VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 73609

Last change on this file since 73609 was 73609, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: Nested VMX: bugref:9180 Build fix.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 580.3 KB
Line 
1/* $Id: HMVMXR0.cpp 73609 2018-08-10 07:54:29Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include "HMVMXR0.h"
43#include "dtrace/VBoxVMM.h"
44
45#ifdef DEBUG_ramshankar
46# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CHECK_GUEST_STATE
50# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
51# define HMVMX_ALWAYS_TRAP_PF
52# define HMVMX_ALWAYS_FLUSH_TLB
53# define HMVMX_ALWAYS_SWAP_EFER
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name HMVMX_READ_XXX
70 * Flags to skip redundant reads of some common VMCS fields that are not part of
71 * the guest-CPU or VCPU state but are needed while handling VM-exits.
72 */
73#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
74#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
75#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
76#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
77#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
78#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
79#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
80/** @} */
81
82/**
83 * States of the VMCS.
84 *
85 * This does not reflect all possible VMCS states but currently only those
86 * needed for maintaining the VMCS consistently even when thread-context hooks
87 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
88 */
89#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
90#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
91#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
92
93/**
94 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
95 * guest using hardware-assisted VMX.
96 *
97 * This excludes state like GPRs (other than RSP) which are always are
98 * swapped and restored across the world-switch and also registers like EFER,
99 * MSR which cannot be modified by the guest without causing a VM-exit.
100 */
101#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
102 | CPUMCTX_EXTRN_RFLAGS \
103 | CPUMCTX_EXTRN_RSP \
104 | CPUMCTX_EXTRN_SREG_MASK \
105 | CPUMCTX_EXTRN_TABLE_MASK \
106 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
107 | CPUMCTX_EXTRN_SYSCALL_MSRS \
108 | CPUMCTX_EXTRN_SYSENTER_MSRS \
109 | CPUMCTX_EXTRN_TSC_AUX \
110 | CPUMCTX_EXTRN_OTHER_MSRS \
111 | CPUMCTX_EXTRN_CR0 \
112 | CPUMCTX_EXTRN_CR3 \
113 | CPUMCTX_EXTRN_CR4 \
114 | CPUMCTX_EXTRN_DR7 \
115 | CPUMCTX_EXTRN_HM_VMX_MASK)
116
117/**
118 * Exception bitmap mask for real-mode guests (real-on-v86).
119 *
120 * We need to intercept all exceptions manually except:
121 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
122 * due to bugs in Intel CPUs.
123 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
124 * support.
125 */
126#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
127 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
128 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
129 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
130 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
131 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
132 | RT_BIT(X86_XCPT_XF))
133
134/** Maximum VM-instruction error number. */
135#define HMVMX_INSTR_ERROR_MAX 28
136
137/** Profiling macro. */
138#ifdef HM_PROFILE_EXIT_DISPATCH
139# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
140# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
141#else
142# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
143# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
144#endif
145
146/** Assert that preemption is disabled or covered by thread-context hooks. */
147#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
148 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
149
150/** Assert that we haven't migrated CPUs when thread-context hooks are not
151 * used. */
152#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
153 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
154 ("Illegal migration! Entered on CPU %u Current %u\n", \
155 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
156
157/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
158 * context. */
159#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
160 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
161 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
162
163/** Helper macro for VM-exit handlers called unexpectedly. */
164#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
165 do { \
166 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
167 return VERR_VMX_UNEXPECTED_EXIT; \
168 } while (0)
169
170/** Macro for importing segment registers to the VMCS from the guest-CPU context. */
171#ifdef VMX_USE_CACHED_VMCS_ACCESSES
172# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
173 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
174 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
175#else
176# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
177 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
178 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
179#endif
180
181/** Macro for exporting segment registers to the VMCS from the guest-CPU context. */
182# define HMVMX_EXPORT_SREG(Sel, a_pCtxSelReg) \
183 hmR0VmxExportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
184 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
185
186
187/*********************************************************************************************************************************
188* Structures and Typedefs *
189*********************************************************************************************************************************/
190/**
191 * VMX transient state.
192 *
193 * A state structure for holding miscellaneous information across
194 * VMX non-root operation and restored after the transition.
195 */
196typedef struct VMXTRANSIENT
197{
198 /** The host's rflags/eflags. */
199 RTCCUINTREG fEFlags;
200#if HC_ARCH_BITS == 32
201 uint32_t u32Alignment0;
202#endif
203 /** The guest's TPR value used for TPR shadowing. */
204 uint8_t u8GuestTpr;
205 /** Alignment. */
206 uint8_t abAlignment0[7];
207
208 /** The basic VM-exit reason. */
209 uint16_t uExitReason;
210 /** Alignment. */
211 uint16_t u16Alignment0;
212 /** The VM-exit interruption error code. */
213 uint32_t uExitIntErrorCode;
214 /** The VM-exit exit code qualification. */
215 uint64_t uExitQual;
216
217 /** The VM-exit interruption-information field. */
218 uint32_t uExitIntInfo;
219 /** The VM-exit instruction-length field. */
220 uint32_t cbInstr;
221 /** The VM-exit instruction-information field. */
222 VMXEXITINSTRINFO ExitInstrInfo;
223 /** Whether the VM-entry failed or not. */
224 bool fVMEntryFailed;
225 /** Alignment. */
226 uint8_t abAlignment1[3];
227
228 /** The VM-entry interruption-information field. */
229 uint32_t uEntryIntInfo;
230 /** The VM-entry exception error code field. */
231 uint32_t uEntryXcptErrorCode;
232 /** The VM-entry instruction length field. */
233 uint32_t cbEntryInstr;
234
235 /** IDT-vectoring information field. */
236 uint32_t uIdtVectoringInfo;
237 /** IDT-vectoring error code. */
238 uint32_t uIdtVectoringErrorCode;
239
240 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
241 uint32_t fVmcsFieldsRead;
242
243 /** Whether the guest debug state was active at the time of VM-exit. */
244 bool fWasGuestDebugStateActive;
245 /** Whether the hyper debug state was active at the time of VM-exit. */
246 bool fWasHyperDebugStateActive;
247 /** Whether TSC-offsetting should be setup before VM-entry. */
248 bool fUpdateTscOffsettingAndPreemptTimer;
249 /** Whether the VM-exit was caused by a page-fault during delivery of a
250 * contributory exception or a page-fault. */
251 bool fVectoringDoublePF;
252 /** Whether the VM-exit was caused by a page-fault during delivery of an
253 * external interrupt or NMI. */
254 bool fVectoringPF;
255} VMXTRANSIENT;
256AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
257AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
258AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
259AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
260AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
261/** Pointer to VMX transient state. */
262typedef VMXTRANSIENT *PVMXTRANSIENT;
263
264
265/**
266 * MSR-bitmap read permissions.
267 */
268typedef enum VMXMSREXITREAD
269{
270 /** Reading this MSR causes a VM-exit. */
271 VMXMSREXIT_INTERCEPT_READ = 0xb,
272 /** Reading this MSR does not cause a VM-exit. */
273 VMXMSREXIT_PASSTHRU_READ
274} VMXMSREXITREAD;
275/** Pointer to MSR-bitmap read permissions. */
276typedef VMXMSREXITREAD* PVMXMSREXITREAD;
277
278/**
279 * MSR-bitmap write permissions.
280 */
281typedef enum VMXMSREXITWRITE
282{
283 /** Writing to this MSR causes a VM-exit. */
284 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
285 /** Writing to this MSR does not cause a VM-exit. */
286 VMXMSREXIT_PASSTHRU_WRITE
287} VMXMSREXITWRITE;
288/** Pointer to MSR-bitmap write permissions. */
289typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
290
291
292/**
293 * VMX VM-exit handler.
294 *
295 * @returns Strict VBox status code (i.e. informational status codes too).
296 * @param pVCpu The cross context virtual CPU structure.
297 * @param pVmxTransient Pointer to the VMX-transient structure.
298 */
299#ifndef HMVMX_USE_FUNCTION_TABLE
300typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
301#else
302typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
303/** Pointer to VM-exit handler. */
304typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
305#endif
306
307/**
308 * VMX VM-exit handler, non-strict status code.
309 *
310 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
311 *
312 * @returns VBox status code, no informational status code returned.
313 * @param pVCpu The cross context virtual CPU structure.
314 * @param pVmxTransient Pointer to the VMX-transient structure.
315 *
316 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
317 * use of that status code will be replaced with VINF_EM_SOMETHING
318 * later when switching over to IEM.
319 */
320#ifndef HMVMX_USE_FUNCTION_TABLE
321typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
322#else
323typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
324#endif
325
326
327/*********************************************************************************************************************************
328* Internal Functions *
329*********************************************************************************************************************************/
330static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush);
331static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr);
332static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
333static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat);
334static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
335 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState);
336#if HC_ARCH_BITS == 32
337static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
338#endif
339#ifndef HMVMX_USE_FUNCTION_TABLE
340DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
341# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
342# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
343#else
344# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
345# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
346#endif
347
348
349/** @name VM-exit handlers.
350 * @{
351 */
352static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
353static FNVMXEXITHANDLER hmR0VmxExitExtInt;
354static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
355static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
356static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
357static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
358static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
359static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
360static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
361static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
362static FNVMXEXITHANDLER hmR0VmxExitCpuid;
363static FNVMXEXITHANDLER hmR0VmxExitGetsec;
364static FNVMXEXITHANDLER hmR0VmxExitHlt;
365static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
366static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
367static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
368static FNVMXEXITHANDLER hmR0VmxExitVmcall;
369#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
370static FNVMXEXITHANDLER hmR0VmxExitVmclear;
371static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
372static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
373static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
374static FNVMXEXITHANDLER hmR0VmxExitVmread;
375static FNVMXEXITHANDLER hmR0VmxExitVmresume;
376static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
377static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
378static FNVMXEXITHANDLER hmR0VmxExitVmxon;
379#endif
380static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
381static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
382static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
383static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
384static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
385static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
386static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
387static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
391static FNVMXEXITHANDLER hmR0VmxExitMwait;
392static FNVMXEXITHANDLER hmR0VmxExitMtf;
393static FNVMXEXITHANDLER hmR0VmxExitMonitor;
394static FNVMXEXITHANDLER hmR0VmxExitPause;
395static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
396static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
397static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
398static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
399static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
400static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
401static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
402static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
403static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
405static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
406static FNVMXEXITHANDLER hmR0VmxExitRdrand;
407static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
408/** @} */
409
410static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
411static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
412static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
413static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
414static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
415static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
416static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
417static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu);
418
419
420/*********************************************************************************************************************************
421* Global Variables *
422*********************************************************************************************************************************/
423#ifdef HMVMX_USE_FUNCTION_TABLE
424
425/**
426 * VMX_EXIT dispatch table.
427 */
428static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
429{
430 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
431 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
432 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
433 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
434 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
435 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
436 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
437 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
438 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
439 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
440 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
441 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
442 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
443 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
444 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
445 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
446 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
447 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
448 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
449#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
450 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
451 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
452 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
453 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
454 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
455 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
456 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
457 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
458 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
459#else
460 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
461 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
462 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
463 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
464 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
465 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
466 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
467 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
468 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
469#endif
470 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
471 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
472 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
473 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
474 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
475 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
476 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
477 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
478 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
479 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
480 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
481 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
482 /* 40 UNDEFINED */ hmR0VmxExitPause,
483 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
484 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
485 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
486 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
487 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
488 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
489 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
490 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
491 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
492 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
493 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
494 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
495 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
496 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
497 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
498 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
499 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
500 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
501 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
502 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
503 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
504 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
505 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
506 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
507};
508#endif /* HMVMX_USE_FUNCTION_TABLE */
509
510#ifdef VBOX_STRICT
511static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
512{
513 /* 0 */ "(Not Used)",
514 /* 1 */ "VMCALL executed in VMX root operation.",
515 /* 2 */ "VMCLEAR with invalid physical address.",
516 /* 3 */ "VMCLEAR with VMXON pointer.",
517 /* 4 */ "VMLAUNCH with non-clear VMCS.",
518 /* 5 */ "VMRESUME with non-launched VMCS.",
519 /* 6 */ "VMRESUME after VMXOFF",
520 /* 7 */ "VM-entry with invalid control fields.",
521 /* 8 */ "VM-entry with invalid host state fields.",
522 /* 9 */ "VMPTRLD with invalid physical address.",
523 /* 10 */ "VMPTRLD with VMXON pointer.",
524 /* 11 */ "VMPTRLD with incorrect revision identifier.",
525 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
526 /* 13 */ "VMWRITE to read-only VMCS component.",
527 /* 14 */ "(Not Used)",
528 /* 15 */ "VMXON executed in VMX root operation.",
529 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
530 /* 17 */ "VM-entry with non-launched executing VMCS.",
531 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
532 /* 19 */ "VMCALL with non-clear VMCS.",
533 /* 20 */ "VMCALL with invalid VM-exit control fields.",
534 /* 21 */ "(Not Used)",
535 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
536 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
537 /* 24 */ "VMCALL with invalid SMM-monitor features.",
538 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
539 /* 26 */ "VM-entry with events blocked by MOV SS.",
540 /* 27 */ "(Not Used)",
541 /* 28 */ "Invalid operand to INVEPT/INVVPID."
542};
543#endif /* VBOX_STRICT */
544
545
546
547/**
548 * Updates the VM's last error record.
549 *
550 * If there was a VMX instruction error, reads the error data from the VMCS and
551 * updates VCPU's last error record as well.
552 *
553 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
554 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
555 * VERR_VMX_INVALID_VMCS_FIELD.
556 * @param rc The error code.
557 */
558static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
559{
560 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
561 || rc == VERR_VMX_UNABLE_TO_START_VM)
562 {
563 AssertPtrReturnVoid(pVCpu);
564 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
565 }
566 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
567}
568
569
570/**
571 * Reads the VM-entry interruption-information field from the VMCS into the VMX
572 * transient structure.
573 *
574 * @returns VBox status code.
575 * @param pVmxTransient Pointer to the VMX transient structure.
576 *
577 * @remarks No-long-jump zone!!!
578 */
579DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
580{
581 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
582 AssertRCReturn(rc, rc);
583 return VINF_SUCCESS;
584}
585
586#ifdef VBOX_STRICT
587/**
588 * Reads the VM-entry exception error code field from the VMCS into
589 * the VMX transient structure.
590 *
591 * @returns VBox status code.
592 * @param pVmxTransient Pointer to the VMX transient structure.
593 *
594 * @remarks No-long-jump zone!!!
595 */
596DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
597{
598 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
599 AssertRCReturn(rc, rc);
600 return VINF_SUCCESS;
601}
602
603
604/**
605 * Reads the VM-entry exception error code field from the VMCS into
606 * the VMX transient structure.
607 *
608 * @returns VBox status code.
609 * @param pVmxTransient Pointer to the VMX transient structure.
610 *
611 * @remarks No-long-jump zone!!!
612 */
613DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
614{
615 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
616 AssertRCReturn(rc, rc);
617 return VINF_SUCCESS;
618}
619#endif /* VBOX_STRICT */
620
621
622/**
623 * Reads the VM-exit interruption-information field from the VMCS into the VMX
624 * transient structure.
625 *
626 * @returns VBox status code.
627 * @param pVmxTransient Pointer to the VMX transient structure.
628 */
629DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
630{
631 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
632 {
633 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
634 AssertRCReturn(rc,rc);
635 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
636 }
637 return VINF_SUCCESS;
638}
639
640
641/**
642 * Reads the VM-exit interruption error code from the VMCS into the VMX
643 * transient structure.
644 *
645 * @returns VBox status code.
646 * @param pVmxTransient Pointer to the VMX transient structure.
647 */
648DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
649{
650 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
651 {
652 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
653 AssertRCReturn(rc, rc);
654 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
655 }
656 return VINF_SUCCESS;
657}
658
659
660/**
661 * Reads the VM-exit instruction length field from the VMCS into the VMX
662 * transient structure.
663 *
664 * @returns VBox status code.
665 * @param pVmxTransient Pointer to the VMX transient structure.
666 */
667DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
668{
669 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
670 {
671 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
672 AssertRCReturn(rc, rc);
673 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
674 }
675 return VINF_SUCCESS;
676}
677
678
679/**
680 * Reads the VM-exit instruction-information field from the VMCS into
681 * the VMX transient structure.
682 *
683 * @returns VBox status code.
684 * @param pVmxTransient Pointer to the VMX transient structure.
685 */
686DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
687{
688 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
689 {
690 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
691 AssertRCReturn(rc, rc);
692 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
693 }
694 return VINF_SUCCESS;
695}
696
697
698/**
699 * Reads the exit code qualification from the VMCS into the VMX transient
700 * structure.
701 *
702 * @returns VBox status code.
703 * @param pVCpu The cross context virtual CPU structure of the
704 * calling EMT. (Required for the VMCS cache case.)
705 * @param pVmxTransient Pointer to the VMX transient structure.
706 */
707DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
708{
709 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
710 {
711 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
712 AssertRCReturn(rc, rc);
713 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
714 }
715 return VINF_SUCCESS;
716}
717
718
719/**
720 * Reads the IDT-vectoring information field from the VMCS into the VMX
721 * transient structure.
722 *
723 * @returns VBox status code.
724 * @param pVmxTransient Pointer to the VMX transient structure.
725 *
726 * @remarks No-long-jump zone!!!
727 */
728DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
729{
730 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
731 {
732 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
733 AssertRCReturn(rc, rc);
734 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
735 }
736 return VINF_SUCCESS;
737}
738
739
740/**
741 * Reads the IDT-vectoring error code from the VMCS into the VMX
742 * transient structure.
743 *
744 * @returns VBox status code.
745 * @param pVmxTransient Pointer to the VMX transient structure.
746 */
747DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
748{
749 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
750 {
751 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
752 AssertRCReturn(rc, rc);
753 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
754 }
755 return VINF_SUCCESS;
756}
757
758
759/**
760 * Enters VMX root mode operation on the current CPU.
761 *
762 * @returns VBox status code.
763 * @param pVM The cross context VM structure. Can be
764 * NULL, after a resume.
765 * @param HCPhysCpuPage Physical address of the VMXON region.
766 * @param pvCpuPage Pointer to the VMXON region.
767 */
768static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
769{
770 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
771 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
772 Assert(pvCpuPage);
773 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
774
775 if (pVM)
776 {
777 /* Write the VMCS revision dword to the VMXON region. */
778 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
779 }
780
781 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
782 RTCCUINTREG fEFlags = ASMIntDisableFlags();
783
784 /* Enable the VMX bit in CR4 if necessary. */
785 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
786
787 /* Enter VMX root mode. */
788 int rc = VMXEnable(HCPhysCpuPage);
789 if (RT_FAILURE(rc))
790 {
791 if (!(uOldCr4 & X86_CR4_VMXE))
792 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
793
794 if (pVM)
795 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
796 }
797
798 /* Restore interrupts. */
799 ASMSetFlags(fEFlags);
800 return rc;
801}
802
803
804/**
805 * Exits VMX root mode operation on the current CPU.
806 *
807 * @returns VBox status code.
808 */
809static int hmR0VmxLeaveRootMode(void)
810{
811 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
812
813 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
814 RTCCUINTREG fEFlags = ASMIntDisableFlags();
815
816 /* If we're for some reason not in VMX root mode, then don't leave it. */
817 RTCCUINTREG uHostCR4 = ASMGetCR4();
818
819 int rc;
820 if (uHostCR4 & X86_CR4_VMXE)
821 {
822 /* Exit VMX root mode and clear the VMX bit in CR4. */
823 VMXDisable();
824 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
825 rc = VINF_SUCCESS;
826 }
827 else
828 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
829
830 /* Restore interrupts. */
831 ASMSetFlags(fEFlags);
832 return rc;
833}
834
835
836/**
837 * Allocates and maps one physically contiguous page. The allocated page is
838 * zero'd out. (Used by various VT-x structures).
839 *
840 * @returns IPRT status code.
841 * @param pMemObj Pointer to the ring-0 memory object.
842 * @param ppVirt Where to store the virtual address of the
843 * allocation.
844 * @param pHCPhys Where to store the physical address of the
845 * allocation.
846 */
847static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
848{
849 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
850 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
851 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
852
853 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
854 if (RT_FAILURE(rc))
855 return rc;
856 *ppVirt = RTR0MemObjAddress(*pMemObj);
857 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
858 ASMMemZero32(*ppVirt, PAGE_SIZE);
859 return VINF_SUCCESS;
860}
861
862
863/**
864 * Frees and unmaps an allocated physical page.
865 *
866 * @param pMemObj Pointer to the ring-0 memory object.
867 * @param ppVirt Where to re-initialize the virtual address of
868 * allocation as 0.
869 * @param pHCPhys Where to re-initialize the physical address of the
870 * allocation as 0.
871 */
872static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
873{
874 AssertPtr(pMemObj);
875 AssertPtr(ppVirt);
876 AssertPtr(pHCPhys);
877 if (*pMemObj != NIL_RTR0MEMOBJ)
878 {
879 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
880 AssertRC(rc);
881 *pMemObj = NIL_RTR0MEMOBJ;
882 *ppVirt = 0;
883 *pHCPhys = 0;
884 }
885}
886
887
888/**
889 * Worker function to free VT-x related structures.
890 *
891 * @returns IPRT status code.
892 * @param pVM The cross context VM structure.
893 */
894static void hmR0VmxStructsFree(PVM pVM)
895{
896 for (VMCPUID i = 0; i < pVM->cCpus; i++)
897 {
898 PVMCPU pVCpu = &pVM->aCpus[i];
899 AssertPtr(pVCpu);
900
901 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
902 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
903
904 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
905 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
906
907 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
908 }
909
910 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
911#ifdef VBOX_WITH_CRASHDUMP_MAGIC
912 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
913#endif
914}
915
916
917/**
918 * Worker function to allocate VT-x related VM structures.
919 *
920 * @returns IPRT status code.
921 * @param pVM The cross context VM structure.
922 */
923static int hmR0VmxStructsAlloc(PVM pVM)
924{
925 /*
926 * Initialize members up-front so we can cleanup properly on allocation failure.
927 */
928#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
929 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
930 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
931 pVM->hm.s.vmx.HCPhys##a_Name = 0;
932
933#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
934 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
935 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
936 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
937
938#ifdef VBOX_WITH_CRASHDUMP_MAGIC
939 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
940#endif
941 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
942
943 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
944 for (VMCPUID i = 0; i < pVM->cCpus; i++)
945 {
946 PVMCPU pVCpu = &pVM->aCpus[i];
947 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
948 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
949 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
950 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
951 }
952#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
953#undef VMXLOCAL_INIT_VM_MEMOBJ
954
955 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
956 AssertReturnStmt(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE) <= PAGE_SIZE,
957 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
958 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
959
960 /*
961 * Allocate all the VT-x structures.
962 */
963 int rc = VINF_SUCCESS;
964#ifdef VBOX_WITH_CRASHDUMP_MAGIC
965 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
966 if (RT_FAILURE(rc))
967 goto cleanup;
968 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
969 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
970#endif
971
972 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
973 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
974 {
975 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
976 &pVM->hm.s.vmx.HCPhysApicAccess);
977 if (RT_FAILURE(rc))
978 goto cleanup;
979 }
980
981 /*
982 * Initialize per-VCPU VT-x structures.
983 */
984 for (VMCPUID i = 0; i < pVM->cCpus; i++)
985 {
986 PVMCPU pVCpu = &pVM->aCpus[i];
987 AssertPtr(pVCpu);
988
989 /* Allocate the VM control structure (VMCS). */
990 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
991 if (RT_FAILURE(rc))
992 goto cleanup;
993
994 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
995 if ( PDMHasApic(pVM)
996 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
997 {
998 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
999 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1000 if (RT_FAILURE(rc))
1001 goto cleanup;
1002 }
1003
1004 /*
1005 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1006 * transparent accesses of specific MSRs.
1007 *
1008 * If the condition for enabling MSR bitmaps changes here, don't forget to
1009 * update HMAreMsrBitmapsAvailable().
1010 */
1011 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1012 {
1013 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1014 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1015 if (RT_FAILURE(rc))
1016 goto cleanup;
1017 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1018 }
1019
1020 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1021 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1022 if (RT_FAILURE(rc))
1023 goto cleanup;
1024
1025 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1026 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1027 if (RT_FAILURE(rc))
1028 goto cleanup;
1029 }
1030
1031 return VINF_SUCCESS;
1032
1033cleanup:
1034 hmR0VmxStructsFree(pVM);
1035 return rc;
1036}
1037
1038
1039/**
1040 * Does global VT-x initialization (called during module initialization).
1041 *
1042 * @returns VBox status code.
1043 */
1044VMMR0DECL(int) VMXR0GlobalInit(void)
1045{
1046#ifdef HMVMX_USE_FUNCTION_TABLE
1047 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1048# ifdef VBOX_STRICT
1049 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1050 Assert(g_apfnVMExitHandlers[i]);
1051# endif
1052#endif
1053 return VINF_SUCCESS;
1054}
1055
1056
1057/**
1058 * Does global VT-x termination (called during module termination).
1059 */
1060VMMR0DECL(void) VMXR0GlobalTerm()
1061{
1062 /* Nothing to do currently. */
1063}
1064
1065
1066/**
1067 * Sets up and activates VT-x on the current CPU.
1068 *
1069 * @returns VBox status code.
1070 * @param pHostCpu Pointer to the global CPU info struct.
1071 * @param pVM The cross context VM structure. Can be
1072 * NULL after a host resume operation.
1073 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1074 * fEnabledByHost is @c true).
1075 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1076 * @a fEnabledByHost is @c true).
1077 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1078 * enable VT-x on the host.
1079 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1080 */
1081VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1082 void *pvMsrs)
1083{
1084 Assert(pHostCpu);
1085 Assert(pvMsrs);
1086 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1087
1088 /* Enable VT-x if it's not already enabled by the host. */
1089 if (!fEnabledByHost)
1090 {
1091 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1092 if (RT_FAILURE(rc))
1093 return rc;
1094 }
1095
1096 /*
1097 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
1098 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
1099 * invalidated when flushing by VPID.
1100 */
1101 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1102 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1103 {
1104 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
1105 pHostCpu->fFlushAsidBeforeUse = false;
1106 }
1107 else
1108 pHostCpu->fFlushAsidBeforeUse = true;
1109
1110 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1111 ++pHostCpu->cTlbFlushes;
1112
1113 return VINF_SUCCESS;
1114}
1115
1116
1117/**
1118 * Deactivates VT-x on the current CPU.
1119 *
1120 * @returns VBox status code.
1121 * @param pHostCpu Pointer to the global CPU info struct.
1122 * @param pvCpuPage Pointer to the VMXON region.
1123 * @param HCPhysCpuPage Physical address of the VMXON region.
1124 *
1125 * @remarks This function should never be called when SUPR0EnableVTx() or
1126 * similar was used to enable VT-x on the host.
1127 */
1128VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1129{
1130 RT_NOREF3(pHostCpu, pvCpuPage, HCPhysCpuPage);
1131
1132 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1133 return hmR0VmxLeaveRootMode();
1134}
1135
1136
1137/**
1138 * Sets the permission bits for the specified MSR in the MSR bitmap.
1139 *
1140 * @param pVCpu The cross context virtual CPU structure.
1141 * @param uMsr The MSR value.
1142 * @param enmRead Whether reading this MSR causes a VM-exit.
1143 * @param enmWrite Whether writing this MSR causes a VM-exit.
1144 */
1145static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1146{
1147 int32_t iBit;
1148 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1149
1150 /*
1151 * Layout:
1152 * 0x000 - 0x3ff - Low MSR read bits
1153 * 0x400 - 0x7ff - High MSR read bits
1154 * 0x800 - 0xbff - Low MSR write bits
1155 * 0xc00 - 0xfff - High MSR write bits
1156 */
1157 if (uMsr <= 0x00001fff)
1158 iBit = uMsr;
1159 else if (uMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1160 {
1161 iBit = uMsr - UINT32_C(0xc0000000);
1162 pbMsrBitmap += 0x400;
1163 }
1164 else
1165 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1166
1167 Assert(iBit <= 0x1fff);
1168 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1169 ASMBitSet(pbMsrBitmap, iBit);
1170 else
1171 ASMBitClear(pbMsrBitmap, iBit);
1172
1173 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1174 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1175 else
1176 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1177}
1178
1179
1180#ifdef VBOX_STRICT
1181/**
1182 * Gets the permission bits for the specified MSR in the MSR bitmap.
