is
|
---|
876 | * zero'd out. (Used by various VT-x structures).
|
---|
877 | *
|
---|
878 | * @returns IPRT status code.
|
---|
879 | * @param pMemObj Pointer to the ring-0 memory object.
|
---|
880 | * @param ppVirt Where to store the virtual address of the
|
---|
881 | * allocation.
|
---|
882 | * @param pHCPhys Where to store the physical address of the
|
---|
883 | * allocation.
|
---|
884 | */
|
---|
885 | DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
|
---|
886 | {
|
---|
887 | AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
|
---|
888 | AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
|
---|
889 | AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
|
---|
890 |
|
---|
891 | int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
|
---|
892 | if (RT_FAILURE(rc))
|
---|
893 | return rc;
|
---|
894 | *ppVirt = RTR0MemObjAddress(*pMemObj);
|
---|
895 | *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
|
---|
896 | ASMMemZero32(*ppVirt, PAGE_SIZE);
|
---|
897 | return VINF_SUCCESS;
|
---|
898 | }
|
---|
899 |
|
---|
900 |
|
---|
901 | /**
|
---|
902 | * Frees and unmaps an allocated physical page.
|
---|
903 | *
|
---|
904 | * @param pMemObj Pointer to the ring-0 memory object.
|
---|
905 | * @param ppVirt Where to re-initialize the virtual address of
|
---|
906 | * allocation as 0.
|
---|
907 | * @param pHCPhys Where to re-initialize the physical address of the
|
---|
908 | * allocation as 0.
|
---|
909 | */
|
---|
910 | DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
|
---|
911 | {
|
---|
912 | AssertPtr(pMemObj);
|
---|
913 | AssertPtr(ppVirt);
|
---|
914 | AssertPtr(pHCPhys);
|
---|
915 | if (*pMemObj != NIL_RTR0MEMOBJ)
|
---|
916 | {
|
---|
917 | int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
|
---|
918 | AssertRC(rc);
|
---|
919 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
920 | *ppVirt = 0;
|
---|
921 | *pHCPhys = 0;
|
---|
922 | }
|
---|
923 | }
|
---|
924 |
|
---|
925 |
|
---|
926 | /**
|
---|
927 | * Worker function to free VT-x related structures.
|
---|
928 | *
|
---|
929 | * @returns IPRT status code.
|
---|
930 | * @param pVM The cross context VM structure.
|
---|
931 | */
|
---|
932 | static void hmR0VmxStructsFree(PVM pVM)
|
---|
933 | {
|
---|
934 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
935 | {
|
---|
936 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
937 | AssertPtr(pVCpu);
|
---|
938 |
|
---|
939 | hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
|
---|
940 | hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
941 |
|
---|
942 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
943 | hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
|
---|
944 |
|
---|
945 | hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
946 | }
|
---|
947 |
|
---|
948 | hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
949 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
950 | hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
|
---|
951 | #endif
|
---|
952 | }
|
---|
953 |
|
---|
954 |
|
---|
955 | /**
|
---|
956 | * Worker function to allocate VT-x related VM structures.
|
---|
957 | *
|
---|
958 | * @returns IPRT status code.
|
---|
959 | * @param pVM The cross context VM structure.
|
---|
960 | */
|
---|
961 | static int hmR0VmxStructsAlloc(PVM pVM)
|
---|
962 | {
|
---|
963 | /*
|
---|
964 | * Initialize members up-front so we can cleanup properly on allocation failure.
|
---|
965 | */
|
---|
966 | #define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
|
---|
967 | pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
|
---|
968 | pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
|
---|
969 | pVM->hm.s.vmx.HCPhys##a_Name = 0;
|
---|
970 |
|
---|
971 | #define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
|
---|
972 | pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
|
---|
973 | pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
|
---|
974 | pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
|
---|
975 |
|
---|
976 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
977 | VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
|
---|
978 | #endif
|
---|
979 | VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
|
---|
980 |
|
---|
981 | AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
|
---|
982 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
983 | {
|
---|
984 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
985 | VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
|
---|
986 | VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
|
---|
987 | VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
|
---|
988 | VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
|
---|
989 | }
|
---|
990 | #undef VMXLOCAL_INIT_VMCPU_MEMOBJ
|
---|
991 | #undef VMXLOCAL_INIT_VM_MEMOBJ
|
---|
992 |
|
---|
993 | /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
|
---|
994 | AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
|
---|
995 | (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
|
---|
996 | VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
|
---|
997 |
|
---|
998 | /*
|
---|
999 | * Allocate all the VT-x structures.
|
---|
1000 | */
|
---|
1001 | int rc = VINF_SUCCESS;
|
---|
1002 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
1003 | rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
|
---|
1004 | if (RT_FAILURE(rc))
|
---|
1005 | goto cleanup;
|
---|
1006 | strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
|
---|
1007 | *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
|
---|
1008 | #endif
|
---|
1009 |
|
---|
1010 | /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
|
---|
1011 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
|
---|
1012 | {
|
---|
1013 | rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
|
---|
1014 | &pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
1015 | if (RT_FAILURE(rc))
|
---|
1016 | goto cleanup;
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 | /*
|
---|
1020 | * Initialize per-VCPU VT-x structures.
|
---|
1021 | */
|
---|
1022 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
1023 | {
|
---|
1024 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
1025 | AssertPtr(pVCpu);
|
---|
1026 |
|
---|
1027 | /* Allocate the VM control structure (VMCS). */
|
---|
1028 | rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
1029 | if (RT_FAILURE(rc))
|
---|
1030 | goto cleanup;
|
---|
1031 |
|
---|
1032 | /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
|
---|
1033 | if ( PDMHasApic(pVM)
|
---|
1034 | && (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW))
|
---|
1035 | {
|
---|
1036 | rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
|
---|
1037 | NULL /* pR3Ptr */, NULL /* pRCPtr */);
|
---|
1038 | if (RT_FAILURE(rc))
|
---|
1039 | goto cleanup;
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 | /*
|
---|
1043 | * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
|
---|
1044 | * transparent accesses of specific MSRs.
|
---|
1045 | *
|
---|
1046 | * If the condition for enabling MSR bitmaps changes here, don't forget to
|
---|
1047 | * update HMAreMsrBitmapsAvailable().
|
---|
1048 | */
|
---|
1049 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
1050 | {
|
---|
1051 | rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
|
---|
1052 | &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
|
---|
1053 | if (RT_FAILURE(rc))
|
---|
1054 | goto cleanup;
|
---|
1055 | ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
|
---|
1059 | rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
1060 | if (RT_FAILURE(rc))
|
---|
1061 | goto cleanup;
|
---|
1062 |
|
---|
1063 | /* Allocate the VM-exit MSR-load page for the host MSRs. */
|
---|
1064 | rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
|
---|
1065 | if (RT_FAILURE(rc))
|
---|
1066 | goto cleanup;
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | return VINF_SUCCESS;
|
---|
1070 |
|
---|
1071 | cleanup:
|
---|
1072 | hmR0VmxStructsFree(pVM);
|
---|
1073 | return rc;
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 |
|
---|
1077 | /**
|
---|
1078 | * Does global VT-x initialization (called during module initialization).
|
---|
1079 | *
|
---|
1080 | * @returns VBox status code.
|
---|
1081 | */
|
---|
1082 | VMMR0DECL(int) VMXR0GlobalInit(void)
|
---|
1083 | {
|
---|
1084 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
1085 | AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
|
---|
1086 | # ifdef VBOX_STRICT
|
---|
1087 | for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
|
---|
1088 | Assert(g_apfnVMExitHandlers[i]);
|
---|
1089 | # endif
|
---|
1090 | #endif
|
---|
1091 | return VINF_SUCCESS;
|
---|
1092 | }
|
---|
1093 |
|
---|
1094 |
|
---|
1095 | /**
|
---|
1096 | * Does global VT-x termination (called during module termination).
|
---|
1097 | */
|
---|
1098 | VMMR0DECL(void) VMXR0GlobalTerm()
|
---|
1099 | {
|
---|
1100 | /* Nothing to do currently. */
|
---|
1101 | }
|
---|
1102 |
|
---|
1103 |
|
---|
1104 | /**
|
---|
1105 | * Sets up and activates VT-x on the current CPU.
|
---|
1106 | *
|
---|
1107 | * @returns VBox status code.
|
---|
1108 | * @param pCpu Pointer to the global CPU info struct.
|
---|
1109 | * @param pVM The cross context VM structure. Can be
|
---|
1110 | * NULL after a host resume operation.
|
---|
1111 | * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
|
---|
1112 | * fEnabledByHost is @c true).
|
---|
1113 | * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
|
---|
1114 | * @a fEnabledByHost is @c true).
|
---|
1115 | * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
|
---|
1116 | * enable VT-x on the host.
|
---|
1117 | * @param pvMsrs Opaque pointer to VMXMSRS struct.
|
---|
1118 | */
|
---|
1119 | VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
|
---|
1120 | void *pvMsrs)
|
---|
1121 | {
|
---|
1122 | Assert(pCpu);
|
---|
1123 | Assert(pvMsrs);
|
---|
1124 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1125 |
|
---|
1126 | /* Enable VT-x if it's not already enabled by the host. */
|
---|
1127 | if (!fEnabledByHost)
|
---|
1128 | {
|
---|
1129 | int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
|
---|
1130 | if (RT_FAILURE(rc))
|
---|
1131 | return rc;
|
---|
1132 | }
|
---|
1133 |
|
---|
1134 | /*
|
---|
1135 | * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
|
---|
1136 | * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
|
---|
1137 | */
|
---|
1138 | PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
|
---|
1139 | if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
|
---|
1140 | {
|
---|
1141 | hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
|
---|
1142 | pCpu->fFlushAsidBeforeUse = false;
|
---|
1143 | }
|
---|
1144 | else
|
---|
1145 | pCpu->fFlushAsidBeforeUse = true;
|
---|
1146 |
|
---|
1147 | /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
|
---|
1148 | ++pCpu->cTlbFlushes;
|
---|
1149 |
|
---|
1150 | return VINF_SUCCESS;
|
---|
1151 | }
|
---|
1152 |
|
---|
1153 |
|
---|
1154 | /**
|
---|
1155 | * Deactivates VT-x on the current CPU.
|
---|
1156 | *
|
---|
1157 | * @returns VBox status code.
|
---|
1158 | * @param pCpu Pointer to the global CPU info struct.
|
---|
1159 | * @param pvCpuPage Pointer to the VMXON region.
|
---|
1160 | * @param HCPhysCpuPage Physical address of the VMXON region.
|
---|
1161 | *
|
---|
1162 | * @remarks This function should never be called when SUPR0EnableVTx() or
|
---|
1163 | * similar was used to enable VT-x on the host.
|
---|
1164 | */
|
---|
1165 | VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
1166 | {
|
---|
1167 | NOREF(pCpu);
|
---|
1168 | NOREF(pvCpuPage);
|
---|
1169 | NOREF(HCPhysCpuPage);
|
---|
1170 |
|
---|
1171 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1172 | return hmR0VmxLeaveRootMode();
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 |
|
---|
1176 | /**
|
---|
1177 | * Sets the permission bits for the specified MSR in the MSR bitmap.
|
---|
1178 | *
|
---|
1179 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1180 | * @param uMsr The MSR value.
|
---|
1181 | * @param enmRead Whether reading this MSR causes a VM-exit.
|
---|
1182 | * @param enmWrite Whether writing this MSR causes a VM-exit.
|
---|
1183 | */
|
---|
1184 | static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
|
---|
1185 | {
|
---|
1186 | int32_t iBit;
|
---|
1187 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
|
---|
1188 |
|
---|
1189 | /*
|
---|
1190 | * Layout:
|
---|
1191 | * 0x000 - 0x3ff - Low MSR read bits
|
---|
1192 | * 0x400 - 0x7ff - High MSR read bits
|
---|
1193 | * 0x800 - 0xbff - Low MSR write bits
|
---|
1194 | * 0xc00 - 0xfff - High MSR write bits
|
---|
1195 | */
|
---|
1196 | if (uMsr <= 0x00001FFF)
|
---|
1197 | iBit = uMsr;
|
---|
1198 | else if (uMsr - UINT32_C(0xC0000000) <= UINT32_C(0x00001FFF))
|
---|
1199 | {
|
---|
1200 | iBit = uMsr - UINT32_C(0xC0000000);
|
---|
1201 | pbMsrBitmap += 0x400;
|
---|
1202 | }
|
---|
1203 | else
|
---|
1204 | AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
|
---|
1205 |
|
---|
1206 | Assert(iBit <= 0x1fff);
|
---|
1207 | if (enmRead == VMXMSREXIT_INTERCEPT_READ)
|
---|
1208 | ASMBitSet(pbMsrBitmap, iBit);
|
---|
1209 | else
|
---|
1210 | ASMBitClear(pbMsrBitmap, iBit);
|
---|
1211 |
|
---|
1212 | if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
|
---|
1213 | ASMBitSet(pbMsrBitmap + 0x800, iBit);
|
---|
1214 | else
|
---|
1215 | ASMBitClear(pbMsrBitmap + 0x800, iBit);
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 |
|
---|
1219 | #ifdef VBOX_STRICT
|
---|
1220 | /**
|
---|
1221 | * Gets the permission bits for the specified MSR in the MSR bitmap.
|
---|
1222 | *
|
---|
1223 | * @returns VBox status code.
|
---|
1224 | * @retval VINF_SUCCESS if the specified MSR is found.
|
---|
1225 | * @retval VERR_NOT_FOUND if the specified MSR is not found.
|
---|
1226 | * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
|
---|
1227 | *
|
---|
1228 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1229 | * @param uMsr The MSR.
|
---|
1230 | * @param penmRead Where to store the read permissions.
|
---|
1231 | * @param penmWrite Where to store the write permissions.
|
---|
1232 | */
|
---|
1233 | static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
|
---|
1234 | {
|
---|
1235 | AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
|
---|
1236 | AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
|
---|
1237 | int32_t iBit;
|
---|
1238 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
|
---|
1239 |
|
---|
1240 | /* See hmR0VmxSetMsrPermission() for the layout. */
|
---|
1241 | if (uMsr <= 0x00001FFF)
|
---|
1242 | iBit = uMsr;
|
---|
1243 | else if ( uMsr >= 0xC0000000
|
---|
1244 | && uMsr <= 0xC0001FFF)
|
---|
1245 | {
|
---|
1246 | iBit = (uMsr - 0xC0000000);
|
---|
1247 | pbMsrBitmap += 0x400;
|
---|
1248 | }
|
---|
1249 | else
|
---|
1250 | AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
|
---|
1251 |
|
---|
1252 | Assert(iBit <= 0x1fff);
|
---|
1253 | if (ASMBitTest(pbMsrBitmap, iBit))
|
---|
1254 | *penmRead = VMXMSREXIT_INTERCEPT_READ;
|
---|
1255 | else
|
---|
1256 | *penmRead = VMXMSREXIT_PASSTHRU_READ;
|
---|
1257 |
|
---|
1258 | if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
|
---|
1259 | *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
|
---|
1260 | else
|
---|
1261 | *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
|
---|
1262 | return VINF_SUCCESS;
|
---|
1263 | }
|
---|
1264 | #endif /* VBOX_STRICT */
|
---|
1265 |
|
---|
1266 |
|
---|
1267 | /**
|
---|
1268 | * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
|
---|
1269 | * area.
|
---|
1270 | *
|
---|
1271 | * @returns VBox status code.
|
---|
1272 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1273 | * @param cMsrs The number of MSRs.
|
---|
1274 | */
|
---|
1275 | DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
|
---|
1276 | {
|
---|
1277 | /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
|
---|
1278 | uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
|
---|
1279 | if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
|
---|
1280 | {
|
---|
1281 | LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
|
---|
1282 | pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
|
---|
1283 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 | /* Update number of guest MSRs to load/store across the world-switch. */
|
---|
1287 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
|
---|
1288 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
|
---|
1289 |
|
---|
1290 | /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
|
---|
1291 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
|
---|
1292 | AssertRCReturn(rc, rc);
|
---|
1293 |
|
---|
1294 | /* Update the VCPU's copy of the MSR count. */
|
---|
1295 | pVCpu->hm.s.vmx.cMsrs = cMsrs;
|
---|
1296 |
|
---|
1297 | return VINF_SUCCESS;
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 |
|
---|
1301 | /**
|
---|
1302 | * Adds a new (or updates the value of an existing) guest/host MSR
|
---|
1303 | * pair to be swapped during the world-switch as part of the
|
---|
1304 | * auto-load/store MSR area in the VMCS.
|
---|
1305 | *
|
---|
1306 | * @returns VBox status code.
|
---|
1307 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1308 | * @param uMsr The MSR.
|
---|
1309 | * @param uGuestMsrValue Value of the guest MSR.
|
---|
1310 | * @param fUpdateHostMsr Whether to update the value of the host MSR if
|
---|
1311 | * necessary.
|
---|
1312 | * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
|
---|
1313 | * its value was updated. Optional, can be NULL.
|
---|
1314 | */
|
---|
1315 | static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
|
---|
1316 | bool *pfAddedAndUpdated)
|
---|
1317 | {
|
---|
1318 | PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
1319 | uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
|
---|
1320 | uint32_t i;
|
---|
1321 | for (i = 0; i < cMsrs; i++)
|
---|
1322 | {
|
---|
1323 | if (pGuestMsr->u32Msr == uMsr)
|
---|
1324 | break;
|
---|
1325 | pGuestMsr++;
|
---|
1326 | }
|
---|
1327 |
|
---|
1328 | bool fAdded = false;
|
---|
1329 | if (i == cMsrs)
|
---|
1330 | {
|
---|
1331 | ++cMsrs;
|
---|
1332 | int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
|
---|
1333 | AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
|
---|
1334 |
|
---|
1335 | /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
|
---|
1336 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
1337 | hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1338 |
|
---|
1339 | fAdded = true;
|
---|
1340 | }
|
---|
1341 |
|
---|
1342 | /* Update the MSR values in the auto-load/store MSR area. */
|
---|
1343 | pGuestMsr->u32Msr = uMsr;
|
---|
1344 | pGuestMsr->u64Value = uGuestMsrValue;
|
---|
1345 |
|
---|
1346 | /* Create/update the MSR slot in the host MSR area. */
|
---|
1347 | PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
|
---|
1348 | pHostMsr += i;
|
---|
1349 | pHostMsr->u32Msr = uMsr;
|
---|
1350 |
|
---|
1351 | /*
|
---|
1352 | * Update the host MSR only when requested by the caller AND when we're
|
---|
1353 | * adding it to the auto-load/store area. Otherwise, it would have been
|
---|
1354 | * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
|
---|
1355 | */
|
---|
1356 | bool fUpdatedMsrValue = false;
|
---|
1357 | if ( fAdded
|
---|
1358 | && fUpdateHostMsr)
|
---|
1359 | {
|
---|
1360 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1361 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1362 | pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
|
---|
1363 | fUpdatedMsrValue = true;
|
---|
1364 | }
|
---|
1365 |
|
---|
1366 | if (pfAddedAndUpdated)
|
---|
1367 | *pfAddedAndUpdated = fUpdatedMsrValue;
|
---|
1368 | return VINF_SUCCESS;
|
---|
1369 | }
|
---|
1370 |
|
---|
1371 |
|
---|
1372 | /**
|
---|
1373 | * Removes a guest/host MSR pair to be swapped during the world-switch from the
|
---|
1374 | * auto-load/store MSR area in the VMCS.
|
---|
1375 | *
|
---|
1376 | * @returns VBox status code.
|
---|
1377 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1378 | * @param uMsr The MSR.
|
---|
1379 | */
|
---|
1380 | static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
|
---|
1381 | {
|
---|
1382 | PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
1383 | uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
|
---|
1384 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
1385 | {
|
---|
1386 | /* Find the MSR. */
|
---|
1387 | if (pGuestMsr->u32Msr == uMsr)
|
---|
1388 | {
|
---|
1389 | /* If it's the last MSR, simply reduce the count. */
|
---|
1390 | if (i == cMsrs - 1)
|
---|
1391 | {
|
---|
1392 | --cMsrs;
|
---|
1393 | break;
|
---|
1394 | }
|
---|
1395 |
|
---|
1396 | /* Remove it by swapping the last MSR in place of it, and reducing the count. */
|
---|
1397 | PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
1398 | pLastGuestMsr += cMsrs - 1;
|
---|
1399 | pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
|
---|
1400 | pGuestMsr->u64Value = pLastGuestMsr->u64Value;
|
---|
1401 |
|
---|
1402 | PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
|
---|
1403 | PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
|
---|
1404 | pLastHostMsr += cMsrs - 1;
|
---|
1405 | pHostMsr->u32Msr = pLastHostMsr->u32Msr;
|
---|
1406 | pHostMsr->u64Value = pLastHostMsr->u64Value;
|
---|
1407 | --cMsrs;
|
---|
1408 | break;
|
---|
1409 | }
|
---|
1410 | pGuestMsr++;
|
---|
1411 | }
|
---|
1412 |
|
---|
1413 | /* Update the VMCS if the count changed (meaning the MSR was found). */
|
---|
1414 | if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
|
---|
1415 | {
|
---|
1416 | int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
|
---|
1417 | AssertRCReturn(rc, rc);
|
---|
1418 |
|
---|
1419 | /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
|
---|
1420 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
1421 | hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
|
---|
1422 |
|
---|
1423 | Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
|
---|
1424 | return VINF_SUCCESS;
|
---|
1425 | }
|
---|
1426 |
|
---|
1427 | return VERR_NOT_FOUND;
|
---|
1428 | }
|
---|
1429 |
|
---|
1430 |
|
---|
1431 | /**
|
---|
1432 | * Checks if the specified guest MSR is part of the auto-load/store area in
|
---|
1433 | * the VMCS.
|
---|
1434 | *
|
---|
1435 | * @returns true if found, false otherwise.
|
---|
1436 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1437 | * @param uMsr The MSR to find.
|
---|
1438 | */
|
---|
1439 | static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
|
---|
1440 | {
|
---|
1441 | PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
1442 | uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
|
---|
1443 |
|
---|
1444 | for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
|
---|
1445 | {
|
---|
1446 | if (pGuestMsr->u32Msr == uMsr)
|
---|
1447 | return true;
|
---|
1448 | }
|
---|
1449 | return false;
|
---|
1450 | }
|
---|
1451 |
|
---|
1452 |
|
---|
1453 | /**
|
---|
1454 | * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
|
---|
1455 | *
|
---|
1456 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1457 | *
|
---|
1458 | * @remarks No-long-jump zone!!!
|
---|
1459 | */
|
---|
1460 | static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
|
---|
1461 | {
|
---|
1462 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1463 | PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
|
---|
1464 | PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
1465 | uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
|
---|
1466 |
|
---|
1467 | for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
|
---|
1468 | {
|
---|
1469 | AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
|
---|
1470 |
|
---|
1471 | /*
|
---|
1472 | * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
|
---|
1473 | * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
|
---|
1474 | */
|
---|
1475 | if (pHostMsr->u32Msr == MSR_K6_EFER)
|
---|
1476 | pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
|
---|
1477 | else
|
---|
1478 | pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
|
---|
1479 | }
|
---|
1480 |
|
---|
1481 | pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
|
---|
1482 | }
|
---|
1483 |
|
---|
1484 |
|
---|
1485 | /**
|
---|
1486 | * Saves a set of host MSRs to allow read/write passthru access to the guest and
|
---|
1487 | * perform lazy restoration of the host MSRs while leaving VT-x.
|
---|
1488 | *
|
---|
1489 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1490 | *
|
---|
1491 | * @remarks No-long-jump zone!!!
|
---|
1492 | */
|
---|
1493 | static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
|
---|
1494 | {
|
---|
1495 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1496 |
|
---|
1497 | /*
|
---|
1498 | * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
|
---|
1499 | */
|
---|
1500 | if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
|
---|
1501 | {
|
---|
1502 | Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
|
---|
1503 | #if HC_ARCH_BITS == 64
|
---|
1504 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
|
---|
1505 | {
|
---|
1506 | pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
|
---|
1507 | pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
|
---|
1508 | pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
|
---|
1509 | pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
|
---|
1510 | }
|
---|
1511 | #endif
|
---|
1512 | pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
|
---|
1513 | }
|
---|
1514 | }
|
---|
1515 |
|
---|
1516 |
|
---|
1517 | /**
|
---|
1518 | * Checks whether the MSR belongs to the set of guest MSRs that we restore
|
---|
1519 | * lazily while leaving VT-x.
|
---|
1520 | *
|
---|
1521 | * @returns true if it does, false otherwise.
|
---|
1522 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1523 | * @param uMsr The MSR to check.
|
---|
1524 | */
|
---|
1525 | static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
|
---|
1526 | {
|
---|
1527 | NOREF(pVCpu);
|
---|
1528 | #if HC_ARCH_BITS == 64
|
---|
1529 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
|
---|
1530 | {
|
---|
1531 | switch (uMsr)
|
---|
1532 | {
|
---|
1533 | case MSR_K8_LSTAR:
|
---|
1534 | case MSR_K6_STAR:
|
---|
1535 | case MSR_K8_SF_MASK:
|
---|
1536 | case MSR_K8_KERNEL_GS_BASE:
|
---|
1537 | return true;
|
---|
1538 | }
|
---|
1539 | }
|
---|
1540 | #else
|
---|
1541 | RT_NOREF(pVCpu, uMsr);
|
---|
1542 | #endif
|
---|
1543 | return false;
|
---|
1544 | }
|
---|
1545 |
|
---|
1546 |
|
---|
1547 | /**
|
---|
1548 | * Saves a set of guest MSRs back into the guest-CPU context.
|
---|
1549 | *
|
---|
1550 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1551 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
1552 | * out-of-sync. Make sure to update the required fields
|
---|
1553 | * before using them.
|
---|
1554 | *
|
---|
1555 | * @remarks No-long-jump zone!!!
|
---|
1556 | */
|
---|
1557 | static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
1558 | {
|
---|
1559 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1560 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1561 |
|
---|
1562 | if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
1563 | {
|
---|
1564 | Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
|
---|
1565 | #if HC_ARCH_BITS == 64
|
---|
1566 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
|
---|
1567 | {
|
---|
1568 | pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
|
---|
1569 | pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
|
---|
1570 | pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
|
---|
1571 | pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
|
---|
1572 | }
|
---|
1573 | #else
|
---|
1574 | NOREF(pMixedCtx);
|
---|
1575 | #endif
|
---|
1576 | }
|
---|
1577 | }
|
---|
1578 |
|
---|
1579 |
|
---|
1580 | /**
|
---|
1581 | * Loads a set of guests MSRs to allow read/passthru to the guest.
|
---|
1582 | *
|
---|
1583 | * The name of this function is slightly confusing. This function does NOT
|
---|
1584 | * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
|
---|
1585 | * common prefix for functions dealing with "lazy restoration" of the shared
|
---|
1586 | * MSRs.
|
---|
1587 | *
|
---|
1588 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1589 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
1590 | * out-of-sync. Make sure to update the required fields
|
---|
1591 | * before using them.
|
---|
1592 | *
|
---|
1593 | * @remarks No-long-jump zone!!!
|
---|
1594 | */
|
---|
1595 | static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
1596 | {
|
---|
1597 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1598 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1599 |
|
---|
1600 | Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
|
---|
1601 | #if HC_ARCH_BITS == 64
|
---|
1602 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
|
---|
1603 | {
|
---|
1604 | /*
|
---|
1605 | * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
|
---|
1606 | * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
|
---|
1607 | * we can skip a few MSR writes.
|
---|
1608 | *
|
---|
1609 | * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
|
---|
1610 | * guest MSR values in the guest-CPU context might be different to what's currently
|
---|
1611 | * loaded in the CPU. In either case, we need to write the new guest MSR values to the
|
---|
1612 | * CPU, see @bugref{8728}.
|
---|
1613 | */
|
---|
1614 | if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
1615 | && pMixedCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
|
---|
1616 | && pMixedCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
|
---|
1617 | && pMixedCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
|
---|
1618 | && pMixedCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
|
---|
1619 | {
|
---|
1620 | #ifdef VBOX_STRICT
|
---|
1621 | Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pMixedCtx->msrKERNELGSBASE);
|
---|
1622 | Assert(ASMRdMsr(MSR_K8_LSTAR) == pMixedCtx->msrLSTAR);
|
---|
1623 | Assert(ASMRdMsr(MSR_K6_STAR) == pMixedCtx->msrSTAR);
|
---|
1624 | Assert(ASMRdMsr(MSR_K8_SF_MASK) == pMixedCtx->msrSFMASK);
|
---|
1625 | #endif
|
---|
1626 | }
|
---|
1627 | else
|
---|
1628 | {
|
---|
1629 | ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
|
---|
1630 | ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
|
---|
1631 | ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
|
---|
1632 | ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
|
---|
1633 | }
|
---|
1634 | }
|
---|
1635 | #else
|
---|
1636 | RT_NOREF(pMixedCtx);
|
---|
1637 | #endif
|
---|
1638 | pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
|
---|
1639 | }
|
---|
1640 |
|
---|
1641 |
|
---|
1642 | /**
|
---|
1643 | * Performs lazy restoration of the set of host MSRs if they were previously
|
---|
1644 | * loaded with guest MSR values.
|
---|
1645 | *
|
---|
1646 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1647 | *
|
---|
1648 | * @remarks No-long-jump zone!!!
|
---|
1649 | * @remarks The guest MSRs should have been saved back into the guest-CPU
|
---|
1650 | * context by hmR0VmxSaveGuestLazyMsrs()!!!
|
---|
1651 | */
|
---|
1652 | static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
|
---|
1653 | {
|
---|
1654 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1655 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1656 |
|
---|
1657 | if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
1658 | {
|
---|
1659 | Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
|
---|
1660 | #if HC_ARCH_BITS == 64
|
---|
1661 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
|
---|
1662 | {
|
---|
1663 | ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
|
---|
1664 | ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
|
---|
1665 | ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
|
---|
1666 | ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
|
---|
1667 | }
|
---|
1668 | #endif
|
---|
1669 | }
|
---|
1670 | pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
|
---|
1671 | }
|
---|
1672 |
|
---|
1673 |
|
---|
1674 | /**
|
---|
1675 | * Verifies that our cached values of the VMCS controls are all
|
---|
1676 | * consistent with what's actually present in the VMCS.
|
---|
1677 | *
|
---|
1678 | * @returns VBox status code.
|
---|
1679 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1680 | */
|
---|
1681 | static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
|
---|
1682 | {
|
---|
1683 | uint32_t u32Val;
|
---|
1684 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
|
---|
1685 | AssertRCReturn(rc, rc);
|
---|
1686 | AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
|
---|
1687 | VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
|
---|
1688 |
|
---|
1689 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
|
---|
1690 | AssertRCReturn(rc, rc);
|
---|
1691 | AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
|
---|
1692 | VERR_VMX_EXIT_CTLS_CACHE_INVALID);
|
---|
1693 |
|
---|
1694 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
|
---|
1695 | AssertRCReturn(rc, rc);
|
---|
1696 | AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
|
---|
1697 | VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
|
---|
1698 |
|
---|
1699 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
|
---|
1700 | AssertRCReturn(rc, rc);
|
---|
1701 | AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
|
---|
1702 | VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
|
---|
1703 |
|
---|
1704 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
|
---|
1705 | {
|
---|
1706 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
|
---|
1707 | AssertRCReturn(rc, rc);
|
---|
1708 | AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
|
---|
1709 | ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
|
---|
1710 | VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
|
---|
1711 | }
|
---|
1712 |
|
---|
1713 | return VINF_SUCCESS;
|
---|
1714 | }
|
---|
1715 |
|
---|
1716 |
|
---|
1717 | #ifdef VBOX_STRICT
|
---|
1718 | /**
|
---|
1719 | * Verifies that our cached host EFER value has not changed
|
---|
1720 | * since we cached it.
|
---|
1721 | *
|
---|
1722 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1723 | */
|
---|
1724 | static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
|
---|
1725 | {
|
---|
1726 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1727 |
|
---|
1728 | if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
|
---|
1729 | {
|
---|
1730 | uint64_t u64Val;
|
---|
1731 | int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
|
---|
1732 | AssertRC(rc);
|
---|
1733 |
|
---|
1734 | uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
|
---|
1735 | AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
|
---|
1736 | }
|
---|
1737 | }
|
---|
1738 |
|
---|
1739 |
|
---|
1740 | /**
|
---|
1741 | * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
|
---|
1742 | * VMCS are correct.
|
---|
1743 | *
|
---|
1744 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1745 | */
|
---|
1746 | static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
|
---|
1747 | {
|
---|
1748 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1749 |
|
---|
1750 | /* Verify MSR counts in the VMCS are what we think it should be. */
|
---|
1751 | uint32_t cMsrs;
|
---|
1752 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
|
---|
1753 | Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
|
---|
1754 |
|
---|
1755 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
|
---|
1756 | Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
|
---|
1757 |
|
---|
1758 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
|
---|
1759 | Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
|
---|
1760 |
|
---|
1761 | PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
|
---|
1762 | PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
1763 | for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
|
---|
1764 | {
|
---|
1765 | /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
|
---|
1766 | AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
|
---|
1767 | pGuestMsr->u32Msr, cMsrs));
|
---|
1768 |
|
---|
1769 | uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
|
---|
1770 | AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
|
---|
1771 | pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
|
---|
1772 |
|
---|
1773 | /* Verify that the permissions are as expected in the MSR bitmap. */
|
---|
1774 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
1775 | {
|
---|
1776 | VMXMSREXITREAD enmRead;
|
---|
1777 | VMXMSREXITWRITE enmWrite;
|
---|
1778 | rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
|
---|
1779 | AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
|
---|
1780 | if (pGuestMsr->u32Msr == MSR_K6_EFER)
|
---|
1781 | {
|
---|
1782 | AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
|
---|
1783 | AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
|
---|
1784 | }
|
---|
1785 | else
|
---|
1786 | {
|
---|
1787 | AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
|
---|
1788 | pGuestMsr->u32Msr, cMsrs));
|
---|
1789 | AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
|
---|
1790 | pGuestMsr->u32Msr, cMsrs));
|
---|
1791 | }
|
---|
1792 | }
|
---|
1793 | }
|
---|
1794 | }
|
---|
1795 | #endif /* VBOX_STRICT */
|
---|
1796 |
|
---|
1797 |
|
---|
1798 | /**
|
---|
1799 | * Flushes the TLB using EPT.
|
---|
1800 | *
|
---|
1801 | * @returns VBox status code.
|
---|
1802 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1803 | * EMT. Can be NULL depending on @a enmFlush.
|
---|
1804 | * @param enmFlush Type of flush.
|
---|
1805 | *
|
---|
1806 | * @remarks Caller is responsible for making sure this function is called only
|
---|
1807 | * when NestedPaging is supported and providing @a enmFlush that is
|
---|
1808 | * supported by the CPU.
|
---|
1809 | * @remarks Can be called with interrupts disabled.
|
---|
1810 | */
|
---|
1811 | static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
|
---|
1812 | {
|
---|
1813 | uint64_t au64Descriptor[2];
|
---|
1814 | if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
|
---|
1815 | au64Descriptor[0] = 0;
|
---|
1816 | else
|
---|
1817 | {
|
---|
1818 | Assert(pVCpu);
|
---|
1819 | au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
|
---|
1820 | }
|
---|
1821 | au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
|
---|
1822 |
|
---|
1823 | int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
|
---|
1824 | AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
|
---|
1825 | rc));
|
---|
1826 | if ( RT_SUCCESS(rc)
|
---|
1827 | && pVCpu)
|
---|
1828 | {
|
---|
1829 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
|
---|
1830 | }
|
---|
1831 | }
|
---|
1832 |
|
---|
1833 |
|
---|
1834 | /**
|
---|
1835 | * Flushes the TLB using VPID.
|
---|
1836 | *
|
---|
1837 | * @returns VBox status code.
|
---|
1838 | * @param pVM The cross context VM structure.
|
---|
1839 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1840 | * EMT. Can be NULL depending on @a enmFlush.
|
---|
1841 | * @param enmFlush Type of flush.
|
---|
1842 | * @param GCPtr Virtual address of the page to flush (can be 0 depending
|
---|
1843 | * on @a enmFlush).
|
---|
1844 | *
|
---|
1845 | * @remarks Can be called with interrupts disabled.
|
---|
1846 | */
|
---|
1847 | static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
|
---|
1848 | {
|
---|
1849 | NOREF(pVM);
|
---|
1850 | AssertPtr(pVM);
|
---|
1851 | Assert(pVM->hm.s.vmx.fVpid);
|
---|
1852 |
|
---|
1853 | uint64_t au64Descriptor[2];
|
---|
1854 | if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
|
---|
1855 | {
|
---|
1856 | au64Descriptor[0] = 0;
|
---|
1857 | au64Descriptor[1] = 0;
|
---|
1858 | }
|
---|
1859 | else
|
---|
1860 | {
|
---|
1861 | AssertPtr(pVCpu);
|
---|
1862 | AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
|
---|
1863 | AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
|
---|
1864 | au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
|
---|
1865 | au64Descriptor[1] = GCPtr;
|
---|
1866 | }
|
---|
1867 |
|
---|
1868 | int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
|
---|
1869 | AssertMsg(rc == VINF_SUCCESS,
|
---|
1870 | ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
|
---|
1871 | if ( RT_SUCCESS(rc)
|
---|
1872 | && pVCpu)
|
---|
1873 | {
|
---|
1874 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
1875 | }
|
---|
1876 | }
|
---|
1877 |
|
---|
1878 |
|
---|
1879 | /**
|
---|
1880 | * Invalidates a guest page by guest virtual address. Only relevant for
|
---|
1881 | * EPT/VPID, otherwise there is nothing really to invalidate.
|
---|
1882 | *
|
---|
1883 | * @returns VBox status code.
|
---|
1884 | * @param pVM The cross context VM structure.
|
---|
1885 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1886 | * @param GCVirt Guest virtual address of the page to invalidate.
|
---|
1887 | */
|
---|
1888 | VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
|
---|
1889 | {
|
---|
1890 | AssertPtr(pVM);
|
---|
1891 | AssertPtr(pVCpu);
|
---|
1892 | LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
|
---|
1893 |
|
---|
1894 | bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1895 | if (!fFlushPending)
|
---|
1896 | {
|
---|
1897 | /*
|
---|
1898 | * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
|
---|
1899 | * See @bugref{6043} and @bugref{6177}.
|
---|
1900 | *
|
---|
1901 | * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
|
---|
1902 | * function maybe called in a loop with individual addresses.
|
---|
1903 | */
|
---|
1904 | if (pVM->hm.s.vmx.fVpid)
|
---|
1905 | {
|
---|
1906 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
|
---|
1907 | {
|
---|
1908 | hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
|
---|
1909 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
|
---|
1910 | }
|
---|
1911 | else
|
---|
1912 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1913 | }
|
---|
1914 | else if (pVM->hm.s.fNestedPaging)
|
---|
1915 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 | return VINF_SUCCESS;
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 |
|
---|
1922 | /**
|
---|
1923 | * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
|
---|
1924 | * otherwise there is nothing really to invalidate.
|
---|
1925 | *
|
---|
1926 | * @returns VBox status code.
|
---|
1927 | * @param pVM The cross context VM structure.
|
---|
1928 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1929 | * @param GCPhys Guest physical address of the page to invalidate.
|
---|
1930 | */
|
---|
1931 | VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
1932 | {
|
---|
1933 | NOREF(pVM); NOREF(GCPhys);
|
---|
1934 | LogFlowFunc(("%RGp\n", GCPhys));
|
---|
1935 |
|
---|
1936 | /*
|
---|
1937 | * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
|
---|
1938 | * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
|
---|
1939 | * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
|
---|
1940 | */
|
---|
1941 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1942 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
|
---|
1943 | return VINF_SUCCESS;
|
---|
1944 | }
|
---|
1945 |
|
---|
1946 |
|
---|
1947 | /**
|
---|
1948 | * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
|
---|
1949 | * case where neither EPT nor VPID is supported by the CPU.
|
---|
1950 | *
|
---|
1951 | * @param pVM The cross context VM structure.
|
---|
1952 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1953 | * @param pCpu Pointer to the global HM struct.
|
---|
1954 | *
|
---|
1955 | * @remarks Called with interrupts disabled.
|
---|
1956 | */
|
---|
1957 | static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
|
---|
1958 | {
|
---|
1959 | AssertPtr(pVCpu);
|
---|
1960 | AssertPtr(pCpu);
|
---|
1961 | NOREF(pVM);
|
---|
1962 |
|
---|
1963 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1964 |
|
---|
1965 | Assert(pCpu->idCpu != NIL_RTCPUID);
|
---|
1966 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
1967 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
1968 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
1969 | return;
|
---|
1970 | }
|
---|
1971 |
|
---|
1972 |
|
---|
1973 | /**
|
---|
1974 | * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
|
---|
1975 | *
|
---|
1976 | * @param pVM The cross context VM structure.
|
---|
1977 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1978 | * @param pCpu Pointer to the global HM CPU struct.
|
---|
1979 | * @remarks All references to "ASID" in this function pertains to "VPID" in
|
---|
1980 | * Intel's nomenclature. The reason is, to avoid confusion in compare
|
---|
1981 | * statements since the host-CPU copies are named "ASID".
|
---|
1982 | *
|
---|
1983 | * @remarks Called with interrupts disabled.
|
---|
1984 | */
|
---|
1985 | static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
|
---|
1986 | {
|
---|
1987 | #ifdef VBOX_WITH_STATISTICS
|
---|
1988 | bool fTlbFlushed = false;
|
---|
1989 | # define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
|
---|
1990 | # define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
|
---|
1991 | if (!fTlbFlushed) \
|
---|
1992 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
|
---|
1993 | } while (0)
|
---|
1994 | #else
|
---|
1995 | # define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
|
---|
1996 | # define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
|
---|
1997 | #endif
|
---|
1998 |
|
---|
1999 | AssertPtr(pVM);
|
---|
2000 | AssertPtr(pCpu);
|
---|
2001 | AssertPtr(pVCpu);
|
---|
2002 | Assert(pCpu->idCpu != NIL_RTCPUID);
|
---|
2003 |
|
---|
2004 | AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
|
---|
2005 | ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
|
---|
2006 | "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
|
---|
2007 |
|
---|
2008 | /*
|
---|
2009 | * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
|
---|
2010 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
|
---|
2011 | * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
|
---|
2012 | */
|
---|
2013 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
2014 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
2015 | {
|
---|
2016 | ++pCpu->uCurrentAsid;
|
---|
2017 | if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
2018 | {
|
---|
2019 | pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
|
---|
2020 | pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
2021 | pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
|
---|
2022 | }
|
---|
2023 |
|
---|
2024 | pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
|
---|
2025 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
2026 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
2027 |
|
---|
2028 | /*
|
---|
2029 | * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
|
---|
2030 | * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
|
---|
2031 | */
|
---|
2032 | hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
|
---|
2033 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
2034 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
2035 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
|
---|
2036 | }
|
---|
2037 |
|
---|
2038 | /* Check for explicit TLB flushes. */
|
---|
2039 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
2040 | {
|
---|
2041 | /*
|
---|
2042 | * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
|
---|
2043 | * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
|
---|
2044 | * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
|
---|
2045 | * but not guest-physical mappings.
|
---|
2046 | * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
|
---|
2047 | */
|
---|
2048 | hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
|
---|
2049 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
2050 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
2051 | }
|
---|
2052 |
|
---|
2053 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
2054 | HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
|
---|
2055 |
|
---|
2056 | Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
|
---|
2057 | Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
|
---|
2058 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
|
---|
2059 | ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
|
---|
2060 | AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
2061 | ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
|
---|
2062 | pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
|
---|
2063 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
2064 | ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
2065 |
|
---|
2066 | /* Update VMCS with the VPID. */
|
---|
2067 | int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
|
---|
2068 | AssertRC(rc);
|
---|
2069 |
|
---|
2070 | #undef HMVMX_SET_TAGGED_TLB_FLUSHED
|
---|
2071 | }
|
---|
2072 |
|
---|
2073 |
|
---|
2074 | /**
|
---|
2075 | * Flushes the tagged-TLB entries for EPT CPUs as necessary.
|
---|
2076 | *
|
---|
2077 | * @returns VBox status code.
|
---|
2078 | * @param pVM The cross context VM structure.
|
---|
2079 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2080 | * @param pCpu Pointer to the global HM CPU struct.
|
---|
2081 | *
|
---|
2082 | * @remarks Called with interrupts disabled.
|
---|
2083 | */
|
---|
2084 | static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
|
---|
2085 | {
|
---|
2086 | AssertPtr(pVM);
|
---|
2087 | AssertPtr(pVCpu);
|
---|
2088 | AssertPtr(pCpu);
|
---|
2089 | Assert(pCpu->idCpu != NIL_RTCPUID);
|
---|
2090 | AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
|
---|
2091 | AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
|
---|
2092 |
|
---|
2093 | /*
|
---|
2094 | * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
|
---|
2095 | * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
|
---|
2096 | */
|
---|
2097 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
2098 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
2099 | {
|
---|
2100 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
2101 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
2102 | }
|
---|
2103 |
|
---|
2104 | /* Check for explicit TLB flushes. */
|
---|
2105 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
2106 | {
|
---|
2107 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
2108 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
2109 | }
|
---|
2110 |
|
---|
2111 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
2112 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
2113 |
|
---|
2114 | if (pVCpu->hm.s.fForceTLBFlush)
|
---|
2115 | {
|
---|
2116 | hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
|
---|
2117 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
2118 | }
|
---|
2119 | }
|
---|
2120 |
|
---|
2121 |
|
---|
2122 | /**
|
---|
2123 | * Flushes the tagged-TLB entries for VPID CPUs as necessary.
|
---|
2124 | *
|
---|
2125 | * @returns VBox status code.
|
---|
2126 | * @param pVM The cross context VM structure.
|
---|
2127 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2128 | * @param pCpu Pointer to the global HM CPU struct.
|
---|
2129 | *
|
---|
2130 | * @remarks Called with interrupts disabled.
|
---|
2131 | */
|
---|
2132 | static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
|
---|
2133 | {
|
---|
2134 | AssertPtr(pVM);
|
---|
2135 | AssertPtr(pVCpu);
|
---|
2136 | AssertPtr(pCpu);
|
---|
2137 | Assert(pCpu->idCpu != NIL_RTCPUID);
|
---|
2138 | AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
|
---|
2139 | AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
|
---|
2140 |
|
---|
2141 | /*
|
---|
2142 | * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
|
---|
2143 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
|
---|
2144 | * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
|
---|
2145 | */
|
---|
2146 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
2147 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
2148 | {
|
---|
2149 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
2150 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
2151 | }
|
---|
2152 |
|
---|
2153 | /* Check for explicit TLB flushes. */
|
---|
2154 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
2155 | {
|
---|
2156 | /*
|
---|
2157 | * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
|
---|
2158 | * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
|
---|
2159 | * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
|
---|
2160 | */
|
---|
2161 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
2162 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
2163 | }
|
---|
2164 |
|
---|
2165 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
2166 | if (pVCpu->hm.s.fForceTLBFlush)
|
---|
2167 | {
|
---|
2168 | ++pCpu->uCurrentAsid;
|
---|
2169 | if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
2170 | {
|
---|
2171 | pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
|
---|
2172 | pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
2173 | pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
|
---|
2174 | }
|
---|
2175 |
|
---|
2176 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
2177 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
2178 | pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
|
---|
2179 | if (pCpu->fFlushAsidBeforeUse)
|
---|
2180 | {
|
---|
2181 | if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
|
---|
2182 | hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
|
---|
2183 | else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
|
---|
2184 | {
|
---|
2185 | hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
|
---|
2186 | pCpu->fFlushAsidBeforeUse = false;
|
---|
2187 | }
|
---|
2188 | else
|
---|
2189 | {
|
---|
2190 | /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
|
---|
2191 | AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
|
---|
2192 | }
|
---|
2193 | }
|
---|
2194 | }
|
---|
2195 |
|
---|
2196 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
|
---|
2197 | ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
|
---|
2198 | AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
2199 | ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
|
---|
2200 | pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
|
---|
2201 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
2202 | ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
2203 |
|
---|
2204 | int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
|
---|
2205 | AssertRC(rc);
|
---|
2206 | }
|
---|
2207 |
|
---|
2208 |
|
---|
2209 | /**
|
---|
2210 | * Flushes the guest TLB entry based on CPU capabilities.
|
---|
2211 | *
|
---|
2212 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2213 | * @param pCpu Pointer to the global HM CPU struct.
|
---|
2214 | */
|
---|
2215 | DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
|
---|
2216 | {
|
---|
2217 | #ifdef HMVMX_ALWAYS_FLUSH_TLB
|
---|
2218 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
2219 | #endif
|
---|
2220 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2221 | switch (pVM->hm.s.vmx.uFlushTaggedTlb)
|
---|
2222 | {
|
---|
2223 | case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
|
---|
2224 | case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
|
---|
2225 | case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
|
---|
2226 | case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
|
---|
2227 | default:
|
---|
2228 | AssertMsgFailed(("Invalid flush-tag function identifier\n"));
|
---|
2229 | break;
|
---|
2230 | }
|
---|
2231 |
|
---|
2232 | /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
|
---|
2233 | }
|
---|
2234 |
|
---|
2235 |
|
---|
2236 | /**
|
---|
2237 | * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
|
---|
2238 | * TLB entries from the host TLB before VM-entry.
|
---|
2239 | *
|
---|
2240 | * @returns VBox status code.
|
---|
2241 | * @param pVM The cross context VM structure.
|
---|
2242 | */
|
---|
2243 | static int hmR0VmxSetupTaggedTlb(PVM pVM)
|
---|
2244 | {
|
---|
2245 | /*
|
---|
2246 | * Determine optimal flush type for Nested Paging.
|
---|
2247 | * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
|
---|
2248 | * guest execution (see hmR3InitFinalizeR0()).
|
---|
2249 | */
|
---|
2250 | if (pVM->hm.s.fNestedPaging)
|
---|
2251 | {
|
---|
2252 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
|
---|
2253 | {
|
---|
2254 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
|
---|
2255 | pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
|
---|
2256 | else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
|
---|
2257 | pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
|
---|
2258 | else
|
---|
2259 | {
|
---|
2260 | /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
|
---|
2261 | pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
|
---|
2262 | pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
|
---|
2263 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2264 | }
|
---|
2265 |
|
---|
2266 | /* Make sure the write-back cacheable memory type for EPT is supported. */
|
---|
2267 | if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
|
---|
2268 | {
|
---|
2269 | pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
|
---|
2270 | pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
|
---|
2271 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2272 | }
|
---|
2273 |
|
---|
2274 | /* EPT requires a page-walk length of 4. */
|
---|
2275 | if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
|
---|
2276 | {
|
---|
2277 | pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
|
---|
2278 | pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
|
---|
2279 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2280 | }
|
---|
2281 | }
|
---|
2282 | else
|
---|
2283 | {
|
---|
2284 | /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
|
---|
2285 | pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
|
---|
2286 | pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
|
---|
2287 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2288 | }
|
---|
2289 | }
|
---|
2290 |
|
---|
2291 | /*
|
---|
2292 | * Determine optimal flush type for VPID.
|
---|
2293 | */
|
---|
2294 | if (pVM->hm.s.vmx.fVpid)
|
---|
2295 | {
|
---|
2296 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
|
---|
2297 | {
|
---|
2298 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
|
---|
2299 | pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
|
---|
2300 | else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
|
---|
2301 | pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
|
---|
2302 | else
|
---|
2303 | {
|
---|
2304 | /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
|
---|
2305 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
|
---|
2306 | LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
|
---|
2307 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
2308 | LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
|
---|
2309 | pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
|
---|
2310 | pVM->hm.s.vmx.fVpid = false;
|
---|
2311 | }
|
---|
2312 | }
|
---|
2313 | else
|
---|
2314 | {
|
---|
2315 | /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
|
---|
2316 | Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
|
---|
2317 | pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
|
---|
2318 | pVM->hm.s.vmx.fVpid = false;
|
---|
2319 | }
|
---|
2320 | }
|
---|
2321 |
|
---|
2322 | /*
|
---|
2323 | * Setup the handler for flushing tagged-TLBs.
|
---|
2324 | */
|
---|
2325 | if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
|
---|
2326 | pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
|
---|
2327 | else if (pVM->hm.s.fNestedPaging)
|
---|
2328 | pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
|
---|
2329 | else if (pVM->hm.s.vmx.fVpid)
|
---|
2330 | pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
|
---|
2331 | else
|
---|
2332 | pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
|
---|
2333 | return VINF_SUCCESS;
|
---|
2334 | }
|
---|
2335 |
|
---|
2336 |
|
---|
2337 | /**
|
---|
2338 | * Sets up pin-based VM-execution controls in the VMCS.
|
---|
2339 | *
|
---|
2340 | * @returns VBox status code.
|
---|
2341 | * @param pVM The cross context VM structure.
|
---|
2342 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2343 | */
|
---|
2344 | static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
|
---|
2345 | {
|
---|
2346 | AssertPtr(pVM);
|
---|
2347 | AssertPtr(pVCpu);
|
---|
2348 |
|
---|
2349 | uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
|
---|
2350 | uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
|
---|
2351 |
|
---|
2352 | val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
|
---|
2353 | | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
|
---|
2354 |
|
---|
2355 | if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
|
---|
2356 | val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
|
---|
2357 |
|
---|
2358 | /* Enable the VMX preemption timer. */
|
---|
2359 | if (pVM->hm.s.vmx.fUsePreemptTimer)
|
---|
2360 | {
|
---|
2361 | Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
|
---|
2362 | val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
|
---|
2363 | }
|
---|
2364 |
|
---|
2365 | #if 0
|
---|
2366 | /* Enable posted-interrupt processing. */
|
---|
2367 | if (pVM->hm.s.fPostedIntrs)
|
---|
2368 | {
|
---|
2369 | Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
|
---|
2370 | Assert(pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
|
---|
2371 | val |= VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR;
|
---|
2372 | }
|
---|
2373 | #endif
|
---|
2374 |
|
---|
2375 | if ((val & zap) != val)
|
---|
2376 | {
|
---|
2377 | LogRel(("hmR0VmxSetupPinCtls: Invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
|
---|
2378 | pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
|
---|
2379 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
|
---|
2380 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2381 | }
|
---|
2382 |
|
---|
2383 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
|
---|
2384 | AssertRCReturn(rc, rc);
|
---|
2385 |
|
---|
2386 | pVCpu->hm.s.vmx.u32PinCtls = val;
|
---|
2387 | return rc;
|
---|
2388 | }
|
---|
2389 |
|
---|
2390 |
|
---|
2391 | /**
|
---|
2392 | * Sets up processor-based VM-execution controls in the VMCS.
|
---|
2393 | *
|
---|
2394 | * @returns VBox status code.
|
---|
2395 | * @param pVM The cross context VM structure.
|
---|
2396 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2397 | */
|
---|
2398 | static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
|
---|
2399 | {
|
---|
2400 | AssertPtr(pVM);
|
---|
2401 | AssertPtr(pVCpu);
|
---|
2402 |
|
---|
2403 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
2404 | uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
|
---|
2405 | uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
2406 |
|
---|
2407 | val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
|
---|
2408 | | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
|
---|
2409 | | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
|
---|
2410 | | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
|
---|
2411 | | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
|
---|
2412 | | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
|
---|
2413 | | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
|
---|
2414 |
|
---|
2415 | /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
|
---|
2416 | if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
|
---|
2417 | || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
|
---|
2418 | {
|
---|
2419 | LogRel(("hmR0VmxSetupProcCtls: Unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
|
---|
2420 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
|
---|
2421 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2422 | }
|
---|
2423 |
|
---|
2424 | /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
|
---|
2425 | if (!pVM->hm.s.fNestedPaging)
|
---|
2426 | {
|
---|
2427 | Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
|
---|
2428 | val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
|
---|
2429 | | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
|
---|
2430 | | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
|
---|
2431 | }
|
---|
2432 |
|
---|
2433 | /* Use TPR shadowing if supported by the CPU. */
|
---|
2434 | if ( PDMHasApic(pVM)
|
---|
2435 | && pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
2436 | {
|
---|
2437 | Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
|
---|
2438 | Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2439 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
|
---|
2440 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
|
---|
2441 | AssertRCReturn(rc, rc);
|
---|
2442 |
|
---|
2443 | val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
|
---|
2444 | /* CR8 writes cause a VM-exit based on TPR threshold. */
|
---|
2445 | Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
|
---|
2446 | Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
|
---|
2447 | }
|
---|
2448 | else
|
---|
2449 | {
|
---|
2450 | /*
|
---|
2451 | * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
|
---|
2452 | * Set this control only for 64-bit guests.
|
---|
2453 | */
|
---|
2454 | if (pVM->hm.s.fAllow64BitGuests)
|
---|
2455 | {
|
---|
2456 | val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
|
---|
2457 | | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
|
---|
2458 | }
|
---|
2459 | }
|
---|
2460 |
|
---|
2461 | /* Use MSR-bitmaps if supported by the CPU. */
|
---|
2462 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
2463 | {
|
---|
2464 | val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
|
---|
2465 |
|
---|
2466 | Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
|
---|
2467 | Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2468 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
|
---|
2469 | AssertRCReturn(rc, rc);
|
---|
2470 |
|
---|
2471 | /*
|
---|
2472 | * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
|
---|
2473 | * automatically using dedicated fields in the VMCS.
|
---|
2474 | */
|
---|
2475 | hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2476 | hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2477 | hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2478 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2479 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2480 |
|
---|
2481 | #if HC_ARCH_BITS == 64
|
---|
2482 | /*
|
---|
2483 | * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
|
---|
2484 | */
|
---|
2485 | if (pVM->hm.s.fAllow64BitGuests)
|
---|
2486 | {
|
---|
2487 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2488 | hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2489 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2490 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2491 | }
|
---|
2492 | #endif
|
---|
2493 | /*
|
---|
2494 | * The IA32_PRED_CMD MSR is write-only and has no state associated with it. We never need to intercept
|
---|
2495 | * access (writes need to be executed without exiting, reds will #GP-fault anyway).
|
---|
2496 | */
|
---|
2497 | if (pVM->cpum.ro.GuestFeatures.fIbpb)
|
---|
2498 | hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
2499 |
|
---|
2500 | /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
|
---|
2501 | }
|
---|
2502 |
|
---|
2503 | /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
|
---|
2504 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
|
---|
2505 | val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
|
---|
2506 |
|
---|
2507 | if ((val & zap) != val)
|
---|
2508 | {
|
---|
2509 | LogRel(("hmR0VmxSetupProcCtls: Invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
|
---|
2510 | pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
|
---|
2511 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
|
---|
2512 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2513 | }
|
---|
2514 |
|
---|
2515 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
|
---|
2516 | AssertRCReturn(rc, rc);
|
---|
2517 |
|
---|
2518 | pVCpu->hm.s.vmx.u32ProcCtls = val;
|
---|
2519 |
|
---|
2520 | /*
|
---|
2521 | * Secondary processor-based VM-execution controls.
|
---|
2522 | */
|
---|
2523 | if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
|
---|
2524 | {
|
---|
2525 | val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
|
---|
2526 | zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
2527 |
|
---|
2528 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
|
---|
2529 | val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
|
---|
2530 |
|
---|
2531 | if (pVM->hm.s.fNestedPaging)
|
---|
2532 | val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
|
---|
2533 |
|
---|
2534 | /*
|
---|
2535 | * Enable the INVPCID instruction if supported by the hardware and we expose
|
---|
2536 | * it to the guest. Without this, guest executing INVPCID would cause a #UD.