1183 *
1184 * @returns VBox status code.
1185 * @retval VINF_SUCCESS if the specified MSR is found.
1186 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1187 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1188 *
1189 * @param pVCpu The cross context virtual CPU structure.
1190 * @param uMsr The MSR.
1191 * @param penmRead Where to store the read permissions.
1192 * @param penmWrite Where to store the write permissions.
1193 */
1194static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1195{
1196 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1197 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1198 int32_t iBit;
1199 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1200
1201 /* See hmR0VmxSetMsrPermission() for the layout. */
1202 if (uMsr <= 0x00001fff)
1203 iBit = uMsr;
1204 else if ( uMsr >= 0xc0000000
1205 && uMsr <= 0xc0001fff)
1206 {
1207 iBit = (uMsr - 0xc0000000);
1208 pbMsrBitmap += 0x400;
1209 }
1210 else
1211 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1212
1213 Assert(iBit <= 0x1fff);
1214 if (ASMBitTest(pbMsrBitmap, iBit))
1215 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1216 else
1217 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1218
1219 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1220 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1221 else
1222 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1223 return VINF_SUCCESS;
1224}
1225#endif /* VBOX_STRICT */
1226
1227
1228/**
1229 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1230 * area.
1231 *
1232 * @returns VBox status code.
1233 * @param pVCpu The cross context virtual CPU structure.
1234 * @param cMsrs The number of MSRs.
1235 */
1236static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1237{
1238 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1239 uint64_t const uVmxMiscMsr = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc;
1240 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(uVmxMiscMsr);
1241 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1242 {
1243 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1244 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1245 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1246 }
1247
1248 /* Update number of guest MSRs to load/store across the world-switch. */
1249 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1250 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1251
1252 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1253 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1254 AssertRCReturn(rc, rc);
1255
1256 /* Update the VCPU's copy of the MSR count. */
1257 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1258
1259 return VINF_SUCCESS;
1260}
1261
1262
1263/**
1264 * Adds a new (or updates the value of an existing) guest/host MSR
1265 * pair to be swapped during the world-switch as part of the
1266 * auto-load/store MSR area in the VMCS.
1267 *
1268 * @returns VBox status code.
1269 * @param pVCpu The cross context virtual CPU structure.
1270 * @param uMsr The MSR.
1271 * @param uGuestMsrValue Value of the guest MSR.
1272 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1273 * necessary.
1274 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1275 * its value was updated. Optional, can be NULL.
1276 */
1277static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1278 bool *pfAddedAndUpdated)
1279{
1280 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1281 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1282 uint32_t i;
1283 for (i = 0; i < cMsrs; i++)
1284 {
1285 if (pGuestMsr->u32Msr == uMsr)
1286 break;
1287 pGuestMsr++;
1288 }
1289
1290 bool fAdded = false;
1291 if (i == cMsrs)
1292 {
1293 ++cMsrs;
1294 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1295 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1296
1297 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1298 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1299 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1300
1301 fAdded = true;
1302 }
1303
1304 /* Update the MSR values in the auto-load/store MSR area. */
1305 pGuestMsr->u32Msr = uMsr;
1306 pGuestMsr->u64Value = uGuestMsrValue;
1307
1308 /* Create/update the MSR slot in the host MSR area. */
1309 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1310 pHostMsr += i;
1311 pHostMsr->u32Msr = uMsr;
1312
1313 /*
1314 * Update the host MSR only when requested by the caller AND when we're
1315 * adding it to the auto-load/store area. Otherwise, it would have been
1316 * updated by hmR0VmxExportHostMsrs(). We do this for performance reasons.
1317 */
1318 bool fUpdatedMsrValue = false;
1319 if ( fAdded
1320 && fUpdateHostMsr)
1321 {
1322 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1323 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1324 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1325 fUpdatedMsrValue = true;
1326 }
1327
1328 if (pfAddedAndUpdated)
1329 *pfAddedAndUpdated = fUpdatedMsrValue;
1330 return VINF_SUCCESS;
1331}
1332
1333
1334/**
1335 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1336 * auto-load/store MSR area in the VMCS.
1337 *
1338 * @returns VBox status code.
1339 * @param pVCpu The cross context virtual CPU structure.
1340 * @param uMsr The MSR.
1341 */
1342static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1343{
1344 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1345 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1346 for (uint32_t i = 0; i < cMsrs; i++)
1347 {
1348 /* Find the MSR. */
1349 if (pGuestMsr->u32Msr == uMsr)
1350 {
1351 /* If it's the last MSR, simply reduce the count. */
1352 if (i == cMsrs - 1)
1353 {
1354 --cMsrs;
1355 break;
1356 }
1357
1358 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1359 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1360 pLastGuestMsr += cMsrs - 1;
1361 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1362 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1363
1364 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1365 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1366 pLastHostMsr += cMsrs - 1;
1367 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1368 pHostMsr->u64Value = pLastHostMsr->u64Value;
1369 --cMsrs;
1370 break;
1371 }
1372 pGuestMsr++;
1373 }
1374
1375 /* Update the VMCS if the count changed (meaning the MSR was found). */
1376 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1377 {
1378 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1379 AssertRCReturn(rc, rc);
1380
1381 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1382 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1383 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1384
1385 Log4Func(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1386 return VINF_SUCCESS;
1387 }
1388
1389 return VERR_NOT_FOUND;
1390}
1391
1392
1393/**
1394 * Checks if the specified guest MSR is part of the auto-load/store area in
1395 * the VMCS.
1396 *
1397 * @returns true if found, false otherwise.
1398 * @param pVCpu The cross context virtual CPU structure.
1399 * @param uMsr The MSR to find.
1400 */
1401static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1402{
1403 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1404 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1405
1406 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1407 {
1408 if (pGuestMsr->u32Msr == uMsr)
1409 return true;
1410 }
1411 return false;
1412}
1413
1414
1415/**
1416 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1417 *
1418 * @param pVCpu The cross context virtual CPU structure.
1419 *
1420 * @remarks No-long-jump zone!!!
1421 */
1422static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1423{
1424 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1425 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1426 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1427 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1428
1429 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1430 {
1431 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1432
1433 /*
1434 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1435 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1436 */
1437 if (pHostMsr->u32Msr == MSR_K6_EFER)
1438 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1439 else
1440 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1441 }
1442
1443 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1444}
1445
1446
1447/**
1448 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1449 * perform lazy restoration of the host MSRs while leaving VT-x.
1450 *
1451 * @param pVCpu The cross context virtual CPU structure.
1452 *
1453 * @remarks No-long-jump zone!!!
1454 */
1455static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1456{
1457 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1458
1459 /*
1460 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1461 */
1462 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1463 {
1464 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1465#if HC_ARCH_BITS == 64
1466 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1467 {
1468 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1469 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1470 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1471 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1472 }
1473#endif
1474 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1475 }
1476}
1477
1478
1479/**
1480 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1481 * lazily while leaving VT-x.
1482 *
1483 * @returns true if it does, false otherwise.
1484 * @param pVCpu The cross context virtual CPU structure.
1485 * @param uMsr The MSR to check.
1486 */
1487static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1488{
1489 NOREF(pVCpu);
1490#if HC_ARCH_BITS == 64
1491 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1492 {
1493 switch (uMsr)
1494 {
1495 case MSR_K8_LSTAR:
1496 case MSR_K6_STAR:
1497 case MSR_K8_SF_MASK:
1498 case MSR_K8_KERNEL_GS_BASE:
1499 return true;
1500 }
1501 }
1502#else
1503 RT_NOREF(pVCpu, uMsr);
1504#endif
1505 return false;
1506}
1507
1508
1509/**
1510 * Loads a set of guests MSRs to allow read/passthru to the guest.
1511 *
1512 * The name of this function is slightly confusing. This function does NOT
1513 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1514 * common prefix for functions dealing with "lazy restoration" of the shared
1515 * MSRs.
1516 *
1517 * @param pVCpu The cross context virtual CPU structure.
1518 *
1519 * @remarks No-long-jump zone!!!
1520 */
1521static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1522{
1523 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1524 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1525
1526 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1527#if HC_ARCH_BITS == 64
1528 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1529 {
1530 /*
1531 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1532 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1533 * we can skip a few MSR writes.
1534 *
1535 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1536 * guest MSR values in the guest-CPU context might be different to what's currently
1537 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1538 * CPU, see @bugref{8728}.
1539 */
1540 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1541 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1542 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1543 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1544 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1545 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1546 {
1547#ifdef VBOX_STRICT
1548 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1549 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1550 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1551 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1552#endif
1553 }
1554 else
1555 {
1556 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1557 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
1558 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
1559 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1560 }
1561 }
1562#endif
1563 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1564}
1565
1566
1567/**
1568 * Performs lazy restoration of the set of host MSRs if they were previously
1569 * loaded with guest MSR values.
1570 *
1571 * @param pVCpu The cross context virtual CPU structure.
1572 *
1573 * @remarks No-long-jump zone!!!
1574 * @remarks The guest MSRs should have been saved back into the guest-CPU
1575 * context by hmR0VmxImportGuestState()!!!
1576 */
1577static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1578{
1579 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1580 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1581
1582 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1583 {
1584 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1585#if HC_ARCH_BITS == 64
1586 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1587 {
1588 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1589 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1590 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1591 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1592 }
1593#endif
1594 }
1595 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1596}
1597
1598
1599/**
1600 * Verifies that our cached values of the VMCS fields are all consistent with
1601 * what's actually present in the VMCS.
1602 *
1603 * @returns VBox status code.
1604 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
1605 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
1606 * VMCS content. HMCPU error-field is
1607 * updated, see VMX_VCI_XXX.
1608 * @param pVCpu The cross context virtual CPU structure.
1609 */
1610static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1611{
1612 uint32_t u32Val;
1613 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1614 AssertRCReturn(rc, rc);
1615 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32EntryCtls == u32Val,
1616 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1617 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
1618 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1619
1620 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1621 AssertRCReturn(rc, rc);
1622 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ExitCtls == u32Val,
1623 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1624 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
1625 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1626
1627 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1628 AssertRCReturn(rc, rc);
1629 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32PinCtls == u32Val,
1630 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1631 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
1632 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1633
1634 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1635 AssertRCReturn(rc, rc);
1636 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls == u32Val,
1637 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1638 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
1639 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1640
1641 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1642 {
1643 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1644 AssertRCReturn(rc, rc);
1645 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1646 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1647 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
1648 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1649 }
1650
1651 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
1652 AssertRCReturn(rc, rc);
1653 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32XcptBitmap == u32Val,
1654 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap, u32Val),
1655 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
1656 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1657
1658 uint64_t u64Val;
1659 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
1660 AssertRCReturn(rc, rc);
1661 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u64TscOffset == u64Val,
1662 ("Cache=%#RX64 VMCS=%#RX64\n", pVCpu->hm.s.vmx.u64TscOffset, u64Val),
1663 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
1664 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1665
1666 return VINF_SUCCESS;
1667}
1668
1669
1670#ifdef VBOX_STRICT
1671/**
1672 * Verifies that our cached host EFER value has not changed
1673 * since we cached it.
1674 *
1675 * @param pVCpu The cross context virtual CPU structure.
1676 */
1677static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1678{
1679 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1680
1681 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1682 {
1683 uint64_t u64Val;
1684 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1685 AssertRC(rc);
1686
1687 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1688 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1689 }
1690}
1691
1692
1693/**
1694 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1695 * VMCS are correct.
1696 *
1697 * @param pVCpu The cross context virtual CPU structure.
1698 */
1699static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1700{
1701 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1702
1703 /* Verify MSR counts in the VMCS are what we think it should be. */
1704 uint32_t cMsrs;
1705 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1706 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1707
1708 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1709 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1710
1711 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1712 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1713
1714 PCVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1715 PCVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1716 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1717 {
1718 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1719 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1720 pGuestMsr->u32Msr, cMsrs));
1721
1722 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1723 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1724 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1725
1726 /* Verify that the permissions are as expected in the MSR bitmap. */
1727 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1728 {
1729 VMXMSREXITREAD enmRead;
1730 VMXMSREXITWRITE enmWrite;
1731 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1732 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1733 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1734 {
1735 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1736 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1737 }
1738 else
1739 {
1740 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1741 pGuestMsr->u32Msr, cMsrs));
1742 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1743 pGuestMsr->u32Msr, cMsrs));
1744 }
1745 }
1746 }
1747}
1748#endif /* VBOX_STRICT */
1749
1750
1751/**
1752 * Flushes the TLB using EPT.
1753 *
1754 * @returns VBox status code.
1755 * @param pVCpu The cross context virtual CPU structure of the calling
1756 * EMT. Can be NULL depending on @a enmTlbFlush.
1757 * @param enmTlbFlush Type of flush.
1758 *
1759 * @remarks Caller is responsible for making sure this function is called only
1760 * when NestedPaging is supported and providing @a enmTlbFlush that is
1761 * supported by the CPU.
1762 * @remarks Can be called with interrupts disabled.
1763 */
1764static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush)
1765{
1766 uint64_t au64Descriptor[2];
1767 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1768 au64Descriptor[0] = 0;
1769 else
1770 {
1771 Assert(pVCpu);
1772 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1773 }
1774 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1775
1776 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
1777 AssertMsg(rc == VINF_SUCCESS,
1778 ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0, rc));
1779
1780 if ( RT_SUCCESS(rc)
1781 && pVCpu)
1782 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1783}
1784
1785
1786/**
1787 * Flushes the TLB using VPID.
1788 *
1789 * @returns VBox status code.
1790 * @param pVCpu The cross context virtual CPU structure of the calling
1791 * EMT. Can be NULL depending on @a enmTlbFlush.
1792 * @param enmTlbFlush Type of flush.
1793 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1794 * on @a enmTlbFlush).
1795 *
1796 * @remarks Can be called with interrupts disabled.
1797 */
1798static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
1799{
1800 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
1801
1802 uint64_t au64Descriptor[2];
1803 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1804 {
1805 au64Descriptor[0] = 0;
1806 au64Descriptor[1] = 0;
1807 }
1808 else
1809 {
1810 AssertPtr(pVCpu);
1811 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1812 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1813 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1814 au64Descriptor[1] = GCPtr;
1815 }
1816
1817 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
1818 AssertMsg(rc == VINF_SUCCESS,
1819 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1820
1821 if ( RT_SUCCESS(rc)
1822 && pVCpu)
1823 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1824 NOREF(rc);
1825}
1826
1827
1828/**
1829 * Invalidates a guest page by guest virtual address. Only relevant for
1830 * EPT/VPID, otherwise there is nothing really to invalidate.
1831 *
1832 * @returns VBox status code.
1833 * @param pVCpu The cross context virtual CPU structure.
1834 * @param GCVirt Guest virtual address of the page to invalidate.
1835 */
1836VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1837{
1838 AssertPtr(pVCpu);
1839 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
1840
1841 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1842 if (!fFlushPending)
1843 {
1844 /*
1845 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
1846 * the EPT case. See @bugref{6043} and @bugref{6177}.
1847 *
1848 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
1849 * as this function maybe called in a loop with individual addresses.
1850 */
1851 PVM pVM = pVCpu->CTX_SUFF(pVM);
1852 if (pVM->hm.s.vmx.fVpid)
1853 {
1854 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1855
1856#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1857 /*
1858 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
1859 * where executing INVVPID outside 64-bit mode does not flush translations of
1860 * 64-bit linear addresses, see @bugref{6208#c72}.
1861 */
1862 if (RT_HI_U32(GCVirt))
1863 fVpidFlush = false;
1864#endif
1865
1866 if (fVpidFlush)
1867 {
1868 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
1869 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1870 }
1871 else
1872 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1873 }
1874 else if (pVM->hm.s.fNestedPaging)
1875 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1876 }
1877
1878 return VINF_SUCCESS;
1879}
1880
1881
1882/**
1883 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1884 * case where neither EPT nor VPID is supported by the CPU.
1885 *
1886 * @param pVCpu The cross context virtual CPU structure.
1887 * @param pCpu Pointer to the global HM struct.
1888 *
1889 * @remarks Called with interrupts disabled.
1890 */
1891static void hmR0VmxFlushTaggedTlbNone(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1892{
1893 AssertPtr(pVCpu);
1894 AssertPtr(pCpu);
1895
1896 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1897
1898 Assert(pCpu->idCpu != NIL_RTCPUID);
1899 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1900 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1901 pVCpu->hm.s.fForceTLBFlush = false;
1902 return;
1903}
1904
1905
1906/**
1907 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1908 *
1909 * @param pVCpu The cross context virtual CPU structure.
1910 * @param pCpu Pointer to the global HM CPU struct.
1911 *
1912 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
1913 * nomenclature. The reason is, to avoid confusion in compare statements
1914 * since the host-CPU copies are named "ASID".
1915 *
1916 * @remarks Called with interrupts disabled.
1917 */
1918static void hmR0VmxFlushTaggedTlbBoth(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1919{
1920#ifdef VBOX_WITH_STATISTICS
1921 bool fTlbFlushed = false;
1922# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1923# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1924 if (!fTlbFlushed) \
1925 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1926 } while (0)
1927#else
1928# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1929# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1930#endif
1931
1932 AssertPtr(pCpu);
1933 AssertPtr(pVCpu);
1934 Assert(pCpu->idCpu != NIL_RTCPUID);
1935
1936 PVM pVM = pVCpu->CTX_SUFF(pVM);
1937 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1938 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1939 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1940
1941 /*
1942 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
1943 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
1944 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
1945 * cannot reuse the current ASID anymore.
1946 */
1947 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1948 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1949 {
1950 ++pCpu->uCurrentAsid;
1951 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1952 {
1953 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1954 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1955 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1956 }
1957
1958 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1959 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1960 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1961
1962 /*
1963 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1964 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1965 */
1966 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1967 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1968 HMVMX_SET_TAGGED_TLB_FLUSHED();
1969 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1970 }
1971 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
1972 {
1973 /*
1974 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
1975 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
1976 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
1977 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
1978 * mappings, see @bugref{6568}.
1979 *
1980 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
1981 */
1982 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1983 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1984 HMVMX_SET_TAGGED_TLB_FLUSHED();
1985 }
1986
1987 pVCpu->hm.s.fForceTLBFlush = false;
1988 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1989
1990 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
1991 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
1992 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1993 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1994 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1995 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
1996 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
1997 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1998 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1999
2000 /* Update VMCS with the VPID. */
2001 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2002 AssertRC(rc);
2003
2004#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2005}
2006
2007
2008/**
2009 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2010 *
2011 * @returns VBox status code.
2012 * @param pVCpu The cross context virtual CPU structure.
2013 * @param pCpu Pointer to the global HM CPU struct.
2014 *
2015 * @remarks Called with interrupts disabled.
2016 */
2017static void hmR0VmxFlushTaggedTlbEpt(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2018{
2019 AssertPtr(pVCpu);
2020 AssertPtr(pCpu);
2021 Assert(pCpu->idCpu != NIL_RTCPUID);
2022 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2023 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2024
2025 /*
2026 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2027 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2028 */
2029 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2030 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2031 {
2032 pVCpu->hm.s.fForceTLBFlush = true;
2033 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2034 }
2035
2036 /* Check for explicit TLB flushes. */
2037 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2038 {
2039 pVCpu->hm.s.fForceTLBFlush = true;
2040 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2041 }
2042
2043 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2044 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2045
2046 if (pVCpu->hm.s.fForceTLBFlush)
2047 {
2048 hmR0VmxFlushEpt(pVCpu, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2049 pVCpu->hm.s.fForceTLBFlush = false;
2050 }
2051}
2052
2053
2054/**
2055 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2056 *
2057 * @returns VBox status code.
2058 * @param pVCpu The cross context virtual CPU structure.
2059 * @param pCpu Pointer to the global HM CPU struct.
2060 *
2061 * @remarks Called with interrupts disabled.
2062 */
2063static void hmR0VmxFlushTaggedTlbVpid(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2064{
2065 AssertPtr(pVCpu);
2066 AssertPtr(pCpu);
2067 Assert(pCpu->idCpu != NIL_RTCPUID);
2068 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2069 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2070
2071 /*
2072 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2073 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2074 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2075 * cannot reuse the current ASID anymore.
2076 */
2077 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2078 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2079 {
2080 pVCpu->hm.s.fForceTLBFlush = true;
2081 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2082 }
2083
2084 /* Check for explicit TLB flushes. */
2085 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2086 {
2087 /*
2088 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2089 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2090 * fExplicitFlush = true here and change the pCpu->fFlushAsidBeforeUse check below to
2091 * include fExplicitFlush's too) - an obscure corner case.
2092 */
2093 pVCpu->hm.s.fForceTLBFlush = true;
2094 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2095 }
2096
2097 PVM pVM = pVCpu->CTX_SUFF(pVM);
2098 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2099 if (pVCpu->hm.s.fForceTLBFlush)
2100 {
2101 ++pCpu->uCurrentAsid;
2102 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2103 {
2104 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2105 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2106 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2107 }
2108
2109 pVCpu->hm.s.fForceTLBFlush = false;
2110 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2111 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2112 if (pCpu->fFlushAsidBeforeUse)
2113 {
2114 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2115 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2116 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2117 {
2118 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2119 pCpu->fFlushAsidBeforeUse = false;
2120 }
2121 else
2122 {
2123 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2124 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2125 }
2126 }
2127 }
2128
2129 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2130 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2131 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2132 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2133 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2134 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2135 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2136
2137 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2138 AssertRC(rc);
2139}
2140
2141
2142/**
2143 * Flushes the guest TLB entry based on CPU capabilities.
2144 *
2145 * @param pVCpu The cross context virtual CPU structure.
2146 * @param pCpu Pointer to the global HM CPU struct.
2147 */
2148DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2149{
2150#ifdef HMVMX_ALWAYS_FLUSH_TLB
2151 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2152#endif
2153 PVM pVM = pVCpu->CTX_SUFF(pVM);
2154 switch (pVM->hm.s.vmx.enmTlbFlushType)
2155 {
2156 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVCpu, pCpu); break;
2157 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pVCpu, pCpu); break;
2158 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pVCpu, pCpu); break;
2159 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pVCpu, pCpu); break;
2160 default:
2161 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2162 break;
2163 }
2164 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2165}
2166
2167
2168/**
2169 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2170 * TLB entries from the host TLB before VM-entry.
2171 *
2172 * @returns VBox status code.
2173 * @param pVM The cross context VM structure.
2174 */
2175static int hmR0VmxSetupTaggedTlb(PVM pVM)
2176{
2177 /*
2178 * Determine optimal flush type for Nested Paging.
2179 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2180 * guest execution (see hmR3InitFinalizeR0()).
2181 */
2182 if (pVM->hm.s.fNestedPaging)
2183 {
2184 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2185 {
2186 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2187 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2188 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2189 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2190 else
2191 {
2192 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2193 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2194 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2195 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2196 }
2197
2198 /* Make sure the write-back cacheable memory type for EPT is supported. */
2199 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2200 {
2201 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2202 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2203 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2204 }
2205
2206 /* EPT requires a page-walk length of 4. */
2207 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2208 {
2209 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2210 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2211 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2212 }
2213 }
2214 else
2215 {
2216 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2217 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2218 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2219 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2220 }
2221 }
2222
2223 /*
2224 * Determine optimal flush type for VPID.
2225 */
2226 if (pVM->hm.s.vmx.fVpid)
2227 {
2228 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2229 {
2230 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2231 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2232 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2233 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2234 else
2235 {
2236 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2237 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2238 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2239 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2240 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2241 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2242 pVM->hm.s.vmx.fVpid = false;
2243 }
2244 }
2245 else
2246 {
2247 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2248 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2249 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2250 pVM->hm.s.vmx.fVpid = false;
2251 }
2252 }
2253
2254 /*
2255 * Setup the handler for flushing tagged-TLBs.
2256 */
2257 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2258 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2259 else if (pVM->hm.s.fNestedPaging)
2260 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2261 else if (pVM->hm.s.vmx.fVpid)
2262 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2263 else
2264 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2265 return VINF_SUCCESS;
2266}
2267
2268
2269/**
2270 * Sets up pin-based VM-execution controls in the VMCS.
2271 *
2272 * @returns VBox status code.
2273 * @param pVCpu The cross context virtual CPU structure.
2274 *
2275 * @remarks We don't really care about optimizing vmwrites here as it's done only
2276 * once per VM and hence we don't care about VMCS-field cache comparisons.
2277 */
2278static int hmR0VmxSetupPinCtls(PVMCPU pVCpu)
2279{
2280 PVM pVM = pVCpu->CTX_SUFF(pVM);
2281 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0; /* Bits set here must always be set. */
2282 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2283
2284 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2285 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2286
2287 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2288 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2289
2290 /* Enable the VMX preemption timer. */
2291 if (pVM->hm.s.vmx.fUsePreemptTimer)
2292 {
2293 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2294 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2295 }
2296
2297#if 0
2298 /* Enable posted-interrupt processing. */
2299 if (pVM->hm.s.fPostedIntrs)
2300 {
2301 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2302 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2303 fVal |= VMX_PIN_CTL_POSTED_INT;
2304 }
2305#endif
2306
2307 if ((fVal & fZap) != fVal)
2308 {
2309 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2310 pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0, fVal, fZap));
2311 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2312 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2313 }
2314
2315 /* Commit it to the VMCS and update our cache. */
2316 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2317 AssertRCReturn(rc, rc);
2318 pVCpu->hm.s.vmx.u32PinCtls = fVal;
2319
2320 return VINF_SUCCESS;
2321}
2322
2323
2324/**
2325 * Sets up secondary processor-based VM-execution controls in the VMCS.
2326 *
2327 * @returns VBox status code.
2328 * @param pVCpu The cross context virtual CPU structure.
2329 *
2330 * @remarks We don't really care about optimizing vmwrites here as it's done only
2331 * once per VM and hence we don't care about VMCS-field cache comparisons.
2332 */
2333static int hmR0VmxSetupProcCtls2(PVMCPU pVCpu)
2334{
2335 PVM pVM = pVCpu->CTX_SUFF(pVM);
2336 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2337 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2338
2339 /* WBINVD causes a VM-exit. */
2340 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2341 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2342
2343 /* Enable EPT (aka nested-paging). */
2344 if (pVM->hm.s.fNestedPaging)
2345 fVal |= VMX_PROC_CTLS2_EPT;
2346
2347 /*
2348 * Enable the INVPCID instruction if supported by the hardware and we expose
2349 * it to the guest. Without this, guest executing INVPCID would cause a #UD.
2350 */
2351 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2352 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2353 fVal |= VMX_PROC_CTLS2_INVPCID;
2354
2355 /* Enable VPID. */
2356 if (pVM->hm.s.vmx.fVpid)
2357 fVal |= VMX_PROC_CTLS2_VPID;
2358
2359 /* Enable Unrestricted guest execution. */
2360 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2361 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2362
2363#if 0
2364 if (pVM->hm.s.fVirtApicRegs)
2365 {
2366 /* Enable APIC-register virtualization. */
2367 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2368 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2369
2370 /* Enable virtual-interrupt delivery. */
2371 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2372 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2373 }
2374#endif
2375
2376 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
2377 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2378 * done dynamically. */
2379 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2380 {
2381 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2382 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2383 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS; /* Virtualize APIC accesses. */
2384 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2385 AssertRCReturn(rc, rc);
2386 }
2387
2388 /* Enable RDTSCP. */
2389 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
2390 fVal |= VMX_PROC_CTLS2_RDTSCP;
2391
2392 /* Enable Pause-Loop exiting. */
2393 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
2394 && pVM->hm.s.vmx.cPleGapTicks
2395 && pVM->hm.s.vmx.cPleWindowTicks)
2396 {
2397 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2398
2399 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2400 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2401 AssertRCReturn(rc, rc);
2402 }
2403
2404 if ((fVal & fZap) != fVal)
2405 {
2406 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2407 pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0, fVal, fZap));
2408 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2409 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2410 }
2411
2412 /* Commit it to the VMCS and update our cache. */
2413 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2414 AssertRCReturn(rc, rc);
2415 pVCpu->hm.s.vmx.u32ProcCtls2 = fVal;
2416
2417 return VINF_SUCCESS;
2418}
2419
2420
2421/**
2422 * Sets up processor-based VM-execution controls in the VMCS.
2423 *
2424 * @returns VBox status code.
2425 * @param pVCpu The cross context virtual CPU structure.
2426 *
2427 * @remarks We don't really care about optimizing vmwrites here as it's done only
2428 * once per VM and hence we don't care about VMCS-field cache comparisons.
2429 */
2430static int hmR0VmxSetupProcCtls(PVMCPU pVCpu)
2431{
2432 PVM pVM = pVCpu->CTX_SUFF(pVM);
2433 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2434 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2435
2436 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2437 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2438 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2439 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2440 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2441 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2442 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2443
2444 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2445 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2446 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2447 {
2448 LogRelFunc(("Unsupported VMX_PROC_CTLS_MOV_DR_EXIT combo!"));
2449 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2450 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2451 }
2452
2453 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2454 if (!pVM->hm.s.fNestedPaging)
2455 {
2456 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2457 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
2458 | VMX_PROC_CTLS_CR3_LOAD_EXIT
2459 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2460 }
2461
2462 /* Use TPR shadowing if supported by the CPU. */
2463 if ( PDMHasApic(pVM)
2464 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
2465 {
2466 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2467 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2468 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2469 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2470 AssertRCReturn(rc, rc);
2471
2472 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2473 /* CR8 writes cause a VM-exit based on TPR threshold. */
2474 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2475 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2476 }
2477 else
2478 {
2479 /*
2480 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2481 * Set this control only for 64-bit guests.
2482 */
2483 if (pVM->hm.s.fAllow64BitGuests)
2484 {
2485 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2486 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2487 }
2488 }
2489
2490 /* Use MSR-bitmaps if supported by the CPU. */
2491 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2492 {
2493 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
2494
2495 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2496 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2497 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2498 AssertRCReturn(rc, rc);
2499
2500 /*
2501 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2502 * automatically using dedicated fields in the VMCS.
2503 */
2504 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2505 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2506 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2507 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2508 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2509#if HC_ARCH_BITS == 64
2510 /*
2511 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2512 */
2513 if (pVM->hm.s.fAllow64BitGuests)
2514 {
2515 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2516 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2517 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2518 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2519 }
2520#endif
2521 /*
2522 * The IA32_PRED_CMD MSR is write-only and has no state associated with it. We never need to intercept
2523 * access (writes need to be executed without exiting, reds will #GP-fault anyway).
2524 */
2525 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2526 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2527
2528 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2529 }
2530
2531 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2532 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2533 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2534
2535 if ((fVal & fZap) != fVal)
2536 {
2537 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2538 pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0, fVal, fZap));
2539 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2540 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2541 }
2542
2543 /* Commit it to the VMCS and update our cache. */
2544 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2545 AssertRCReturn(rc, rc);
2546 pVCpu->hm.s.vmx.u32ProcCtls = fVal;
2547
2548 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
2549 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2550 return hmR0VmxSetupProcCtls2(pVCpu);
2551
2552 /* Sanity check, should not really happen. */
2553 if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2554 {
2555 LogRelFunc(("Unrestricted Guest enabled when secondary processor-based VM-execution controls not available\n"));
2556 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2557 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2558 }
2559
2560 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
2561 return VINF_SUCCESS;
2562}
2563
2564
2565/**
2566 * Sets up miscellaneous (everything other than Pin & Processor-based
2567 * VM-execution) control fields in the VMCS.
2568 *
2569 * @returns VBox status code.
2570 * @param pVCpu The cross context virtual CPU structure.
2571 */
2572static int hmR0VmxSetupMiscCtls(PVMCPU pVCpu)
2573{
2574 AssertPtr(pVCpu);
2575
2576 int rc = VERR_GENERAL_FAILURE;
2577
2578 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2579#if 0
2580 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxExportGuestCR3AndCR4())*/
2581 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2582 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2583
2584 /*
2585 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2586 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2587 * We thus use the exception bitmap to control it rather than use both.
2588 */
2589 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2590 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2591
2592 /* All IO & IOIO instructions cause VM-exits. */
2593 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2594 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2595
2596 /* Initialize the MSR-bitmap area. */
2597 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2598 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2599 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2600 AssertRCReturn(rc, rc);
2601#endif
2602
2603 /* Setup MSR auto-load/store area. */
2604 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2605 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2606 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2607 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2608 AssertRCReturn(rc, rc);
2609
2610 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2611 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2612 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2613 AssertRCReturn(rc, rc);
2614
2615 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2616 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2617 AssertRCReturn(rc, rc);
2618
2619 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2620#if 0
2621 /* Setup debug controls */
2622 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
2623 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2624 AssertRCReturn(rc, rc);
2625#endif
2626
2627 return rc;
2628}
2629
2630
2631/**
2632 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2633 *
2634 * We shall setup those exception intercepts that don't change during the
2635 * lifetime of the VM here. The rest are done dynamically while loading the
2636 * guest state.
2637 *
2638 * @returns VBox status code.
2639 * @param pVCpu The cross context virtual CPU structure.
2640 */
2641static int hmR0VmxInitXcptBitmap(PVMCPU pVCpu)
2642{
2643 AssertPtr(pVCpu);
2644
2645 uint32_t uXcptBitmap;
2646
2647 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2648 uXcptBitmap = RT_BIT_32(X86_XCPT_AC);
2649
2650 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2651 and writes, and because recursive #DBs can cause the CPU hang, we must always
2652 intercept #DB. */
2653 uXcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2654
2655 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2656 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
2657 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
2658
2659 /* Commit it to the VMCS. */
2660 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2661 AssertRCReturn(rc, rc);
2662
2663 /* Update our cache of the exception bitmap. */
2664 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
2665 return VINF_SUCCESS;
2666}
2667
2668
2669/**
2670 * Does per-VM VT-x initialization.
2671 *
2672 * @returns VBox status code.
2673 * @param pVM The cross context VM structure.
2674 */
2675VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2676{
2677 LogFlowFunc(("pVM=%p\n", pVM));
2678
2679 int rc = hmR0VmxStructsAlloc(pVM);
2680 if (RT_FAILURE(rc))
2681 {
2682 LogRelFunc(("hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2683 return rc;
2684 }
2685
2686 return VINF_SUCCESS;
2687}
2688
2689
2690/**
2691 * Does per-VM VT-x termination.
2692 *
2693 * @returns VBox status code.
2694 * @param pVM The cross context VM structure.
2695 */
2696VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2697{
2698 LogFlowFunc(("pVM=%p\n", pVM));
2699
2700#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2701 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2702 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2703#endif
2704 hmR0VmxStructsFree(pVM);
2705 return VINF_SUCCESS;
2706}
2707
2708
2709/**
2710 * Sets up the VM for execution under VT-x.
2711 * This function is only called once per-VM during initialization.
2712 *
2713 * @returns VBox status code.
2714 * @param pVM The cross context VM structure.
2715 */
2716VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2717{
2718 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2719 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2720
2721 LogFlowFunc(("pVM=%p\n", pVM));
2722
2723 /*
2724 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be
2725 * allocated. We no longer support the highly unlikely case of UnrestrictedGuest without
2726 * pRealModeTSS, see hmR3InitFinalizeR0Intel().
2727 */
2728 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2729 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2730 || !pVM->hm.s.vmx.pRealModeTSS))
2731 {
2732 LogRelFunc(("Invalid real-on-v86 state.\n"));
2733 return VERR_INTERNAL_ERROR;
2734 }
2735
2736 /* Initialize these always, see hmR3InitFinalizeR0().*/
2737 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
2738 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
2739
2740 /* Setup the tagged-TLB flush handlers. */
2741 int rc = hmR0VmxSetupTaggedTlb(pVM);
2742 if (RT_FAILURE(rc))
2743 {
2744 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2745 return rc;
2746 }
2747
2748 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2749 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2750#if HC_ARCH_BITS == 64
2751 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2752 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2753 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
2754 {
2755 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2756 }
2757#endif
2758
2759 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2760 RTCCUINTREG uHostCR4 = ASMGetCR4();
2761 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2762 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2763
2764 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2765 {
2766 PVMCPU pVCpu = &pVM->aCpus[i];
2767 AssertPtr(pVCpu);
2768 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2769
2770 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2771 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2772
2773 /* Set revision dword at the beginning of the VMCS structure. */
2774 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
2775
2776 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2777 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2778 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc\n", rc),
2779 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2780
2781 /* Load this VMCS as the current VMCS. */
2782 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2783 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc\n", rc),
2784 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2785
2786 rc = hmR0VmxSetupPinCtls(pVCpu);
2787 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc\n", rc),
2788 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2789
2790 rc = hmR0VmxSetupProcCtls(pVCpu);
2791 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc\n", rc),
2792 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2793
2794 rc = hmR0VmxSetupMiscCtls(pVCpu);
2795 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc\n", rc),
2796 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2797
2798 rc = hmR0VmxInitXcptBitmap(pVCpu);
2799 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc\n", rc),
2800 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2801
2802#if HC_ARCH_BITS == 32
2803 rc = hmR0VmxInitVmcsReadCache(pVCpu);
2804 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc\n", rc),
2805 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2806#endif
2807
2808 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2809 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2810 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc\n", rc),
2811 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2812
2813 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2814
2815 hmR0VmxUpdateErrorRecord(pVCpu, rc);
2816 }
2817
2818 return VINF_SUCCESS;
2819}
2820
2821
2822/**
2823 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2824 * the VMCS.
2825 *
2826 * @returns VBox status code.
2827 */
2828static int hmR0VmxExportHostControlRegs(void)
2829{
2830 RTCCUINTREG uReg = ASMGetCR0();
2831 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2832 AssertRCReturn(rc, rc);
2833
2834 uReg = ASMGetCR3();
2835 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2836 AssertRCReturn(rc, rc);
2837
2838 uReg = ASMGetCR4();
2839 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2840 AssertRCReturn(rc, rc);
2841 return rc;
2842}
2843
2844
2845/**
2846 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2847 * the host-state area in the VMCS.
2848 *
2849 * @returns VBox status code.
2850 * @param pVCpu The cross context virtual CPU structure.
2851 */
2852static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
2853{
2854#if HC_ARCH_BITS == 64
2855/**
2856 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2857 * requirements. See hmR0VmxExportHostSegmentRegs().
2858 */
2859# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2860 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2861 { \
2862 bool fValidSelector = true; \
2863 if ((selValue) & X86_SEL_LDT) \
2864 { \
2865 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2866 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2867 } \
2868 if (fValidSelector) \
2869 { \
2870 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2871 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2872 } \
2873 (selValue) = 0; \
2874 }
2875
2876 /*
2877 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2878 * should -not- save the messed up state without restoring the original host-state,
2879 * see @bugref{7240}.
2880 *
2881 * This apparently can happen (most likely the FPU changes), deal with it rather than
2882 * asserting. Was observed booting Solaris 10u10 32-bit guest.
2883 */
2884 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2885 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2886 {
2887 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2888 pVCpu->idCpu));
2889 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2890 }
2891 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2892#else
2893 RT_NOREF(pVCpu);
2894#endif
2895
2896 /*
2897 * Host DS, ES, FS and GS segment registers.
2898 */
2899#if HC_ARCH_BITS == 64
2900 RTSEL uSelDS = ASMGetDS();
2901 RTSEL uSelES = ASMGetES();
2902 RTSEL uSelFS = ASMGetFS();
2903 RTSEL uSelGS = ASMGetGS();
2904#else
2905 RTSEL uSelDS = 0;
2906 RTSEL uSelES = 0;
2907 RTSEL uSelFS = 0;
2908 RTSEL uSelGS = 0;
2909#endif
2910
2911 /*
2912 * Host CS and SS segment registers.
2913 */
2914 RTSEL uSelCS = ASMGetCS();
2915 RTSEL uSelSS = ASMGetSS();
2916
2917 /*
2918 * Host TR segment register.
2919 */
2920 RTSEL uSelTR = ASMGetTR();
2921
2922#if HC_ARCH_BITS == 64
2923 /*
2924 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
2925 * gain VM-entry and restore them before we get preempted.
2926 *
2927 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2928 */
2929 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2930 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2931 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2932 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2933# undef VMXLOCAL_ADJUST_HOST_SEG
2934#endif
2935
2936 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2937 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2938 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2939 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2940 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2941 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2942 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2943 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2944 Assert(uSelCS);
2945 Assert(uSelTR);
2946
2947 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2948#if 0
2949 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE))
2950 Assert(uSelSS != 0);
2951#endif
2952
2953 /* Write these host selector fields into the host-state area in the VMCS. */
2954 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2955 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2956#if HC_ARCH_BITS == 64
2957 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2958 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2959 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2960 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2961#else
2962 NOREF(uSelDS);
2963 NOREF(uSelES);
2964 NOREF(uSelFS);
2965 NOREF(uSelGS);
2966#endif
2967 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2968 AssertRCReturn(rc, rc);
2969
2970 /*
2971 * Host GDTR and IDTR.
2972 */
2973 RTGDTR Gdtr;
2974 RTIDTR Idtr;
2975 RT_ZERO(Gdtr);
2976 RT_ZERO(Idtr);
2977 ASMGetGDTR(&Gdtr);
2978 ASMGetIDTR(&Idtr);
2979 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
2980 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
2981 AssertRCReturn(rc, rc);
2982
2983#if HC_ARCH_BITS == 64
2984 /*
2985 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
2986 * them to the maximum limit (0xffff) on every VM-exit.
2987 */
2988 if (Gdtr.cbGdt != 0xffff)
2989 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
2990
2991 /*
2992 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
2993 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
2994 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
2995 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
2996 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
2997 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
2998 * at 0xffff on hosts where we are sure it won't cause trouble.
2999 */
3000# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3001 if (Idtr.cbIdt < 0x0fff)
3002# else
3003 if (Idtr.cbIdt != 0xffff)
3004# endif
3005 {
3006 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3007 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3008 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3009 }
3010#endif
3011
3012 /*
3013 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
3014 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
3015 * RPL should be too in most cases.
3016 */
3017 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3018 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
3019
3020 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3021#if HC_ARCH_BITS == 64
3022 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3023
3024 /*
3025 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
3026 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
3027 * restoration if the host has something else. Task switching is not supported in 64-bit
3028 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
3029 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3030 *
3031 * [1] See Intel spec. 3.5 "System Descriptor Types".
3032 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3033 */
3034 PVM pVM = pVCpu->CTX_SUFF(pVM);
3035 Assert(pDesc->System.u4Type == 11);
3036 if ( pDesc->System.u16LimitLow != 0x67
3037 || pDesc->System.u4LimitHigh)
3038 {
3039 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3040 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3041 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3042 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3043 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3044 }
3045
3046 /*
3047 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
3048 */
3049 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
3050 {
3051 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3052 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3053 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
3054 {
3055 /* The GDT is read-only but the writable GDT is available. */
3056 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
3057 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
3058 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
3059 AssertRCReturn(rc, rc);
3060 }
3061 }
3062#else
3063 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3064#endif
3065 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3066 AssertRCReturn(rc, rc);
3067
3068 /*
3069 * Host FS base and GS base.
3070 */
3071#if HC_ARCH_BITS == 64
3072 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3073 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3074 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3075 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3076 AssertRCReturn(rc, rc);
3077
3078 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3079 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3080 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3081 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3082 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3083#endif
3084 return VINF_SUCCESS;
3085}
3086
3087
3088/**
3089 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
3090 * host-state area of the VMCS.
3091 *
3092 * Theses MSRs will be automatically restored on the host after every successful
3093 * VM-exit.
3094 *
3095 * @returns VBox status code.
3096 * @param pVCpu The cross context virtual CPU structure.
3097 *
3098 * @remarks No-long-jump zone!!!
3099 */
3100static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
3101{
3102 AssertPtr(pVCpu);
3103 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3104
3105 /*
3106 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3107 * rather than swapping them on every VM-entry.
3108 */
3109 hmR0VmxLazySaveHostMsrs(pVCpu);
3110
3111 /*
3112 * Host Sysenter MSRs.
3113 */
3114 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3115#if HC_ARCH_BITS == 32
3116 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3117 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3118#else
3119 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3120 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3121#endif
3122 AssertRCReturn(rc, rc);
3123
3124 /*
3125 * Host EFER MSR.
3126 *
3127 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
3128 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
3129 */
3130 PVM pVM = pVCpu->CTX_SUFF(pVM);
3131 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3132 {
3133 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3134 AssertRCReturn(rc, rc);
3135 }
3136
3137 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see hmR0VmxExportGuestExitCtls(). */
3138
3139 return VINF_SUCCESS;
3140}
3141
3142
3143/**
3144 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3145 *
3146 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3147 * these two bits are handled by VM-entry, see hmR0VmxExportGuestExitCtls() and
3148 * hmR0VMxExportGuestEntryCtls().
3149 *
3150 * @returns true if we need to load guest EFER, false otherwise.
3151 * @param pVCpu The cross context virtual CPU structure.
3152 *
3153 * @remarks Requires EFER, CR4.
3154 * @remarks No-long-jump zone!!!
3155 */
3156static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
3157{
3158#ifdef HMVMX_ALWAYS_SWAP_EFER
3159 return true;
3160#endif
3161
3162 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3163#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3164 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3165 if (CPUMIsGuestInLongModeEx(pCtx))
3166 return false;
3167#endif
3168
3169 PVM pVM = pVCpu->CTX_SUFF(pVM);
3170 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3171 uint64_t const u64GuestEfer = pCtx->msrEFER;
3172
3173 /*
3174 * For 64-bit guests, if EFER.SCE bit differs, we need to swap EFER to ensure that the
3175 * guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
3176 */
3177 if ( CPUMIsGuestInLongModeEx(pCtx)
3178 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3179 {
3180 return true;
3181 }
3182
3183 /*
3184 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3185 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3186 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3187 */
3188 if ( (pCtx->cr4 & X86_CR4_PAE)
3189 && (pCtx->cr0 & X86_CR0_PG)
3190 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3191 {
3192 /* Assert that host is NX capable. */
3193 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
3194 return true;
3195 }
3196
3197 return false;
3198}
3199
3200
3201/**
3202 * Exports the guest state with appropriate VM-entry controls in the VMCS.
3203 *
3204 * These controls can affect things done on VM-exit; e.g. "load debug controls",
3205 * see Intel spec. 24.8.1 "VM-entry controls".
3206 *
3207 * @returns VBox status code.
3208 * @param pVCpu The cross context virtual CPU structure.
3209 *
3210 * @remarks Requires EFER.
3211 * @remarks No-long-jump zone!!!
3212 */
3213static int hmR0VmxExportGuestEntryCtls(PVMCPU pVCpu)
3214{
3215 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_CTLS)
3216 {
3217 PVM pVM = pVCpu->CTX_SUFF(pVM);
3218 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3219 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3220
3221 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3222 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
3223
3224 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3225 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
3226 {
3227 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
3228 Log4Func(("VMX_ENTRY_CTLS_IA32E_MODE_GUEST\n"));
3229 }
3230 else
3231 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
3232
3233 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3234 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3235 && hmR0VmxShouldSwapEferMsr(pVCpu))
3236 {
3237 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
3238 Log4Func(("VMX_ENTRY_CTLS_LOAD_EFER_MSR\n"));
3239 }
3240
3241 /*
3242 * The following should -not- be set (since we're not in SMM mode):
3243 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
3244 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
3245 */
3246
3247 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
3248 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
3249
3250 if ((fVal & fZap) != fVal)
3251 {
3252 Log4Func(("Invalid VM-entry controls combo! Cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3253 pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0, fVal, fZap));
3254 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3255 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3256 }
3257
3258 /* Commit it to the VMCS and update our cache. */
3259 if (pVCpu->hm.s.vmx.u32EntryCtls != fVal)
3260 {
3261 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
3262 AssertRCReturn(rc, rc);
3263 pVCpu->hm.s.vmx.u32EntryCtls = fVal;
3264 }
3265
3266 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_CTLS);
3267 }
3268 return VINF_SUCCESS;
3269}
3270
3271
3272/**
3273 * Exports the guest state with appropriate VM-exit controls in the VMCS.
3274 *
3275 * @returns VBox status code.
3276 * @param pVCpu The cross context virtual CPU structure.
3277 *
3278 * @remarks Requires EFER.
3279 */
3280static int hmR0VmxExportGuestExitCtls(PVMCPU pVCpu)
3281{
3282 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_EXIT_CTLS)
3283 {
3284 PVM pVM = pVCpu->CTX_SUFF(pVM);
3285 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3286 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3287
3288 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3289 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
3290
3291 /*
3292 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3293 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in
3294 * hmR0VmxExportHostMsrs().
3295 */
3296#if HC_ARCH_BITS == 64
3297 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3298 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3299#else
3300 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3301 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3302 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3303 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3304 {
3305 /* The switcher returns to long mode, EFER is managed by the switcher. */
3306 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3307 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3308 }
3309 else
3310 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
3311#endif
3312
3313 /* If the newer VMCS fields for managing EFER exists, use it. */
3314 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3315 && hmR0VmxShouldSwapEferMsr(pVCpu))
3316 {
3317 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
3318 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
3319 Log4Func(("VMX_EXIT_CTLS_SAVE_EFER_MSR and VMX_EXIT_CTLS_LOAD_EFER_MSR\n"));
3320 }
3321
3322 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3323 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
3324
3325 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
3326 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
3327 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
3328
3329 /* Enable saving of the VMX preemption timer value on VM-exit. */
3330 if ( pVM->hm.s.vmx.fUsePreemptTimer
3331 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER))
3332 fVal |= VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER;
3333
3334 if ((fVal & fZap) != fVal)
3335 {
3336 LogRelFunc(("Invalid VM-exit controls combo! cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3337 pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0, fVal, fZap));
3338 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3339 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3340 }
3341
3342 /* Commit it to the VMCS and update our cache. */
3343 if (pVCpu->hm.s.vmx.u32ExitCtls != fVal)
3344 {
3345 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
3346 AssertRCReturn(rc, rc);
3347 pVCpu->hm.s.vmx.u32ExitCtls = fVal;
3348 }
3349
3350 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_EXIT_CTLS);
3351 }
3352 return VINF_SUCCESS;
3353}
3354
3355
3356/**
3357 * Sets the TPR threshold in the VMCS.
3358 *
3359 * @returns VBox status code.
3360 * @param pVCpu The cross context virtual CPU structure.
3361 * @param u32TprThreshold The TPR threshold (task-priority class only).
3362 */
3363DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3364{
3365 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3366 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3367 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3368}
3369
3370
3371/**
3372 * Exports the guest APIC TPR state into the VMCS.
3373 *
3374 * @returns VBox status code.
3375 * @param pVCpu The cross context virtual CPU structure.
3376 *
3377 * @remarks No-long-jump zone!!!
3378 */
3379static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu)
3380{
3381 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
3382 {
3383 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
3384
3385 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3386 && APICIsEnabled(pVCpu))
3387 {
3388 /*
3389 * Setup TPR shadowing.
3390 */
3391 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3392 {
3393 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3394
3395 bool fPendingIntr = false;
3396 uint8_t u8Tpr = 0;
3397 uint8_t u8PendingIntr = 0;
3398 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3399 AssertRCReturn(rc, rc);
3400
3401 /*
3402 * If there are interrupts pending but masked by the TPR, instruct VT-x to
3403 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
3404 * priority of the pending interrupt so we can deliver the interrupt. If there
3405 * are no interrupts pending, set threshold to 0 to not cause any
3406 * TPR-below-threshold VM-exits.
3407 */
3408 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3409 uint32_t u32TprThreshold = 0;
3410 if (fPendingIntr)
3411 {
3412 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3413 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3414 const uint8_t u8TprPriority = u8Tpr >> 4;
3415 if (u8PendingPriority <= u8TprPriority)
3416 u32TprThreshold = u8PendingPriority;
3417 }
3418
3419 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3420 AssertRCReturn(rc, rc);
3421 }
3422 }
3423 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
3424 }
3425 return VINF_SUCCESS;
3426}
3427
3428
3429/**
3430 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3431 *
3432 * @returns Guest's interruptibility-state.
3433 * @param pVCpu The cross context virtual CPU structure.
3434 *
3435 * @remarks No-long-jump zone!!!
3436 */
3437static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu)
3438{
3439 /*
3440 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3441 */
3442 uint32_t fIntrState = 0;
3443 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3444 {
3445 /* If inhibition is active, RIP & RFLAGS should've been accessed
3446 (i.e. read previously from the VMCS or from ring-3). */
3447 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3448#ifdef VBOX_STRICT
3449 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
3450 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
3451#endif
3452 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3453 {
3454 if (pCtx->eflags.Bits.u1IF)
3455 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
3456 else
3457 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
3458 }
3459 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3460 {
3461 /*
3462 * We can clear the inhibit force flag as even if we go back to the recompiler
3463 * without executing guest code in VT-x, the flag's condition to be cleared is
3464 * met and thus the cleared state is correct.
3465 */
3466 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3467 }
3468 }
3469
3470 /*
3471 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3472 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3473 * setting this would block host-NMIs and IRET will not clear the blocking.
3474 *
3475 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3476 */
3477 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3478 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3479 {
3480 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
3481 }
3482
3483 return fIntrState;
3484}
3485
3486
3487/**
3488 * Exports the guest's interruptibility-state into the guest-state area in the
3489 * VMCS.
3490 *
3491 * @returns VBox status code.
3492 * @param pVCpu The cross context virtual CPU structure.
3493 * @param fIntrState The interruptibility-state to set.
3494 */
3495static int hmR0VmxExportGuestIntrState(PVMCPU pVCpu, uint32_t fIntrState)
3496{
3497 NOREF(pVCpu);
3498 AssertMsg(!(fIntrState & 0xfffffff0), ("%#x\n", fIntrState)); /* Bits 31:4 MBZ. */
3499 Assert((fIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3500 return VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
3501}
3502
3503
3504/**
3505 * Exports the exception intercepts required for guest execution in the VMCS.
3506 *
3507 * @returns VBox status code.
3508 * @param pVCpu The cross context virtual CPU structure.
3509 *
3510 * @remarks No-long-jump zone!!!
3511 */
3512static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu)
3513{
3514 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
3515 {
3516 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3517
3518 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxExportSharedCR0(). */
3519 if (pVCpu->hm.s.fGIMTrapXcptUD)
3520 uXcptBitmap |= RT_BIT(X86_XCPT_UD);
3521#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3522 else
3523 uXcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3524#endif
3525
3526 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_AC));
3527 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_DB));
3528
3529 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3530 {
3531 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3532 AssertRCReturn(rc, rc);
3533 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3534 }
3535
3536 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
3537 Log4Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64\n", uXcptBitmap));
3538 }
3539 return VINF_SUCCESS;
3540}
3541
3542
3543/**
3544 * Exports the guest's RIP into the guest-state area in the VMCS.
3545 *
3546 * @returns VBox status code.
3547 * @param pVCpu The cross context virtual CPU structure.
3548 *
3549 * @remarks No-long-jump zone!!!
3550 */
3551static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
3552{
3553 int rc = VINF_SUCCESS;
3554 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
3555 {
3556 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
3557
3558 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
3559 AssertRCReturn(rc, rc);
3560
3561 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
3562 Log4Func(("RIP=%#RX64\n", pVCpu->cpum.GstCtx.rip));
3563 }
3564 return rc;
3565}
3566
3567
3568/**
3569 * Exports the guest's RSP into the guest-state area in the VMCS.
3570 *
3571 * @returns VBox status code.
3572 * @param pVCpu The cross context virtual CPU structure.
3573 *
3574 * @remarks No-long-jump zone!!!
3575 */
3576static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
3577{
3578 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
3579 {
3580 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
3581
3582 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
3583 AssertRCReturn(rc, rc);
3584
3585 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
3586 }
3587 return VINF_SUCCESS;
3588}
3589
3590
3591/**
3592 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
3593 *
3594 * @returns VBox status code.
3595 * @param pVCpu The cross context virtual CPU structure.
3596 *
3597 * @remarks No-long-jump zone!!!