|
---|
2537 | */
|
---|
2538 | if ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
|
---|
2539 | && pVM->cpum.ro.GuestFeatures.fInvpcid)
|
---|
2540 | {
|
---|
2541 | val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
|
---|
2542 | }
|
---|
2543 |
|
---|
2544 | if (pVM->hm.s.vmx.fVpid)
|
---|
2545 | val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
|
---|
2546 |
|
---|
2547 | if (pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
2548 | val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
|
---|
2549 |
|
---|
2550 | #if 0
|
---|
2551 | if (pVM->hm.s.fVirtApicRegs)
|
---|
2552 | {
|
---|
2553 | Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
|
---|
2554 | val |= VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT; /* Enable APIC-register virtualization. */
|
---|
2555 |
|
---|
2556 | Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
|
---|
2557 | val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY; /* Enable virtual-interrupt delivery. */
|
---|
2558 | }
|
---|
2559 | #endif
|
---|
2560 |
|
---|
2561 | /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
|
---|
2562 | /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
|
---|
2563 | * done dynamically. */
|
---|
2564 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
|
---|
2565 | {
|
---|
2566 | Assert(pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
2567 | Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2568 | val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
|
---|
2569 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
2570 | AssertRCReturn(rc, rc);
|
---|
2571 | }
|
---|
2572 |
|
---|
2573 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
|
---|
2574 | val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
|
---|
2575 |
|
---|
2576 | if ( pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT
|
---|
2577 | && pVM->hm.s.vmx.cPleGapTicks
|
---|
2578 | && pVM->hm.s.vmx.cPleWindowTicks)
|
---|
2579 | {
|
---|
2580 | val |= VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT; /* Enable pause-loop exiting. */
|
---|
2581 |
|
---|
2582 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
|
---|
2583 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
|
---|
2584 | AssertRCReturn(rc, rc);
|
---|
2585 | }
|
---|
2586 |
|
---|
2587 | if ((val & zap) != val)
|
---|
2588 | {
|
---|
2589 | LogRel(("hmR0VmxSetupProcCtls: Invalid secondary processor-based VM-execution controls combo! "
|
---|
2590 | "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
|
---|
2591 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
|
---|
2592 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2593 | }
|
---|
2594 |
|
---|
2595 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
|
---|
2596 | AssertRCReturn(rc, rc);
|
---|
2597 |
|
---|
2598 | pVCpu->hm.s.vmx.u32ProcCtls2 = val;
|
---|
2599 | }
|
---|
2600 | else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
|
---|
2601 | {
|
---|
2602 | LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
|
---|
2603 | "available\n"));
|
---|
2604 | pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
|
---|
2605 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2606 | }
|
---|
2607 |
|
---|
2608 | return VINF_SUCCESS;
|
---|
2609 | }
|
---|
2610 |
|
---|
2611 |
|
---|
2612 | /**
|
---|
2613 | * Sets up miscellaneous (everything other than Pin & Processor-based
|
---|
2614 | * VM-execution) control fields in the VMCS.
|
---|
2615 | *
|
---|
2616 | * @returns VBox status code.
|
---|
2617 | * @param pVM The cross context VM structure.
|
---|
2618 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2619 | */
|
---|
2620 | static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
|
---|
2621 | {
|
---|
2622 | NOREF(pVM);
|
---|
2623 | AssertPtr(pVM);
|
---|
2624 | AssertPtr(pVCpu);
|
---|
2625 |
|
---|
2626 | int rc = VERR_GENERAL_FAILURE;
|
---|
2627 |
|
---|
2628 | /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
|
---|
2629 | #if 0
|
---|
2630 | /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
|
---|
2631 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
|
---|
2632 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
|
---|
2633 |
|
---|
2634 | /*
|
---|
2635 | * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
|
---|
2636 | * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
|
---|
2637 | * We thus use the exception bitmap to control it rather than use both.
|
---|
2638 | */
|
---|
2639 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
|
---|
2640 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
|
---|
2641 |
|
---|
2642 | /** @todo Explore possibility of using IO-bitmaps. */
|
---|
2643 | /* All IO & IOIO instructions cause VM-exits. */
|
---|
2644 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
|
---|
2645 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
|
---|
2646 |
|
---|
2647 | /* Initialize the MSR-bitmap area. */
|
---|
2648 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
|
---|
2649 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
|
---|
2650 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
|
---|
2651 | AssertRCReturn(rc, rc);
|
---|
2652 | #endif
|
---|
2653 |
|
---|
2654 | /* Setup MSR auto-load/store area. */
|
---|
2655 | Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
2656 | Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
|
---|
2657 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
2658 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
2659 | AssertRCReturn(rc, rc);
|
---|
2660 |
|
---|
2661 | Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
|
---|
2662 | Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
|
---|
2663 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
|
---|
2664 | AssertRCReturn(rc, rc);
|
---|
2665 |
|
---|
2666 | /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
|
---|
2667 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
|
---|
2668 | AssertRCReturn(rc, rc);
|
---|
2669 |
|
---|
2670 | /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
|
---|
2671 | #if 0
|
---|
2672 | /* Setup debug controls */
|
---|
2673 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
|
---|
2674 | rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
|
---|
2675 | AssertRCReturn(rc, rc);
|
---|
2676 | #endif
|
---|
2677 |
|
---|
2678 | return rc;
|
---|
2679 | }
|
---|
2680 |
|
---|
2681 |
|
---|
2682 | /**
|
---|
2683 | * Sets up the initial exception bitmap in the VMCS based on static conditions.
|
---|
2684 | *
|
---|
2685 | * We shall setup those exception intercepts that don't change during the
|
---|
2686 | * lifetime of the VM here. The rest are done dynamically while loading the
|
---|
2687 | * guest state.
|
---|
2688 | *
|
---|
2689 | * @returns VBox status code.
|
---|
2690 | * @param pVM The cross context VM structure.
|
---|
2691 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2692 | */
|
---|
2693 | static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
|
---|
2694 | {
|
---|
2695 | AssertPtr(pVM);
|
---|
2696 | AssertPtr(pVCpu);
|
---|
2697 |
|
---|
2698 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
2699 |
|
---|
2700 | uint32_t u32XcptBitmap = 0;
|
---|
2701 |
|
---|
2702 | /* Must always intercept #AC to prevent the guest from hanging the CPU. */
|
---|
2703 | u32XcptBitmap |= RT_BIT_32(X86_XCPT_AC);
|
---|
2704 |
|
---|
2705 | /* Because we need to maintain the DR6 state even when intercepting DRx reads
|
---|
2706 | and writes, and because recursive #DBs can cause the CPU hang, we must always
|
---|
2707 | intercept #DB. */
|
---|
2708 | u32XcptBitmap |= RT_BIT_32(X86_XCPT_DB);
|
---|
2709 |
|
---|
2710 | /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
|
---|
2711 | if (!pVM->hm.s.fNestedPaging)
|
---|
2712 | u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
|
---|
2713 |
|
---|
2714 | pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
|
---|
2715 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
|
---|
2716 | AssertRCReturn(rc, rc);
|
---|
2717 | return rc;
|
---|
2718 | }
|
---|
2719 |
|
---|
2720 |
|
---|
2721 | /**
|
---|
2722 | * Sets up the initial guest-state mask. The guest-state mask is consulted
|
---|
2723 | * before reading guest-state fields from the VMCS as VMREADs can be expensive
|
---|
2724 | * for the nested virtualization case (as it would cause a VM-exit).
|
---|
2725 | *
|
---|
2726 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2727 | */
|
---|
2728 | static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
|
---|
2729 | {
|
---|
2730 | /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
|
---|
2731 | HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
|
---|
2732 | return VINF_SUCCESS;
|
---|
2733 | }
|
---|
2734 |
|
---|
2735 |
|
---|
2736 | /**
|
---|
2737 | * Does per-VM VT-x initialization.
|
---|
2738 | *
|
---|
2739 | * @returns VBox status code.
|
---|
2740 | * @param pVM The cross context VM structure.
|
---|
2741 | */
|
---|
2742 | VMMR0DECL(int) VMXR0InitVM(PVM pVM)
|
---|
2743 | {
|
---|
2744 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
2745 |
|
---|
2746 | int rc = hmR0VmxStructsAlloc(pVM);
|
---|
2747 | if (RT_FAILURE(rc))
|
---|
2748 | {
|
---|
2749 | LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
|
---|
2750 | return rc;
|
---|
2751 | }
|
---|
2752 |
|
---|
2753 | return VINF_SUCCESS;
|
---|
2754 | }
|
---|
2755 |
|
---|
2756 |
|
---|
2757 | /**
|
---|
2758 | * Does per-VM VT-x termination.
|
---|
2759 | *
|
---|
2760 | * @returns VBox status code.
|
---|
2761 | * @param pVM The cross context VM structure.
|
---|
2762 | */
|
---|
2763 | VMMR0DECL(int) VMXR0TermVM(PVM pVM)
|
---|
2764 | {
|
---|
2765 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
2766 |
|
---|
2767 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
2768 | if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
|
---|
2769 | ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
|
---|
2770 | #endif
|
---|
2771 | hmR0VmxStructsFree(pVM);
|
---|
2772 | return VINF_SUCCESS;
|
---|
2773 | }
|
---|
2774 |
|
---|
2775 |
|
---|
2776 | /**
|
---|
2777 | * Sets up the VM for execution under VT-x.
|
---|
2778 | * This function is only called once per-VM during initialization.
|
---|
2779 | *
|
---|
2780 | * @returns VBox status code.
|
---|
2781 | * @param pVM The cross context VM structure.
|
---|
2782 | */
|
---|
2783 | VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
|
---|
2784 | {
|
---|
2785 | AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
2786 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2787 |
|
---|
2788 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
2789 |
|
---|
2790 | /*
|
---|
2791 | * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
|
---|
2792 | * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
|
---|
2793 | */
|
---|
2794 | if ( !pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
2795 | && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
|
---|
2796 | || !pVM->hm.s.vmx.pRealModeTSS))
|
---|
2797 | {
|
---|
2798 | LogRel(("VMXR0SetupVM: Invalid real-on-v86 state.\n"));
|
---|
2799 | return VERR_INTERNAL_ERROR;
|
---|
2800 | }
|
---|
2801 |
|
---|
2802 | /* Initialize these always, see hmR3InitFinalizeR0().*/
|
---|
2803 | pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
|
---|
2804 | pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
|
---|
2805 |
|
---|
2806 | /* Setup the tagged-TLB flush handlers. */
|
---|
2807 | int rc = hmR0VmxSetupTaggedTlb(pVM);
|
---|
2808 | if (RT_FAILURE(rc))
|
---|
2809 | {
|
---|
2810 | LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
|
---|
2811 | return rc;
|
---|
2812 | }
|
---|
2813 |
|
---|
2814 | /* Check if we can use the VMCS controls for swapping the EFER MSR. */
|
---|
2815 | Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
|
---|
2816 | #if HC_ARCH_BITS == 64
|
---|
2817 | if ( (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
|
---|
2818 | && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
|
---|
2819 | && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
|
---|
2820 | {
|
---|
2821 | pVM->hm.s.vmx.fSupportsVmcsEfer = true;
|
---|
2822 | }
|
---|
2823 | #endif
|
---|
2824 |
|
---|
2825 | /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
|
---|
2826 | RTCCUINTREG uHostCR4 = ASMGetCR4();
|
---|
2827 | if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
|
---|
2828 | return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
|
---|
2829 |
|
---|
2830 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
2831 | {
|
---|
2832 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
2833 | AssertPtr(pVCpu);
|
---|
2834 | AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
|
---|
2835 |
|
---|
2836 | /* Log the VCPU pointers, useful for debugging SMP VMs. */
|
---|
2837 | Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
|
---|
2838 |
|
---|
2839 | /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
|
---|
2840 | Assert(!pVCpu->hm.s.idxExitHistoryFree);
|
---|
2841 | HMCPU_EXIT_HISTORY_RESET(pVCpu);
|
---|
2842 |
|
---|
2843 | /* Set revision dword at the beginning of the VMCS structure. */
|
---|
2844 | *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
|
---|
2845 |
|
---|
2846 | /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
|
---|
2847 | rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
2848 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2849 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2850 |
|
---|
2851 | /* Load this VMCS as the current VMCS. */
|
---|
2852 | rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
2853 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2854 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2855 |
|
---|
2856 | rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
|
---|
2857 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2858 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2859 |
|
---|
2860 | rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
|
---|
2861 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2862 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2863 |
|
---|
2864 | rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
|
---|
2865 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2866 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2867 |
|
---|
2868 | rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
|
---|
2869 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2870 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2871 |
|
---|
2872 | rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
|
---|
2873 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2874 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2875 |
|
---|
2876 | #if HC_ARCH_BITS == 32
|
---|
2877 | rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
|
---|
2878 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2879 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2880 | #endif
|
---|
2881 |
|
---|
2882 | /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
|
---|
2883 | rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
2884 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2885 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2886 |
|
---|
2887 | pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
|
---|
2888 |
|
---|
2889 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
|
---|
2890 | }
|
---|
2891 |
|
---|
2892 | return VINF_SUCCESS;
|
---|
2893 | }
|
---|
2894 |
|
---|
2895 |
|
---|
2896 | /**
|
---|
2897 | * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
|
---|
2898 | * the VMCS.
|
---|
2899 | *
|
---|
2900 | * @returns VBox status code.
|
---|
2901 | * @param pVM The cross context VM structure.
|
---|
2902 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2903 | */
|
---|
2904 | DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
|
---|
2905 | {
|
---|
2906 | NOREF(pVM); NOREF(pVCpu);
|
---|
2907 |
|
---|
2908 | RTCCUINTREG uReg = ASMGetCR0();
|
---|
2909 | int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
|
---|
2910 | AssertRCReturn(rc, rc);
|
---|
2911 |
|
---|
2912 | uReg = ASMGetCR3();
|
---|
2913 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
|
---|
2914 | AssertRCReturn(rc, rc);
|
---|
2915 |
|
---|
2916 | uReg = ASMGetCR4();
|
---|
2917 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
|
---|
2918 | AssertRCReturn(rc, rc);
|
---|
2919 | return rc;
|
---|
2920 | }
|
---|
2921 |
|
---|
2922 |
|
---|
2923 | #if HC_ARCH_BITS == 64
|
---|
2924 | /**
|
---|
2925 | * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
|
---|
2926 | * requirements. See hmR0VmxSaveHostSegmentRegs().
|
---|
2927 | */
|
---|
2928 | # define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
|
---|
2929 | if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
|
---|
2930 | { \
|
---|
2931 | bool fValidSelector = true; \
|
---|
2932 | if ((selValue) & X86_SEL_LDT) \
|
---|
2933 | { \
|
---|
2934 | uint32_t uAttr = ASMGetSegAttr((selValue)); \
|
---|
2935 | fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
|
---|
2936 | } \
|
---|
2937 | if (fValidSelector) \
|
---|
2938 | { \
|
---|
2939 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
|
---|
2940 | pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
|
---|
2941 | } \
|
---|
2942 | (selValue) = 0; \
|
---|
2943 | }
|
---|
2944 | #endif
|
---|
2945 |
|
---|
2946 |
|
---|
2947 | /**
|
---|
2948 | * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
|
---|
2949 | * the host-state area in the VMCS.
|
---|
2950 | *
|
---|
2951 | * @returns VBox status code.
|
---|
2952 | * @param pVM The cross context VM structure.
|
---|
2953 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2954 | */
|
---|
2955 | DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
|
---|
2956 | {
|
---|
2957 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
2958 |
|
---|
2959 | #if HC_ARCH_BITS == 64
|
---|
2960 | /*
|
---|
2961 | * If we've executed guest code using VT-x, the host-state bits will be messed up. We
|
---|
2962 | * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
|
---|
2963 | *
|
---|
2964 | * This apparently can happen (most likely the FPU changes), deal with it rather than asserting.
|
---|
2965 | * Was observed booting Solaris10u10 32-bit guest.
|
---|
2966 | */
|
---|
2967 | if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
|
---|
2968 | && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
|
---|
2969 | {
|
---|
2970 | Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
|
---|
2971 | pVCpu->idCpu));
|
---|
2972 | VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
|
---|
2973 | }
|
---|
2974 | pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
|
---|
2975 | #else
|
---|
2976 | RT_NOREF(pVCpu);
|
---|
2977 | #endif
|
---|
2978 |
|
---|
2979 | /*
|
---|
2980 | * Host DS, ES, FS and GS segment registers.
|
---|
2981 | */
|
---|
2982 | #if HC_ARCH_BITS == 64
|
---|
2983 | RTSEL uSelDS = ASMGetDS();
|
---|
2984 | RTSEL uSelES = ASMGetES();
|
---|
2985 | RTSEL uSelFS = ASMGetFS();
|
---|
2986 | RTSEL uSelGS = ASMGetGS();
|
---|
2987 | #else
|
---|
2988 | RTSEL uSelDS = 0;
|
---|
2989 | RTSEL uSelES = 0;
|
---|
2990 | RTSEL uSelFS = 0;
|
---|
2991 | RTSEL uSelGS = 0;
|
---|
2992 | #endif
|
---|
2993 |
|
---|
2994 | /*
|
---|
2995 | * Host CS and SS segment registers.
|
---|
2996 | */
|
---|
2997 | RTSEL uSelCS = ASMGetCS();
|
---|
2998 | RTSEL uSelSS = ASMGetSS();
|
---|
2999 |
|
---|
3000 | /*
|
---|
3001 | * Host TR segment register.
|
---|
3002 | */
|
---|
3003 | RTSEL uSelTR = ASMGetTR();
|
---|
3004 |
|
---|
3005 | #if HC_ARCH_BITS == 64
|
---|
3006 | /*
|
---|
3007 | * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
|
---|
3008 | * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
|
---|
3009 | */
|
---|
3010 | VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
|
---|
3011 | VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
|
---|
3012 | VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
|
---|
3013 | VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
|
---|
3014 | # undef VMXLOCAL_ADJUST_HOST_SEG
|
---|
3015 | #endif
|
---|
3016 |
|
---|
3017 | /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
|
---|
3018 | Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
|
---|
3019 | Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
|
---|
3020 | Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
|
---|
3021 | Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
|
---|
3022 | Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
|
---|
3023 | Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
|
---|
3024 | Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
|
---|
3025 | Assert(uSelCS);
|
---|
3026 | Assert(uSelTR);
|
---|
3027 |
|
---|
3028 | /* Assertion is right but we would not have updated u32ExitCtls yet. */
|
---|
3029 | #if 0
|
---|
3030 | if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
|
---|
3031 | Assert(uSelSS != 0);
|
---|
3032 | #endif
|
---|
3033 |
|
---|
3034 | /* Write these host selector fields into the host-state area in the VMCS. */
|
---|
3035 | rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
|
---|
3036 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
|
---|
3037 | #if HC_ARCH_BITS == 64
|
---|
3038 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
|
---|
3039 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
|
---|
3040 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
|
---|
3041 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
|
---|
3042 | #else
|
---|
3043 | NOREF(uSelDS);
|
---|
3044 | NOREF(uSelES);
|
---|
3045 | NOREF(uSelFS);
|
---|
3046 | NOREF(uSelGS);
|
---|
3047 | #endif
|
---|
3048 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
|
---|
3049 | AssertRCReturn(rc, rc);
|
---|
3050 |
|
---|
3051 | /*
|
---|
3052 | * Host GDTR and IDTR.
|
---|
3053 | */
|
---|
3054 | RTGDTR Gdtr;
|
---|
3055 | RTIDTR Idtr;
|
---|
3056 | RT_ZERO(Gdtr);
|
---|
3057 | RT_ZERO(Idtr);
|
---|
3058 | ASMGetGDTR(&Gdtr);
|
---|
3059 | ASMGetIDTR(&Idtr);
|
---|
3060 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
|
---|
3061 | rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
|
---|
3062 | AssertRCReturn(rc, rc);
|
---|
3063 |
|
---|
3064 | #if HC_ARCH_BITS == 64
|
---|
3065 | /*
|
---|
3066 | * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
|
---|
3067 | * maximum limit (0xffff) on every VM-exit.
|
---|
3068 | */
|
---|
3069 | if (Gdtr.cbGdt != 0xffff)
|
---|
3070 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
|
---|
3071 |
|
---|
3072 | /*
|
---|
3073 | * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
|
---|
3074 | * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
|
---|
3075 | * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
|
---|
3076 | * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
|
---|
3077 | * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
|
---|
3078 | * hosts where we are pretty sure it won't cause trouble.
|
---|
3079 | */
|
---|
3080 | # if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
|
---|
3081 | if (Idtr.cbIdt < 0x0fff)
|
---|
3082 | # else
|
---|
3083 | if (Idtr.cbIdt != 0xffff)
|
---|
3084 | # endif
|
---|
3085 | {
|
---|
3086 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
|
---|
3087 | AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
|
---|
3088 | memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
|
---|
3089 | }
|
---|
3090 | #endif
|
---|
3091 |
|
---|
3092 | /*
|
---|
3093 | * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
|
---|
3094 | * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
|
---|
3095 | */
|
---|
3096 | AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
|
---|
3097 | ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
|
---|
3098 | VERR_VMX_INVALID_HOST_STATE);
|
---|
3099 |
|
---|
3100 | PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
|
---|
3101 | #if HC_ARCH_BITS == 64
|
---|
3102 | uintptr_t uTRBase = X86DESC64_BASE(pDesc);
|
---|
3103 |
|
---|
3104 | /*
|
---|
3105 | * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
|
---|
3106 | * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
|
---|
3107 | * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
|
---|
3108 | * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
|
---|
3109 | *
|
---|
3110 | * [1] See Intel spec. 3.5 "System Descriptor Types".
|
---|
3111 | * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
|
---|
3112 | */
|
---|
3113 | Assert(pDesc->System.u4Type == 11);
|
---|
3114 | if ( pDesc->System.u16LimitLow != 0x67
|
---|
3115 | || pDesc->System.u4LimitHigh)
|
---|
3116 | {
|
---|
3117 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
|
---|
3118 | /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
|
---|
3119 | if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
|
---|
3120 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
|
---|
3121 | pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
|
---|
3122 | }
|
---|
3123 |
|
---|
3124 | /*
|
---|
3125 | * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
|
---|
3126 | */
|
---|
3127 | if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
|
---|
3128 | {
|
---|
3129 | AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
|
---|
3130 | memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
|
---|
3131 | if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
|
---|
3132 | {
|
---|
3133 | /* The GDT is read-only but the writable GDT is available. */
|
---|
3134 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
|
---|
3135 | pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
|
---|
3136 | rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
|
---|
3137 | AssertRCReturn(rc, rc);
|
---|
3138 | }
|
---|
3139 | }
|
---|
3140 | #else
|
---|
3141 | NOREF(pVM);
|
---|
3142 | uintptr_t uTRBase = X86DESC_BASE(pDesc);
|
---|
3143 | #endif
|
---|
3144 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
|
---|
3145 | AssertRCReturn(rc, rc);
|
---|
3146 |
|
---|
3147 | /*
|
---|
3148 | * Host FS base and GS base.
|
---|
3149 | */
|
---|
3150 | #if HC_ARCH_BITS == 64
|
---|
3151 | uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
|
---|
3152 | uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
|
---|
3153 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
|
---|
3154 | rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
|
---|
3155 | AssertRCReturn(rc, rc);
|
---|
3156 |
|
---|
3157 | /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
|
---|
3158 | if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
|
---|
3159 | pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
|
---|
3160 | if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
|
---|
3161 | pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
|
---|
3162 | #endif
|
---|
3163 | return rc;
|
---|
3164 | }
|
---|
3165 |
|
---|
3166 |
|
---|
3167 | /**
|
---|
3168 | * Saves certain host MSRs in the VM-exit MSR-load area and some in the
|
---|
3169 | * host-state area of the VMCS. Theses MSRs will be automatically restored on
|
---|
3170 | * the host after every successful VM-exit.
|
---|
3171 | *
|
---|
3172 | * @returns VBox status code.
|
---|
3173 | * @param pVM The cross context VM structure.
|
---|
3174 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3175 | *
|
---|
3176 | * @remarks No-long-jump zone!!!
|
---|
3177 | */
|
---|
3178 | DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
|
---|
3179 | {
|
---|
3180 | NOREF(pVM);
|
---|
3181 |
|
---|
3182 | AssertPtr(pVCpu);
|
---|
3183 | AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
|
---|
3184 |
|
---|
3185 | /*
|
---|
3186 | * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
|
---|
3187 | * rather than swapping them on every VM-entry.
|
---|
3188 | */
|
---|
3189 | hmR0VmxLazySaveHostMsrs(pVCpu);
|
---|
3190 |
|
---|
3191 | /*
|
---|
3192 | * Host Sysenter MSRs.
|
---|
3193 | */
|
---|
3194 | int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
|
---|
3195 | #if HC_ARCH_BITS == 32
|
---|
3196 | rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
|
---|
3197 | rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
|
---|
3198 | #else
|
---|
3199 | rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
|
---|
3200 | rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
|
---|
3201 | #endif
|
---|
3202 | AssertRCReturn(rc, rc);
|
---|
3203 |
|
---|
3204 | /*
|
---|
3205 | * Host EFER MSR.
|
---|
3206 | * If the CPU supports the newer VMCS controls for managing EFER, use it.
|
---|
3207 | * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
|
---|
3208 | */
|
---|
3209 | if (pVM->hm.s.vmx.fSupportsVmcsEfer)
|
---|
3210 | {
|
---|
3211 | rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
|
---|
3212 | AssertRCReturn(rc, rc);
|
---|
3213 | }
|
---|
3214 |
|
---|
3215 | /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
|
---|
3216 | * hmR0VmxLoadGuestExitCtls() !! */
|
---|
3217 |
|
---|
3218 | return rc;
|
---|
3219 | }
|
---|
3220 |
|
---|
3221 |
|
---|
3222 | /**
|
---|
3223 | * Figures out if we need to swap the EFER MSR which is particularly expensive.
|
---|
3224 | *
|
---|
3225 | * We check all relevant bits. For now, that's everything besides LMA/LME, as
|
---|
3226 | * these two bits are handled by VM-entry, see hmR0VmxLoadGuestExitCtls() and
|
---|
3227 | * hmR0VMxLoadGuestEntryCtls().
|
---|
3228 | *
|
---|
3229 | * @returns true if we need to load guest EFER, false otherwise.
|
---|
3230 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3231 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3232 | * out-of-sync. Make sure to update the required fields
|
---|
3233 | * before using them.
|
---|
3234 | *
|
---|
3235 | * @remarks Requires EFER, CR4.
|
---|
3236 | * @remarks No-long-jump zone!!!
|
---|
3237 | */
|
---|
3238 | static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3239 | {
|
---|
3240 | #ifdef HMVMX_ALWAYS_SWAP_EFER
|
---|
3241 | return true;
|
---|
3242 | #endif
|
---|
3243 |
|
---|
3244 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
3245 | /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
|
---|
3246 | if (CPUMIsGuestInLongMode(pVCpu))
|
---|
3247 | return false;
|
---|
3248 | #endif
|
---|
3249 |
|
---|
3250 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3251 | uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
|
---|
3252 | uint64_t u64GuestEfer = pMixedCtx->msrEFER;
|
---|
3253 |
|
---|
3254 | /*
|
---|
3255 | * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
|
---|
3256 | * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
|
---|
3257 | */
|
---|
3258 | if ( CPUMIsGuestInLongMode(pVCpu)
|
---|
3259 | && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
|
---|
3260 | {
|
---|
3261 | return true;
|
---|
3262 | }
|
---|
3263 |
|
---|
3264 | /*
|
---|
3265 | * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
|
---|
3266 | * affects guest paging. 64-bit paging implies CR4.PAE as well.
|
---|
3267 | * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
|
---|
3268 | */
|
---|
3269 | if ( (pMixedCtx->cr4 & X86_CR4_PAE)
|
---|
3270 | && (pMixedCtx->cr0 & X86_CR0_PG)
|
---|
3271 | && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
|
---|
3272 | {
|
---|
3273 | /* Assert that host is PAE capable. */
|
---|
3274 | Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
|
---|
3275 | return true;
|
---|
3276 | }
|
---|
3277 |
|
---|
3278 | /** @todo Check the latest Intel spec. for any other bits,
|
---|
3279 | * like SMEP/SMAP? */
|
---|
3280 | return false;
|
---|
3281 | }
|
---|
3282 |
|
---|
3283 |
|
---|
3284 | /**
|
---|
3285 | * Sets up VM-entry controls in the VMCS. These controls can affect things done
|
---|
3286 | * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
|
---|
3287 | * controls".
|
---|
3288 | *
|
---|
3289 | * @returns VBox status code.
|
---|
3290 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3291 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3292 | * out-of-sync. Make sure to update the required fields
|
---|
3293 | * before using them.
|
---|
3294 | *
|
---|
3295 | * @remarks Requires EFER.
|
---|
3296 | * @remarks No-long-jump zone!!!
|
---|
3297 | */
|
---|
3298 | DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3299 | {
|
---|
3300 | int rc = VINF_SUCCESS;
|
---|
3301 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
|
---|
3302 | {
|
---|
3303 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3304 | uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
|
---|
3305 | uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
3306 |
|
---|
3307 | /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
|
---|
3308 | val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
|
---|
3309 |
|
---|
3310 | /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
|
---|
3311 | if (CPUMIsGuestInLongModeEx(pMixedCtx))
|
---|
3312 | {
|
---|
3313 | val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
|
---|
3314 | Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
|
---|
3315 | }
|
---|
3316 | else
|
---|
3317 | Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
|
---|
3318 |
|
---|
3319 | /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
|
---|
3320 | if ( pVM->hm.s.vmx.fSupportsVmcsEfer
|
---|
3321 | && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
|
---|
3322 | {
|
---|
3323 | val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
|
---|
3324 | Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
|
---|
3325 | }
|
---|
3326 |
|
---|
3327 | /*
|
---|
3328 | * The following should -not- be set (since we're not in SMM mode):
|
---|
3329 | * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
|
---|
3330 | * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
|
---|
3331 | */
|
---|
3332 |
|
---|
3333 | /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
|
---|
3334 | * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
|
---|
3335 |
|
---|
3336 | if ((val & zap) != val)
|
---|
3337 | {
|
---|
3338 | LogRel(("hmR0VmxLoadGuestEntryCtls: Invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
|
---|
3339 | pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
|
---|
3340 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
|
---|
3341 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
3342 | }
|
---|
3343 |
|
---|
3344 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
|
---|
3345 | AssertRCReturn(rc, rc);
|
---|
3346 |
|
---|
3347 | pVCpu->hm.s.vmx.u32EntryCtls = val;
|
---|
3348 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
|
---|
3349 | }
|
---|
3350 | return rc;
|
---|
3351 | }
|
---|
3352 |
|
---|
3353 |
|
---|
3354 | /**
|
---|
3355 | * Sets up the VM-exit controls in the VMCS.
|
---|
3356 | *
|
---|
3357 | * @returns VBox status code.
|
---|
3358 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3359 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3360 | * out-of-sync. Make sure to update the required fields
|
---|
3361 | * before using them.
|
---|
3362 | *
|
---|
3363 | * @remarks Requires EFER.
|
---|
3364 | */
|
---|
3365 | DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3366 | {
|
---|
3367 | NOREF(pMixedCtx);
|
---|
3368 |
|
---|
3369 | int rc = VINF_SUCCESS;
|
---|
3370 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
|
---|
3371 | {
|
---|
3372 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3373 | uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
|
---|
3374 | uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
3375 |
|
---|
3376 | /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
|
---|
3377 | val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
|
---|
3378 |
|
---|
3379 | /*
|
---|
3380 | * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
|
---|
3381 | * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
|
---|
3382 | */
|
---|
3383 | #if HC_ARCH_BITS == 64
|
---|
3384 | val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
|
---|
3385 | Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
|
---|
3386 | #else
|
---|
3387 | Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
|
---|
3388 | || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
|
---|
3389 | /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
|
---|
3390 | if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
|
---|
3391 | {
|
---|
3392 | /* The switcher returns to long mode, EFER is managed by the switcher. */
|
---|
3393 | val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
|
---|
3394 | Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
|
---|
3395 | }
|
---|
3396 | else
|
---|
3397 | Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
|
---|
3398 | #endif
|
---|
3399 |
|
---|
3400 | /* If the newer VMCS fields for managing EFER exists, use it. */
|
---|
3401 | if ( pVM->hm.s.vmx.fSupportsVmcsEfer
|
---|
3402 | && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
|
---|
3403 | {
|
---|
3404 | val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
|
---|
3405 | | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
|
---|
3406 | Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
|
---|
3407 | }
|
---|
3408 |
|
---|
3409 | /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
|
---|
3410 | Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
|
---|
3411 |
|
---|
3412 | /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
|
---|
3413 | * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
|
---|
3414 | * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
|
---|
3415 |
|
---|
3416 | if ( pVM->hm.s.vmx.fUsePreemptTimer
|
---|
3417 | && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
|
---|
3418 | val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
|
---|
3419 |
|
---|
3420 | if ((val & zap) != val)
|
---|
3421 | {
|
---|
3422 | LogRel(("hmR0VmxSetupProcCtls: Invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
|
---|
3423 | pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
|
---|
3424 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
|
---|
3425 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
3426 | }
|
---|
3427 |
|
---|
3428 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
|
---|
3429 | AssertRCReturn(rc, rc);
|
---|
3430 |
|
---|
3431 | pVCpu->hm.s.vmx.u32ExitCtls = val;
|
---|
3432 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
|
---|
3433 | }
|
---|
3434 | return rc;
|
---|
3435 | }
|
---|
3436 |
|
---|
3437 |
|
---|
3438 | /**
|
---|
3439 | * Sets the TPR threshold in the VMCS.
|
---|
3440 | *
|
---|
3441 | * @returns VBox status code.
|
---|
3442 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3443 | * @param u32TprThreshold The TPR threshold (task-priority class only).
|
---|
3444 | */
|
---|
3445 | DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
|
---|
3446 | {
|
---|
3447 | Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
|
---|
3448 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
|
---|
3449 | return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
|
---|
3450 | }
|
---|
3451 |
|
---|
3452 |
|
---|
3453 | /**
|
---|
3454 | * Loads the guest APIC and related state.
|
---|
3455 | *
|
---|
3456 | * @returns VBox status code.
|
---|
3457 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3458 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3459 | * out-of-sync. Make sure to update the required fields
|
---|
3460 | * before using them.
|
---|
3461 | *
|
---|
3462 | * @remarks No-long-jump zone!!!
|
---|
3463 | */
|
---|
3464 | DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3465 | {
|
---|
3466 | NOREF(pMixedCtx);
|
---|
3467 |
|
---|
3468 | int rc = VINF_SUCCESS;
|
---|
3469 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
|
---|
3470 | {
|
---|
3471 | if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
|
---|
3472 | && APICIsEnabled(pVCpu))
|
---|
3473 | {
|
---|
3474 | /*
|
---|
3475 | * Setup TPR shadowing.
|
---|
3476 | */
|
---|
3477 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
3478 | {
|
---|
3479 | Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
|
---|
3480 |
|
---|
3481 | bool fPendingIntr = false;
|
---|
3482 | uint8_t u8Tpr = 0;
|
---|
3483 | uint8_t u8PendingIntr = 0;
|
---|
3484 | rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
|
---|
3485 | AssertRCReturn(rc, rc);
|
---|
3486 |
|
---|
3487 | /*
|
---|
3488 | * If there are interrupts pending but masked by the TPR, instruct VT-x to cause a TPR-below-threshold VM-exit
|
---|
3489 | * when the guest lowers its TPR below the priority of the pending interrupt so we can deliver the interrupt.
|
---|
3490 | * If there are no interrupts pending, set threshold to 0 to not cause any TPR-below-threshold VM-exits.
|
---|
3491 | */
|
---|
3492 | pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
|
---|
3493 | uint32_t u32TprThreshold = 0;
|
---|
3494 | if (fPendingIntr)
|
---|
3495 | {
|
---|
3496 | /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
|
---|
3497 | const uint8_t u8PendingPriority = u8PendingIntr >> 4;
|
---|
3498 | const uint8_t u8TprPriority = u8Tpr >> 4;
|
---|
3499 | if (u8PendingPriority <= u8TprPriority)
|
---|
3500 | u32TprThreshold = u8PendingPriority;
|
---|
3501 | }
|
---|
3502 |
|
---|
3503 | rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
|
---|
3504 | AssertRCReturn(rc, rc);
|
---|
3505 | }
|
---|
3506 | }
|
---|
3507 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
|
---|
3508 | }
|
---|
3509 |
|
---|
3510 | return rc;
|
---|
3511 | }
|
---|
3512 |
|
---|
3513 |
|
---|
3514 | /**
|
---|
3515 | * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
|
---|
3516 | *
|
---|
3517 | * @returns Guest's interruptibility-state.
|
---|
3518 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3519 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3520 | * out-of-sync. Make sure to update the required fields
|
---|
3521 | * before using them.
|
---|
3522 | *
|
---|
3523 | * @remarks No-long-jump zone!!!
|
---|
3524 | */
|
---|
3525 | DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3526 | {
|
---|
3527 | /*
|
---|
3528 | * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
|
---|
3529 | */
|
---|
3530 | uint32_t uIntrState = 0;
|
---|
3531 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
3532 | {
|
---|
3533 | /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
|
---|
3534 | AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
|
---|
3535 | ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
|
---|
3536 | if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
|
---|
3537 | {
|
---|
3538 | if (pMixedCtx->eflags.Bits.u1IF)
|
---|
3539 | uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
|
---|
3540 | else
|
---|
3541 | uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
|
---|
3542 | }
|
---|
3543 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
3544 | {
|
---|
3545 | /*
|
---|
3546 | * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
|
---|
3547 | * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
|
---|
3548 | */
|
---|
3549 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
3550 | }
|
---|
3551 | }
|
---|
3552 |
|
---|
3553 | /*
|
---|
3554 | * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
|
---|
3555 | * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
|
---|
3556 | * setting this would block host-NMIs and IRET will not clear the blocking.
|
---|
3557 | *
|
---|
3558 | * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
|
---|
3559 | */
|
---|
3560 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
|
---|
3561 | && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
|
---|
3562 | {
|
---|
3563 | uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
|
---|
3564 | }
|
---|
3565 |
|
---|
3566 | return uIntrState;
|
---|
3567 | }
|
---|
3568 |
|
---|
3569 |
|
---|
3570 | /**
|
---|
3571 | * Loads the guest's interruptibility-state into the guest-state area in the
|
---|
3572 | * VMCS.
|
---|
3573 | *
|
---|
3574 | * @returns VBox status code.
|
---|
3575 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3576 | * @param uIntrState The interruptibility-state to set.
|
---|
3577 | */
|
---|
3578 | static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
|
---|
3579 | {
|
---|
3580 | NOREF(pVCpu);
|
---|
3581 | AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
|
---|
3582 | Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
|
---|
3583 | int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
|
---|
3584 | AssertRC(rc);
|
---|
3585 | return rc;
|
---|
3586 | }
|
---|
3587 |
|
---|
3588 |
|
---|
3589 | /**
|
---|
3590 | * Loads the exception intercepts required for guest execution in the VMCS.
|
---|
3591 | *
|
---|
3592 | * @returns VBox status code.
|
---|
3593 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3594 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3595 | * out-of-sync. Make sure to update the required fields
|
---|
3596 | * before using them.
|
---|
3597 | */
|
---|
3598 | static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3599 | {
|
---|
3600 | NOREF(pMixedCtx);
|
---|
3601 | int rc = VINF_SUCCESS;
|
---|
3602 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
|
---|
3603 | {
|
---|
3604 | /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
|
---|
3605 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
3606 | pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
|
---|
3607 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
3608 | else
|
---|
3609 | pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
|
---|
3610 | #endif
|
---|
3611 |
|
---|
3612 | Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
|
---|
3613 | Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
|
---|
3614 |
|
---|
3615 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
|
---|
3616 | AssertRCReturn(rc, rc);
|
---|
3617 |
|
---|
3618 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
|
---|
3619 | Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
|
---|
3620 | pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
|
---|
3621 | }
|
---|
3622 | return rc;
|
---|
3623 | }
|
---|
3624 |
|
---|
3625 |
|
---|
3626 | /**
|
---|
3627 | * Loads the guest's RIP into the guest-state area in the VMCS.
|
---|
3628 | *
|
---|
3629 | * @returns VBox status code.
|
---|
3630 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3631 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3632 | * out-of-sync. Make sure to update the required fields
|
---|
3633 | * before using them.
|
---|
3634 | *
|
---|
3635 | * @remarks No-long-jump zone!!!
|
---|
3636 | */
|
---|
3637 | static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3638 | {
|
---|
3639 | int rc = VINF_SUCCESS;
|
---|
3640 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
|
---|
3641 | {
|
---|
3642 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
|
---|
3643 | AssertRCReturn(rc, rc);
|
---|
3644 |
|
---|
3645 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
|
---|
3646 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
|
---|
3647 | HMCPU_CF_VALUE(pVCpu)));
|
---|
3648 | }
|
---|
3649 | return rc;
|
---|
3650 | }
|
---|
3651 |
|
---|
3652 |
|
---|
3653 | /**
|
---|
3654 | * Loads the guest's RSP into the guest-state area in the VMCS.
|
---|
3655 | *
|
---|
3656 | * @returns VBox status code.
|
---|
3657 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3658 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3659 | * out-of-sync. Make sure to update the required fields
|
---|
3660 | * before using them.
|
---|
3661 | *
|
---|
3662 | * @remarks No-long-jump zone!!!
|
---|
3663 | */
|
---|
3664 | static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3665 | {
|
---|
3666 | int rc = VINF_SUCCESS;
|
---|
3667 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
|
---|
3668 | {
|
---|
3669 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
|
---|
3670 | AssertRCReturn(rc, rc);
|
---|
3671 |
|
---|
3672 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
|
---|
3673 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
|
---|
3674 | }
|
---|
3675 | return rc;
|
---|
3676 | }
|
---|
3677 |
|
---|
3678 |
|
---|
3679 | /**
|
---|
3680 | * Loads the guest's RFLAGS into the guest-state area in the VMCS.
|
---|
3681 | *
|
---|
3682 | * @returns VBox status code.
|
---|
3683 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3684 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3685 | * out-of-sync. Make sure to update the required fields
|
---|
3686 | * before using them.
|
---|
3687 | *
|
---|
3688 | * @remarks No-long-jump zone!!!
|
---|
3689 | */
|
---|
3690 | static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3691 | {
|
---|
3692 | int rc = VINF_SUCCESS;
|
---|
3693 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
|
---|
3694 | {
|
---|
3695 | /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
|
---|
3696 | Let us assert it as such and use 32-bit VMWRITE. */
|
---|
3697 | Assert(!(pMixedCtx->rflags.u64 >> 32));
|
---|
3698 | X86EFLAGS Eflags = pMixedCtx->eflags;
|
---|
3699 | /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
|
---|
3700 | * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
|
---|
3701 | * These will never be cleared/set, unless some other part of the VMM
|
---|
3702 | * code is buggy - in which case we're better of finding and fixing
|
---|
3703 | * those bugs than hiding them. */
|
---|
3704 | Assert(Eflags.u32 & X86_EFL_RA1_MASK);
|
---|
3705 | Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
|
---|
3706 | Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
|
---|
3707 | Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
|
---|
3708 |
|
---|
3709 | /*
|
---|
3710 | * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
|
---|
3711 | * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
|
---|
3712 | */
|
---|
3713 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
3714 | {
|
---|
3715 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
3716 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
3717 | pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
|
---|
3718 | Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
|
---|
3719 | Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
|
---|
3720 | }
|
---|
3721 |
|
---|
3722 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
|
---|
3723 | AssertRCReturn(rc, rc);
|
---|
3724 |
|
---|
3725 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
|
---|
3726 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
|
---|
3727 | }
|
---|
3728 | return rc;
|
---|
3729 | }
|
---|
3730 |
|
---|
3731 |
|
---|
3732 | /**
|
---|
3733 | * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
|
---|
3734 | *
|
---|
3735 | * @returns VBox status code.
|
---|
3736 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3737 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3738 | * out-of-sync. Make sure to update the required fields
|
---|
3739 | * before using them.
|
---|
3740 | *
|
---|
3741 | * @remarks No-long-jump zone!!!
|
---|
3742 | */
|
---|
3743 | DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3744 | {
|
---|
3745 | int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
|
---|
3746 | rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
|
---|
3747 | rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
|
---|
3748 | AssertRCReturn(rc, rc);
|
---|
3749 | return rc;
|
---|
3750 | }
|
---|
3751 |
|
---|
3752 |
|
---|
3753 | /**
|
---|
3754 | * Loads the guest CR0 control register into the guest-state area in the VMCS.
|
---|
3755 | * CR0 is partially shared with the host and we have to consider the FPU bits.
|
---|
3756 | *
|
---|
3757 | * @returns VBox status code.
|
---|
3758 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3759 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3760 | * out-of-sync. Make sure to update the required fields
|
---|
3761 | * before using them.
|
---|
3762 | *
|
---|
3763 | * @remarks No-long-jump zone!!!
|
---|
3764 | */
|
---|
3765 | static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3766 | {
|
---|
3767 | /*
|
---|
3768 | * Guest CR0.
|
---|
3769 | * Guest FPU.
|
---|
3770 | */
|
---|
3771 | int rc = VINF_SUCCESS;
|
---|
3772 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
|
---|
3773 | {
|
---|
3774 | Assert(!(pMixedCtx->cr0 >> 32));
|
---|
3775 | uint32_t u32GuestCR0 = pMixedCtx->cr0;
|
---|
3776 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3777 |
|
---|
3778 | /* The guest's view (read access) of its CR0 is unblemished. */
|
---|
3779 | rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
|
---|
3780 | AssertRCReturn(rc, rc);
|
---|
3781 | Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
|
---|
3782 |
|
---|
3783 | /* Setup VT-x's view of the guest CR0. */
|
---|
3784 | /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
|
---|
3785 | if (pVM->hm.s.fNestedPaging)
|
---|
3786 | {
|
---|
3787 | if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
|
---|
3788 | {
|
---|
3789 | /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
|
---|
3790 | pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
|
---|
3791 | | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
|
---|
3792 | }
|
---|
3793 | else
|
---|
3794 | {
|
---|
3795 | /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
|
---|
3796 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
|
---|
3797 | | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
|
---|
3798 | }
|
---|
3799 |
|
---|
3800 | /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
|
---|
3801 | if (pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
3802 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
|
---|
3803 |
|
---|
3804 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
3805 | AssertRCReturn(rc, rc);
|
---|
3806 | }
|
---|
3807 | else
|
---|
3808 | u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
|
---|
3809 |
|
---|
3810 | /*
|
---|
3811 | * Guest FPU bits.
|
---|
3812 | * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
|
---|
3813 | * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
|
---|
3814 | */
|
---|
3815 | u32GuestCR0 |= X86_CR0_NE;
|
---|
3816 | bool fInterceptNM = false;
|
---|
3817 | if (CPUMIsGuestFPUStateActive(pVCpu))
|
---|
3818 | {
|
---|
3819 | fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
|
---|
3820 | /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
|
---|
3821 | We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
|
---|
3822 | }
|
---|
3823 | else
|
---|
3824 | {
|
---|
3825 | fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
|
---|
3826 | u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
|
---|
3827 | | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
|
---|
3828 | }
|
---|
3829 |
|
---|
3830 | /* Catch floating point exceptions if we need to report them to the guest in a different way. */
|
---|
3831 | bool fInterceptMF = false;
|
---|
3832 | if (!(pMixedCtx->cr0 & X86_CR0_NE))
|
---|
3833 | fInterceptMF = true;
|
---|
3834 |
|
---|
3835 | /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
|
---|
3836 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
3837 | {
|
---|
3838 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
3839 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
3840 | pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
|
---|
3841 | fInterceptNM = true;
|
---|
3842 | fInterceptMF = true;
|
---|
3843 | }
|
---|
3844 | else
|
---|
3845 | {
|
---|
3846 | /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
|
---|
3847 | pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
|
---|
3848 | }
|
---|
3849 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
|
---|
3850 |
|
---|
3851 | if (fInterceptNM)
|
---|
3852 | pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
|
---|
3853 | else
|
---|
3854 | pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
|
---|
3855 |
|
---|
3856 | if (fInterceptMF)
|
---|
3857 | pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
|
---|
3858 | else
|
---|
3859 | pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
|
---|
3860 |
|
---|
3861 | /* Additional intercepts for debugging, define these yourself explicitly. */
|
---|
3862 | #ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
3863 | pVCpu->hm.s.vmx.u32XcptBitmap |= 0
|
---|
3864 | | RT_BIT(X86_XCPT_BP)
|
---|
3865 | | RT_BIT(X86_XCPT_DE)
|
---|
3866 | | RT_BIT(X86_XCPT_NM)
|
---|
3867 | | RT_BIT(X86_XCPT_TS)
|
---|
3868 | | RT_BIT(X86_XCPT_UD)
|
---|
3869 | | RT_BIT(X86_XCPT_NP)
|
---|
3870 | | RT_BIT(X86_XCPT_SS)
|
---|
3871 | | RT_BIT(X86_XCPT_GP)
|
---|
3872 | | RT_BIT(X86_XCPT_PF)
|
---|
3873 | | RT_BIT(X86_XCPT_MF)
|
---|
3874 | ;
|
---|
3875 | #elif defined(HMVMX_ALWAYS_TRAP_PF)
|
---|
3876 | pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
|
---|
3877 | #endif
|
---|
3878 |
|
---|
3879 | Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
|
---|
3880 |
|
---|
3881 | /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
|
---|
3882 | uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
|
---|
3883 | uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
|
---|
3884 | if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
|
---|
3885 | uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
|
---|
3886 | else
|
---|
3887 | Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
|
---|
3888 |
|
---|
3889 | u32GuestCR0 |= uSetCR0;
|
---|
3890 | u32GuestCR0 &= uZapCR0;
|
---|
3891 | u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
|
---|
3892 |
|
---|
3893 | /* Write VT-x's view of the guest CR0 into the VMCS. */
|
---|
3894 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
|
---|
3895 | AssertRCReturn(rc, rc);
|
---|
3896 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
|
---|
3897 | uZapCR0));
|
---|
3898 |
|
---|
3899 | /*
|
---|
3900 | * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
|
---|
3901 | * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
|
---|
3902 | * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
|
---|
3903 | */
|
---|
3904 | uint32_t u32CR0Mask = 0;
|
---|
3905 | u32CR0Mask = X86_CR0_PE
|
---|
3906 | | X86_CR0_NE
|
---|
3907 | | X86_CR0_WP
|
---|
3908 | | X86_CR0_PG
|
---|
3909 | | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
|
---|
3910 | | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
|
---|
3911 | | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
|
---|
3912 |
|
---|
3913 | /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
|
---|
3914 | * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
|
---|
3915 | * and @bugref{6944}. */
|
---|
3916 | #if 0
|
---|
3917 | if (pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
3918 | u32CR0Mask &= ~X86_CR0_PE;
|
---|
3919 | #endif
|
---|
3920 | if (pVM->hm.s.fNestedPaging)
|
---|
3921 | u32CR0Mask &= ~X86_CR0_WP;
|
---|
3922 |
|
---|
3923 | /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
|
---|
3924 | if (fInterceptNM)
|
---|
3925 | {
|
---|
3926 | u32CR0Mask |= X86_CR0_TS
|
---|
3927 | | X86_CR0_MP;
|
---|
3928 | }
|
---|
3929 |
|
---|
3930 | /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
|
---|
3931 | pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
|
---|
3932 | rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
|
---|
3933 | AssertRCReturn(rc, rc);
|
---|
3934 | Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
|
---|
3935 |
|
---|
3936 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
3937 | }
|
---|
3938 | return rc;
|
---|
3939 | }
|
---|
3940 |
|
---|
3941 |
|
---|
3942 | /**
|
---|
3943 | * Loads the guest control registers (CR3, CR4) into the guest-state area
|
---|
3944 | * in the VMCS.
|
---|
3945 | *
|
---|
3946 | * @returns VBox strict status code.
|
---|
3947 | * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
|
---|
3948 | * without unrestricted guest access and the VMMDev is not presently
|
---|
3949 | * mapped (e.g. EFI32).
|
---|
3950 | *
|
---|
3951 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3952 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3953 | * out-of-sync. Make sure to update the required fields
|
---|
3954 | * before using them.
|
---|
3955 | *
|
---|
3956 | * @remarks No-long-jump zone!!!
|
---|
3957 | */
|
---|
3958 | static VBOXSTRICTRC hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3959 | {
|
---|
3960 | int rc = VINF_SUCCESS;
|
---|
3961 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3962 |
|
---|
3963 | /*
|
---|
3964 | * Guest CR2.
|
---|
3965 | * It's always loaded in the assembler code. Nothing to do here.
|
---|
3966 | */
|
---|
3967 |
|
---|
3968 | /*
|
---|
3969 | * Guest CR3.
|
---|
3970 | */
|
---|
3971 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
|
---|
3972 | {
|
---|
3973 | RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
|
---|
3974 | if (pVM->hm.s.fNestedPaging)
|
---|
3975 | {
|
---|
3976 | pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
|
---|
3977 |
|
---|
3978 | /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
|
---|
3979 | Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
|
---|
3980 | Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
|
---|
3981 | Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
|
---|
3982 |
|
---|
3983 | /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
|
---|
3984 | pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
|
---|
3985 | | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
|
---|
3986 |
|
---|
3987 | /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
|
---|
3988 | AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
|
---|
3989 | && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
|
---|
3990 | ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
|
---|
3991 | AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
|
---|
3992 | || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
|
---|
3993 | ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
|
---|
3994 |
|
---|
3995 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
|
---|
3996 | AssertRCReturn(rc, rc);
|
---|
3997 | Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
|
---|
3998 |
|
---|
3999 | if ( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
4000 | || CPUMIsGuestPagingEnabledEx(pMixedCtx))
|
---|
4001 | {
|
---|
4002 | /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
|
---|
4003 | if (CPUMIsGuestInPAEModeEx(pMixedCtx))
|
---|
4004 | {
|
---|
4005 | rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
4006 | AssertRCReturn(rc, rc);
|
---|
4007 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
|
---|
4008 | rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
|
---|
4009 | rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
|
---|
4010 | rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
|
---|
4011 | AssertRCReturn(rc, rc);
|
---|
4012 | }
|
---|
4013 |
|
---|
4014 | /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
|
---|
4015 | have Unrestricted Execution to handle the guest when it's not using paging. */
|
---|
4016 | GCPhysGuestCR3 = pMixedCtx->cr3;
|
---|
4017 | }
|
---|
4018 | else
|
---|
4019 | {
|
---|
4020 | /*
|
---|
4021 | * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
|
---|
4022 | * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
|
---|
4023 | * EPT takes care of translating it to host-physical addresses.
|
---|
4024 | */
|
---|
4025 | RTGCPHYS GCPhys;
|
---|
4026 | Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
|
---|
4027 |
|
---|
4028 | /* We obtain it here every time as the guest could have relocated this PCI region. */
|
---|
4029 | rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
|
---|
4030 | if (RT_SUCCESS(rc))
|
---|
4031 | { /* likely */ }
|
---|
4032 | else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
|
---|
4033 | {
|
---|
4034 | Log4(("Load[%RU32]: VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n", pVCpu->idCpu));
|
---|
4035 | return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
|
---|
4036 | }
|
---|
4037 | else
|
---|
4038 | AssertMsgFailedReturn(("%Rrc\n", rc), rc);
|
---|
4039 |
|
---|
4040 | GCPhysGuestCR3 = GCPhys;
|
---|
4041 | }
|
---|
4042 |
|
---|
4043 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGp (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
|
---|
4044 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
|
---|
4045 | }
|
---|
4046 | else
|
---|
4047 | {
|
---|
4048 | /* Non-nested paging case, just use the hypervisor's CR3. */
|
---|
4049 | RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
|
---|
4050 |
|
---|
4051 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
|
---|
4052 | rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
|
---|
4053 | }
|
---|
4054 | AssertRCReturn(rc, rc);
|
---|
4055 |
|
---|
4056 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
|
---|
4057 | }
|
---|
4058 |
|
---|
4059 | /*
|
---|
4060 | * Guest CR4.
|
---|
4061 | * ASSUMES this is done everytime we get in from ring-3! (XCR0)
|
---|
4062 | */
|
---|
4063 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
|
---|
4064 | {
|
---|
4065 | Assert(!(pMixedCtx->cr4 >> 32));
|
---|
4066 | uint32_t u32GuestCR4 = pMixedCtx->cr4;
|
---|
4067 |
|
---|
4068 | /* The guest's view of its CR4 is unblemished. */
|
---|
4069 | rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
|
---|
4070 | AssertRCReturn(rc, rc);
|
---|
4071 | Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
|
---|
4072 |
|
---|
4073 | /* Setup VT-x's view of the guest CR4. */
|
---|
4074 | /*
|
---|
4075 | * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
|
---|
4076 | * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
|
---|
4077 | * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
|
---|
4078 | */
|
---|
4079 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
4080 | {
|
---|
4081 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
4082 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
4083 | u32GuestCR4 &= ~X86_CR4_VME;
|
---|
4084 | }
|
---|
4085 |
|
---|
4086 | if (pVM->hm.s.fNestedPaging)
|
---|
4087 | {
|
---|
4088 | if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
|
---|
4089 | && !pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
4090 | {
|
---|
4091 | /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
|
---|
4092 | u32GuestCR4 |= X86_CR4_PSE;
|
---|
4093 | /* Our identity mapping is a 32-bit page directory. */
|
---|
4094 | u32GuestCR4 &= ~X86_CR4_PAE;
|
---|
4095 | }
|
---|
4096 | /* else use guest CR4.*/
|
---|
4097 | }
|
---|
4098 | else
|
---|
4099 | {
|
---|
4100 | /*
|
---|
4101 | * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
|
---|
4102 | * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
|
---|
4103 | */
|
---|
4104 | switch (pVCpu->hm.s.enmShadowMode)
|
---|
4105 | {
|
---|
4106 | case PGMMODE_REAL: /* Real-mode. */
|
---|
4107 | case PGMMODE_PROTECTED: /* Protected mode without paging. */
|
---|
4108 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
4109 | {
|
---|
4110 | u32GuestCR4 &= ~X86_CR4_PAE;
|
---|
4111 | break;
|
---|
4112 | }
|
---|
4113 |
|
---|
4114 | case PGMMODE_PAE: /* PAE paging. */
|
---|
4115 | case PGMMODE_PAE_NX: /* PAE paging with NX. */
|
---|
4116 | {
|
---|
4117 | u32GuestCR4 |= X86_CR4_PAE;
|
---|
4118 | break;
|
---|
4119 | }
|
---|
4120 |
|
---|
4121 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
4122 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
4123 | #ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
4124 | break;
|
---|
4125 | #endif
|
---|
4126 | default:
|
---|
4127 | AssertFailed();
|
---|
4128 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
4129 | }
|
---|
4130 | }
|
---|
4131 |
|
---|
4132 | /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
|
---|
4133 | uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
|
---|
4134 | uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
|
---|
4135 | u32GuestCR4 |= uSetCR4;
|
---|
4136 | u32GuestCR4 &= uZapCR4;
|
---|
4137 |
|
---|
4138 | /* Write VT-x's view of the guest CR4 into the VMCS. */
|
---|
4139 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
|
---|
4140 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
|
---|
4141 | AssertRCReturn(rc, rc);
|
---|
4142 |
|
---|
4143 | /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
|
---|
4144 | uint32_t u32CR4Mask = X86_CR4_VME
|
---|
4145 | | X86_CR4_PAE
|
---|
4146 | | X86_CR4_PGE
|
---|
4147 | | X86_CR4_PSE
|
---|
4148 | | X86_CR4_VMXE;
|
---|
4149 | if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
|
---|
4150 | u32CR4Mask |= X86_CR4_OSXSAVE;
|
---|
4151 | if (pVM->cpum.ro.GuestFeatures.fPcid)
|
---|
4152 | u32CR4Mask |= X86_CR4_PCIDE;
|
---|
4153 | pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
|
---|
4154 | rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
|
---|
4155 | AssertRCReturn(rc, rc);
|
---|
4156 |
|
---|
4157 | /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
|
---|
4158 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
|
---|
4159 |
|
---|
4160 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
4161 | }
|
---|
4162 | return rc;
|
---|
4163 | }
|
---|
4164 |
|
---|
4165 |
|
---|
4166 | /**
|
---|
4167 | * Loads the guest debug registers into the guest-state area in the VMCS.
|
---|
4168 | *
|
---|
4169 | * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
|
---|
4170 | *
|
---|
4171 | * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
|
---|
4172 | *
|
---|
4173 | * @returns VBox status code.
|
---|
4174 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4175 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4176 | * out-of-sync. Make sure to update the required fields
|
---|
4177 | * before using them.
|
---|
4178 | *
|
---|
4179 | * @remarks No-long-jump zone!!!
|
---|
4180 | */
|
---|
4181 | static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
4182 | {
|
---|
4183 | if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
|
---|
4184 | return VINF_SUCCESS;
|
---|
4185 |
|
---|
4186 | #ifdef VBOX_STRICT
|
---|
4187 | /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
|
---|
4188 | if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
|
---|
4189 | {
|
---|
4190 | /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
|
---|
4191 | Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
|
---|
4192 | Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
|
---|
4193 | }
|
---|
4194 | #endif
|
---|
4195 |
|
---|
4196 | int rc;
|
---|
4197 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4198 | bool fSteppingDB = false;
|
---|
4199 | bool fInterceptMovDRx = false;
|
---|
4200 | if (pVCpu->hm.s.fSingleInstruction)
|
---|
4201 | {
|
---|
4202 | /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
|
---|
4203 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
|
---|
4204 | {
|
---|
4205 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
|
---|
4206 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
4207 | AssertRCReturn(rc, rc);
|
---|
4208 | Assert(fSteppingDB == false);
|
---|
4209 | }
|
---|
4210 | else
|
---|
4211 | {
|
---|
4212 | pMixedCtx->eflags.u32 |= X86_EFL_TF;
|
---|
4213 | pVCpu->hm.s.fClearTrapFlag = true;
|
---|
4214 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
|
---|
4215 | fSteppingDB = true;
|
---|
4216 | }
|
---|
4217 | }
|
---|
4218 |
|
---|
4219 | if ( fSteppingDB
|
---|
4220 | || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
|
---|
4221 | {
|
---|
4222 | /*
|
---|
4223 | * Use the combined guest and host DRx values found in the hypervisor
|
---|
4224 | * register set because the debugger has breakpoints active or someone
|
---|
4225 | * is single stepping on the host side without a monitor trap flag.