3598 */
3599static int hmR0VmxExportGuestRflags(PVMCPU pVCpu)
3600{
3601 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
3602 {
3603 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
3604
3605 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3606 Let us assert it as such and use 32-bit VMWRITE. */
3607 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
3608 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
3609 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
3610 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3611
3612 /*
3613 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
3614 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
3615 * can run the real-mode guest code under Virtual 8086 mode.
3616 */
3617 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3618 {
3619 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3620 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3621 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
3622 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3623 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3624 }
3625
3626 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
3627 AssertRCReturn(rc, rc);
3628
3629 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
3630 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
3631 }
3632 return VINF_SUCCESS;
3633}
3634
3635
3636/**
3637 * Exports the guest CR0 control register into the guest-state area in the VMCS.
3638 *
3639 * The guest FPU state is always pre-loaded hence we don't need to bother about
3640 * sharing FPU related CR0 bits between the guest and host.
3641 *
3642 * @returns VBox status code.
3643 * @param pVCpu The cross context virtual CPU structure.
3644 *
3645 * @remarks No-long-jump zone!!!
3646 */
3647static int hmR0VmxExportGuestCR0(PVMCPU pVCpu)
3648{
3649 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
3650 {
3651 PVM pVM = pVCpu->CTX_SUFF(pVM);
3652 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3653 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.cr0));
3654
3655 uint32_t const u32ShadowCr0 = pVCpu->cpum.GstCtx.cr0;
3656 uint32_t u32GuestCr0 = pVCpu->cpum.GstCtx.cr0;
3657
3658 /*
3659 * Setup VT-x's view of the guest CR0.
3660 * Minimize VM-exits due to CR3 changes when we have NestedPaging.
3661 */
3662 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
3663 if (pVM->hm.s.fNestedPaging)
3664 {
3665 if (CPUMIsGuestPagingEnabled(pVCpu))
3666 {
3667 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3668 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
3669 | VMX_PROC_CTLS_CR3_STORE_EXIT);
3670 }
3671 else
3672 {
3673 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3674 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
3675 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3676 }
3677
3678 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3679 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3680 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
3681 }
3682 else
3683 {
3684 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3685 u32GuestCr0 |= X86_CR0_WP;
3686 }
3687
3688 /*
3689 * Guest FPU bits.
3690 *
3691 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
3692 * using CR0.TS.
3693 *
3694 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
3695 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3696 */
3697 u32GuestCr0 |= X86_CR0_NE;
3698
3699 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
3700 bool const fInterceptMF = !(u32ShadowCr0 & X86_CR0_NE);
3701
3702 /*
3703 * Update exception intercepts.
3704 */
3705 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3706 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3707 {
3708 Assert(PDMVmmDevHeapIsEnabled(pVM));
3709 Assert(pVM->hm.s.vmx.pRealModeTSS);
3710 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3711 }
3712 else
3713 {
3714 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3715 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3716 if (fInterceptMF)
3717 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
3718 }
3719
3720 /* Additional intercepts for debugging, define these yourself explicitly. */
3721#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3722 uXcptBitmap |= 0
3723 | RT_BIT(X86_XCPT_BP)
3724 | RT_BIT(X86_XCPT_DE)
3725 | RT_BIT(X86_XCPT_NM)
3726 | RT_BIT(X86_XCPT_TS)
3727 | RT_BIT(X86_XCPT_UD)
3728 | RT_BIT(X86_XCPT_NP)
3729 | RT_BIT(X86_XCPT_SS)
3730 | RT_BIT(X86_XCPT_GP)
3731 | RT_BIT(X86_XCPT_PF)
3732 | RT_BIT(X86_XCPT_MF)
3733 ;
3734#elif defined(HMVMX_ALWAYS_TRAP_PF)
3735 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
3736#endif
3737 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
3738
3739 /*
3740 * Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW).
3741 */
3742 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3743 uint32_t fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3744 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3745 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
3746 else
3747 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3748
3749 u32GuestCr0 |= fSetCr0;
3750 u32GuestCr0 &= fZapCr0;
3751 u32GuestCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3752
3753 /*
3754 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3755 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3756 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3757 */
3758 uint32_t u32Cr0Mask = X86_CR0_PE
3759 | X86_CR0_NE
3760 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
3761 | X86_CR0_PG
3762 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3763 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3764 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3765
3766 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3767 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3768 * and @bugref{6944}. */
3769#if 0
3770 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3771 u32Cr0Mask &= ~X86_CR0_PE;
3772#endif
3773 /*
3774 * Finally, update VMCS fields with the CR0 values and the exception bitmap.
3775 */
3776 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCr0);
3777 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32ShadowCr0);
3778 if (u32Cr0Mask != pVCpu->hm.s.vmx.u32Cr0Mask)
3779 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32Cr0Mask);
3780 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
3781 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
3782 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3783 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3784 AssertRCReturn(rc, rc);
3785
3786 /* Update our caches. */
3787 pVCpu->hm.s.vmx.u32Cr0Mask = u32Cr0Mask;
3788 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
3789 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3790
3791 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
3792
3793 Log4Func(("u32Cr0Mask=%#RX32 u32ShadowCr0=%#RX32 u32GuestCr0=%#RX32 (fSetCr0=%#RX32 fZapCr0=%#RX32\n", u32Cr0Mask,
3794 u32ShadowCr0, u32GuestCr0, fSetCr0, fZapCr0));
3795 }
3796
3797 return VINF_SUCCESS;
3798}
3799
3800
3801/**
3802 * Exports the guest control registers (CR3, CR4) into the guest-state area
3803 * in the VMCS.
3804 *
3805 * @returns VBox strict status code.
3806 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3807 * without unrestricted guest access and the VMMDev is not presently
3808 * mapped (e.g. EFI32).
3809 *
3810 * @param pVCpu The cross context virtual CPU structure.
3811 *
3812 * @remarks No-long-jump zone!!!
3813 */
3814static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu)
3815{
3816 int rc = VINF_SUCCESS;
3817 PVM pVM = pVCpu->CTX_SUFF(pVM);
3818
3819 /*
3820 * Guest CR2.
3821 * It's always loaded in the assembler code. Nothing to do here.
3822 */
3823
3824 /*
3825 * Guest CR3.
3826 */
3827 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
3828 {
3829 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3830
3831 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3832 if (pVM->hm.s.fNestedPaging)
3833 {
3834 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3835
3836 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3837 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3838 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3839 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3840
3841 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3842 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3843 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3844
3845 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3846 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3847 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3848 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3849 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3850 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3851 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3852
3853 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3854 AssertRCReturn(rc, rc);
3855
3856 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3857 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3858 || CPUMIsGuestPagingEnabledEx(pCtx))
3859 {
3860 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3861 if (CPUMIsGuestInPAEModeEx(pCtx))
3862 {
3863 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3864 AssertRCReturn(rc, rc);
3865 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3866 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3867 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3868 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3869 AssertRCReturn(rc, rc);
3870 }
3871
3872 /*
3873 * The guest's view of its CR3 is unblemished with Nested Paging when the
3874 * guest is using paging or we have unrestricted guest execution to handle
3875 * the guest when it's not using paging.
3876 */
3877 GCPhysGuestCR3 = pCtx->cr3;
3878 }
3879 else
3880 {
3881 /*
3882 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
3883 * thinks it accesses physical memory directly, we use our identity-mapped
3884 * page table to map guest-linear to guest-physical addresses. EPT takes care
3885 * of translating it to host-physical addresses.
3886 */
3887 RTGCPHYS GCPhys;
3888 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3889
3890 /* We obtain it here every time as the guest could have relocated this PCI region. */
3891 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3892 if (RT_SUCCESS(rc))
3893 { /* likely */ }
3894 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3895 {
3896 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
3897 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3898 }
3899 else
3900 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3901
3902 GCPhysGuestCR3 = GCPhys;
3903 }
3904
3905 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
3906 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3907 AssertRCReturn(rc, rc);
3908 }
3909 else
3910 {
3911 /* Non-nested paging case, just use the hypervisor's CR3. */
3912 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3913
3914 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
3915 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3916 AssertRCReturn(rc, rc);
3917 }
3918
3919 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
3920 }
3921
3922 /*
3923 * Guest CR4.
3924 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3925 */
3926 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
3927 {
3928 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3929 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3930 Assert(!RT_HI_U32(pCtx->cr4));
3931
3932 uint32_t u32GuestCr4 = pCtx->cr4;
3933 uint32_t const u32ShadowCr4 = pCtx->cr4;
3934
3935 /*
3936 * Setup VT-x's view of the guest CR4.
3937 *
3938 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
3939 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
3940 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3941 *
3942 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3943 */
3944 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3945 {
3946 Assert(pVM->hm.s.vmx.pRealModeTSS);
3947 Assert(PDMVmmDevHeapIsEnabled(pVM));
3948 u32GuestCr4 &= ~X86_CR4_VME;
3949 }
3950
3951 if (pVM->hm.s.fNestedPaging)
3952 {
3953 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
3954 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3955 {
3956 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3957 u32GuestCr4 |= X86_CR4_PSE;
3958 /* Our identity mapping is a 32-bit page directory. */
3959 u32GuestCr4 &= ~X86_CR4_PAE;
3960 }
3961 /* else use guest CR4.*/
3962 }
3963 else
3964 {
3965 /*
3966 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3967 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3968 */
3969 switch (pVCpu->hm.s.enmShadowMode)
3970 {
3971 case PGMMODE_REAL: /* Real-mode. */
3972 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3973 case PGMMODE_32_BIT: /* 32-bit paging. */
3974 {
3975 u32GuestCr4 &= ~X86_CR4_PAE;
3976 break;
3977 }
3978
3979 case PGMMODE_PAE: /* PAE paging. */
3980 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3981 {
3982 u32GuestCr4 |= X86_CR4_PAE;
3983 break;
3984 }
3985
3986 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
3987 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
3988#ifdef VBOX_ENABLE_64_BITS_GUESTS
3989 break;
3990#endif
3991 default:
3992 AssertFailed();
3993 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
3994 }
3995 }
3996
3997 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
3998 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3999 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4000 u32GuestCr4 |= fSetCr4;
4001 u32GuestCr4 &= fZapCr4;
4002
4003 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them,
4004 that would cause a VM-exit. */
4005 uint32_t u32Cr4Mask = X86_CR4_VME
4006 | X86_CR4_PAE
4007 | X86_CR4_PGE
4008 | X86_CR4_PSE
4009 | X86_CR4_VMXE;
4010 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4011 u32Cr4Mask |= X86_CR4_OSXSAVE;
4012 if (pVM->cpum.ro.GuestFeatures.fPcid)
4013 u32Cr4Mask |= X86_CR4_PCIDE;
4014
4015 /* Write VT-x's view of the guest CR4, the CR4 modify mask and the read-only CR4 shadow
4016 into the VMCS and update our cache. */
4017 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCr4);
4018 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32ShadowCr4);
4019 if (pVCpu->hm.s.vmx.u32Cr4Mask != u32Cr4Mask)
4020 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32Cr4Mask);
4021 AssertRCReturn(rc, rc);
4022 pVCpu->hm.s.vmx.u32Cr4Mask = u32Cr4Mask;
4023
4024 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4025 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4026
4027 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
4028
4029 Log4Func(("u32GuestCr4=%#RX32 u32ShadowCr4=%#RX32 (fSetCr4=%#RX32 fZapCr4=%#RX32)\n", u32GuestCr4, u32ShadowCr4, fSetCr4,
4030 fZapCr4));
4031 }
4032 return rc;
4033}
4034
4035
4036/**
4037 * Exports the guest debug registers into the guest-state area in the VMCS.
4038 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4039 *
4040 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4041 *
4042 * @returns VBox status code.
4043 * @param pVCpu The cross context virtual CPU structure.
4044 *
4045 * @remarks No-long-jump zone!!!
4046 */
4047static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu)
4048{
4049 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4050
4051#ifdef VBOX_STRICT
4052 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4053 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4054 {
4055 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4056 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
4057 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
4058 }
4059#endif
4060
4061 bool fSteppingDB = false;
4062 bool fInterceptMovDRx = false;
4063 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
4064 if (pVCpu->hm.s.fSingleInstruction)
4065 {
4066 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4067 PVM pVM = pVCpu->CTX_SUFF(pVM);
4068 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
4069 {
4070 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
4071 Assert(fSteppingDB == false);
4072 }
4073 else
4074 {
4075 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
4076 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
4077 pVCpu->hm.s.fClearTrapFlag = true;
4078 fSteppingDB = true;
4079 }
4080 }
4081
4082 uint32_t u32GuestDr7;
4083 if ( fSteppingDB
4084 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4085 {
4086 /*
4087 * Use the combined guest and host DRx values found in the hypervisor register set
4088 * because the debugger has breakpoints active or someone is single stepping on the
4089 * host side without a monitor trap flag.
4090 *
4091 * Note! DBGF expects a clean DR6 state before executing guest code.
4092 */
4093#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4094 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4095 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4096 {
4097 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4098 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4099 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4100 }
4101 else
4102#endif
4103 if (!CPUMIsHyperDebugStateActive(pVCpu))
4104 {
4105 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4106 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4107 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4108 }
4109
4110 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
4111 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
4112 pVCpu->hm.s.fUsingHyperDR7 = true;
4113 fInterceptMovDRx = true;
4114 }
4115 else
4116 {
4117 /*
4118 * If the guest has enabled debug registers, we need to load them prior to
4119 * executing guest code so they'll trigger at the right time.
4120 */
4121 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
4122 {
4123#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4124 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4125 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4126 {
4127 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4128 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4129 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4130 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4131 }
4132 else
4133#endif
4134 if (!CPUMIsGuestDebugStateActive(pVCpu))
4135 {
4136 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4137 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4138 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4139 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4140 }
4141 Assert(!fInterceptMovDRx);
4142 }
4143 /*
4144 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4145 * must intercept #DB in order to maintain a correct DR6 guest value, and
4146 * because we need to intercept it to prevent nested #DBs from hanging the
4147 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4148 */
4149#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4150 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4151 && !CPUMIsGuestDebugStateActive(pVCpu))
4152#else
4153 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4154#endif
4155 {
4156 fInterceptMovDRx = true;
4157 }
4158
4159 /* Update DR7 with the actual guest value. */
4160 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
4161 pVCpu->hm.s.fUsingHyperDR7 = false;
4162 }
4163
4164 if (fInterceptMovDRx)
4165 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
4166 else
4167 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
4168
4169 /*
4170 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
4171 * monitor-trap flag and update our cache.
4172 */
4173 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
4174 {
4175 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4176 AssertRCReturn(rc2, rc2);
4177 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
4178 }
4179
4180 /*
4181 * Update guest DR7.
4182 */
4183 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
4184 AssertRCReturn(rc, rc);
4185
4186 return VINF_SUCCESS;
4187}
4188
4189
4190#ifdef VBOX_STRICT
4191/**
4192 * Strict function to validate segment registers.
4193 *
4194 * @param pVCpu The cross context virtual CPU structure.
4195 *
4196 * @remarks Will import guest CR0 on strict builds during validation of
4197 * segments.
4198 */
4199static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu)
4200{
4201 /*
4202 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4203 *
4204 * The reason we check for attribute value 0 in this function and not just the unusable bit is
4205 * because hmR0VmxExportGuestSegmentReg() only updates the VMCS' copy of the value with the unusable bit
4206 * and doesn't change the guest-context value.
4207 */
4208 PVM pVM = pVCpu->CTX_SUFF(pVM);
4209 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4210 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
4211 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4212 && ( !CPUMIsGuestInRealModeEx(pCtx)
4213 && !CPUMIsGuestInV86ModeEx(pCtx)))
4214 {
4215 /* Protected mode checks */
4216 /* CS */
4217 Assert(pCtx->cs.Attr.n.u1Present);
4218 Assert(!(pCtx->cs.Attr.u & 0xf00));
4219 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4220 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4221 || !(pCtx->cs.Attr.n.u1Granularity));
4222 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4223 || (pCtx->cs.Attr.n.u1Granularity));
4224 /* CS cannot be loaded with NULL in protected mode. */
4225 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4226 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4227 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4228 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4229 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4230 else
4231 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4232 /* SS */
4233 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4234 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4235 if ( !(pCtx->cr0 & X86_CR0_PE)
4236 || pCtx->cs.Attr.n.u4Type == 3)
4237 {
4238 Assert(!pCtx->ss.Attr.n.u2Dpl);
4239 }
4240 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4241 {
4242 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4243 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4244 Assert(pCtx->ss.Attr.n.u1Present);
4245 Assert(!(pCtx->ss.Attr.u & 0xf00));
4246 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4247 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4248 || !(pCtx->ss.Attr.n.u1Granularity));
4249 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4250 || (pCtx->ss.Attr.n.u1Granularity));
4251 }
4252 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmentReg(). */
4253 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4254 {
4255 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4256 Assert(pCtx->ds.Attr.n.u1Present);
4257 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4258 Assert(!(pCtx->ds.Attr.u & 0xf00));
4259 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4260 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4261 || !(pCtx->ds.Attr.n.u1Granularity));
4262 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4263 || (pCtx->ds.Attr.n.u1Granularity));
4264 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4265 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4266 }
4267 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4268 {
4269 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4270 Assert(pCtx->es.Attr.n.u1Present);
4271 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4272 Assert(!(pCtx->es.Attr.u & 0xf00));
4273 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4274 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4275 || !(pCtx->es.Attr.n.u1Granularity));
4276 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4277 || (pCtx->es.Attr.n.u1Granularity));
4278 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4279 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4280 }
4281 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4282 {
4283 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4284 Assert(pCtx->fs.Attr.n.u1Present);
4285 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4286 Assert(!(pCtx->fs.Attr.u & 0xf00));
4287 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4288 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4289 || !(pCtx->fs.Attr.n.u1Granularity));
4290 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4291 || (pCtx->fs.Attr.n.u1Granularity));
4292 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4293 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4294 }
4295 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4296 {
4297 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4298 Assert(pCtx->gs.Attr.n.u1Present);
4299 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4300 Assert(!(pCtx->gs.Attr.u & 0xf00));
4301 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4302 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4303 || !(pCtx->gs.Attr.n.u1Granularity));
4304 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4305 || (pCtx->gs.Attr.n.u1Granularity));
4306 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4307 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4308 }
4309 /* 64-bit capable CPUs. */
4310# if HC_ARCH_BITS == 64
4311 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4312 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
4313 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
4314 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
4315# endif
4316 }
4317 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4318 || ( CPUMIsGuestInRealModeEx(pCtx)
4319 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4320 {
4321 /* Real and v86 mode checks. */
4322 /* hmR0VmxExportGuestSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4323 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4324 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4325 {
4326 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4327 }
4328 else
4329 {
4330 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4331 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4332 }
4333
4334 /* CS */
4335 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4336 Assert(pCtx->cs.u32Limit == 0xffff);
4337 Assert(u32CSAttr == 0xf3);
4338 /* SS */
4339 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4340 Assert(pCtx->ss.u32Limit == 0xffff);
4341 Assert(u32SSAttr == 0xf3);
4342 /* DS */
4343 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4344 Assert(pCtx->ds.u32Limit == 0xffff);
4345 Assert(u32DSAttr == 0xf3);
4346 /* ES */
4347 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4348 Assert(pCtx->es.u32Limit == 0xffff);
4349 Assert(u32ESAttr == 0xf3);
4350 /* FS */
4351 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4352 Assert(pCtx->fs.u32Limit == 0xffff);
4353 Assert(u32FSAttr == 0xf3);
4354 /* GS */
4355 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4356 Assert(pCtx->gs.u32Limit == 0xffff);
4357 Assert(u32GSAttr == 0xf3);
4358 /* 64-bit capable CPUs. */
4359# if HC_ARCH_BITS == 64
4360 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4361 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
4362 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
4363 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
4364# endif
4365 }
4366}
4367#endif /* VBOX_STRICT */
4368
4369
4370/**
4371 * Exports a guest segment register into the guest-state area in the VMCS.
4372 *
4373 * @returns VBox status code.
4374 * @param pVCpu The cross context virtual CPU structure.
4375 * @param idxSel Index of the selector in the VMCS.
4376 * @param idxLimit Index of the segment limit in the VMCS.
4377 * @param idxBase Index of the segment base in the VMCS.
4378 * @param idxAccess Index of the access rights of the segment in the VMCS.
4379 * @param pSelReg Pointer to the segment selector.
4380 *
4381 * @remarks No-long-jump zone!!!
4382 */
4383static int hmR0VmxExportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
4384 PCCPUMSELREG pSelReg)
4385{
4386 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4387 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4388 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4389 AssertRCReturn(rc, rc);
4390
4391 uint32_t u32Access = pSelReg->Attr.u;
4392 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4393 {
4394 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4395 u32Access = 0xf3;
4396 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4397 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4398 }
4399 else
4400 {
4401 /*
4402 * The way to differentiate between whether this is really a null selector or was just
4403 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
4404 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
4405 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
4406 * NULL selectors loaded in protected-mode have their attribute as 0.
4407 */
4408 if (!u32Access)
4409 u32Access = X86DESCATTR_UNUSABLE;
4410 }
4411
4412 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4413 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4414 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4415
4416 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4417 AssertRCReturn(rc, rc);
4418 return rc;
4419}
4420
4421
4422/**
4423 * Exports the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4424 * into the guest-state area in the VMCS.
4425 *
4426 * @returns VBox status code.
4427 * @param pVCpu The cross context virtual CPU structure.
4428 *
4429 * @remarks Will import guest CR0 on strict builds during validation of
4430 * segments.
4431 * @remarks No-long-jump zone!!!
4432 */
4433static int hmR0VmxExportGuestSegmentRegs(PVMCPU pVCpu)
4434{
4435 int rc = VERR_INTERNAL_ERROR_5;
4436 PVM pVM = pVCpu->CTX_SUFF(pVM);
4437 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4438
4439 /*
4440 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4441 */
4442 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
4443 {
4444#ifdef VBOX_WITH_REM
4445 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4446 {
4447 Assert(pVM->hm.s.vmx.pRealModeTSS);
4448 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4449 if ( pVCpu->hm.s.vmx.fWasInRealMode
4450 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4451 {
4452 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4453 in real-mode (e.g. OpenBSD 4.0) */
4454 REMFlushTBs(pVM);
4455 Log4Func(("Switch to protected mode detected!\n"));
4456 pVCpu->hm.s.vmx.fWasInRealMode = false;
4457 }
4458 }
4459#endif
4460 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
4461 {
4462 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
4463 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4464 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pCtx->cs.Attr.u;
4465 rc = HMVMX_EXPORT_SREG(CS, &pCtx->cs);
4466 AssertRCReturn(rc, rc);
4467 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
4468 }
4469
4470 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
4471 {
4472 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
4473 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4474 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pCtx->ss.Attr.u;
4475 rc = HMVMX_EXPORT_SREG(SS, &pCtx->ss);
4476 AssertRCReturn(rc, rc);
4477 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
4478 }
4479
4480 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
4481 {
4482 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
4483 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4484 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pCtx->ds.Attr.u;
4485 rc = HMVMX_EXPORT_SREG(DS, &pCtx->ds);
4486 AssertRCReturn(rc, rc);
4487 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
4488 }
4489
4490 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
4491 {
4492 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
4493 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4494 pVCpu->hm.s.vmx.RealMode.AttrES.u = pCtx->es.Attr.u;
4495 rc = HMVMX_EXPORT_SREG(ES, &pCtx->es);
4496 AssertRCReturn(rc, rc);
4497 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
4498 }
4499
4500 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
4501 {
4502 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
4503 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4504 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pCtx->fs.Attr.u;
4505 rc = HMVMX_EXPORT_SREG(FS, &pCtx->fs);
4506 AssertRCReturn(rc, rc);
4507 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
4508 }
4509
4510 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
4511 {
4512 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
4513 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4514 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pCtx->gs.Attr.u;
4515 rc = HMVMX_EXPORT_SREG(GS, &pCtx->gs);
4516 AssertRCReturn(rc, rc);
4517 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
4518 }
4519
4520#ifdef VBOX_STRICT
4521 hmR0VmxValidateSegmentRegs(pVCpu);
4522#endif
4523
4524 Log4Func(("CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pCtx->cs.Sel, pCtx->cs.u64Base,
4525 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
4526 }
4527
4528 /*
4529 * Guest TR.
4530 */
4531 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
4532 {
4533 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
4534
4535 /*
4536 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
4537 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
4538 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4539 */
4540 uint16_t u16Sel = 0;
4541 uint32_t u32Limit = 0;
4542 uint64_t u64Base = 0;
4543 uint32_t u32AccessRights = 0;
4544
4545 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4546 {
4547 u16Sel = pCtx->tr.Sel;
4548 u32Limit = pCtx->tr.u32Limit;
4549 u64Base = pCtx->tr.u64Base;
4550 u32AccessRights = pCtx->tr.Attr.u;
4551 }
4552 else
4553 {
4554 Assert(pVM->hm.s.vmx.pRealModeTSS);
4555 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4556
4557 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4558 RTGCPHYS GCPhys;
4559 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4560 AssertRCReturn(rc, rc);
4561
4562 X86DESCATTR DescAttr;
4563 DescAttr.u = 0;
4564 DescAttr.n.u1Present = 1;
4565 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4566
4567 u16Sel = 0;
4568 u32Limit = HM_VTX_TSS_SIZE;
4569 u64Base = GCPhys; /* in real-mode phys = virt. */
4570 u32AccessRights = DescAttr.u;
4571 }
4572
4573 /* Validate. */
4574 Assert(!(u16Sel & RT_BIT(2)));
4575 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4576 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4577 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4578 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4579 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4580 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4581 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4582 Assert( (u32Limit & 0xfff) == 0xfff
4583 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4584 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
4585 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4586
4587 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4588 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4589 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4590 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4591 AssertRCReturn(rc, rc);
4592
4593 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
4594 Log4Func(("TR base=%#RX64\n", pCtx->tr.u64Base));
4595 }
4596
4597 /*
4598 * Guest GDTR.
4599 */
4600 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
4601 {
4602 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
4603
4604 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
4605 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
4606 AssertRCReturn(rc, rc);
4607
4608 /* Validate. */
4609 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4610
4611 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
4612 Log4Func(("GDTR base=%#RX64\n", pCtx->gdtr.pGdt));
4613 }
4614
4615 /*
4616 * Guest LDTR.
4617 */
4618 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
4619 {
4620 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
4621
4622 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4623 uint32_t u32Access = 0;
4624 if (!pCtx->ldtr.Attr.u)
4625 u32Access = X86DESCATTR_UNUSABLE;
4626 else
4627 u32Access = pCtx->ldtr.Attr.u;
4628
4629 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
4630 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
4631 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4632 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
4633 AssertRCReturn(rc, rc);
4634
4635 /* Validate. */
4636 if (!(u32Access & X86DESCATTR_UNUSABLE))
4637 {
4638 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4639 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4640 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4641 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4642 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4643 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4644 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
4645 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4646 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
4647 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4648 }
4649
4650 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
4651 Log4Func(("LDTR base=%#RX64\n", pCtx->ldtr.u64Base));
4652 }
4653
4654 /*
4655 * Guest IDTR.
4656 */
4657 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
4658 {
4659 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
4660
4661 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
4662 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
4663 AssertRCReturn(rc, rc);
4664
4665 /* Validate. */
4666 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4667
4668 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
4669 Log4Func(("IDTR base=%#RX64\n", pCtx->idtr.pIdt));
4670 }
4671
4672 return VINF_SUCCESS;
4673}
4674
4675
4676/**
4677 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4678 * areas.
4679 *
4680 * These MSRs will automatically be loaded to the host CPU on every successful
4681 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4682 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4683 * -not- updated here for performance reasons. See hmR0VmxExportHostMsrs().
4684 *
4685 * Also exports the guest sysenter MSRs into the guest-state area in the VMCS.
4686 *
4687 * @returns VBox status code.
4688 * @param pVCpu The cross context virtual CPU structure.
4689 *
4690 * @remarks No-long-jump zone!!!
4691 */
4692static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu)
4693{
4694 AssertPtr(pVCpu);
4695 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4696
4697 /*
4698 * MSRs that we use the auto-load/store MSR area in the VMCS.