|
---|
4226 | *
|
---|
4227 | * Note! DBGF expects a clean DR6 state before executing guest code.
|
---|
4228 | */
|
---|
4229 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
4230 | if ( CPUMIsGuestInLongModeEx(pMixedCtx)
|
---|
4231 | && !CPUMIsHyperDebugStateActivePending(pVCpu))
|
---|
4232 | {
|
---|
4233 | CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
|
---|
4234 | Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
4235 | Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
4236 | }
|
---|
4237 | else
|
---|
4238 | #endif
|
---|
4239 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
4240 | {
|
---|
4241 | CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
|
---|
4242 | Assert(CPUMIsHyperDebugStateActive(pVCpu));
|
---|
4243 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
4244 | }
|
---|
4245 |
|
---|
4246 | /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
|
---|
4247 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
|
---|
4248 | AssertRCReturn(rc, rc);
|
---|
4249 |
|
---|
4250 | pVCpu->hm.s.fUsingHyperDR7 = true;
|
---|
4251 | fInterceptMovDRx = true;
|
---|
4252 | }
|
---|
4253 | else
|
---|
4254 | {
|
---|
4255 | /*
|
---|
4256 | * If the guest has enabled debug registers, we need to load them prior to
|
---|
4257 | * executing guest code so they'll trigger at the right time.
|
---|
4258 | */
|
---|
4259 | if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
|
---|
4260 | {
|
---|
4261 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
4262 | if ( CPUMIsGuestInLongModeEx(pMixedCtx)
|
---|
4263 | && !CPUMIsGuestDebugStateActivePending(pVCpu))
|
---|
4264 | {
|
---|
4265 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
4266 | Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
4267 | Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
4268 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
4269 | }
|
---|
4270 | else
|
---|
4271 | #endif
|
---|
4272 | if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
4273 | {
|
---|
4274 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
4275 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
4276 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
4277 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
4278 | }
|
---|
4279 | Assert(!fInterceptMovDRx);
|
---|
4280 | }
|
---|
4281 | /*
|
---|
4282 | * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
|
---|
4283 | * must intercept #DB in order to maintain a correct DR6 guest value, and
|
---|
4284 | * because we need to intercept it to prevent nested #DBs from hanging the
|
---|
4285 | * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
|
---|
4286 | */
|
---|
4287 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
4288 | else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
|
---|
4289 | && !CPUMIsGuestDebugStateActive(pVCpu))
|
---|
4290 | #else
|
---|
4291 | else if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
4292 | #endif
|
---|
4293 | {
|
---|
4294 | fInterceptMovDRx = true;
|
---|
4295 | }
|
---|
4296 |
|
---|
4297 | /* Update guest DR7. */
|
---|
4298 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
|
---|
4299 | AssertRCReturn(rc, rc);
|
---|
4300 |
|
---|
4301 | pVCpu->hm.s.fUsingHyperDR7 = false;
|
---|
4302 | }
|
---|
4303 |
|
---|
4304 | /*
|
---|
4305 | * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
|
---|
4306 | */
|
---|
4307 | if (fInterceptMovDRx)
|
---|
4308 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
|
---|
4309 | else
|
---|
4310 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
|
---|
4311 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
4312 | AssertRCReturn(rc, rc);
|
---|
4313 |
|
---|
4314 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
4315 | return VINF_SUCCESS;
|
---|
4316 | }
|
---|
4317 |
|
---|
4318 |
|
---|
4319 | #ifdef VBOX_STRICT
|
---|
4320 | /**
|
---|
4321 | * Strict function to validate segment registers.
|
---|
4322 | *
|
---|
4323 | * @remarks ASSUMES CR0 is up to date.
|
---|
4324 | */
|
---|
4325 | static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
4326 | {
|
---|
4327 | /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
|
---|
4328 | /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
|
---|
4329 | * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
|
---|
4330 | if ( !pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
4331 | && ( !CPUMIsGuestInRealModeEx(pCtx)
|
---|
4332 | && !CPUMIsGuestInV86ModeEx(pCtx)))
|
---|
4333 | {
|
---|
4334 | /* Protected mode checks */
|
---|
4335 | /* CS */
|
---|
4336 | Assert(pCtx->cs.Attr.n.u1Present);
|
---|
4337 | Assert(!(pCtx->cs.Attr.u & 0xf00));
|
---|
4338 | Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
|
---|
4339 | Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
|
---|
4340 | || !(pCtx->cs.Attr.n.u1Granularity));
|
---|
4341 | Assert( !(pCtx->cs.u32Limit & 0xfff00000)
|
---|
4342 | || (pCtx->cs.Attr.n.u1Granularity));
|
---|
4343 | /* CS cannot be loaded with NULL in protected mode. */
|
---|
4344 | Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
|
---|
4345 | if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
|
---|
4346 | Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
|
---|
4347 | else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
|
---|
4348 | Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
|
---|
4349 | else
|
---|
4350 | AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
|
---|
4351 | /* SS */
|
---|
4352 | Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
|
---|
4353 | Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
|
---|
4354 | if ( !(pCtx->cr0 & X86_CR0_PE)
|
---|
4355 | || pCtx->cs.Attr.n.u4Type == 3)
|
---|
4356 | {
|
---|
4357 | Assert(!pCtx->ss.Attr.n.u2Dpl);
|
---|
4358 | }
|
---|
4359 | if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
4360 | {
|
---|
4361 | Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
|
---|
4362 | Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
|
---|
4363 | Assert(pCtx->ss.Attr.n.u1Present);
|
---|
4364 | Assert(!(pCtx->ss.Attr.u & 0xf00));
|
---|
4365 | Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
|
---|
4366 | Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
|
---|
4367 | || !(pCtx->ss.Attr.n.u1Granularity));
|
---|
4368 | Assert( !(pCtx->ss.u32Limit & 0xfff00000)
|
---|
4369 | || (pCtx->ss.Attr.n.u1Granularity));
|
---|
4370 | }
|
---|
4371 | /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
|
---|
4372 | if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
4373 | {
|
---|
4374 | Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
4375 | Assert(pCtx->ds.Attr.n.u1Present);
|
---|
4376 | Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
|
---|
4377 | Assert(!(pCtx->ds.Attr.u & 0xf00));
|
---|
4378 | Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
|
---|
4379 | Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
|
---|
4380 | || !(pCtx->ds.Attr.n.u1Granularity));
|
---|
4381 | Assert( !(pCtx->ds.u32Limit & 0xfff00000)
|
---|
4382 | || (pCtx->ds.Attr.n.u1Granularity));
|
---|
4383 | Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
4384 | || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
4385 | }
|
---|
4386 | if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
4387 | {
|
---|
4388 | Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
4389 | Assert(pCtx->es.Attr.n.u1Present);
|
---|
4390 | Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
|
---|
4391 | Assert(!(pCtx->es.Attr.u & 0xf00));
|
---|
4392 | Assert(!(pCtx->es.Attr.u & 0xfffe0000));
|
---|
4393 | Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
|
---|
4394 | || !(pCtx->es.Attr.n.u1Granularity));
|
---|
4395 | Assert( !(pCtx->es.u32Limit & 0xfff00000)
|
---|
4396 | || (pCtx->es.Attr.n.u1Granularity));
|
---|
4397 | Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
4398 | || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
4399 | }
|
---|
4400 | if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
4401 | {
|
---|
4402 | Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
4403 | Assert(pCtx->fs.Attr.n.u1Present);
|
---|
4404 | Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
|
---|
4405 | Assert(!(pCtx->fs.Attr.u & 0xf00));
|
---|
4406 | Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
|
---|
4407 | Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
|
---|
4408 | || !(pCtx->fs.Attr.n.u1Granularity));
|
---|
4409 | Assert( !(pCtx->fs.u32Limit & 0xfff00000)
|
---|
4410 | || (pCtx->fs.Attr.n.u1Granularity));
|
---|
4411 | Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
4412 | || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
4413 | }
|
---|
4414 | if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
4415 | {
|
---|
4416 | Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
4417 | Assert(pCtx->gs.Attr.n.u1Present);
|
---|
4418 | Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
|
---|
4419 | Assert(!(pCtx->gs.Attr.u & 0xf00));
|
---|
4420 | Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
|
---|
4421 | Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
|
---|
4422 | || !(pCtx->gs.Attr.n.u1Granularity));
|
---|
4423 | Assert( !(pCtx->gs.u32Limit & 0xfff00000)
|
---|
4424 | || (pCtx->gs.Attr.n.u1Granularity));
|
---|
4425 | Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
4426 | || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
4427 | }
|
---|
4428 | /* 64-bit capable CPUs. */
|
---|
4429 | # if HC_ARCH_BITS == 64
|
---|
4430 | Assert(!(pCtx->cs.u64Base >> 32));
|
---|
4431 | Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
|
---|
4432 | Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
|
---|
4433 | Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
|
---|
4434 | # endif
|
---|
4435 | }
|
---|
4436 | else if ( CPUMIsGuestInV86ModeEx(pCtx)
|
---|
4437 | || ( CPUMIsGuestInRealModeEx(pCtx)
|
---|
4438 | && !pVM->hm.s.vmx.fUnrestrictedGuest))
|
---|
4439 | {
|
---|
4440 | /* Real and v86 mode checks. */
|
---|
4441 | /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
|
---|
4442 | uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
|
---|
4443 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
4444 | {
|
---|
4445 | u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
|
---|
4446 | }
|
---|
4447 | else
|
---|
4448 | {
|
---|
4449 | u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
|
---|
4450 | u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
|
---|
4451 | }
|
---|
4452 |
|
---|
4453 | /* CS */
|
---|
4454 | AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
|
---|
4455 | Assert(pCtx->cs.u32Limit == 0xffff);
|
---|
4456 | Assert(u32CSAttr == 0xf3);
|
---|
4457 | /* SS */
|
---|
4458 | Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
|
---|
4459 | Assert(pCtx->ss.u32Limit == 0xffff);
|
---|
4460 | Assert(u32SSAttr == 0xf3);
|
---|
4461 | /* DS */
|
---|
4462 | Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
|
---|
4463 | Assert(pCtx->ds.u32Limit == 0xffff);
|
---|
4464 | Assert(u32DSAttr == 0xf3);
|
---|
4465 | /* ES */
|
---|
4466 | Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
|
---|
4467 | Assert(pCtx->es.u32Limit == 0xffff);
|
---|
4468 | Assert(u32ESAttr == 0xf3);
|
---|
4469 | /* FS */
|
---|
4470 | Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
|
---|
4471 | Assert(pCtx->fs.u32Limit == 0xffff);
|
---|
4472 | Assert(u32FSAttr == 0xf3);
|
---|
4473 | /* GS */
|
---|
4474 | Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
|
---|
4475 | Assert(pCtx->gs.u32Limit == 0xffff);
|
---|
4476 | Assert(u32GSAttr == 0xf3);
|
---|
4477 | /* 64-bit capable CPUs. */
|
---|
4478 | # if HC_ARCH_BITS == 64
|
---|
4479 | Assert(!(pCtx->cs.u64Base >> 32));
|
---|
4480 | Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
|
---|
4481 | Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
|
---|
4482 | Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
|
---|
4483 | # endif
|
---|
4484 | }
|
---|
4485 | }
|
---|
4486 | #endif /* VBOX_STRICT */
|
---|
4487 |
|
---|
4488 |
|
---|
4489 | /**
|
---|
4490 | * Writes a guest segment register into the guest-state area in the VMCS.
|
---|
4491 | *
|
---|
4492 | * @returns VBox status code.
|
---|
4493 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4494 | * @param idxSel Index of the selector in the VMCS.
|
---|
4495 | * @param idxLimit Index of the segment limit in the VMCS.
|
---|
4496 | * @param idxBase Index of the segment base in the VMCS.
|
---|
4497 | * @param idxAccess Index of the access rights of the segment in the VMCS.
|
---|
4498 | * @param pSelReg Pointer to the segment selector.
|
---|
4499 | *
|
---|
4500 | * @remarks No-long-jump zone!!!
|
---|
4501 | */
|
---|
4502 | static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
|
---|
4503 | uint32_t idxAccess, PCPUMSELREG pSelReg)
|
---|
4504 | {
|
---|
4505 | int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
|
---|
4506 | rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
|
---|
4507 | rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
|
---|
4508 | AssertRCReturn(rc, rc);
|
---|
4509 |
|
---|
4510 | uint32_t u32Access = pSelReg->Attr.u;
|
---|
4511 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
4512 | {
|
---|
4513 | /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
|
---|
4514 | u32Access = 0xf3;
|
---|
4515 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
4516 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
4517 | }
|
---|
4518 | else
|
---|
4519 | {
|
---|
4520 | /*
|
---|
4521 | * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
|
---|
4522 | * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
|
---|
4523 | * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
|
---|
4524 | * loaded in protected-mode have their attribute as 0.
|
---|
4525 | */
|
---|
4526 | if (!u32Access)
|
---|
4527 | u32Access = X86DESCATTR_UNUSABLE;
|
---|
4528 | }
|
---|
4529 |
|
---|
4530 | /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
|
---|
4531 | AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
|
---|
4532 | ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
|
---|
4533 |
|
---|
4534 | rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
|
---|
4535 | AssertRCReturn(rc, rc);
|
---|
4536 | return rc;
|
---|
4537 | }
|
---|
4538 |
|
---|
4539 |
|
---|
4540 | /**
|
---|
4541 | * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
|
---|
4542 | * into the guest-state area in the VMCS.
|
---|
4543 | *
|
---|
4544 | * @returns VBox status code.
|
---|
4545 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4546 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4547 | * out-of-sync. Make sure to update the required fields
|
---|
4548 | * before using them.
|
---|
4549 | *
|
---|
4550 | * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
|
---|
4551 | * @remarks No-long-jump zone!!!
|
---|
4552 | */
|
---|
4553 | static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
4554 | {
|
---|
4555 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
4556 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4557 |
|
---|
4558 | /*
|
---|
4559 | * Guest Segment registers: CS, SS, DS, ES, FS, GS.
|
---|
4560 | */
|
---|
4561 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
|
---|
4562 | {
|
---|
4563 | /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
|
---|
4564 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
4565 | {
|
---|
4566 | pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
|
---|
4567 | pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
|
---|
4568 | pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
|
---|
4569 | pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
|
---|
4570 | pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
|
---|
4571 | pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
|
---|
4572 | }
|
---|
4573 |
|
---|
4574 | #ifdef VBOX_WITH_REM
|
---|
4575 | if (!pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
4576 | {
|
---|
4577 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
4578 | AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
|
---|
4579 | if ( pVCpu->hm.s.vmx.fWasInRealMode
|
---|
4580 | && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
|
---|
4581 | {
|
---|
4582 | /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
|
---|
4583 | in real-mode (e.g. OpenBSD 4.0) */
|
---|
4584 | REMFlushTBs(pVM);
|
---|
4585 | Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
|
---|
4586 | pVCpu->hm.s.vmx.fWasInRealMode = false;
|
---|
4587 | }
|
---|
4588 | }
|
---|
4589 | #endif
|
---|
4590 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_CS_SEL, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
|
---|
4591 | VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
|
---|
4592 | AssertRCReturn(rc, rc);
|
---|
4593 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_SS_SEL, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
|
---|
4594 | VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
|
---|
4595 | AssertRCReturn(rc, rc);
|
---|
4596 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_DS_SEL, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
|
---|
4597 | VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
|
---|
4598 | AssertRCReturn(rc, rc);
|
---|
4599 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_ES_SEL, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
|
---|
4600 | VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
|
---|
4601 | AssertRCReturn(rc, rc);
|
---|
4602 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FS_SEL, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
|
---|
4603 | VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
|
---|
4604 | AssertRCReturn(rc, rc);
|
---|
4605 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_GS_SEL, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
|
---|
4606 | VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
|
---|
4607 | AssertRCReturn(rc, rc);
|
---|
4608 |
|
---|
4609 | #ifdef VBOX_STRICT
|
---|
4610 | /* Validate. */
|
---|
4611 | hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
|
---|
4612 | #endif
|
---|
4613 |
|
---|
4614 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
|
---|
4615 | Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
|
---|
4616 | pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
|
---|
4617 | }
|
---|
4618 |
|
---|
4619 | /*
|
---|
4620 | * Guest TR.
|
---|
4621 | */
|
---|
4622 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
|
---|
4623 | {
|
---|
4624 | /*
|
---|
4625 | * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
|
---|
4626 | * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
|
---|
4627 | * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
|
---|
4628 | */
|
---|
4629 | uint16_t u16Sel = 0;
|
---|
4630 | uint32_t u32Limit = 0;
|
---|
4631 | uint64_t u64Base = 0;
|
---|
4632 | uint32_t u32AccessRights = 0;
|
---|
4633 |
|
---|
4634 | if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
4635 | {
|
---|
4636 | u16Sel = pMixedCtx->tr.Sel;
|
---|
4637 | u32Limit = pMixedCtx->tr.u32Limit;
|
---|
4638 | u64Base = pMixedCtx->tr.u64Base;
|
---|
4639 | u32AccessRights = pMixedCtx->tr.Attr.u;
|
---|
4640 | }
|
---|
4641 | else
|
---|
4642 | {
|
---|
4643 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
4644 | Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
|
---|
4645 |
|
---|
4646 | /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
|
---|
4647 | RTGCPHYS GCPhys;
|
---|
4648 | rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
|
---|
4649 | AssertRCReturn(rc, rc);
|
---|
4650 |
|
---|
4651 | X86DESCATTR DescAttr;
|
---|
4652 | DescAttr.u = 0;
|
---|
4653 | DescAttr.n.u1Present = 1;
|
---|
4654 | DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
4655 |
|
---|
4656 | u16Sel = 0;
|
---|
4657 | u32Limit = HM_VTX_TSS_SIZE;
|
---|
4658 | u64Base = GCPhys; /* in real-mode phys = virt. */
|
---|
4659 | u32AccessRights = DescAttr.u;
|
---|
4660 | }
|
---|
4661 |
|
---|
4662 | /* Validate. */
|
---|
4663 | Assert(!(u16Sel & RT_BIT(2)));
|
---|
4664 | AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
|
---|
4665 | || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
|
---|
4666 | AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
|
---|
4667 | Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
|
---|
4668 | Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
|
---|
4669 | Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
|
---|
4670 | Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
|
---|
4671 | Assert( (u32Limit & 0xfff) == 0xfff
|
---|
4672 | || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
|
---|
4673 | Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
|
---|
4674 | || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
|
---|
4675 |
|
---|
4676 | rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
|
---|
4677 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
|
---|
4678 | rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
|
---|
4679 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
|
---|
4680 | AssertRCReturn(rc, rc);
|
---|
4681 |
|
---|
4682 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
|
---|
4683 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
|
---|
4684 | }
|
---|
4685 |
|
---|
4686 | /*
|
---|
4687 | * Guest GDTR.
|
---|
4688 | */
|
---|
4689 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
|
---|
4690 | {
|
---|
4691 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
|
---|
4692 | rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
|
---|
4693 | AssertRCReturn(rc, rc);
|
---|
4694 |
|
---|
4695 | /* Validate. */
|
---|
4696 | Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
|
---|
4697 |
|
---|
4698 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
|
---|
4699 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
|
---|
4700 | }
|
---|
4701 |
|
---|
4702 | /*
|
---|
4703 | * Guest LDTR.
|
---|
4704 | */
|
---|
4705 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
|
---|
4706 | {
|
---|
4707 | /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
|
---|
4708 | uint32_t u32Access = 0;
|
---|
4709 | if (!pMixedCtx->ldtr.Attr.u)
|
---|
4710 | u32Access = X86DESCATTR_UNUSABLE;
|
---|
4711 | else
|
---|
4712 | u32Access = pMixedCtx->ldtr.Attr.u;
|
---|
4713 |
|
---|
4714 | rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pMixedCtx->ldtr.Sel);
|
---|
4715 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
|
---|
4716 | rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
|
---|
4717 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
|
---|
4718 | AssertRCReturn(rc, rc);
|
---|
4719 |
|
---|
4720 | /* Validate. */
|
---|
4721 | if (!(u32Access & X86DESCATTR_UNUSABLE))
|
---|
4722 | {
|
---|
4723 | Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
|
---|
4724 | Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
|
---|
4725 | Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
|
---|
4726 | Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
|
---|
4727 | Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
|
---|
4728 | Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
|
---|
4729 | Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
|
---|
4730 | || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
|
---|
4731 | Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
|
---|
4732 | || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
|
---|
4733 | }
|
---|
4734 |
|
---|
4735 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
|
---|
4736 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
|
---|
4737 | }
|
---|
4738 |
|
---|
4739 | /*
|
---|
4740 | * Guest IDTR.
|
---|
4741 | */
|
---|
4742 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
|
---|
4743 | {
|
---|
4744 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
|
---|
4745 | rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
|
---|
4746 | AssertRCReturn(rc, rc);
|
---|
4747 |
|
---|
4748 | /* Validate. */
|
---|
4749 | Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
|
---|
4750 |
|
---|
4751 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
|
---|
4752 | Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
|
---|
4753 | }
|
---|
4754 |
|
---|
4755 | return VINF_SUCCESS;
|
---|
4756 | }
|
---|
4757 |
|
---|
4758 |
|
---|
4759 | /**
|
---|
4760 | * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
|
---|
4761 | * areas.
|
---|
4762 | *
|
---|
4763 | * These MSRs will automatically be loaded to the host CPU on every successful
|
---|
4764 | * VM-entry and stored from the host CPU on every successful VM-exit. This also
|
---|
4765 | * creates/updates MSR slots for the host MSRs. The actual host MSR values are
|
---|
4766 | * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
|
---|
4767 | *
|
---|
4768 | * Also loads the sysenter MSRs into the guest-state area in the VMCS.
|
---|
4769 | *
|
---|
4770 | * @returns VBox status code.
|
---|
4771 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4772 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4773 | * out-of-sync. Make sure to update the required fields
|
---|
4774 | * before using them.
|
---|
4775 | *
|
---|
4776 | * @remarks No-long-jump zone!!!
|
---|
4777 | */
|
---|
4778 | static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
4779 | {
|
---|
4780 | AssertPtr(pVCpu);
|
---|
4781 | AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
|
---|
4782 |
|
---|
4783 | /*
|
---|
4784 | * MSRs that we use the auto-load/store MSR area in the VMCS.
|
---|
4785 | */
|
---|
4786 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4787 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
|
---|
4788 | {
|
---|
4789 | /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
|
---|
4790 | #if HC_ARCH_BITS == 32
|
---|
4791 | if (pVM->hm.s.fAllow64BitGuests)
|
---|
4792 | {
|
---|
4793 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
|
---|
4794 | rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
|
---|
4795 | rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
|
---|
4796 | rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
|
---|
4797 | AssertRCReturn(rc, rc);
|
---|
4798 | # ifdef LOG_ENABLED
|
---|
4799 | PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
4800 | for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
|
---|
4801 | {
|
---|
4802 | Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
|
---|
4803 | pMsr->u64Value));
|
---|
4804 | }
|
---|
4805 | # endif
|
---|
4806 | }
|
---|
4807 | #endif
|
---|
4808 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
|
---|
4809 | }
|
---|
4810 |
|
---|
4811 | /*
|
---|
4812 | * Guest Sysenter MSRs.
|
---|
4813 | * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
|
---|
4814 | * VM-exits on WRMSRs for these MSRs.
|
---|
4815 | */
|
---|
4816 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
|
---|
4817 | {
|
---|
4818 | int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
|
---|
4819 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
|
---|
4820 | }
|
---|
4821 |
|
---|
4822 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
|
---|
4823 | {
|
---|
4824 | int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
|
---|
4825 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
|
---|
4826 | }
|
---|
4827 |
|
---|
4828 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
|
---|
4829 | {
|
---|
4830 | int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
|
---|
4831 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
|
---|
4832 | }
|
---|
4833 |
|
---|
4834 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
|
---|
4835 | {
|
---|
4836 | if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
|
---|
4837 | {
|
---|
4838 | /*
|
---|
4839 | * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
|
---|
4840 | * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
|
---|
4841 | */
|
---|
4842 | if (pVM->hm.s.vmx.fSupportsVmcsEfer)
|
---|
4843 | {
|
---|
4844 | int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
|
---|
4845 | AssertRCReturn(rc,rc);
|
---|
4846 | Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
|
---|
4847 | }
|
---|
4848 | else
|
---|
4849 | {
|
---|
4850 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
|
---|
4851 | NULL /* pfAddedAndUpdated */);
|
---|
4852 | AssertRCReturn(rc, rc);
|
---|
4853 |
|
---|
4854 | /* We need to intercept reads too, see @bugref{7386#c16}. */
|
---|
4855 | if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
4856 | hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
|
---|
4857 | Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
|
---|
4858 | pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
|
---|
4859 | }
|
---|
4860 | }
|
---|
4861 | else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
|
---|
4862 | hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
|
---|
4863 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
|
---|
4864 | }
|
---|
4865 |
|
---|
4866 | return VINF_SUCCESS;
|
---|
4867 | }
|
---|
4868 |
|
---|
4869 |
|
---|
4870 | /**
|
---|
4871 | * Loads the guest activity state into the guest-state area in the VMCS.
|
---|
4872 | *
|
---|
4873 | * @returns VBox status code.
|
---|
4874 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4875 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4876 | * out-of-sync. Make sure to update the required fields
|
---|
4877 | * before using them.
|
---|
4878 | *
|
---|
4879 | * @remarks No-long-jump zone!!!
|
---|
4880 | */
|
---|
4881 | static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
4882 | {
|
---|
4883 | NOREF(pMixedCtx);
|
---|
4884 | /** @todo See if we can make use of other states, e.g.
|
---|
4885 | * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
|
---|
4886 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
|
---|
4887 | {
|
---|
4888 | int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
|
---|
4889 | AssertRCReturn(rc, rc);
|
---|
4890 |
|
---|
4891 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
|
---|
4892 | }
|
---|
4893 | return VINF_SUCCESS;
|
---|
4894 | }
|
---|
4895 |
|
---|
4896 |
|
---|
4897 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
4898 | /**
|
---|
4899 | * Check if guest state allows safe use of 32-bit switcher again.
|
---|
4900 | *
|
---|
4901 | * Segment bases and protected mode structures must be 32-bit addressable
|
---|
4902 | * because the 32-bit switcher will ignore high dword when writing these VMCS
|
---|
4903 | * fields. See @bugref{8432} for details.
|
---|
4904 | *
|
---|
4905 | * @returns true if safe, false if must continue to use the 64-bit switcher.
|
---|
4906 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4907 | * out-of-sync. Make sure to update the required fields
|
---|
4908 | * before using them.
|
---|
4909 | *
|
---|
4910 | * @remarks No-long-jump zone!!!
|
---|
4911 | */
|
---|
4912 | static bool hmR0VmxIs32BitSwitcherSafe(PCPUMCTX pMixedCtx)
|
---|
4913 | {
|
---|
4914 | if (pMixedCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000))
|
---|
4915 | return false;
|
---|
4916 | if (pMixedCtx->idtr.pIdt & UINT64_C(0xffffffff00000000))
|
---|
4917 | return false;
|
---|
4918 | if (pMixedCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000))
|
---|
4919 | return false;
|
---|
4920 | if (pMixedCtx->tr.u64Base & UINT64_C(0xffffffff00000000))
|
---|
4921 | return false;
|
---|
4922 | if (pMixedCtx->es.u64Base & UINT64_C(0xffffffff00000000))
|
---|
4923 | return false;
|
---|
4924 | if (pMixedCtx->cs.u64Base & UINT64_C(0xffffffff00000000))
|
---|
4925 | return false;
|
---|
4926 | if (pMixedCtx->ss.u64Base & UINT64_C(0xffffffff00000000))
|
---|
4927 | return false;
|
---|
4928 | if (pMixedCtx->ds.u64Base & UINT64_C(0xffffffff00000000))
|
---|
4929 | return false;
|
---|
4930 | if (pMixedCtx->fs.u64Base & UINT64_C(0xffffffff00000000))
|
---|
4931 | return false;
|
---|
4932 | if (pMixedCtx->gs.u64Base & UINT64_C(0xffffffff00000000))
|
---|
4933 | return false;
|
---|
4934 | /* All good, bases are 32-bit. */
|
---|
4935 | return true;
|
---|
4936 | }
|
---|
4937 | #endif
|
---|
4938 |
|
---|
4939 |
|
---|
4940 | /**
|
---|
4941 | * Sets up the appropriate function to run guest code.
|
---|
4942 | *
|
---|
4943 | * @returns VBox status code.
|
---|
4944 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4945 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4946 | * out-of-sync. Make sure to update the required fields
|
---|
4947 | * before using them.
|
---|
4948 | *
|
---|
4949 | * @remarks No-long-jump zone!!!
|
---|
4950 | */
|
---|
4951 | static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
4952 | {
|
---|
4953 | if (CPUMIsGuestInLongModeEx(pMixedCtx))
|
---|
4954 | {
|
---|
4955 | #ifndef VBOX_ENABLE_64_BITS_GUESTS
|
---|
4956 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
4957 | #endif
|
---|
4958 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
|
---|
4959 | #if HC_ARCH_BITS == 32
|
---|
4960 | /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
|
---|
4961 | if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
|
---|
4962 | {
|
---|
4963 | if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
|
---|
4964 | {
|
---|
4965 | /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
|
---|
4966 | AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
|
---|
4967 | | HM_CHANGED_VMX_ENTRY_CTLS
|
---|
4968 | | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
4969 | }
|
---|
4970 | pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
|
---|
4971 |
|
---|
4972 | /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
|
---|
4973 | the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
|
---|
4974 | pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
|
---|
4975 | Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 64-bit switcher\n", pVCpu->idCpu));
|
---|
4976 | }
|
---|
4977 | #else
|
---|
4978 | /* 64-bit host. */
|
---|
4979 | pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
|
---|
4980 | #endif
|
---|
4981 | }
|
---|
4982 | else
|
---|
4983 | {
|
---|
4984 | /* Guest is not in long mode, use the 32-bit handler. */
|
---|
4985 | #if HC_ARCH_BITS == 32
|
---|
4986 | if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
|
---|
4987 | && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
|
---|
4988 | && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
|
---|
4989 | {
|
---|
4990 | /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
|
---|
4991 | AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
|
---|
4992 | | HM_CHANGED_VMX_ENTRY_CTLS
|
---|
4993 | | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
4994 | }
|
---|
4995 | # ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
4996 | /*
|
---|
4997 | * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel design, see @bugref{8432#c7}.
|
---|
4998 | * If real-on-v86 mode is active, clear the 64-bit switcher flag because now we know the guest is in a sane
|
---|
4999 | * state where it's safe to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
|
---|
5000 | * the much faster 32-bit switcher again.
|
---|
5001 | */
|
---|
5002 | if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
|
---|
5003 | {
|
---|
5004 | if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
|
---|
5005 | Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher\n", pVCpu->idCpu));
|
---|
5006 | pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
|
---|
5007 | }
|
---|
5008 | else
|
---|
5009 | {
|
---|
5010 | Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
|
---|
5011 | if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
|
---|
5012 | || hmR0VmxIs32BitSwitcherSafe(pMixedCtx))
|
---|
5013 | {
|
---|
5014 | pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
|
---|
5015 | pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
|
---|
5016 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR
|
---|
5017 | | HM_CHANGED_VMX_ENTRY_CTLS
|
---|
5018 | | HM_CHANGED_VMX_EXIT_CTLS
|
---|
5019 | | HM_CHANGED_HOST_CONTEXT);
|
---|
5020 | Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher (safe)\n", pVCpu->idCpu));
|
---|
5021 | }
|
---|
5022 | }
|
---|
5023 | # else
|
---|
5024 | pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
|
---|
5025 | # endif
|
---|
5026 | #else
|
---|
5027 | pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
|
---|
5028 | #endif
|
---|
5029 | }
|
---|
5030 | Assert(pVCpu->hm.s.vmx.pfnStartVM);
|
---|
5031 | return VINF_SUCCESS;
|
---|
5032 | }
|
---|
5033 |
|
---|
5034 |
|
---|
5035 | /**
|
---|
5036 | * Wrapper for running the guest code in VT-x.
|
---|
5037 | *
|
---|
5038 | * @returns VBox status code, no informational status codes.
|
---|
5039 | * @param pVM The cross context VM structure.
|
---|
5040 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5041 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5042 | *
|
---|
5043 | * @remarks No-long-jump zone!!!
|
---|
5044 | */
|
---|
5045 | DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
5046 | {
|
---|
5047 | /*
|
---|
5048 | * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
|
---|
5049 | * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
|
---|
5050 | * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
|
---|
5051 | */
|
---|
5052 | bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
|
---|
5053 | /** @todo Add stats for resume vs launch. */
|
---|
5054 | #ifdef VBOX_WITH_KERNEL_USING_XMM
|
---|
5055 | int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
|
---|
5056 | #else
|
---|
5057 | int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
|
---|
5058 | #endif
|
---|
5059 | AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
|
---|
5060 | return rc;
|
---|
5061 | }
|
---|
5062 |
|
---|
5063 |
|
---|
5064 | /**
|
---|
5065 | * Reports world-switch error and dumps some useful debug info.
|
---|
5066 | *
|
---|
5067 | * @param pVM The cross context VM structure.
|
---|
5068 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5069 | * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
|
---|
5070 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5071 | * @param pVmxTransient Pointer to the VMX transient structure (only
|
---|
5072 | * exitReason updated).
|
---|
5073 | */
|
---|
5074 | static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
|
---|
5075 | {
|
---|
5076 | Assert(pVM);
|
---|
5077 | Assert(pVCpu);
|
---|
5078 | Assert(pCtx);
|
---|
5079 | Assert(pVmxTransient);
|
---|
5080 | HMVMX_ASSERT_PREEMPT_SAFE();
|
---|
5081 |
|
---|
5082 | Log4(("VM-entry failure: %Rrc\n", rcVMRun));
|
---|
5083 | switch (rcVMRun)
|
---|
5084 | {
|
---|
5085 | case VERR_VMX_INVALID_VMXON_PTR:
|
---|
5086 | AssertFailed();
|
---|
5087 | break;
|
---|
5088 | case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
|
---|
5089 | case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
|
---|
5090 | {
|
---|
5091 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
|
---|
5092 | rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
|
---|
5093 | rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
5094 | AssertRC(rc);
|
---|
5095 |
|
---|
5096 | pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
|
---|
5097 | /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
|
---|
5098 | Cannot do it here as we may have been long preempted. */
|
---|
5099 |
|
---|
5100 | #ifdef VBOX_STRICT
|
---|
5101 | Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
|
---|
5102 | pVmxTransient->uExitReason));
|
---|
5103 | Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
|
---|
5104 | Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
|
---|
5105 | if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
|
---|
5106 | Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
|
---|
5107 | else
|
---|
5108 | Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
|
---|
5109 | Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
|
---|
5110 | Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
|
---|
5111 |
|
---|
5112 | /* VMX control bits. */
|
---|
5113 | uint32_t u32Val;
|
---|
5114 | uint64_t u64Val;
|
---|
5115 | RTHCUINTREG uHCReg;
|
---|
5116 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
|
---|
5117 | Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
|
---|
5118 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
|
---|
5119 | Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
|
---|
5120 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
|
---|
5121 | {
|
---|
5122 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
|
---|
5123 | Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
|
---|
5124 | }
|
---|
5125 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
|
---|
5126 | Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
|
---|
5127 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
|
---|
5128 | Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
|
---|
5129 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
|
---|
5130 | Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
|
---|
5131 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
|
---|
5132 | Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
|
---|
5133 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
|
---|
5134 | Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
|
---|
5135 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
|
---|
5136 | Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
|
---|
5137 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
|
---|
5138 | Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
|
---|
5139 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
|
---|
5140 | Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
|
---|
5141 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
|
---|
5142 | Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
|
---|
5143 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
|
---|
5144 | Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
|
---|
5145 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
|
---|
5146 | Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
|
---|
5147 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
|
---|
5148 | Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
|
---|
5149 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
|
---|
5150 | Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
|
---|
5151 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
|
---|
5152 | Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
|
---|
5153 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
5154 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
5155 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
|
---|
5156 | Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
|
---|
5157 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
5158 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
5159 | if (pVM->hm.s.fNestedPaging)
|
---|
5160 | {
|
---|
5161 | rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
|
---|
5162 | Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
|
---|
5163 | }
|
---|
5164 |
|
---|
5165 | /* Guest bits. */
|
---|
5166 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
|
---|
5167 | Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
|
---|
5168 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
|
---|
5169 | Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
|
---|
5170 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
|
---|
5171 | Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
|
---|
5172 | if (pVM->hm.s.vmx.fVpid)
|
---|
5173 | {
|
---|
5174 | rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
|
---|
5175 | Log4(("VMX_VMCS16_VPID %u\n", u32Val));
|
---|
5176 | }
|
---|
5177 |
|
---|
5178 | /* Host bits. */
|
---|
5179 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
|
---|
5180 | Log4(("Host CR0 %#RHr\n", uHCReg));
|
---|
5181 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
|
---|
5182 | Log4(("Host CR3 %#RHr\n", uHCReg));
|
---|
5183 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
|
---|
5184 | Log4(("Host CR4 %#RHr\n", uHCReg));
|
---|
5185 |
|
---|
5186 | RTGDTR HostGdtr;
|
---|
5187 | PCX86DESCHC pDesc;
|
---|
5188 | ASMGetGDTR(&HostGdtr);
|
---|
5189 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
|
---|
5190 | Log4(("Host CS %#08x\n", u32Val));
|
---|
5191 | if (u32Val < HostGdtr.cbGdt)
|
---|
5192 | {
|
---|
5193 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
5194 | hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
|
---|
5195 | }
|
---|
5196 |
|
---|
5197 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
|
---|
5198 | Log4(("Host DS %#08x\n", u32Val));
|
---|
5199 | if (u32Val < HostGdtr.cbGdt)
|
---|
5200 | {
|
---|
5201 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
5202 | hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
|
---|
5203 | }
|
---|
5204 |
|
---|
5205 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
|
---|
5206 | Log4(("Host ES %#08x\n", u32Val));
|
---|
5207 | if (u32Val < HostGdtr.cbGdt)
|
---|
5208 | {
|
---|
5209 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
5210 | hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
|
---|
5211 | }
|
---|
5212 |
|
---|
5213 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
|
---|
5214 | Log4(("Host FS %#08x\n", u32Val));
|
---|
5215 | if (u32Val < HostGdtr.cbGdt)
|
---|
5216 | {
|
---|
5217 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
5218 | hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
|
---|
5219 | }
|
---|
5220 |
|
---|
5221 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
|
---|
5222 | Log4(("Host GS %#08x\n", u32Val));
|
---|
5223 | if (u32Val < HostGdtr.cbGdt)
|
---|
5224 | {
|
---|
5225 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
5226 | hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
|
---|
5227 | }
|
---|
5228 |
|
---|
5229 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
|
---|
5230 | Log4(("Host SS %#08x\n", u32Val));
|
---|
5231 | if (u32Val < HostGdtr.cbGdt)
|
---|
5232 | {
|
---|
5233 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
5234 | hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
|
---|
5235 | }
|
---|
5236 |
|
---|
5237 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
|
---|
5238 | Log4(("Host TR %#08x\n", u32Val));
|
---|
5239 | if (u32Val < HostGdtr.cbGdt)
|
---|
5240 | {
|
---|
5241 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
5242 | hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
|
---|
5243 | }
|
---|
5244 |
|
---|
5245 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
|
---|
5246 | Log4(("Host TR Base %#RHv\n", uHCReg));
|
---|
5247 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
|
---|
5248 | Log4(("Host GDTR Base %#RHv\n", uHCReg));
|
---|
5249 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
|
---|
5250 | Log4(("Host IDTR Base %#RHv\n", uHCReg));
|
---|
5251 | rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
|
---|
5252 | Log4(("Host SYSENTER CS %#08x\n", u32Val));
|
---|
5253 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
|
---|
5254 | Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
|
---|
5255 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
|
---|
5256 | Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
|
---|
5257 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
|
---|
5258 | Log4(("Host RSP %#RHv\n", uHCReg));
|
---|
5259 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
|
---|
5260 | Log4(("Host RIP %#RHv\n", uHCReg));
|
---|
5261 | # if HC_ARCH_BITS == 64
|
---|
5262 | Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
|
---|
5263 | Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
|
---|
5264 | Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
|
---|
5265 | Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
|
---|
5266 | Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
|
---|
5267 | Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
|
---|
5268 | # endif
|
---|
5269 | #endif /* VBOX_STRICT */
|
---|
5270 | break;
|
---|
5271 | }
|
---|
5272 |
|
---|
5273 | default:
|
---|
5274 | /* Impossible */
|
---|
5275 | AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
|
---|
5276 | break;
|
---|
5277 | }
|
---|
5278 | NOREF(pVM); NOREF(pCtx);
|
---|
5279 | }
|
---|
5280 |
|
---|
5281 |
|
---|
5282 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
5283 | #ifndef VMX_USE_CACHED_VMCS_ACCESSES
|
---|
5284 | # error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
|
---|
5285 | #endif
|
---|
5286 | #ifdef VBOX_STRICT
|
---|
5287 | static bool hmR0VmxIsValidWriteField(uint32_t idxField)
|
---|
5288 | {
|
---|
5289 | switch (idxField)
|
---|
5290 | {
|
---|
5291 | case VMX_VMCS_GUEST_RIP:
|
---|
5292 | case VMX_VMCS_GUEST_RSP:
|
---|
5293 | case VMX_VMCS_GUEST_SYSENTER_EIP:
|
---|
5294 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
5295 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
5296 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
5297 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
5298 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
5299 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
5300 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
5301 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
5302 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
5303 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
5304 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
5305 | case VMX_VMCS_GUEST_CR3:
|
---|
5306 | return true;
|
---|
5307 | }
|
---|
5308 | return false;
|
---|
5309 | }
|
---|
5310 |
|
---|
5311 | static bool hmR0VmxIsValidReadField(uint32_t idxField)
|
---|
5312 | {
|
---|
5313 | switch (idxField)
|
---|
5314 | {
|
---|
5315 | /* Read-only fields. */
|
---|
5316 | case VMX_VMCS_RO_EXIT_QUALIFICATION:
|
---|
5317 | return true;
|
---|
5318 | }
|
---|
5319 | /* Remaining readable fields should also be writable. */
|
---|
5320 | return hmR0VmxIsValidWriteField(idxField);
|
---|
5321 | }
|
---|
5322 | #endif /* VBOX_STRICT */
|
---|
5323 |
|
---|
5324 |
|
---|
5325 | /**
|
---|
5326 | * Executes the specified handler in 64-bit mode.
|
---|
5327 | *
|
---|
5328 | * @returns VBox status code (no informational status codes).
|
---|
5329 | * @param pVM The cross context VM structure.
|
---|
5330 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5331 | * @param pCtx Pointer to the guest CPU context.
|
---|
5332 | * @param enmOp The operation to perform.
|
---|
5333 | * @param cParams Number of parameters.
|
---|
5334 | * @param paParam Array of 32-bit parameters.
|
---|
5335 | */
|
---|
5336 | VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
|
---|
5337 | uint32_t cParams, uint32_t *paParam)
|
---|
5338 | {
|
---|
5339 | NOREF(pCtx);
|
---|
5340 |
|
---|
5341 | AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
|
---|
5342 | Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
|
---|
5343 | Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
|
---|
5344 | Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
|
---|
5345 |
|
---|
5346 | #ifdef VBOX_STRICT
|
---|
5347 | for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
|
---|
5348 | Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
|
---|
5349 |
|
---|
5350 | for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
|
---|
5351 | Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
|
---|
5352 | #endif
|
---|
5353 |
|
---|
5354 | /* Disable interrupts. */
|
---|
5355 | RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
|
---|
5356 |
|
---|
5357 | #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
|
---|
5358 | RTCPUID idHostCpu = RTMpCpuId();
|
---|
5359 | CPUMR0SetLApic(pVCpu, idHostCpu);
|
---|
5360 | #endif
|
---|
5361 |
|
---|
5362 | PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
|
---|
5363 | RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
|
---|
5364 |
|
---|
5365 | /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
|
---|
5366 | VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
5367 | pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
|
---|
5368 |
|
---|
5369 | /* Leave VMX Root Mode. */
|
---|
5370 | VMXDisable();
|
---|
5371 |
|
---|
5372 | SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
|
---|
5373 |
|
---|
5374 | CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
|
---|
5375 | CPUMSetHyperEIP(pVCpu, enmOp);
|
---|
5376 | for (int i = (int)cParams - 1; i >= 0; i--)
|
---|
5377 | CPUMPushHyper(pVCpu, paParam[i]);
|
---|
5378 |
|
---|
5379 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
5380 |
|
---|
5381 | /* Call the switcher. */
|
---|
5382 | int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
|
---|
5383 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
5384 |
|
---|
5385 | /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
|
---|
5386 | /* Make sure the VMX instructions don't cause #UD faults. */
|
---|
5387 | SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
|
---|
5388 |
|
---|
5389 | /* Re-enter VMX Root Mode */
|
---|
5390 | int rc2 = VMXEnable(HCPhysCpuPage);
|
---|
5391 | if (RT_FAILURE(rc2))
|
---|
5392 | {
|
---|
5393 | SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
|
---|
5394 | ASMSetFlags(fOldEFlags);
|
---|
5395 | pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
|
---|
5396 | return rc2;
|
---|
5397 | }
|
---|
5398 |
|
---|
5399 | rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
5400 | AssertRC(rc2);
|
---|
5401 | pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
|
---|
5402 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
5403 | ASMSetFlags(fOldEFlags);
|
---|
5404 | return rc;
|
---|
5405 | }
|
---|
5406 |
|
---|
5407 |
|
---|
5408 | /**
|
---|
5409 | * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
|
---|
5410 | * supporting 64-bit guests.
|
---|
5411 | *
|
---|
5412 | * @returns VBox status code.
|
---|
5413 | * @param fResume Whether to VMLAUNCH or VMRESUME.
|
---|
5414 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5415 | * @param pCache Pointer to the VMCS cache.
|
---|
5416 | * @param pVM The cross context VM structure.
|
---|
5417 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5418 | */
|
---|
5419 | DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
|
---|
5420 | {
|
---|
5421 | NOREF(fResume);
|
---|
5422 |
|
---|
5423 | PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
|
---|
5424 | RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
|
---|
5425 |
|
---|
5426 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
5427 | pCache->uPos = 1;
|
---|
5428 | pCache->interPD = PGMGetInterPaeCR3(pVM);
|
---|
5429 | pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
|
---|
5430 | #endif
|
---|
5431 |
|
---|
5432 | #if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
|
---|
5433 | pCache->TestIn.HCPhysCpuPage = 0;
|
---|
5434 | pCache->TestIn.HCPhysVmcs = 0;
|
---|
5435 | pCache->TestIn.pCache = 0;
|
---|
5436 | pCache->TestOut.HCPhysVmcs = 0;
|
---|
5437 | pCache->TestOut.pCache = 0;
|
---|
5438 | pCache->TestOut.pCtx = 0;
|
---|
5439 | pCache->TestOut.eflags = 0;
|
---|
5440 | #else
|
---|
5441 | NOREF(pCache);
|
---|
5442 | #endif
|
---|
5443 |
|
---|
5444 | uint32_t aParam[10];
|
---|
5445 | aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
|
---|
5446 | aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
|
---|
5447 | aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
|
---|
5448 | aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
|
---|
5449 | aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
|
---|
5450 | aParam[5] = 0;
|
---|
5451 | aParam[6] = VM_RC_ADDR(pVM, pVM);
|
---|
5452 | aParam[7] = 0;
|
---|
5453 | aParam[8] = VM_RC_ADDR(pVM, pVCpu);
|
---|
5454 | aParam[9] = 0;
|
---|
5455 |
|
---|
5456 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
5457 | pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
|
---|
5458 | *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
|
---|
5459 | #endif
|
---|
5460 | int rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
|
---|
5461 |
|
---|
5462 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
5463 | Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
|
---|
5464 | Assert(pCtx->dr[4] == 10);
|
---|
5465 | *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
|
---|
5466 | #endif
|
---|
5467 |
|
---|
5468 | #if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
|
---|
5469 | AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
|
---|
5470 | AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
|
---|
5471 | pVCpu->hm.s.vmx.HCPhysVmcs));
|
---|
5472 | AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
|
---|
5473 | pCache->TestOut.HCPhysVmcs));
|
---|
5474 | AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
|
---|
5475 | pCache->TestOut.pCache));
|
---|
5476 | AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
|
---|
5477 | ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
|
---|
5478 | AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
|
---|
5479 | pCache->TestOut.pCtx));
|
---|
5480 | Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
|
---|
5481 | #endif
|
---|
5482 | return rc;
|
---|
5483 | }
|
---|
5484 |
|
---|
5485 |
|
---|
5486 | /**
|
---|
5487 | * Initialize the VMCS-Read cache.
|
---|
5488 | *
|
---|
5489 | * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
|
---|
5490 | * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
|
---|
5491 | * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
|
---|
5492 | * (those that have a 32-bit FULL & HIGH part).
|
---|
5493 | *
|
---|
5494 | * @returns VBox status code.
|
---|
5495 | * @param pVM The cross context VM structure.
|
---|
5496 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5497 | */
|
---|
5498 | static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
|
---|
5499 | {
|
---|
5500 | #define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
|
---|
5501 | { \
|
---|
5502 | Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
|
---|
5503 | pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
|
---|
5504 | pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
|
---|
5505 | ++cReadFields; \
|
---|
5506 | }
|
---|
5507 |
|
---|
5508 | AssertPtr(pVM);
|
---|
5509 | AssertPtr(pVCpu);
|
---|
5510 | PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
|
---|
5511 | uint32_t cReadFields = 0;
|
---|
5512 |
|
---|
5513 | /*
|
---|
5514 | * Don't remove the #if 0'd fields in this code. They're listed here for consistency
|
---|
5515 | * and serve to indicate exceptions to the rules.
|
---|
5516 | */
|
---|
5517 |
|
---|
5518 | /* Guest-natural selector base fields. */
|
---|
5519 | #if 0
|
---|
5520 | /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
|
---|
5521 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
|
---|
5522 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
|
---|
5523 | #endif
|
---|
5524 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
|
---|
5525 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
|
---|
5526 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
|
---|
5527 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
|
---|
5528 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
|
---|
5529 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
|
---|
5530 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
|
---|
5531 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
|
---|
5532 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
|
---|
5533 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
|
---|
5534 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
|
---|
5535 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
|
---|
5536 | #if 0
|
---|
5537 | /* Unused natural width guest-state fields. */
|
---|
5538 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
|
---|
5539 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
|
---|
5540 | #endif
|
---|
5541 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
|
---|
5542 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
|
---|
5543 |
|
---|
5544 | /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
|
---|
5545 | #if 0
|
---|
5546 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
|
---|
5547 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
|
---|
5548 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
|
---|
5549 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
|
---|
5550 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
|
---|
5551 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
|
---|
5552 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
|
---|
5553 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
|
---|
5554 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
|
---|
5555 | #endif
|
---|
5556 |
|
---|
5557 | /* Natural width guest-state fields. */
|
---|
5558 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
|
---|
5559 | #if 0
|
---|
5560 | /* Currently unused field. */
|
---|
5561 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
|
---|
5562 | #endif
|
---|
5563 |
|
---|
5564 | if (pVM->hm.s.fNestedPaging)
|
---|
5565 | {
|
---|
5566 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
|
---|
5567 | AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
|
---|
5568 | VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
|
---|
5569 | pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
|
---|
5570 | }
|
---|
5571 | else
|
---|
5572 | {
|
---|
5573 | AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
|
---|
5574 | pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
|
---|
5575 | }
|
---|
5576 |
|
---|
5577 | #undef VMXLOCAL_INIT_READ_CACHE_FIELD
|
---|
5578 | return VINF_SUCCESS;
|
---|
5579 | }
|
---|
5580 |
|
---|
5581 |
|
---|
5582 | /**
|
---|
5583 | * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
|
---|
5584 | * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
|
---|
5585 | * darwin, running 64-bit guests).
|
---|
5586 | *
|
---|
5587 | * @returns VBox status code.
|
---|
5588 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5589 | * @param idxField The VMCS field encoding.
|
---|
5590 | * @param u64Val 16, 32 or 64-bit value.
|
---|
5591 | */
|
---|
5592 | VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
|
---|
5593 | {
|
---|
5594 | int rc;
|
---|
5595 | switch (idxField)
|
---|
5596 | {
|
---|
5597 | /*
|
---|
5598 | * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
|
---|
5599 | */
|
---|
5600 | /* 64-bit Control fields. */
|
---|
5601 | case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
|
---|
5602 | case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
|
---|
5603 | case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
|
---|
5604 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
|
---|
5605 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
|
---|
5606 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
|
---|
5607 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
|
---|
5608 | case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
|
---|
5609 | case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
|
---|
5610 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
|
---|
5611 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
|
---|
5612 | case VMX_VMCS64_CTRL_EPTP_FULL:
|
---|
5613 | case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
|
---|
5614 | /* 64-bit Guest-state fields. */
|
---|
5615 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
|
---|
5616 | case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
|
---|
5617 | case VMX_VMCS64_GUEST_PAT_FULL:
|
---|
5618 | case VMX_VMCS64_GUEST_EFER_FULL:
|
---|
5619 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
|
---|
5620 | case VMX_VMCS64_GUEST_PDPTE0_FULL:
|
---|
5621 | case VMX_VMCS64_GUEST_PDPTE1_FULL:
|
---|
5622 | case VMX_VMCS64_GUEST_PDPTE2_FULL:
|
---|
5623 | case VMX_VMCS64_GUEST_PDPTE3_FULL:
|
---|
5624 | /* 64-bit Host-state fields. */
|
---|
5625 | case VMX_VMCS64_HOST_PAT_FULL:
|
---|
5626 | case VMX_VMCS64_HOST_EFER_FULL:
|
---|
5627 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
|
---|
5628 | {
|
---|
5629 | rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
|
---|
5630 | rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
|
---|
5631 | break;
|
---|
5632 | }
|
---|
5633 |
|
---|
5634 | /*
|
---|
5635 | * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
|
---|
5636 | * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
|
---|
5637 | */
|
---|
5638 | /* Natural-width Guest-state fields. */
|
---|
5639 | case VMX_VMCS_GUEST_CR3:
|
---|
5640 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
5641 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
5642 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
5643 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
5644 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
5645 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
5646 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
5647 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
5648 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
5649 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
5650 | case VMX_VMCS_GUEST_RSP:
|
---|
5651 | case VMX_VMCS_GUEST_RIP:
|
---|
5652 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
5653 | case VMX_VMCS_GUEST_SYSENTER_EIP:
|
---|
5654 | {
|
---|
5655 | if (!(RT_HI_U32(u64Val)))
|
---|
5656 | {
|
---|
5657 | /* If this field is 64-bit, VT-x will zero out the top bits. */
|
---|
5658 | rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
|
---|
5659 | }
|
---|
5660 | else
|
---|
5661 | {
|
---|
5662 | /* Assert that only the 32->64 switcher case should ever come here. */
|
---|
5663 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
|
---|
5664 | rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
|
---|
5665 | }
|
---|
5666 | break;
|
---|
5667 | }
|
---|
5668 |
|
---|
5669 | default:
|
---|
5670 | {
|
---|
5671 | AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
|
---|
5672 | rc = VERR_INVALID_PARAMETER;
|
---|
5673 | break;
|
---|
5674 | }
|
---|
5675 | }
|
---|
5676 | AssertRCReturn(rc, rc);
|
---|
5677 | return rc;
|
---|
5678 | }
|
---|
5679 |
|
---|
5680 |
|
---|
5681 | /**
|
---|
5682 | * Queue up a VMWRITE by using the VMCS write cache.
|
---|
5683 | * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
|
---|
5684 | *
|
---|
5685 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5686 | * @param idxField The VMCS field encoding.
|
---|
5687 | * @param u64Val 16, 32 or 64-bit value.
|
---|
5688 | */
|
---|
5689 | VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
|
---|
5690 | {
|
---|
5691 | AssertPtr(pVCpu);
|
---|
5692 | PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
|
---|
5693 |
|
---|
5694 | AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
|
---|
5695 | ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
|
---|
5696 |
|
---|
5697 | /* Make sure there are no duplicates. */
|
---|
5698 | for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
|
---|
5699 | {
|
---|
5700 | if (pCache->Write.aField[i] == idxField)
|
---|
5701 | {
|
---|
5702 | pCache->Write.aFieldVal[i] = u64Val;
|
---|
5703 | return VINF_SUCCESS;
|
---|
5704 | }
|
---|
5705 | }
|
---|
5706 |
|
---|
5707 | pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
|
---|
5708 | pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
|
---|
5709 | pCache->Write.cValidEntries++;
|
---|
5710 | return VINF_SUCCESS;
|
---|
5711 | }
|
---|
5712 | #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
|
---|
5713 |
|
---|
5714 |
|
---|
5715 | /**
|
---|
5716 | * Sets up the usage of TSC-offsetting and updates the VMCS.
|
---|
5717 | *
|
---|
5718 | * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
|
---|
5719 | * VMX preemption timer.
|
---|
5720 | *
|
---|
5721 | * @returns VBox status code.
|
---|
5722 | * @param pVM The cross context VM structure.
|
---|
5723 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5724 | *
|
---|
5725 | * @remarks No-long-jump zone!!!
|
---|
5726 | */
|
---|
5727 | static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
|
---|
5728 | {
|
---|
5729 | int rc;
|
---|
5730 | bool fOffsettedTsc;
|
---|
5731 | bool fParavirtTsc;
|
---|
5732 | if (pVM->hm.s.vmx.fUsePreemptTimer)
|
---|
5733 | {
|
---|
5734 | uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
|
---|
5735 | &fOffsettedTsc, &fParavirtTsc);
|
---|
5736 |
|
---|
5737 | /* Make sure the returned values have sane upper and lower boundaries. */
|
---|
5738 | uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
|
---|
5739 | cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
|
---|
5740 | cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
|
---|
5741 | cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
|
---|
5742 |
|
---|
5743 | uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
|
---|
5744 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
|
---|
5745 | }
|
---|
5746 | else
|
---|
5747 | fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
|
---|
5748 |
|
---|
5749 | /** @todo later optimize this to be done elsewhere and not before every
|
---|
5750 | * VM-entry. */
|
---|
5751 | if (fParavirtTsc)
|
---|
5752 | {
|
---|
5753 | /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
|
---|
5754 | information before every VM-entry, hence disable it for performance sake. */
|
---|
5755 | #if 0
|
---|
5756 | rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
|
---|
5757 | AssertRC(rc);
|
---|
5758 | #endif
|
---|
5759 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
|
---|
5760 | }
|
---|
5761 |
|
---|
5762 | if (fOffsettedTsc && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
|
---|
5763 | {
|
---|
5764 | /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
|
---|
5765 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
|
---|
5766 |
|
---|
5767 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
|
---|
5768 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
|
---|
5769 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
|
---|
5770 | }
|
---|
5771 | else
|
---|
5772 | {
|
---|
5773 | /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
|
---|
5774 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
|
---|
5775 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
|
---|
5776 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
|
---|
5777 | }
|
---|
5778 | }
|
---|
5779 |
|
---|
5780 |
|
---|
5781 | #ifdef HMVMX_USE_IEM_EVENT_REFLECTION
|
---|
5782 | /**
|
---|
5783 | * Gets the IEM exception flags for the specified vector and IDT vectoring /
|
---|
5784 | * VM-exit interruption info type.
|
---|
5785 | *
|
---|
5786 | * @returns The IEM exception flags.
|
---|
5787 | * @param uVector The event vector.
|
---|
5788 | * @param uVmxVectorType The VMX event type.
|
---|
5789 | *
|
---|
5790 | * @remarks This function currently only constructs flags required for
|
---|
5791 | * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
|
---|
5792 | * and CR2 aspects of an exception are not included).
|
---|
5793 | */
|
---|
5794 | static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
|
---|
5795 | {
|
---|
5796 | uint32_t fIemXcptFlags;
|
---|
5797 | switch (uVmxVectorType)
|
---|
5798 | {
|
---|
5799 | case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
|
---|
5800 | case VMX_IDT_VECTORING_INFO_TYPE_NMI:
|
---|
5801 | fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
5802 | break;
|
---|
5803 |
|
---|
5804 | case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
|
---|
5805 | fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
5806 | break;
|
---|
5807 |
|
---|
5808 | case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
|
---|
5809 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
|
---|
5810 | break;
|
---|
5811 |
|
---|
5812 | case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
|
---|
5813 | {
|
---|
5814 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
5815 | if (uVector == X86_XCPT_BP)
|
---|
5816 | fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
|
---|
5817 | else if (uVector == X86_XCPT_OF)
|
---|
5818 | fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
|
---|
5819 | else
|
---|
5820 | {
|
---|
5821 | fIemXcptFlags = 0;
|
---|
5822 | AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
|
---|
5823 | }
|
---|
5824 | break;
|
---|
5825 | }
|
---|
5826 |
|
---|
5827 | case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
|
---|
5828 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
5829 | break;
|
---|
5830 |
|
---|
5831 | default:
|
---|
5832 | fIemXcptFlags = 0;
|
---|
5833 | AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
|
---|
5834 | break;
|
---|
5835 | }
|
---|
5836 | return fIemXcptFlags;
|
---|
5837 | }
|
---|
5838 |
|
---|
5839 | #else
|
---|
5840 | /**
|
---|
5841 | * Determines if an exception is a contributory exception.