4699 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
4700 */
4701 PVM pVM = pVCpu->CTX_SUFF(pVM);
4702 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4703 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
4704 {
4705 if (pVM->hm.s.fAllow64BitGuests)
4706 {
4707#if HC_ARCH_BITS == 32
4708 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
4709
4710 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pCtx->msrLSTAR, false, NULL);
4711 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pCtx->msrSTAR, false, NULL);
4712 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pCtx->msrSFMASK, false, NULL);
4713 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, false, NULL);
4714 AssertRCReturn(rc, rc);
4715# ifdef LOG_ENABLED
4716 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4717 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4718 Log4Func(("MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4719# endif
4720#endif
4721 }
4722 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4723 }
4724
4725 /*
4726 * Guest Sysenter MSRs.
4727 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4728 * VM-exits on WRMSRs for these MSRs.
4729 */
4730 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
4731 {
4732 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4733
4734 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
4735 {
4736 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
4737 AssertRCReturn(rc, rc);
4738 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4739 }
4740
4741 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
4742 {
4743 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
4744 AssertRCReturn(rc, rc);
4745 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4746 }
4747
4748 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
4749 {
4750 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
4751 AssertRCReturn(rc, rc);
4752 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4753 }
4754 }
4755
4756 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
4757 {
4758 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
4759
4760 if (hmR0VmxShouldSwapEferMsr(pVCpu))
4761 {
4762 /*
4763 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4764 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4765 */
4766 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4767 {
4768 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
4769 AssertRCReturn(rc,rc);
4770 Log4Func(("EFER=%#RX64\n", pCtx->msrEFER));
4771 }
4772 else
4773 {
4774 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pCtx->msrEFER, false /* fUpdateHostMsr */,
4775 NULL /* pfAddedAndUpdated */);
4776 AssertRCReturn(rc, rc);
4777
4778 /* We need to intercept reads too, see @bugref{7386#c16}. */
4779 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4780 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4781 Log4Func(("MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", MSR_K6_EFER, pCtx->msrEFER,
4782 pVCpu->hm.s.vmx.cMsrs));
4783 }
4784 }
4785 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4786 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4787 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
4788 }
4789
4790 return VINF_SUCCESS;
4791}
4792
4793
4794#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4795/**
4796 * Check if guest state allows safe use of 32-bit switcher again.
4797 *
4798 * Segment bases and protected mode structures must be 32-bit addressable
4799 * because the 32-bit switcher will ignore high dword when writing these VMCS
4800 * fields. See @bugref{8432} for details.
4801 *
4802 * @returns true if safe, false if must continue to use the 64-bit switcher.
4803 * @param pCtx Pointer to the guest-CPU context.
4804 *
4805 * @remarks No-long-jump zone!!!
4806 */
4807static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
4808{
4809 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
4810 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
4811 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4812 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4813 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
4814 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4815 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
4816 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
4817 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4818 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4819
4820 /* All good, bases are 32-bit. */
4821 return true;
4822}
4823#endif
4824
4825
4826/**
4827 * Selects up the appropriate function to run guest code.
4828 *
4829 * @returns VBox status code.
4830 * @param pVCpu The cross context virtual CPU structure.
4831 *
4832 * @remarks No-long-jump zone!!!
4833 */
4834static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu)
4835{
4836 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4837 if (CPUMIsGuestInLongModeEx(pCtx))
4838 {
4839#ifndef VBOX_ENABLE_64_BITS_GUESTS
4840 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4841#endif
4842 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4843#if HC_ARCH_BITS == 32
4844 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4845 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4846 {
4847#ifdef VBOX_STRICT
4848 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4849 {
4850 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4851 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4852 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4853 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4854 | HM_CHANGED_VMX_ENTRY_CTLS
4855 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4856 }
4857#endif
4858 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4859
4860 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4861 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4862 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4863 Log4Func(("Selected 64-bit switcher\n"));
4864 }
4865#else
4866 /* 64-bit host. */
4867 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4868#endif
4869 }
4870 else
4871 {
4872 /* Guest is not in long mode, use the 32-bit handler. */
4873#if HC_ARCH_BITS == 32
4874 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4875 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4876 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4877 {
4878# ifdef VBOX_STRICT
4879 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4880 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4881 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4882 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4883 | HM_CHANGED_VMX_ENTRY_CTLS
4884 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4885# endif
4886 }
4887# ifdef VBOX_ENABLE_64_BITS_GUESTS
4888 /*
4889 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
4890 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
4891 * switcher flag because now we know the guest is in a sane state where it's safe
4892 * to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4893 * the much faster 32-bit switcher again.
4894 */
4895 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4896 {
4897 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4898 Log4Func(("Selected 32-bit switcher\n"));
4899 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4900 }
4901 else
4902 {
4903 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4904 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4905 || hmR0VmxIs32BitSwitcherSafe(pCtx))
4906 {
4907 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4908 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4909 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
4910 | HM_CHANGED_VMX_ENTRY_CTLS
4911 | HM_CHANGED_VMX_EXIT_CTLS
4912 | HM_CHANGED_HOST_CONTEXT);
4913 Log4Func(("Selected 32-bit switcher (safe)\n"));
4914 }
4915 }
4916# else
4917 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4918# endif
4919#else
4920 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4921#endif
4922 }
4923 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4924 return VINF_SUCCESS;
4925}
4926
4927
4928/**
4929 * Wrapper for running the guest code in VT-x.
4930 *
4931 * @returns VBox status code, no informational status codes.
4932 * @param pVCpu The cross context virtual CPU structure.
4933 *
4934 * @remarks No-long-jump zone!!!
4935 */
4936DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu)
4937{
4938 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4939 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4940 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4941
4942 /*
4943 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4944 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4945 * callee-saved and thus the need for this XMM wrapper.
4946 *
4947 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4948 */
4949 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4950 /** @todo Add stats for resume vs launch. */
4951 PVM pVM = pVCpu->CTX_SUFF(pVM);
4952#ifdef VBOX_WITH_KERNEL_USING_XMM
4953 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4954#else
4955 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4956#endif
4957 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4958 return rc;
4959}
4960
4961
4962/**
4963 * Reports world-switch error and dumps some useful debug info.
4964 *
4965 * @param pVCpu The cross context virtual CPU structure.
4966 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4967 * @param pVmxTransient Pointer to the VMX transient structure (only
4968 * exitReason updated).
4969 */
4970static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
4971{
4972 Assert(pVCpu);
4973 Assert(pVmxTransient);
4974 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
4975
4976 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
4977 switch (rcVMRun)
4978 {
4979 case VERR_VMX_INVALID_VMXON_PTR:
4980 AssertFailed();
4981 break;
4982 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4983 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
4984 {
4985 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
4986 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
4987 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
4988 AssertRC(rc);
4989
4990 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
4991 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
4992 Cannot do it here as we may have been long preempted. */
4993
4994#ifdef VBOX_STRICT
4995 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
4996 pVmxTransient->uExitReason));
4997 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
4998 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
4999 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5000 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5001 else
5002 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5003 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5004 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5005
5006 /* VMX control bits. */
5007 uint32_t u32Val;
5008 uint64_t u64Val;
5009 RTHCUINTREG uHCReg;
5010 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5011 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5012 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5013 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5014 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
5015 {
5016 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5017 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5018 }
5019 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5020 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5021 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5022 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5023 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5024 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5025 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5026 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5027 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5028 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5029 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5030 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5031 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5032 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5033 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5034 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5035 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5036 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5037 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5038 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5039 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5040 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5041 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5042 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5043 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5044 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5045 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5046 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5047 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5048 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5049 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5050 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5051 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5052 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5053 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5054 {
5055 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5056 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5057 }
5058
5059 /* Guest bits. */
5060 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5061 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
5062 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5063 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
5064 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5065 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
5066 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
5067 {
5068 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5069 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5070 }
5071
5072 /* Host bits. */
5073 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5074 Log4(("Host CR0 %#RHr\n", uHCReg));
5075 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5076 Log4(("Host CR3 %#RHr\n", uHCReg));
5077 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5078 Log4(("Host CR4 %#RHr\n", uHCReg));
5079
5080 RTGDTR HostGdtr;
5081 PCX86DESCHC pDesc;
5082 ASMGetGDTR(&HostGdtr);
5083 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5084 Log4(("Host CS %#08x\n", u32Val));
5085 if (u32Val < HostGdtr.cbGdt)
5086 {
5087 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5088 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5089 }
5090
5091 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5092 Log4(("Host DS %#08x\n", u32Val));
5093 if (u32Val < HostGdtr.cbGdt)
5094 {
5095 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5096 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5097 }
5098
5099 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5100 Log4(("Host ES %#08x\n", u32Val));
5101 if (u32Val < HostGdtr.cbGdt)
5102 {
5103 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5104 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5105 }
5106
5107 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5108 Log4(("Host FS %#08x\n", u32Val));
5109 if (u32Val < HostGdtr.cbGdt)
5110 {
5111 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5112 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5113 }
5114
5115 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5116 Log4(("Host GS %#08x\n", u32Val));
5117 if (u32Val < HostGdtr.cbGdt)
5118 {
5119 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5120 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5121 }
5122
5123 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5124 Log4(("Host SS %#08x\n", u32Val));
5125 if (u32Val < HostGdtr.cbGdt)
5126 {
5127 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5128 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5129 }
5130
5131 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5132 Log4(("Host TR %#08x\n", u32Val));
5133 if (u32Val < HostGdtr.cbGdt)
5134 {
5135 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5136 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5137 }
5138
5139 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5140 Log4(("Host TR Base %#RHv\n", uHCReg));
5141 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5142 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5143 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5144 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5145 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5146 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5147 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5148 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5149 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5150 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5151 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5152 Log4(("Host RSP %#RHv\n", uHCReg));
5153 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5154 Log4(("Host RIP %#RHv\n", uHCReg));
5155# if HC_ARCH_BITS == 64
5156 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5157 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5158 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5159 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5160 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5161 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5162# endif
5163#endif /* VBOX_STRICT */
5164 break;
5165 }
5166
5167 default:
5168 /* Impossible */
5169 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5170 break;
5171 }
5172}
5173
5174
5175#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5176#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5177# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5178#endif
5179#ifdef VBOX_STRICT
5180static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5181{
5182 switch (idxField)
5183 {
5184 case VMX_VMCS_GUEST_RIP:
5185 case VMX_VMCS_GUEST_RSP:
5186 case VMX_VMCS_GUEST_SYSENTER_EIP:
5187 case VMX_VMCS_GUEST_SYSENTER_ESP:
5188 case VMX_VMCS_GUEST_GDTR_BASE:
5189 case VMX_VMCS_GUEST_IDTR_BASE:
5190 case VMX_VMCS_GUEST_CS_BASE:
5191 case VMX_VMCS_GUEST_DS_BASE:
5192 case VMX_VMCS_GUEST_ES_BASE:
5193 case VMX_VMCS_GUEST_FS_BASE:
5194 case VMX_VMCS_GUEST_GS_BASE:
5195 case VMX_VMCS_GUEST_SS_BASE:
5196 case VMX_VMCS_GUEST_LDTR_BASE:
5197 case VMX_VMCS_GUEST_TR_BASE:
5198 case VMX_VMCS_GUEST_CR3:
5199 return true;
5200 }
5201 return false;
5202}
5203
5204static bool hmR0VmxIsValidReadField(uint32_t idxField)
5205{
5206 switch (idxField)
5207 {
5208 /* Read-only fields. */
5209 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5210 return true;
5211 }
5212 /* Remaining readable fields should also be writable. */
5213 return hmR0VmxIsValidWriteField(idxField);
5214}
5215#endif /* VBOX_STRICT */
5216
5217
5218/**
5219 * Executes the specified handler in 64-bit mode.
5220 *
5221 * @returns VBox status code (no informational status codes).
5222 * @param pVCpu The cross context virtual CPU structure.
5223 * @param enmOp The operation to perform.
5224 * @param cParams Number of parameters.
5225 * @param paParam Array of 32-bit parameters.
5226 */
5227VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
5228{
5229 PVM pVM = pVCpu->CTX_SUFF(pVM);
5230 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5231 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5232 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5233 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5234
5235#ifdef VBOX_STRICT
5236 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5237 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5238
5239 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5240 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5241#endif
5242
5243 /* Disable interrupts. */
5244 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5245
5246#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5247 RTCPUID idHostCpu = RTMpCpuId();
5248 CPUMR0SetLApic(pVCpu, idHostCpu);
5249#endif
5250
5251 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5252 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5253
5254 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5255 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5256 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5257
5258 /* Leave VMX Root Mode. */
5259 VMXDisable();
5260
5261 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5262
5263 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5264 CPUMSetHyperEIP(pVCpu, enmOp);
5265 for (int i = (int)cParams - 1; i >= 0; i--)
5266 CPUMPushHyper(pVCpu, paParam[i]);
5267
5268 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5269
5270 /* Call the switcher. */
5271 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
5272 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5273
5274 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5275 /* Make sure the VMX instructions don't cause #UD faults. */
5276 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5277
5278 /* Re-enter VMX Root Mode */
5279 int rc2 = VMXEnable(HCPhysCpuPage);
5280 if (RT_FAILURE(rc2))
5281 {
5282 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5283 ASMSetFlags(fOldEFlags);
5284 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5285 return rc2;
5286 }
5287
5288 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5289 AssertRC(rc2);
5290 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5291 Assert(!(ASMGetFlags() & X86_EFL_IF));
5292 ASMSetFlags(fOldEFlags);
5293 return rc;
5294}
5295
5296
5297/**
5298 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5299 * supporting 64-bit guests.
5300 *
5301 * @returns VBox status code.
5302 * @param fResume Whether to VMLAUNCH or VMRESUME.
5303 * @param pCtx Pointer to the guest-CPU context.
5304 * @param pCache Pointer to the VMCS cache.
5305 * @param pVM The cross context VM structure.
5306 * @param pVCpu The cross context virtual CPU structure.
5307 */
5308DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5309{
5310 NOREF(fResume);
5311
5312 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5313 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5314
5315#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5316 pCache->uPos = 1;
5317 pCache->interPD = PGMGetInterPaeCR3(pVM);
5318 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5319#endif
5320
5321#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5322 pCache->TestIn.HCPhysCpuPage = 0;
5323 pCache->TestIn.HCPhysVmcs = 0;
5324 pCache->TestIn.pCache = 0;
5325 pCache->TestOut.HCPhysVmcs = 0;
5326 pCache->TestOut.pCache = 0;
5327 pCache->TestOut.pCtx = 0;
5328 pCache->TestOut.eflags = 0;
5329#else
5330 NOREF(pCache);
5331#endif
5332
5333 uint32_t aParam[10];
5334 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5335 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
5336 aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5337 aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
5338 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5339 aParam[5] = 0;
5340 aParam[6] = VM_RC_ADDR(pVM, pVM);
5341 aParam[7] = 0;
5342 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5343 aParam[9] = 0;
5344
5345#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5346 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5347 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5348#endif
5349 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5350
5351#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5352 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5353 Assert(pCtx->dr[4] == 10);
5354 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5355#endif
5356
5357#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5358 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5359 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5360 pVCpu->hm.s.vmx.HCPhysVmcs));
5361 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5362 pCache->TestOut.HCPhysVmcs));
5363 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5364 pCache->TestOut.pCache));
5365 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5366 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5367 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5368 pCache->TestOut.pCtx));
5369 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5370#endif
5371 NOREF(pCtx);
5372 return rc;
5373}
5374
5375
5376/**
5377 * Initialize the VMCS-Read cache.
5378 *
5379 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5380 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5381 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5382 * (those that have a 32-bit FULL & HIGH part).
5383 *
5384 * @returns VBox status code.
5385 * @param pVCpu The cross context virtual CPU structure.
5386 */
5387static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
5388{
5389#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5390 do { \
5391 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5392 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5393 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5394 ++cReadFields; \
5395 } while (0)
5396
5397 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5398 uint32_t cReadFields = 0;
5399
5400 /*
5401 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5402 * and serve to indicate exceptions to the rules.
5403 */
5404
5405 /* Guest-natural selector base fields. */
5406#if 0
5407 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5408 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5409 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5410#endif
5411 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5412 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5413 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5414 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5415 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5416 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5417 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5418 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5419 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5420 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5421 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5422 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5423#if 0
5424 /* Unused natural width guest-state fields. */
5425 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5426 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5427#endif
5428 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5429 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5430
5431 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
5432 these 64-bit fields (using "FULL" and "HIGH" fields). */
5433#if 0
5434 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5435 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5436 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5437 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5438 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5439 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5440 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5441 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5442 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5443#endif
5444
5445 /* Natural width guest-state fields. */
5446 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5447#if 0
5448 /* Currently unused field. */
5449 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5450#endif
5451
5452 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5453 {
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5455 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5456 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5457 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5458 }
5459 else
5460 {
5461 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5462 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5463 }
5464
5465#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5466 return VINF_SUCCESS;
5467}
5468
5469
5470/**
5471 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5472 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5473 * darwin, running 64-bit guests).
5474 *
5475 * @returns VBox status code.
5476 * @param pVCpu The cross context virtual CPU structure.
5477 * @param idxField The VMCS field encoding.
5478 * @param u64Val 16, 32 or 64-bit value.
5479 */
5480VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5481{
5482 int rc;
5483 switch (idxField)
5484 {
5485 /*
5486 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5487 */
5488 /* 64-bit Control fields. */
5489 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5490 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5491 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5492 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5493 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5494 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5495 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5496 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5497 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
5498 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5499 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5500 case VMX_VMCS64_CTRL_EPTP_FULL:
5501 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5502 /* 64-bit Guest-state fields. */
5503 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5504 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5505 case VMX_VMCS64_GUEST_PAT_FULL:
5506 case VMX_VMCS64_GUEST_EFER_FULL:
5507 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5508 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5509 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5510 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5511 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5512 /* 64-bit Host-state fields. */
5513 case VMX_VMCS64_HOST_PAT_FULL:
5514 case VMX_VMCS64_HOST_EFER_FULL:
5515 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5516 {
5517 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5518 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
5519 break;
5520 }
5521
5522 /*
5523 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5524 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5525 */
5526 /* Natural-width Guest-state fields. */
5527 case VMX_VMCS_GUEST_CR3:
5528 case VMX_VMCS_GUEST_ES_BASE:
5529 case VMX_VMCS_GUEST_CS_BASE:
5530 case VMX_VMCS_GUEST_SS_BASE:
5531 case VMX_VMCS_GUEST_DS_BASE:
5532 case VMX_VMCS_GUEST_FS_BASE:
5533 case VMX_VMCS_GUEST_GS_BASE:
5534 case VMX_VMCS_GUEST_LDTR_BASE:
5535 case VMX_VMCS_GUEST_TR_BASE:
5536 case VMX_VMCS_GUEST_GDTR_BASE:
5537 case VMX_VMCS_GUEST_IDTR_BASE:
5538 case VMX_VMCS_GUEST_RSP:
5539 case VMX_VMCS_GUEST_RIP:
5540 case VMX_VMCS_GUEST_SYSENTER_ESP:
5541 case VMX_VMCS_GUEST_SYSENTER_EIP:
5542 {
5543 if (!(RT_HI_U32(u64Val)))
5544 {
5545 /* If this field is 64-bit, VT-x will zero out the top bits. */
5546 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5547 }
5548 else
5549 {
5550 /* Assert that only the 32->64 switcher case should ever come here. */
5551 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5552 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5553 }
5554 break;
5555 }
5556
5557 default:
5558 {
5559 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5560 rc = VERR_INVALID_PARAMETER;
5561 break;
5562 }
5563 }
5564 AssertRCReturn(rc, rc);
5565 return rc;
5566}
5567
5568
5569/**
5570 * Queue up a VMWRITE by using the VMCS write cache.
5571 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5572 *
5573 * @param pVCpu The cross context virtual CPU structure.
5574 * @param idxField The VMCS field encoding.
5575 * @param u64Val 16, 32 or 64-bit value.
5576 */
5577VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5578{
5579 AssertPtr(pVCpu);
5580 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5581
5582 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5583 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5584
5585 /* Make sure there are no duplicates. */
5586 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5587 {
5588 if (pCache->Write.aField[i] == idxField)
5589 {
5590 pCache->Write.aFieldVal[i] = u64Val;
5591 return VINF_SUCCESS;
5592 }
5593 }
5594
5595 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5596 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5597 pCache->Write.cValidEntries++;
5598 return VINF_SUCCESS;
5599}
5600#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5601
5602
5603/**
5604 * Sets up the usage of TSC-offsetting and updates the VMCS.
5605 *
5606 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5607 * VMX preemption timer.
5608 *
5609 * @returns VBox status code.
5610 * @param pVCpu The cross context virtual CPU structure.
5611 *
5612 * @remarks No-long-jump zone!!!
5613 */
5614static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5615{
5616 bool fOffsettedTsc;
5617 bool fParavirtTsc;
5618 PVM pVM = pVCpu->CTX_SUFF(pVM);
5619 uint64_t uTscOffset;
5620 if (pVM->hm.s.vmx.fUsePreemptTimer)
5621 {
5622 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
5623
5624 /* Make sure the returned values have sane upper and lower boundaries. */
5625 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5626 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5627 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5628 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5629
5630 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5631 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
5632 AssertRC(rc);
5633 }
5634 else
5635 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
5636
5637 if (fParavirtTsc)
5638 {
5639 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5640 information before every VM-entry, hence disable it for performance sake. */
5641#if 0
5642 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5643 AssertRC(rc);
5644#endif
5645 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5646 }
5647
5648 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
5649 if ( fOffsettedTsc
5650 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5651 {
5652 if (pVCpu->hm.s.vmx.u64TscOffset != uTscOffset)
5653 {
5654 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
5655 AssertRC(rc);
5656 pVCpu->hm.s.vmx.u64TscOffset = uTscOffset;
5657 }
5658
5659 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
5660 {
5661 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
5662 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5663 AssertRC(rc);
5664 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5665 }
5666 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5667 }
5668 else
5669 {
5670 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5671 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
5672 {
5673 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
5674 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5675 AssertRC(rc);
5676 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5677 }
5678 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5679 }
5680}
5681
5682
5683/**
5684 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5685 * VM-exit interruption info type.
5686 *
5687 * @returns The IEM exception flags.
5688 * @param uVector The event vector.
5689 * @param uVmxVectorType The VMX event type.
5690 *
5691 * @remarks This function currently only constructs flags required for
5692 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5693 * and CR2 aspects of an exception are not included).
5694 */
5695static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5696{
5697 uint32_t fIemXcptFlags;
5698 switch (uVmxVectorType)
5699 {
5700 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5701 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5702 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5703 break;
5704
5705 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5706 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5707 break;
5708
5709 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5710 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5711 break;
5712
5713 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5714 {
5715 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5716 if (uVector == X86_XCPT_BP)
5717 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5718 else if (uVector == X86_XCPT_OF)
5719 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5720 else
5721 {
5722 fIemXcptFlags = 0;
5723 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5724 }
5725 break;
5726 }
5727
5728 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5729 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5730 break;
5731
5732 default:
5733 fIemXcptFlags = 0;
5734 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5735 break;
5736 }
5737 return fIemXcptFlags;
5738}
5739
5740
5741/**
5742 * Sets an event as a pending event to be injected into the guest.
5743 *
5744 * @param pVCpu The cross context virtual CPU structure.
5745 * @param u32IntInfo The VM-entry interruption-information field.
5746 * @param cbInstr The VM-entry instruction length in bytes (for software
5747 * interrupts, exceptions and privileged software
5748 * exceptions).
5749 * @param u32ErrCode The VM-entry exception error code.
5750 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5751 * page-fault.
5752 *
5753 * @remarks Statistics counter assumes this is a guest event being injected or
5754 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5755 * always incremented.
5756 */
5757DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5758 RTGCUINTPTR GCPtrFaultAddress)
5759{
5760 Assert(!pVCpu->hm.s.Event.fPending);
5761 pVCpu->hm.s.Event.fPending = true;
5762 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5763 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5764 pVCpu->hm.s.Event.cbInstr = cbInstr;
5765 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5766}
5767
5768
5769/**
5770 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5771 *
5772 * @param pVCpu The cross context virtual CPU structure.
5773 */
5774DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
5775{
5776 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
5777 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5778 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5779 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5780 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5781}
5782
5783
5784/**
5785 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
5786 *
5787 * @param pVCpu The cross context virtual CPU structure.
5788 */
5789DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
5790{
5791 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
5792 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5793 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5794 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5795 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5796}
5797
5798
5799/**
5800 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
5801 *
5802 * @param pVCpu The cross context virtual CPU structure.
5803 */
5804DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
5805{
5806 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
5807 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5808 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5809 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5810 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5811}
5812
5813
5814/**
5815 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
5816 *
5817 * @param pVCpu The cross context virtual CPU structure.
5818 * @param cbInstr The value of RIP that is to be pushed on the guest
5819 * stack.
5820 */
5821DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, uint32_t cbInstr)
5822{
5823 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_OF)
5824 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_SW_INT)
5825 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5826 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5827 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5828}
5829
5830
5831#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5832/**
5833 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
5834 *
5835 * @param pVCpu The cross context virtual CPU structure.
5836 * @param u32ErrCode The error code for the general-protection exception.
5837 */
5838DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
5839{
5840 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
5841 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5842 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5843 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5844 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5845}
5846
5847
5848/**
5849 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
5850 *
5851 * @param pVCpu The cross context virtual CPU structure.
5852 * @param u32ErrCode The error code for the stack exception.
5853 */
5854DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
5855{
5856 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
5857 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5858 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5859 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5860 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5861}
5862
5863
5864/**
5865 * Decodes the memory operand of a VM-exit due to instruction execution.
5866 *
5867 * For instructions with two operands, the second operand is usually found in the
5868 * VM-exit qualification field.
5869 *
5870 * @returns Strict VBox status code (i.e. informational status codes too).
5871 * @retval VINF_SUCCESS if the operand was successfully decoded.
5872 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
5873 * operand.
5874 * @param pVCpu The cross context virtual CPU structure.
5875 * @param pExitInstrInfo Pointer to the VM-exit instruction information.
5876 * @param fIsWrite Whether the operand is a destination memory operand
5877 * (i.e. writeable memory location) or not.
5878 * @param GCPtrDisp The instruction displacement field, if any. For
5879 * RIP-relative addressing pass RIP + displacement here.
5880 * @param pGCPtrMem Where to store the destination memory operand.
5881 */
5882static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, PCVMXEXITINSTRINFO pExitInstrInfo, RTGCPTR GCPtrDisp, bool fIsWrite,
5883 PRTGCPTR pGCPtrMem)
5884{
5885 Assert(pExitInstrInfo);
5886 Assert(pGCPtrMem);
5887 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
5888
5889 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
5890 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
5891 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
5892
5893 uint8_t const uAddrSize = pExitInstrInfo->InvVmxXsaves.u3AddrSize;
5894 uint8_t const iSegReg = pExitInstrInfo->InvVmxXsaves.iSegReg;
5895 bool const fIdxRegValid = !pExitInstrInfo->InvVmxXsaves.fIdxRegInvalid;
5896 uint8_t const iIdxReg = pExitInstrInfo->InvVmxXsaves.iIdxReg;
5897 uint8_t const uScale = pExitInstrInfo->InvVmxXsaves.u2Scaling;
5898 bool const fBaseRegValid = !pExitInstrInfo->InvVmxXsaves.fBaseRegInvalid;
5899 uint8_t const iBaseReg = pExitInstrInfo->InvVmxXsaves.iBaseReg;
5900 bool const fIsMemOperand = !pExitInstrInfo->InvVmxXsaves.fIsRegOperand;
5901 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
5902
5903 /*
5904 * Validate instruction information.
5905 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
5906 */
5907 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
5908 ("Invalid address size. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_1);
5909 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
5910 ("Invalid segment register. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_2);
5911 AssertLogRelMsgReturn(fIsMemOperand,
5912 ("Expected memory operand. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_3);
5913
5914 /*
5915 * Compute the complete effective address.
5916 *
5917 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
5918 * See AMD spec. 4.5.2 "Segment Registers".
5919 */
5920 RTGCPTR GCPtrMem = GCPtrDisp;
5921 if (fBaseRegValid)
5922 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
5923 if (fIdxRegValid)
5924 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
5925
5926 RTGCPTR const GCPtrOff = GCPtrMem;
5927 if ( !fIsLongMode
5928 || iSegReg >= X86_SREG_FS)
5929 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
5930 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
5931
5932 /*
5933 * Validate effective address.
5934 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
5935 */
5936 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
5937 Assert(cbAccess > 0);
5938 if (fIsLongMode)
5939 {
5940 if (X86_IS_CANONICAL(GCPtrMem))
5941 {
5942 *pGCPtrMem = GCPtrMem;
5943 return VINF_SUCCESS;
5944 }
5945
5946 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
5947 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5948 return VINF_HM_PENDING_XCPT;
5949 }
5950
5951 /*
5952 * This is a watered down version of iemMemApplySegment().
5953 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
5954 * and segment CPL/DPL checks are skipped.
5955 */
5956 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
5957 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
5958 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
5959
5960 /* Check if the segment is present and usable. */
5961 if ( pSel->Attr.n.u1Present
5962 && !pSel->Attr.n.u1Unusable)
5963 {
5964 Assert(pSel->Attr.n.u1DescType);
5965 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
5966 {
5967 /* Check permissions for the data segment. */
5968 if ( fIsWrite
5969 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
5970 {
5971 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
5972 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
5973 return VINF_HM_PENDING_XCPT;
5974 }
5975
5976 /* Check limits if it's a normal data segment. */
5977 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
5978 {
5979 if ( GCPtrFirst32 > pSel->u32Limit
5980 || GCPtrLast32 > pSel->u32Limit)
5981 {
5982 Log4Func(("Data segment limit exceeded."
5983 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
5984 GCPtrLast32, pSel->u32Limit));
5985 if (iSegReg == X86_SREG_SS)
5986 hmR0VmxSetPendingXcptSS(pVCpu, 0);
5987 else
5988 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5989 return VINF_HM_PENDING_XCPT;
5990 }
5991 }
5992 else
5993 {
5994 /* Check limits if it's an expand-down data segment.
5995 Note! The upper boundary is defined by the B bit, not the G bit! */
5996 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
5997 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
5998 {
5999 Log4Func(("Expand-down data segment limit exceeded."
6000 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6001 GCPtrLast32, pSel->u32Limit));
6002 if (iSegReg == X86_SREG_SS)
6003 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6004 else
6005 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6006 return VINF_HM_PENDING_XCPT;
6007 }
6008 }
6009 }
6010 else
6011 {
6012 /* Check permissions for the code segment. */
6013 if ( fIsWrite
6014 || !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ))
6015 {
6016 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6017 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6018 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6019 return VINF_HM_PENDING_XCPT;
6020 }
6021
6022 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6023 if ( GCPtrFirst32 > pSel->u32Limit
6024 || GCPtrLast32 > pSel->u32Limit)
6025 {
6026 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6027 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6028 if (iSegReg == X86_SREG_SS)
6029 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6030 else
6031 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6032 return VINF_HM_PENDING_XCPT;
6033 }
6034 }
6035 }
6036 else
6037 {
6038 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6039 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6040 return VINF_HM_PENDING_XCPT;
6041 }
6042
6043 *pGCPtrMem = GCPtrMem;
6044 return VINF_SUCCESS;
6045}
6046
6047
6048/**
6049 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6050 * guest attempting to execute a VMX instruction.
6051 *
6052 * @returns Strict VBox status code (i.e. informational status codes too).
6053 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6054 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6055 *
6056 * @param pVCpu The cross context virtual CPU structure.
6057 * @param pVmxTransient Pointer to the VMX transient structure.
6058 *
6059 * @todo NstVmx: Document other error codes when VM-exit is implemented.
6060 * @remarks No-long-jump zone!!!
6061 */
6062static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6063{
6064 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6065 | CPUMCTX_EXTRN_HWVIRT);
6066
6067 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6068 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6069 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6070 {
6071 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6072 hmR0VmxSetPendingXcptUD(pVCpu);
6073 return VINF_HM_PENDING_XCPT;
6074 }
6075
6076 if (pVmxTransient->uExitReason == VMX_EXIT_VMXON)
6077 {
6078 /*
6079 * We check CR4.VMXE because it is required to be always set while in VMX operation
6080 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6081 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6082 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6083 */
6084 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6085 {
6086 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6087 hmR0VmxSetPendingXcptUD(pVCpu);
6088 return VINF_HM_PENDING_XCPT;
6089 }
6090 }
6091 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6092 {
6093 /*
6094 * The guest has not entered VMX operation but attempted to execute a VMX instruction
6095 * (other than VMXON), we need to raise a #UD.
6096 */
6097 Log4Func(("Not in VMX root mode -> #UD\n"));
6098 hmR0VmxSetPendingXcptUD(pVCpu);
6099 return VINF_HM_PENDING_XCPT;
6100 }
6101
6102 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
6103 {
6104 /*
6105 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
6106 * the guest hypervisor deal with it.
6107 */
6108 /** @todo NSTVMX: Trigger a VM-exit */
6109 }
6110
6111 /*
6112 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
6113 * (above) takes preceedence over the CPL check.
6114 */
6115 if (CPUMGetGuestCPL(pVCpu) > 0)
6116 {
6117 Log4Func(("CPL > 0 -> #GP(0)\n"));
6118 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6119 return VINF_HM_PENDING_XCPT;
6120 }
6121
6122 return VINF_SUCCESS;
6123}
6124
6125#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
6126
6127
6128/**
6129 * Handle a condition that occurred while delivering an event through the guest
6130 * IDT.
6131 *
6132 * @returns Strict VBox status code (i.e. informational status codes too).
6133 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6134 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
6135 * to continue execution of the guest which will delivery the \#DF.
6136 * @retval VINF_EM_RESET if we detected a triple-fault condition.
6137 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
6138 *
6139 * @param pVCpu The cross context virtual CPU structure.
6140 * @param pVmxTransient Pointer to the VMX transient structure.
6141 *
6142 * @remarks No-long-jump zone!!!
6143 */
6144static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6145{
6146 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
6147
6148 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
6149 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
6150 AssertRCReturn(rc2, rc2);
6151
6152 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
6153 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6154 {
6155 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
6156 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
6157
6158 /*
6159 * If the event was a software interrupt (generated with INT n) or a software exception
6160 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
6161 * can handle the VM-exit and continue guest execution which will re-execute the
6162 * instruction rather than re-injecting the exception, as that can cause premature
6163 * trips to ring-3 before injection and involve TRPM which currently has no way of
6164 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
6165 * the problem).
6166 */
6167 IEMXCPTRAISE enmRaise;
6168 IEMXCPTRAISEINFO fRaiseInfo;
6169 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6170 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6171 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6172 {
6173 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
6174 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6175 }
6176 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6177 {
6178 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
6179 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
6180 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
6181 /** @todo Make AssertMsgReturn as just AssertMsg later. */
6182 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
6183 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
6184 uExitVectorType), VERR_VMX_IPE_5);
6185
6186 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
6187
6188 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
6189 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
6190 {
6191 pVmxTransient->fVectoringPF = true;
6192 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6193 }
6194 }
6195 else
6196 {
6197 /*
6198 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
6199 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
6200 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
6201 */
6202 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6203 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6204 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
6205 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6206 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6207 }
6208
6209 /*
6210 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
6211 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
6212 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
6213 * subsequent VM-entry would fail.
6214 *
6215 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6216 */
6217 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
6218 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6219 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
6220 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
6221 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6222 {
6223 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6224 }
6225
6226 switch (enmRaise)
6227 {
6228 case IEMXCPTRAISE_CURRENT_XCPT:
6229 {
6230 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
6231 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
6232 Assert(rcStrict == VINF_SUCCESS);
6233 break;
6234 }
6235
6236 case IEMXCPTRAISE_PREV_EVENT:
6237 {
6238 uint32_t u32ErrCode;
6239 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
6240 {
6241 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6242 AssertRCReturn(rc2, rc2);
6243 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6244 }
6245 else
6246 u32ErrCode = 0;
6247
6248 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
6249 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6250 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6251 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
6252
6253 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
6254 pVCpu->hm.s.Event.u32ErrCode));
6255 Assert(rcStrict == VINF_SUCCESS);
6256 break;
6257 }
6258
6259 case IEMXCPTRAISE_REEXEC_INSTR:
6260 Assert(rcStrict == VINF_SUCCESS);
6261 break;
6262
6263 case IEMXCPTRAISE_DOUBLE_FAULT:
6264 {
6265 /*
6266 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6267 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6268 */
6269 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6270 {
6271 pVmxTransient->fVectoringDoublePF = true;
6272 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
6273 pVCpu->cpum.GstCtx.cr2));
6274 rcStrict = VINF_SUCCESS;
6275 }
6276 else
6277 {
6278 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6279 hmR0VmxSetPendingXcptDF(pVCpu);
6280 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
6281 uIdtVector, uExitVector));
6282 rcStrict = VINF_HM_DOUBLE_FAULT;
6283 }
6284 break;
6285 }
6286
6287 case IEMXCPTRAISE_TRIPLE_FAULT:
6288 {
6289 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
6290 rcStrict = VINF_EM_RESET;
6291 break;
6292 }
6293
6294 case IEMXCPTRAISE_CPU_HANG:
6295 {
6296 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
6297 rcStrict = VERR_EM_GUEST_CPU_HANG;
6298 break;
6299 }
6300
6301 default:
6302 {
6303 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6304 rcStrict = VERR_VMX_IPE_2;
6305 break;
6306 }
6307 }
6308 }
6309 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6310 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6311 && uExitVector != X86_XCPT_DF
6312 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6313 {
6314 /*
6315 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6316 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6317 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6318 */
6319 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6320 {
6321 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
6322 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6323 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6324 }
6325 }
6326
6327 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6328 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6329 return rcStrict;
6330}
6331
6332
6333/**
6334 * Imports a guest segment register from the current VMCS into
6335 * the guest-CPU context.
6336 *
6337 * @returns VBox status code.
6338 * @param pVCpu The cross context virtual CPU structure.
6339 * @param idxSel Index of the selector in the VMCS.
6340 * @param idxLimit Index of the segment limit in the VMCS.
6341 * @param idxBase Index of the segment base in the VMCS.
6342 * @param idxAccess Index of the access rights of the segment in the VMCS.
6343 * @param pSelReg Pointer to the segment selector.
6344 *
6345 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6346 * do not log!
6347 *
6348 * @remarks Never call this function directly!!! Use the
6349 * HMVMX_IMPORT_SREG() macro as that takes care
6350 * of whether to read from the VMCS cache or not.
6351 */
6352static int hmR0VmxImportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6353 PCPUMSELREG pSelReg)
6354{
6355 NOREF(pVCpu);
6356
6357 uint32_t u32Sel;
6358 uint32_t u32Limit;
6359 uint32_t u32Attr;
6360 uint64_t u64Base;
6361 int rc = VMXReadVmcs32(idxSel, &u32Sel);
6362 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
6363 rc |= VMXReadVmcs32(idxAccess, &u32Attr);
6364 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
6365 AssertRCReturn(rc, rc);
6366
6367 pSelReg->Sel = (uint16_t)u32Sel;
6368 pSelReg->ValidSel = (uint16_t)u32Sel;
6369 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6370 pSelReg->u32Limit = u32Limit;
6371 pSelReg->u64Base = u64Base;
6372 pSelReg->Attr.u = u32Attr;
6373
6374 /*
6375 * If VT-x marks the segment as unusable, most other bits remain undefined:
6376 * - For CS the L, D and G bits have meaning.
6377 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6378 * - For the remaining data segments no bits are defined.
6379 *
6380 * The present bit and the unusable bit has been observed to be set at the
6381 * same time (the selector was supposed to be invalid as we started executing
6382 * a V8086 interrupt in ring-0).
6383 *
6384 * What should be important for the rest of the VBox code, is that the P bit is
6385 * cleared. Some of the other VBox code recognizes the unusable bit, but
6386 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6387 * safe side here, we'll strip off P and other bits we don't care about. If
6388 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6389 *
6390 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6391 */
6392 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6393 {
6394 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6395
6396 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6397 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6398 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6399#ifdef VBOX_STRICT
6400 VMMRZCallRing3Disable(pVCpu);
6401 Log4Func(("Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Sel, pSelReg->Attr.u));
6402# ifdef DEBUG_bird
6403 AssertMsg((u32Attr & ~X86DESCATTR_P) == pSelReg->Attr.u,
6404 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6405 idxSel, u32Sel, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6406# endif
6407 VMMRZCallRing3Enable(pVCpu);
6408#endif
6409 }
6410 return VINF_SUCCESS;
6411}
6412
6413
6414/**
6415 * Imports the guest RIP from the VMCS back into the guest-CPU context.
6416 *
6417 * @returns VBox status code.
6418 * @param pVCpu The cross context virtual CPU structure.
6419 *
6420 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6421 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6422 * instead!!!
6423 */
6424DECLINLINE(int) hmR0VmxImportGuestRip(PVMCPU pVCpu)
6425{
6426 uint64_t u64Val;
6427 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6428 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
6429 {
6430 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6431 if (RT_SUCCESS(rc))
6432 {
6433 pCtx->rip = u64Val;
6434 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
6435 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
6436 }
6437 return rc;
6438 }
6439 return VINF_SUCCESS;
6440}
6441
6442
6443/**
6444 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
6445 *
6446 * @returns VBox status code.
6447 * @param pVCpu The cross context virtual CPU structure.
6448 *
6449 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6450 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6451 * instead!!!
6452 */
6453DECLINLINE(int) hmR0VmxImportGuestRFlags(PVMCPU pVCpu)
6454{
6455 uint32_t u32Val;
6456 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6457 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
6458 {
6459 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
6460 if (RT_SUCCESS(rc))
6461 {
6462 pCtx->eflags.u32 = u32Val;
6463
6464 /* Restore eflags for real-on-v86-mode hack. */
6465 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6466 {
6467 pCtx->eflags.Bits.u1VM = 0;
6468 pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6469 }
6470 }
6471 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
6472 return rc;
6473 }
6474 return VINF_SUCCESS;
6475}
6476
6477
6478/**
6479 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
6480 * context.
6481 *
6482 * @returns VBox status code.
6483 * @param pVCpu The cross context virtual CPU structure.
6484 *
6485 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6486 * do not log!
6487 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6488 * instead!!!
6489 */
6490DECLINLINE(int) hmR0VmxImportGuestIntrState(PVMCPU pVCpu)
6491{
6492 uint32_t u32Val;
6493 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6494 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
6495 if (RT_SUCCESS(rc))
6496 {
6497 /*
6498 * We additionally have a requirement to import RIP, RFLAGS depending on whether we
6499 * might need them in hmR0VmxEvaluatePendingEvent().
6500 */
6501 if (!u32Val)
6502 {
6503 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6504 {
6505 rc = hmR0VmxImportGuestRip(pVCpu);
6506 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6507 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6508 }
6509
6510 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6511 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6512 }
6513 else
6514 {
6515 rc = hmR0VmxImportGuestRip(pVCpu);
6516 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6517
6518 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
6519 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
6520 {
6521 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
6522 }
6523 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6524 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6525
6526 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6527 {
6528 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6529 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6530 }
6531 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6532 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6533 }
6534 }
6535 return rc;
6536}
6537
6538
6539/**
6540 * Worker for VMXR0ImportStateOnDemand.
6541 *
6542 * @returns VBox status code.
6543 * @param pVCpu The cross context virtual CPU structure.
6544 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6545 */
6546static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
6547{
6548#define VMXLOCAL_BREAK_RC(a_rc) \
6549 if (RT_FAILURE(a_rc)) \
6550 break
6551
6552 int rc = VINF_SUCCESS;
6553 PVM pVM = pVCpu->CTX_SUFF(pVM);
6554 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6555 uint64_t u64Val;
6556 uint32_t u32Val;
6557
6558 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
6559 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
6560
6561 /*
6562 * We disable interrupts to make the updating of the state and in particular
6563 * the fExtrn modification atomic wrt to preemption hooks.
6564 */
6565 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
6566
6567 fWhat &= pCtx->fExtrn;
6568 if (fWhat)
6569 {
6570 do
6571 {
6572 if (fWhat & CPUMCTX_EXTRN_RIP)
6573 {
6574 rc = hmR0VmxImportGuestRip(pVCpu);
6575 VMXLOCAL_BREAK_RC(rc);
6576 }
6577
6578 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
6579 {
6580 rc = hmR0VmxImportGuestRFlags(pVCpu);
6581 VMXLOCAL_BREAK_RC(rc);
6582 }
6583
6584 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
6585 {
6586 rc = hmR0VmxImportGuestIntrState(pVCpu);
6587 VMXLOCAL_BREAK_RC(rc);
6588 }
6589
6590 if (fWhat & CPUMCTX_EXTRN_RSP)
6591 {
6592 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6593 VMXLOCAL_BREAK_RC(rc);
6594 pCtx->rsp = u64Val;
6595 }
6596
6597 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
6598 {
6599 if (fWhat & CPUMCTX_EXTRN_CS)
6600 {
6601 rc = HMVMX_IMPORT_SREG(CS, &pCtx->cs);
6602 rc |= hmR0VmxImportGuestRip(pVCpu);
6603 VMXLOCAL_BREAK_RC(rc);
6604 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6605 pCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6606 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true);
6607 }
6608 if (fWhat & CPUMCTX_EXTRN_SS)
6609 {
6610 rc = HMVMX_IMPORT_SREG(SS, &pCtx->ss);
6611 VMXLOCAL_BREAK_RC(rc);
6612 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6613 pCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6614 }
6615 if (fWhat & CPUMCTX_EXTRN_DS)
6616 {
6617 rc = HMVMX_IMPORT_SREG(DS, &pCtx->ds);
6618 VMXLOCAL_BREAK_RC(rc);
6619 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6620 pCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6621 }
6622 if (fWhat & CPUMCTX_EXTRN_ES)
6623 {
6624 rc = HMVMX_IMPORT_SREG(ES, &pCtx->es);
6625 VMXLOCAL_BREAK_RC(rc);
6626 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6627 pCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6628 }
6629 if (fWhat & CPUMCTX_EXTRN_FS)
6630 {
6631 rc = HMVMX_IMPORT_SREG(FS, &pCtx->fs);
6632 VMXLOCAL_BREAK_RC(rc);
6633 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6634 pCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6635 }
6636 if (fWhat & CPUMCTX_EXTRN_GS)
6637 {
6638 rc = HMVMX_IMPORT_SREG(GS, &pCtx->gs);
6639 VMXLOCAL_BREAK_RC(rc);
6640 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6641 pCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6642 }
6643 }
6644
6645 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
6646 {
6647 if (fWhat & CPUMCTX_EXTRN_LDTR)
6648 {
6649 rc = HMVMX_IMPORT_SREG(LDTR, &pCtx->ldtr);
6650 VMXLOCAL_BREAK_RC(rc);
6651 }
6652
6653 if (fWhat & CPUMCTX_EXTRN_GDTR)
6654 {
6655 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6656 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
6657 VMXLOCAL_BREAK_RC(rc);
6658 pCtx->gdtr.pGdt = u64Val;
6659 pCtx->gdtr.cbGdt = u32Val;
6660 }
6661
6662 /* Guest IDTR. */
6663 if (fWhat & CPUMCTX_EXTRN_IDTR)
6664 {
6665 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6666 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
6667 VMXLOCAL_BREAK_RC(rc);
6668 pCtx->idtr.pIdt = u64Val;
6669 pCtx->idtr.cbIdt = u32Val;
6670 }
6671
6672 /* Guest TR. */
6673 if (fWhat & CPUMCTX_EXTRN_TR)
6674 {
6675 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, don't save that one. */
6676 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6677 {
6678 rc = HMVMX_IMPORT_SREG(TR, &pCtx->tr);
6679 VMXLOCAL_BREAK_RC(rc);
6680 }
6681 }
6682 }
6683
6684 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
6685 {
6686 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
6687 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
6688 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
6689 pCtx->SysEnter.cs = u32Val;
6690 VMXLOCAL_BREAK_RC(rc);
6691 }
6692
6693#if HC_ARCH_BITS == 64
6694 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
6695 {
6696 if ( pVM->hm.s.fAllow64BitGuests
6697 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6698 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
6699 }
6700
6701 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
6702 {
6703 if ( pVM->hm.s.fAllow64BitGuests
6704 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6705 {
6706 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
6707 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
6708 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
6709 }
6710 }
6711#endif
6712
6713 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
6714#if HC_ARCH_BITS == 32
6715 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
6716#endif
6717 )
6718 {
6719 PCVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6720 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
6721 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6722 {
6723 switch (pMsr->u32Msr)
6724 {
6725#if HC_ARCH_BITS == 32
6726 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
6727 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
6728 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
6729 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6730#endif
6731 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
6732 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
6733 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit */ break;
6734 default:
6735 {
6736 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6737 ASMSetFlags(fEFlags);
6738 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
6739 cMsrs));
6740 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6741 }
6742 }
6743 }
6744 }
6745
6746 if (fWhat & CPUMCTX_EXTRN_DR7)
6747 {
6748 if (!pVCpu->hm.s.fUsingHyperDR7)
6749 {
6750 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6751 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
6752 VMXLOCAL_BREAK_RC(rc);
6753 pCtx->dr[7] = u32Val;
6754 }
6755 }
6756
6757 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
6758 {
6759 uint32_t u32Shadow;
6760 if (fWhat & CPUMCTX_EXTRN_CR0)
6761 {
6762 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
6763 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
6764 VMXLOCAL_BREAK_RC(rc);
6765 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr0Mask)
6766 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr0Mask);
6767 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
6768 CPUMSetGuestCR0(pVCpu, u32Val);
6769 VMMRZCallRing3Enable(pVCpu);
6770 }
6771
6772 if (fWhat & CPUMCTX_EXTRN_CR4)
6773 {
6774 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
6775 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
6776 VMXLOCAL_BREAK_RC(rc);
6777 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr4Mask)
6778 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr4Mask);
6779 CPUMSetGuestCR4(pVCpu, u32Val);
6780 }
6781
6782 if (fWhat & CPUMCTX_EXTRN_CR3)
6783 {
6784 /* CR0.PG bit changes are always intercepted, so it's up to date. */
6785 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6786 || ( pVM->hm.s.fNestedPaging
6787 && CPUMIsGuestPagingEnabledEx(pCtx)))
6788 {
6789 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6790 if (pCtx->cr3 != u64Val)
6791 {
6792 CPUMSetGuestCR3(pVCpu, u64Val);
6793 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6794 }
6795
6796 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
6797 Note: CR4.PAE, CR0.PG, EFER bit changes are always intercepted, so they're up to date. */
6798 if (CPUMIsGuestInPAEModeEx(pCtx))
6799 {
6800 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6801 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6802 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6803 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6804 VMXLOCAL_BREAK_RC(rc);
6805 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6806 }
6807 }
6808 }
6809 }
6810 } while (0);
6811
6812 if (RT_SUCCESS(rc))
6813 {
6814 /* Update fExtrn. */
6815 pCtx->fExtrn &= ~fWhat;
6816
6817 /* If everything has been imported, clear the HM keeper bit. */
6818 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
6819 {
6820 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
6821 Assert(!pCtx->fExtrn);
6822 }
6823 }
6824 }
6825 else
6826 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
6827
6828 ASMSetFlags(fEFlags);
6829
6830 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
6831
6832 /*
6833 * Honor any pending CR3 updates.
6834 *
6835 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6836 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6837 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
6838 *
6839 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6840 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6841 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6842 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
6843 *
6844 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6845 */
6846 if (VMMRZCallRing3IsEnabled(pVCpu))
6847 {
6848 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6849 {
6850 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
6851 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6852 }
6853
6854 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6855 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6856
6857 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6858 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6859 }
6860
6861 return VINF_SUCCESS;
6862#undef VMXLOCAL_BREAK_RC
6863}
6864
6865
6866/**
6867 * Saves the guest state from the VMCS into the guest-CPU context.
6868 *
6869 * @returns VBox status code.
6870 * @param pVCpu The cross context virtual CPU structure.
6871 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6872 */
6873VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
6874{
6875 return hmR0VmxImportGuestState(pVCpu, fWhat);
6876}
6877
6878
6879/**
6880 * Check per-VM and per-VCPU force flag actions that require us to go back to
6881 * ring-3 for one reason or another.
6882 *
6883 * @returns Strict VBox status code (i.e. informational status codes too)
6884 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6885 * ring-3.
6886 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6887 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6888 * interrupts)
6889 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6890 * all EMTs to be in ring-3.
6891 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6892 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6893 * to the EM loop.
6894 *
6895 * @param pVCpu The cross context virtual CPU structure.
6896 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6897 */
6898static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
6899{
6900 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6901
6902 /*
6903 * Anything pending? Should be more likely than not if we're doing a good job.
6904 */
6905 PVM pVM = pVCpu->CTX_SUFF(pVM);
6906 if ( !fStepping
6907 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6908 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6909 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6910 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6911 return VINF_SUCCESS;
6912
6913 /* Pending PGM C3 sync. */
6914 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6915 {
6916 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6917 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
6918 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
6919 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6920 if (rcStrict2 != VINF_SUCCESS)
6921 {
6922 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6923 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6924 return rcStrict2;
6925 }
6926 }
6927
6928 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6929 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6930 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6931 {
6932 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6933 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6934 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6935 return rc2;
6936 }
6937
6938 /* Pending VM request packets, such as hardware interrupts. */
6939 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6940 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6941 {
6942 Log4Func(("Pending VM request forcing us back to ring-3\n"));
6943 return VINF_EM_PENDING_REQUEST;
6944 }
6945
6946 /* Pending PGM pool flushes. */
6947 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6948 {
6949 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
6950 return VINF_PGM_POOL_FLUSH_PENDING;
6951 }
6952
6953 /* Pending DMA requests. */
6954 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6955 {
6956 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
6957 return VINF_EM_RAW_TO_R3;
6958 }
6959
6960 return VINF_SUCCESS;
6961}
6962
6963
6964/**
6965 * Converts any TRPM trap into a pending HM event. This is typically used when
6966 * entering from ring-3 (not longjmp returns).
6967 *
6968 * @param pVCpu The cross context virtual CPU structure.
6969 */
6970static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6971{
6972 Assert(TRPMHasTrap(pVCpu));
6973 Assert(!pVCpu->hm.s.Event.fPending);
6974
6975 uint8_t uVector;
6976 TRPMEVENT enmTrpmEvent;
6977 RTGCUINT uErrCode;
6978 RTGCUINTPTR GCPtrFaultAddress;
6979 uint8_t cbInstr;
6980
6981 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6982 AssertRC(rc);
6983
6984 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6985 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
6986 if (enmTrpmEvent == TRPM_TRAP)
6987 {
6988 switch (uVector)
6989 {
6990 case X86_XCPT_NMI:
6991 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6992 break;
6993
6994 case X86_XCPT_BP:
6995 case X86_XCPT_OF:
6996 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6997 break;
6998
6999 case X86_XCPT_PF:
7000 case X86_XCPT_DF:
7001 case X86_XCPT_TS:
7002 case X86_XCPT_NP:
7003 case X86_XCPT_SS:
7004 case X86_XCPT_GP:
7005 case X86_XCPT_AC:
7006 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7007 RT_FALL_THRU();
7008 default:
7009 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7010 break;
7011 }
7012 }
7013 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7014 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7015 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7016 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7017 else
7018 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7019
7020 rc = TRPMResetTrap(pVCpu);
7021 AssertRC(rc);
7022 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7023 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7024
7025 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7026}
7027
7028
7029/**
7030 * Converts the pending HM event into a TRPM trap.
7031 *
7032 * @param pVCpu The cross context virtual CPU structure.