|
---|
5842 | *
|
---|
5843 | * Contributory exceptions are ones which can cause double-faults unless the
|
---|
5844 | * original exception was a benign exception. Page-fault is intentionally not
|
---|
5845 | * included here as it's a conditional contributory exception.
|
---|
5846 | *
|
---|
5847 | * @returns true if the exception is contributory, false otherwise.
|
---|
5848 | * @param uVector The exception vector.
|
---|
5849 | */
|
---|
5850 | DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
|
---|
5851 | {
|
---|
5852 | switch (uVector)
|
---|
5853 | {
|
---|
5854 | case X86_XCPT_GP:
|
---|
5855 | case X86_XCPT_SS:
|
---|
5856 | case X86_XCPT_NP:
|
---|
5857 | case X86_XCPT_TS:
|
---|
5858 | case X86_XCPT_DE:
|
---|
5859 | return true;
|
---|
5860 | default:
|
---|
5861 | break;
|
---|
5862 | }
|
---|
5863 | return false;
|
---|
5864 | }
|
---|
5865 | #endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
|
---|
5866 |
|
---|
5867 |
|
---|
5868 | /**
|
---|
5869 | * Sets an event as a pending event to be injected into the guest.
|
---|
5870 | *
|
---|
5871 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5872 | * @param u32IntInfo The VM-entry interruption-information field.
|
---|
5873 | * @param cbInstr The VM-entry instruction length in bytes (for software
|
---|
5874 | * interrupts, exceptions and privileged software
|
---|
5875 | * exceptions).
|
---|
5876 | * @param u32ErrCode The VM-entry exception error code.
|
---|
5877 | * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
|
---|
5878 | * page-fault.
|
---|
5879 | *
|
---|
5880 | * @remarks Statistics counter assumes this is a guest event being injected or
|
---|
5881 | * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
|
---|
5882 | * always incremented.
|
---|
5883 | */
|
---|
5884 | DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
|
---|
5885 | RTGCUINTPTR GCPtrFaultAddress)
|
---|
5886 | {
|
---|
5887 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
5888 | pVCpu->hm.s.Event.fPending = true;
|
---|
5889 | pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
|
---|
5890 | pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
|
---|
5891 | pVCpu->hm.s.Event.cbInstr = cbInstr;
|
---|
5892 | pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
|
---|
5893 | }
|
---|
5894 |
|
---|
5895 |
|
---|
5896 | /**
|
---|
5897 | * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
|
---|
5898 | *
|
---|
5899 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5900 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
5901 | * out-of-sync. Make sure to update the required fields
|
---|
5902 | * before using them.
|
---|
5903 | */
|
---|
5904 | DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5905 | {
|
---|
5906 | NOREF(pMixedCtx);
|
---|
5907 | uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
5908 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
5909 | u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
5910 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
5911 | }
|
---|
5912 |
|
---|
5913 |
|
---|
5914 | /**
|
---|
5915 | * Handle a condition that occurred while delivering an event through the guest
|
---|
5916 | * IDT.
|
---|
5917 | *
|
---|
5918 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
5919 | * @retval VINF_SUCCESS if we should continue handling the VM-exit.
|
---|
5920 | * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
|
---|
5921 | * to continue execution of the guest which will delivery the \#DF.
|
---|
5922 | * @retval VINF_EM_RESET if we detected a triple-fault condition.
|
---|
5923 | * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
|
---|
5924 | *
|
---|
5925 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5926 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
5927 | * out-of-sync. Make sure to update the required fields
|
---|
5928 | * before using them.
|
---|
5929 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
5930 | *
|
---|
5931 | * @remarks No-long-jump zone!!!
|
---|
5932 | */
|
---|
5933 | static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
5934 | {
|
---|
5935 | uint32_t const uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
|
---|
5936 |
|
---|
5937 | int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
|
---|
5938 | rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
|
---|
5939 |
|
---|
5940 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
5941 | if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
5942 | {
|
---|
5943 | uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
|
---|
5944 | uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
|
---|
5945 | #ifdef HMVMX_USE_IEM_EVENT_REFLECTION
|
---|
5946 | /*
|
---|
5947 | * If the event was a software interrupt (generated with INT n) or a software exception (generated
|
---|
5948 | * by INT3/INTO) or a privileged software exception (generated by INT1), we can handle the VM-exit
|
---|
5949 | * and continue guest execution which will re-execute the instruction rather than re-injecting the
|
---|
5950 | * exception, as that can cause premature trips to ring-3 before injection and involve TRPM which
|
---|
5951 | * currently has no way of storing that these exceptions were caused by these instructions
|
---|
5952 | * (ICEBP's #DB poses the problem).
|
---|
5953 | */
|
---|
5954 | IEMXCPTRAISE enmRaise;
|
---|
5955 | IEMXCPTRAISEINFO fRaiseInfo;
|
---|
5956 | if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
5957 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
|
---|
5958 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
|
---|
5959 | {
|
---|
5960 | enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
|
---|
5961 | fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
5962 | }
|
---|
5963 | else if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
|
---|
5964 | {
|
---|
5965 | uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
|
---|
5966 | uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
|
---|
5967 | uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
|
---|
5968 | /** @todo Make AssertMsgReturn as just AssertMsg later. */
|
---|
5969 | AssertMsgReturn(uExitVectorType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT,
|
---|
5970 | ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
|
---|
5971 | uExitVectorType), VERR_VMX_IPE_5);
|
---|
5972 | enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
|
---|
5973 |
|
---|
5974 | /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
|
---|
5975 | if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
|
---|
5976 | {
|
---|
5977 | pVmxTransient->fVectoringPF = true;
|
---|
5978 | enmRaise = IEMXCPTRAISE_PREV_EVENT;
|
---|
5979 | }
|
---|
5980 | }
|
---|
5981 | else
|
---|
5982 | {
|
---|
5983 | /*
|
---|
5984 | * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
|
---|
5985 | * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
|
---|
5986 | * It is sufficient to reflect the original event to the guest after handling the VM-exit.
|
---|
5987 | */
|
---|
5988 | Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
5989 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
|
---|
5990 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
|
---|
5991 | enmRaise = IEMXCPTRAISE_PREV_EVENT;
|
---|
5992 | fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
5993 | }
|
---|
5994 |
|
---|
5995 | /*
|
---|
5996 | * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
|
---|
5997 | * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
|
---|
5998 | * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
|
---|
5999 | * subsequent VM-entry would fail.
|
---|
6000 | *
|
---|
6001 | * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
|
---|
6002 | */
|
---|
6003 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
|
---|
6004 | && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
|
---|
6005 | && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
|
---|
6006 | || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
|
---|
6007 | && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
|
---|
6008 | {
|
---|
6009 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
6010 | }
|
---|
6011 |
|
---|
6012 | switch (enmRaise)
|
---|
6013 | {
|
---|
6014 | case IEMXCPTRAISE_CURRENT_XCPT:
|
---|
6015 | {
|
---|
6016 | Log4(("IDT: vcpu[%RU32] Pending secondary xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n", pVCpu->idCpu,
|
---|
6017 | pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
|
---|
6018 | Assert(rcStrict == VINF_SUCCESS);
|
---|
6019 | break;
|
---|
6020 | }
|
---|
6021 |
|
---|
6022 | case IEMXCPTRAISE_PREV_EVENT:
|
---|
6023 | {
|
---|
6024 | uint32_t u32ErrCode;
|
---|
6025 | if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
6026 | {
|
---|
6027 | rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
|
---|
6028 | AssertRCReturn(rc2, rc2);
|
---|
6029 | u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
6030 | }
|
---|
6031 | else
|
---|
6032 | u32ErrCode = 0;
|
---|
6033 |
|
---|
6034 | /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
|
---|
6035 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
6036 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
|
---|
6037 | 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
|
---|
6038 |
|
---|
6039 | Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
|
---|
6040 | pVCpu->hm.s.Event.u32ErrCode));
|
---|
6041 | Assert(rcStrict == VINF_SUCCESS);
|
---|
6042 | break;
|
---|
6043 | }
|
---|
6044 |
|
---|
6045 | case IEMXCPTRAISE_REEXEC_INSTR:
|
---|
6046 | Assert(rcStrict == VINF_SUCCESS);
|
---|
6047 | break;
|
---|
6048 |
|
---|
6049 | case IEMXCPTRAISE_DOUBLE_FAULT:
|
---|
6050 | {
|
---|
6051 | /*
|
---|
6052 | * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
|
---|
6053 | * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
|
---|
6054 | */
|
---|
6055 | if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
|
---|
6056 | {
|
---|
6057 | pVmxTransient->fVectoringDoublePF = true;
|
---|
6058 | Log4(("IDT: vcpu[%RU32] Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
|
---|
6059 | pMixedCtx->cr2));
|
---|
6060 | rcStrict = VINF_SUCCESS;
|
---|
6061 | }
|
---|
6062 | else
|
---|
6063 | {
|
---|
6064 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
6065 | hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
|
---|
6066 | Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
|
---|
6067 | pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
|
---|
6068 | rcStrict = VINF_HM_DOUBLE_FAULT;
|
---|
6069 | }
|
---|
6070 | break;
|
---|
6071 | }
|
---|
6072 |
|
---|
6073 | case IEMXCPTRAISE_TRIPLE_FAULT:
|
---|
6074 | {
|
---|
6075 | Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
|
---|
6076 | uExitVector));
|
---|
6077 | rcStrict = VINF_EM_RESET;
|
---|
6078 | break;
|
---|
6079 | }
|
---|
6080 |
|
---|
6081 | case IEMXCPTRAISE_CPU_HANG:
|
---|
6082 | {
|
---|
6083 | Log4(("IDT: vcpu[%RU32] Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", pVCpu->idCpu, fRaiseInfo));
|
---|
6084 | rcStrict = VERR_EM_GUEST_CPU_HANG;
|
---|
6085 | break;
|
---|
6086 | }
|
---|
6087 |
|
---|
6088 | default:
|
---|
6089 | {
|
---|
6090 | AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
|
---|
6091 | rcStrict = VERR_VMX_IPE_2;
|
---|
6092 | break;
|
---|
6093 | }
|
---|
6094 | }
|
---|
6095 | #else
|
---|
6096 | typedef enum
|
---|
6097 | {
|
---|
6098 | VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
|
---|
6099 | VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
|
---|
6100 | VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
|
---|
6101 | VMXREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
|
---|
6102 | VMXREFLECTXCPT_NONE /* Nothing to reflect. */
|
---|
6103 | } VMXREFLECTXCPT;
|
---|
6104 |
|
---|
6105 | /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
|
---|
6106 | VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
|
---|
6107 | if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
|
---|
6108 | {
|
---|
6109 | if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
|
---|
6110 | {
|
---|
6111 | enmReflect = VMXREFLECTXCPT_XCPT;
|
---|
6112 | #ifdef VBOX_STRICT
|
---|
6113 | if ( hmR0VmxIsContributoryXcpt(uIdtVector)
|
---|
6114 | && uExitVector == X86_XCPT_PF)
|
---|
6115 | {
|
---|
6116 | Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
|
---|
6117 | }
|
---|
6118 | #endif
|
---|
6119 | if ( uExitVector == X86_XCPT_PF
|
---|
6120 | && uIdtVector == X86_XCPT_PF)
|
---|
6121 | {
|
---|
6122 | pVmxTransient->fVectoringDoublePF = true;
|
---|
6123 | Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
|
---|
6124 | }
|
---|
6125 | else if ( uExitVector == X86_XCPT_AC
|
---|
6126 | && uIdtVector == X86_XCPT_AC)
|
---|
6127 | {
|
---|
6128 | enmReflect = VMXREFLECTXCPT_HANG;
|
---|
6129 | Log4(("IDT: Nested #AC - Bad guest\n"));
|
---|
6130 | }
|
---|
6131 | else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
|
---|
6132 | && hmR0VmxIsContributoryXcpt(uExitVector)
|
---|
6133 | && ( hmR0VmxIsContributoryXcpt(uIdtVector)
|
---|
6134 | || uIdtVector == X86_XCPT_PF))
|
---|
6135 | {
|
---|
6136 | enmReflect = VMXREFLECTXCPT_DF;
|
---|
6137 | }
|
---|
6138 | else if (uIdtVector == X86_XCPT_DF)
|
---|
6139 | enmReflect = VMXREFLECTXCPT_TF;
|
---|
6140 | }
|
---|
6141 | else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
|
---|
6142 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
|
---|
6143 | {
|
---|
6144 | /*
|
---|
6145 | * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
|
---|
6146 | * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
|
---|
6147 | */
|
---|
6148 | enmReflect = VMXREFLECTXCPT_XCPT;
|
---|
6149 |
|
---|
6150 | if (uExitVector == X86_XCPT_PF)
|
---|
6151 | {
|
---|
6152 | pVmxTransient->fVectoringPF = true;
|
---|
6153 | Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
|
---|
6154 | }
|
---|
6155 | }
|
---|
6156 | }
|
---|
6157 | else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
6158 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
|
---|
6159 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
|
---|
6160 | {
|
---|
6161 | /*
|
---|
6162 | * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
|
---|
6163 | * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
|
---|
6164 | * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
|
---|
6165 | */
|
---|
6166 | enmReflect = VMXREFLECTXCPT_XCPT;
|
---|
6167 | }
|
---|
6168 |
|
---|
6169 | /*
|
---|
6170 | * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
|
---|
6171 | * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
|
---|
6172 | * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
|
---|
6173 | *
|
---|
6174 | * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
|
---|
6175 | */
|
---|
6176 | if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
|
---|
6177 | && enmReflect == VMXREFLECTXCPT_XCPT
|
---|
6178 | && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
|
---|
6179 | && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
6180 | {
|
---|
6181 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
6182 | }
|
---|
6183 |
|
---|
6184 | switch (enmReflect)
|
---|
6185 | {
|
---|
6186 | case VMXREFLECTXCPT_XCPT:
|
---|
6187 | {
|
---|
6188 | Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
6189 | && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
|
---|
6190 | && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
|
---|
6191 |
|
---|
6192 | uint32_t u32ErrCode = 0;
|
---|
6193 | if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
6194 | {
|
---|
6195 | rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
|
---|
6196 | AssertRCReturn(rc2, rc2);
|
---|
6197 | u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
6198 | }
|
---|
6199 |
|
---|
6200 | /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
|
---|
6201 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
6202 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
|
---|
6203 | 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
|
---|
6204 | rcStrict = VINF_SUCCESS;
|
---|
6205 | Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
|
---|
6206 | pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
|
---|
6207 |
|
---|
6208 | break;
|
---|
6209 | }
|
---|
6210 |
|
---|
6211 | case VMXREFLECTXCPT_DF:
|
---|
6212 | {
|
---|
6213 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
6214 | hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
|
---|
6215 | rcStrict = VINF_HM_DOUBLE_FAULT;
|
---|
6216 | Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
|
---|
6217 | pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
|
---|
6218 |
|
---|
6219 | break;
|
---|
6220 | }
|
---|
6221 |
|
---|
6222 | case VMXREFLECTXCPT_TF:
|
---|
6223 | {
|
---|
6224 | rcStrict = VINF_EM_RESET;
|
---|
6225 | Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
|
---|
6226 | uExitVector));
|
---|
6227 | break;
|
---|
6228 | }
|
---|
6229 |
|
---|
6230 | case VMXREFLECTXCPT_HANG:
|
---|
6231 | {
|
---|
6232 | rcStrict = VERR_EM_GUEST_CPU_HANG;
|
---|
6233 | break;
|
---|
6234 | }
|
---|
6235 |
|
---|
6236 | default:
|
---|
6237 | Assert(rcStrict == VINF_SUCCESS);
|
---|
6238 | break;
|
---|
6239 | }
|
---|
6240 | #endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
|
---|
6241 | }
|
---|
6242 | else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
|
---|
6243 | && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
|
---|
6244 | && uExitVector != X86_XCPT_DF
|
---|
6245 | && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
|
---|
6246 | {
|
---|
6247 | /*
|
---|
6248 | * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
|
---|
6249 | * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
|
---|
6250 | * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
|
---|
6251 | */
|
---|
6252 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
6253 | {
|
---|
6254 | Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
|
---|
6255 | pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
|
---|
6256 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
6257 | }
|
---|
6258 | }
|
---|
6259 |
|
---|
6260 | Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
|
---|
6261 | || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
|
---|
6262 | return rcStrict;
|
---|
6263 | }
|
---|
6264 |
|
---|
6265 |
|
---|
6266 | /**
|
---|
6267 | * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
|
---|
6268 | *
|
---|
6269 | * @returns VBox status code.
|
---|
6270 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6271 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6272 | * out-of-sync. Make sure to update the required fields
|
---|
6273 | * before using them.
|
---|
6274 | *
|
---|
6275 | * @remarks No-long-jump zone!!!
|
---|
6276 | */
|
---|
6277 | static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6278 | {
|
---|
6279 | NOREF(pMixedCtx);
|
---|
6280 |
|
---|
6281 | /*
|
---|
6282 | * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
|
---|
6283 | * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
|
---|
6284 | */
|
---|
6285 | VMMRZCallRing3Disable(pVCpu);
|
---|
6286 | HM_DISABLE_PREEMPT();
|
---|
6287 |
|
---|
6288 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
|
---|
6289 | {
|
---|
6290 | #ifndef DEBUG_bird /** @todo this triggers running bs3-cpu-generated-1.img with --debug-command-line
|
---|
6291 | * and 'dbgc-init' containing:
|
---|
6292 | * sxe "xcpt_de"
|
---|
6293 | * sxe "xcpt_bp"
|
---|
6294 | * sxi "xcpt_gp"
|
---|
6295 | * sxi "xcpt_ss"
|
---|
6296 | * sxi "xcpt_np"
|
---|
6297 | */
|
---|
6298 | /** @todo r=ramshankar: Should be fixed after r119291. */
|
---|
6299 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
|
---|
6300 | #endif
|
---|
6301 | uint32_t uVal = 0;
|
---|
6302 | uint32_t uShadow = 0;
|
---|
6303 | int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
|
---|
6304 | rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
|
---|
6305 | AssertRCReturn(rc, rc);
|
---|
6306 |
|
---|
6307 | uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
|
---|
6308 | CPUMSetGuestCR0(pVCpu, uVal);
|
---|
6309 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
|
---|
6310 | }
|
---|
6311 |
|
---|
6312 | HM_RESTORE_PREEMPT();
|
---|
6313 | VMMRZCallRing3Enable(pVCpu);
|
---|
6314 | return VINF_SUCCESS;
|
---|
6315 | }
|
---|
6316 |
|
---|
6317 |
|
---|
6318 | /**
|
---|
6319 | * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
|
---|
6320 | *
|
---|
6321 | * @returns VBox status code.
|
---|
6322 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6323 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6324 | * out-of-sync. Make sure to update the required fields
|
---|
6325 | * before using them.
|
---|
6326 | *
|
---|
6327 | * @remarks No-long-jump zone!!!
|
---|
6328 | */
|
---|
6329 | static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6330 | {
|
---|
6331 | NOREF(pMixedCtx);
|
---|
6332 |
|
---|
6333 | int rc = VINF_SUCCESS;
|
---|
6334 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
|
---|
6335 | {
|
---|
6336 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4));
|
---|
6337 | uint32_t uVal = 0;
|
---|
6338 | uint32_t uShadow = 0;
|
---|
6339 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
|
---|
6340 | rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
|
---|
6341 | AssertRCReturn(rc, rc);
|
---|
6342 |
|
---|
6343 | uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
|
---|
6344 | CPUMSetGuestCR4(pVCpu, uVal);
|
---|
6345 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
|
---|
6346 | }
|
---|
6347 | return rc;
|
---|
6348 | }
|
---|
6349 |
|
---|
6350 |
|
---|
6351 | /**
|
---|
6352 | * Saves the guest's RIP register from the VMCS into the guest-CPU context.
|
---|
6353 | *
|
---|
6354 | * @returns VBox status code.
|
---|
6355 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6356 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6357 | * out-of-sync. Make sure to update the required fields
|
---|
6358 | * before using them.
|
---|
6359 | *
|
---|
6360 | * @remarks No-long-jump zone!!!
|
---|
6361 | */
|
---|
6362 | static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6363 | {
|
---|
6364 | int rc = VINF_SUCCESS;
|
---|
6365 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
|
---|
6366 | {
|
---|
6367 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP));
|
---|
6368 | uint64_t u64Val = 0;
|
---|
6369 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
|
---|
6370 | AssertRCReturn(rc, rc);
|
---|
6371 |
|
---|
6372 | pMixedCtx->rip = u64Val;
|
---|
6373 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
|
---|
6374 | }
|
---|
6375 | return rc;
|
---|
6376 | }
|
---|
6377 |
|
---|
6378 |
|
---|
6379 | /**
|
---|
6380 | * Saves the guest's RSP register from the VMCS into the guest-CPU context.
|
---|
6381 | *
|
---|
6382 | * @returns VBox status code.
|
---|
6383 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6384 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6385 | * out-of-sync. Make sure to update the required fields
|
---|
6386 | * before using them.
|
---|
6387 | *
|
---|
6388 | * @remarks No-long-jump zone!!!
|
---|
6389 | */
|
---|
6390 | static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6391 | {
|
---|
6392 | int rc = VINF_SUCCESS;
|
---|
6393 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
|
---|
6394 | {
|
---|
6395 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP));
|
---|
6396 | uint64_t u64Val = 0;
|
---|
6397 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
|
---|
6398 | AssertRCReturn(rc, rc);
|
---|
6399 |
|
---|
6400 | pMixedCtx->rsp = u64Val;
|
---|
6401 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
|
---|
6402 | }
|
---|
6403 | return rc;
|
---|
6404 | }
|
---|
6405 |
|
---|
6406 |
|
---|
6407 | /**
|
---|
6408 | * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
|
---|
6409 | *
|
---|
6410 | * @returns VBox status code.
|
---|
6411 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6412 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6413 | * out-of-sync. Make sure to update the required fields
|
---|
6414 | * before using them.
|
---|
6415 | *
|
---|
6416 | * @remarks No-long-jump zone!!!
|
---|
6417 | */
|
---|
6418 | static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6419 | {
|
---|
6420 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
|
---|
6421 | {
|
---|
6422 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS));
|
---|
6423 | uint32_t uVal = 0;
|
---|
6424 | int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
|
---|
6425 | AssertRCReturn(rc, rc);
|
---|
6426 |
|
---|
6427 | pMixedCtx->eflags.u32 = uVal;
|
---|
6428 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
|
---|
6429 | {
|
---|
6430 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
6431 | Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
|
---|
6432 |
|
---|
6433 | pMixedCtx->eflags.Bits.u1VM = 0;
|
---|
6434 | pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
|
---|
6435 | }
|
---|
6436 |
|
---|
6437 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
|
---|
6438 | }
|
---|
6439 | return VINF_SUCCESS;
|
---|
6440 | }
|
---|
6441 |
|
---|
6442 |
|
---|
6443 | /**
|
---|
6444 | * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
|
---|
6445 | * guest-CPU context.
|
---|
6446 | */
|
---|
6447 | DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6448 | {
|
---|
6449 | int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
6450 | rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
|
---|
6451 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
6452 | return rc;
|
---|
6453 | }
|
---|
6454 |
|
---|
6455 |
|
---|
6456 | /**
|
---|
6457 | * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
|
---|
6458 | * from the guest-state area in the VMCS.
|
---|
6459 | *
|
---|
6460 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6461 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6462 | * out-of-sync. Make sure to update the required fields
|
---|
6463 | * before using them.
|
---|
6464 | *
|
---|
6465 | * @remarks No-long-jump zone!!!
|
---|
6466 | */
|
---|
6467 | static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6468 | {
|
---|
6469 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
|
---|
6470 | {
|
---|
6471 | uint32_t uIntrState = 0;
|
---|
6472 | int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
|
---|
6473 | AssertRC(rc);
|
---|
6474 |
|
---|
6475 | if (!uIntrState)
|
---|
6476 | {
|
---|
6477 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
6478 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
6479 |
|
---|
6480 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
6481 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
6482 | }
|
---|
6483 | else
|
---|
6484 | {
|
---|
6485 | if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
|
---|
6486 | | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
|
---|
6487 | {
|
---|
6488 | rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
6489 | AssertRC(rc);
|
---|
6490 | rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
|
---|
6491 | AssertRC(rc);
|
---|
6492 |
|
---|
6493 | EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
|
---|
6494 | Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
|
---|
6495 | }
|
---|
6496 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
6497 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
6498 |
|
---|
6499 | if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
|
---|
6500 | {
|
---|
6501 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
6502 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
6503 | }
|
---|
6504 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
6505 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
6506 | }
|
---|
6507 |
|
---|
6508 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
|
---|
6509 | }
|
---|
6510 | }
|
---|
6511 |
|
---|
6512 |
|
---|
6513 | /**
|
---|
6514 | * Saves the guest's activity state.
|
---|
6515 | *
|
---|
6516 | * @returns VBox status code.
|
---|
6517 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6518 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6519 | * out-of-sync. Make sure to update the required fields
|
---|
6520 | * before using them.
|
---|
6521 | *
|
---|
6522 | * @remarks No-long-jump zone!!!
|
---|
6523 | */
|
---|
6524 | static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6525 | {
|
---|
6526 | NOREF(pMixedCtx);
|
---|
6527 | /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
|
---|
6528 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
|
---|
6529 | return VINF_SUCCESS;
|
---|
6530 | }
|
---|
6531 |
|
---|
6532 |
|
---|
6533 | /**
|
---|
6534 | * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
|
---|
6535 | * the current VMCS into the guest-CPU context.
|
---|
6536 | *
|
---|
6537 | * @returns VBox status code.
|
---|
6538 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6539 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6540 | * out-of-sync. Make sure to update the required fields
|
---|
6541 | * before using them.
|
---|
6542 | *
|
---|
6543 | * @remarks No-long-jump zone!!!
|
---|
6544 | */
|
---|
6545 | static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6546 | {
|
---|
6547 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
|
---|
6548 | {
|
---|
6549 | Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR));
|
---|
6550 | uint32_t u32Val = 0;
|
---|
6551 | int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
|
---|
6552 | pMixedCtx->SysEnter.cs = u32Val;
|
---|
6553 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
|
---|
6554 | }
|
---|
6555 |
|
---|
6556 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
|
---|
6557 | {
|
---|
6558 | Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR));
|
---|
6559 | uint64_t u64Val = 0;
|
---|
6560 | int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
|
---|
6561 | pMixedCtx->SysEnter.eip = u64Val;
|
---|
6562 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
|
---|
6563 | }
|
---|
6564 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
|
---|
6565 | {
|
---|
6566 | Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR));
|
---|
6567 | uint64_t u64Val = 0;
|
---|
6568 | int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
|
---|
6569 | pMixedCtx->SysEnter.esp = u64Val;
|
---|
6570 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
|
---|
6571 | }
|
---|
6572 | return VINF_SUCCESS;
|
---|
6573 | }
|
---|
6574 |
|
---|
6575 |
|
---|
6576 | /**
|
---|
6577 | * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
|
---|
6578 | * the CPU back into the guest-CPU context.
|
---|
6579 | *
|
---|
6580 | * @returns VBox status code.
|
---|
6581 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6582 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6583 | * out-of-sync. Make sure to update the required fields
|
---|
6584 | * before using them.
|
---|
6585 | *
|
---|
6586 | * @remarks No-long-jump zone!!!
|
---|
6587 | */
|
---|
6588 | static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6589 | {
|
---|
6590 | /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
|
---|
6591 | VMMRZCallRing3Disable(pVCpu);
|
---|
6592 | HM_DISABLE_PREEMPT();
|
---|
6593 |
|
---|
6594 | /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
|
---|
6595 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
|
---|
6596 | {
|
---|
6597 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS));
|
---|
6598 | hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
|
---|
6599 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
|
---|
6600 | }
|
---|
6601 |
|
---|
6602 | HM_RESTORE_PREEMPT();
|
---|
6603 | VMMRZCallRing3Enable(pVCpu);
|
---|
6604 |
|
---|
6605 | return VINF_SUCCESS;
|
---|
6606 | }
|
---|
6607 |
|
---|
6608 |
|
---|
6609 | /**
|
---|
6610 | * Saves the auto load/store'd guest MSRs from the current VMCS into
|
---|
6611 | * the guest-CPU context.
|
---|
6612 | *
|
---|
6613 | * @returns VBox status code.
|
---|
6614 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6615 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6616 | * out-of-sync. Make sure to update the required fields
|
---|
6617 | * before using them.
|
---|
6618 | *
|
---|
6619 | * @remarks No-long-jump zone!!!
|
---|
6620 | */
|
---|
6621 | static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6622 | {
|
---|
6623 | if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
|
---|
6624 | return VINF_SUCCESS;
|
---|
6625 |
|
---|
6626 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS));
|
---|
6627 | PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
6628 | uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
|
---|
6629 | Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
|
---|
6630 | for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
|
---|
6631 | {
|
---|
6632 | switch (pMsr->u32Msr)
|
---|
6633 | {
|
---|
6634 | case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
|
---|
6635 | case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
|
---|
6636 | case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
|
---|
6637 | case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
|
---|
6638 | case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
|
---|
6639 | case MSR_IA32_SPEC_CTRL: CPUMR0SetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
|
---|
6640 | case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
|
---|
6641 | break;
|
---|
6642 |
|
---|
6643 | default:
|
---|
6644 | {
|
---|
6645 | AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
|
---|
6646 | pVCpu->hm.s.u32HMError = pMsr->u32Msr;
|
---|
6647 | return VERR_HM_UNEXPECTED_LD_ST_MSR;
|
---|
6648 | }
|
---|
6649 | }
|
---|
6650 | }
|
---|
6651 |
|
---|
6652 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
|
---|
6653 | return VINF_SUCCESS;
|
---|
6654 | }
|
---|
6655 |
|
---|
6656 |
|
---|
6657 | /**
|
---|
6658 | * Saves the guest control registers from the current VMCS into the guest-CPU
|
---|
6659 | * context.
|
---|
6660 | *
|
---|
6661 | * @returns VBox status code.
|
---|
6662 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6663 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6664 | * out-of-sync. Make sure to update the required fields
|
---|
6665 | * before using them.
|
---|
6666 | *
|
---|
6667 | * @remarks No-long-jump zone!!!
|
---|
6668 | */
|
---|
6669 | static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6670 | {
|
---|
6671 | /* Guest CR0. Guest FPU. */
|
---|
6672 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
6673 | AssertRCReturn(rc, rc);
|
---|
6674 |
|
---|
6675 | /* Guest CR4. */
|
---|
6676 | rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
|
---|
6677 | AssertRCReturn(rc, rc);
|
---|
6678 |
|
---|
6679 | /* Guest CR2 - updated always during the world-switch or in #PF. */
|
---|
6680 | /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
|
---|
6681 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
|
---|
6682 | {
|
---|
6683 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3));
|
---|
6684 | Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
|
---|
6685 | Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
|
---|
6686 |
|
---|
6687 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6688 | if ( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
6689 | || ( pVM->hm.s.fNestedPaging
|
---|
6690 | && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
|
---|
6691 | {
|
---|
6692 | uint64_t u64Val = 0;
|
---|
6693 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
|
---|
6694 | if (pMixedCtx->cr3 != u64Val)
|
---|
6695 | {
|
---|
6696 | CPUMSetGuestCR3(pVCpu, u64Val);
|
---|
6697 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
6698 | {
|
---|
6699 | PGMUpdateCR3(pVCpu, u64Val);
|
---|
6700 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
6701 | }
|
---|
6702 | else
|
---|
6703 | {
|
---|
6704 | /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
|
---|
6705 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
|
---|
6706 | }
|
---|
6707 | }
|
---|
6708 |
|
---|
6709 | /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
|
---|
6710 | if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
|
---|
6711 | {
|
---|
6712 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
|
---|
6713 | rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
|
---|
6714 | rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
|
---|
6715 | rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
|
---|
6716 | AssertRCReturn(rc, rc);
|
---|
6717 |
|
---|
6718 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
6719 | {
|
---|
6720 | PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
6721 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
6722 | }
|
---|
6723 | else
|
---|
6724 | {
|
---|
6725 | /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
|
---|
6726 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
|
---|
6727 | }
|
---|
6728 | }
|
---|
6729 | }
|
---|
6730 |
|
---|
6731 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
|
---|
6732 | }
|
---|
6733 |
|
---|
6734 | /*
|
---|
6735 | * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
|
---|
6736 | * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
|
---|
6737 | * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
|
---|
6738 | *
|
---|
6739 | * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
|
---|
6740 | * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
|
---|
6741 | * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
|
---|
6742 | * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
|
---|
6743 | *
|
---|
6744 | * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
|
---|
6745 | */
|
---|
6746 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
6747 | {
|
---|
6748 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
6749 | PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
|
---|
6750 |
|
---|
6751 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
|
---|
6752 | PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
6753 |
|
---|
6754 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
6755 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
6756 | }
|
---|
6757 |
|
---|
6758 | return rc;
|
---|
6759 | }
|
---|
6760 |
|
---|
6761 |
|
---|
6762 | /**
|
---|
6763 | * Reads a guest segment register from the current VMCS into the guest-CPU
|
---|
6764 | * context.
|
---|
6765 | *
|
---|
6766 | * @returns VBox status code.
|
---|
6767 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6768 | * @param idxSel Index of the selector in the VMCS.
|
---|
6769 | * @param idxLimit Index of the segment limit in the VMCS.
|
---|
6770 | * @param idxBase Index of the segment base in the VMCS.
|
---|
6771 | * @param idxAccess Index of the access rights of the segment in the VMCS.
|
---|
6772 | * @param pSelReg Pointer to the segment selector.
|
---|
6773 | *
|
---|
6774 | * @remarks No-long-jump zone!!!
|
---|
6775 | * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
|
---|
6776 | * macro as that takes care of whether to read from the VMCS cache or
|
---|
6777 | * not.
|
---|
6778 | */
|
---|
6779 | DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
|
---|
6780 | PCPUMSELREG pSelReg)
|
---|
6781 | {
|
---|
6782 | NOREF(pVCpu);
|
---|
6783 |
|
---|
6784 | uint32_t u32Val = 0;
|
---|
6785 | int rc = VMXReadVmcs32(idxSel, &u32Val);
|
---|
6786 | AssertRCReturn(rc, rc);
|
---|
6787 | pSelReg->Sel = (uint16_t)u32Val;
|
---|
6788 | pSelReg->ValidSel = (uint16_t)u32Val;
|
---|
6789 | pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
6790 |
|
---|
6791 | rc = VMXReadVmcs32(idxLimit, &u32Val);
|
---|
6792 | AssertRCReturn(rc, rc);
|
---|
6793 | pSelReg->u32Limit = u32Val;
|
---|
6794 |
|
---|
6795 | uint64_t u64Val = 0;
|
---|
6796 | rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
|
---|
6797 | AssertRCReturn(rc, rc);
|
---|
6798 | pSelReg->u64Base = u64Val;
|
---|
6799 |
|
---|
6800 | rc = VMXReadVmcs32(idxAccess, &u32Val);
|
---|
6801 | AssertRCReturn(rc, rc);
|
---|
6802 | pSelReg->Attr.u = u32Val;
|
---|
6803 |
|
---|
6804 | /*
|
---|
6805 | * If VT-x marks the segment as unusable, most other bits remain undefined:
|
---|
6806 | * - For CS the L, D and G bits have meaning.
|
---|
6807 | * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
|
---|
6808 | * - For the remaining data segments no bits are defined.
|
---|
6809 | *
|
---|
6810 | * The present bit and the unusable bit has been observed to be set at the
|
---|
6811 | * same time (the selector was supposed to be invalid as we started executing
|
---|
6812 | * a V8086 interrupt in ring-0).
|
---|
6813 | *
|
---|
6814 | * What should be important for the rest of the VBox code, is that the P bit is
|
---|
6815 | * cleared. Some of the other VBox code recognizes the unusable bit, but
|
---|
6816 | * AMD-V certainly don't, and REM doesn't really either. So, to be on the
|
---|
6817 | * safe side here, we'll strip off P and other bits we don't care about. If
|
---|
6818 | * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
|
---|
6819 | *
|
---|
6820 | * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
|
---|
6821 | */
|
---|
6822 | if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
|
---|
6823 | {
|
---|
6824 | Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
|
---|
6825 |
|
---|
6826 | /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
|
---|
6827 | pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
|
---|
6828 | | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
|
---|
6829 |
|
---|
6830 | Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
|
---|
6831 | #ifdef DEBUG_bird
|
---|
6832 | AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
|
---|
6833 | ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
|
---|
6834 | idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
|
---|
6835 | #endif
|
---|
6836 | }
|
---|
6837 | return VINF_SUCCESS;
|
---|
6838 | }
|
---|
6839 |
|
---|
6840 |
|
---|
6841 | #ifdef VMX_USE_CACHED_VMCS_ACCESSES
|
---|
6842 | # define VMXLOCAL_READ_SEG(Sel, CtxSel) \
|
---|
6843 | hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
|
---|
6844 | VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
|
---|
6845 | #else
|
---|
6846 | # define VMXLOCAL_READ_SEG(Sel, CtxSel) \
|
---|
6847 | hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
|
---|
6848 | VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
|
---|
6849 | #endif
|
---|
6850 |
|
---|
6851 |
|
---|
6852 | /**
|
---|
6853 | * Saves the guest segment registers from the current VMCS into the guest-CPU
|
---|
6854 | * context.
|
---|
6855 | *
|
---|
6856 | * @returns VBox status code.
|
---|
6857 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6858 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6859 | * out-of-sync. Make sure to update the required fields
|
---|
6860 | * before using them.
|
---|
6861 | *
|
---|
6862 | * @remarks No-long-jump zone!!!
|
---|
6863 | */
|
---|
6864 | static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6865 | {
|
---|
6866 | /* Guest segment registers. */
|
---|
6867 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
|
---|
6868 | {
|
---|
6869 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS));
|
---|
6870 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
6871 | AssertRCReturn(rc, rc);
|
---|
6872 |
|
---|
6873 | rc = VMXLOCAL_READ_SEG(CS, cs);
|
---|
6874 | rc |= VMXLOCAL_READ_SEG(SS, ss);
|
---|
6875 | rc |= VMXLOCAL_READ_SEG(DS, ds);
|
---|
6876 | rc |= VMXLOCAL_READ_SEG(ES, es);
|
---|
6877 | rc |= VMXLOCAL_READ_SEG(FS, fs);
|
---|
6878 | rc |= VMXLOCAL_READ_SEG(GS, gs);
|
---|
6879 | AssertRCReturn(rc, rc);
|
---|
6880 |
|
---|
6881 | /* Restore segment attributes for real-on-v86 mode hack. */
|
---|
6882 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
6883 | {
|
---|
6884 | pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
|
---|
6885 | pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
|
---|
6886 | pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
|
---|
6887 | pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
|
---|
6888 | pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
|
---|
6889 | pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
|
---|
6890 | }
|
---|
6891 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
|
---|
6892 | }
|
---|
6893 |
|
---|
6894 | return VINF_SUCCESS;
|
---|
6895 | }
|
---|
6896 |
|
---|
6897 |
|
---|
6898 | /**
|
---|
6899 | * Saves the guest descriptor table registers and task register from the current
|
---|
6900 | * VMCS into the guest-CPU context.
|
---|
6901 | *
|
---|
6902 | * @returns VBox status code.
|
---|
6903 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6904 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6905 | * out-of-sync. Make sure to update the required fields
|
---|
6906 | * before using them.
|
---|
6907 | *
|
---|
6908 | * @remarks No-long-jump zone!!!
|
---|
6909 | */
|
---|
6910 | static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6911 | {
|
---|
6912 | int rc = VINF_SUCCESS;
|
---|
6913 |
|
---|
6914 | /* Guest LDTR. */
|
---|
6915 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
|
---|
6916 | {
|
---|
6917 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR));
|
---|
6918 | rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
|
---|
6919 | AssertRCReturn(rc, rc);
|
---|
6920 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
|
---|
6921 | }
|
---|
6922 |
|
---|
6923 | /* Guest GDTR. */
|
---|
6924 | uint64_t u64Val = 0;
|
---|
6925 | uint32_t u32Val = 0;
|
---|
6926 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
|
---|
6927 | {
|
---|
6928 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR));
|
---|
6929 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
|
---|
6930 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
|
---|
6931 | pMixedCtx->gdtr.pGdt = u64Val;
|
---|
6932 | pMixedCtx->gdtr.cbGdt = u32Val;
|
---|
6933 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
|
---|
6934 | }
|
---|
6935 |
|
---|
6936 | /* Guest IDTR. */
|
---|
6937 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
|
---|
6938 | {
|
---|
6939 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR));
|
---|
6940 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
|
---|
6941 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
|
---|
6942 | pMixedCtx->idtr.pIdt = u64Val;
|
---|
6943 | pMixedCtx->idtr.cbIdt = u32Val;
|
---|
6944 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
|
---|
6945 | }
|
---|
6946 |
|
---|
6947 | /* Guest TR. */
|
---|
6948 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
|
---|
6949 | {
|
---|
6950 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR));
|
---|
6951 | rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
6952 | AssertRCReturn(rc, rc);
|
---|
6953 |
|
---|
6954 | /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
|
---|
6955 | if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
6956 | {
|
---|
6957 | rc = VMXLOCAL_READ_SEG(TR, tr);
|
---|
6958 | AssertRCReturn(rc, rc);
|
---|
6959 | }
|
---|
6960 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
|
---|
6961 | }
|
---|
6962 | return rc;
|
---|
6963 | }
|
---|
6964 |
|
---|
6965 | #undef VMXLOCAL_READ_SEG
|
---|
6966 |
|
---|
6967 |
|
---|
6968 | /**
|
---|
6969 | * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
|
---|
6970 | * context.
|
---|
6971 | *
|
---|
6972 | * @returns VBox status code.
|
---|
6973 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6974 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
6975 | * out-of-sync. Make sure to update the required fields
|
---|
6976 | * before using them.
|
---|
6977 | *
|
---|
6978 | * @remarks No-long-jump zone!!!
|
---|
6979 | */
|
---|
6980 | static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6981 | {
|
---|
6982 | if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7))
|
---|
6983 | {
|
---|
6984 | if (!pVCpu->hm.s.fUsingHyperDR7)
|
---|
6985 | {
|
---|
6986 | /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
|
---|
6987 | uint32_t u32Val;
|
---|
6988 | int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
|
---|
6989 | pMixedCtx->dr[7] = u32Val;
|
---|
6990 | }
|
---|
6991 |
|
---|
6992 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7);
|
---|
6993 | }
|
---|
6994 | return VINF_SUCCESS;
|
---|
6995 | }
|
---|
6996 |
|
---|
6997 |
|
---|
6998 | /**
|
---|
6999 | * Saves the guest APIC state from the current VMCS into the guest-CPU context.
|
---|
7000 | *
|
---|
7001 | * @returns VBox status code.
|
---|
7002 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7003 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
7004 | * out-of-sync. Make sure to update the required fields
|
---|
7005 | * before using them.
|
---|
7006 | *
|
---|
7007 | * @remarks No-long-jump zone!!!
|
---|
7008 | */
|
---|
7009 | static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
7010 | {
|
---|
7011 | NOREF(pMixedCtx);
|
---|
7012 |
|
---|
7013 | /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
|
---|
7014 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
|
---|
7015 | return VINF_SUCCESS;
|
---|
7016 | }
|
---|
7017 |
|
---|
7018 |
|
---|
7019 | /**
|
---|
7020 | * Saves the entire guest state from the currently active VMCS into the
|
---|
7021 | * guest-CPU context.
|
---|
7022 | *
|
---|
7023 | * This essentially VMREADs all guest-data.
|
---|
7024 | *
|
---|
7025 | * @returns VBox status code.
|
---|
7026 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7027 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
7028 | * out-of-sync. Make sure to update the required fields
|
---|
7029 | * before using them.
|
---|
7030 | */
|
---|
7031 | static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
7032 | {
|
---|
7033 | Assert(pVCpu);
|
---|
7034 | Assert(pMixedCtx);
|
---|
7035 |
|
---|
7036 | if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
|
---|
7037 | return VINF_SUCCESS;
|
---|
7038 |
|
---|
7039 | /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
|
---|
7040 | again on the ring-3 callback path, there is no real need to. */
|
---|
7041 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
7042 | VMMR0LogFlushDisable(pVCpu);
|
---|
7043 | else
|
---|
7044 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
7045 | Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
|
---|
7046 |
|
---|
7047 | int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
7048 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7049 |
|
---|
7050 | rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
7051 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7052 |
|
---|
7053 | rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
7054 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7055 |
|
---|
7056 | rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
|
---|
7057 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7058 |
|
---|
7059 | rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
|
---|
7060 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7061 |
|
---|
7062 | rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
|
---|
7063 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7064 |
|
---|
7065 | rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
|
---|
7066 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7067 |
|
---|
7068 | rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
|
---|
7069 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7070 |
|
---|
7071 | rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
|
---|
7072 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7073 |
|
---|
7074 | rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
|
---|
7075 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
7076 |
|
---|
7077 | AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
|
---|
7078 | ("Missed guest state bits while saving state; missing %RX32 (got %RX32, want %RX32) - check log for any previous errors!\n",
|
---|
7079 | HMVMX_UPDATED_GUEST_ALL ^ HMVMXCPU_GST_VALUE(pVCpu), HMVMXCPU_GST_VALUE(pVCpu), HMVMX_UPDATED_GUEST_ALL));
|
---|
7080 |
|
---|
7081 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
7082 | VMMR0LogFlushEnable(pVCpu);
|
---|
7083 |
|
---|
7084 | return VINF_SUCCESS;
|
---|
7085 | }
|
---|
7086 |
|
---|
7087 |
|
---|
7088 | /**
|
---|
7089 | * Saves basic guest registers needed for IEM instruction execution.
|
---|
7090 | *
|
---|
7091 | * @returns VBox status code (OR-able).
|
---|
7092 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
7093 | * @param pMixedCtx Pointer to the CPU context of the guest.
|
---|
7094 | * @param fMemory Whether the instruction being executed operates on
|
---|
7095 | * memory or not. Only CR0 is synced up if clear.
|
---|
7096 | * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
|
---|
7097 | */
|
---|
7098 | static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
|
---|
7099 | {
|
---|
7100 | /*
|
---|
7101 | * We assume all general purpose registers other than RSP are available.
|
---|
7102 | *
|
---|
7103 | * - RIP is a must, as it will be incremented or otherwise changed.
|
---|
7104 | * - RFLAGS are always required to figure the CPL.
|
---|
7105 | * - RSP isn't always required, however it's a GPR, so frequently required.
|
---|
7106 | * - SS and CS are the only segment register needed if IEM doesn't do memory
|
---|
7107 | * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
|
---|
7108 | * - CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
|
---|
7109 | * be required for memory accesses.
|
---|
7110 | *
|
---|
7111 | * Note! Before IEM dispatches an exception, it will call us to sync in everything.
|
---|
7112 | */
|
---|
7113 | int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
7114 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
7115 | if (fNeedRsp)
|
---|
7116 | rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
|
---|
7117 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
7118 | if (!fMemory)
|
---|
7119 | rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
7120 | else
|
---|
7121 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
7122 | AssertRCReturn(rc, rc);
|
---|
7123 | return rc;
|
---|
7124 | }
|
---|
7125 |
|
---|
7126 |
|
---|
7127 | /**
|
---|
7128 | * Ensures that we've got a complete basic guest-context.
|
---|
7129 | *
|
---|
7130 | * This excludes the FPU, SSE, AVX, and similar extended state. The interface
|
---|
7131 | * is for the interpreter.
|
---|
7132 | *
|
---|
7133 | * @returns VBox status code.
|
---|
7134 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
7135 | * @param pMixedCtx Pointer to the guest-CPU context which may have data
|
---|
7136 | * needing to be synced in.
|
---|
7137 | * @thread EMT(pVCpu)
|
---|
7138 | */
|
---|
7139 | VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
7140 | {
|
---|
7141 | /* Note! Since this is only applicable to VT-x, the implementation is placed
|
---|
7142 | in the VT-x part of the sources instead of the generic stuff. */
|
---|
7143 | if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
|
---|
7144 | {
|
---|
7145 | int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
7146 | /*
|
---|
7147 | * For now, imply that the caller might change everything too. Do this after
|
---|
7148 | * saving the guest state so as to not trigger assertions.
|
---|
7149 | */
|
---|
7150 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
7151 | return rc;
|
---|
7152 | }
|
---|
7153 | return VINF_SUCCESS;
|
---|
7154 | }
|
---|
7155 |
|
---|
7156 |
|
---|
7157 | /**
|
---|
7158 | * Check per-VM and per-VCPU force flag actions that require us to go back to
|
---|
7159 | * ring-3 for one reason or another.
|
---|
7160 | *
|
---|
7161 | * @returns Strict VBox status code (i.e. informational status codes too)
|
---|
7162 | * @retval VINF_SUCCESS if we don't have any actions that require going back to
|
---|
7163 | * ring-3.
|
---|
7164 | * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
|
---|
7165 | * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
|
---|
7166 | * interrupts)
|
---|
7167 | * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
|
---|
7168 | * all EMTs to be in ring-3.
|
---|
7169 | * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
|
---|
7170 | * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
|
---|
7171 | * to the EM loop.
|
---|
7172 | *
|
---|
7173 | * @param pVM The cross context VM structure.
|
---|
7174 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7175 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
7176 | * out-of-sync. Make sure to update the required fields
|
---|
7177 | * before using them.
|
---|
7178 | * @param fStepping Running in hmR0VmxRunGuestCodeStep().
|
---|
7179 | */
|
---|
7180 | static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
|
---|
7181 | {
|
---|
7182 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7183 |
|
---|
7184 | /*
|
---|
7185 | * Anything pending? Should be more likely than not if we're doing a good job.
|
---|
7186 | */
|
---|
7187 | if ( !fStepping
|
---|
7188 | ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
|
---|
7189 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
|
---|
7190 | : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
7191 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
7192 | return VINF_SUCCESS;
|
---|
7193 |
|
---|
7194 | /* We need the control registers now, make sure the guest-CPU context is updated. */
|
---|
7195 | int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
7196 | AssertRCReturn(rc3, rc3);
|
---|
7197 |
|
---|
7198 | /* Pending HM CR3 sync. */
|
---|
7199 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
7200 | {
|
---|
7201 | int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
|
---|
7202 | AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
|
---|
7203 | ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
|
---|
7204 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
7205 | }
|
---|
7206 |
|
---|
7207 | /* Pending HM PAE PDPEs. */
|
---|
7208 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
|
---|
7209 | {
|
---|
7210 | PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
7211 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
7212 | }
|
---|
7213 |
|
---|
7214 | /* Pending PGM C3 sync. */
|
---|
7215 | if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
|
---|
7216 | {
|
---|
7217 | VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
|
---|
7218 | VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
7219 | if (rcStrict2 != VINF_SUCCESS)
|
---|
7220 | {
|
---|
7221 | AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
|
---|
7222 | Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
|
---|
7223 | return rcStrict2;
|
---|
7224 | }
|
---|
7225 | }
|
---|
7226 |
|
---|
7227 | /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
|
---|
7228 | if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
|
---|
7229 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
7230 | {
|
---|
7231 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
7232 | int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
|
---|
7233 | Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
|
---|
7234 | return rc2;
|
---|
7235 | }
|
---|
7236 |
|
---|
7237 | /* Pending VM request packets, such as hardware interrupts. */
|
---|
7238 | if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
|
---|
7239 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
|
---|
7240 | {
|
---|
7241 | Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
|
---|
7242 | return VINF_EM_PENDING_REQUEST;
|
---|
7243 | }
|
---|
7244 |
|
---|
7245 | /* Pending PGM pool flushes. */
|
---|
7246 | if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
|
---|
7247 | {
|
---|
7248 | Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
|
---|
7249 | return VINF_PGM_POOL_FLUSH_PENDING;
|
---|
7250 | }
|
---|
7251 |
|
---|
7252 | /* Pending DMA requests. */
|
---|
7253 | if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
|
---|
7254 | {
|
---|
7255 | Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
|
---|
7256 | return VINF_EM_RAW_TO_R3;
|
---|
7257 | }
|
---|
7258 |
|
---|
7259 | return VINF_SUCCESS;
|
---|
7260 | }
|
---|
7261 |
|
---|
7262 |
|
---|
7263 | /**
|
---|
7264 | * Converts any TRPM trap into a pending HM event. This is typically used when
|
---|
7265 | * entering from ring-3 (not longjmp returns).
|
---|
7266 | *
|
---|
7267 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7268 | */
|
---|
7269 | static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
|
---|
7270 | {
|
---|
7271 | Assert(TRPMHasTrap(pVCpu));
|
---|
7272 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
7273 |
|
---|
7274 | uint8_t uVector;
|
---|
7275 | TRPMEVENT enmTrpmEvent;
|
---|
7276 | RTGCUINT uErrCode;
|
---|
7277 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
7278 | uint8_t cbInstr;
|
---|
7279 |
|
---|
7280 | int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
|
---|
7281 | AssertRC(rc);
|
---|
7282 |
|
---|
7283 | /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
|
---|
7284 | uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
7285 | if (enmTrpmEvent == TRPM_TRAP)
|
---|
7286 | {
|
---|
7287 | switch (uVector)
|
---|
7288 | {
|
---|
7289 | case X86_XCPT_NMI:
|
---|
7290 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
7291 | break;
|
---|
7292 |
|
---|
7293 | case X86_XCPT_BP:
|
---|
7294 | case X86_XCPT_OF:
|
---|
7295 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
7296 | break;
|
---|
7297 |
|
---|
7298 | case X86_XCPT_PF:
|
---|
7299 | case X86_XCPT_DF:
|
---|
7300 | case X86_XCPT_TS:
|
---|
7301 | case X86_XCPT_NP:
|
---|
7302 | case X86_XCPT_SS:
|
---|
7303 | case X86_XCPT_GP:
|
---|
7304 | case X86_XCPT_AC:
|
---|
7305 | u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
7306 | RT_FALL_THRU();
|
---|
7307 | default:
|
---|
7308 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
7309 | break;
|
---|
7310 | }
|
---|
7311 | }
|
---|
7312 | else if (enmTrpmEvent == TRPM_HARDWARE_INT)
|
---|
7313 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
7314 | else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
|
---|
7315 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
7316 | else
|
---|
7317 | AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
|
---|
7318 |
|
---|
7319 | rc = TRPMResetTrap(pVCpu);
|
---|
7320 | AssertRC(rc);
|
---|
7321 | Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
|
---|
7322 | u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
|
---|
7323 |
|
---|
7324 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
|
---|
7325 | }
|
---|
7326 |
|
---|
7327 |
|
---|
7328 | /**
|
---|
7329 | * Converts the pending HM event into a TRPM trap.
|
---|
7330 | *
|
---|
7331 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7332 | */
|
---|
7333 | static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
|
---|
7334 | {
|
---|
7335 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
7336 |
|
---|
7337 | uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
|
---|
7338 | uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
|
---|
7339 | bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
|
---|
7340 | uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
|
---|
7341 |
|
---|
7342 | /* If a trap was already pending, we did something wrong! */
|
---|
7343 | Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
|
---|
7344 |
|
---|
7345 | TRPMEVENT enmTrapType;
|
---|
7346 | switch (uVectorType)
|
---|
7347 | {
|
---|
7348 | case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
|
---|
7349 | enmTrapType = TRPM_HARDWARE_INT;
|
---|
7350 | break;
|
---|
7351 |
|
---|
7352 | case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
|
---|
7353 | enmTrapType = TRPM_SOFTWARE_INT;
|
---|
7354 | break;
|
---|
7355 |
|
---|
7356 | case VMX_IDT_VECTORING_INFO_TYPE_NMI:
|
---|
7357 | case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
|
---|
7358 | case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
|
---|
7359 | case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
|
---|
7360 | enmTrapType = TRPM_TRAP;
|
---|
7361 | break;
|
---|
7362 |
|
---|
7363 | default:
|
---|
7364 | AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
|
---|
7365 | enmTrapType = TRPM_32BIT_HACK;
|
---|
7366 | break;
|
---|
7367 | }
|
---|
7368 |
|
---|
7369 | Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
|
---|
7370 |
|
---|
7371 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
|
---|
7372 | AssertRC(rc);
|
---|
7373 |
|
---|
7374 | if (fErrorCodeValid)
|
---|
7375 | TRPMSetErrorCode(pVCpu, uErrorCode);
|
---|
7376 |
|
---|
7377 | if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
7378 | && uVector == X86_XCPT_PF)
|
---|
7379 | {
|
---|
7380 | TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
|
---|
7381 | }
|
---|
7382 | else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
7383 | || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
|
---|
7384 | || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
|
---|
7385 | {
|
---|
7386 | AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
7387 | || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
|
---|
7388 | ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
|
---|
7389 | TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
|
---|
7390 | }
|
---|
7391 |
|
---|
7392 | /* Clear any pending events from the VMCS. */
|
---|
7393 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
|
---|
7394 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc);
|
---|
7395 |
|
---|
7396 | /* We're now done converting the pending event. */
|
---|
7397 | pVCpu->hm.s.Event.fPending = false;
|
---|
7398 | }
|
---|
7399 |
|
---|
7400 |
|
---|
7401 | /**
|
---|
7402 | * Does the necessary state syncing before returning to ring-3 for any reason
|
---|
7403 | * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
|
---|
7404 | *
|
---|
7405 | * @returns VBox status code.
|
---|
7406 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7407 | * @param pMixedCtx Pointer to the guest-CPU context. The data may
|
---|
7408 | * be out-of-sync. Make sure to update the required
|
---|
7409 | * fields before using them.
|
---|
7410 | * @param fSaveGuestState Whether to save the guest state or not.
|
---|
7411 | *
|
---|
7412 | * @remarks No-long-jmp zone!!!
|
---|
7413 | */
|
---|
7414 | static int hmR0VmxLeave(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
|
---|
7415 | {
|
---|
7416 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
7417 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7418 |
|
---|
7419 | RTCPUID idCpu = RTMpCpuId();
|
---|
7420 | Log4Func(("HostCpuId=%u\n", idCpu));
|
---|
7421 |
|
---|
7422 | /*
|
---|
7423 | * !!! IMPORTANT !!!
|
---|
7424 | * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
|
---|
7425 | */
|
---|
7426 |
|
---|
7427 | /* Save the guest state if necessary. */
|
---|
7428 | if ( fSaveGuestState
|
---|
7429 | && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
|
---|
7430 | {
|
---|
7431 | int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
7432 | AssertRCReturn(rc, rc);
|
---|
7433 | Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
|
---|
7434 | }
|
---|
7435 |
|
---|
7436 | /* Restore host FPU state if necessary and resync on next R0 reentry .*/
|
---|
7437 | if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
|
---|
7438 | {
|
---|
7439 | /* We shouldn't reload CR0 without saving it first. */
|
---|
7440 | if (!fSaveGuestState)
|
---|
7441 | {
|
---|
7442 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
7443 | AssertRCReturn(rc, rc);
|
---|
7444 | }
|
---|
7445 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
7446 | }
|
---|
7447 |
|
---|
7448 | /* Restore host debug registers if necessary and resync on next R0 reentry. */
|
---|
7449 | #ifdef VBOX_STRICT
|
---|
7450 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
7451 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
|
---|
7452 | #endif
|
---|
7453 | if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
|
---|
7454 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
7455 | Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
7456 | Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
7457 |
|
---|
7458 | #if HC_ARCH_BITS == 64
|
---|
7459 | /* Restore host-state bits that VT-x only restores partially. */
|
---|
7460 | if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
|
---|
7461 | && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
|
---|
7462 | {
|
---|
7463 | Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
|
---|
7464 | VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
|
---|
7465 | }
|
---|
7466 | pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
|
---|
7467 | #endif
|
---|
7468 |
|
---|
7469 | /* Restore the lazy host MSRs as we're leaving VT-x context. */
|
---|
7470 | if (pVCpu->hm.s.vmx.fLazyMsrs)
|
---|
7471 | {
|
---|
7472 | /* We shouldn't reload the guest MSRs without saving it first. */
|
---|
7473 | if (!fSaveGuestState)
|
---|
7474 | {
|
---|
7475 | int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
|
---|
7476 | AssertRCReturn(rc, rc);
|
---|
7477 | }
|
---|
7478 | Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
|
---|
7479 | hmR0VmxLazyRestoreHostMsrs(pVCpu);
|
---|
7480 | Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
|
---|
7481 | }
|
---|
7482 |
|
---|
7483 | /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
|
---|
7484 | pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
|
---|
7485 |
|
---|
7486 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
|
---|
7487 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
|
---|
7488 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
|
---|
7489 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
|
---|
7490 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
|
---|
7491 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
|
---|
7492 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
|
---|
7493 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
7494 |
|
---|
7495 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
7496 |
|
---|
7497 | /** @todo This partially defeats the purpose of having preemption hooks.
|
---|
7498 | * The problem is, deregistering the hooks should be moved to a place that
|
---|
7499 | * lasts until the EMT is about to be destroyed not everytime while leaving HM
|
---|
7500 | * context.
|
---|
7501 | */
|
---|
7502 | if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
|
---|
7503 | {
|
---|
7504 | int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
7505 | AssertRCReturn(rc, rc);
|
---|
7506 |
|
---|
7507 | pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
|
---|
7508 | Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
|
---|
7509 | }
|
---|
7510 | Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
|
---|
7511 | NOREF(idCpu);
|
---|
7512 |
|
---|
7513 | return VINF_SUCCESS;
|
---|
7514 | }
|
---|
7515 |
|
---|
7516 |
|
---|
7517 | /**
|
---|
7518 | * Leaves the VT-x session.
|
---|
7519 | *
|
---|
7520 | * @returns VBox status code.
|
---|
7521 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7522 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
7523 | * out-of-sync. Make sure to update the required fields
|
---|
7524 | * before using them.
|
---|
7525 | *
|
---|
7526 | * @remarks No-long-jmp zone!!!
|
---|
7527 | */
|
---|
7528 | DECLINLINE(int) hmR0VmxLeaveSession(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
7529 | {
|
---|
7530 | HM_DISABLE_PREEMPT();
|
---|
7531 | HMVMX_ASSERT_CPU_SAFE();
|
---|
7532 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7533 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
7534 |
|
---|
7535 | /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
|
---|
7536 | and done this from the VMXR0ThreadCtxCallback(). */
|
---|
7537 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
7538 | {
|
---|
7539 | int rc2 = hmR0VmxLeave(pVCpu, pMixedCtx, true /* fSaveGuestState */);
|
---|
7540 | AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
|
---|
7541 | pVCpu->hm.s.fLeaveDone = true;
|
---|
7542 | }
|
---|
7543 | Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
|
---|
7544 |
|
---|
7545 | /*
|
---|
7546 | * !!! IMPORTANT !!!
|
---|
7547 | * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
|
---|
7548 | */
|
---|
7549 |
|
---|
7550 | /* Deregister hook now that we've left HM context before re-enabling preemption. */
|
---|
7551 | /** @todo Deregistering here means we need to VMCLEAR always
|
---|
7552 | * (longjmp/exit-to-r3) in VT-x which is not efficient. */
|
---|
7553 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
7554 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
7555 |
|
---|
7556 | /* Leave HM context. This takes care of local init (term). */
|
---|
7557 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
7558 |
|
---|
7559 | HM_RESTORE_PREEMPT();
|
---|
7560 | return rc;
|
---|
7561 | }
|
---|
7562 |
|
---|
7563 |
|
---|
7564 | /**
|
---|
7565 | * Does the necessary state syncing before doing a longjmp to ring-3.
|
---|
7566 | *
|
---|
7567 | * @returns VBox status code.
|
---|
7568 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7569 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
7570 | * out-of-sync. Make sure to update the required fields
|
---|
7571 | * before using them.
|
---|
7572 | *
|
---|
7573 | * @remarks No-long-jmp zone!!!
|
---|
7574 | */
|
---|
7575 | DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
7576 | {
|
---|
7577 | return hmR0VmxLeaveSession(pVCpu, pMixedCtx);
|
---|
7578 | }
|
---|
7579 |
|
---|
7580 |
|
---|
7581 | /**
|
---|
7582 | * Take necessary actions before going back to ring-3.
|
---|
7583 | *
|
---|
7584 | * An action requires us to go back to ring-3. This function does the necessary
|
---|
7585 | * steps before we can safely return to ring-3. This is not the same as longjmps
|
---|
7586 | * to ring-3, this is voluntary and prepares the guest so it may continue
|
---|
7587 | * executing outside HM (recompiler/IEM).
|
---|
7588 | *
|
---|
7589 | * @returns VBox status code.
|
---|
7590 | * @param pVM The cross context VM structure.
|
---|
7591 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7592 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
7593 | * out-of-sync. Make sure to update the required fields
|
---|
7594 | * before using them.
|
---|
7595 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
7596 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
7597 | */
|
---|
7598 | static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, VBOXSTRICTRC rcExit)
|
---|
7599 | {
|
---|
7600 | Assert(pVM);
|
---|
7601 | Assert(pVCpu);
|
---|
7602 | Assert(pMixedCtx);
|
---|
7603 | HMVMX_ASSERT_PREEMPT_SAFE();
|
---|
7604 |
|
---|
7605 | if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
|
---|
7606 | {
|
---|
7607 | VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
|
---|
7608 | pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
|
---|
7609 | pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
|
---|
7610 | /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
|
---|
7611 | }
|
---|
7612 |
|
---|
7613 | /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
|
---|
7614 | VMMRZCallRing3Disable(pVCpu);
|
---|
7615 | Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcExit)));
|
---|
7616 |
|
---|
7617 | /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
|
---|
7618 | if (pVCpu->hm.s.Event.fPending)
|
---|
7619 | {
|
---|
7620 | hmR0VmxPendingEventToTrpmTrap(pVCpu);
|
---|
7621 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
7622 | }
|
---|
7623 |
|
---|
7624 | /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
|
---|
7625 | hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
|
---|
7626 |
|
---|
7627 | /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
|
---|
7628 | and if we're injecting an event we should have a TRPM trap pending. */
|
---|
7629 | AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
|
---|
7630 | #ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a tripple fault in progress. */
|
---|
7631 | AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
|
---|
7632 | #endif
|
---|
7633 |
|
---|
7634 | /* Save guest state and restore host state bits. */
|
---|
7635 | int rc = hmR0VmxLeaveSession(pVCpu, pMixedCtx);
|
---|
7636 | AssertRCReturn(rc, rc);
|
---|
7637 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
7638 | /* Thread-context hooks are unregistered at this point!!! */
|
---|
7639 |
|
---|
7640 | /* Sync recompiler state. */
|
---|
7641 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
|
---|
7642 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
|
---|
7643 | | CPUM_CHANGED_LDTR
|
---|
7644 | | CPUM_CHANGED_GDTR
|
---|
7645 | | CPUM_CHANGED_IDTR
|
---|
7646 | | CPUM_CHANGED_TR
|
---|
7647 | | CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
7648 | Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
|
---|
7649 | if ( pVM->hm.s.fNestedPaging
|
---|
7650 | && CPUMIsGuestPagingEnabledEx(pMixedCtx))
|
---|
7651 | {
|
---|
7652 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
7653 | }
|
---|
7654 |
|
---|
7655 | Assert(!pVCpu->hm.s.fClearTrapFlag);
|
---|
7656 |
|
---|
7657 | /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
|
---|
7658 | if (rcExit != VINF_EM_RAW_INTERRUPT)
|
---|
7659 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
7660 |
|
---|
7661 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
|
---|
7662 |
|
---|
7663 | /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
|
---|
7664 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
7665 | VMMRZCallRing3Enable(pVCpu);
|
---|
7666 |
|
---|
7667 | return rc;
|
---|
7668 | }
|
---|
7669 |
|
---|
7670 |
|
---|
7671 | /**
|
---|
7672 | * VMMRZCallRing3() callback wrapper which saves the guest state before we
|
---|
7673 | * longjump to ring-3 and possibly get preempted.
|
---|
7674 | *
|
---|
7675 | * @returns VBox status code.
|
---|
7676 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7677 | * @param enmOperation The operation causing the ring-3 longjump.
|
---|
7678 | * @param pvUser Opaque pointer to the guest-CPU context. The data
|
---|
7679 | * may be out-of-sync. Make sure to update the required
|
---|
7680 | * fields before using them.
|
---|
7681 | */
|
---|
7682 | static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
|
---|
7683 | {
|
---|
7684 | if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
|
---|
7685 | {
|
---|
7686 | /*
|
---|
7687 | * !!! IMPORTANT !!!
|
---|
7688 | * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
|
---|
7689 | * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
|
---|
7690 | */
|
---|
7691 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
7692 | VMMRZCallRing3Disable(pVCpu);
|
---|
7693 | RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
|
---|
7694 | RTThreadPreemptDisable(&PreemptState);
|
---|
7695 |
|
---|
7696 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
7697 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
|
---|
7698 |
|
---|
7699 | #if HC_ARCH_BITS == 64
|
---|
7700 | /* Restore host-state bits that VT-x only restores partially. */
|
---|
7701 | if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
|
---|
7702 | && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
|
---|
7703 | VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
|
---|
7704 | pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
|
---|
7705 | #endif
|
---|
7706 | /* Restore the lazy host MSRs as we're leaving VT-x context. */
|
---|
7707 | if (pVCpu->hm.s.vmx.fLazyMsrs)
|
---|
7708 | hmR0VmxLazyRestoreHostMsrs(pVCpu);
|
---|
7709 |
|
---|
7710 | /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
|
---|
7711 | pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
|
---|
7712 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
7713 | if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
|
---|
7714 | {
|
---|
7715 | VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
7716 | pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
|
---|
7717 | }
|
---|
7718 |
|
---|
7719 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
7720 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
7721 | HMR0LeaveCpu(pVCpu);
|
---|
7722 | RTThreadPreemptRestore(&PreemptState);
|
---|
7723 | return VINF_SUCCESS;
|
---|
7724 | }
|
---|
7725 |
|
---|
7726 | Assert(pVCpu);
|
---|
7727 | Assert(pvUser);
|
---|
7728 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7729 | HMVMX_ASSERT_PREEMPT_SAFE();
|
---|
7730 |
|
---|
7731 | VMMRZCallRing3Disable(pVCpu);
|
---|
7732 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
7733 |
|
---|
7734 | Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
|
---|
7735 | enmOperation));
|
---|
7736 |
|
---|
7737 | int rc = hmR0VmxLongJmpToRing3(pVCpu, (PCPUMCTX)pvUser);
|
---|
7738 | AssertRCReturn(rc, rc);
|
---|
7739 |
|
---|
7740 | VMMRZCallRing3Enable(pVCpu);
|
---|
7741 | return VINF_SUCCESS;
|
---|
7742 | }
|
---|
7743 |
|
---|
7744 |
|
---|
7745 | /**
|
---|
7746 | * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
|
---|
7747 | * cause a VM-exit as soon as the guest is in a state to receive interrupts.
|
---|
7748 | *
|
---|
7749 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7750 | */
|
---|
7751 | DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
|
---|
7752 | {
|
---|
7753 | if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
|
---|
7754 | {
|
---|
7755 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
|
---|
7756 | {
|
---|
7757 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
|
---|
7758 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
7759 | AssertRC(rc);
|
---|
7760 | Log4(("Setup interrupt-window exiting\n"));
|
---|
7761 | }
|
---|
7762 | } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
|
---|
7763 | }
|
---|
7764 |
|
---|
7765 |
|
---|
7766 | /**
|
---|
7767 | * Clears the interrupt-window exiting control in the VMCS.
|
---|
7768 | *
|
---|
7769 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7770 | */
|
---|
7771 | DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
|
---|
7772 | {
|
---|
7773 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
|
---|
7774 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
|
---|
7775 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
7776 | AssertRC(rc);
|
---|
7777 | Log4(("Cleared interrupt-window exiting\n"));
|
---|
7778 | }
|
---|
7779 |
|
---|
7780 |
|
---|
7781 | /**
|
---|
7782 | * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
|
---|
7783 | * cause a VM-exit as soon as the guest is in a state to receive NMIs.
|
---|
7784 | *
|
---|
7785 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7786 | */
|
---|
7787 | DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
|
---|
7788 | {
|
---|
7789 | if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
|
---|
7790 | {
|
---|
7791 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
|
---|
7792 | {
|
---|
7793 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
|
---|
7794 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
7795 | AssertRC(rc);
|
---|
7796 | Log4(("Setup NMI-window exiting\n"));
|
---|
7797 | }
|
---|
7798 | } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
|
---|
7799 | }
|
---|
7800 |
|
---|
7801 |
|
---|
7802 | /**
|
---|
7803 | * Clears the NMI-window exiting control in the VMCS.
|
---|
7804 | *
|
---|
7805 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7806 | */
|
---|
7807 | DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
|
---|
7808 | {
|
---|
7809 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
|
---|
7810 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
|
---|
7811 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
7812 | AssertRC(rc);
|
---|
7813 | Log4(("Cleared NMI-window exiting\n"));
|
---|
7814 | }
|
---|
7815 |
|
---|
7816 |
|
---|
7817 | /**
|
---|
7818 | * Evaluates the event to be delivered to the guest and sets it as the pending
|
---|
7819 | * event.
|
---|
7820 | *
|
---|
7821 | * @returns The VT-x guest-interruptibility state.
|
---|
7822 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7823 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
7824 | * out-of-sync. Make sure to update the required fields
|
---|
7825 | * before using them.
|
---|
7826 | */
|
---|
7827 | static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
7828 | {
|
---|
7829 | /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
|
---|
7830 | uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
|
---|
7831 | bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
|
---|
7832 | bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
|
---|
7833 | bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
|
---|
7834 |
|
---|
7835 | Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
|
---|
7836 | Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
|
---|
7837 | Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
|
---|
7838 | Assert(!TRPMHasTrap(pVCpu));
|
---|
7839 |
|
---|
7840 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
|
---|
7841 | APICUpdatePendingInterrupts(pVCpu);
|
---|
7842 |
|
---|
7843 | /*
|
---|
7844 | * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
|
---|
7845 | * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
|
---|
7846 | */
|
---|
7847 | /** @todo SMI. SMIs take priority over NMIs. */
|
---|
7848 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
|
---|
7849 | {
|
---|
7850 | /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
|
---|
7851 | if ( !pVCpu->hm.s.Event.fPending
|
---|
7852 | && !fBlockNmi
|
---|
7853 | && !fBlockSti
|
---|
7854 | && !fBlockMovSS)
|
---|
7855 | {
|
---|
7856 | Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
|
---|
7857 | uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
7858 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
7859 |
|
---|
7860 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
7861 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
7862 | }
|
---|
7863 | else
|
---|
7864 | hmR0VmxSetNmiWindowExitVmcs(pVCpu);
|
---|
7865 | }
|
---|
7866 | /*
|
---|
7867 | * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
|
---|
7868 | * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
|
---|
7869 | */
|
---|
7870 | else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
|
---|
7871 | && !pVCpu->hm.s.fSingleInstruction)
|
---|
7872 | {
|
---|
7873 | Assert(!DBGFIsStepping(pVCpu));
|
---|
7874 | int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
7875 | AssertRC(rc);
|
---|
7876 | bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
|
---|
7877 | if ( !pVCpu->hm.s.Event.fPending
|
---|
7878 | && !fBlockInt
|
---|
7879 | && !fBlockSti
|
---|
7880 | && !fBlockMovSS)
|
---|
7881 | {
|
---|
7882 | uint8_t u8Interrupt;
|
---|
7883 | rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
7884 | if (RT_SUCCESS(rc))
|
---|
7885 | {
|
---|
7886 | Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
|
---|
7887 | uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
7888 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
7889 |
|
---|
7890 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
|
---|
7891 | }
|
---|
7892 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
7893 | {
|
---|
7894 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
7895 | hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
|
---|
7896 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
|
---|
7897 |
|
---|
7898 | /*
|
---|
7899 | * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
|
---|
7900 | * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
|
---|
7901 | * need to re-set this force-flag here.
|
---|
7902 | */
|
---|
7903 | }
|
---|
7904 | else
|
---|
7905 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
7906 | }
|
---|
7907 | else
|
---|
7908 | hmR0VmxSetIntWindowExitVmcs(pVCpu);
|
---|
7909 | }
|
---|
7910 |
|
---|
7911 | return uIntrState;
|
---|
7912 | }
|
---|
7913 |
|
---|
7914 |
|
---|
7915 | /**
|
---|
7916 | * Sets a pending-debug exception to be delivered to the guest if the guest is
|
---|
7917 | * single-stepping in the VMCS.
|
---|
7918 | *
|
---|
7919 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7920 | */
|
---|
7921 | DECLINLINE(void) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
|
---|
7922 | {
|
---|
7923 | Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS)); NOREF(pVCpu);
|
---|
7924 | int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
|
---|
7925 | AssertRC(rc);
|
---|
7926 | }
|
---|
7927 |
|
---|
7928 |
|
---|
7929 | /**
|
---|
7930 | * Injects any pending events into the guest if the guest is in a state to
|
---|
7931 | * receive them.
|
---|
7932 | *
|
---|
7933 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
7934 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7935 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
7936 | * out-of-sync. Make sure to update the required fields
|
---|
7937 | * before using them.
|
---|
7938 | * @param uIntrState The VT-x guest-interruptibility state.
|
---|
7939 | * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
|
---|
7940 | * return VINF_EM_DBG_STEPPED if the event was
|
---|
7941 | * dispatched directly.
|
---|
7942 | */
|
---|
7943 | static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t uIntrState, bool fStepping)
|
---|
7944 | {
|
---|
7945 | HMVMX_ASSERT_PREEMPT_SAFE();
|
---|
7946 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7947 |
|
---|
7948 | bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
|
---|
7949 | bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
|
---|
7950 |
|
---|
7951 | Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
|
---|
7952 | Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
|
---|
7953 | Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
|
---|
7954 | Assert(!TRPMHasTrap(pVCpu));
|
---|
7955 |
|
---|
7956 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
7957 | if (pVCpu->hm.s.Event.fPending)
|
---|
7958 | {
|
---|
7959 | /*
|
---|
7960 | * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
|
---|
7961 | * pending even while injecting an event and in this case, we want a VM-exit as soon as
|
---|
7962 | * the guest is ready for the next interrupt, see @bugref{6208#c45}.
|
---|
7963 | *
|
---|
7964 | * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
|
---|
7965 | */
|
---|
7966 | uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
|
---|
7967 | #ifdef VBOX_STRICT
|
---|
7968 | if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
|
---|
7969 | {
|
---|
7970 | bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
|
---|
7971 | Assert(!fBlockInt);
|
---|
7972 | Assert(!fBlockSti);
|
---|
7973 | Assert(!fBlockMovSS);
|
---|
7974 | }
|
---|
7975 | else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
|
---|
7976 | {
|
---|
7977 | bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
|
---|
7978 | Assert(!fBlockSti);
|
---|
7979 | Assert(!fBlockMovSS);
|
---|
7980 | Assert(!fBlockNmi);
|
---|
7981 | }
|
---|
7982 | #endif
|
---|
7983 | Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
|
---|
7984 | (uint8_t)uIntType));
|
---|
7985 | rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
|
---|
7986 | pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress,
|
---|
7987 | fStepping, &uIntrState);
|
---|
7988 | AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
|
---|
7989 |
|
---|
7990 | /* Update the interruptibility-state as it could have been changed by
|
---|
7991 | hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
|
---|
7992 | fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
|
---|
7993 | fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
|
---|
7994 |
|
---|
7995 | if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
|
---|
7996 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
|
---|
7997 | else
|
---|
7998 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
|
---|
7999 | }
|
---|
8000 |
|
---|
8001 | /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
|
---|
8002 | if ( fBlockSti
|
---|
8003 | || fBlockMovSS)
|
---|
8004 | {
|
---|
8005 | if (!pVCpu->hm.s.fSingleInstruction)
|
---|
8006 | {
|
---|
8007 | /*
|
---|
8008 | * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
|
---|
8009 | * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
|
---|
8010 | * See Intel spec. 27.3.4 "Saving Non-Register State".
|
---|
8011 | */
|
---|
8012 | Assert(!DBGFIsStepping(pVCpu));
|
---|
8013 | int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
8014 | AssertRCReturn(rc2, rc2);
|
---|
8015 | if (pMixedCtx->eflags.Bits.u1TF)
|
---|
8016 | hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
|
---|
8017 | }
|
---|
8018 | else if (pMixedCtx->eflags.Bits.u1TF)
|
---|
8019 | {
|
---|
8020 | /*
|
---|
8021 | * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
|
---|
8022 | * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
|
---|
8023 | */
|
---|
8024 | Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
|
---|
8025 | uIntrState = 0;
|
---|
8026 | }
|
---|
8027 | }
|
---|
8028 |
|
---|
8029 | /*
|
---|
8030 | * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
|
---|
8031 | * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
|
---|
8032 | */
|
---|
8033 | int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
|
---|
8034 | AssertRC(rc2);
|
---|
8035 |
|
---|
8036 | Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
|
---|
8037 | NOREF(fBlockMovSS); NOREF(fBlockSti);
|
---|
8038 | return rcStrict;
|
---|
8039 | }
|
---|
8040 |
|
---|
8041 |
|
---|
8042 | /**
|
---|
8043 | * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
|
---|
8044 | *
|
---|
8045 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8046 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8047 | * out-of-sync. Make sure to update the required fields
|
---|
8048 | * before using them.
|
---|
8049 | */
|
---|
8050 | DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
8051 | {
|
---|
8052 | NOREF(pMixedCtx);
|
---|
8053 | uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
8054 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
8055 | }
|
---|
8056 |
|
---|
8057 |
|
---|
8058 | /**
|
---|
8059 | * Injects a double-fault (\#DF) exception into the VM.
|
---|
8060 | *
|
---|
8061 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8062 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8063 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8064 | * out-of-sync. Make sure to update the required fields
|
---|
8065 | * before using them.
|
---|
8066 | * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
|
---|
8067 | * and should return VINF_EM_DBG_STEPPED if the event
|
---|
8068 | * is injected directly (register modified by us, not
|
---|
8069 | * by hardware on VM-entry).
|
---|
8070 | * @param puIntrState Pointer to the current guest interruptibility-state.
|
---|
8071 | * This interruptibility-state will be updated if
|
---|
8072 | * necessary. This cannot not be NULL.
|
---|
8073 | */
|
---|
8074 | DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
|
---|
8075 | {
|
---|
8076 | uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
8077 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
8078 | u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
8079 | return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
|
---|
8080 | fStepping, puIntrState);
|
---|
8081 | }
|
---|
8082 |
|
---|
8083 |
|
---|
8084 | /**
|
---|
8085 | * Sets a debug (\#DB) exception as pending-for-injection into the VM.
|
---|
8086 | *
|
---|
8087 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8088 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8089 | * out-of-sync. Make sure to update the required fields
|
---|
8090 | * before using them.
|
---|
8091 | */
|
---|
8092 | DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
8093 | {
|
---|
8094 | NOREF(pMixedCtx);
|
---|
8095 | uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
8096 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
8097 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
8098 | }
|
---|
8099 |
|
---|
8100 |
|
---|
8101 | /**
|
---|
8102 | * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
|
---|
8103 | *
|
---|
8104 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8105 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8106 | * out-of-sync. Make sure to update the required fields
|
---|
8107 | * before using them.
|
---|
8108 | * @param cbInstr The value of RIP that is to be pushed on the guest
|
---|
8109 | * stack.
|
---|
8110 | */
|
---|
8111 | DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
|
---|
8112 | {
|
---|
8113 | NOREF(pMixedCtx);
|
---|
8114 | uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
8115 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
8116 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
8117 | }
|
---|
8118 |
|
---|
8119 |
|
---|
8120 | /**
|
---|
8121 | * Injects a general-protection (\#GP) fault into the VM.
|
---|
8122 | *
|
---|
8123 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8124 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8125 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8126 | * out-of-sync. Make sure to update the required fields
|
---|
8127 | * before using them.
|
---|
8128 | * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
|
---|
8129 | * mode, i.e. in real-mode it's not valid).
|
---|
8130 | * @param u32ErrorCode The error code associated with the \#GP.
|
---|
8131 | * @param fStepping Whether we're running in
|
---|
8132 | * hmR0VmxRunGuestCodeStep() and should return
|
---|
8133 | * VINF_EM_DBG_STEPPED if the event is injected
|
---|
8134 | * directly (register modified by us, not by
|
---|
8135 | * hardware on VM-entry).
|
---|
8136 | * @param puIntrState Pointer to the current guest interruptibility-state.
|
---|
8137 | * This interruptibility-state will be updated if
|
---|
8138 | * necessary. This cannot not be NULL.
|
---|
8139 | */
|
---|
8140 | DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
|
---|
8141 | bool fStepping, uint32_t *puIntrState)
|
---|
8142 | {
|
---|
8143 | uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
8144 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
8145 | if (fErrorCodeValid)
|
---|
8146 | u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
8147 | return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
|
---|
8148 | fStepping, puIntrState);
|
---|
8149 | }
|
---|
8150 |
|
---|
8151 |
|
---|
8152 | #if 0 /* unused */
|
---|
8153 | /**
|
---|
8154 | * Sets a general-protection (\#GP) exception as pending-for-injection into the
|
---|
8155 | * VM.
|
---|
8156 | *
|
---|
8157 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8158 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8159 | * out-of-sync. Make sure to update the required fields
|
---|
8160 | * before using them.
|
---|
8161 | * @param u32ErrorCode The error code associated with the \#GP.
|
---|
8162 | */
|
---|
8163 | DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
|
---|
8164 | {
|
---|
8165 | NOREF(pMixedCtx);
|
---|
8166 | uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
8167 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
8168 | u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
8169 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
8170 | }
|
---|
8171 | #endif /* unused */
|
---|
8172 |
|
---|
8173 |
|
---|
8174 | /**
|
---|
8175 | * Sets a software interrupt (INTn) as pending-for-injection into the VM.
|
---|
8176 | *
|
---|
8177 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8178 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8179 | * out-of-sync. Make sure to update the required fields
|
---|
8180 | * before using them.
|
---|
8181 | * @param uVector The software interrupt vector number.
|
---|
8182 | * @param cbInstr The value of RIP that is to be pushed on the guest
|
---|
8183 | * stack.
|
---|
8184 | */
|
---|
8185 | DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
|
---|
8186 | {
|
---|
8187 | NOREF(pMixedCtx);
|
---|
8188 | uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
8189 | if ( uVector == X86_XCPT_BP
|
---|
8190 | || uVector == X86_XCPT_OF)
|
---|
8191 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
8192 | else
|
---|
8193 | u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
8194 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
8195 | }
|
---|
8196 |
|
---|
8197 |
|
---|
8198 | /**
|
---|
8199 | * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
|
---|
8200 | * stack.
|
---|
8201 | *
|
---|
8202 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8203 | * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
|
---|
8204 | * @param pVM The cross context VM structure.
|
---|
8205 | * @param pMixedCtx Pointer to the guest-CPU context.
|
---|
8206 | * @param uValue The value to push to the guest stack.
|
---|
8207 | */
|
---|
8208 | DECLINLINE(VBOXSTRICTRC) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
|
---|
8209 | {
|
---|
8210 | /*
|
---|
8211 | * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
|
---|
8212 | * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
|
---|
8213 | * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
|
---|
8214 | */
|
---|
8215 | if (pMixedCtx->sp == 1)
|
---|
8216 | return VINF_EM_RESET;
|
---|
8217 | pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
|
---|
8218 | int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
|
---|
8219 | AssertRC(rc);
|
---|
8220 | return rc;
|
---|
8221 | }
|
---|
8222 |
|
---|
8223 |
|
---|
8224 | /**
|
---|
8225 | * Injects an event into the guest upon VM-entry by updating the relevant fields
|
---|
8226 | * in the VM-entry area in the VMCS.
|
---|
8227 | *
|
---|
8228 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8229 | * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
|
---|
8230 | * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
|
---|
8231 | *
|
---|
8232 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8233 | * @param pMixedCtx Pointer to the guest-CPU context. The data may
|
---|
8234 | * be out-of-sync. Make sure to update the required
|
---|
8235 | * fields before using them.
|
---|
8236 | * @param u64IntInfo The VM-entry interruption-information field.
|
---|
8237 | * @param cbInstr The VM-entry instruction length in bytes (for
|
---|
8238 | * software interrupts, exceptions and privileged
|
---|
8239 | * software exceptions).
|
---|
8240 | * @param u32ErrCode The VM-entry exception error code.
|
---|
8241 | * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
|
---|
8242 | * @param puIntrState Pointer to the current guest interruptibility-state.
|
---|
8243 | * This interruptibility-state will be updated if
|
---|
8244 | * necessary. This cannot not be NULL.
|
---|
8245 | * @param fStepping Whether we're running in
|
---|
8246 | * hmR0VmxRunGuestCodeStep() and should return
|
---|
8247 | * VINF_EM_DBG_STEPPED if the event is injected
|
---|
8248 | * directly (register modified by us, not by
|
---|
8249 | * hardware on VM-entry).
|
---|
8250 | *
|
---|
8251 | * @remarks Requires CR0!
|
---|
8252 | */
|
---|
8253 | static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
|
---|
8254 | uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping,
|
---|
8255 | uint32_t *puIntrState)
|
---|
8256 | {
|
---|
8257 | /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
|
---|
8258 | AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
|
---|
8259 | Assert(puIntrState);
|
---|
8260 | uint32_t u32IntInfo = (uint32_t)u64IntInfo;
|
---|
8261 |
|
---|
8262 | uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
|
---|
8263 | uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
|
---|
8264 |
|
---|
8265 | #ifdef VBOX_STRICT
|
---|
8266 | /*
|
---|
8267 | * Validate the error-code-valid bit for hardware exceptions.
|
---|
8268 | * No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling"
|
---|
8269 | */
|
---|
8270 | if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
|
---|
8271 | && !CPUMIsGuestInRealModeEx(pMixedCtx))
|
---|
8272 | {
|
---|
8273 | switch (uVector)
|
---|
8274 | {
|
---|
8275 | case X86_XCPT_PF:
|
---|
8276 | case X86_XCPT_DF:
|
---|
8277 | case X86_XCPT_TS:
|
---|
8278 | case X86_XCPT_NP:
|
---|
8279 | case X86_XCPT_SS:
|
---|
8280 | case X86_XCPT_GP:
|
---|
8281 | case X86_XCPT_AC:
|
---|
8282 | AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
|
---|
8283 | ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
|
---|
8284 | RT_FALL_THRU();
|
---|
8285 | default:
|
---|
8286 | break;
|
---|
8287 | }
|
---|
8288 | }
|
---|
8289 | #endif
|
---|
8290 |
|
---|
8291 | /* Cannot inject an NMI when block-by-MOV SS is in effect. */
|
---|
8292 | Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
|
---|
8293 | || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
|
---|
8294 |
|
---|
8295 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
|
---|
8296 |
|
---|
8297 | /* We require CR0 to check if the guest is in real-mode. */
|
---|
8298 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
8299 | AssertRCReturn(rc, rc);
|
---|
8300 |
|
---|
8301 | /*
|
---|
8302 | * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
|
---|
8303 | * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
|
---|
8304 | * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
|
---|
8305 | * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
|
---|
8306 | */
|
---|
8307 | if (CPUMIsGuestInRealModeEx(pMixedCtx))
|
---|
8308 | {
|
---|
8309 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8310 | if (!pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
8311 | {
|
---|
8312 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
8313 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
8314 |
|
---|
8315 | /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
|
---|
8316 | rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
8317 | rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
|
---|
8318 | rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
8319 | AssertRCReturn(rc, rc);
|
---|
8320 | Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
|
---|
8321 |
|
---|
8322 | /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
|
---|
8323 | size_t const cbIdtEntry = sizeof(X86IDTR16);
|
---|
8324 | if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
|
---|
8325 | {
|
---|
8326 | /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
|
---|
8327 | if (uVector == X86_XCPT_DF)
|
---|
8328 | return VINF_EM_RESET;
|
---|
8329 |
|
---|
8330 | /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
|
---|
8331 | if (uVector == X86_XCPT_GP)
|
---|
8332 | return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
|
---|
8333 |
|
---|
8334 | /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
|
---|
8335 | /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
|
---|
8336 | return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
|
---|
8337 | fStepping, puIntrState);
|
---|
8338 | }
|
---|
8339 |
|
---|
8340 | /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
|
---|
8341 | uint16_t uGuestIp = pMixedCtx->ip;
|
---|
8342 | if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
|
---|
8343 | {
|
---|
8344 | Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
|
---|
8345 | /* #BP and #OF are both benign traps, we need to resume the next instruction. */
|
---|
8346 | uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
|
---|
8347 | }
|
---|
8348 | else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
|
---|
8349 | uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
|
---|
8350 |
|
---|
8351 | /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
|
---|
8352 | X86IDTR16 IdtEntry;
|
---|
8353 | RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
|
---|
8354 | rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
|
---|
8355 | AssertRCReturn(rc, rc);
|
---|
8356 |
|
---|
8357 | /* Construct the stack frame for the interrupt/exception handler. */
|
---|
8358 | VBOXSTRICTRC rcStrict;
|
---|
8359 | rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
|
---|
8360 | if (rcStrict == VINF_SUCCESS)
|
---|
8361 | rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
|
---|
8362 | if (rcStrict == VINF_SUCCESS)
|
---|
8363 | rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
|
---|
8364 |
|
---|
8365 | /* Clear the required eflag bits and jump to the interrupt/exception handler. */
|
---|
8366 | if (rcStrict == VINF_SUCCESS)
|
---|
8367 | {
|
---|
8368 | pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
|
---|
8369 | pMixedCtx->rip = IdtEntry.offSel;
|
---|
8370 | pMixedCtx->cs.Sel = IdtEntry.uSel;
|
---|
8371 | pMixedCtx->cs.ValidSel = IdtEntry.uSel;
|
---|
8372 | pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
|
---|
8373 | if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
|
---|
8374 | && uVector == X86_XCPT_PF)
|
---|
8375 | pMixedCtx->cr2 = GCPtrFaultAddress;
|
---|
8376 |
|
---|
8377 | /* If any other guest-state bits are changed here, make sure to update
|
---|
8378 | hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
|
---|
8379 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
|
---|
8380 | | HM_CHANGED_GUEST_RIP
|
---|
8381 | | HM_CHANGED_GUEST_RFLAGS
|
---|
8382 | | HM_CHANGED_GUEST_RSP);
|
---|
8383 |
|
---|
8384 | /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
|
---|
8385 | if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
|
---|
8386 | {
|
---|
8387 | Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
|
---|
8388 | && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
|
---|
8389 | Log4(("Clearing inhibition due to STI.\n"));
|
---|
8390 | *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
|
---|
8391 | }
|
---|
8392 | Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
|
---|
8393 | u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
|
---|
8394 |
|
---|
8395 | /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
|
---|
8396 | it, if we are returning to ring-3 before executing guest code. */
|
---|
8397 | pVCpu->hm.s.Event.fPending = false;
|
---|
8398 |
|
---|
8399 | /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
|
---|
8400 | if (fStepping)
|
---|
8401 | rcStrict = VINF_EM_DBG_STEPPED;
|
---|
8402 | }
|
---|
8403 | AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
|
---|
8404 | ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8405 | return rcStrict;
|
---|
8406 | }
|
---|
8407 |
|
---|
8408 | /*
|
---|
8409 | * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
|
---|
8410 | * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
|
---|
8411 | */
|
---|
8412 | u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
8413 | }
|
---|
8414 |
|
---|
8415 | /* Validate. */
|
---|
8416 | Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
|
---|
8417 | Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
|
---|
8418 | Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
|
---|
8419 |
|
---|
8420 | /* Inject. */
|
---|
8421 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
|
---|
8422 | if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
|
---|
8423 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
|
---|
8424 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
|
---|
8425 |
|
---|
8426 | if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
|
---|
8427 | && uVector == X86_XCPT_PF)
|
---|
8428 | pMixedCtx->cr2 = GCPtrFaultAddress;
|
---|
8429 |
|
---|
8430 | Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
|
---|
8431 | u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
|
---|
8432 |
|
---|
8433 | AssertRCReturn(rc, rc);
|
---|
8434 | return VINF_SUCCESS;
|
---|
8435 | }
|
---|
8436 |
|
---|
8437 |
|
---|
8438 | /**
|
---|
8439 | * Clears the interrupt-window exiting control in the VMCS and if necessary
|
---|
8440 | * clears the current event in the VMCS as well.
|
---|
8441 | *
|
---|
8442 | * @returns VBox status code.
|
---|
8443 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8444 | *
|
---|
8445 | * @remarks Use this function only to clear events that have not yet been
|
---|
8446 | * delivered to the guest but are injected in the VMCS!
|
---|
8447 | * @remarks No-long-jump zone!!!
|
---|
8448 | */
|
---|
8449 | static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
|
---|
8450 | {
|
---|
8451 | Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
|
---|
8452 |
|
---|
8453 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
|
---|
8454 | hmR0VmxClearIntWindowExitVmcs(pVCpu);
|
---|
8455 |
|
---|
8456 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
|
---|
8457 | hmR0VmxClearNmiWindowExitVmcs(pVCpu);
|
---|
8458 | }
|
---|
8459 |
|
---|
8460 |
|
---|
8461 | /**
|
---|
8462 | * Enters the VT-x session.
|
---|
8463 | *
|
---|
8464 | * @returns VBox status code.
|
---|
8465 | * @param pVM The cross context VM structure.
|
---|
8466 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8467 | * @param pCpu Pointer to the CPU info struct.
|
---|
8468 | */
|
---|
8469 | VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
|
---|
8470 | {
|
---|
8471 | AssertPtr(pVM);
|
---|
8472 | AssertPtr(pVCpu);
|
---|
8473 | Assert(pVM->hm.s.vmx.fSupported);
|
---|
8474 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8475 | NOREF(pCpu); NOREF(pVM);
|
---|
8476 |
|
---|
8477 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
8478 | Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
|
---|
8479 |
|
---|
8480 | #ifdef VBOX_STRICT
|
---|
8481 | /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
|
---|
8482 | RTCCUINTREG uHostCR4 = ASMGetCR4();
|
---|
8483 | if (!(uHostCR4 & X86_CR4_VMXE))
|
---|
8484 | {
|
---|
8485 | LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
|
---|
8486 | return VERR_VMX_X86_CR4_VMXE_CLEARED;
|
---|
8487 | }
|
---|
8488 | #endif
|
---|
8489 |
|
---|
8490 | /*
|
---|
8491 | * Load the VCPU's VMCS as the current (and active) one.
|
---|
8492 | */
|
---|
8493 | Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
|
---|
8494 | int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
8495 | if (RT_FAILURE(rc))
|
---|
8496 | return rc;
|
---|
8497 |
|
---|
8498 | pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
|
---|
8499 | pVCpu->hm.s.fLeaveDone = false;
|
---|
8500 | Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
|
---|
8501 |
|
---|
8502 | return VINF_SUCCESS;
|
---|
8503 | }
|
---|
8504 |
|
---|
8505 |
|
---|
8506 | /**
|
---|
8507 | * The thread-context callback (only on platforms which support it).
|
---|
8508 | *
|
---|
8509 | * @param enmEvent The thread-context event.
|
---|
8510 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8511 | * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
|
---|
8512 | * @thread EMT(pVCpu)
|
---|
8513 | */
|
---|
8514 | VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
|
---|
8515 | {
|
---|
8516 | NOREF(fGlobalInit);
|
---|
8517 |
|
---|
8518 | switch (enmEvent)
|
---|
8519 | {
|
---|
8520 | case RTTHREADCTXEVENT_OUT:
|
---|
8521 | {
|
---|
8522 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8523 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
8524 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
8525 |
|
---|
8526 | PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
8527 |
|
---|
8528 | /* No longjmps (logger flushes, locks) in this fragile context. */
|
---|
8529 | VMMRZCallRing3Disable(pVCpu);
|
---|
8530 | Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
|
---|
8531 |
|
---|
8532 | /*
|
---|
8533 | * Restore host-state (FPU, debug etc.)
|
---|
8534 | */
|
---|
8535 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
8536 | {
|
---|
8537 | /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
|
---|
8538 | holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
|
---|
8539 | hmR0VmxLeave(pVCpu, pMixedCtx, false /* fSaveGuestState */);
|
---|
8540 | pVCpu->hm.s.fLeaveDone = true;
|
---|
8541 | }
|
---|
8542 |
|
---|
8543 | /* Leave HM context, takes care of local init (term). */
|
---|
8544 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
8545 | AssertRC(rc); NOREF(rc);
|
---|
8546 |
|
---|
8547 | /* Restore longjmp state. */
|
---|
8548 | VMMRZCallRing3Enable(pVCpu);
|
---|
8549 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
|
---|
8550 | break;
|
---|
8551 | }
|
---|
8552 |
|
---|
8553 | case RTTHREADCTXEVENT_IN:
|
---|
8554 | {
|
---|
8555 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8556 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
8557 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
8558 |
|
---|
8559 | /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
|
---|
8560 | VMMRZCallRing3Disable(pVCpu);
|
---|
8561 | Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
|
---|
8562 |
|
---|
8563 | /* Initialize the bare minimum state required for HM. This takes care of
|
---|
8564 | initializing VT-x if necessary (onlined CPUs, local init etc.) */
|
---|
8565 | int rc = HMR0EnterCpu(pVCpu);
|
---|
8566 | AssertRC(rc);
|
---|
8567 | Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
|
---|
8568 |
|
---|
8569 | /* Load the active VMCS as the current one. */
|
---|
8570 | if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
|
---|
8571 | {
|
---|
8572 | rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
8573 | AssertRC(rc); NOREF(rc);
|
---|
8574 | pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
|
---|
8575 | Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
|
---|
8576 | }
|
---|
8577 | pVCpu->hm.s.fLeaveDone = false;
|
---|
8578 |
|
---|
8579 | /* Restore longjmp state. */
|
---|
8580 | VMMRZCallRing3Enable(pVCpu);
|
---|
8581 | break;
|
---|
8582 | }
|
---|
8583 |
|
---|
8584 | default:
|
---|
8585 | break;
|
---|
8586 | }
|
---|
8587 | }
|
---|
8588 |
|
---|
8589 |
|
---|
8590 | /**
|
---|
8591 | * Saves the host state in the VMCS host-state.
|
---|
8592 | * Sets up the VM-exit MSR-load area.
|
---|
8593 | *
|
---|
8594 | * The CPU state will be loaded from these fields on every successful VM-exit.
|
---|
8595 | *
|
---|
8596 | * @returns VBox status code.
|
---|
8597 | * @param pVM The cross context VM structure.
|
---|
8598 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8599 | *
|
---|
8600 | * @remarks No-long-jump zone!!!
|
---|
8601 | */
|
---|
8602 | static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
|
---|
8603 | {
|
---|
8604 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8605 |
|
---|
8606 | int rc = VINF_SUCCESS;
|
---|
8607 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
|
---|
8608 | {
|
---|
8609 | rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
|
---|
8610 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8611 |
|
---|
8612 | rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
|
---|
8613 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8614 |
|
---|
8615 | rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
|
---|
8616 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8617 |
|
---|
8618 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
|
---|
8619 | }
|
---|
8620 | return rc;
|
---|
8621 | }
|
---|
8622 |
|
---|
8623 |
|
---|
8624 | /**
|
---|
8625 | * Saves the host state in the VMCS host-state.
|
---|
8626 | *
|
---|
8627 | * @returns VBox status code.
|
---|
8628 | * @param pVM The cross context VM structure.
|
---|
8629 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8630 | *
|
---|
8631 | * @remarks No-long-jump zone!!!
|
---|
8632 | */
|
---|
8633 | VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
|
---|
8634 | {
|
---|
8635 | AssertPtr(pVM);
|
---|
8636 | AssertPtr(pVCpu);
|
---|
8637 |
|
---|
8638 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
8639 |
|
---|
8640 | /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
|
---|
8641 | and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
|
---|
8642 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8643 | return hmR0VmxSaveHostState(pVM, pVCpu);
|
---|
8644 | }
|
---|
8645 |
|
---|
8646 |
|
---|
8647 | /**
|
---|
8648 | * Loads the guest state into the VMCS guest-state area.
|
---|
8649 | *
|
---|
8650 | * The will typically be done before VM-entry when the guest-CPU state and the
|
---|
8651 | * VMCS state may potentially be out of sync.
|
---|
8652 | *
|
---|
8653 | * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
|
---|
8654 | * VM-entry controls.
|
---|
8655 | * Sets up the appropriate VMX non-root function to execute guest code based on
|
---|
8656 | * the guest CPU mode.
|
---|
8657 | *
|
---|
8658 | * @returns VBox strict status code.
|
---|
8659 | * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
|
---|
8660 | * without unrestricted guest access and the VMMDev is not presently
|
---|
8661 | * mapped (e.g. EFI32).
|
---|
8662 | *
|
---|
8663 | * @param pVM The cross context VM structure.
|
---|
8664 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8665 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8666 | * out-of-sync. Make sure to update the required fields
|
---|
8667 | * before using them.
|
---|
8668 | *
|
---|
8669 | * @remarks No-long-jump zone!!!
|
---|
8670 | */
|
---|
8671 | static VBOXSTRICTRC hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
8672 | {
|
---|
8673 | AssertPtr(pVM);
|
---|
8674 | AssertPtr(pVCpu);
|
---|
8675 | AssertPtr(pMixedCtx);
|
---|
8676 | HMVMX_ASSERT_PREEMPT_SAFE();
|
---|
8677 |
|
---|
8678 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
8679 |
|
---|
8680 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
8681 |
|
---|
8682 | /* Determine real-on-v86 mode. */
|
---|
8683 | pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
|
---|
8684 | if ( !pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
8685 | && CPUMIsGuestInRealModeEx(pMixedCtx))
|
---|
8686 | {
|
---|
8687 | pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
|
---|
8688 | }
|
---|
8689 |
|
---|
8690 | /*
|
---|
8691 | * Load the guest-state into the VMCS.
|
---|
8692 | * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
|
---|
8693 | * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
|
---|
8694 | */
|
---|
8695 | int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
|
---|
8696 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8697 |
|
---|
8698 | /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
|
---|
8699 | rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
|
---|
8700 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8701 |
|
---|
8702 | /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
|
---|
8703 | rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
|
---|
8704 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8705 |
|
---|
8706 | rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
|
---|
8707 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8708 |
|
---|
8709 | VBOXSTRICTRC rcStrict = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
|
---|
8710 | if (rcStrict == VINF_SUCCESS)
|
---|
8711 | { /* likely */ }
|
---|
8712 | else
|
---|
8713 | {
|
---|
8714 | Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
|
---|
8715 | return rcStrict;
|
---|
8716 | }
|
---|
8717 |
|
---|
8718 | /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
|
---|
8719 | rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
8720 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8721 |
|
---|
8722 | /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
|
---|
8723 | determine we don't have to swap EFER after all. */
|
---|
8724 | rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
|
---|
8725 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8726 |
|
---|
8727 | rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
|
---|
8728 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8729 |
|
---|
8730 | rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
|
---|
8731 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8732 |
|
---|
8733 | /*
|
---|
8734 | * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
|
---|
8735 | * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
|
---|
8736 | */
|
---|
8737 | rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
8738 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
8739 |
|
---|
8740 | /* Clear any unused and reserved bits. */
|
---|
8741 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
|
---|
8742 |
|
---|
8743 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
8744 | return rc;
|
---|
8745 | }
|
---|
8746 |
|
---|
8747 |
|
---|
8748 | /**
|
---|
8749 | * Loads the state shared between the host and guest into the VMCS.
|
---|
8750 | *
|
---|
8751 | * @param pVM The cross context VM structure.
|
---|
8752 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8753 | * @param pCtx Pointer to the guest-CPU context.
|
---|
8754 | *
|
---|
8755 | * @remarks No-long-jump zone!!!
|
---|
8756 | */
|
---|
8757 | static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
8758 | {
|
---|
8759 | NOREF(pVM);
|
---|
8760 |
|
---|
8761 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8762 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
8763 |
|
---|
8764 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
|
---|
8765 | {
|
---|
8766 | int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
|
---|
8767 | AssertRC(rc);
|
---|
8768 | }
|
---|
8769 |
|
---|
8770 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
|
---|
8771 | {
|
---|
8772 | int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
|
---|
8773 | AssertRC(rc);
|
---|
8774 |
|
---|
8775 | /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
|
---|
8776 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
|
---|
8777 | {
|
---|
8778 | rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
|
---|
8779 | AssertRC(rc);
|
---|
8780 | }
|
---|
8781 | }
|
---|
8782 |
|
---|
8783 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
|
---|
8784 | {
|
---|
8785 | hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
|
---|
8786 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
|
---|
8787 | }
|
---|
8788 |
|
---|
8789 | /* Loading CR0, debug state might have changed intercepts, update VMCS. */
|
---|
8790 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
|
---|
8791 | {
|
---|
8792 | Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
|
---|
8793 | Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
|
---|
8794 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
|
---|
8795 | AssertRC(rc);
|
---|
8796 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
|
---|
8797 | }
|
---|
8798 |
|
---|
8799 | AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
8800 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
8801 | }
|
---|
8802 |
|
---|
8803 |
|
---|
8804 | /**
|
---|
8805 | * Worker for loading the guest-state bits in the inner VT-x execution loop.
|
---|
8806 | *
|
---|
8807 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8808 | * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
|
---|
8809 | * without unrestricted guest access and the VMMDev is not presently
|
---|
8810 | * mapped (e.g. EFI32).
|
---|
8811 | *
|
---|
8812 | * @param pVM The cross context VM structure.
|
---|
8813 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8814 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8815 | * out-of-sync. Make sure to update the required fields
|
---|
8816 | * before using them.
|
---|
8817 | *
|
---|
8818 | * @remarks No-long-jump zone!!!
|
---|
8819 | */
|
---|
8820 | static VBOXSTRICTRC hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
8821 | {
|
---|
8822 | HMVMX_ASSERT_PREEMPT_SAFE();
|
---|
8823 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
8824 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
8825 |
|
---|
8826 | Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
8827 | #ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
|
---|
8828 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
8829 | #endif
|
---|
8830 |
|
---|
8831 | /*
|
---|
8832 | * RIP is what changes the most often and hence if it's the only bit needing to be
|
---|
8833 | * updated, we shall handle it early for performance reasons.
|
---|
8834 | */
|
---|
8835 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
8836 | if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
|
---|
8837 | {
|
---|
8838 | rcStrict = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
|
---|
8839 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8840 | { /* likely */}
|
---|
8841 | else
|
---|
8842 | {
|
---|
8843 | AssertMsgFailedReturn(("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestRip failed! rc=%Rrc\n",
|
---|
8844 | VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
|
---|
8845 | }
|
---|
8846 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
|
---|
8847 | }
|
---|
8848 | else if (HMCPU_CF_VALUE(pVCpu))
|
---|
8849 | {
|
---|
8850 | rcStrict = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
|
---|
8851 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8852 | { /* likely */}
|
---|
8853 | else
|
---|
8854 | {
|
---|
8855 | AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM,
|
---|
8856 | ("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestState failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8857 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
8858 | return rcStrict;
|
---|
8859 | }
|
---|
8860 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
|
---|
8861 | }
|
---|
8862 |
|
---|
8863 | /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
|
---|
8864 | AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
|
---|
8865 | || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
8866 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
8867 | return rcStrict;
|
---|
8868 | }
|
---|
8869 |
|
---|
8870 |
|
---|
8871 | /**
|
---|
8872 | * Does the preparations before executing guest code in VT-x.
|
---|
8873 | *
|
---|
8874 | * This may cause longjmps to ring-3 and may even result in rescheduling to the
|
---|
8875 | * recompiler/IEM. We must be cautious what we do here regarding committing
|
---|
8876 | * guest-state information into the VMCS assuming we assuredly execute the
|
---|
8877 | * guest in VT-x mode.
|
---|
8878 | *
|
---|
8879 | * If we fall back to the recompiler/IEM after updating the VMCS and clearing
|
---|
8880 | * the common-state (TRPM/forceflags), we must undo those changes so that the
|
---|
8881 | * recompiler/IEM can (and should) use them when it resumes guest execution.
|
---|
8882 | * Otherwise such operations must be done when we can no longer exit to ring-3.
|
---|
8883 | *
|
---|
8884 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8885 | * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
|
---|
8886 | * have been disabled.
|
---|
8887 | * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
|
---|
8888 | * double-fault into the guest.
|
---|
8889 | * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
|
---|
8890 | * dispatched directly.
|
---|
8891 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
8892 | *
|
---|
8893 | * @param pVM The cross context VM structure.
|
---|
8894 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8895 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
8896 | * out-of-sync. Make sure to update the required fields
|
---|
8897 | * before using them.
|
---|
8898 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
8899 | * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
|
---|
8900 | * us ignore some of the reasons for returning to
|
---|
8901 | * ring-3, and return VINF_EM_DBG_STEPPED if event
|
---|
8902 | * dispatching took place.
|
---|
8903 | */
|
---|
8904 | static VBOXSTRICTRC hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
|
---|
8905 | {
|
---|
8906 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
8907 |
|
---|
8908 | #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
|
---|
8909 | PGMRZDynMapFlushAutoSet(pVCpu);
|
---|
8910 | #endif
|
---|
8911 |
|
---|
8912 | /* Check force flag actions that might require us to go back to ring-3. */
|
---|
8913 | VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx, fStepping);
|
---|
8914 | if (rcStrict == VINF_SUCCESS)
|
---|
8915 | { /* FFs doesn't get set all the time. */ }
|
---|
8916 | else
|
---|
8917 | return rcStrict;
|
---|
8918 |
|
---|
8919 | #ifndef IEM_VERIFICATION_MODE_FULL
|
---|
8920 | /*
|
---|
8921 | * Setup the virtualized-APIC accesses.
|
---|
8922 | *
|
---|
8923 | * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
|
---|
8924 | * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
|
---|
8925 | *
|
---|
8926 | * This is the reason we do it here and not in hmR0VmxLoadGuestState().
|
---|
8927 | */
|
---|
8928 | if ( !pVCpu->hm.s.vmx.u64MsrApicBase
|
---|
8929 | && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
|
---|
8930 | && PDMHasApic(pVM))
|
---|
8931 | {
|
---|
8932 | uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
8933 | Assert(u64MsrApicBase);
|
---|
8934 | Assert(pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
8935 |
|
---|
8936 | RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
|
---|
8937 |
|
---|
8938 | /* Unalias any existing mapping. */
|
---|
8939 | int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
|
---|
8940 | AssertRCReturn(rc, rc);
|
---|
8941 |
|
---|
8942 | /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
|
---|
8943 | Log4(("hmR0VmxPreRunGuest: VCPU%u: Mapped HC APIC-access page at %#RGp\n", pVCpu->idCpu, GCPhysApicBase));
|
---|
8944 | rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
|
---|
8945 | AssertRCReturn(rc, rc);
|
---|
8946 |
|
---|
8947 | /* Update the per-VCPU cache of the APIC base MSR. */
|
---|
8948 | pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
|
---|
8949 | }
|
---|
8950 | #endif /* !IEM_VERIFICATION_MODE_FULL */
|
---|
8951 |
|
---|
8952 | if (TRPMHasTrap(pVCpu))
|
---|
8953 | hmR0VmxTrpmTrapToPendingEvent(pVCpu);
|
---|
8954 | uint32_t uIntrState = hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
|
---|
8955 |
|
---|
8956 | /*
|
---|
8957 | * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
|
---|
8958 | * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
|
---|
8959 | */
|
---|
8960 | rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, uIntrState, fStepping);
|
---|
8961 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8962 | { /* likely */ }
|
---|
8963 | else
|
---|
8964 | {
|
---|
8965 | AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
|
---|
8966 | ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8967 | return rcStrict;
|
---|
8968 | }
|
---|
8969 |
|
---|
8970 | /*
|
---|
8971 | * No longjmps to ring-3 from this point on!!!
|
---|
8972 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
8973 | * This also disables flushing of the R0-logger instance (if any).
|
---|
8974 | */
|
---|
8975 | VMMRZCallRing3Disable(pVCpu);
|
---|
8976 |
|
---|
8977 | /*
|
---|
8978 | * Load the guest state bits.
|
---|
8979 | *
|
---|
8980 | * We cannot perform longjmps while loading the guest state because we do not preserve the
|
---|
8981 | * host/guest state (although the VMCS will be preserved) across longjmps which can cause
|
---|
8982 | * CPU migration.
|
---|
8983 | *
|
---|
8984 | * If we are injecting events to a real-on-v86 mode guest, we will have to update
|
---|
8985 | * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
|
---|
8986 | * Hence, loading of the guest state needs to be done -after- injection of events.
|
---|
8987 | */
|
---|
8988 | rcStrict = hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
|
---|
8989 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8990 | { /* likely */ }
|
---|
8991 | else
|
---|
8992 | {
|
---|
8993 | VMMRZCallRing3Enable(pVCpu);
|
---|
8994 | return rcStrict;
|
---|
8995 | }
|
---|
8996 |
|
---|
8997 | /*
|
---|
8998 | * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
|
---|
8999 | * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
|
---|
9000 | *
|
---|
9001 | * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
|
---|
9002 | * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
|
---|
9003 | *
|
---|
9004 | * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
|
---|
9005 | * executing guest code.
|
---|
9006 | */
|
---|
9007 | pVmxTransient->fEFlags = ASMIntDisableFlags();
|
---|
9008 |
|
---|
9009 | if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
9010 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
9011 | || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
|
---|
9012 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
|
---|
9013 | {
|
---|
9014 | if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
9015 | {
|
---|
9016 | pVCpu->hm.s.Event.fPending = false;
|
---|
9017 |
|
---|
9018 | /*
|
---|
9019 | * We've injected any pending events. This is really the point of no return (to ring-3).
|
---|
9020 | *
|
---|
9021 | * Note! The caller expects to continue with interrupts & longjmps disabled on successful
|
---|
9022 | * returns from this function, so don't enable them here.
|
---|
9023 | */
|
---|
9024 | return VINF_SUCCESS;
|
---|
9025 | }
|
---|
9026 |
|
---|
9027 | STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
|
---|
9028 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
9029 | }
|
---|
9030 | else
|
---|
9031 | {
|
---|
9032 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
9033 | rcStrict = VINF_EM_RAW_TO_R3;
|
---|
9034 | }
|
---|
9035 |
|
---|
9036 | ASMSetFlags(pVmxTransient->fEFlags);
|
---|
9037 | VMMRZCallRing3Enable(pVCpu);
|
---|
9038 |
|
---|
9039 | return rcStrict;
|
---|
9040 | }
|
---|
9041 |
|
---|
9042 |
|
---|
9043 | /**
|
---|
9044 | * Prepares to run guest code in VT-x and we've committed to doing so. This
|
---|
9045 | * means there is no backing out to ring-3 or anywhere else at this
|
---|
9046 | * point.
|
---|
9047 | *
|
---|
9048 | * @param pVM The cross context VM structure.
|
---|
9049 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9050 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
9051 | * out-of-sync. Make sure to update the required fields
|
---|
9052 | * before using them.
|
---|
9053 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
9054 | *
|
---|
9055 | * @remarks Called with preemption disabled.
|
---|
9056 | * @remarks No-long-jump zone!!!
|
---|
9057 | */
|
---|
9058 | static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9059 | {
|
---|
9060 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
9061 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
9062 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
9063 |
|
---|
9064 | /*
|
---|
9065 | * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
|
---|
9066 | */
|
---|
9067 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
9068 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
|
---|
9069 |
|
---|
9070 | #ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
|
---|
9071 | if (!CPUMIsGuestFPUStateActive(pVCpu))
|
---|
9072 | {
|
---|
9073 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
9074 | if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
|
---|
9075 | HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
|
---|
9076 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
9077 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
|
---|
9078 | }
|
---|
9079 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
9080 | #endif
|
---|
9081 |
|
---|
9082 | if ( pVCpu->hm.s.fPreloadGuestFpu
|
---|
9083 | && !CPUMIsGuestFPUStateActive(pVCpu))
|
---|
9084 | {
|
---|
9085 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
9086 | if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
|
---|
9087 | HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
|
---|
9088 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
9089 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
|
---|
9090 | Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
|
---|
9091 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
9092 | }
|
---|
9093 |
|
---|
9094 | /*
|
---|
9095 | * Lazy-update of the host MSRs values in the auto-load/store MSR area.
|
---|
9096 | */
|
---|
9097 | if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
|
---|
9098 | && pVCpu->hm.s.vmx.cMsrs > 0)
|
---|
9099 | {
|
---|
9100 | hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
|
---|
9101 | }
|
---|
9102 |
|
---|
9103 | /*
|
---|
9104 | * Load the host state bits as we may've been preempted (only happens when
|
---|
9105 | * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
|
---|
9106 | * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
|
---|
9107 | * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
|
---|
9108 | * See @bugref{8432}.
|
---|
9109 | */
|
---|
9110 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
|
---|
9111 | {
|
---|
9112 | int rc = hmR0VmxSaveHostState(pVM, pVCpu);
|
---|
9113 | AssertRC(rc);
|
---|
9114 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptSaveHostState);
|
---|
9115 | }
|
---|
9116 | Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
|
---|
9117 |
|
---|
9118 | /*
|
---|
9119 | * Load the state shared between host and guest (FPU, debug, lazy MSRs).