7033 */
7034static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7035{
7036 Assert(pVCpu->hm.s.Event.fPending);
7037
7038 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7039 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7040 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7041 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7042
7043 /* If a trap was already pending, we did something wrong! */
7044 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7045
7046 TRPMEVENT enmTrapType;
7047 switch (uVectorType)
7048 {
7049 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7050 enmTrapType = TRPM_HARDWARE_INT;
7051 break;
7052
7053 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7054 enmTrapType = TRPM_SOFTWARE_INT;
7055 break;
7056
7057 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7058 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7059 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7060 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7061 enmTrapType = TRPM_TRAP;
7062 break;
7063
7064 default:
7065 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7066 enmTrapType = TRPM_32BIT_HACK;
7067 break;
7068 }
7069
7070 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7071
7072 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7073 AssertRC(rc);
7074
7075 if (fErrorCodeValid)
7076 TRPMSetErrorCode(pVCpu, uErrorCode);
7077
7078 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7079 && uVector == X86_XCPT_PF)
7080 {
7081 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7082 }
7083 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7084 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7085 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7086 {
7087 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7088 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7089 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7090 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7091 }
7092
7093 /* Clear any pending events from the VMCS. */
7094 VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7095 VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);
7096
7097 /* We're now done converting the pending event. */
7098 pVCpu->hm.s.Event.fPending = false;
7099}
7100
7101
7102/**
7103 * Does the necessary state syncing before returning to ring-3 for any reason
7104 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7105 *
7106 * @returns VBox status code.
7107 * @param pVCpu The cross context virtual CPU structure.
7108 * @param fImportState Whether to import the guest state from the VMCS back
7109 * to the guest-CPU context.
7110 *
7111 * @remarks No-long-jmp zone!!!
7112 */
7113static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7114{
7115 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7116 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7117
7118 RTCPUID idCpu = RTMpCpuId();
7119 Log4Func(("HostCpuId=%u\n", idCpu));
7120
7121 /*
7122 * !!! IMPORTANT !!!
7123 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7124 */
7125
7126 /* Save the guest state if necessary. */
7127 if (fImportState)
7128 {
7129 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7130 AssertRCReturn(rc, rc);
7131 }
7132
7133 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
7134 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7135 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7136
7137 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
7138#ifdef VBOX_STRICT
7139 if (CPUMIsHyperDebugStateActive(pVCpu))
7140 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
7141#endif
7142 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7143 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7144 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7145
7146#if HC_ARCH_BITS == 64
7147 /* Restore host-state bits that VT-x only restores partially. */
7148 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7149 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7150 {
7151 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7152 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7153 }
7154 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7155#endif
7156
7157 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7158 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7159 {
7160 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
7161 if (!fImportState)
7162 {
7163 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
7164 AssertRCReturn(rc, rc);
7165 }
7166 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7167 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7168 }
7169 else
7170 pVCpu->hm.s.vmx.fLazyMsrs = 0;
7171
7172 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7173 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7174
7175 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7176 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
7177 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
7178 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
7179 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
7180 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7181 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7182 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7183 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7184
7185 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7186
7187 /** @todo This partially defeats the purpose of having preemption hooks.
7188 * The problem is, deregistering the hooks should be moved to a place that
7189 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7190 * context.
7191 */
7192 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7193 {
7194 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7195 AssertRCReturn(rc, rc);
7196
7197 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7198 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7199 }
7200 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7201 NOREF(idCpu);
7202
7203 return VINF_SUCCESS;
7204}
7205
7206
7207/**
7208 * Leaves the VT-x session.
7209 *
7210 * @returns VBox status code.
7211 * @param pVCpu The cross context virtual CPU structure.
7212 *
7213 * @remarks No-long-jmp zone!!!
7214 */
7215static int hmR0VmxLeaveSession(PVMCPU pVCpu)
7216{
7217 HM_DISABLE_PREEMPT(pVCpu);
7218 HMVMX_ASSERT_CPU_SAFE(pVCpu);
7219 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7220 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7221
7222 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7223 and done this from the VMXR0ThreadCtxCallback(). */
7224 if (!pVCpu->hm.s.fLeaveDone)
7225 {
7226 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
7227 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7228 pVCpu->hm.s.fLeaveDone = true;
7229 }
7230 Assert(!pVCpu->cpum.GstCtx.fExtrn);
7231
7232 /*
7233 * !!! IMPORTANT !!!
7234 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7235 */
7236
7237 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7238 /** @todo Deregistering here means we need to VMCLEAR always
7239 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
7240 * for calling VMMR0ThreadCtxHookDisable here! */
7241 VMMR0ThreadCtxHookDisable(pVCpu);
7242
7243 /* Leave HM context. This takes care of local init (term). */
7244 int rc = HMR0LeaveCpu(pVCpu);
7245
7246 HM_RESTORE_PREEMPT();
7247 return rc;
7248}
7249
7250
7251/**
7252 * Does the necessary state syncing before doing a longjmp to ring-3.
7253 *
7254 * @returns VBox status code.
7255 * @param pVCpu The cross context virtual CPU structure.
7256 *
7257 * @remarks No-long-jmp zone!!!
7258 */
7259DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
7260{
7261 return hmR0VmxLeaveSession(pVCpu);
7262}
7263
7264
7265/**
7266 * Take necessary actions before going back to ring-3.
7267 *
7268 * An action requires us to go back to ring-3. This function does the necessary
7269 * steps before we can safely return to ring-3. This is not the same as longjmps
7270 * to ring-3, this is voluntary and prepares the guest so it may continue
7271 * executing outside HM (recompiler/IEM).
7272 *
7273 * @returns VBox status code.
7274 * @param pVCpu The cross context virtual CPU structure.
7275 * @param rcExit The reason for exiting to ring-3. Can be
7276 * VINF_VMM_UNKNOWN_RING3_CALL.
7277 */
7278static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
7279{
7280 Assert(pVCpu);
7281 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7282
7283 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7284 {
7285 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7286 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7287 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7288 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7289 }
7290
7291 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7292 VMMRZCallRing3Disable(pVCpu);
7293 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
7294
7295 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7296 if (pVCpu->hm.s.Event.fPending)
7297 {
7298 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7299 Assert(!pVCpu->hm.s.Event.fPending);
7300 }
7301
7302 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7303 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7304
7305 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7306 and if we're injecting an event we should have a TRPM trap pending. */
7307 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7308#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
7309 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7310#endif
7311
7312 /* Save guest state and restore host state bits. */
7313 int rc = hmR0VmxLeaveSession(pVCpu);
7314 AssertRCReturn(rc, rc);
7315 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7316 /* Thread-context hooks are unregistered at this point!!! */
7317
7318 /* Sync recompiler state. */
7319 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7320 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7321 | CPUM_CHANGED_LDTR
7322 | CPUM_CHANGED_GDTR
7323 | CPUM_CHANGED_IDTR
7324 | CPUM_CHANGED_TR
7325 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7326 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
7327 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
7328 {
7329 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7330 }
7331
7332 Assert(!pVCpu->hm.s.fClearTrapFlag);
7333
7334 /* Update the exit-to-ring 3 reason. */
7335 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
7336
7337 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7338 if (rcExit != VINF_EM_RAW_INTERRUPT)
7339 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7340
7341 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7342
7343 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7344 VMMRZCallRing3RemoveNotification(pVCpu);
7345 VMMRZCallRing3Enable(pVCpu);
7346
7347 return rc;
7348}
7349
7350
7351/**
7352 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7353 * longjump to ring-3 and possibly get preempted.
7354 *
7355 * @returns VBox status code.
7356 * @param pVCpu The cross context virtual CPU structure.
7357 * @param enmOperation The operation causing the ring-3 longjump.
7358 * @param pvUser User argument, currently unused, NULL.
7359 */
7360static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7361{
7362 RT_NOREF(pvUser);
7363 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7364 {
7365 /*
7366 * !!! IMPORTANT !!!
7367 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7368 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7369 */
7370 VMMRZCallRing3RemoveNotification(pVCpu);
7371 VMMRZCallRing3Disable(pVCpu);
7372 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7373 RTThreadPreemptDisable(&PreemptState);
7374
7375 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7376 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7377 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7378
7379#if HC_ARCH_BITS == 64
7380 /* Restore host-state bits that VT-x only restores partially. */
7381 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7382 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7383 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7384 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7385#endif
7386
7387 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7388 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7389 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7390
7391 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7392 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7393 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7394 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7395 {
7396 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7397 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7398 }
7399
7400 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7401 VMMR0ThreadCtxHookDisable(pVCpu);
7402 HMR0LeaveCpu(pVCpu);
7403 RTThreadPreemptRestore(&PreemptState);
7404 return VINF_SUCCESS;
7405 }
7406
7407 Assert(pVCpu);
7408 Assert(pvUser);
7409 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7410 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7411
7412 VMMRZCallRing3Disable(pVCpu);
7413 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7414
7415 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
7416
7417 int rc = hmR0VmxLongJmpToRing3(pVCpu);
7418 AssertRCReturn(rc, rc);
7419
7420 VMMRZCallRing3Enable(pVCpu);
7421 return VINF_SUCCESS;
7422}
7423
7424
7425/**
7426 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7427 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7428 *
7429 * @param pVCpu The cross context virtual CPU structure.
7430 */
7431DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7432{
7433 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7434 {
7435 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7436 {
7437 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7438 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7439 AssertRC(rc);
7440 Log4Func(("Setup interrupt-window exiting\n"));
7441 }
7442 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7443}
7444
7445
7446/**
7447 * Clears the interrupt-window exiting control in the VMCS.
7448 *
7449 * @param pVCpu The cross context virtual CPU structure.
7450 */
7451DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7452{
7453 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
7454 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7455 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7456 AssertRC(rc);
7457 Log4Func(("Cleared interrupt-window exiting\n"));
7458}
7459
7460
7461/**
7462 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7463 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7464 *
7465 * @param pVCpu The cross context virtual CPU structure.
7466 */
7467DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7468{
7469 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7470 {
7471 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7472 {
7473 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7474 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7475 AssertRC(rc);
7476 Log4Func(("Setup NMI-window exiting\n"));
7477 }
7478 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7479}
7480
7481
7482/**
7483 * Clears the NMI-window exiting control in the VMCS.
7484 *
7485 * @param pVCpu The cross context virtual CPU structure.
7486 */
7487DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7488{
7489 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
7490 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7491 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7492 AssertRC(rc);
7493 Log4Func(("Cleared NMI-window exiting\n"));
7494}
7495
7496
7497/**
7498 * Evaluates the event to be delivered to the guest and sets it as the pending
7499 * event.
7500 *
7501 * @returns The VT-x guest-interruptibility state.
7502 * @param pVCpu The cross context virtual CPU structure.
7503 */
7504static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu)
7505{
7506 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7507 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7508 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu);
7509 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7510 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7511 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7512
7513 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7514 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7515 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7516 Assert(!TRPMHasTrap(pVCpu));
7517
7518 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7519 APICUpdatePendingInterrupts(pVCpu);
7520
7521 /*
7522 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7523 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7524 */
7525 /** @todo SMI. SMIs take priority over NMIs. */
7526 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7527 {
7528 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7529 if ( !pVCpu->hm.s.Event.fPending
7530 && !fBlockNmi
7531 && !fBlockSti
7532 && !fBlockMovSS)
7533 {
7534 Log4Func(("Pending NMI\n"));
7535 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INT_INFO_VALID;
7536 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7537
7538 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7539 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7540 }
7541 else
7542 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7543 }
7544 /*
7545 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7546 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7547 */
7548 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7549 && !pVCpu->hm.s.fSingleInstruction)
7550 {
7551 Assert(!DBGFIsStepping(pVCpu));
7552 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7553 AssertRCReturn(rc, 0);
7554 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7555 if ( !pVCpu->hm.s.Event.fPending
7556 && !fBlockInt
7557 && !fBlockSti
7558 && !fBlockMovSS)
7559 {
7560 uint8_t u8Interrupt;
7561 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7562 if (RT_SUCCESS(rc))
7563 {
7564 Log4Func(("Pending external interrupt u8Interrupt=%#x\n", u8Interrupt));
7565 uint32_t u32IntInfo = u8Interrupt
7566 | VMX_EXIT_INT_INFO_VALID
7567 | (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7568
7569 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7570 }
7571 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7572 {
7573 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7574 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7575 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7576
7577 /*
7578 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7579 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7580 * need to re-set this force-flag here.
7581 */
7582 }
7583 else
7584 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7585 }
7586 else
7587 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7588 }
7589
7590 return fIntrState;
7591}
7592
7593
7594/**
7595 * Sets a pending-debug exception to be delivered to the guest if the guest is
7596 * single-stepping in the VMCS.
7597 *
7598 * @param pVCpu The cross context virtual CPU structure.
7599 */
7600DECLINLINE(int) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7601{
7602 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7603 RT_NOREF(pVCpu);
7604 return VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
7605}
7606
7607
7608/**
7609 * Injects any pending events into the guest if the guest is in a state to
7610 * receive them.
7611 *
7612 * @returns Strict VBox status code (i.e. informational status codes too).
7613 * @param pVCpu The cross context virtual CPU structure.
7614 * @param fIntrState The VT-x guest-interruptibility state.
7615 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7616 * return VINF_EM_DBG_STEPPED if the event was
7617 * dispatched directly.
7618 */
7619static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, uint32_t fIntrState, bool fStepping)
7620{
7621 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7622 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7623
7624 bool fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7625 bool fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7626
7627 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7628 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7629 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7630 Assert(!TRPMHasTrap(pVCpu));
7631
7632 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7633 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7634 if (pVCpu->hm.s.Event.fPending)
7635 {
7636 /*
7637 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7638 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7639 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7640 *
7641 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7642 */
7643 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7644#ifdef VBOX_STRICT
7645 if (uIntType == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
7646 {
7647 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7648 Assert(!fBlockInt);
7649 Assert(!fBlockSti);
7650 Assert(!fBlockMovSS);
7651 }
7652 else if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
7653 {
7654 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7655 Assert(!fBlockSti);
7656 Assert(!fBlockMovSS);
7657 Assert(!fBlockNmi);
7658 }
7659#endif
7660 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7661 uIntType));
7662 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7663 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping,
7664 &fIntrState);
7665 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7666
7667 /* Update the interruptibility-state as it could have been changed by
7668 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7669 fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7670 fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7671
7672 if (uIntType == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
7673 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7674 else
7675 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7676 }
7677
7678 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7679 if ( fBlockSti
7680 || fBlockMovSS)
7681 {
7682 if (!pVCpu->hm.s.fSingleInstruction)
7683 {
7684 /*
7685 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7686 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7687 * See Intel spec. 27.3.4 "Saving Non-Register State".
7688 */
7689 Assert(!DBGFIsStepping(pVCpu));
7690 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7691 AssertRCReturn(rc, rc);
7692 if (pCtx->eflags.Bits.u1TF)
7693 {
7694 int rc2 = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7695 AssertRCReturn(rc2, rc2);
7696 }
7697 }
7698 else if (pCtx->eflags.Bits.u1TF)
7699 {
7700 /*
7701 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7702 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7703 */
7704 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
7705 fIntrState = 0;
7706 }
7707 }
7708
7709 /*
7710 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7711 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7712 */
7713 int rc3 = hmR0VmxExportGuestIntrState(pVCpu, fIntrState);
7714 AssertRCReturn(rc3, rc3);
7715
7716 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7717 NOREF(fBlockMovSS); NOREF(fBlockSti);
7718 return rcStrict;
7719}
7720
7721
7722/**
7723 * Injects a double-fault (\#DF) exception into the VM.
7724 *
7725 * @returns Strict VBox status code (i.e. informational status codes too).
7726 * @param pVCpu The cross context virtual CPU structure.
7727 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7728 * and should return VINF_EM_DBG_STEPPED if the event
7729 * is injected directly (register modified by us, not
7730 * by hardware on VM-entry).
7731 * @param pfIntrState Pointer to the current guest interruptibility-state.
7732 * This interruptibility-state will be updated if
7733 * necessary. This cannot not be NULL.
7734 */
7735DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, bool fStepping, uint32_t *pfIntrState)
7736{
7737 uint32_t const u32IntInfo = X86_XCPT_DF | VMX_EXIT_INT_INFO_VALID
7738 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7739 | VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7740 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */, fStepping,
7741 pfIntrState);
7742}
7743
7744
7745/**
7746 * Injects a general-protection (\#GP) fault into the VM.
7747 *
7748 * @returns Strict VBox status code (i.e. informational status codes too).
7749 * @param pVCpu The cross context virtual CPU structure.
7750 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7751 * mode, i.e. in real-mode it's not valid).
7752 * @param u32ErrorCode The error code associated with the \#GP.
7753 * @param fStepping Whether we're running in
7754 * hmR0VmxRunGuestCodeStep() and should return
7755 * VINF_EM_DBG_STEPPED if the event is injected
7756 * directly (register modified by us, not by
7757 * hardware on VM-entry).
7758 * @param pfIntrState Pointer to the current guest interruptibility-state.
7759 * This interruptibility-state will be updated if
7760 * necessary. This cannot not be NULL.
7761 */
7762DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, bool fErrorCodeValid, uint32_t u32ErrorCode, bool fStepping,
7763 uint32_t *pfIntrState)
7764{
7765 uint32_t const u32IntInfo = X86_XCPT_GP | VMX_EXIT_INT_INFO_VALID
7766 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7767 | (fErrorCodeValid ? VMX_EXIT_INT_INFO_ERROR_CODE_VALID : 0);
7768 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */, fStepping,
7769 pfIntrState);
7770}
7771
7772
7773/**
7774 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7775 *
7776 * @param pVCpu The cross context virtual CPU structure.
7777 * @param uVector The software interrupt vector number.
7778 * @param cbInstr The value of RIP that is to be pushed on the guest
7779 * stack.
7780 */
7781DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, uint16_t uVector, uint32_t cbInstr)
7782{
7783 bool const fIsSwXcpt = RT_BOOL(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7784 uint32_t const u32IntType = fIsSwXcpt ? VMX_EXIT_INT_INFO_TYPE_SW_XCPT : VMX_EXIT_INT_INFO_TYPE_SW_INT;
7785 uint32_t const u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID
7786 | (u32IntType << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7787 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7788}
7789
7790
7791/**
7792 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7793 * stack.
7794 *
7795 * @returns Strict VBox status code (i.e. informational status codes too).
7796 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7797 * @param pVCpu The cross context virtual CPU structure.
7798 * @param uValue The value to push to the guest stack.
7799 */
7800static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
7801{
7802 /*
7803 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7804 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7805 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7806 */
7807 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7808 if (pCtx->sp == 1)
7809 return VINF_EM_RESET;
7810 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7811 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
7812 AssertRC(rc);
7813 return rc;
7814}
7815
7816
7817/**
7818 * Injects an event into the guest upon VM-entry by updating the relevant fields
7819 * in the VM-entry area in the VMCS.
7820 *
7821 * @returns Strict VBox status code (i.e. informational status codes too).
7822 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7823 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7824 *
7825 * @param pVCpu The cross context virtual CPU structure.
7826 * @param u64IntInfo The VM-entry interruption-information field.
7827 * @param cbInstr The VM-entry instruction length in bytes (for
7828 * software interrupts, exceptions and privileged
7829 * software exceptions).
7830 * @param u32ErrCode The VM-entry exception error code.
7831 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7832 * @param pfIntrState Pointer to the current guest interruptibility-state.
7833 * This interruptibility-state will be updated if
7834 * necessary. This cannot not be NULL.
7835 * @param fStepping Whether we're running in
7836 * hmR0VmxRunGuestCodeStep() and should return
7837 * VINF_EM_DBG_STEPPED if the event is injected
7838 * directly (register modified by us, not by
7839 * hardware on VM-entry).
7840 */
7841static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7842 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState)
7843{
7844 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7845 AssertMsg(!RT_HI_U32(u64IntInfo), ("%#RX64\n", u64IntInfo));
7846 Assert(pfIntrState);
7847
7848 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7849 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7850 uint32_t const uVector = VMX_EXIT_INT_INFO_VECTOR(u32IntInfo);
7851 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(u32IntInfo);
7852
7853#ifdef VBOX_STRICT
7854 /*
7855 * Validate the error-code-valid bit for hardware exceptions.
7856 * No error codes for exceptions in real-mode.
7857 *
7858 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7859 */
7860 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7861 && !CPUMIsGuestInRealModeEx(pCtx))
7862 {
7863 switch (uVector)
7864 {
7865 case X86_XCPT_PF:
7866 case X86_XCPT_DF:
7867 case X86_XCPT_TS:
7868 case X86_XCPT_NP:
7869 case X86_XCPT_SS:
7870 case X86_XCPT_GP:
7871 case X86_XCPT_AC:
7872 AssertMsg(VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
7873 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7874 RT_FALL_THRU();
7875 default:
7876 break;
7877 }
7878 }
7879#endif
7880
7881 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7882 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7883 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
7884
7885 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7886
7887 /*
7888 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
7889 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
7890 * interrupt handler in the (real-mode) guest.
7891 *
7892 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
7893 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7894 */
7895 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
7896 {
7897 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
7898 {
7899 /*
7900 * For unrestricted execution enabled CPUs running real-mode guests, we must not
7901 * set the deliver-error-code bit.
7902 *
7903 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7904 */
7905 u32IntInfo &= ~VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7906 }
7907 else
7908 {
7909 PVM pVM = pVCpu->CTX_SUFF(pVM);
7910 Assert(PDMVmmDevHeapIsEnabled(pVM));
7911 Assert(pVM->hm.s.vmx.pRealModeTSS);
7912
7913 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
7914 int rc2 = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_RIP
7915 | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
7916 AssertRCReturn(rc2, rc2);
7917
7918 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7919 size_t const cbIdtEntry = sizeof(X86IDTR16);
7920 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
7921 {
7922 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7923 if (uVector == X86_XCPT_DF)
7924 return VINF_EM_RESET;
7925
7926 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7927 if (uVector == X86_XCPT_GP)
7928 return hmR0VmxInjectXcptDF(pVCpu, fStepping, pfIntrState);
7929
7930 /*
7931 * If we're injecting an event with no valid IDT entry, inject a #GP.
7932 * No error codes for exceptions in real-mode.
7933 *
7934 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7935 */
7936 return hmR0VmxInjectXcptGP(pVCpu, false /* fErrCodeValid */, 0 /* u32ErrCode */, fStepping, pfIntrState);
7937 }
7938
7939 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7940 uint16_t uGuestIp = pCtx->ip;
7941 if (uIntType == VMX_EXIT_INT_INFO_TYPE_SW_XCPT)
7942 {
7943 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7944 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7945 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7946 }
7947 else if (uIntType == VMX_EXIT_INT_INFO_TYPE_SW_INT)
7948 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7949
7950 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7951 X86IDTR16 IdtEntry;
7952 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
7953 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7954 AssertRCReturn(rc2, rc2);
7955
7956 /* Construct the stack frame for the interrupt/exception handler. */
7957 VBOXSTRICTRC rcStrict;
7958 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
7959 if (rcStrict == VINF_SUCCESS)
7960 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
7961 if (rcStrict == VINF_SUCCESS)
7962 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
7963
7964 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7965 if (rcStrict == VINF_SUCCESS)
7966 {
7967 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7968 pCtx->rip = IdtEntry.offSel;
7969 pCtx->cs.Sel = IdtEntry.uSel;
7970 pCtx->cs.ValidSel = IdtEntry.uSel;
7971 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7972 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7973 && uVector == X86_XCPT_PF)
7974 pCtx->cr2 = GCPtrFaultAddress;
7975
7976 /* If any other guest-state bits are changed here, make sure to update
7977 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7978 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
7979 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
7980 | HM_CHANGED_GUEST_RSP);
7981
7982 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7983 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
7984 {
7985 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7986 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
7987 Log4Func(("Clearing inhibition due to STI\n"));
7988 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
7989 }
7990 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
7991 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
7992
7993 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7994 it, if we are returning to ring-3 before executing guest code. */
7995 pVCpu->hm.s.Event.fPending = false;
7996
7997 /* Make hmR0VmxPreRunGuest() return if we're stepping since we've changed cs:rip. */
7998 if (fStepping)
7999 rcStrict = VINF_EM_DBG_STEPPED;
8000 }
8001 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8002 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8003 return rcStrict;
8004 }
8005 }
8006
8007 /* Validate. */
8008 Assert(VMX_EXIT_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8009 Assert(!VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8010 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8011
8012 /* Inject. */
8013 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8014 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8015 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8016 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8017 AssertRCReturn(rc, rc);
8018
8019 /* Update CR2. */
8020 if ( VMX_EXIT_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8021 && uVector == X86_XCPT_PF)
8022 pCtx->cr2 = GCPtrFaultAddress;
8023
8024 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8025
8026 return VINF_SUCCESS;
8027}
8028
8029
8030/**
8031 * Clears the interrupt-window exiting control in the VMCS and if necessary
8032 * clears the current event in the VMCS as well.
8033 *
8034 * @returns VBox status code.
8035 * @param pVCpu The cross context virtual CPU structure.
8036 *
8037 * @remarks Use this function only to clear events that have not yet been
8038 * delivered to the guest but are injected in the VMCS!
8039 * @remarks No-long-jump zone!!!
8040 */
8041static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8042{
8043 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8044 {
8045 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8046 Log4Func(("Cleared interrupt widow\n"));
8047 }
8048
8049 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8050 {
8051 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8052 Log4Func(("Cleared interrupt widow\n"));
8053 }
8054}
8055
8056
8057/**
8058 * Enters the VT-x session.
8059 *
8060 * @returns VBox status code.
8061 * @param pVCpu The cross context virtual CPU structure.
8062 * @param pHostCpu Pointer to the global CPU info struct.
8063 */
8064VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
8065{
8066 AssertPtr(pVCpu);
8067 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8068 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8069 RT_NOREF(pHostCpu);
8070
8071 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8072 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8073 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8074
8075#ifdef VBOX_STRICT
8076 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8077 RTCCUINTREG uHostCR4 = ASMGetCR4();
8078 if (!(uHostCR4 & X86_CR4_VMXE))
8079 {
8080 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8081 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8082 }
8083#endif
8084
8085 /*
8086 * Load the VCPU's VMCS as the current (and active) one.
8087 */
8088 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8089 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8090 if (RT_FAILURE(rc))
8091 return rc;
8092
8093 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8094 pVCpu->hm.s.fLeaveDone = false;
8095 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8096
8097 return VINF_SUCCESS;
8098}
8099
8100
8101/**
8102 * The thread-context callback (only on platforms which support it).
8103 *
8104 * @param enmEvent The thread-context event.
8105 * @param pVCpu The cross context virtual CPU structure.
8106 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8107 * @thread EMT(pVCpu)
8108 */
8109VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8110{
8111 NOREF(fGlobalInit);
8112
8113 switch (enmEvent)
8114 {
8115 case RTTHREADCTXEVENT_OUT:
8116 {
8117 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8118 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8119 VMCPU_ASSERT_EMT(pVCpu);
8120
8121 /* No longjmps (logger flushes, locks) in this fragile context. */
8122 VMMRZCallRing3Disable(pVCpu);
8123 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8124
8125 /*
8126 * Restore host-state (FPU, debug etc.)
8127 */
8128 if (!pVCpu->hm.s.fLeaveDone)
8129 {
8130 /*
8131 * Do -not- import the guest-state here as we might already be in the middle of importing
8132 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8133 */
8134 hmR0VmxLeave(pVCpu, false /* fImportState */);
8135 pVCpu->hm.s.fLeaveDone = true;
8136 }
8137
8138 /* Leave HM context, takes care of local init (term). */
8139 int rc = HMR0LeaveCpu(pVCpu);
8140 AssertRC(rc); NOREF(rc);
8141
8142 /* Restore longjmp state. */
8143 VMMRZCallRing3Enable(pVCpu);
8144 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8145 break;
8146 }
8147
8148 case RTTHREADCTXEVENT_IN:
8149 {
8150 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8151 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8152 VMCPU_ASSERT_EMT(pVCpu);
8153
8154 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8155 VMMRZCallRing3Disable(pVCpu);
8156 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8157
8158 /* Initialize the bare minimum state required for HM. This takes care of
8159 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8160 int rc = hmR0EnterCpu(pVCpu);
8161 AssertRC(rc);
8162 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8163 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8164
8165 /* Load the active VMCS as the current one. */
8166 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8167 {
8168 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8169 AssertRC(rc); NOREF(rc);
8170 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8171 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8172 }
8173 pVCpu->hm.s.fLeaveDone = false;
8174
8175 /* Restore longjmp state. */
8176 VMMRZCallRing3Enable(pVCpu);
8177 break;
8178 }
8179
8180 default:
8181 break;
8182 }
8183}
8184
8185
8186/**
8187 * Exports the host state into the VMCS host-state area.
8188 * Sets up the VM-exit MSR-load area.
8189 *
8190 * The CPU state will be loaded from these fields on every successful VM-exit.