|
---|
9120 | */
|
---|
9121 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
|
---|
9122 | hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
|
---|
9123 | AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
9124 |
|
---|
9125 | /* Store status of the shared guest-host state at the time of VM-entry. */
|
---|
9126 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
9127 | if (CPUMIsGuestInLongModeEx(pMixedCtx))
|
---|
9128 | {
|
---|
9129 | pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
|
---|
9130 | pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
|
---|
9131 | }
|
---|
9132 | else
|
---|
9133 | #endif
|
---|
9134 | {
|
---|
9135 | pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
|
---|
9136 | pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
|
---|
9137 | }
|
---|
9138 | pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
|
---|
9139 |
|
---|
9140 | /*
|
---|
9141 | * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
|
---|
9142 | */
|
---|
9143 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
9144 | pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
|
---|
9145 |
|
---|
9146 | PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
|
---|
9147 | RTCPUID idCurrentCpu = pCpu->idCpu;
|
---|
9148 | if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
|
---|
9149 | || idCurrentCpu != pVCpu->hm.s.idLastCpu)
|
---|
9150 | {
|
---|
9151 | hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
|
---|
9152 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
|
---|
9153 | }
|
---|
9154 |
|
---|
9155 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
|
---|
9156 | hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
|
---|
9157 | Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
|
---|
9158 | pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
|
---|
9159 |
|
---|
9160 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
|
---|
9161 |
|
---|
9162 | TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
|
---|
9163 | to start executing. */
|
---|
9164 |
|
---|
9165 | /*
|
---|
9166 | * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
|
---|
9167 | */
|
---|
9168 | if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
|
---|
9169 | {
|
---|
9170 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
|
---|
9171 | {
|
---|
9172 | bool fMsrUpdated;
|
---|
9173 | int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
|
---|
9174 | AssertRC(rc2);
|
---|
9175 | Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
|
---|
9176 |
|
---|
9177 | rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
|
---|
9178 | &fMsrUpdated);
|
---|
9179 | AssertRC(rc2);
|
---|
9180 | Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
|
---|
9181 |
|
---|
9182 | /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
|
---|
9183 | pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
|
---|
9184 | }
|
---|
9185 | else
|
---|
9186 | {
|
---|
9187 | hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
|
---|
9188 | Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
|
---|
9189 | }
|
---|
9190 | }
|
---|
9191 |
|
---|
9192 | if (pVM->cpum.ro.GuestFeatures.fIbrs)
|
---|
9193 | {
|
---|
9194 | bool fMsrUpdated;
|
---|
9195 | int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
|
---|
9196 | AssertRC(rc2);
|
---|
9197 | Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
|
---|
9198 |
|
---|
9199 | rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMR0GetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
|
---|
9200 | &fMsrUpdated);
|
---|
9201 | AssertRC(rc2);
|
---|
9202 | Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
|
---|
9203 | /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
|
---|
9204 | pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
|
---|
9205 | }
|
---|
9206 |
|
---|
9207 | #ifdef VBOX_STRICT
|
---|
9208 | hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
|
---|
9209 | hmR0VmxCheckHostEferMsr(pVCpu);
|
---|
9210 | AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
|
---|
9211 | #endif
|
---|
9212 | #ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
|
---|
9213 | uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
|
---|
9214 | if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
|
---|
9215 | Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
|
---|
9216 | #endif
|
---|
9217 | }
|
---|
9218 |
|
---|
9219 |
|
---|
9220 | /**
|
---|
9221 | * Performs some essential restoration of state after running guest code in
|
---|
9222 | * VT-x.
|
---|
9223 | *
|
---|
9224 | * @param pVM The cross context VM structure.
|
---|
9225 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9226 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
9227 | * out-of-sync. Make sure to update the required fields
|
---|
9228 | * before using them.
|
---|
9229 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
9230 | * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
|
---|
9231 | *
|
---|
9232 | * @remarks Called with interrupts disabled, and returns with interrupts enabled!
|
---|
9233 | *
|
---|
9234 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
9235 | * unconditionally when it is safe to do so.
|
---|
9236 | */
|
---|
9237 | static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
|
---|
9238 | {
|
---|
9239 | NOREF(pVM);
|
---|
9240 |
|
---|
9241 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
9242 |
|
---|
9243 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
|
---|
9244 | ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
|
---|
9245 | HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
|
---|
9246 | pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
|
---|
9247 | pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
|
---|
9248 | pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
|
---|
9249 |
|
---|
9250 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
|
---|
9251 | TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
|
---|
9252 |
|
---|
9253 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
|
---|
9254 | TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
|
---|
9255 | Assert(!ASMIntAreEnabled());
|
---|
9256 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
9257 |
|
---|
9258 | #ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
|
---|
9259 | if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVM, pVCpu))
|
---|
9260 | {
|
---|
9261 | hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
9262 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
9263 | }
|
---|
9264 | #endif
|
---|
9265 |
|
---|
9266 | #if HC_ARCH_BITS == 64
|
---|
9267 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
|
---|
9268 | #endif
|
---|
9269 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
9270 | /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
|
---|
9271 | if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
|
---|
9272 | pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
|
---|
9273 | #else
|
---|
9274 | pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
|
---|
9275 | #endif
|
---|
9276 | #ifdef VBOX_STRICT
|
---|
9277 | hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
|
---|
9278 | #endif
|
---|
9279 | ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
|
---|
9280 |
|
---|
9281 | /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
|
---|
9282 | uint32_t uExitReason;
|
---|
9283 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
|
---|
9284 | rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
|
---|
9285 | AssertRC(rc);
|
---|
9286 | pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
|
---|
9287 | pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
|
---|
9288 |
|
---|
9289 | if (rcVMRun == VINF_SUCCESS)
|
---|
9290 | {
|
---|
9291 | /*
|
---|
9292 | * Update the VM-exit history array here even if the VM-entry failed due to:
|
---|
9293 | * - Invalid guest state.
|
---|
9294 | * - MSR loading.
|
---|
9295 | * - Machine-check event.
|
---|
9296 | *
|
---|
9297 | * In any of the above cases we will still have a "valid" VM-exit reason
|
---|
9298 | * despite @a fVMEntryFailed being false.
|
---|
9299 | *
|
---|
9300 | * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
|
---|
9301 | */
|
---|
9302 | HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
|
---|
9303 |
|
---|
9304 | if (!pVmxTransient->fVMEntryFailed)
|
---|
9305 | {
|
---|
9306 | /** @todo We can optimize this by only syncing with our force-flags when
|
---|
9307 | * really needed and keeping the VMCS state as it is for most
|
---|
9308 | * VM-exits. */
|
---|
9309 | /* Update the guest interruptibility-state from the VMCS. */
|
---|
9310 | hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
|
---|
9311 |
|
---|
9312 | /*
|
---|
9313 | * Allow longjmps to ring-3 -after- saving the guest-interruptibility state
|
---|
9314 | * as it's not part of hmR0VmxSaveGuestState() and thus would trigger an assertion
|
---|
9315 | * on the longjmp path to ring-3 while saving the (rest of) the guest state,
|
---|
9316 | * see @bugref{6208#c63}.
|
---|
9317 | */
|
---|
9318 | VMMRZCallRing3Enable(pVCpu);
|
---|
9319 |
|
---|
9320 | #if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
|
---|
9321 | rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
9322 | AssertRC(rc);
|
---|
9323 | #elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
|
---|
9324 | rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
9325 | AssertRC(rc);
|
---|
9326 | #endif
|
---|
9327 |
|
---|
9328 | /*
|
---|
9329 | * Sync the TPR shadow with our APIC state.
|
---|
9330 | */
|
---|
9331 | if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
9332 | && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
|
---|
9333 | {
|
---|
9334 | rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
|
---|
9335 | AssertRC(rc);
|
---|
9336 | HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
|
---|
9337 | }
|
---|
9338 |
|
---|
9339 | return;
|
---|
9340 | }
|
---|
9341 | }
|
---|
9342 | else
|
---|
9343 | {
|
---|
9344 | Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
|
---|
9345 | pVmxTransient->fVMEntryFailed));
|
---|
9346 | }
|
---|
9347 |
|
---|
9348 | VMMRZCallRing3Enable(pVCpu);
|
---|
9349 | }
|
---|
9350 |
|
---|
9351 |
|
---|
9352 | /**
|
---|
9353 | * Runs the guest code using VT-x the normal way.
|
---|
9354 | *
|
---|
9355 | * @returns VBox status code.
|
---|
9356 | * @param pVM The cross context VM structure.
|
---|
9357 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9358 | * @param pCtx Pointer to the guest-CPU context.
|
---|
9359 | *
|
---|
9360 | * @note Mostly the same as hmR0VmxRunGuestCodeStep().
|
---|
9361 | */
|
---|
9362 | static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
9363 | {
|
---|
9364 | VMXTRANSIENT VmxTransient;
|
---|
9365 | VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
9366 | VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
|
---|
9367 | uint32_t cLoops = 0;
|
---|
9368 |
|
---|
9369 | for (;; cLoops++)
|
---|
9370 | {
|
---|
9371 | Assert(!HMR0SuspendPending());
|
---|
9372 | HMVMX_ASSERT_CPU_SAFE();
|
---|
9373 |
|
---|
9374 | /* Preparatory work for running guest code, this may force us to return
|
---|
9375 | to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
9376 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
9377 | rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
|
---|
9378 | if (rcStrict != VINF_SUCCESS)
|
---|
9379 | break;
|
---|
9380 |
|
---|
9381 | hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
|
---|
9382 | int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
|
---|
9383 | /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
|
---|
9384 |
|
---|
9385 | /* Restore any residual host-state and save any bits shared between host
|
---|
9386 | and guest into the guest-CPU state. Re-enables interrupts! */
|
---|
9387 | hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
|
---|
9388 |
|
---|
9389 | /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
|
---|
9390 | if (RT_SUCCESS(rcRun))
|
---|
9391 | { /* very likely */ }
|
---|
9392 | else
|
---|
9393 | {
|
---|
9394 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
9395 | hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
|
---|
9396 | return rcRun;
|
---|
9397 | }
|
---|
9398 |
|
---|
9399 | /* Profile the VM-exit. */
|
---|
9400 | AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
|
---|
9401 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
|
---|
9402 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
|
---|
9403 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
9404 | HMVMX_START_EXIT_DISPATCH_PROF();
|
---|
9405 |
|
---|
9406 | VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
|
---|
9407 |
|
---|
9408 | /* Handle the VM-exit. */
|
---|
9409 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
9410 | rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
|
---|
9411 | #else
|
---|
9412 | rcStrict = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
|
---|
9413 | #endif
|
---|
9414 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
9415 | if (rcStrict == VINF_SUCCESS)
|
---|
9416 | {
|
---|
9417 | if (cLoops <= pVM->hm.s.cMaxResumeLoops)
|
---|
9418 | continue; /* likely */
|
---|
9419 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
9420 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
9421 | }
|
---|
9422 | break;
|
---|
9423 | }
|
---|
9424 |
|
---|
9425 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
9426 | return rcStrict;
|
---|
9427 | }
|
---|
9428 |
|
---|
9429 |
|
---|
9430 |
|
---|
9431 | /** @name Execution loop for single stepping, DBGF events and expensive Dtrace
|
---|
9432 | * probes.
|
---|
9433 | *
|
---|
9434 | * The following few functions and associated structure contains the bloat
|
---|
9435 | * necessary for providing detailed debug events and dtrace probes as well as
|
---|
9436 | * reliable host side single stepping. This works on the principle of
|
---|
9437 | * "subclassing" the normal execution loop and workers. We replace the loop
|
---|
9438 | * method completely and override selected helpers to add necessary adjustments
|
---|
9439 | * to their core operation.
|
---|
9440 | *
|
---|
9441 | * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
|
---|
9442 | * any performance for debug and analysis features.
|
---|
9443 | *
|
---|
9444 | * @{
|
---|
9445 | */
|
---|
9446 |
|
---|
9447 | /**
|
---|
9448 | * Transient per-VCPU debug state of VMCS and related info. we save/restore in
|
---|
9449 | * the debug run loop.
|
---|
9450 | */
|
---|
9451 | typedef struct VMXRUNDBGSTATE
|
---|
9452 | {
|
---|
9453 | /** The RIP we started executing at. This is for detecting that we stepped. */
|
---|
9454 | uint64_t uRipStart;
|
---|
9455 | /** The CS we started executing with. */
|
---|
9456 | uint16_t uCsStart;
|
---|
9457 |
|
---|
9458 | /** Whether we've actually modified the 1st execution control field. */
|
---|
9459 | bool fModifiedProcCtls : 1;
|
---|
9460 | /** Whether we've actually modified the 2nd execution control field. */
|
---|
9461 | bool fModifiedProcCtls2 : 1;
|
---|
9462 | /** Whether we've actually modified the exception bitmap. */
|
---|
9463 | bool fModifiedXcptBitmap : 1;
|
---|
9464 |
|
---|
9465 | /** We desire the modified the CR0 mask to be cleared. */
|
---|
9466 | bool fClearCr0Mask : 1;
|
---|
9467 | /** We desire the modified the CR4 mask to be cleared. */
|
---|
9468 | bool fClearCr4Mask : 1;
|
---|
9469 | /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
|
---|
9470 | uint32_t fCpe1Extra;
|
---|
9471 | /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
|
---|
9472 | uint32_t fCpe1Unwanted;
|
---|
9473 | /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
|
---|
9474 | uint32_t fCpe2Extra;
|
---|
9475 | /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
|
---|
9476 | uint32_t bmXcptExtra;
|
---|
9477 | /** The sequence number of the Dtrace provider settings the state was
|
---|
9478 | * configured against. */
|
---|
9479 | uint32_t uDtraceSettingsSeqNo;
|
---|
9480 | /** VM-exits to check (one bit per VM-exit). */
|
---|
9481 | uint32_t bmExitsToCheck[3];
|
---|
9482 |
|
---|
9483 | /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
|
---|
9484 | uint32_t fProcCtlsInitial;
|
---|
9485 | /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
|
---|
9486 | uint32_t fProcCtls2Initial;
|
---|
9487 | /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
|
---|
9488 | uint32_t bmXcptInitial;
|
---|
9489 | } VMXRUNDBGSTATE;
|
---|
9490 | AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
|
---|
9491 | typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
|
---|
9492 |
|
---|
9493 |
|
---|
9494 | /**
|
---|
9495 | * Initializes the VMXRUNDBGSTATE structure.
|
---|
9496 | *
|
---|
9497 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
9498 | * calling EMT.
|
---|
9499 | * @param pCtx The CPU register context to go with @a pVCpu.
|
---|
9500 | * @param pDbgState The structure to initialize.
|
---|
9501 | */
|
---|
9502 | DECLINLINE(void) hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PCCPUMCTX pCtx, PVMXRUNDBGSTATE pDbgState)
|
---|
9503 | {
|
---|
9504 | pDbgState->uRipStart = pCtx->rip;
|
---|
9505 | pDbgState->uCsStart = pCtx->cs.Sel;
|
---|
9506 |
|
---|
9507 | pDbgState->fModifiedProcCtls = false;
|
---|
9508 | pDbgState->fModifiedProcCtls2 = false;
|
---|
9509 | pDbgState->fModifiedXcptBitmap = false;
|
---|
9510 | pDbgState->fClearCr0Mask = false;
|
---|
9511 | pDbgState->fClearCr4Mask = false;
|
---|
9512 | pDbgState->fCpe1Extra = 0;
|
---|
9513 | pDbgState->fCpe1Unwanted = 0;
|
---|
9514 | pDbgState->fCpe2Extra = 0;
|
---|
9515 | pDbgState->bmXcptExtra = 0;
|
---|
9516 | pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
|
---|
9517 | pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
|
---|
9518 | pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
|
---|
9519 | }
|
---|
9520 |
|
---|
9521 |
|
---|
9522 | /**
|
---|
9523 | * Updates the VMSC fields with changes requested by @a pDbgState.
|
---|
9524 | *
|
---|
9525 | * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
|
---|
9526 | * immediately before executing guest code, i.e. when interrupts are disabled.
|
---|
9527 | * We don't check status codes here as we cannot easily assert or return in the
|
---|
9528 | * latter case.
|
---|
9529 | *
|
---|
9530 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9531 | * @param pDbgState The debug state.
|
---|
9532 | */
|
---|
9533 | DECLINLINE(void) hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
|
---|
9534 | {
|
---|
9535 | /*
|
---|
9536 | * Ensure desired flags in VMCS control fields are set.
|
---|
9537 | * (Ignoring write failure here, as we're committed and it's just debug extras.)
|
---|
9538 | *
|
---|
9539 | * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
|
---|
9540 | * there should be no stale data in pCtx at this point.
|
---|
9541 | */
|
---|
9542 | if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
|
---|
9543 | || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
|
---|
9544 | {
|
---|
9545 | pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
|
---|
9546 | pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
|
---|
9547 | VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
9548 | Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
|
---|
9549 | pDbgState->fModifiedProcCtls = true;
|
---|
9550 | }
|
---|
9551 |
|
---|
9552 | if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
|
---|
9553 | {
|
---|
9554 | pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
|
---|
9555 | VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
|
---|
9556 | Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
|
---|
9557 | pDbgState->fModifiedProcCtls2 = true;
|
---|
9558 | }
|
---|
9559 |
|
---|
9560 | if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
|
---|
9561 | {
|
---|
9562 | pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
|
---|
9563 | VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
|
---|
9564 | Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
|
---|
9565 | pDbgState->fModifiedXcptBitmap = true;
|
---|
9566 | }
|
---|
9567 |
|
---|
9568 | if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32CR0Mask != 0)
|
---|
9569 | {
|
---|
9570 | pVCpu->hm.s.vmx.u32CR0Mask = 0;
|
---|
9571 | VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
|
---|
9572 | Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR0_MASK: 0\n"));
|
---|
9573 | }
|
---|
9574 |
|
---|
9575 | if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32CR4Mask != 0)
|
---|
9576 | {
|
---|
9577 | pVCpu->hm.s.vmx.u32CR4Mask = 0;
|
---|
9578 | VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
|
---|
9579 | Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR4_MASK: 0\n"));
|
---|
9580 | }
|
---|
9581 | }
|
---|
9582 |
|
---|
9583 |
|
---|
9584 | DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
|
---|
9585 | {
|
---|
9586 | /*
|
---|
9587 | * Restore VM-exit control settings as we may not reenter this function the
|
---|
9588 | * next time around.
|
---|
9589 | */
|
---|
9590 | /* We reload the initial value, trigger what we can of recalculations the
|
---|
9591 | next time around. From the looks of things, that's all that's required atm. */
|
---|
9592 | if (pDbgState->fModifiedProcCtls)
|
---|
9593 | {
|
---|
9594 | if (!(pDbgState->fProcCtlsInitial & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
|
---|
9595 | pDbgState->fProcCtlsInitial |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
|
---|
9596 | int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
|
---|
9597 | AssertRCReturn(rc2, rc2);
|
---|
9598 | pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
|
---|
9599 | }
|
---|
9600 |
|
---|
9601 | /* We're currently the only ones messing with this one, so just restore the
|
---|
9602 | cached value and reload the field. */
|
---|
9603 | if ( pDbgState->fModifiedProcCtls2
|
---|
9604 | && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
|
---|
9605 | {
|
---|
9606 | int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
|
---|
9607 | AssertRCReturn(rc2, rc2);
|
---|
9608 | pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
|
---|
9609 | }
|
---|
9610 |
|
---|
9611 | /* If we've modified the exception bitmap, we restore it and trigger
|
---|
9612 | reloading and partial recalculation the next time around. */
|
---|
9613 | if (pDbgState->fModifiedXcptBitmap)
|
---|
9614 | pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
|
---|
9615 |
|
---|
9616 | return rcStrict;
|
---|
9617 | }
|
---|
9618 |
|
---|
9619 |
|
---|
9620 | /**
|
---|
9621 | * Configures VM-exit controls for current DBGF and DTrace settings.
|
---|
9622 | *
|
---|
9623 | * This updates @a pDbgState and the VMCS execution control fields to reflect
|
---|
9624 | * the necessary VM-exits demanded by DBGF and DTrace.
|
---|
9625 | *
|
---|
9626 | * @param pVM The cross context VM structure.
|
---|
9627 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9628 | * @param pCtx Pointer to the guest-CPU context.
|
---|
9629 | * @param pDbgState The debug state.
|
---|
9630 | * @param pVmxTransient Pointer to the VMX transient structure. May update
|
---|
9631 | * fUpdateTscOffsettingAndPreemptTimer.
|
---|
9632 | */
|
---|
9633 | static void hmR0VmxPreRunGuestDebugStateUpdate(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
|
---|
9634 | PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
|
---|
9635 | {
|
---|
9636 | /*
|
---|
9637 | * Take down the dtrace serial number so we can spot changes.
|
---|
9638 | */
|
---|
9639 | pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
|
---|
9640 | ASMCompilerBarrier();
|
---|
9641 |
|
---|
9642 | /*
|
---|
9643 | * We'll rebuild most of the middle block of data members (holding the
|
---|
9644 | * current settings) as we go along here, so start by clearing it all.
|
---|
9645 | */
|
---|
9646 | pDbgState->bmXcptExtra = 0;
|
---|
9647 | pDbgState->fCpe1Extra = 0;
|
---|
9648 | pDbgState->fCpe1Unwanted = 0;
|
---|
9649 | pDbgState->fCpe2Extra = 0;
|
---|
9650 | for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
|
---|
9651 | pDbgState->bmExitsToCheck[i] = 0;
|
---|
9652 |
|
---|
9653 | /*
|
---|
9654 | * Software interrupts (INT XXh) - no idea how to trigger these...
|
---|
9655 | */
|
---|
9656 | if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
|
---|
9657 | || VBOXVMM_INT_SOFTWARE_ENABLED())
|
---|
9658 | {
|
---|
9659 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
|
---|
9660 | }
|
---|
9661 |
|
---|
9662 | /*
|
---|
9663 | * INT3 breakpoints - triggered by #BP exceptions.
|
---|
9664 | */
|
---|
9665 | if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
|
---|
9666 | pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
|
---|
9667 |
|
---|
9668 | /*
|
---|
9669 | * Exception bitmap and XCPT events+probes.
|
---|
9670 | */
|
---|
9671 | for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
|
---|
9672 | if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
|
---|
9673 | pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
|
---|
9674 |
|
---|
9675 | if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
|
---|
9676 | if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
|
---|
9677 | if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
|
---|
9678 | if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
|
---|
9679 | if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
|
---|
9680 | if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
|
---|
9681 | if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
|
---|
9682 | if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
|
---|
9683 | if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
|
---|
9684 | if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
|
---|
9685 | if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
|
---|
9686 | if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
|
---|
9687 | if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
|
---|
9688 | if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
|
---|
9689 | if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
|
---|
9690 | if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
|
---|
9691 | if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
|
---|
9692 | if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
|
---|
9693 |
|
---|
9694 | if (pDbgState->bmXcptExtra)
|
---|
9695 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
|
---|
9696 |
|
---|
9697 | /*
|
---|
9698 | * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
|
---|
9699 | *
|
---|
9700 | * Note! This is the reverse of waft hmR0VmxHandleExitDtraceEvents does.
|
---|
9701 | * So, when adding/changing/removing please don't forget to update it.
|
---|
9702 | *
|
---|
9703 | * Some of the macros are picking up local variables to save horizontal space,
|
---|
9704 | * (being able to see it in a table is the lesser evil here).
|
---|
9705 | */
|
---|
9706 | #define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
|
---|
9707 | ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
|
---|
9708 | || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
|
---|
9709 | #define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
|
---|
9710 | if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
|
---|
9711 | { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
|
---|
9712 | ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
|
---|
9713 | } else do { } while (0)
|
---|
9714 | #define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
|
---|
9715 | if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
|
---|
9716 | { \
|
---|
9717 | (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
|
---|
9718 | AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
|
---|
9719 | ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
|
---|
9720 | } else do { } while (0)
|
---|
9721 | #define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
|
---|
9722 | if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
|
---|
9723 | { \
|
---|
9724 | (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
|
---|
9725 | AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
|
---|
9726 | ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
|
---|
9727 | } else do { } while (0)
|
---|
9728 | #define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
|
---|
9729 | if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
|
---|
9730 | { \
|
---|
9731 | (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
|
---|
9732 | AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
|
---|
9733 | ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
|
---|
9734 | } else do { } while (0)
|
---|
9735 |
|
---|
9736 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
|
---|
9737 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
|
---|
9738 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
|
---|
9739 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
|
---|
9740 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
|
---|
9741 |
|
---|
9742 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
|
---|
9743 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
|
---|
9744 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
|
---|
9745 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
|
---|
9746 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT); /* paranoia */
|
---|
9747 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
|
---|
9748 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
|
---|
9749 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
|
---|
9750 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
|
---|
9751 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
|
---|
9752 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
|
---|
9753 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
|
---|
9754 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
|
---|
9755 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
|
---|
9756 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
|
---|
9757 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
|
---|
9758 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
|
---|
9759 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
|
---|
9760 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
|
---|
9761 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
|
---|
9762 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
|
---|
9763 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
|
---|
9764 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
|
---|
9765 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
|
---|
9766 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
|
---|
9767 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
|
---|
9768 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
|
---|
9769 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
|
---|
9770 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
|
---|
9771 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
|
---|
9772 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
|
---|
9773 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
|
---|
9774 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
|
---|
9775 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
|
---|
9776 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
|
---|
9777 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
|
---|
9778 |
|
---|
9779 | if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
|
---|
9780 | || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
|
---|
9781 | {
|
---|
9782 | int rc2 = hmR0VmxSaveGuestCR0(pVCpu, pCtx);
|
---|
9783 | rc2 |= hmR0VmxSaveGuestCR4(pVCpu, pCtx);
|
---|
9784 | rc2 |= hmR0VmxSaveGuestApicState(pVCpu, pCtx);
|
---|
9785 | AssertRC(rc2);
|
---|
9786 |
|
---|
9787 | #if 0 /** @todo fix me */
|
---|
9788 | pDbgState->fClearCr0Mask = true;
|
---|
9789 | pDbgState->fClearCr4Mask = true;
|
---|
9790 | #endif
|
---|
9791 | if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
|
---|
9792 | pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT;
|
---|
9793 | if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
|
---|
9794 | pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT;
|
---|
9795 | pDbgState->fCpe1Unwanted |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* risky? */
|
---|
9796 | /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
|
---|
9797 | require clearing here and in the loop if we start using it. */
|
---|
9798 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
|
---|
9799 | }
|
---|
9800 | else
|
---|
9801 | {
|
---|
9802 | if (pDbgState->fClearCr0Mask)
|
---|
9803 | {
|
---|
9804 | pDbgState->fClearCr0Mask = false;
|
---|
9805 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
9806 | }
|
---|
9807 | if (pDbgState->fClearCr4Mask)
|
---|
9808 | {
|
---|
9809 | pDbgState->fClearCr4Mask = false;
|
---|
9810 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
9811 | }
|
---|
9812 | }
|
---|
9813 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
|
---|
9814 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
|
---|
9815 |
|
---|
9816 | if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
|
---|
9817 | || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
|
---|
9818 | {
|
---|
9819 | /** @todo later, need to fix handler as it assumes this won't usually happen. */
|
---|
9820 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
|
---|
9821 | }
|
---|
9822 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
|
---|
9823 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
|
---|
9824 |
|
---|
9825 | SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS); /* risky clearing this? */
|
---|
9826 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
|
---|
9827 | SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
|
---|
9828 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
|
---|
9829 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT); /* paranoia */
|
---|
9830 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
|
---|
9831 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT); /* paranoia */
|
---|
9832 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
|
---|
9833 | #if 0 /** @todo too slow, fix handler. */
|
---|
9834 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
|
---|
9835 | #endif
|
---|
9836 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
|
---|
9837 |
|
---|
9838 | if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
|
---|
9839 | || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
|
---|
9840 | || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
|
---|
9841 | || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
|
---|
9842 | {
|
---|
9843 | pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
|
---|
9844 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
|
---|
9845 | }
|
---|
9846 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
|
---|
9847 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
|
---|
9848 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
|
---|
9849 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
|
---|
9850 |
|
---|
9851 | if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
|
---|
9852 | || IS_EITHER_ENABLED(pVM, INSTR_STR)
|
---|
9853 | || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
|
---|
9854 | || IS_EITHER_ENABLED(pVM, INSTR_LTR))
|
---|
9855 | {
|
---|
9856 | pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
|
---|
9857 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
|
---|
9858 | }
|
---|
9859 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
|
---|
9860 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
|
---|
9861 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
|
---|
9862 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
|
---|
9863 |
|
---|
9864 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
|
---|
9865 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
|
---|
9866 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
|
---|
9867 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
|
---|
9868 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
|
---|
9869 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
|
---|
9870 | SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
|
---|
9871 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
|
---|
9872 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
|
---|
9873 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
|
---|
9874 | SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
|
---|
9875 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
|
---|
9876 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
|
---|
9877 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
|
---|
9878 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
|
---|
9879 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
|
---|
9880 | SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
|
---|
9881 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
|
---|
9882 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
|
---|
9883 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
|
---|
9884 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
|
---|
9885 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
|
---|
9886 |
|
---|
9887 | #undef IS_EITHER_ENABLED
|
---|
9888 | #undef SET_ONLY_XBM_IF_EITHER_EN
|
---|
9889 | #undef SET_CPE1_XBM_IF_EITHER_EN
|
---|
9890 | #undef SET_CPEU_XBM_IF_EITHER_EN
|
---|
9891 | #undef SET_CPE2_XBM_IF_EITHER_EN
|
---|
9892 |
|
---|
9893 | /*
|
---|
9894 | * Sanitize the control stuff.
|
---|
9895 | */
|
---|
9896 | pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
|
---|
9897 | if (pDbgState->fCpe2Extra)
|
---|
9898 | pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
|
---|
9899 | pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
|
---|
9900 | pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
|
---|
9901 | if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
|
---|
9902 | {
|
---|
9903 | pVCpu->hm.s.fDebugWantRdTscExit ^= true;
|
---|
9904 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
9905 | }
|
---|
9906 |
|
---|
9907 | Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
|
---|
9908 | pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
|
---|
9909 | pDbgState->fClearCr0Mask ? " clr-cr0" : "",
|
---|
9910 | pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
|
---|
9911 | }
|
---|
9912 |
|
---|
9913 |
|
---|
9914 | /**
|
---|
9915 | * Fires off DBGF events and dtrace probes for a VM-exit, when it's
|
---|
9916 | * appropriate.
|
---|
9917 | *
|
---|
9918 | * The caller has checked the VM-exit against the
|
---|
9919 | * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
|
---|
9920 | * already, so we don't have to do that either.
|
---|
9921 | *
|
---|
9922 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
9923 | * @param pVM The cross context VM structure.
|
---|
9924 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9925 | * @param pMixedCtx Pointer to the guest-CPU context.
|
---|
9926 | * @param pVmxTransient Pointer to the VMX-transient structure.
|
---|
9927 | * @param uExitReason The VM-exit reason.
|
---|
9928 | *
|
---|
9929 | * @remarks The name of this function is displayed by dtrace, so keep it short
|
---|
9930 | * and to the point. No longer than 33 chars long, please.
|
---|
9931 | */
|
---|
9932 | static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx,
|
---|
9933 | PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
|
---|
9934 | {
|
---|
9935 | /*
|
---|
9936 | * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
|
---|
9937 | * same time check whether any corresponding Dtrace event is enabled (fDtrace).
|
---|
9938 | *
|
---|
9939 | * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
|
---|
9940 | * does. Must add/change/remove both places. Same ordering, please.
|
---|
9941 | *
|
---|
9942 | * Added/removed events must also be reflected in the next section
|
---|
9943 | * where we dispatch dtrace events.
|
---|
9944 | */
|
---|
9945 | bool fDtrace1 = false;
|
---|
9946 | bool fDtrace2 = false;
|
---|
9947 | DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
|
---|
9948 | DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
|
---|
9949 | uint32_t uEventArg = 0;
|
---|
9950 | #define SET_EXIT(a_EventSubName) \
|
---|
9951 | do { \
|
---|
9952 | enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
|
---|
9953 | fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
|
---|
9954 | } while (0)
|
---|
9955 | #define SET_BOTH(a_EventSubName) \
|
---|
9956 | do { \
|
---|
9957 | enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
|
---|
9958 | enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
|
---|
9959 | fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
|
---|
9960 | fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
|
---|
9961 | } while (0)
|
---|
9962 | switch (uExitReason)
|
---|
9963 | {
|
---|
9964 | case VMX_EXIT_MTF:
|
---|
9965 | return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
|
---|
9966 |
|
---|
9967 | case VMX_EXIT_XCPT_OR_NMI:
|
---|
9968 | {
|
---|
9969 | uint8_t const idxVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
|
---|
9970 | switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo))
|
---|
9971 | {
|
---|
9972 | case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
|
---|
9973 | case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT:
|
---|
9974 | case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT:
|
---|
9975 | if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
|
---|
9976 | {
|
---|
9977 | if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uExitIntInfo))
|
---|
9978 | {
|
---|
9979 | hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
9980 | uEventArg = pVmxTransient->uExitIntErrorCode;
|
---|
9981 | }
|
---|
9982 | enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
|
---|
9983 | switch (enmEvent1)
|
---|
9984 | {
|
---|
9985 | case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
|
---|
9986 | case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
|
---|
9987 | case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
|
---|
9988 | case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
|
---|
9989 | case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
|
---|
9990 | case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
|
---|
9991 | case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
|
---|
9992 | case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
|
---|
9993 | case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
|
---|
9994 | case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
|
---|
9995 | case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
|
---|
9996 | case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
|
---|
9997 | case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
|
---|
9998 | case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
|
---|
9999 | case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
|
---|
10000 | case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
|
---|
10001 | case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
|
---|
10002 | case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
|
---|
10003 | default: break;
|
---|
10004 | }
|
---|
10005 | }
|
---|
10006 | else
|
---|
10007 | AssertFailed();
|
---|
10008 | break;
|
---|
10009 |
|
---|
10010 | case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
|
---|
10011 | uEventArg = idxVector;
|
---|
10012 | enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
|
---|
10013 | fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
|
---|
10014 | break;
|
---|
10015 | }
|
---|
10016 | break;
|
---|
10017 | }
|
---|
10018 |
|
---|
10019 | case VMX_EXIT_TRIPLE_FAULT:
|
---|
10020 | enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
|
---|
10021 | //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
|
---|
10022 | break;
|
---|
10023 | case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
|
---|
10024 | case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
|
---|
10025 | case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
|
---|
10026 | case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
|
---|
10027 | case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
|
---|
10028 |
|
---|
10029 | /* Instruction specific VM-exits: */
|
---|
10030 | case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
|
---|
10031 | case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
|
---|
10032 | case VMX_EXIT_HLT: SET_BOTH(HALT); break;
|
---|
10033 | case VMX_EXIT_INVD: SET_BOTH(INVD); break;
|
---|
10034 | case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
|
---|
10035 | case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
|
---|
10036 | case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
|
---|
10037 | case VMX_EXIT_RSM: SET_BOTH(RSM); break;
|
---|
10038 | case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
|
---|
10039 | case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
|
---|
10040 | case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
|
---|
10041 | case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
|
---|
10042 | case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
|
---|
10043 | case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
|
---|
10044 | case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
|
---|
10045 | case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
|
---|
10046 | case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
|
---|
10047 | case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
|
---|
10048 | case VMX_EXIT_MOV_CRX:
|
---|
10049 | hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
10050 | /** @todo r=bird: I feel these macros aren't very descriptive and needs to be at least 30 chars longer! ;-)
|
---|
10051 | * Sensible abbreviations strongly recommended here because even with 130 columns this stuff get too wide! */
|
---|
10052 | if ( VMX_EXIT_QUALIFICATION_CRX_ACCESS(pVmxTransient->uExitQualification)
|
---|
10053 | == VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ)
|
---|
10054 | SET_BOTH(CRX_READ);
|
---|
10055 | else
|
---|
10056 | SET_BOTH(CRX_WRITE);
|
---|
10057 | uEventArg = VMX_EXIT_QUALIFICATION_CRX_REGISTER(pVmxTransient->uExitQualification);
|
---|
10058 | break;
|
---|
10059 | case VMX_EXIT_MOV_DRX:
|
---|
10060 | hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
10061 | if ( VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification)
|
---|
10062 | == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_READ)
|
---|
10063 | SET_BOTH(DRX_READ);
|
---|
10064 | else
|
---|
10065 | SET_BOTH(DRX_WRITE);
|
---|
10066 | uEventArg = VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification);
|
---|
10067 | break;
|
---|
10068 | case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
|
---|
10069 | case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
|
---|
10070 | case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
|
---|
10071 | case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
|
---|
10072 | case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
|
---|
10073 | case VMX_EXIT_XDTR_ACCESS:
|
---|
10074 | hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
10075 | switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_XDTR_INSINFO_INSTR_ID))
|
---|
10076 | {
|
---|
10077 | case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
|
---|
10078 | case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
|
---|
10079 | case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
|
---|
10080 | case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
|
---|
10081 | }
|
---|
10082 | break;
|
---|
10083 |
|
---|
10084 | case VMX_EXIT_TR_ACCESS:
|
---|
10085 | hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
10086 | switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_YYTR_INSINFO_INSTR_ID))
|
---|
10087 | {
|
---|
10088 | case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
|
---|
10089 | case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
|
---|
10090 | case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
|
---|
10091 | case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
|
---|
10092 | }
|
---|
10093 | break;
|
---|
10094 |
|
---|
10095 | case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
|
---|
10096 | case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
|
---|
10097 | case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
|
---|
10098 | case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
|
---|
10099 | case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
|
---|
10100 | case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
|
---|
10101 | case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
|
---|
10102 | case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
|
---|
10103 | case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
|
---|
10104 | case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
|
---|
10105 | case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
|
---|
10106 |
|
---|
10107 | /* Events that aren't relevant at this point. */
|
---|
10108 | case VMX_EXIT_EXT_INT:
|
---|
10109 | case VMX_EXIT_INT_WINDOW:
|
---|
10110 | case VMX_EXIT_NMI_WINDOW:
|
---|
10111 | case VMX_EXIT_TPR_BELOW_THRESHOLD:
|
---|
10112 | case VMX_EXIT_PREEMPT_TIMER:
|
---|
10113 | case VMX_EXIT_IO_INSTR:
|
---|
10114 | break;
|
---|
10115 |
|
---|
10116 | /* Errors and unexpected events. */
|
---|
10117 | case VMX_EXIT_INIT_SIGNAL:
|
---|
10118 | case VMX_EXIT_SIPI:
|
---|
10119 | case VMX_EXIT_IO_SMI:
|
---|
10120 | case VMX_EXIT_SMI:
|
---|
10121 | case VMX_EXIT_ERR_INVALID_GUEST_STATE:
|
---|
10122 | case VMX_EXIT_ERR_MSR_LOAD:
|
---|
10123 | case VMX_EXIT_ERR_MACHINE_CHECK:
|
---|
10124 | break;
|
---|
10125 |
|
---|
10126 | default:
|
---|
10127 | AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
|
---|
10128 | break;
|
---|
10129 | }
|
---|
10130 | #undef SET_BOTH
|
---|
10131 | #undef SET_EXIT
|
---|
10132 |
|
---|
10133 | /*
|
---|
10134 | * Dtrace tracepoints go first. We do them here at once so we don't
|
---|
10135 | * have to copy the guest state saving and stuff a few dozen times.
|
---|
10136 | * Down side is that we've got to repeat the switch, though this time
|
---|
10137 | * we use enmEvent since the probes are a subset of what DBGF does.
|
---|
10138 | */
|
---|
10139 | if (fDtrace1 || fDtrace2)
|
---|
10140 | {
|
---|
10141 | hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
10142 | hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
10143 | switch (enmEvent1)
|
---|
10144 | {
|
---|
10145 | /** @todo consider which extra parameters would be helpful for each probe. */
|
---|
10146 | case DBGFEVENT_END: break;
|
---|
10147 | case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pMixedCtx); break;
|
---|
10148 | case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pMixedCtx, pMixedCtx->dr[6]); break;
|
---|
10149 | case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pMixedCtx); break;
|
---|
10150 | case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pMixedCtx); break;
|
---|
10151 | case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pMixedCtx); break;
|
---|
10152 | case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pMixedCtx); break;
|
---|
10153 | case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pMixedCtx); break;
|
---|
10154 | case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pMixedCtx); break;
|
---|
10155 | case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pMixedCtx, uEventArg); break;
|
---|
10156 | case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pMixedCtx, uEventArg); break;
|
---|
10157 | case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pMixedCtx, uEventArg); break;
|
---|
10158 | case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pMixedCtx, uEventArg); break;
|
---|
10159 | case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pMixedCtx, uEventArg, pMixedCtx->cr2); break;
|
---|
10160 | case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pMixedCtx); break;
|
---|
10161 | case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pMixedCtx); break;
|
---|
10162 | case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pMixedCtx); break;
|
---|
10163 | case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pMixedCtx); break;
|
---|
10164 | case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pMixedCtx, uEventArg); break;
|
---|
10165 | case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
|
---|
10166 | case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
|
---|
10167 | case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pMixedCtx); break;
|
---|
10168 | case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pMixedCtx); break;
|
---|
10169 | case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pMixedCtx); break;
|
---|
10170 | case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pMixedCtx); break;
|
---|
10171 | case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pMixedCtx); break;
|
---|
10172 | case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pMixedCtx); break;
|
---|
10173 | case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pMixedCtx); break;
|
---|
10174 | case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
|
---|
10175 | case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
|
---|
10176 | case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
|
---|
10177 | case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
|
---|
10178 | case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
|
---|
10179 | case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
|
---|
10180 | RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
|
---|
10181 | case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pMixedCtx); break;
|
---|
10182 | case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pMixedCtx); break;
|
---|
10183 | case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pMixedCtx); break;
|
---|
10184 | case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pMixedCtx); break;
|
---|
10185 | case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pMixedCtx); break;
|
---|
10186 | case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pMixedCtx); break;
|
---|
10187 | case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pMixedCtx); break;
|
---|
10188 | case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pMixedCtx); break;
|
---|
10189 | case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pMixedCtx); break;
|
---|
10190 | case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pMixedCtx); break;
|
---|
10191 | case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pMixedCtx); break;
|
---|
10192 | case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pMixedCtx); break;
|
---|
10193 | case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pMixedCtx); break;
|
---|
10194 | case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pMixedCtx); break;
|
---|
10195 | case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pMixedCtx); break;
|
---|
10196 | case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pMixedCtx); break;
|
---|
10197 | case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pMixedCtx); break;
|
---|
10198 | case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pMixedCtx); break;
|
---|
10199 | case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pMixedCtx); break;
|
---|
10200 | case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
|
---|
10201 | case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
|
---|
10202 | case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
|
---|
10203 | case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pMixedCtx); break;
|
---|
10204 | case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pMixedCtx); break;
|
---|
10205 | case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pMixedCtx); break;
|
---|
10206 | case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pMixedCtx); break;
|
---|
10207 | case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pMixedCtx); break;
|
---|
10208 | case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pMixedCtx); break;
|
---|
10209 | case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pMixedCtx); break;
|
---|
10210 | case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pMixedCtx); break;
|
---|
10211 | case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pMixedCtx); break;
|
---|
10212 | case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pMixedCtx); break;
|
---|
10213 | default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
|
---|
10214 | }
|
---|
10215 | switch (enmEvent2)
|
---|
10216 | {
|
---|
10217 | /** @todo consider which extra parameters would be helpful for each probe. */
|
---|
10218 | case DBGFEVENT_END: break;
|
---|
10219 | case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pMixedCtx); break;
|
---|
10220 | case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
|
---|
10221 | case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pMixedCtx); break;
|
---|
10222 | case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pMixedCtx); break;
|
---|
10223 | case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pMixedCtx); break;
|
---|
10224 | case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pMixedCtx); break;
|
---|
10225 | case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pMixedCtx); break;
|
---|
10226 | case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pMixedCtx); break;
|
---|
10227 | case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pMixedCtx); break;
|
---|
10228 | case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
|
---|
10229 | case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
|
---|
10230 | case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
|
---|
10231 | case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
|
---|
10232 | case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
|
---|
10233 | case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
|
---|
10234 | RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
|
---|
10235 | case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pMixedCtx); break;
|
---|
10236 | case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pMixedCtx); break;
|
---|
10237 | case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pMixedCtx); break;
|
---|
10238 | case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pMixedCtx); break;
|
---|
10239 | case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pMixedCtx); break;
|
---|
10240 | case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pMixedCtx); break;
|
---|
10241 | case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pMixedCtx); break;
|
---|
10242 | case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pMixedCtx); break;
|
---|
10243 | case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pMixedCtx); break;
|
---|
10244 | case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pMixedCtx); break;
|
---|
10245 | case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pMixedCtx); break;
|
---|
10246 | case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pMixedCtx); break;
|
---|
10247 | case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pMixedCtx); break;
|
---|
10248 | case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pMixedCtx); break;
|
---|
10249 | case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pMixedCtx); break;
|
---|
10250 | case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pMixedCtx); break;
|
---|
10251 | case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pMixedCtx); break;
|
---|
10252 | case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pMixedCtx); break;
|
---|
10253 | case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pMixedCtx); break;
|
---|
10254 | case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
|
---|
10255 | case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
|
---|
10256 | case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
|
---|
10257 | case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pMixedCtx); break;
|
---|
10258 | case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pMixedCtx); break;
|
---|
10259 | case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pMixedCtx); break;
|
---|
10260 | case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pMixedCtx); break;
|
---|
10261 | case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pMixedCtx); break;
|
---|
10262 | case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pMixedCtx); break;
|
---|
10263 | case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pMixedCtx); break;
|
---|
10264 | case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pMixedCtx); break;
|
---|
10265 | case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pMixedCtx); break;
|
---|
10266 | case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pMixedCtx); break;
|
---|
10267 | case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pMixedCtx); break;
|
---|
10268 | case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pMixedCtx); break;
|
---|
10269 | case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pMixedCtx); break;
|
---|
10270 | case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pMixedCtx); break;
|
---|
10271 | default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
|
---|
10272 | }
|
---|
10273 | }
|
---|
10274 |
|
---|
10275 | /*
|
---|
10276 | * Fire of the DBGF event, if enabled (our check here is just a quick one,
|
---|
10277 | * the DBGF call will do a full check).
|
---|
10278 | *
|
---|
10279 | * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
|
---|
10280 | * Note! If we have to events, we prioritize the first, i.e. the instruction
|
---|
10281 | * one, in order to avoid event nesting.
|
---|
10282 | */
|
---|
10283 | if ( enmEvent1 != DBGFEVENT_END
|
---|
10284 | && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
|
---|
10285 | {
|
---|
10286 | VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent1, uEventArg, DBGFEVENTCTX_HM);
|
---|
10287 | if (rcStrict != VINF_SUCCESS)
|
---|
10288 | return rcStrict;
|
---|
10289 | }
|
---|
10290 | else if ( enmEvent2 != DBGFEVENT_END
|
---|
10291 | && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
|
---|
10292 | {
|
---|
10293 | VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent2, uEventArg, DBGFEVENTCTX_HM);
|
---|
10294 | if (rcStrict != VINF_SUCCESS)
|
---|
10295 | return rcStrict;
|
---|
10296 | }
|
---|
10297 |
|
---|
10298 | return VINF_SUCCESS;
|
---|
10299 | }
|
---|
10300 |
|
---|
10301 |
|
---|
10302 | /**
|
---|
10303 | * Single-stepping VM-exit filtering.
|
---|
10304 | *
|
---|
10305 | * This is preprocessing the VM-exits and deciding whether we've gotten far
|
---|
10306 | * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
|
---|
10307 | * handling is performed.
|
---|
10308 | *
|
---|
10309 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
10310 | * @param pVM The cross context VM structure.
|
---|
10311 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
10312 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
10313 | * out-of-sync. Make sure to update the required
|
---|
10314 | * fields before using them.
|
---|
10315 | * @param pVmxTransient Pointer to the VMX-transient structure.
|
---|
10316 | * @param uExitReason The VM-exit reason.
|
---|
10317 | * @param pDbgState The debug state.
|
---|
10318 | */
|
---|
10319 | DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
|
---|
10320 | uint32_t uExitReason, PVMXRUNDBGSTATE pDbgState)
|
---|
10321 | {
|
---|
10322 | /*
|
---|
10323 | * Expensive (saves context) generic dtrace VM-exit probe.
|
---|
10324 | */
|
---|
10325 | if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
|
---|
10326 | { /* more likely */ }
|
---|
10327 | else
|
---|
10328 | {
|
---|
10329 | hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
10330 | hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
10331 | VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pMixedCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQualification);
|
---|
10332 | }
|
---|
10333 |
|
---|
10334 | /*
|
---|
10335 | * Check for host NMI, just to get that out of the way.
|
---|
10336 | */
|
---|
10337 | if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
|
---|
10338 | { /* normally likely */ }
|
---|
10339 | else
|
---|
10340 | {
|
---|
10341 | int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
10342 | AssertRCReturn(rc2, rc2);
|
---|
10343 | uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
|
---|
10344 | if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
|
---|
10345 | return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10346 | }
|
---|
10347 |
|
---|
10348 | /*
|
---|
10349 | * Check for single stepping event if we're stepping.
|
---|
10350 | */
|
---|
10351 | if (pVCpu->hm.s.fSingleInstruction)
|
---|
10352 | {
|
---|
10353 | switch (uExitReason)
|
---|
10354 | {
|
---|
10355 | case VMX_EXIT_MTF:
|
---|
10356 | return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10357 |
|
---|
10358 | /* Various events: */
|
---|
10359 | case VMX_EXIT_XCPT_OR_NMI:
|
---|
10360 | case VMX_EXIT_EXT_INT:
|
---|
10361 | case VMX_EXIT_TRIPLE_FAULT:
|
---|
10362 | case VMX_EXIT_INT_WINDOW:
|
---|
10363 | case VMX_EXIT_NMI_WINDOW:
|
---|
10364 | case VMX_EXIT_TASK_SWITCH:
|
---|
10365 | case VMX_EXIT_TPR_BELOW_THRESHOLD:
|
---|
10366 | case VMX_EXIT_APIC_ACCESS:
|
---|
10367 | case VMX_EXIT_EPT_VIOLATION:
|
---|
10368 | case VMX_EXIT_EPT_MISCONFIG:
|
---|
10369 | case VMX_EXIT_PREEMPT_TIMER:
|
---|
10370 |
|
---|
10371 | /* Instruction specific VM-exits: */
|
---|
10372 | case VMX_EXIT_CPUID:
|
---|
10373 | case VMX_EXIT_GETSEC:
|
---|
10374 | case VMX_EXIT_HLT:
|
---|
10375 | case VMX_EXIT_INVD:
|
---|
10376 | case VMX_EXIT_INVLPG:
|
---|
10377 | case VMX_EXIT_RDPMC:
|
---|
10378 | case VMX_EXIT_RDTSC:
|
---|
10379 | case VMX_EXIT_RSM:
|
---|
10380 | case VMX_EXIT_VMCALL:
|
---|
10381 | case VMX_EXIT_VMCLEAR:
|
---|
10382 | case VMX_EXIT_VMLAUNCH:
|
---|
10383 | case VMX_EXIT_VMPTRLD:
|
---|
10384 | case VMX_EXIT_VMPTRST:
|
---|
10385 | case VMX_EXIT_VMREAD:
|
---|
10386 | case VMX_EXIT_VMRESUME:
|
---|
10387 | case VMX_EXIT_VMWRITE:
|
---|
10388 | case VMX_EXIT_VMXOFF:
|
---|
10389 | case VMX_EXIT_VMXON:
|
---|
10390 | case VMX_EXIT_MOV_CRX:
|
---|
10391 | case VMX_EXIT_MOV_DRX:
|
---|
10392 | case VMX_EXIT_IO_INSTR:
|
---|
10393 | case VMX_EXIT_RDMSR:
|
---|
10394 | case VMX_EXIT_WRMSR:
|
---|
10395 | case VMX_EXIT_MWAIT:
|
---|
10396 | case VMX_EXIT_MONITOR:
|
---|
10397 | case VMX_EXIT_PAUSE:
|
---|
10398 | case VMX_EXIT_XDTR_ACCESS:
|
---|
10399 | case VMX_EXIT_TR_ACCESS:
|
---|
10400 | case VMX_EXIT_INVEPT:
|
---|
10401 | case VMX_EXIT_RDTSCP:
|
---|
10402 | case VMX_EXIT_INVVPID:
|
---|
10403 | case VMX_EXIT_WBINVD:
|
---|
10404 | case VMX_EXIT_XSETBV:
|
---|
10405 | case VMX_EXIT_RDRAND:
|
---|
10406 | case VMX_EXIT_INVPCID:
|
---|
10407 | case VMX_EXIT_VMFUNC:
|
---|
10408 | case VMX_EXIT_RDSEED:
|
---|
10409 | case VMX_EXIT_XSAVES:
|
---|
10410 | case VMX_EXIT_XRSTORS:
|
---|
10411 | {
|
---|
10412 | int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
10413 | rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
10414 | AssertRCReturn(rc2, rc2);
|
---|
10415 | if ( pMixedCtx->rip != pDbgState->uRipStart
|
---|
10416 | || pMixedCtx->cs.Sel != pDbgState->uCsStart)
|
---|
10417 | return VINF_EM_DBG_STEPPED;
|
---|
10418 | break;
|
---|
10419 | }
|
---|
10420 |
|
---|
10421 | /* Errors and unexpected events: */
|
---|
10422 | case VMX_EXIT_INIT_SIGNAL:
|
---|
10423 | case VMX_EXIT_SIPI:
|
---|
10424 | case VMX_EXIT_IO_SMI:
|
---|
10425 | case VMX_EXIT_SMI:
|
---|
10426 | case VMX_EXIT_ERR_INVALID_GUEST_STATE:
|
---|
10427 | case VMX_EXIT_ERR_MSR_LOAD:
|
---|
10428 | case VMX_EXIT_ERR_MACHINE_CHECK:
|
---|
10429 | case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
|
---|
10430 | break;
|
---|
10431 |
|
---|
10432 | default:
|
---|
10433 | AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
|
---|
10434 | break;
|
---|
10435 | }
|
---|
10436 | }
|
---|
10437 |
|
---|
10438 | /*
|
---|
10439 | * Check for debugger event breakpoints and dtrace probes.
|
---|
10440 | */
|
---|
10441 | if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
|
---|
10442 | && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
|
---|
10443 | {
|
---|
10444 | VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVM, pVCpu, pMixedCtx, pVmxTransient, uExitReason);
|
---|
10445 | if (rcStrict != VINF_SUCCESS)
|
---|
10446 | return rcStrict;
|
---|
10447 | }
|
---|
10448 |
|
---|
10449 | /*
|
---|
10450 | * Normal processing.
|
---|
10451 | */
|
---|
10452 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
10453 | return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
|
---|
10454 | #else
|
---|
10455 | return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
|
---|
10456 | #endif
|
---|
10457 | }
|
---|
10458 |
|
---|
10459 |
|
---|
10460 | /**
|
---|
10461 | * Single steps guest code using VT-x.
|
---|
10462 | *
|
---|
10463 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
10464 | * @param pVM The cross context VM structure.
|
---|
10465 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10466 | * @param pCtx Pointer to the guest-CPU context.
|
---|
10467 | *
|
---|
10468 | * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
|
---|
10469 | */
|
---|
10470 | static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
10471 | {
|
---|
10472 | VMXTRANSIENT VmxTransient;
|
---|
10473 | VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
10474 |
|
---|
10475 | /* Set HMCPU indicators. */
|
---|
10476 | bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
|
---|
10477 | pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
|
---|
10478 | pVCpu->hm.s.fDebugWantRdTscExit = false;
|
---|
10479 | pVCpu->hm.s.fUsingDebugLoop = true;
|
---|
10480 |
|
---|
10481 | /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
|
---|
10482 | VMXRUNDBGSTATE DbgState;
|
---|
10483 | hmR0VmxRunDebugStateInit(pVCpu, pCtx, &DbgState);
|
---|
10484 | hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
|
---|
10485 |
|
---|
10486 | /*
|
---|
10487 | * The loop.
|
---|
10488 | */
|
---|
10489 | VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
|
---|
10490 | for (uint32_t cLoops = 0; ; cLoops++)
|
---|
10491 | {
|
---|
10492 | Assert(!HMR0SuspendPending());
|
---|
10493 | HMVMX_ASSERT_CPU_SAFE();
|
---|
10494 | bool fStepping = pVCpu->hm.s.fSingleInstruction;
|
---|
10495 |
|
---|
10496 | /*
|
---|
10497 | * Preparatory work for running guest code, this may force us to return
|
---|
10498 | * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
|
---|
10499 | */
|
---|
10500 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
10501 | hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
|
---|
10502 | rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, fStepping);
|
---|
10503 | if (rcStrict != VINF_SUCCESS)
|
---|
10504 | break;
|
---|
10505 |
|
---|
10506 | hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
|
---|
10507 | hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
|
---|
10508 |
|
---|
10509 | /*
|
---|
10510 | * Now we can run the guest code.
|
---|
10511 | */
|
---|
10512 | int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
|
---|
10513 |
|
---|
10514 | /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
|
---|
10515 |
|
---|
10516 | /*
|
---|
10517 | * Restore any residual host-state and save any bits shared between host
|
---|
10518 | * and guest into the guest-CPU state. Re-enables interrupts!
|
---|
10519 | */
|
---|
10520 | hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
|
---|
10521 |
|
---|
10522 | /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
|
---|
10523 | if (RT_SUCCESS(rcRun))
|
---|
10524 | { /* very likely */ }
|
---|
10525 | else
|
---|
10526 | {
|
---|
10527 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
10528 | hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
|
---|
10529 | return rcRun;
|
---|
10530 | }
|
---|
10531 |
|
---|
10532 | /* Profile the VM-exit. */
|
---|
10533 | AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
|
---|
10534 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
|
---|
10535 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
|
---|
10536 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
10537 | HMVMX_START_EXIT_DISPATCH_PROF();
|
---|
10538 |
|
---|
10539 | VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
|
---|
10540 |
|
---|
10541 | /*
|
---|
10542 | * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
|
---|
10543 | */
|
---|
10544 | rcStrict = hmR0VmxRunDebugHandleExit(pVM, pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, &DbgState);
|
---|
10545 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
10546 | if (rcStrict != VINF_SUCCESS)
|
---|
10547 | break;
|
---|
10548 | if (cLoops > pVM->hm.s.cMaxResumeLoops)
|
---|
10549 | {
|
---|
10550 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
10551 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
10552 | break;
|
---|
10553 | }
|
---|
10554 |
|
---|
10555 | /*
|
---|
10556 | * Stepping: Did the RIP change, if so, consider it a single step.
|
---|
10557 | * Otherwise, make sure one of the TFs gets set.
|
---|
10558 | */
|
---|
10559 | if (fStepping)
|
---|
10560 | {
|
---|
10561 | int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
|
---|
10562 | rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
|
---|
10563 | AssertRCReturn(rc2, rc2);
|
---|
10564 | if ( pCtx->rip != DbgState.uRipStart
|
---|
10565 | || pCtx->cs.Sel != DbgState.uCsStart)
|
---|
10566 | {
|
---|
10567 | rcStrict = VINF_EM_DBG_STEPPED;
|
---|
10568 | break;
|
---|
10569 | }
|
---|
10570 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
10571 | }
|
---|
10572 |
|
---|
10573 | /*
|
---|
10574 | * Update when dtrace settings changes (DBGF kicks us, so no need to check).
|
---|
10575 | */
|
---|
10576 | if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
|
---|
10577 | hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
|
---|
10578 | }
|
---|
10579 |
|
---|
10580 | /*
|
---|
10581 | * Clear the X86_EFL_TF if necessary.
|
---|
10582 | */
|
---|
10583 | if (pVCpu->hm.s.fClearTrapFlag)
|
---|
10584 | {
|
---|
10585 | int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
|
---|
10586 | AssertRCReturn(rc2, rc2);
|
---|
10587 | pVCpu->hm.s.fClearTrapFlag = false;
|
---|
10588 | pCtx->eflags.Bits.u1TF = 0;
|
---|
10589 | }
|
---|
10590 | /** @todo there seems to be issues with the resume flag when the monitor trap
|
---|
10591 | * flag is pending without being used. Seen early in bios init when
|
---|
10592 | * accessing APIC page in protected mode. */
|
---|
10593 |
|
---|
10594 | /*
|
---|
10595 | * Restore VM-exit control settings as we may not reenter this function the
|
---|
10596 | * next time around.
|
---|
10597 | */
|
---|
10598 | rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
|
---|
10599 |
|
---|
10600 | /* Restore HMCPU indicators. */
|
---|
10601 | pVCpu->hm.s.fUsingDebugLoop = false;
|
---|
10602 | pVCpu->hm.s.fDebugWantRdTscExit = false;
|
---|
10603 | pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
|
---|
10604 |
|
---|
10605 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
10606 | return rcStrict;
|
---|
10607 | }
|
---|
10608 |
|
---|
10609 |
|
---|
10610 | /** @} */
|
---|
10611 |
|
---|
10612 |
|
---|
10613 | /**
|
---|
10614 | * Checks if any expensive dtrace probes are enabled and we should go to the
|
---|
10615 | * debug loop.
|
---|
10616 | *
|
---|
10617 | * @returns true if we should use debug loop, false if not.
|
---|
10618 | */
|
---|
10619 | static bool hmR0VmxAnyExpensiveProbesEnabled(void)
|
---|
10620 | {
|
---|
10621 | /* It's probably faster to OR the raw 32-bit counter variables together.
|
---|
10622 | Since the variables are in an array and the probes are next to one
|
---|
10623 | another (more or less), we have good locality. So, better read
|
---|
10624 | eight-nine cache lines ever time and only have one conditional, than
|
---|
10625 | 128+ conditionals, right? */
|
---|
10626 | return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
|
---|
10627 | | VBOXVMM_XCPT_DE_ENABLED_RAW()
|
---|
10628 | | VBOXVMM_XCPT_DB_ENABLED_RAW()
|
---|
10629 | | VBOXVMM_XCPT_BP_ENABLED_RAW()
|
---|
10630 | | VBOXVMM_XCPT_OF_ENABLED_RAW()
|
---|
10631 | | VBOXVMM_XCPT_BR_ENABLED_RAW()
|
---|
10632 | | VBOXVMM_XCPT_UD_ENABLED_RAW()
|
---|
10633 | | VBOXVMM_XCPT_NM_ENABLED_RAW()
|
---|
10634 | | VBOXVMM_XCPT_DF_ENABLED_RAW()
|
---|
10635 | | VBOXVMM_XCPT_TS_ENABLED_RAW()
|
---|
10636 | | VBOXVMM_XCPT_NP_ENABLED_RAW()
|
---|
10637 | | VBOXVMM_XCPT_SS_ENABLED_RAW()
|
---|
10638 | | VBOXVMM_XCPT_GP_ENABLED_RAW()
|
---|
10639 | | VBOXVMM_XCPT_PF_ENABLED_RAW()
|
---|
10640 | | VBOXVMM_XCPT_MF_ENABLED_RAW()
|
---|
10641 | | VBOXVMM_XCPT_AC_ENABLED_RAW()
|
---|
10642 | | VBOXVMM_XCPT_XF_ENABLED_RAW()
|
---|
10643 | | VBOXVMM_XCPT_VE_ENABLED_RAW()
|
---|
10644 | | VBOXVMM_XCPT_SX_ENABLED_RAW()
|
---|
10645 | | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
|
---|
10646 | | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
|
---|
10647 | ) != 0
|
---|
10648 | || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
|
---|
10649 | | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
|
---|
10650 | | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
|
---|
10651 | | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
|
---|
10652 | | VBOXVMM_INSTR_INVD_ENABLED_RAW()
|
---|
10653 | | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
|
---|
10654 | | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
|
---|
10655 | | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
|
---|
10656 | | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
|
---|
10657 | | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
|
---|
10658 | | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
|
---|
10659 | | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
|
---|
10660 | | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
|
---|
10661 | | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
|
---|
10662 | | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
|
---|
10663 | | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
|
---|
10664 | | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
|
---|
10665 | | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
|
---|
10666 | | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
|
---|
10667 | | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
|
---|
10668 | | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
|
---|
10669 | | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
|
---|
10670 | | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
|
---|
10671 | | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
|
---|
10672 | | VBOXVMM_INSTR_STR_ENABLED_RAW()
|
---|
10673 | | VBOXVMM_INSTR_LTR_ENABLED_RAW()
|
---|
10674 | | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
|
---|
10675 | | VBOXVMM_INSTR_RSM_ENABLED_RAW()
|
---|
10676 | | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
|
---|
10677 | | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
|
---|
10678 | | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
|
---|
10679 | | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
|
---|
10680 | | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
|
---|
10681 | | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
|
---|
10682 | | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
|
---|
10683 | | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
|
---|
10684 | | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
|
---|
10685 | | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
|
---|
10686 | | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
|
---|
10687 | | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
|
---|
10688 | | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
|
---|
10689 | | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
|
---|
10690 | | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
|
---|
10691 | | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
|
---|
10692 | | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
|
---|
10693 | | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
|
---|
10694 | ) != 0
|
---|
10695 | || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
|
---|
10696 | | VBOXVMM_EXIT_HALT_ENABLED_RAW()
|
---|
10697 | | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
|
---|
10698 | | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
|
---|
10699 | | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
|
---|
10700 | | VBOXVMM_EXIT_INVD_ENABLED_RAW()
|
---|
10701 | | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
|
---|
10702 | | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
|
---|
10703 | | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
|
---|
10704 | | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
|
---|
10705 | | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
|
---|
10706 | | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
|
---|
10707 | | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
|
---|
10708 | | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
|
---|
10709 | | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
|
---|
10710 | | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
|
---|
10711 | | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
|
---|
10712 | | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
|
---|
10713 | | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
|
---|
10714 | | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
|
---|
10715 | | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
|
---|
10716 | | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
|
---|
10717 | | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
|
---|
10718 | | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
|
---|
10719 | | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
|
---|
10720 | | VBOXVMM_EXIT_STR_ENABLED_RAW()
|
---|
10721 | | VBOXVMM_EXIT_LTR_ENABLED_RAW()
|
---|
10722 | | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
|
---|
10723 | | VBOXVMM_EXIT_RSM_ENABLED_RAW()
|
---|
10724 | | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
|
---|
10725 | | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
|
---|
10726 | | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
|
---|
10727 | | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
|
---|
10728 | | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
|
---|
10729 | | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
|
---|
10730 | | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
|
---|
10731 | | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
|
---|
10732 | | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
|
---|
10733 | | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
|
---|
10734 | | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
|
---|
10735 | | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
|
---|
10736 | | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
|
---|
10737 | | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
|
---|
10738 | | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
|
---|
10739 | | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
|
---|
10740 | | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
|
---|
10741 | | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
|
---|
10742 | | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
|
---|
10743 | | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
|
---|
10744 | | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
|
---|
10745 | | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
|
---|
10746 | ) != 0;
|
---|
10747 | }
|
---|
10748 |
|
---|
10749 |
|
---|
10750 | /**
|
---|
10751 | * Runs the guest code using VT-x.
|
---|
10752 | *
|
---|
10753 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
10754 | * @param pVM The cross context VM structure.
|
---|
10755 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10756 | * @param pCtx Pointer to the guest-CPU context.
|
---|
10757 | */
|
---|
10758 | VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
10759 | {
|
---|
10760 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
10761 | Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
|
---|
10762 | HMVMX_ASSERT_PREEMPT_SAFE();
|
---|
10763 |
|
---|
10764 | VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
|
---|
10765 |
|
---|
10766 | VBOXSTRICTRC rcStrict;
|
---|
10767 | if ( !pVCpu->hm.s.fUseDebugLoop
|
---|
10768 | && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
|
---|
10769 | && !DBGFIsStepping(pVCpu)
|
---|
10770 | && !pVM->dbgf.ro.cEnabledInt3Breakpoints)
|
---|
10771 | rcStrict = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
|
---|
10772 | else
|
---|
10773 | rcStrict = hmR0VmxRunGuestCodeDebug(pVM, pVCpu, pCtx);
|
---|
10774 |
|
---|
10775 | if (rcStrict == VERR_EM_INTERPRETER)
|
---|
10776 | rcStrict = VINF_EM_RAW_EMULATE_INSTR;
|
---|
10777 | else if (rcStrict == VINF_EM_RESET)
|
---|
10778 | rcStrict = VINF_EM_TRIPLE_FAULT;
|
---|
10779 |
|
---|
10780 | int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rcStrict);
|
---|
10781 | if (RT_FAILURE(rc2))
|
---|
10782 | {
|
---|
10783 | pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
|
---|
10784 | rcStrict = rc2;
|
---|
10785 | }
|
---|
10786 | Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
|
---|
10787 | return rcStrict;
|
---|
10788 | }
|
---|
10789 |
|
---|
10790 |
|
---|
10791 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
10792 | DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
|
---|
10793 | {
|
---|
10794 | # ifdef DEBUG_ramshankar
|
---|
10795 | # define RETURN_EXIT_CALL(a_CallExpr) \
|
---|
10796 | do { \
|
---|
10797 | int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); \
|
---|
10798 | VBOXSTRICTRC rcStrict = a_CallExpr; \
|
---|
10799 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); \
|
---|
10800 | return rcStrict; \
|
---|
10801 | } while (0)
|
---|
10802 | # else
|
---|
10803 | # define RETURN_EXIT_CALL(a_CallExpr) return a_CallExpr
|
---|
10804 | # endif
|
---|
10805 | switch (rcReason)
|
---|
10806 | {
|
---|
10807 | case VMX_EXIT_EPT_MISCONFIG: RETURN_EXIT_CALL(hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10808 | case VMX_EXIT_EPT_VIOLATION: RETURN_EXIT_CALL(hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10809 | case VMX_EXIT_IO_INSTR: RETURN_EXIT_CALL(hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10810 | case VMX_EXIT_CPUID: RETURN_EXIT_CALL(hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10811 | case VMX_EXIT_RDTSC: RETURN_EXIT_CALL(hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10812 | case VMX_EXIT_RDTSCP: RETURN_EXIT_CALL(hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10813 | case VMX_EXIT_APIC_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10814 | case VMX_EXIT_XCPT_OR_NMI: RETURN_EXIT_CALL(hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10815 | case VMX_EXIT_MOV_CRX: RETURN_EXIT_CALL(hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10816 | case VMX_EXIT_EXT_INT: RETURN_EXIT_CALL(hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10817 | case VMX_EXIT_INT_WINDOW: RETURN_EXIT_CALL(hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10818 | case VMX_EXIT_MWAIT: RETURN_EXIT_CALL(hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10819 | case VMX_EXIT_MONITOR: RETURN_EXIT_CALL(hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10820 | case VMX_EXIT_TASK_SWITCH: RETURN_EXIT_CALL(hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10821 | case VMX_EXIT_PREEMPT_TIMER: RETURN_EXIT_CALL(hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10822 | case VMX_EXIT_RDMSR: RETURN_EXIT_CALL(hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10823 | case VMX_EXIT_WRMSR: RETURN_EXIT_CALL(hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10824 | case VMX_EXIT_MOV_DRX: RETURN_EXIT_CALL(hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10825 | case VMX_EXIT_TPR_BELOW_THRESHOLD: RETURN_EXIT_CALL(hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10826 | case VMX_EXIT_HLT: RETURN_EXIT_CALL(hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10827 | case VMX_EXIT_INVD: RETURN_EXIT_CALL(hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10828 | case VMX_EXIT_INVLPG: RETURN_EXIT_CALL(hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10829 | case VMX_EXIT_RSM: RETURN_EXIT_CALL(hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10830 | case VMX_EXIT_MTF: RETURN_EXIT_CALL(hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10831 | case VMX_EXIT_PAUSE: RETURN_EXIT_CALL(hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10832 | case VMX_EXIT_XDTR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10833 | case VMX_EXIT_TR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10834 | case VMX_EXIT_WBINVD: RETURN_EXIT_CALL(hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10835 | case VMX_EXIT_XSETBV: RETURN_EXIT_CALL(hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10836 | case VMX_EXIT_RDRAND: RETURN_EXIT_CALL(hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10837 | case VMX_EXIT_INVPCID: RETURN_EXIT_CALL(hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10838 | case VMX_EXIT_GETSEC: RETURN_EXIT_CALL(hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10839 | case VMX_EXIT_RDPMC: RETURN_EXIT_CALL(hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10840 | case VMX_EXIT_VMCALL: RETURN_EXIT_CALL(hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient));
|
---|
10841 |
|
---|
10842 | case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10843 | case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10844 | case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10845 | case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10846 | case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10847 | case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10848 | case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10849 | case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10850 | case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10851 |
|
---|
10852 | case VMX_EXIT_VMCLEAR:
|
---|
10853 | case VMX_EXIT_VMLAUNCH:
|
---|
10854 | case VMX_EXIT_VMPTRLD:
|
---|
10855 | case VMX_EXIT_VMPTRST:
|
---|
10856 | case VMX_EXIT_VMREAD:
|
---|
10857 | case VMX_EXIT_VMRESUME:
|
---|
10858 | case VMX_EXIT_VMWRITE:
|
---|
10859 | case VMX_EXIT_VMXOFF:
|
---|
10860 | case VMX_EXIT_VMXON:
|
---|
10861 | case VMX_EXIT_INVEPT:
|
---|
10862 | case VMX_EXIT_INVVPID:
|
---|
10863 | case VMX_EXIT_VMFUNC:
|
---|
10864 | case VMX_EXIT_XSAVES:
|
---|
10865 | case VMX_EXIT_XRSTORS:
|
---|
10866 | return hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10867 | case VMX_EXIT_ENCLS:
|
---|
10868 | case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
|
---|
10869 | case VMX_EXIT_PML_FULL:
|
---|
10870 | default:
|
---|
10871 | return hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
|
---|
10872 | }
|
---|
10873 | #undef RETURN_EXIT_CALL
|
---|
10874 | }
|
---|
10875 | #endif /* !HMVMX_USE_FUNCTION_TABLE */
|
---|
10876 |
|
---|
10877 |
|
---|
10878 | #ifdef VBOX_STRICT
|
---|
10879 | /* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
|
---|
10880 | # define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
|
---|
10881 | RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
|
---|
10882 |
|
---|
10883 | # define HMVMX_ASSERT_PREEMPT_CPUID() \
|
---|
10884 | do { \
|
---|
10885 | RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
|
---|
10886 | AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
|
---|
10887 | } while (0)
|
---|
10888 |
|
---|
10889 | # define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
|
---|
10890 | do { \
|
---|
10891 | AssertPtr(pVCpu); \
|
---|
10892 | AssertPtr(pMixedCtx); \
|
---|
10893 | AssertPtr(pVmxTransient); \
|
---|
10894 | Assert(pVmxTransient->fVMEntryFailed == false); \
|
---|
10895 | Assert(ASMIntAreEnabled()); \
|
---|
10896 | HMVMX_ASSERT_PREEMPT_SAFE(); \
|
---|
10897 | HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
|
---|
10898 | Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
|
---|
10899 | HMVMX_ASSERT_PREEMPT_SAFE(); \
|
---|
10900 | if (VMMR0IsLogFlushDisabled(pVCpu)) \
|
---|
10901 | HMVMX_ASSERT_PREEMPT_CPUID(); \
|
---|
10902 | HMVMX_STOP_EXIT_DISPATCH_PROF(); \
|
---|
10903 | } while (0)
|
---|
10904 |
|
---|
10905 | # define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
|
---|
10906 | do { \
|
---|
10907 | Log4Func(("\n")); \
|
---|
10908 | } while (0)
|
---|
10909 | #else /* nonstrict builds: */
|
---|
10910 | # define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
|
---|
10911 | do { \
|
---|
10912 | HMVMX_STOP_EXIT_DISPATCH_PROF(); \
|
---|
10913 | NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
|
---|
10914 | } while (0)
|
---|
10915 | # define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
|
---|
10916 | #endif
|
---|
10917 |
|
---|
10918 |
|
---|
10919 | /**
|
---|
10920 | * Advances the guest RIP by the specified number of bytes.
|
---|
10921 | *
|
---|
10922 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10923 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
10924 | * out-of-sync. Make sure to update the required fields
|
---|
10925 | * before using them.
|
---|
10926 | * @param cbInstr Number of bytes to advance the RIP by.
|
---|
10927 | *
|
---|
10928 | * @remarks No-long-jump zone!!!
|
---|
10929 | */
|
---|
10930 | DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
|
---|
10931 | {
|
---|
10932 | /* Advance the RIP. */
|
---|
10933 | pMixedCtx->rip += cbInstr;
|
---|
10934 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
|
---|
10935 |
|
---|
10936 | /* Update interrupt inhibition. */
|
---|
10937 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
10938 | && pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
10939 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
10940 | }
|
---|
10941 |
|
---|
10942 |
|
---|
10943 | /**
|
---|
10944 | * Advances the guest RIP after reading it from the VMCS.
|
---|
10945 | *
|
---|
10946 | * @returns VBox status code, no informational status codes.
|
---|
10947 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10948 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
10949 | * out-of-sync. Make sure to update the required fields
|
---|
10950 | * before using them.
|
---|
10951 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
10952 | *
|
---|
10953 | * @remarks No-long-jump zone!!!
|
---|
10954 | */
|
---|
10955 | static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
10956 | {
|
---|
10957 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
10958 | rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
10959 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
10960 | AssertRCReturn(rc, rc);
|
---|
10961 |
|
---|
10962 | hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, pVmxTransient->cbInstr);
|
---|
10963 |
|
---|
10964 | /*
|
---|
10965 | * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
|
---|
10966 | * pending debug exception field as it takes care of priority of events.
|
---|
10967 | *
|
---|
10968 | * See Intel spec. 32.2.1 "Debug Exceptions".
|
---|
10969 | */
|
---|
10970 | if ( !pVCpu->hm.s.fSingleInstruction
|
---|
10971 | && pMixedCtx->eflags.Bits.u1TF)
|
---|
10972 | hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
|
---|
10973 |
|
---|
10974 | return VINF_SUCCESS;
|
---|
10975 | }
|
---|
10976 |
|
---|
10977 |
|
---|
10978 | /**
|
---|
10979 | * Tries to determine what part of the guest-state VT-x has deemed as invalid
|
---|
10980 | * and update error record fields accordingly.
|
---|
10981 | *
|
---|
10982 | * @return VMX_IGS_* return codes.
|
---|
10983 | * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
|
---|
10984 | * wrong with the guest state.
|
---|
10985 | *
|
---|
10986 | * @param pVM The cross context VM structure.
|
---|
10987 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10988 | * @param pCtx Pointer to the guest-CPU state.
|
---|
10989 | *
|
---|
10990 | * @remarks This function assumes our cache of the VMCS controls
|
---|
10991 | * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
|
---|
10992 | */
|
---|
10993 | static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
10994 | {
|
---|
10995 | #define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
|
---|
10996 | #define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
|
---|
10997 | uError = (err); \
|
---|
10998 | break; \
|
---|
10999 | } else do { } while (0)
|
---|
11000 |
|
---|
11001 | int rc;
|
---|
11002 | uint32_t uError = VMX_IGS_ERROR;
|
---|
11003 | uint32_t u32Val;
|
---|
11004 | bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
|
---|
11005 |
|
---|
11006 | do
|
---|
11007 | {
|
---|
11008 | /*
|
---|
11009 | * CR0.
|
---|
11010 | */
|
---|
11011 | uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
|
---|
11012 | uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
|
---|
11013 | /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
|
---|
11014 | See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
|
---|
11015 | if (fUnrestrictedGuest)
|
---|
11016 | uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
|
---|
11017 |
|
---|
11018 | uint32_t u32GuestCR0;
|
---|
11019 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
|
---|
11020 | AssertRCBreak(rc);
|
---|
11021 | HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
|
---|
11022 | HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
|
---|
11023 | if ( !fUnrestrictedGuest
|
---|
11024 | && (u32GuestCR0 & X86_CR0_PG)
|
---|
11025 | && !(u32GuestCR0 & X86_CR0_PE))
|
---|
11026 | {
|
---|
11027 | HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
|
---|
11028 | }
|
---|
11029 |
|
---|
11030 | /*
|
---|
11031 | * CR4.
|
---|
11032 | */
|
---|
11033 | uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
|
---|
11034 | uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
|
---|
11035 |
|
---|
11036 | uint32_t u32GuestCR4;
|
---|
11037 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
|
---|
11038 | AssertRCBreak(rc);
|
---|
11039 | HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
|
---|
11040 | HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
|
---|
11041 |
|
---|
11042 | /*
|
---|
11043 | * IA32_DEBUGCTL MSR.
|
---|
11044 | */
|
---|
11045 | uint64_t u64Val;
|
---|
11046 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
|
---|
11047 | AssertRCBreak(rc);
|
---|
11048 | if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
|
---|
11049 | && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
|
---|
11050 | {
|
---|
11051 | HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
|
---|
11052 | }
|
---|
11053 | uint64_t u64DebugCtlMsr = u64Val;
|
---|
11054 |
|
---|
11055 | #ifdef VBOX_STRICT
|
---|
11056 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
|
---|
11057 | AssertRCBreak(rc);
|
---|
11058 | Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
|
---|
11059 | #endif
|
---|
11060 | bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
|
---|
11061 |
|
---|
11062 | /*
|
---|
11063 | * RIP and RFLAGS.
|
---|
11064 | */
|
---|
11065 | uint32_t u32Eflags;
|
---|
11066 | #if HC_ARCH_BITS == 64
|
---|
11067 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
|
---|
11068 | AssertRCBreak(rc);
|
---|
11069 | /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
|
---|
11070 | if ( !fLongModeGuest
|
---|
11071 | || !pCtx->cs.Attr.n.u1Long)
|
---|
11072 | {
|
---|
11073 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
|
---|
11074 | }
|
---|
11075 | /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
|
---|
11076 | * must be identical if the "IA-32e mode guest" VM-entry
|
---|
11077 | * control is 1 and CS.L is 1. No check applies if the
|
---|
11078 | * CPU supports 64 linear-address bits. */
|
---|
11079 |
|
---|
11080 | /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
|
---|
11081 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
|
---|
11082 | AssertRCBreak(rc);
|
---|
11083 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
|
---|
11084 | VMX_IGS_RFLAGS_RESERVED);
|
---|
11085 | HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
|
---|
11086 | u32Eflags = u64Val;
|
---|
11087 | #else
|
---|
11088 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
|
---|
11089 | AssertRCBreak(rc);
|
---|
11090 | HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
|
---|
11091 | HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
|
---|
11092 | #endif
|
---|
11093 |
|
---|
11094 | if ( fLongModeGuest
|
---|
11095 | || ( fUnrestrictedGuest
|
---|
11096 | && !(u32GuestCR0 & X86_CR0_PE)))
|
---|
11097 | {
|
---|
11098 | HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
|
---|
11099 | }
|
---|
11100 |
|
---|
11101 | uint32_t u32EntryInfo;
|
---|
11102 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
|
---|
11103 | AssertRCBreak(rc);
|
---|
11104 | if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
|
---|
11105 | && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
|
---|
11106 | {
|
---|
11107 | HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
|
---|
11108 | }
|
---|
11109 |
|
---|
11110 | /*
|
---|
11111 | * 64-bit checks.
|
---|
11112 | */
|
---|
11113 | #if HC_ARCH_BITS == 64
|
---|
11114 | if (fLongModeGuest)
|
---|
11115 | {
|
---|
11116 | HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
|
---|
11117 | HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
|
---|
11118 | }
|
---|
11119 |
|
---|
11120 | if ( !fLongModeGuest
|
---|
11121 | && (u32GuestCR4 & X86_CR4_PCIDE))
|
---|
11122 | {
|
---|
11123 | HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
|
---|
11124 | }
|
---|
11125 |
|
---|
11126 | /** @todo CR3 field must be such that bits 63:52 and bits in the range
|
---|
11127 | * 51:32 beyond the processor's physical-address width are 0. */
|
---|
11128 |
|
---|
11129 | if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
|
---|
11130 | && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
|
---|
11131 | {
|
---|
11132 | HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
|
---|
11133 | }
|
---|
11134 |
|
---|
11135 | rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
|
---|
11136 | AssertRCBreak(rc);
|
---|
11137 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
|
---|
11138 |
|
---|
11139 | rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
|
---|
11140 | AssertRCBreak(rc);
|
---|
11141 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
|
---|
11142 | #endif
|
---|
11143 |
|
---|
11144 | /*
|
---|
11145 | * PERF_GLOBAL MSR.
|
---|
11146 | */
|
---|
11147 | if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
|
---|
11148 | {
|
---|
11149 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
|
---|
11150 | AssertRCBreak(rc);
|
---|
11151 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
|
---|
11152 | VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
|
---|
11153 | }
|
---|
11154 |
|
---|
11155 | /*
|
---|
11156 | * PAT MSR.
|
---|
11157 | */
|
---|
11158 | if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
|
---|
11159 | {
|
---|
11160 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
|
---|
11161 | AssertRCBreak(rc);
|
---|
11162 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
|
---|
11163 | for (unsigned i = 0; i < 8; i++)
|
---|
11164 | {
|
---|
11165 | uint8_t u8Val = (u64Val & 0xff);
|
---|
11166 | if ( u8Val != 0 /* UC */
|
---|
11167 | && u8Val != 1 /* WC */
|
---|
11168 | && u8Val != 4 /* WT */
|
---|
11169 | && u8Val != 5 /* WP */
|
---|
11170 | && u8Val != 6 /* WB */
|
---|
11171 | && u8Val != 7 /* UC- */)
|
---|
11172 | {
|
---|
11173 | HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
|
---|
11174 | }
|
---|
11175 | u64Val >>= 8;
|
---|
11176 | }
|
---|
11177 | }
|
---|
11178 |
|
---|
11179 | /*
|
---|
11180 | * EFER MSR.
|
---|
11181 | */
|
---|
11182 | if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
|
---|
11183 | {
|
---|
11184 | Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
|
---|
11185 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
|
---|
11186 | AssertRCBreak(rc);
|
---|
11187 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
|
---|
11188 | VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
|
---|
11189 | HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
|
---|
11190 | & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
|
---|
11191 | VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
|
---|
11192 | HMVMX_CHECK_BREAK( fUnrestrictedGuest
|
---|
11193 | || !(u32GuestCR0 & X86_CR0_PG)
|
---|
11194 | || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
|
---|
11195 | VMX_IGS_EFER_LMA_LME_MISMATCH);
|
---|
11196 | }
|
---|
11197 |
|
---|
11198 | /*
|
---|
11199 | * Segment registers.
|
---|
11200 | */
|
---|
11201 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
11202 | || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
|
---|
11203 | if (!(u32Eflags & X86_EFL_VM))
|
---|
11204 | {
|
---|
11205 | /* CS */
|
---|
11206 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
|
---|
11207 | HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
|
---|
11208 | HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
|
---|
11209 | HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
|
---|
11210 | || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
|
---|
11211 | HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
|
---|
11212 | || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
|
---|
11213 | /* CS cannot be loaded with NULL in protected mode. */
|
---|
11214 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
|
---|
11215 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
|
---|
11216 | if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
|
---|
11217 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
|
---|
11218 | else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
|
---|
11219 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
|
---|
11220 | else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
|
---|
11221 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
|
---|
11222 | else
|
---|
11223 | HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
|
---|
11224 |
|
---|
11225 | /* SS */
|
---|
11226 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
11227 | || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
|
---|
11228 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
|
---|
11229 | if ( !(pCtx->cr0 & X86_CR0_PE)
|
---|
11230 | || pCtx->cs.Attr.n.u4Type == 3)
|
---|
11231 | {
|
---|
11232 | HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
|
---|
11233 | }
|
---|
11234 | if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
11235 | {
|
---|
11236 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
|
---|
11237 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
|
---|
11238 | HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
|
---|
11239 | HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
|
---|
11240 | HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
|
---|
11241 | || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
|
---|
11242 | HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
|
---|
11243 | || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
|
---|
11244 | }
|
---|
11245 |
|
---|
11246 | /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
|
---|
11247 | if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
11248 | {
|
---|
11249 | HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
|
---|
11250 | HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
|
---|
11251 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
11252 | || pCtx->ds.Attr.n.u4Type > 11
|
---|
11253 | || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
|
---|
11254 | HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
|
---|
11255 | HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
|
---|
11256 | HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
|
---|
11257 | || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
|
---|
11258 | HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
|
---|
11259 | || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
|
---|
11260 | HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
11261 | || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
|
---|
11262 | }
|
---|
11263 | if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
11264 | {
|
---|
11265 | HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
|
---|
11266 | HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
|
---|
11267 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
11268 | || pCtx->es.Attr.n.u4Type > 11
|
---|
11269 | || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
|
---|
11270 | HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
|
---|
11271 | HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
|
---|
11272 | HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
|
---|
11273 | || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
|
---|
11274 | HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
|
---|
11275 | || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
|
---|
11276 | HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
11277 | || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
|
---|
11278 | }
|
---|
11279 | if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
11280 | {
|
---|
11281 | HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
|
---|
11282 | HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
|
---|
11283 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
11284 | || pCtx->fs.Attr.n.u4Type > 11
|
---|
11285 | || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
|
---|
11286 | HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
|
---|
11287 | HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
|
---|
11288 | HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
|
---|
11289 | || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
|
---|
11290 | HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
|
---|
11291 | || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
|
---|
11292 | HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
11293 | || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
|
---|
11294 | }
|
---|
11295 | if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
11296 | {
|
---|
11297 | HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
|
---|
11298 | HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
|
---|
11299 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
11300 | || pCtx->gs.Attr.n.u4Type > 11
|
---|
11301 | || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
|
---|
11302 | HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
|
---|
11303 | HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
|
---|
11304 | HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
|
---|
11305 | || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
|
---|
11306 | HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
|
---|
11307 | || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
|
---|
11308 | HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
11309 | || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
|
---|
11310 | }
|
---|
11311 | /* 64-bit capable CPUs. */
|
---|
11312 | #if HC_ARCH_BITS == 64
|
---|
11313 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
|
---|
11314 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
|
---|
11315 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
11316 | || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
|
---|
11317 | HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
|
---|
11318 | HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
|
---|
11319 | VMX_IGS_LONGMODE_SS_BASE_INVALID);
|
---|
11320 | HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
|
---|
11321 | VMX_IGS_LONGMODE_DS_BASE_INVALID);
|
---|
11322 | HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
|
---|
11323 | VMX_IGS_LONGMODE_ES_BASE_INVALID);
|
---|
11324 | #endif
|
---|
11325 | }
|
---|
11326 | else
|
---|
11327 | {
|
---|
11328 | /* V86 mode checks. */
|
---|
11329 | uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
|
---|
11330 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
11331 | {
|
---|
11332 | u32CSAttr = 0xf3; u32SSAttr = 0xf3;
|
---|
11333 | u32DSAttr = 0xf3; u32ESAttr = 0xf3;
|
---|
11334 | u32FSAttr = 0xf3; u32GSAttr = 0xf3;
|
---|
11335 | }
|
---|
11336 | else
|
---|
11337 | {
|
---|
11338 | u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
|
---|
11339 | u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
|
---|
11340 | u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
|
---|
11341 | }
|
---|
11342 |
|
---|
11343 | /* CS */
|
---|
11344 | HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
|
---|
11345 | HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
|
---|
11346 | HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
|
---|
11347 | /* SS */
|
---|
11348 | HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
|
---|
11349 | HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
|
---|
11350 | HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
|
---|
11351 | /* DS */
|
---|
11352 | HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
|
---|
11353 | HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
|
---|
11354 | HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
|
---|
11355 | /* ES */
|
---|
11356 | HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
|
---|
11357 | HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
|
---|
11358 | HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
|
---|
11359 | /* FS */
|
---|
11360 | HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
|
---|
11361 | HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
|
---|
11362 | HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
|
---|
11363 | /* GS */
|
---|
11364 | HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
|
---|
11365 | HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
|
---|
11366 | HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
|
---|
11367 | /* 64-bit capable CPUs. */
|
---|
11368 | #if HC_ARCH_BITS == 64
|
---|
11369 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
|
---|
11370 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
|
---|
11371 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
11372 | || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
|
---|
11373 | HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
|
---|
11374 | HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
|
---|
11375 | VMX_IGS_LONGMODE_SS_BASE_INVALID);
|
---|
11376 | HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
|
---|
11377 | VMX_IGS_LONGMODE_DS_BASE_INVALID);
|
---|
11378 | HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
|
---|
11379 | VMX_IGS_LONGMODE_ES_BASE_INVALID);
|
---|
11380 | #endif
|
---|
11381 | }
|
---|
11382 |
|
---|
11383 | /*
|
---|
11384 | * TR.
|
---|
11385 | */
|
---|
11386 | HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
|
---|
11387 | /* 64-bit capable CPUs. */
|
---|
11388 | #if HC_ARCH_BITS == 64
|
---|
11389 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
|
---|
11390 | #endif
|
---|
11391 | if (fLongModeGuest)
|
---|
11392 | {
|
---|
11393 | HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
|
---|
11394 | VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
|
---|
11395 | }
|
---|
11396 | else
|
---|
11397 | {
|
---|
11398 | HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
|
---|
11399 | || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
|
---|
11400 | VMX_IGS_TR_ATTR_TYPE_INVALID);
|
---|
11401 | }
|
---|
11402 | HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
|
---|
11403 | HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
|
---|
11404 | HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
|
---|
11405 | HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
|
---|
11406 | || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
|
---|
11407 | HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
|
---|
11408 | || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
|
---|
11409 | HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
|
---|
11410 |
|
---|
11411 | /*
|
---|
11412 | * GDTR and IDTR.
|
---|
11413 | */
|
---|
11414 | #if HC_ARCH_BITS == 64
|
---|
11415 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
|
---|
11416 | AssertRCBreak(rc);
|
---|
11417 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
|
---|
11418 |
|
---|
11419 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
|
---|
11420 | AssertRCBreak(rc);
|
---|
11421 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
|
---|
11422 | #endif
|
---|
11423 |
|
---|
11424 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
|
---|
11425 | AssertRCBreak(rc);
|
---|
11426 | HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
|
---|
11427 |
|
---|
11428 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
|
---|
11429 | AssertRCBreak(rc);
|
---|
11430 | HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
|
---|
11431 |
|
---|
11432 | /*
|
---|
11433 | * Guest Non-Register State.
|
---|
11434 | */
|
---|
11435 | /* Activity State. */
|
---|
11436 | uint32_t u32ActivityState;
|
---|
11437 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
|
---|
11438 | AssertRCBreak(rc);
|
---|
11439 | HMVMX_CHECK_BREAK( !u32ActivityState
|
---|
11440 | || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
|
---|
11441 | VMX_IGS_ACTIVITY_STATE_INVALID);
|
---|
11442 | HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
|
---|
11443 | || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
|
---|
11444 | uint32_t u32IntrState;
|
---|
11445 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
|
---|
11446 | AssertRCBreak(rc);
|
---|
11447 | if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
|
---|
11448 | || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
|
---|
11449 | {
|
---|
11450 | HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
|
---|
11451 | }
|
---|
11452 |
|
---|
11453 | /** @todo Activity state and injecting interrupts. Left as a todo since we
|
---|
11454 | * currently don't use activity states but ACTIVE. */
|
---|
11455 |
|
---|
11456 | HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
|
---|
11457 | || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
|
---|
11458 |
|
---|
11459 | /* Guest interruptibility-state. */
|
---|
11460 | HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
|
---|
11461 | HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
|
---|
11462 | | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
|
---|
11463 | != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
|
---|
11464 | | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
|
---|
11465 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
|
---|
11466 | HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
|
---|
11467 | || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
|
---|
11468 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
|
---|
11469 | if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
|
---|
11470 | {
|
---|
11471 | if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
|
---|
11472 | {
|
---|
11473 | HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
|
---|
11474 | && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
|
---|
11475 | VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
|
---|
11476 | }
|
---|
11477 | else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
|
---|
11478 | {
|
---|
11479 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
|
---|
11480 | VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
|
---|
11481 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
|
---|
11482 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
|
---|
11483 | }
|
---|
11484 | }
|
---|
11485 | /** @todo Assumes the processor is not in SMM. */
|
---|
11486 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
|
---|
11487 | VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
|
---|
11488 | HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
|
---|
11489 | || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
|
---|
11490 | VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
|
---|
11491 | if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
|
---|
11492 | && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
|
---|
11493 | && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
|
---|
11494 | {
|
---|
11495 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
|
---|
11496 | VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
|
---|
11497 | }
|
---|
11498 |
|
---|
11499 | /* Pending debug exceptions. */
|
---|
11500 | #if HC_ARCH_BITS == 64
|
---|
11501 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
|
---|
11502 | AssertRCBreak(rc);
|
---|
11503 | /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
|
---|
11504 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
|
---|
11505 | u32Val = u64Val; /* For pending debug exceptions checks below. */
|
---|
11506 | #else
|
---|
11507 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
|
---|
11508 | AssertRCBreak(rc);
|
---|
11509 | /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
|
---|
11510 | HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
|
---|
11511 | #endif
|
---|
11512 |
|
---|
11513 | if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
|
---|
11514 | || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
|
---|
11515 | || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
|
---|
11516 | {
|
---|
11517 | if ( (u32Eflags & X86_EFL_TF)
|
---|
11518 | && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
|
---|
11519 | {
|
---|
11520 | /* Bit 14 is PendingDebug.BS. */
|
---|
11521 | HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
|
---|
11522 | }
|
---|
11523 | if ( !(u32Eflags & X86_EFL_TF)
|
---|
11524 | || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
|
---|
11525 | {
|
---|
11526 | /* Bit 14 is PendingDebug.BS. */
|
---|
11527 | HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
|
---|
11528 | }
|
---|
11529 | }
|
---|
11530 |
|
---|
11531 | /* VMCS link pointer. */
|
---|
11532 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
|
---|
11533 | AssertRCBreak(rc);
|
---|
11534 | if (u64Val != UINT64_C(0xffffffffffffffff))
|
---|
11535 | {
|
---|
11536 | HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
|
---|
11537 | /** @todo Bits beyond the processor's physical-address width MBZ. */
|
---|
11538 | /** @todo 32-bit located in memory referenced by value of this field (as a
|
---|
11539 | * physical address) must contain the processor's VMCS revision ID. */
|
---|
11540 | /** @todo SMM checks. */
|
---|
11541 | }
|
---|
11542 |
|
---|
11543 | /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
|
---|
11544 | * not using Nested Paging? */
|
---|
11545 | if ( pVM->hm.s.fNestedPaging
|
---|
11546 | && !fLongModeGuest
|
---|
11547 | && CPUMIsGuestInPAEModeEx(pCtx))
|
---|
11548 | {
|
---|
11549 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
|
---|
11550 | AssertRCBreak(rc);
|
---|
11551 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
11552 |
|
---|
11553 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
|
---|
11554 | AssertRCBreak(rc);
|
---|
11555 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
11556 |
|
---|
11557 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
|
---|
11558 | AssertRCBreak(rc);
|
---|
11559 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
11560 |
|
---|
11561 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
|
---|
11562 | AssertRCBreak(rc);
|
---|
11563 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
11564 | }
|
---|
11565 |
|
---|
11566 | /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
|
---|
11567 | if (uError == VMX_IGS_ERROR)
|
---|
11568 | uError = VMX_IGS_REASON_NOT_FOUND;
|
---|
11569 | } while (0);
|
---|
11570 |
|
---|
11571 | pVCpu->hm.s.u32HMError = uError;
|
---|
11572 | return uError;
|
---|
11573 |
|
---|
11574 | #undef HMVMX_ERROR_BREAK
|
---|
11575 | #undef HMVMX_CHECK_BREAK
|
---|
11576 | }
|
---|
11577 |
|
---|
11578 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
11579 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
11580 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
11581 |
|
---|
11582 | /** @name VM-exit handlers.
|
---|
11583 | * @{
|
---|
11584 | */
|
---|
11585 |
|
---|
11586 | /**
|
---|
11587 | * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
|
---|
11588 | */
|
---|
11589 | HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11590 | {
|
---|
11591 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11592 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
|
---|
11593 | /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
|
---|
11594 | if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
|
---|
11595 | return VINF_SUCCESS;
|
---|
11596 | return VINF_EM_RAW_INTERRUPT;
|
---|
11597 | }
|
---|
11598 |
|
---|
11599 |
|
---|
11600 | /**
|
---|
11601 | * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
|
---|
11602 | */
|
---|
11603 | HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11604 | {
|
---|
11605 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11606 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
11607 |
|
---|
11608 | int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
11609 | AssertRCReturn(rc, rc);
|
---|
11610 |
|
---|
11611 | uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
|
---|
11612 | Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
|
---|
11613 | && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
|
---|
11614 | Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
|
---|
11615 |
|
---|
11616 | if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
|
---|
11617 | {
|
---|
11618 | /*
|
---|
11619 | * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
|
---|
11620 | * anything we inject is not going to cause a VM-exit directly for the event being injected.
|
---|
11621 | * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
|
---|
11622 | *
|
---|
11623 | * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
|
---|
11624 | */
|
---|
11625 | VMXDispatchHostNmi();
|
---|
11626 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
|
---|
11627 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
11628 | return VINF_SUCCESS;
|
---|
11629 | }
|
---|
11630 |
|
---|
11631 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
11632 | VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
|
---|
11633 | if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
|
---|
11634 | { /* likely */ }
|
---|
11635 | else
|
---|
11636 | {
|
---|
11637 | if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
|
---|
11638 | rcStrictRc1 = VINF_SUCCESS;
|
---|
11639 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
11640 | return rcStrictRc1;
|
---|
11641 | }
|
---|
11642 |
|
---|
11643 | uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
|
---|
11644 | uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
|
---|
11645 | switch (uIntType)
|
---|
11646 | {
|
---|
11647 | case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
|
---|
11648 | Assert(uVector == X86_XCPT_DB);
|
---|
11649 | RT_FALL_THRU();
|
---|
11650 | case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
|
---|
11651 | Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
|
---|
11652 | RT_FALL_THRU();
|
---|
11653 | case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
|
---|
11654 | {
|
---|
11655 | /*
|
---|
11656 | * If there's any exception caused as a result of event injection, the resulting
|
---|
11657 | * secondary/final execption will be pending, we shall continue guest execution
|
---|
11658 | * after injecting the event. The page-fault case is complicated and we manually
|
---|
11659 | * handle any currently pending event in hmR0VmxExitXcptPF.
|
---|
11660 | */
|
---|
11661 | if (!pVCpu->hm.s.Event.fPending)
|
---|
11662 | { /* likely */ }
|
---|
11663 | else if (uVector != X86_XCPT_PF)
|
---|
11664 | {
|
---|
11665 | rc = VINF_SUCCESS;
|
---|
11666 | break;
|
---|
11667 | }
|
---|
11668 |
|
---|
11669 | switch (uVector)
|
---|
11670 | {
|
---|
11671 | case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11672 | case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11673 | case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11674 | case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11675 | case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11676 | case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11677 | case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11678 |
|
---|
11679 | case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
|
---|
11680 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11681 | case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
|
---|
11682 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11683 | case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
|
---|
11684 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11685 | case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
|
---|
11686 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11687 | case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
|
---|
11688 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11689 | case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
|
---|
11690 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
11691 | default:
|
---|
11692 | {
|
---|
11693 | rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
11694 | AssertRCReturn(rc, rc);
|
---|
11695 |
|
---|
11696 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
|
---|
11697 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
11698 | {
|
---|
11699 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
11700 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
11701 | Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
|
---|
11702 |
|
---|
11703 | rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
11704 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
11705 | AssertRCReturn(rc, rc);
|
---|
11706 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
|
---|
11707 | pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
|
---|
11708 | 0 /* GCPtrFaultAddress */);
|
---|
11709 | AssertRCReturn(rc, rc);
|
---|
11710 | }
|
---|
11711 | else
|
---|
11712 | {
|
---|
11713 | AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
|
---|
11714 | pVCpu->hm.s.u32HMError = uVector;
|
---|
11715 | rc = VERR_VMX_UNEXPECTED_EXCEPTION;
|
---|
11716 | }
|
---|
11717 | break;
|
---|
11718 | }
|
---|
11719 | }
|
---|
11720 | break;
|
---|
11721 | }
|
---|
11722 |
|
---|
11723 | default:
|
---|
11724 | {
|
---|
11725 | pVCpu->hm.s.u32HMError = uExitIntInfo;
|
---|
11726 | rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
|
---|
11727 | AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
|
---|
11728 | break;
|
---|
11729 | }
|
---|
11730 | }
|
---|
11731 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
11732 | return rc;
|
---|
11733 | }
|
---|
11734 |
|
---|
11735 |
|
---|
11736 | /**
|
---|
11737 | * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
|
---|
11738 | */
|
---|
11739 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11740 | {
|
---|
11741 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11742 |
|
---|
11743 | /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
|
---|
11744 | hmR0VmxClearIntWindowExitVmcs(pVCpu);
|
---|
11745 |
|
---|
11746 | /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
|
---|
11747 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
|
---|
11748 | return VINF_SUCCESS;
|
---|
11749 | }
|
---|
11750 |
|
---|
11751 |
|
---|
11752 | /**
|
---|
11753 | * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
|
---|
11754 | */
|
---|
11755 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11756 | {
|
---|
11757 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11758 | if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
|
---|
11759 | {
|
---|
11760 | AssertMsgFailed(("Unexpected NMI-window exit.\n"));
|
---|
11761 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
11762 | }
|
---|
11763 |
|
---|
11764 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
|
---|
11765 |
|
---|
11766 | /*
|
---|
11767 | * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
|
---|
11768 | * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
|
---|
11769 | */
|
---|
11770 | uint32_t uIntrState = 0;
|
---|
11771 | int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
|
---|
11772 | AssertRCReturn(rc, rc);
|
---|
11773 |
|
---|
11774 | bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
|
---|
11775 | if ( fBlockSti
|
---|
11776 | && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
11777 | {
|
---|
11778 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
11779 | }
|
---|
11780 |
|
---|
11781 | /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
|
---|
11782 | hmR0VmxClearNmiWindowExitVmcs(pVCpu);
|
---|
11783 |
|
---|
11784 | /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
|
---|
11785 | return VINF_SUCCESS;
|
---|
11786 | }
|
---|
11787 |
|
---|
11788 |
|
---|
11789 | /**
|
---|
11790 | * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
|
---|
11791 | */
|
---|
11792 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11793 | {
|
---|
11794 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11795 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
|
---|
11796 | return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
11797 | }
|
---|
11798 |
|
---|
11799 |
|
---|
11800 | /**
|
---|
11801 | * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
|
---|
11802 | */
|
---|
11803 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11804 | {
|
---|
11805 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11806 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
|
---|
11807 | return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
11808 | }
|
---|
11809 |
|
---|
11810 |
|
---|
11811 | /**
|
---|
11812 | * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
|
---|
11813 | */
|
---|
11814 | HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11815 | {
|
---|
11816 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11817 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
11818 | int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
11819 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
11820 | {
|
---|
11821 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
11822 | Assert(pVmxTransient->cbInstr == 2);
|
---|
11823 | }
|
---|
11824 | else
|
---|
11825 | {
|
---|
11826 | AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
|
---|
11827 | rc = VERR_EM_INTERPRETER;
|
---|
11828 | }
|
---|
11829 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
|
---|
11830 | return rc;
|
---|
11831 | }
|
---|
11832 |
|
---|
11833 |
|
---|
11834 | /**
|
---|
11835 | * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
|
---|
11836 | */
|
---|
11837 | HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11838 | {
|
---|
11839 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11840 | int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
|
---|
11841 | AssertRCReturn(rc, rc);
|
---|
11842 |
|
---|
11843 | if (pMixedCtx->cr4 & X86_CR4_SMXE)
|
---|
11844 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
11845 |
|
---|
11846 | AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
|
---|
11847 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
11848 | }
|
---|
11849 |
|
---|
11850 |
|
---|
11851 | /**
|
---|
11852 | * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
|
---|
11853 | */
|
---|
11854 | HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11855 | {
|
---|
11856 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11857 | int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
|
---|
11858 | AssertRCReturn(rc, rc);
|
---|
11859 |
|
---|
11860 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
11861 | rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
11862 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
11863 | {
|
---|
11864 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
11865 | Assert(pVmxTransient->cbInstr == 2);
|
---|
11866 | /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
|
---|
11867 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
|
---|
11868 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
11869 | }
|
---|
11870 | else
|
---|
11871 | rc = VERR_EM_INTERPRETER;
|
---|
11872 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
|
---|
11873 | return rc;
|
---|
11874 | }
|
---|
11875 |
|
---|
11876 |
|
---|
11877 | /**
|
---|
11878 | * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
|
---|
11879 | */
|
---|
11880 | HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11881 | {
|
---|
11882 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11883 | int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
|
---|
11884 | rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
|
---|
11885 | AssertRCReturn(rc, rc);
|
---|
11886 |
|
---|
11887 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
11888 | rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
|
---|
11889 | if (RT_SUCCESS(rc))
|
---|
11890 | {
|
---|
11891 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
11892 | Assert(pVmxTransient->cbInstr == 3);
|
---|
11893 | /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
|
---|
11894 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
|
---|
11895 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
11896 | }
|
---|
11897 | else
|
---|
11898 | {
|
---|
11899 | AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
|
---|
11900 | rc = VERR_EM_INTERPRETER;
|
---|
11901 | }
|
---|
11902 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
|
---|
11903 | return rc;
|
---|
11904 | }
|
---|
11905 |
|
---|
11906 |
|
---|
11907 | /**
|
---|
11908 | * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
|
---|
11909 | */
|
---|
11910 | HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11911 | {
|
---|
11912 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11913 | int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
|
---|
11914 | rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
11915 | AssertRCReturn(rc, rc);
|
---|
11916 |
|
---|
11917 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
11918 | rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
11919 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
11920 | {
|
---|
11921 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
11922 | Assert(pVmxTransient->cbInstr == 2);
|
---|
11923 | }
|
---|
11924 | else
|
---|
11925 | {
|
---|
11926 | AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
|
---|
11927 | rc = VERR_EM_INTERPRETER;
|
---|
11928 | }
|
---|
11929 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
|
---|
11930 | return rc;
|
---|
11931 | }
|
---|
11932 |
|
---|
11933 |
|
---|
11934 | /**
|
---|
11935 | * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
|
---|
11936 | */
|
---|
11937 | HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11938 | {
|
---|
11939 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11940 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
|
---|
11941 |
|
---|
11942 | VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
|
---|
11943 | if (pVCpu->hm.s.fHypercallsEnabled)
|
---|
11944 | {
|
---|
11945 | #if 0
|
---|
11946 | int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
11947 | #else
|
---|
11948 | /* Aggressive state sync. for now. */
|
---|
11949 | int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
11950 | rc |= hmR0VmxSaveGuestRflags(pVCpu,pMixedCtx); /* For CPL checks in gimHvHypercall() & gimKvmHypercall() */
|
---|
11951 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
|
---|
11952 | AssertRCReturn(rc, rc);
|
---|
11953 | #endif
|
---|
11954 |
|
---|
11955 | /* Perform the hypercall. */
|
---|
11956 | rcStrict = GIMHypercall(pVCpu, pMixedCtx);
|
---|
11957 | if (rcStrict == VINF_SUCCESS)
|
---|
11958 | {
|
---|
11959 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
11960 | AssertRCReturn(rc, rc);
|
---|
11961 | }
|
---|
11962 | else
|
---|
11963 | Assert( rcStrict == VINF_GIM_R3_HYPERCALL
|
---|
11964 | || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
|
---|
11965 | || RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
|
---|
11966 |
|
---|
11967 | /* If the hypercall changes anything other than guest's general-purpose registers,
|
---|
11968 | we would need to reload the guest changed bits here before VM-entry. */
|
---|
11969 | }
|
---|
11970 | else
|
---|
11971 | Log4(("hmR0VmxExitVmcall: Hypercalls not enabled\n"));
|
---|
11972 |
|
---|
11973 | /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
|
---|
11974 | if (RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)))
|
---|
11975 | {
|
---|
11976 | hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
|
---|
11977 | rcStrict = VINF_SUCCESS;
|
---|
11978 | }
|
---|
11979 |
|
---|
11980 | return rcStrict;
|
---|
11981 | }
|
---|
11982 |
|
---|
11983 |
|
---|
11984 | /**
|
---|
11985 | * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
|
---|
11986 | */
|
---|
11987 | HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
11988 | {
|
---|
11989 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
11990 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
11991 | Assert(!pVM->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
|
---|
11992 |
|
---|
11993 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
11994 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
11995 | AssertRCReturn(rc, rc);
|
---|
11996 |
|
---|
11997 | VBOXSTRICTRC rcStrict = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
|
---|
11998 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
11999 | rcStrict = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
12000 | else
|
---|
12001 | AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
|
---|
12002 | pVmxTransient->uExitQualification, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12003 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
|
---|
12004 | return rcStrict;
|
---|
12005 | }
|
---|
12006 |
|
---|
12007 |
|
---|
12008 | /**
|
---|
12009 | * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
|
---|
12010 | */
|
---|
12011 | HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12012 | {
|
---|
12013 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12014 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
12015 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
12016 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
12017 | AssertRCReturn(rc, rc);
|
---|
12018 |
|
---|
12019 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
12020 | rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
12021 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
12022 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
12023 | else
|
---|
12024 | {
|
---|
12025 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
|
---|
12026 | rc = VERR_EM_INTERPRETER;
|
---|
12027 | }
|
---|
12028 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
|
---|
12029 | return rc;
|
---|
12030 | }
|
---|
12031 |
|
---|
12032 |
|
---|
12033 | /**
|
---|
12034 | * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
|
---|
12035 | */
|
---|
12036 | HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12037 | {
|
---|
12038 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12039 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
12040 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
12041 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
12042 | AssertRCReturn(rc, rc);
|
---|
12043 |
|
---|
12044 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
12045 | VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
12046 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
12047 | if (RT_LIKELY( rc == VINF_SUCCESS
|
---|
12048 | || rc == VINF_EM_HALT))
|
---|
12049 | {
|
---|
12050 | int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
12051 | AssertRCReturn(rc3, rc3);
|
---|
12052 |
|
---|
12053 | if ( rc == VINF_EM_HALT
|
---|
12054 | && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
|
---|
12055 | {
|
---|
12056 | rc = VINF_SUCCESS;
|
---|
12057 | }
|
---|
12058 | }
|
---|
12059 | else
|
---|
12060 | {
|
---|
12061 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
|
---|
12062 | rc = VERR_EM_INTERPRETER;
|
---|
12063 | }
|
---|
12064 | AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
|
---|
12065 | ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
|
---|
12066 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
|
---|
12067 | return rc;
|
---|
12068 | }
|
---|
12069 |
|
---|
12070 |
|
---|
12071 | /**
|
---|
12072 | * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
|
---|
12073 | */
|
---|
12074 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12075 | {
|
---|
12076 | /*
|
---|
12077 | * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
|
---|
12078 | * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
|
---|
12079 | * executing VMCALL in VMX root operation. If we get here, something funny is going on.
|
---|
12080 | * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
|
---|
12081 | */
|
---|
12082 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12083 | AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
12084 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12085 | }
|
---|
12086 |
|
---|
12087 |
|
---|
12088 | /**
|
---|
12089 | * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
|
---|
12090 | */
|
---|
12091 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12092 | {
|
---|
12093 | /*
|
---|
12094 | * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
|
---|
12095 | * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
|
---|
12096 | * in VMX root mode or receive an SMI. If we get here, something funny is going on.
|
---|
12097 | * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
|
---|
12098 | */
|
---|
12099 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12100 | AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
12101 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12102 | }
|
---|
12103 |
|
---|
12104 |
|
---|
12105 | /**
|
---|
12106 | * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
|
---|
12107 | */
|
---|
12108 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12109 | {
|
---|
12110 | /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
|
---|
12111 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12112 | AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
12113 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12114 | }
|
---|
12115 |
|
---|
12116 |
|
---|
12117 | /**
|
---|
12118 | * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
|
---|
12119 | */
|
---|
12120 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12121 | {
|
---|
12122 | /*
|
---|
12123 | * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
|
---|
12124 | * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
|
---|
12125 | * See Intel spec. 25.3 "Other Causes of VM-exits".
|
---|
12126 | */
|
---|
12127 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12128 | AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
12129 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12130 | }
|
---|
12131 |
|
---|
12132 |
|
---|
12133 | /**
|
---|
12134 | * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
|
---|
12135 | * VM-exit.
|
---|
12136 | */
|
---|
12137 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12138 | {
|
---|
12139 | /*
|
---|
12140 | * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
|
---|
12141 | * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
|
---|
12142 | *
|
---|
12143 | * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
|
---|
12144 | * See Intel spec. "23.8 Restrictions on VMX operation".
|
---|
12145 | */
|
---|
12146 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12147 | return VINF_SUCCESS;
|
---|
12148 | }
|
---|
12149 |
|
---|
12150 |
|
---|
12151 | /**
|
---|
12152 | * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
|
---|
12153 | * VM-exit.
|
---|
12154 | */
|
---|
12155 | HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12156 | {
|
---|
12157 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12158 | return VINF_EM_RESET;
|
---|
12159 | }
|
---|
12160 |
|
---|
12161 |
|
---|
12162 | /**
|
---|
12163 | * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
|
---|
12164 | */
|
---|
12165 | HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12166 | {
|
---|
12167 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12168 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
|
---|
12169 |
|
---|
12170 | int rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
12171 | AssertRCReturn(rc, rc);
|
---|
12172 |
|
---|
12173 | if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
|
---|
12174 | rc = VINF_SUCCESS;
|
---|
12175 | else
|
---|
12176 | rc = VINF_EM_HALT;
|
---|
12177 |
|
---|
12178 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
|
---|
12179 | if (rc != VINF_SUCCESS)
|
---|
12180 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
|
---|
12181 | return rc;
|
---|
12182 | }
|
---|
12183 |
|
---|
12184 |
|
---|
12185 | /**
|
---|
12186 | * VM-exit handler for instructions that result in a \#UD exception delivered to
|
---|
12187 | * the guest.
|
---|
12188 | */
|
---|
12189 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12190 | {
|
---|
12191 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12192 | hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
|
---|
12193 | return VINF_SUCCESS;
|
---|
12194 | }
|
---|
12195 |
|
---|
12196 |
|
---|
12197 | /**
|
---|
12198 | * VM-exit handler for expiry of the VMX preemption timer.
|
---|
12199 | */
|
---|
12200 | HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12201 | {
|
---|
12202 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12203 |
|
---|
12204 | /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
|
---|
12205 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
12206 |
|
---|
12207 | /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
|
---|
12208 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
12209 | bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
|
---|
12210 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
|
---|
12211 | return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
|
---|
12212 | }
|
---|
12213 |
|
---|
12214 |
|
---|
12215 | /**
|
---|
12216 | * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
|
---|
12217 | */
|
---|
12218 | HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12219 | {
|
---|
12220 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12221 |
|
---|
12222 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
12223 | rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
|
---|
12224 | rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
|
---|
12225 | AssertRCReturn(rc, rc);
|
---|
12226 |
|
---|
12227 | VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
|
---|
12228 | HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
|
---|
12229 |
|
---|
12230 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
|
---|
12231 |
|
---|
12232 | return rcStrict;
|
---|
12233 | }
|
---|
12234 |
|
---|
12235 |
|
---|
12236 | /**
|
---|
12237 | * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
|
---|
12238 | */
|
---|
12239 | HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12240 | {
|
---|
12241 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12242 | /** @todo Use VM-exit instruction information. */
|
---|
12243 | return VERR_EM_INTERPRETER;
|
---|
12244 | }
|
---|
12245 |
|
---|
12246 |
|
---|
12247 | /**
|
---|
12248 | * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
|
---|
12249 | * Error VM-exit.
|
---|
12250 | */
|
---|
12251 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12252 | {
|
---|
12253 | int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
12254 | AssertRCReturn(rc, rc);
|
---|
12255 |
|
---|
12256 | rc = hmR0VmxCheckVmcsCtls(pVCpu);
|
---|
12257 | AssertRCReturn(rc, rc);
|
---|
12258 |
|
---|
12259 | uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
|
---|
12260 | NOREF(uInvalidReason);
|
---|
12261 |
|
---|
12262 | #ifdef VBOX_STRICT
|
---|
12263 | uint32_t uIntrState;
|
---|
12264 | RTHCUINTREG uHCReg;
|
---|
12265 | uint64_t u64Val;
|
---|
12266 | uint32_t u32Val;
|
---|
12267 |
|
---|
12268 | rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
|
---|
12269 | rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
|
---|
12270 | rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
|
---|
12271 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
|
---|
12272 | AssertRCReturn(rc, rc);
|
---|
12273 |
|
---|
12274 | Log4(("uInvalidReason %u\n", uInvalidReason));
|
---|
12275 | Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
|
---|
12276 | Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
|
---|
12277 | Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
|
---|
12278 | Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
|
---|
12279 |
|
---|
12280 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
|
---|
12281 | Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
|
---|
12282 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
|
---|
12283 | Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
|
---|
12284 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
12285 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
12286 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
|
---|
12287 | Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
|
---|
12288 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
12289 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
12290 | rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
|
---|
12291 | Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
|
---|
12292 | #else
|
---|
12293 | NOREF(pVmxTransient);
|
---|
12294 | #endif
|
---|
12295 |
|
---|
12296 | hmR0DumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
|
---|
12297 | return VERR_VMX_INVALID_GUEST_STATE;
|
---|
12298 | }
|
---|
12299 |
|
---|
12300 |
|
---|
12301 | /**
|
---|
12302 | * VM-exit handler for VM-entry failure due to an MSR-load
|
---|
12303 | * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
|
---|
12304 | */
|
---|
12305 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12306 | {
|
---|
12307 | NOREF(pVmxTransient);
|
---|
12308 | AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
|
---|
12309 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12310 | }
|
---|
12311 |
|
---|
12312 |
|
---|
12313 | /**
|
---|
12314 | * VM-exit handler for VM-entry failure due to a machine-check event
|
---|
12315 | * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
|
---|
12316 | */
|
---|
12317 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12318 | {
|
---|
12319 | NOREF(pVmxTransient);
|
---|
12320 | AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
|
---|
12321 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12322 | }
|
---|
12323 |
|
---|
12324 |
|
---|
12325 | /**
|
---|
12326 | * VM-exit handler for all undefined reasons. Should never ever happen.. in
|
---|
12327 | * theory.
|
---|
12328 | */
|
---|
12329 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12330 | {
|
---|
12331 | AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
|
---|
12332 | NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
|
---|
12333 | return VERR_VMX_UNDEFINED_EXIT_CODE;
|
---|
12334 | }
|
---|
12335 |
|
---|
12336 |
|
---|
12337 | /**
|
---|
12338 | * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
|
---|
12339 | * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
|
---|
12340 | * Conditional VM-exit.
|
---|
12341 | */
|
---|
12342 | HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12343 | {
|
---|
12344 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12345 |
|
---|
12346 | /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
|
---|
12347 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
|
---|
12348 | if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
|
---|
12349 | return VERR_EM_INTERPRETER;
|
---|
12350 | AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
12351 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12352 | }
|
---|
12353 |
|
---|
12354 |
|
---|
12355 | /**
|
---|
12356 | * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
|
---|
12357 | */
|
---|
12358 | HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12359 | {
|
---|
12360 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12361 |
|
---|
12362 | /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
|
---|
12363 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
|
---|
12364 | if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
|
---|
12365 | return VERR_EM_INTERPRETER;
|
---|
12366 | AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
12367 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12368 | }
|
---|
12369 |
|
---|
12370 |
|
---|
12371 | /**
|
---|
12372 | * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
|
---|
12373 | */
|
---|
12374 | HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12375 | {
|
---|
12376 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12377 |
|
---|
12378 | /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
|
---|
12379 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
12380 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
12381 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
12382 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
|
---|
12383 | {
|
---|
12384 | rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
|
---|
12385 | rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
|
---|
12386 | }
|
---|
12387 | AssertRCReturn(rc, rc);
|
---|
12388 | Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
|
---|
12389 |
|
---|
12390 | #ifdef VBOX_STRICT
|
---|
12391 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
12392 | {
|
---|
12393 | if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
|
---|
12394 | && pMixedCtx->ecx != MSR_K6_EFER)
|
---|
12395 | {
|
---|
12396 | AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
|
---|
12397 | pMixedCtx->ecx));
|
---|
12398 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12399 | }
|
---|
12400 | if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
|
---|
12401 | {
|
---|
12402 | VMXMSREXITREAD enmRead;
|
---|
12403 | VMXMSREXITWRITE enmWrite;
|
---|
12404 | int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
|
---|
12405 | AssertRCReturn(rc2, rc2);
|
---|
12406 | if (enmRead == VMXMSREXIT_PASSTHRU_READ)
|
---|
12407 | {
|
---|
12408 | AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
|
---|
12409 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12410 | }
|
---|
12411 | }
|
---|
12412 | }
|
---|
12413 | #endif
|
---|
12414 |
|
---|
12415 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
12416 | rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
12417 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
|
---|
12418 | ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
|
---|
12419 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
|
---|
12420 | if (RT_SUCCESS(rc))
|
---|
12421 | {
|
---|
12422 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
12423 | Assert(pVmxTransient->cbInstr == 2);
|
---|
12424 | }
|
---|
12425 | return rc;
|
---|
12426 | }
|
---|
12427 |
|
---|
12428 |
|
---|
12429 | /**
|
---|
12430 | * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
|
---|
12431 | */
|
---|
12432 | HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12433 | {
|
---|
12434 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12435 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
12436 | int rc = VINF_SUCCESS;
|
---|
12437 |
|
---|
12438 | /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
|
---|
12439 | rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
12440 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
12441 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
12442 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
|
---|
12443 | {
|
---|
12444 | rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
|
---|
12445 | rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
|
---|
12446 | }
|
---|
12447 | AssertRCReturn(rc, rc);
|
---|
12448 | Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
|
---|
12449 |
|
---|
12450 | rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
12451 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
|
---|
12452 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
|
---|
12453 |
|
---|
12454 | if (RT_SUCCESS(rc))
|
---|
12455 | {
|
---|
12456 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
12457 |
|
---|
12458 | /* If this is an X2APIC WRMSR access, update the APIC state as well. */
|
---|
12459 | if ( pMixedCtx->ecx == MSR_IA32_APICBASE
|
---|
12460 | || ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
|
---|
12461 | && pMixedCtx->ecx <= MSR_IA32_X2APIC_END))
|
---|
12462 | {
|
---|
12463 | /*
|
---|
12464 | * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
|
---|
12465 | * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
|
---|
12466 | * EMInterpretWrmsr() changes it.
|
---|
12467 | */
|
---|
12468 | HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
|
---|
12469 | }
|
---|
12470 | else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
|
---|
12471 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
12472 | else if (pMixedCtx->ecx == MSR_K6_EFER)
|
---|
12473 | {
|
---|
12474 | /*
|
---|
12475 | * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
|
---|
12476 | * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
|
---|
12477 | * the other bits as well, SCE and NXE. See @bugref{7368}.
|
---|
12478 | */
|
---|
12479 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
|
---|
12480 | }
|
---|
12481 |
|
---|
12482 | /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
|
---|
12483 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
|
---|
12484 | {
|
---|
12485 | switch (pMixedCtx->ecx)
|
---|
12486 | {
|
---|
12487 | /*
|
---|
12488 | * For SYSENTER CS, EIP, ESP MSRs, we set both the flags here so we don't accidentally
|
---|
12489 | * overwrite the changed guest-CPU context value while going to ring-3, see @bufref{8745}.
|
---|
12490 | */
|
---|
12491 | case MSR_IA32_SYSENTER_CS:
|
---|
12492 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
|
---|
12493 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
|
---|
12494 | break;
|
---|
12495 | case MSR_IA32_SYSENTER_EIP:
|
---|
12496 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
|
---|
12497 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
|
---|
12498 | break;
|
---|
12499 | case MSR_IA32_SYSENTER_ESP:
|
---|
12500 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
|
---|
12501 | HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
|
---|
12502 | break;
|
---|
12503 | case MSR_K8_FS_BASE: RT_FALL_THRU();
|
---|
12504 | case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
|
---|
12505 | case MSR_K6_EFER: /* already handled above */ break;
|
---|
12506 | default:
|
---|
12507 | {
|
---|
12508 | if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
|
---|
12509 | HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
|
---|
12510 | else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
|
---|
12511 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
|
---|
12512 | break;
|
---|
12513 | }
|
---|
12514 | }
|
---|
12515 | }
|
---|
12516 | #ifdef VBOX_STRICT
|
---|
12517 | else
|
---|
12518 | {
|
---|
12519 | /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
|
---|
12520 | switch (pMixedCtx->ecx)
|
---|
12521 | {
|
---|
12522 | case MSR_IA32_SYSENTER_CS:
|
---|
12523 | case MSR_IA32_SYSENTER_EIP:
|
---|
12524 | case MSR_IA32_SYSENTER_ESP:
|
---|
12525 | case MSR_K8_FS_BASE:
|
---|
12526 | case MSR_K8_GS_BASE:
|
---|
12527 | {
|
---|
12528 | AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
|
---|
12529 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12530 | }
|
---|
12531 |
|
---|
12532 | /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
|
---|
12533 | default:
|
---|
12534 | {
|
---|
12535 | if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
|
---|
12536 | {
|
---|
12537 | /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
|
---|
12538 | if (pMixedCtx->ecx != MSR_K6_EFER)
|
---|
12539 | {
|
---|
12540 | AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
|
---|
12541 | pMixedCtx->ecx));
|
---|
12542 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12543 | }
|
---|
12544 | }
|
---|
12545 |
|
---|
12546 | if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
|
---|
12547 | {
|
---|
12548 | VMXMSREXITREAD enmRead;
|
---|
12549 | VMXMSREXITWRITE enmWrite;
|
---|
12550 | int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
|
---|
12551 | AssertRCReturn(rc2, rc2);
|
---|
12552 | if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
|
---|
12553 | {
|
---|
12554 | AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
|
---|
12555 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
12556 | }
|
---|
12557 | }
|
---|
12558 | break;
|
---|
12559 | }
|
---|
12560 | }
|
---|
12561 | }
|
---|
12562 | #endif /* VBOX_STRICT */
|
---|
12563 | }
|
---|
12564 | return rc;
|
---|
12565 | }
|
---|
12566 |
|
---|
12567 |
|
---|
12568 | /**
|
---|
12569 | * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
|
---|
12570 | */
|
---|
12571 | HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12572 | {
|
---|
12573 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12574 |
|
---|
12575 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
|
---|
12576 | return VINF_EM_RAW_INTERRUPT;
|
---|
12577 | }
|
---|
12578 |
|
---|
12579 |
|
---|
12580 | /**
|
---|
12581 | * VM-exit handler for when the TPR value is lowered below the specified
|
---|
12582 | * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
|
---|
12583 | */
|
---|
12584 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12585 | {
|
---|
12586 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12587 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
|
---|
12588 |
|
---|
12589 | /*
|
---|
12590 | * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
|
---|
12591 | * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
|
---|
12592 | */
|
---|
12593 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
|
---|
12594 | return VINF_SUCCESS;
|
---|
12595 | }
|
---|
12596 |
|
---|
12597 |
|
---|
12598 | /**
|
---|
12599 | * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
|
---|
12600 | * VM-exit.
|
---|
12601 | *
|
---|
12602 | * @retval VINF_SUCCESS when guest execution can continue.
|
---|
12603 | * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
|
---|
12604 | * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
|
---|
12605 | * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
|
---|
12606 | * interpreter.
|
---|
12607 | */
|
---|
12608 | HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12609 | {
|
---|
12610 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12611 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
|
---|
12612 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
12613 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
12614 | AssertRCReturn(rc, rc);
|
---|
12615 |
|
---|
12616 | RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
|
---|
12617 | uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
|
---|
12618 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
12619 | VBOXSTRICTRC rcStrict;
|
---|
12620 | rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
|
---|
12621 | switch (uAccessType)
|
---|
12622 | {
|
---|
12623 | case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
|
---|
12624 | {
|
---|
12625 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
12626 | AssertRCReturn(rc, rc);
|
---|
12627 |
|
---|
12628 | rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
|
---|
12629 | VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
|
---|
12630 | VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
|
---|
12631 | AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
|
---|
12632 | || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12633 | switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
|
---|
12634 | {
|
---|
12635 | case 0: /* CR0 */
|
---|
12636 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
12637 | Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
|
---|
12638 | break;
|
---|
12639 | case 2: /* CR2 */
|
---|
12640 | /* Nothing to do here, CR2 it's not part of the VMCS. */
|
---|
12641 | break;
|
---|
12642 | case 3: /* CR3 */
|
---|
12643 | Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx) || pVCpu->hm.s.fUsingDebugLoop);
|
---|
12644 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
|
---|
12645 | Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
|
---|
12646 | break;
|
---|
12647 | case 4: /* CR4 */
|
---|
12648 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
12649 | Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
|
---|
12650 | VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
|
---|
12651 | break;
|
---|
12652 | case 8: /* CR8 */
|
---|
12653 | Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
|
---|
12654 | /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
|
---|
12655 | HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
|
---|
12656 | break;
|
---|
12657 | default:
|
---|
12658 | AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
|
---|
12659 | break;
|
---|
12660 | }
|
---|
12661 |
|
---|
12662 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
|
---|
12663 | break;
|
---|
12664 | }
|
---|
12665 |
|
---|
12666 | case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
|
---|
12667 | {
|
---|
12668 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
12669 | AssertRCReturn(rc, rc);
|
---|
12670 |
|
---|
12671 | Assert( !pVM->hm.s.fNestedPaging
|
---|
12672 | || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
|
---|
12673 | || pVCpu->hm.s.fUsingDebugLoop
|
---|
12674 | || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
|
---|
12675 |
|
---|
12676 | /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
|
---|
12677 | Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
|
---|
12678 | || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
|
---|
12679 |
|
---|
12680 | rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
|
---|
12681 | VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
|
---|
12682 | VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
|
---|
12683 | AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12684 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
|
---|
12685 | Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
|
---|
12686 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12687 | if (VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification) == X86_GREG_xSP)
|
---|
12688 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RSP);
|
---|
12689 | break;
|
---|
12690 | }
|
---|
12691 |
|
---|
12692 | case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
|
---|
12693 | {
|
---|
12694 | AssertRCReturn(rc, rc);
|
---|
12695 | rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
|
---|
12696 | AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12697 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
12698 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
|
---|
12699 | Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12700 | break;
|
---|
12701 | }
|
---|
12702 |
|
---|
12703 | case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
|
---|
12704 | {
|
---|
12705 | AssertRCReturn(rc, rc);
|
---|
12706 | rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
|
---|
12707 | VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
|
---|
12708 | AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE,
|
---|
12709 | ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12710 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
12711 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
|
---|
12712 | Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12713 | break;
|
---|
12714 | }
|
---|
12715 |
|
---|
12716 | default:
|
---|
12717 | AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
|
---|
12718 | VERR_VMX_UNEXPECTED_EXCEPTION);
|
---|
12719 | }
|
---|
12720 |
|
---|
12721 | HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
|
---|
12722 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
|
---|
12723 | NOREF(pVM);
|
---|
12724 | return rcStrict;
|
---|
12725 | }
|
---|
12726 |
|
---|
12727 |
|
---|
12728 | /**
|
---|
12729 | * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
|
---|
12730 | * VM-exit.
|
---|
12731 | */
|
---|
12732 | HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12733 | {
|
---|
12734 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12735 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
|
---|
12736 |
|
---|
12737 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
12738 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
12739 | rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
12740 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
|
---|
12741 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
|
---|
12742 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
|
---|
12743 | /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
|
---|
12744 | AssertRCReturn(rc, rc);
|
---|
12745 |
|
---|
12746 | /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
|
---|
12747 | uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
|
---|
12748 | uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
|
---|
12749 | bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
|
---|
12750 | == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
|
---|
12751 | bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
|
---|
12752 | bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
|
---|
12753 | bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
|
---|
12754 | AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
|
---|
12755 |
|
---|
12756 | /* I/O operation lookup arrays. */
|
---|
12757 | static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
|
---|
12758 | static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
|
---|
12759 |
|
---|
12760 | VBOXSTRICTRC rcStrict;
|
---|
12761 | uint32_t const cbValue = s_aIOSizes[uIOWidth];
|
---|
12762 | uint32_t const cbInstr = pVmxTransient->cbInstr;
|
---|
12763 | bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
|
---|
12764 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
12765 | if (fIOString)
|
---|
12766 | {
|
---|
12767 | #ifdef VBOX_WITH_2ND_IEM_STEP /* This used to gurus with debian 32-bit guest without NP (on ATA reads).
|
---|
12768 | See @bugref{5752#c158}. Should work now. */
|
---|
12769 | /*
|
---|
12770 | * INS/OUTS - I/O String instruction.
|
---|
12771 | *
|
---|
12772 | * Use instruction-information if available, otherwise fall back on
|
---|
12773 | * interpreting the instruction.
|
---|
12774 | */
|
---|
12775 | Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue,
|
---|
12776 | fIOWrite ? 'w' : 'r'));
|
---|
12777 | AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
|
---|
12778 | if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
|
---|
12779 | {
|
---|
12780 | int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
12781 | /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
|
---|
12782 | rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
12783 | AssertRCReturn(rc2, rc2);
|
---|
12784 | AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
|
---|
12785 | AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
|
---|
12786 | IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
|
---|
12787 | bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
|
---|
12788 | if (fIOWrite)
|
---|
12789 | {
|
---|
12790 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
|
---|
12791 | pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
|
---|
12792 | }
|
---|
12793 | else
|
---|
12794 | {
|
---|
12795 | /*
|
---|
12796 | * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
|
---|
12797 | * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
|
---|
12798 | * See Intel Instruction spec. for "INS".
|
---|
12799 | * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
|
---|
12800 | */
|
---|
12801 | rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
|
---|
12802 | }
|
---|
12803 | }
|
---|
12804 | else
|
---|
12805 | {
|
---|
12806 | /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
|
---|
12807 | int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
12808 | AssertRCReturn(rc2, rc2);
|
---|
12809 | rcStrict = IEMExecOne(pVCpu);
|
---|
12810 | }
|
---|
12811 | /** @todo IEM needs to be setting these flags somehow. */
|
---|
12812 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
|
---|
12813 | fUpdateRipAlready = true;
|
---|
12814 | #else
|
---|
12815 | PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
12816 | rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
|
---|
12817 | if (RT_SUCCESS(rcStrict))
|
---|
12818 | {
|
---|
12819 | if (fIOWrite)
|
---|
12820 | {
|
---|
12821 | rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
|
---|
12822 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
12823 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
|
---|
12824 | }
|
---|
12825 | else
|
---|
12826 | {
|
---|
12827 | rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
|
---|
12828 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
12829 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
|
---|
12830 | }
|
---|
12831 | }
|
---|
12832 | else
|
---|
12833 | {
|
---|
12834 | AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict),
|
---|
12835 | pMixedCtx->rip));
|
---|
12836 | rcStrict = VINF_EM_RAW_EMULATE_INSTR;
|
---|
12837 | }
|
---|
12838 | #endif
|
---|
12839 | }
|
---|
12840 | else
|
---|
12841 | {
|
---|
12842 | /*
|
---|
12843 | * IN/OUT - I/O instruction.
|
---|
12844 | */
|
---|
12845 | Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
|
---|
12846 | uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
|
---|
12847 | Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
|
---|
12848 | if (fIOWrite)
|
---|
12849 | {
|
---|
12850 | rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
|
---|
12851 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
|
---|
12852 | }
|
---|
12853 | else
|
---|
12854 | {
|
---|
12855 | uint32_t u32Result = 0;
|
---|
12856 | rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
|
---|
12857 | if (IOM_SUCCESS(rcStrict))
|
---|
12858 | {
|
---|
12859 | /* Save result of I/O IN instr. in AL/AX/EAX. */
|
---|
12860 | pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
|
---|
12861 | }
|
---|
12862 | else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
12863 | HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
|
---|
12864 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
|
---|
12865 | }
|
---|
12866 | }
|
---|
12867 |
|
---|
12868 | if (IOM_SUCCESS(rcStrict))
|
---|
12869 | {
|
---|
12870 | if (!fUpdateRipAlready)
|
---|
12871 | {
|
---|
12872 | hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, cbInstr);
|
---|
12873 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
|
---|
12874 | }
|
---|
12875 |
|
---|
12876 | /*
|
---|
12877 | * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
|
---|
12878 | * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
|
---|
12879 | */
|
---|
12880 | if (fIOString)
|
---|
12881 | {
|
---|
12882 | /** @todo Single-step for INS/OUTS with REP prefix? */
|
---|
12883 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
|
---|
12884 | }
|
---|
12885 | else if ( !fDbgStepping
|
---|
12886 | && fGstStepping)
|
---|
12887 | {
|
---|
12888 | hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
|
---|
12889 | }
|
---|
12890 |
|
---|
12891 | /*
|
---|
12892 | * If any I/O breakpoints are armed, we need to check if one triggered
|
---|
12893 | * and take appropriate action.
|
---|
12894 | * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
|
---|
12895 | */
|
---|
12896 | int rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
|
---|
12897 | AssertRCReturn(rc2, rc2);
|
---|
12898 |
|
---|
12899 | /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
|
---|
12900 | * execution engines about whether hyper BPs and such are pending. */
|
---|
12901 | uint32_t const uDr7 = pMixedCtx->dr[7];
|
---|
12902 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
12903 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
12904 | && (pMixedCtx->cr4 & X86_CR4_DE))
|
---|
12905 | || DBGFBpIsHwIoArmed(pVM)))
|
---|
12906 | {
|
---|
12907 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
|
---|
12908 |
|
---|
12909 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
12910 | VMMRZCallRing3Disable(pVCpu);
|
---|
12911 | HM_DISABLE_PREEMPT();
|
---|
12912 |
|
---|
12913 | bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
|
---|
12914 |
|
---|
12915 | VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
|
---|
12916 | if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
|
---|
12917 | {
|
---|
12918 | /* Raise #DB. */
|
---|
12919 | if (fIsGuestDbgActive)
|
---|
12920 | ASMSetDR6(pMixedCtx->dr[6]);
|
---|
12921 | if (pMixedCtx->dr[7] != uDr7)
|
---|
12922 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
12923 |
|
---|
12924 | hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
|
---|
12925 | }
|
---|
12926 | /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
|
---|
12927 | however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
|
---|
12928 | else if ( rcStrict2 != VINF_SUCCESS
|
---|
12929 | && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
|
---|
12930 | rcStrict = rcStrict2;
|
---|
12931 | AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
|
---|
12932 |
|
---|
12933 | HM_RESTORE_PREEMPT();
|
---|
12934 | VMMRZCallRing3Enable(pVCpu);
|
---|
12935 | }
|
---|
12936 | }
|
---|
12937 |
|
---|
12938 | #ifdef VBOX_STRICT
|
---|
12939 | if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
12940 | Assert(!fIOWrite);
|
---|
12941 | else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
|
---|
12942 | Assert(fIOWrite);
|
---|
12943 | else
|
---|
12944 | {
|
---|
12945 | #if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
|
---|
12946 | * statuses, that the VMM device and some others may return. See
|
---|
12947 | * IOM_SUCCESS() for guidance. */
|
---|
12948 | AssertMsg( RT_FAILURE(rcStrict)
|
---|
12949 | || rcStrict == VINF_SUCCESS
|
---|
12950 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
12951 | || rcStrict == VINF_EM_DBG_BREAKPOINT
|
---|
12952 | || rcStrict == VINF_EM_RAW_GUEST_TRAP
|
---|
12953 | || rcStrict == VINF_EM_RAW_TO_R3
|
---|
12954 | || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
12955 | #endif
|
---|
12956 | }
|
---|
12957 | #endif
|
---|
12958 |
|
---|
12959 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
|
---|
12960 | return rcStrict;
|
---|
12961 | }
|
---|
12962 |
|
---|
12963 |
|
---|
12964 | /**
|
---|
12965 | * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
|
---|
12966 | * VM-exit.
|
---|
12967 | */
|
---|
12968 | HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
12969 | {
|
---|
12970 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
12971 |
|
---|
12972 | /* Check if this task-switch occurred while delivery an event through the guest IDT. */
|
---|
12973 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
12974 | AssertRCReturn(rc, rc);
|
---|
12975 | if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
|
---|
12976 | {
|
---|
12977 | rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
|
---|
12978 | AssertRCReturn(rc, rc);
|
---|
12979 | if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
12980 | {
|
---|
12981 | uint32_t uErrCode;
|
---|
12982 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
12983 | uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
|
---|
12984 | uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
|
---|
12985 | bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
|
---|
12986 | if (fErrorCodeValid)
|
---|
12987 | {
|
---|
12988 | rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
|
---|
12989 | AssertRCReturn(rc, rc);
|
---|
12990 | uErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
12991 | }
|
---|
12992 | else
|
---|
12993 | uErrCode = 0;
|
---|
12994 |
|
---|
12995 | if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
12996 | && uVector == X86_XCPT_PF)
|
---|
12997 | GCPtrFaultAddress = pMixedCtx->cr2;
|
---|
12998 | else
|
---|
12999 | GCPtrFaultAddress = 0;
|
---|
13000 |
|
---|
13001 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
|
---|
13002 | 0 /* cbInstr */, uErrCode, GCPtrFaultAddress);
|
---|
13003 |
|
---|
13004 | Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
|
---|
13005 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
13006 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
13007 | }
|
---|
13008 | }
|
---|
13009 |
|
---|
13010 | /* Fall back to the interpreter to emulate the task-switch. */
|
---|
13011 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
13012 | return VERR_EM_INTERPRETER;
|
---|
13013 | }
|
---|
13014 |
|
---|
13015 |
|
---|
13016 | /**
|
---|
13017 | * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
|
---|
13018 | */
|
---|
13019 | HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13020 | {
|
---|
13021 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
13022 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
|
---|
13023 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
|
---|
13024 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
13025 | AssertRCReturn(rc, rc);
|
---|
13026 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
|
---|
13027 | return VINF_EM_DBG_STEPPED;
|
---|
13028 | }
|
---|
13029 |
|
---|
13030 |
|
---|
13031 | /**
|
---|
13032 | * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
|
---|
13033 | */
|
---|
13034 | HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13035 | {
|
---|
13036 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
13037 |
|
---|
13038 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
|
---|
13039 |
|
---|
13040 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
13041 | VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
|
---|
13042 | if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
|
---|
13043 | {
|
---|
13044 | /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
|
---|
13045 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
13046 | {
|
---|
13047 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
|
---|
13048 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
13049 | }
|
---|
13050 | }
|
---|
13051 | else
|
---|
13052 | {
|
---|
13053 | if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
|
---|
13054 | rcStrict1 = VINF_SUCCESS;
|
---|
13055 | return rcStrict1;
|
---|
13056 | }
|
---|
13057 |
|
---|
13058 | #if 0
|
---|
13059 | /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
|
---|
13060 | * just sync the whole thing. */
|
---|
13061 | int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
13062 | #else
|
---|
13063 | /* Aggressive state sync. for now. */
|
---|
13064 | int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
13065 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
13066 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
13067 | #endif
|
---|
13068 | rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
13069 | AssertRCReturn(rc, rc);
|
---|
13070 |
|
---|
13071 | /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
|
---|
13072 | uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
|
---|
13073 | VBOXSTRICTRC rcStrict2;
|
---|
13074 | switch (uAccessType)
|
---|
13075 | {
|
---|
13076 | case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
|
---|
13077 | case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
|
---|
13078 | {
|
---|
13079 | AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
13080 | || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != XAPIC_OFF_TPR,
|
---|
13081 | ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
|
---|
13082 |
|
---|
13083 | RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
|
---|
13084 | GCPhys &= PAGE_BASE_GC_MASK;
|
---|
13085 | GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
|
---|
13086 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13087 | Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
|
---|
13088 | VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
|
---|
13089 |
|
---|
13090 | rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
|
---|
13091 | uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
|
---|
13092 | CPUMCTX2CORE(pMixedCtx), GCPhys);
|
---|
13093 | Log4(("ApicAccess rcStrict2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
|
---|
13094 | if ( rcStrict2 == VINF_SUCCESS
|
---|
13095 | || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
13096 | || rcStrict2 == VERR_PAGE_NOT_PRESENT)
|
---|
13097 | {
|
---|
13098 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
|
---|
13099 | | HM_CHANGED_GUEST_RSP
|
---|
13100 | | HM_CHANGED_GUEST_RFLAGS
|
---|
13101 | | HM_CHANGED_VMX_GUEST_APIC_STATE);
|
---|
13102 | rcStrict2 = VINF_SUCCESS;
|
---|
13103 | }
|
---|
13104 | break;
|
---|
13105 | }
|
---|
13106 |
|
---|
13107 | default:
|
---|
13108 | Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
|
---|
13109 | rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
|
---|
13110 | break;
|
---|
13111 | }
|
---|
13112 |
|
---|
13113 | if (rcStrict2 != VINF_SUCCESS)
|
---|
13114 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
|
---|
13115 | return rcStrict2;
|
---|
13116 | }
|
---|
13117 |
|
---|
13118 |
|
---|
13119 | /**
|
---|
13120 | * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
|
---|
13121 | * VM-exit.
|
---|
13122 | */
|
---|
13123 | HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13124 | {
|
---|
13125 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
13126 |
|
---|
13127 | /* We should -not- get this VM-exit if the guest's debug registers were active. */
|
---|
13128 | if (pVmxTransient->fWasGuestDebugStateActive)
|
---|
13129 | {
|
---|
13130 | AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
13131 | HMVMX_RETURN_UNEXPECTED_EXIT();
|
---|
13132 | }
|
---|
13133 |
|
---|
13134 | if ( !pVCpu->hm.s.fSingleInstruction
|
---|
13135 | && !pVmxTransient->fWasHyperDebugStateActive)
|
---|
13136 | {
|
---|
13137 | Assert(!DBGFIsStepping(pVCpu));
|
---|
13138 | Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
|
---|
13139 |
|
---|
13140 | /* Don't intercept MOV DRx any more. */
|
---|
13141 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
|
---|
13142 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
13143 | AssertRCReturn(rc, rc);
|
---|
13144 |
|
---|
13145 | /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
|
---|
13146 | VMMRZCallRing3Disable(pVCpu);
|
---|
13147 | HM_DISABLE_PREEMPT();
|
---|
13148 |
|
---|
13149 | /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
|
---|
13150 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
13151 | Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
|
---|
13152 |
|
---|
13153 | HM_RESTORE_PREEMPT();
|
---|
13154 | VMMRZCallRing3Enable(pVCpu);
|
---|
13155 |
|
---|
13156 | #ifdef VBOX_WITH_STATISTICS
|
---|
13157 | rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
13158 | AssertRCReturn(rc, rc);
|
---|
13159 | if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
|
---|
13160 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
13161 | else
|
---|
13162 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
13163 | #endif
|
---|
13164 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
|
---|
13165 | return VINF_SUCCESS;
|
---|
13166 | }
|
---|
13167 |
|
---|
13168 | /*
|
---|
13169 | * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
|
---|
13170 | * Update the segment registers and DR7 from the CPU.
|
---|
13171 | */
|
---|
13172 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
13173 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
13174 | rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
|
---|
13175 | AssertRCReturn(rc, rc);
|
---|
13176 | Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
|
---|
13177 |
|
---|
13178 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13179 | if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
|
---|
13180 | {
|
---|
13181 | rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
|
---|
13182 | VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
|
---|
13183 | VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
|
---|
13184 | if (RT_SUCCESS(rc))
|
---|
13185 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
13186 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
13187 | }
|
---|
13188 | else
|
---|
13189 | {
|
---|
13190 | rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
|
---|
13191 | VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
|
---|
13192 | VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
|
---|
13193 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
13194 | }
|
---|
13195 |
|
---|
13196 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
|
---|
13197 | if (RT_SUCCESS(rc))
|
---|
13198 | {
|
---|
13199 | int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
13200 | AssertRCReturn(rc2, rc2);
|
---|
13201 | return VINF_SUCCESS;
|
---|
13202 | }
|
---|
13203 | return rc;
|
---|
13204 | }
|
---|
13205 |
|
---|
13206 |
|
---|
13207 | /**
|
---|
13208 | * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
|
---|
13209 | * Conditional VM-exit.
|
---|
13210 | */
|
---|
13211 | HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13212 | {
|
---|
13213 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
13214 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
13215 |
|
---|
13216 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
13217 | VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
|
---|
13218 | if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
|
---|
13219 | {
|
---|
13220 | /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
|
---|
13221 | injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
|
---|
13222 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
13223 | {
|
---|
13224 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
|
---|
13225 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
13226 | }
|
---|
13227 | }
|
---|
13228 | else
|
---|
13229 | {
|
---|
13230 | if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
|
---|
13231 | rcStrict1 = VINF_SUCCESS;
|
---|
13232 | return rcStrict1;
|
---|
13233 | }
|
---|
13234 |
|
---|
13235 | RTGCPHYS GCPhys = 0;
|
---|
13236 | int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
|
---|
13237 |
|
---|
13238 | #if 0
|
---|
13239 | rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
|
---|
13240 | #else
|
---|
13241 | /* Aggressive state sync. for now. */
|
---|
13242 | rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
13243 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
13244 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
13245 | #endif
|
---|
13246 | AssertRCReturn(rc, rc);
|
---|
13247 |
|
---|
13248 | /*
|
---|
13249 | * If we succeed, resume guest execution.
|
---|
13250 | * If we fail in interpreting the instruction because we couldn't get the guest physical address
|
---|
13251 | * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
|
---|
13252 | * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
|
---|
13253 | * weird case. See @bugref{6043}.
|
---|
13254 | */
|
---|
13255 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13256 | VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
|
---|
13257 | Log4(("EPT misconfig at %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pMixedCtx->rip, VBOXSTRICTRC_VAL(rcStrict2)));
|
---|
13258 | if ( rcStrict2 == VINF_SUCCESS
|
---|
13259 | || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
13260 | || rcStrict2 == VERR_PAGE_NOT_PRESENT)
|
---|
13261 | {
|
---|
13262 | /* Successfully handled MMIO operation. */
|
---|
13263 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
|
---|
13264 | | HM_CHANGED_GUEST_RSP
|
---|
13265 | | HM_CHANGED_GUEST_RFLAGS
|
---|
13266 | | HM_CHANGED_VMX_GUEST_APIC_STATE);
|
---|
13267 | return VINF_SUCCESS;
|
---|
13268 | }
|
---|
13269 | return rcStrict2;
|
---|
13270 | }
|
---|
13271 |
|
---|
13272 |
|
---|
13273 | /**
|
---|
13274 | * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
|
---|
13275 | * VM-exit.
|
---|
13276 | */
|
---|
13277 | HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13278 | {
|
---|
13279 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
13280 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
13281 |
|
---|
13282 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
13283 | VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
|
---|
13284 | if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
|
---|
13285 | {
|
---|
13286 | /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
|
---|
13287 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
13288 | Log4(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
|
---|
13289 | }
|
---|
13290 | else
|
---|
13291 | {
|
---|
13292 | if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
|
---|
13293 | rcStrict1 = VINF_SUCCESS;
|
---|
13294 | return rcStrict1;
|
---|
13295 | }
|
---|
13296 |
|
---|
13297 | RTGCPHYS GCPhys = 0;
|
---|
13298 | int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
|
---|
13299 | rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
13300 | #if 0
|
---|
13301 | rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
|
---|
13302 | #else
|
---|
13303 | /* Aggressive state sync. for now. */
|
---|
13304 | rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
13305 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
13306 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
13307 | #endif
|
---|
13308 | AssertRCReturn(rc, rc);
|
---|
13309 |
|
---|
13310 | /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
|
---|
13311 | AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
|
---|
13312 |
|
---|
13313 | RTGCUINT uErrorCode = 0;
|
---|
13314 | if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
|
---|
13315 | uErrorCode |= X86_TRAP_PF_ID;
|
---|
13316 | if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
|
---|
13317 | uErrorCode |= X86_TRAP_PF_RW;
|
---|
13318 | if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
|
---|
13319 | uErrorCode |= X86_TRAP_PF_P;
|
---|
13320 |
|
---|
13321 | TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
|
---|
13322 |
|
---|
13323 | Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
|
---|
13324 | uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
|
---|
13325 |
|
---|
13326 | /* Handle the pagefault trap for the nested shadow table. */
|
---|
13327 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13328 | VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
|
---|
13329 | TRPMResetTrap(pVCpu);
|
---|
13330 |
|
---|
13331 | /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
|
---|
13332 | if ( rcStrict2 == VINF_SUCCESS
|
---|
13333 | || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
13334 | || rcStrict2 == VERR_PAGE_NOT_PRESENT)
|
---|
13335 | {
|
---|
13336 | /* Successfully synced our nested page tables. */
|
---|
13337 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
|
---|
13338 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
|
---|
13339 | | HM_CHANGED_GUEST_RSP
|
---|
13340 | | HM_CHANGED_GUEST_RFLAGS);
|
---|
13341 | return VINF_SUCCESS;
|
---|
13342 | }
|
---|
13343 |
|
---|
13344 | Log4(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
|
---|
13345 | return rcStrict2;
|
---|
13346 | }
|
---|
13347 |
|
---|
13348 | /** @} */
|
---|
13349 |
|
---|
13350 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
13351 | /* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
|
---|
13352 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
13353 |
|
---|
13354 | /** @name VM-exit exception handlers.
|
---|
13355 | * @{
|
---|
13356 | */
|
---|
13357 |
|
---|
13358 | /**
|
---|
13359 | * VM-exit exception handler for \#MF (Math Fault: floating point exception).
|
---|
13360 | */
|
---|
13361 | static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13362 | {
|
---|
13363 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
13364 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
|
---|
13365 |
|
---|
13366 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
13367 | AssertRCReturn(rc, rc);
|
---|
13368 |
|
---|
13369 | if (!(pMixedCtx->cr0 & X86_CR0_NE))
|
---|
13370 | {
|
---|
13371 | /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
|
---|
13372 | rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
|
---|
13373 |
|
---|
13374 | /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
|
---|
13375 | * provides VM-exit instruction length. If this causes problem later,
|
---|
13376 | * disassemble the instruction like it's done on AMD-V. */
|
---|
13377 | int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
13378 | AssertRCReturn(rc2, rc2);
|
---|
13379 | return rc;
|
---|
13380 | }
|
---|
13381 |
|
---|
13382 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
13383 | pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
13384 | return rc;
|
---|
13385 | }
|
---|
13386 |
|
---|
13387 |
|
---|
13388 | /**
|
---|
13389 | * VM-exit exception handler for \#BP (Breakpoint exception).
|
---|
13390 | */
|
---|
13391 | static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13392 | {
|
---|
13393 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
13394 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
|
---|
13395 |
|
---|
13396 | /** @todo Try optimize this by not saving the entire guest state unless
|
---|
13397 | * really needed. */
|
---|
13398 | int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
13399 | AssertRCReturn(rc, rc);
|
---|
13400 |
|
---|
13401 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13402 | rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
13403 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
13404 | {
|
---|
13405 | rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
13406 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13407 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
13408 | AssertRCReturn(rc, rc);
|
---|
13409 |
|
---|
13410 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
13411 | pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
13412 | }
|
---|
13413 |
|
---|
13414 | Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
|
---|
13415 | return rc;
|
---|
13416 | }
|
---|
13417 |
|
---|
13418 |
|
---|
13419 | /**
|
---|
13420 | * VM-exit exception handler for \#AC (alignment check exception).
|
---|
13421 | */
|
---|
13422 | static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13423 | {
|
---|
13424 | RT_NOREF_PV(pMixedCtx);
|
---|
13425 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
13426 |
|
---|
13427 | /*
|
---|
13428 | * Re-inject it. We'll detect any nesting before getting here.
|
---|
13429 | */
|
---|
13430 | int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
13431 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13432 | AssertRCReturn(rc, rc);
|
---|
13433 | Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
|
---|
13434 |
|
---|
13435 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
13436 | pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
13437 | return VINF_SUCCESS;
|
---|
13438 | }
|
---|
13439 |
|
---|
13440 |
|
---|
13441 | /**
|
---|
13442 | * VM-exit exception handler for \#DB (Debug exception).
|
---|
13443 | */
|
---|
13444 | static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13445 | {
|
---|
13446 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
13447 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
|
---|
13448 | Log6(("XcptDB\n"));
|
---|
13449 |
|
---|
13450 | /*
|
---|
13451 | * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
|
---|
13452 | * for processing.
|
---|
13453 | */
|
---|
13454 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
13455 | AssertRCReturn(rc, rc);
|
---|
13456 |
|
---|
13457 | /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
|
---|
13458 | uint64_t uDR6 = X86_DR6_INIT_VAL;
|
---|
13459 | uDR6 |= ( pVmxTransient->uExitQualification
|
---|
13460 | & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
|
---|
13461 |
|
---|
13462 | rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
|
---|
13463 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
13464 | {
|
---|
13465 | /*
|
---|
13466 | * The exception was for the guest. Update DR6, DR7.GD and
|
---|
13467 | * IA32_DEBUGCTL.LBR before forwarding it.
|
---|
13468 | * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
|
---|
13469 | */
|
---|
13470 | VMMRZCallRing3Disable(pVCpu);
|
---|
13471 | HM_DISABLE_PREEMPT();
|
---|
13472 |
|
---|
13473 | pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
|
---|
13474 | pMixedCtx->dr[6] |= uDR6;
|
---|
13475 | if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
13476 | ASMSetDR6(pMixedCtx->dr[6]);
|
---|
13477 |
|
---|
13478 | HM_RESTORE_PREEMPT();
|
---|
13479 | VMMRZCallRing3Enable(pVCpu);
|
---|
13480 |
|
---|
13481 | rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
|
---|
13482 | AssertRCReturn(rc, rc);
|
---|
13483 |
|
---|
13484 | /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
|
---|
13485 | pMixedCtx->dr[7] &= ~X86_DR7_GD;
|
---|
13486 |
|
---|
13487 | /* Paranoia. */
|
---|
13488 | pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
|
---|
13489 | pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
|
---|
13490 |
|
---|
13491 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
|
---|
13492 | AssertRCReturn(rc, rc);
|
---|
13493 |
|
---|
13494 | /*
|
---|
13495 | * Raise #DB in the guest.
|
---|
13496 | *
|
---|
13497 | * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
|
---|
13498 | * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
|
---|
13499 | * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
|
---|
13500 | *
|
---|
13501 | * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
|
---|
13502 | */
|
---|
13503 | rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
13504 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13505 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
13506 | AssertRCReturn(rc, rc);
|
---|
13507 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
13508 | pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
13509 | return VINF_SUCCESS;
|
---|
13510 | }
|
---|
13511 |
|
---|
13512 | /*
|
---|
13513 | * Not a guest trap, must be a hypervisor related debug event then.
|
---|
13514 | * Update DR6 in case someone is interested in it.
|
---|
13515 | */
|
---|
13516 | AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
|
---|
13517 | AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
|
---|
13518 | CPUMSetHyperDR6(pVCpu, uDR6);
|
---|
13519 |
|
---|
13520 | return rc;
|
---|
13521 | }
|
---|
13522 |
|
---|
13523 |
|
---|
13524 | /**
|
---|
13525 | * VM-exit exception handler for \#NM (Device-not-available exception: floating
|
---|
13526 | * point exception).
|
---|
13527 | */
|
---|
13528 | static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13529 | {
|
---|
13530 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
13531 |
|
---|
13532 | /* We require CR0 and EFER. EFER is always up-to-date. */
|
---|
13533 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
13534 | AssertRCReturn(rc, rc);
|
---|
13535 |
|
---|
13536 | /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
|
---|
13537 | VMMRZCallRing3Disable(pVCpu);
|
---|
13538 | HM_DISABLE_PREEMPT();
|
---|
13539 |
|
---|
13540 | /* If the guest FPU was active at the time of the #NM VM-exit, then it's a guest fault. */
|
---|
13541 | if (pVmxTransient->fWasGuestFPUStateActive)
|
---|
13542 | {
|
---|
13543 | rc = VINF_EM_RAW_GUEST_TRAP;
|
---|
13544 | Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
|
---|
13545 | }
|
---|
13546 | else
|
---|
13547 | {
|
---|
13548 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
13549 | Assert(!pVmxTransient->fWasGuestFPUStateActive || pVCpu->hm.s.fUsingDebugLoop);
|
---|
13550 | #endif
|
---|
13551 | rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu);
|
---|
13552 | Assert( rc == VINF_EM_RAW_GUEST_TRAP
|
---|
13553 | || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
|
---|
13554 | if (rc == VINF_CPUM_HOST_CR0_MODIFIED)
|
---|
13555 | HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
|
---|
13556 | }
|
---|
13557 |
|
---|
13558 | HM_RESTORE_PREEMPT();
|
---|
13559 | VMMRZCallRing3Enable(pVCpu);
|
---|
13560 |
|
---|
13561 | if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
|
---|
13562 | {
|
---|
13563 | /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
|
---|
13564 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
13565 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
|
---|
13566 | pVCpu->hm.s.fPreloadGuestFpu = true;
|
---|
13567 | }
|
---|
13568 | else
|
---|
13569 | {
|
---|
13570 | /* Forward #NM to the guest. */
|
---|
13571 | Assert(rc == VINF_EM_RAW_GUEST_TRAP);
|
---|
13572 | rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
13573 | AssertRCReturn(rc, rc);
|
---|
13574 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
13575 | pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
|
---|
13576 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
|
---|
13577 | }
|
---|
13578 |
|
---|
13579 | return VINF_SUCCESS;
|
---|
13580 | }
|
---|
13581 |
|
---|
13582 |
|
---|
13583 | /**
|
---|
13584 | * VM-exit exception handler for \#GP (General-protection exception).
|
---|
13585 | *
|
---|
13586 | * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
|
---|
13587 | */
|
---|
13588 | static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13589 | {
|
---|
13590 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
13591 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
|
---|
13592 |
|
---|
13593 | int rc;
|
---|
13594 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
13595 | { /* likely */ }
|
---|
13596 | else
|
---|
13597 | {
|
---|
13598 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
13599 | Assert(pVCpu->hm.s.fUsingDebugLoop);
|
---|
13600 | #endif
|
---|
13601 | /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
|
---|
13602 | rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
13603 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
13604 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13605 | rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
13606 | AssertRCReturn(rc, rc);
|
---|
13607 | Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
|
---|
13608 | pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
|
---|
13609 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
13610 | pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
13611 | return rc;
|
---|
13612 | }
|
---|
13613 |
|
---|
13614 | Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
|
---|
13615 | Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
|
---|
13616 |
|
---|
13617 | /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
|
---|
13618 | rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
13619 | AssertRCReturn(rc, rc);
|
---|
13620 |
|
---|
13621 | PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
13622 | uint32_t cbOp = 0;
|
---|
13623 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13624 | bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
|
---|
13625 | rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
|
---|
13626 | if (RT_SUCCESS(rc))
|
---|
13627 | {
|
---|
13628 | rc = VINF_SUCCESS;
|
---|
13629 | Assert(cbOp == pDis->cbInstr);
|
---|
13630 | Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
|
---|
13631 | switch (pDis->pCurInstr->uOpcode)
|
---|
13632 | {
|
---|
13633 | case OP_CLI:
|
---|
13634 | {
|
---|
13635 | pMixedCtx->eflags.Bits.u1IF = 0;
|
---|
13636 | pMixedCtx->eflags.Bits.u1RF = 0;
|
---|
13637 | pMixedCtx->rip += pDis->cbInstr;
|
---|
13638 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
13639 | if ( !fDbgStepping
|
---|
13640 | && pMixedCtx->eflags.Bits.u1TF)
|
---|
13641 | hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
|
---|
13642 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
|
---|
13643 | break;
|
---|
13644 | }
|
---|
13645 |
|
---|
13646 | case OP_STI:
|
---|
13647 | {
|
---|
13648 | bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
|
---|
13649 | pMixedCtx->eflags.Bits.u1IF = 1;
|
---|
13650 | pMixedCtx->eflags.Bits.u1RF = 0;
|
---|
13651 | pMixedCtx->rip += pDis->cbInstr;
|
---|
13652 | if (!fOldIF)
|
---|
13653 | {
|
---|
13654 | EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
|
---|
13655 | Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
|
---|
13656 | }
|
---|
13657 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
13658 | if ( !fDbgStepping
|
---|
13659 | && pMixedCtx->eflags.Bits.u1TF)
|
---|
13660 | hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
|
---|
13661 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
|
---|
13662 | break;
|
---|
13663 | }
|
---|
13664 |
|
---|
13665 | case OP_HLT:
|
---|
13666 | {
|
---|
13667 | rc = VINF_EM_HALT;
|
---|
13668 | pMixedCtx->rip += pDis->cbInstr;
|
---|
13669 | pMixedCtx->eflags.Bits.u1RF = 0;
|
---|
13670 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
13671 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
|
---|
13672 | break;
|
---|
13673 | }
|
---|
13674 |
|
---|
13675 | case OP_POPF:
|
---|
13676 | {
|
---|
13677 | Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
|
---|
13678 | uint32_t cbParm;
|
---|
13679 | uint32_t uMask;
|
---|
13680 | bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
|
---|
13681 | if (pDis->fPrefix & DISPREFIX_OPSIZE)
|
---|
13682 | {
|
---|
13683 | cbParm = 4;
|
---|
13684 | uMask = 0xffffffff;
|
---|
13685 | }
|
---|
13686 | else
|
---|
13687 | {
|
---|
13688 | cbParm = 2;
|
---|
13689 | uMask = 0xffff;
|
---|
13690 | }
|
---|
13691 |
|
---|
13692 | /* Get the stack pointer & pop the contents of the stack onto Eflags. */
|
---|
13693 | RTGCPTR GCPtrStack = 0;
|
---|
13694 | X86EFLAGS Eflags;
|
---|
13695 | Eflags.u32 = 0;
|
---|
13696 | rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
|
---|
13697 | &GCPtrStack);
|
---|
13698 | if (RT_SUCCESS(rc))
|
---|
13699 | {
|
---|
13700 | Assert(sizeof(Eflags.u32) >= cbParm);
|
---|
13701 | rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
|
---|
13702 | AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
|
---|
13703 | }
|
---|
13704 | if (RT_FAILURE(rc))
|
---|
13705 | {
|
---|
13706 | rc = VERR_EM_INTERPRETER;
|
---|
13707 | break;
|
---|
13708 | }
|
---|
13709 | Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
|
---|
13710 | pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
|
---|
13711 | | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
|
---|
13712 | pMixedCtx->esp += cbParm;
|
---|
13713 | pMixedCtx->esp &= uMask;
|
---|
13714 | pMixedCtx->rip += pDis->cbInstr;
|
---|
13715 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
|
---|
13716 | | HM_CHANGED_GUEST_RSP
|
---|
13717 | | HM_CHANGED_GUEST_RFLAGS);
|
---|
13718 | /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
|
---|
13719 | POPF restores EFLAGS.TF. */
|
---|
13720 | if ( !fDbgStepping
|
---|
13721 | && fGstStepping)
|
---|
13722 | hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
|
---|
13723 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
|
---|
13724 | break;
|
---|
13725 | }
|
---|
13726 |
|
---|
13727 | case OP_PUSHF:
|
---|
13728 | {
|
---|
13729 | uint32_t cbParm;
|
---|
13730 | uint32_t uMask;
|
---|
13731 | if (pDis->fPrefix & DISPREFIX_OPSIZE)
|
---|
13732 | {
|
---|
13733 | cbParm = 4;
|
---|
13734 | uMask = 0xffffffff;
|
---|
13735 | }
|
---|
13736 | else
|
---|
13737 | {
|
---|
13738 | cbParm = 2;
|
---|
13739 | uMask = 0xffff;
|
---|
13740 | }
|
---|
13741 |
|
---|
13742 | /* Get the stack pointer & push the contents of eflags onto the stack. */
|
---|
13743 | RTGCPTR GCPtrStack = 0;
|
---|
13744 | rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
|
---|
13745 | SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
|
---|
13746 | if (RT_FAILURE(rc))
|
---|
13747 | {
|
---|
13748 | rc = VERR_EM_INTERPRETER;
|
---|
13749 | break;
|
---|
13750 | }
|
---|
13751 | X86EFLAGS Eflags = pMixedCtx->eflags;
|
---|
13752 | /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
|
---|
13753 | Eflags.Bits.u1RF = 0;
|
---|
13754 | Eflags.Bits.u1VM = 0;
|
---|
13755 |
|
---|
13756 | rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
|
---|
13757 | if (RT_UNLIKELY(rc != VINF_SUCCESS))
|
---|
13758 | {
|
---|
13759 | AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
|
---|
13760 | rc = VERR_EM_INTERPRETER;
|
---|
13761 | break;
|
---|
13762 | }
|
---|
13763 | Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
|
---|
13764 | pMixedCtx->esp -= cbParm;
|
---|
13765 | pMixedCtx->esp &= uMask;
|
---|
13766 | pMixedCtx->rip += pDis->cbInstr;
|
---|
13767 | pMixedCtx->eflags.Bits.u1RF = 0;
|
---|
13768 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
|
---|
13769 | | HM_CHANGED_GUEST_RSP
|
---|
13770 | | HM_CHANGED_GUEST_RFLAGS);
|
---|
13771 | if ( !fDbgStepping
|
---|
13772 | && pMixedCtx->eflags.Bits.u1TF)
|
---|
13773 | hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
|
---|
13774 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
|
---|
13775 | break;
|
---|
13776 | }
|
---|
13777 |
|
---|
13778 | case OP_IRET:
|
---|
13779 | {
|
---|
13780 | /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
|
---|
13781 | * instruction reference. */
|
---|
13782 | RTGCPTR GCPtrStack = 0;
|
---|
13783 | uint32_t uMask = 0xffff;
|
---|
13784 | bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
|
---|
13785 | uint16_t aIretFrame[3];
|
---|
13786 | if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
|
---|
13787 | {
|
---|
13788 | rc = VERR_EM_INTERPRETER;
|
---|
13789 | break;
|
---|
13790 | }
|
---|
13791 | rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
|
---|
13792 | &GCPtrStack);
|
---|
13793 | if (RT_SUCCESS(rc))
|
---|
13794 | {
|
---|
13795 | rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
|
---|
13796 | PGMACCESSORIGIN_HM));
|
---|
13797 | AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
|
---|
13798 | }
|
---|
13799 | if (RT_FAILURE(rc))
|
---|
13800 | {
|
---|
13801 | rc = VERR_EM_INTERPRETER;
|
---|
13802 | break;
|
---|
13803 | }
|
---|
13804 | pMixedCtx->eip = 0;
|
---|
13805 | pMixedCtx->ip = aIretFrame[0];
|
---|
13806 | pMixedCtx->cs.Sel = aIretFrame[1];
|
---|
13807 | pMixedCtx->cs.ValidSel = aIretFrame[1];
|
---|
13808 | pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
|
---|
13809 | pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
|
---|
13810 | | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
|
---|
13811 | pMixedCtx->sp += sizeof(aIretFrame);
|
---|
13812 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
|
---|
13813 | | HM_CHANGED_GUEST_SEGMENT_REGS
|
---|
13814 | | HM_CHANGED_GUEST_RSP
|
---|
13815 | | HM_CHANGED_GUEST_RFLAGS);
|
---|
13816 | /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
|
---|
13817 | if ( !fDbgStepping
|
---|
13818 | && fGstStepping)
|
---|
13819 | hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
|
---|
13820 | Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
|
---|
13821 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
|
---|
13822 | break;
|
---|
13823 | }
|
---|
13824 |
|
---|
13825 | case OP_INT:
|
---|
13826 | {
|
---|
13827 | uint16_t uVector = pDis->Param1.uValue & 0xff;
|
---|
13828 | hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
|
---|
13829 | /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
|
---|
13830 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
|
---|
13831 | break;
|
---|
13832 | }
|
---|
13833 |
|
---|
13834 | case OP_INTO:
|
---|
13835 | {
|
---|
13836 | if (pMixedCtx->eflags.Bits.u1OF)
|
---|
13837 | {
|
---|
13838 | hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
|
---|
13839 | /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
|
---|
13840 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
|
---|
13841 | }
|
---|
13842 | else
|
---|
13843 | {
|
---|
13844 | pMixedCtx->eflags.Bits.u1RF = 0;
|
---|
13845 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
|
---|
13846 | }
|
---|
13847 | break;
|
---|
13848 | }
|
---|
13849 |
|
---|
13850 | default:
|
---|
13851 | {
|
---|
13852 | pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
|
---|
13853 | VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
|
---|
13854 | EMCODETYPE_SUPERVISOR);
|
---|
13855 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
13856 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
13857 | /** @todo We have to set pending-debug exceptions here when the guest is
|
---|
13858 | * single-stepping depending on the instruction that was interpreted. */
|
---|
13859 | Log4(("#GP rc=%Rrc\n", rc));
|
---|
13860 | break;
|
---|
13861 | }
|
---|
13862 | }
|
---|
13863 | }
|
---|
13864 | else
|
---|
13865 | rc = VERR_EM_INTERPRETER;
|
---|
13866 |
|
---|
13867 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
|
---|
13868 | ("#GP Unexpected rc=%Rrc\n", rc));
|
---|
13869 | return rc;
|
---|
13870 | }
|
---|
13871 |
|
---|
13872 |
|
---|
13873 | /**
|
---|
13874 | * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
|
---|
13875 | * the exception reported in the VMX transient structure back into the VM.
|
---|
13876 | *
|
---|
13877 | * @remarks Requires uExitIntInfo in the VMX transient structure to be
|
---|
13878 | * up-to-date.
|
---|
13879 | */
|
---|
13880 | static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13881 | {
|
---|
13882 | RT_NOREF_PV(pMixedCtx);
|
---|
13883 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
13884 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
13885 | AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
|
---|
13886 | ("uVector=%#04x u32XcptBitmap=%#010RX32\n",
|
---|
13887 | VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
|
---|
13888 | #endif
|
---|
13889 |
|
---|
13890 | /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
|
---|
13891 | hmR0VmxCheckExitDueToEventDelivery(). */
|
---|
13892 | int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
13893 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13894 | AssertRCReturn(rc, rc);
|
---|
13895 | Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
|
---|
13896 |
|
---|
13897 | #ifdef DEBUG_ramshankar
|
---|
13898 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
13899 | uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
|
---|
13900 | Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
|
---|
13901 | #endif
|
---|
13902 |
|
---|
13903 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
13904 | pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
13905 | return VINF_SUCCESS;
|
---|
13906 | }
|
---|
13907 |
|
---|
13908 |
|
---|
13909 | /**
|
---|
13910 | * VM-exit exception handler for \#PF (Page-fault exception).
|
---|
13911 | */
|
---|
13912 | static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
13913 | {
|
---|
13914 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
13915 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13916 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
13917 | rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
13918 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
13919 | AssertRCReturn(rc, rc);
|
---|
13920 |
|
---|
13921 | if (!pVM->hm.s.fNestedPaging)
|
---|
13922 | { /* likely */ }
|
---|
13923 | else
|
---|
13924 | {
|
---|
13925 | #if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
|
---|
13926 | Assert(pVCpu->hm.s.fUsingDebugLoop);
|
---|
13927 | #endif
|
---|
13928 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
13929 | if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
|
---|
13930 | {
|
---|
13931 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
13932 | 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
|
---|
13933 | }
|
---|
13934 | else
|
---|
13935 | {
|
---|
13936 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
13937 | hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
|
---|
13938 | Log4(("Pending #DF due to vectoring #PF. NP\n"));
|
---|
13939 | }
|
---|
13940 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
13941 | return rc;
|
---|
13942 | }
|
---|
13943 |
|
---|
13944 | /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
|
---|
13945 | of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
|
---|
13946 | if (pVmxTransient->fVectoringPF)
|
---|
13947 | {
|
---|
13948 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
13949 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
13950 | }
|
---|
13951 |
|
---|
13952 | rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
13953 | AssertRCReturn(rc, rc);
|
---|
13954 |
|
---|
13955 | Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
|
---|
13956 | pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
|
---|
13957 |
|
---|
13958 | TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
|
---|
13959 | rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
|
---|
13960 | (RTGCPTR)pVmxTransient->uExitQualification);
|
---|
13961 |
|
---|
13962 | Log4(("#PF: rc=%Rrc\n", rc));
|
---|
13963 | if (rc == VINF_SUCCESS)
|
---|
13964 | {
|
---|
13965 | #if 0
|
---|
13966 | /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
|
---|
13967 | /** @todo this isn't quite right, what if guest does lgdt with some MMIO
|
---|
13968 | * memory? We don't update the whole state here... */
|
---|
13969 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
|
---|
13970 | | HM_CHANGED_GUEST_RSP
|
---|
13971 | | HM_CHANGED_GUEST_RFLAGS
|
---|
13972 | | HM_CHANGED_VMX_GUEST_APIC_STATE);
|
---|
13973 | #else
|
---|
13974 | /*
|
---|
13975 | * This is typically a shadow page table sync or a MMIO instruction. But we may have
|
---|
13976 | * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
|
---|
13977 | */
|
---|
13978 | /** @todo take advantage of CPUM changed flags instead of brute forcing. */
|
---|
13979 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
13980 | #endif
|
---|
13981 | TRPMResetTrap(pVCpu);
|
---|
13982 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
13983 | return rc;
|
---|
13984 | }
|
---|
13985 |
|
---|
13986 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
13987 | {
|
---|
13988 | if (!pVmxTransient->fVectoringDoublePF)
|
---|
13989 | {
|
---|
13990 | /* It's a guest page fault and needs to be reflected to the guest. */
|
---|
13991 | uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
|
---|
13992 | TRPMResetTrap(pVCpu);
|
---|
13993 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
|
---|
13994 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
13995 | 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
|
---|
13996 | }
|
---|
13997 | else
|
---|
13998 | {
|
---|
13999 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
14000 | TRPMResetTrap(pVCpu);
|
---|
14001 | pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
|
---|
14002 | hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
|
---|
14003 | Log4(("#PF: Pending #DF due to vectoring #PF\n"));
|
---|
14004 | }
|
---|
14005 |
|
---|
14006 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
14007 | return VINF_SUCCESS;
|
---|
14008 | }
|
---|
14009 |
|
---|
14010 | TRPMResetTrap(pVCpu);
|
---|
14011 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
|
---|
14012 | return rc;
|
---|
14013 | }
|
---|
14014 |
|
---|
14015 | /** @} */
|
---|
14016 |
|
---|