8191 *
8192 * @returns VBox status code.
8193 * @param pVCpu The cross context virtual CPU structure.
8194 *
8195 * @remarks No-long-jump zone!!!
8196 */
8197static int hmR0VmxExportHostState(PVMCPU pVCpu)
8198{
8199 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8200
8201 int rc = VINF_SUCCESS;
8202 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8203 {
8204 rc = hmR0VmxExportHostControlRegs();
8205 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8206
8207 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8208 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8209
8210 rc = hmR0VmxExportHostMsrs(pVCpu);
8211 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8212
8213 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8214 }
8215 return rc;
8216}
8217
8218
8219/**
8220 * Saves the host state in the VMCS host-state.
8221 *
8222 * @returns VBox status code.
8223 * @param pVCpu The cross context virtual CPU structure.
8224 *
8225 * @remarks No-long-jump zone!!!
8226 */
8227VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8228{
8229 AssertPtr(pVCpu);
8230 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8231
8232 /*
8233 * Export the host state here while entering HM context.
8234 * When thread-context hooks are used, we might get preempted and have to re-save the host
8235 * state but most of the time we won't be, so do it here before we disable interrupts.
8236 */
8237 return hmR0VmxExportHostState(pVCpu);
8238}
8239
8240
8241/**
8242 * Exports the guest state into the VMCS guest-state area.
8243 *
8244 * The will typically be done before VM-entry when the guest-CPU state and the
8245 * VMCS state may potentially be out of sync.
8246 *
8247 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8248 * VM-entry controls.
8249 * Sets up the appropriate VMX non-root function to execute guest code based on
8250 * the guest CPU mode.
8251 *
8252 * @returns VBox strict status code.
8253 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8254 * without unrestricted guest access and the VMMDev is not presently
8255 * mapped (e.g. EFI32).
8256 *
8257 * @param pVCpu The cross context virtual CPU structure.
8258 *
8259 * @remarks No-long-jump zone!!!
8260 */
8261static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu)
8262{
8263 AssertPtr(pVCpu);
8264 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8265
8266 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8267
8268 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
8269
8270 /* Determine real-on-v86 mode. */
8271 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8272 if ( !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
8273 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
8274 {
8275 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8276 }
8277
8278 /*
8279 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8280 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8281 */
8282 int rc = hmR0VmxSelectVMRunHandler(pVCpu);
8283 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8284
8285 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8286 rc = hmR0VmxExportGuestEntryCtls(pVCpu);
8287 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8288
8289 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8290 rc = hmR0VmxExportGuestExitCtls(pVCpu);
8291 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8292
8293 rc = hmR0VmxExportGuestCR0(pVCpu);
8294 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8295
8296 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu);
8297 if (rcStrict == VINF_SUCCESS)
8298 { /* likely */ }
8299 else
8300 {
8301 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8302 return rcStrict;
8303 }
8304
8305 rc = hmR0VmxExportGuestSegmentRegs(pVCpu);
8306 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8307
8308 /* This needs to be done after hmR0VmxExportGuestEntryCtls() and hmR0VmxExportGuestExitCtls() as it
8309 may alter controls if we determine we don't have to swap EFER after all. */
8310 rc = hmR0VmxExportGuestMsrs(pVCpu);
8311 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8312
8313 rc = hmR0VmxExportGuestApicTpr(pVCpu);
8314 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8315
8316 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu);
8317 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8318
8319 /* Exporting RFLAGS here is fine, even though RFLAGS.TF might depend on guest debug state which is
8320 not exported here. It is re-evaluated and updated if necessary in hmR0VmxExportSharedState(). */
8321 rc = hmR0VmxExportGuestRip(pVCpu);
8322 rc |= hmR0VmxExportGuestRsp(pVCpu);
8323 rc |= hmR0VmxExportGuestRflags(pVCpu);
8324 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8325
8326 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
8327 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
8328 | HM_CHANGED_GUEST_CR2
8329 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
8330 | HM_CHANGED_GUEST_X87
8331 | HM_CHANGED_GUEST_SSE_AVX
8332 | HM_CHANGED_GUEST_OTHER_XSAVE
8333 | HM_CHANGED_GUEST_XCRx
8334 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
8335 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
8336 | HM_CHANGED_GUEST_TSC_AUX
8337 | HM_CHANGED_GUEST_OTHER_MSRS
8338 | HM_CHANGED_GUEST_HWVIRT
8339 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
8340
8341 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
8342 return rc;
8343}
8344
8345
8346/**
8347 * Exports the state shared between the host and guest into the VMCS.
8348 *
8349 * @param pVCpu The cross context virtual CPU structure.
8350 *
8351 * @remarks No-long-jump zone!!!
8352 */
8353static void hmR0VmxExportSharedState(PVMCPU pVCpu)
8354{
8355 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8356 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8357
8358 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
8359 {
8360 int rc = hmR0VmxExportSharedDebugState(pVCpu);
8361 AssertRC(rc);
8362 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
8363
8364 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8365 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
8366 {
8367 rc = hmR0VmxExportGuestRflags(pVCpu);
8368 AssertRC(rc);
8369 }
8370 }
8371
8372 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
8373 {
8374 hmR0VmxLazyLoadGuestMsrs(pVCpu);
8375 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
8376 }
8377
8378 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
8379 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8380}
8381
8382
8383/**
8384 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8385 *
8386 * @returns Strict VBox status code (i.e. informational status codes too).
8387 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8388 * without unrestricted guest access and the VMMDev is not presently
8389 * mapped (e.g. EFI32).
8390 *
8391 * @param pVCpu The cross context virtual CPU structure.
8392 *
8393 * @remarks No-long-jump zone!!!
8394 */
8395static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu)
8396{
8397 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8398 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8399 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8400
8401#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8402 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8403#endif
8404
8405 /*
8406 * For many exits it's only RIP that changes and hence try to export it first
8407 * without going through a lot of change flag checks.
8408 */
8409 VBOXSTRICTRC rcStrict;
8410 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8411 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8412 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
8413 {
8414 rcStrict = hmR0VmxExportGuestRip(pVCpu);
8415 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8416 { /* likely */}
8417 else
8418 AssertMsgFailedReturn(("hmR0VmxExportGuestRip failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8419 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
8420 }
8421 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8422 {
8423 rcStrict = hmR0VmxExportGuestState(pVCpu);
8424 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8425 { /* likely */}
8426 else
8427 {
8428 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("hmR0VmxExportGuestState failed! rc=%Rrc\n",
8429 VBOXSTRICTRC_VAL(rcStrict)));
8430 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8431 return rcStrict;
8432 }
8433 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
8434 }
8435 else
8436 rcStrict = VINF_SUCCESS;
8437
8438#ifdef VBOX_STRICT
8439 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8440 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8441 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8442 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
8443 ("fCtxChanged=%#RX64\n", fCtxChanged));
8444#endif
8445 return rcStrict;
8446}
8447
8448
8449/**
8450 * Does the preparations before executing guest code in VT-x.
8451 *
8452 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8453 * recompiler/IEM. We must be cautious what we do here regarding committing
8454 * guest-state information into the VMCS assuming we assuredly execute the
8455 * guest in VT-x mode.
8456 *
8457 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8458 * the common-state (TRPM/forceflags), we must undo those changes so that the
8459 * recompiler/IEM can (and should) use them when it resumes guest execution.
8460 * Otherwise such operations must be done when we can no longer exit to ring-3.
8461 *
8462 * @returns Strict VBox status code (i.e. informational status codes too).
8463 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8464 * have been disabled.
8465 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8466 * double-fault into the guest.
8467 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8468 * dispatched directly.
8469 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8470 *
8471 * @param pVCpu The cross context virtual CPU structure.
8472 * @param pVmxTransient Pointer to the VMX transient structure.
8473 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8474 * us ignore some of the reasons for returning to
8475 * ring-3, and return VINF_EM_DBG_STEPPED if event
8476 * dispatching took place.
8477 */
8478static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
8479{
8480 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8481
8482#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_ONLY_IN_IEM
8483 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
8484 return VINF_EM_RESCHEDULE_REM;
8485#endif
8486
8487#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8488 PGMRZDynMapFlushAutoSet(pVCpu);
8489#endif
8490
8491 /* Check force flag actions that might require us to go back to ring-3. */
8492 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
8493 if (rcStrict == VINF_SUCCESS)
8494 { /* FFs doesn't get set all the time. */ }
8495 else
8496 return rcStrict;
8497
8498 /*
8499 * Setup the virtualized-APIC accesses.
8500 *
8501 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8502 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8503 *
8504 * This is the reason we do it here and not in hmR0VmxExportGuestState().
8505 */
8506 PVM pVM = pVCpu->CTX_SUFF(pVM);
8507 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8508 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
8509 && PDMHasApic(pVM))
8510 {
8511 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8512 Assert(u64MsrApicBase);
8513 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8514
8515 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8516
8517 /* Unalias any existing mapping. */
8518 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8519 AssertRCReturn(rc, rc);
8520
8521 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8522 Log4Func(("Mapped HC APIC-access page at %#RGp\n", GCPhysApicBase));
8523 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8524 AssertRCReturn(rc, rc);
8525
8526 /* Update the per-VCPU cache of the APIC base MSR. */
8527 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8528 }
8529
8530 if (TRPMHasTrap(pVCpu))
8531 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8532 uint32_t fIntrState = hmR0VmxEvaluatePendingEvent(pVCpu);
8533
8534 /*
8535 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
8536 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
8537 * also result in triple-faulting the VM.
8538 */
8539 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, fIntrState, fStepping);
8540 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8541 { /* likely */ }
8542 else
8543 {
8544 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8545 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8546 return rcStrict;
8547 }
8548
8549 /*
8550 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
8551 * import CR3 themselves. We will need to update them here, as even as late as the above
8552 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
8553 * the below force flags to be set.
8554 */
8555 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
8556 {
8557 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
8558 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
8559 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
8560 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
8561 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8562 }
8563 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
8564 {
8565 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
8566 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8567 }
8568
8569 /*
8570 * No longjmps to ring-3 from this point on!!!
8571 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8572 * This also disables flushing of the R0-logger instance (if any).
8573 */
8574 VMMRZCallRing3Disable(pVCpu);
8575
8576 /*
8577 * Export the guest state bits.
8578 *
8579 * We cannot perform longjmps while loading the guest state because we do not preserve the
8580 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8581 * CPU migration.
8582 *
8583 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8584 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8585 * Hence, loading of the guest state needs to be done -after- injection of events.
8586 */
8587 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu);
8588 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8589 { /* likely */ }
8590 else
8591 {
8592 VMMRZCallRing3Enable(pVCpu);
8593 return rcStrict;
8594 }
8595
8596 /*
8597 * We disable interrupts so that we don't miss any interrupts that would flag preemption
8598 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
8599 * preemption disabled for a while. Since this is purly to aid the
8600 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
8601 * disable interrupt on NT.
8602 *
8603 * We need to check for force-flags that could've possible been altered since we last
8604 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
8605 * see @bugref{6398}).
8606 *
8607 * We also check a couple of other force-flags as a last opportunity to get the EMT back
8608 * to ring-3 before executing guest code.
8609 */
8610 pVmxTransient->fEFlags = ASMIntDisableFlags();
8611
8612 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8613 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8614 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8615 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8616 {
8617 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8618 {
8619 pVCpu->hm.s.Event.fPending = false;
8620
8621 /*
8622 * We've injected any pending events. This is really the point of no return (to ring-3).
8623 *
8624 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8625 * returns from this function, so don't enable them here.
8626 */
8627 return VINF_SUCCESS;
8628 }
8629
8630 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
8631 rcStrict = VINF_EM_RAW_INTERRUPT;
8632 }
8633 else
8634 {
8635 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8636 rcStrict = VINF_EM_RAW_TO_R3;
8637 }
8638
8639 ASMSetFlags(pVmxTransient->fEFlags);
8640 VMMRZCallRing3Enable(pVCpu);
8641
8642 return rcStrict;
8643}
8644
8645
8646/**
8647 * Prepares to run guest code in VT-x and we've committed to doing so. This
8648 * means there is no backing out to ring-3 or anywhere else at this
8649 * point.
8650 *
8651 * @param pVCpu The cross context virtual CPU structure.
8652 * @param pVmxTransient Pointer to the VMX transient structure.
8653 *
8654 * @remarks Called with preemption disabled.
8655 * @remarks No-long-jump zone!!!
8656 */
8657static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
8658{
8659 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8660 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8661 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8662
8663 /*
8664 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8665 */
8666 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8667 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8668
8669 PVM pVM = pVCpu->CTX_SUFF(pVM);
8670 if (!CPUMIsGuestFPUStateActive(pVCpu))
8671 {
8672 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8673 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8674 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
8675 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8676 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
8677 }
8678
8679 /*
8680 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8681 */
8682 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8683 && pVCpu->hm.s.vmx.cMsrs > 0)
8684 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8685
8686 /*
8687 * Re-save the host state bits as we may've been preempted (only happens when
8688 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8689 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8690 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8691 * See @bugref{8432}.
8692 */
8693 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8694 {
8695 int rc = hmR0VmxExportHostState(pVCpu);
8696 AssertRC(rc);
8697 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
8698 }
8699 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
8700
8701 /*
8702 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
8703 */
8704 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
8705 hmR0VmxExportSharedState(pVCpu);
8706 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8707
8708 /* Store status of the shared guest-host state at the time of VM-entry. */
8709#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8710 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
8711 {
8712 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8713 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8714 }
8715 else
8716#endif
8717 {
8718 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8719 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8720 }
8721
8722 /*
8723 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8724 */
8725 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8726 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
8727
8728 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
8729 RTCPUID idCurrentCpu = pCpu->idCpu;
8730 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8731 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8732 {
8733 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8734 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8735 }
8736
8737 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8738 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8739 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8740 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8741
8742 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8743
8744 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8745 to start executing. */
8746
8747 /*
8748 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8749 */
8750 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
8751 {
8752 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8753 {
8754 bool fMsrUpdated;
8755 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
8756 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8757 &fMsrUpdated);
8758 AssertRC(rc2);
8759 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8760 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8761 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8762 }
8763 else
8764 {
8765 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8766 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8767 }
8768 }
8769
8770 if (pVM->cpum.ro.GuestFeatures.fIbrs)
8771 {
8772 bool fMsrUpdated;
8773 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
8774 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
8775 &fMsrUpdated);
8776 AssertRC(rc2);
8777 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8778 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8779 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8780 }
8781
8782#ifdef VBOX_STRICT
8783 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8784 hmR0VmxCheckHostEferMsr(pVCpu);
8785 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8786#endif
8787#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8788 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
8789 {
8790 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
8791 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8792 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8793 }
8794#endif
8795}
8796
8797
8798/**
8799 * Performs some essential restoration of state after running guest code in
8800 * VT-x.
8801 *
8802 * @param pVCpu The cross context virtual CPU structure.
8803 * @param pVmxTransient Pointer to the VMX transient structure.
8804 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8805 *
8806 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8807 *
8808 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8809 * unconditionally when it is safe to do so.
8810 */
8811static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8812{
8813 uint64_t const uHostTsc = ASMReadTSC();
8814 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8815
8816 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8817 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8818 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
8819 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8820 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8821 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8822
8823 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8824 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVCpu->hm.s.vmx.u64TscOffset);
8825
8826 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
8827 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8828 Assert(!ASMIntAreEnabled());
8829 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8830
8831#if HC_ARCH_BITS == 64
8832 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8833#endif
8834#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8835 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8836 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8837 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8838#else
8839 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8840#endif
8841#ifdef VBOX_STRICT
8842 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8843#endif
8844 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8845
8846 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8847 uint32_t uExitReason;
8848 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8849 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8850 AssertRC(rc);
8851 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8852 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INT_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8853
8854 if (rcVMRun == VINF_SUCCESS)
8855 {
8856 /*
8857 * Update the VM-exit history array here even if the VM-entry failed due to:
8858 * - Invalid guest state.
8859 * - MSR loading.
8860 * - Machine-check event.
8861 *
8862 * In any of the above cases we will still have a "valid" VM-exit reason
8863 * despite @a fVMEntryFailed being false.
8864 *
8865 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
8866 *
8867 * Note! We don't have CS or RIP at this point. Will probably address that later
8868 * by amending the history entry added here.
8869 */
8870 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
8871 UINT64_MAX, uHostTsc);
8872
8873 if (!pVmxTransient->fVMEntryFailed)
8874 {
8875 VMMRZCallRing3Enable(pVCpu);
8876
8877 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8878 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8879
8880#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8881 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
8882 AssertRC(rc);
8883#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8884 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_RFLAGS);
8885 AssertRC(rc);
8886#else
8887 /*
8888 * Import the guest-interruptibility state always as we need it while evaluating
8889 * injecting events on re-entry.
8890 *
8891 * We don't import CR0 (when Unrestricted guest execution is unavailable) despite
8892 * checking for real-mode while exporting the state because all bits that cause
8893 * mode changes wrt CR0 are intercepted.
8894 */
8895 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
8896 AssertRC(rc);
8897#endif
8898
8899 /*
8900 * Sync the TPR shadow with our APIC state.
8901 */
8902 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8903 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
8904 {
8905 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
8906 AssertRC(rc);
8907 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
8908 }
8909
8910 return;
8911 }
8912 }
8913 else
8914 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
8915
8916 VMMRZCallRing3Enable(pVCpu);
8917}
8918
8919
8920/**
8921 * Runs the guest code using VT-x the normal way.
8922 *
8923 * @returns VBox status code.
8924 * @param pVCpu The cross context virtual CPU structure.
8925 *
8926 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8927 */
8928static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu)
8929{
8930 VMXTRANSIENT VmxTransient;
8931 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8932 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8933 uint32_t cLoops = 0;
8934
8935 for (;; cLoops++)
8936 {
8937 Assert(!HMR0SuspendPending());
8938 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8939
8940 /* Preparatory work for running guest code, this may force us to return
8941 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8942 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8943 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
8944 if (rcStrict != VINF_SUCCESS)
8945 break;
8946
8947 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
8948 int rcRun = hmR0VmxRunGuest(pVCpu);
8949
8950 /* Restore any residual host-state and save any bits shared between host
8951 and guest into the guest-CPU state. Re-enables interrupts! */
8952 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
8953
8954 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8955 if (RT_SUCCESS(rcRun))
8956 { /* very likely */ }
8957 else
8958 {
8959 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
8960 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
8961 return rcRun;
8962 }
8963
8964 /* Profile the VM-exit. */
8965 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8966 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8967 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8968 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
8969 HMVMX_START_EXIT_DISPATCH_PROF();
8970
8971 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
8972
8973 /* Handle the VM-exit. */
8974#ifdef HMVMX_USE_FUNCTION_TABLE
8975 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
8976#else
8977 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient, VmxTransient.uExitReason);
8978#endif
8979 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
8980 if (rcStrict == VINF_SUCCESS)
8981 {
8982 if (cLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
8983 continue; /* likely */
8984 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8985 rcStrict = VINF_EM_RAW_INTERRUPT;
8986 }
8987 break;
8988 }
8989
8990 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8991 return rcStrict;
8992}
8993
8994
8995
8996/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
8997 * probes.
8998 *
8999 * The following few functions and associated structure contains the bloat
9000 * necessary for providing detailed debug events and dtrace probes as well as
9001 * reliable host side single stepping. This works on the principle of
9002 * "subclassing" the normal execution loop and workers. We replace the loop
9003 * method completely and override selected helpers to add necessary adjustments
9004 * to their core operation.
9005 *
9006 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9007 * any performance for debug and analysis features.
9008 *
9009 * @{
9010 */
9011
9012/**
9013 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
9014 * the debug run loop.
9015 */
9016typedef struct VMXRUNDBGSTATE
9017{
9018 /** The RIP we started executing at. This is for detecting that we stepped. */
9019 uint64_t uRipStart;
9020 /** The CS we started executing with. */
9021 uint16_t uCsStart;
9022
9023 /** Whether we've actually modified the 1st execution control field. */
9024 bool fModifiedProcCtls : 1;
9025 /** Whether we've actually modified the 2nd execution control field. */
9026 bool fModifiedProcCtls2 : 1;
9027 /** Whether we've actually modified the exception bitmap. */
9028 bool fModifiedXcptBitmap : 1;
9029
9030 /** We desire the modified the CR0 mask to be cleared. */
9031 bool fClearCr0Mask : 1;
9032 /** We desire the modified the CR4 mask to be cleared. */
9033 bool fClearCr4Mask : 1;
9034 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9035 uint32_t fCpe1Extra;
9036 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9037 uint32_t fCpe1Unwanted;
9038 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9039 uint32_t fCpe2Extra;
9040 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9041 uint32_t bmXcptExtra;
9042 /** The sequence number of the Dtrace provider settings the state was
9043 * configured against. */
9044 uint32_t uDtraceSettingsSeqNo;
9045 /** VM-exits to check (one bit per VM-exit). */
9046 uint32_t bmExitsToCheck[3];
9047
9048 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9049 uint32_t fProcCtlsInitial;
9050 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9051 uint32_t fProcCtls2Initial;
9052 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9053 uint32_t bmXcptInitial;
9054} VMXRUNDBGSTATE;
9055AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9056typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9057
9058
9059/**
9060 * Initializes the VMXRUNDBGSTATE structure.
9061 *
9062 * @param pVCpu The cross context virtual CPU structure of the
9063 * calling EMT.
9064 * @param pDbgState The structure to initialize.
9065 */
9066static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9067{
9068 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
9069 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
9070
9071 pDbgState->fModifiedProcCtls = false;
9072 pDbgState->fModifiedProcCtls2 = false;
9073 pDbgState->fModifiedXcptBitmap = false;
9074 pDbgState->fClearCr0Mask = false;
9075 pDbgState->fClearCr4Mask = false;
9076 pDbgState->fCpe1Extra = 0;
9077 pDbgState->fCpe1Unwanted = 0;
9078 pDbgState->fCpe2Extra = 0;
9079 pDbgState->bmXcptExtra = 0;
9080 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9081 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9082 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9083}
9084
9085
9086/**
9087 * Updates the VMSC fields with changes requested by @a pDbgState.
9088 *
9089 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9090 * immediately before executing guest code, i.e. when interrupts are disabled.
9091 * We don't check status codes here as we cannot easily assert or return in the
9092 * latter case.
9093 *
9094 * @param pVCpu The cross context virtual CPU structure.
9095 * @param pDbgState The debug state.
9096 */
9097static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9098{
9099 /*
9100 * Ensure desired flags in VMCS control fields are set.
9101 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9102 *
9103 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9104 * there should be no stale data in pCtx at this point.
9105 */
9106 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9107 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9108 {
9109 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9110 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9111 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9112 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9113 pDbgState->fModifiedProcCtls = true;
9114 }
9115
9116 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9117 {
9118 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9119 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9120 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9121 pDbgState->fModifiedProcCtls2 = true;
9122 }
9123
9124 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9125 {
9126 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9127 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9128 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9129 pDbgState->fModifiedXcptBitmap = true;
9130 }
9131
9132 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32Cr0Mask != 0)
9133 {
9134 pVCpu->hm.s.vmx.u32Cr0Mask = 0;
9135 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9136 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9137 }
9138
9139 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32Cr4Mask != 0)
9140 {
9141 pVCpu->hm.s.vmx.u32Cr4Mask = 0;
9142 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9143 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9144 }
9145}
9146
9147
9148/**
9149 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
9150 * re-entry next time around.
9151 *
9152 * @returns Strict VBox status code (i.e. informational status codes too).
9153 * @param pVCpu The cross context virtual CPU structure.
9154 * @param pDbgState The debug state.
9155 * @param rcStrict The return code from executing the guest using single
9156 * stepping.
9157 */
9158static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9159{
9160 /*
9161 * Restore VM-exit control settings as we may not reenter this function the
9162 * next time around.
9163 */
9164 /* We reload the initial value, trigger what we can of recalculations the
9165 next time around. From the looks of things, that's all that's required atm. */
9166 if (pDbgState->fModifiedProcCtls)
9167 {
9168 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9169 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9170 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9171 AssertRCReturn(rc2, rc2);
9172 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9173 }
9174
9175 /* We're currently the only ones messing with this one, so just restore the
9176 cached value and reload the field. */
9177 if ( pDbgState->fModifiedProcCtls2
9178 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9179 {
9180 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9181 AssertRCReturn(rc2, rc2);
9182 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9183 }
9184
9185 /* If we've modified the exception bitmap, we restore it and trigger
9186 reloading and partial recalculation the next time around. */
9187 if (pDbgState->fModifiedXcptBitmap)
9188 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9189
9190 return rcStrict;
9191}
9192
9193
9194/**
9195 * Configures VM-exit controls for current DBGF and DTrace settings.
9196 *
9197 * This updates @a pDbgState and the VMCS execution control fields to reflect
9198 * the necessary VM-exits demanded by DBGF and DTrace.
9199 *
9200 * @param pVCpu The cross context virtual CPU structure.
9201 * @param pDbgState The debug state.
9202 * @param pVmxTransient Pointer to the VMX transient structure. May update
9203 * fUpdateTscOffsettingAndPreemptTimer.
9204 */
9205static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9206{
9207 /*
9208 * Take down the dtrace serial number so we can spot changes.
9209 */
9210 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9211 ASMCompilerBarrier();
9212
9213 /*
9214 * We'll rebuild most of the middle block of data members (holding the
9215 * current settings) as we go along here, so start by clearing it all.
9216 */
9217 pDbgState->bmXcptExtra = 0;
9218 pDbgState->fCpe1Extra = 0;
9219 pDbgState->fCpe1Unwanted = 0;
9220 pDbgState->fCpe2Extra = 0;
9221 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9222 pDbgState->bmExitsToCheck[i] = 0;
9223
9224 /*
9225 * Software interrupts (INT XXh) - no idea how to trigger these...
9226 */
9227 PVM pVM = pVCpu->CTX_SUFF(pVM);
9228 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9229 || VBOXVMM_INT_SOFTWARE_ENABLED())
9230 {
9231 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9232 }
9233
9234 /*
9235 * INT3 breakpoints - triggered by #BP exceptions.
9236 */
9237 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9238 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9239
9240 /*
9241 * Exception bitmap and XCPT events+probes.
9242 */
9243 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9244 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9245 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9246
9247 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9248 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9249 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9250 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9251 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9252 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9253 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9254 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9255 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9256 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9257 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9258 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9259 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9260 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9261 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9262 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9263 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9264 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9265
9266 if (pDbgState->bmXcptExtra)
9267 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9268
9269 /*
9270 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9271 *
9272 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
9273 * So, when adding/changing/removing please don't forget to update it.
9274 *
9275 * Some of the macros are picking up local variables to save horizontal space,
9276 * (being able to see it in a table is the lesser evil here).
9277 */
9278#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9279 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9280 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9281#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9282 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9283 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9284 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9285 } else do { } while (0)
9286#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9287 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9288 { \
9289 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9290 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9291 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9292 } else do { } while (0)
9293#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9294 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9295 { \
9296 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9297 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9298 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9299 } else do { } while (0)
9300#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9301 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9302 { \
9303 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9304 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9305 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9306 } else do { } while (0)
9307
9308 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9309 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9310 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9311 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9312 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9313
9314 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9315 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9316 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9317 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9318 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
9319 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9320 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9321 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9322 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
9323 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9324 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
9325 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9326 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
9327 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9328 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9329 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9330 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9331 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9332 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9333 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9334 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9335 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9336 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9337 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9338 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9339 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9340 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9341 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9342 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9343 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9344 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9345 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9346 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9347 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9348 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9349 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9350
9351 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9352 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9353 {
9354 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
9355 AssertRC(rc);
9356
9357#if 0 /** @todo fix me */
9358 pDbgState->fClearCr0Mask = true;
9359 pDbgState->fClearCr4Mask = true;
9360#endif
9361 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9362 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
9363 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9364 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
9365 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
9366 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9367 require clearing here and in the loop if we start using it. */
9368 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9369 }
9370 else
9371 {
9372 if (pDbgState->fClearCr0Mask)
9373 {
9374 pDbgState->fClearCr0Mask = false;
9375 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
9376 }
9377 if (pDbgState->fClearCr4Mask)
9378 {
9379 pDbgState->fClearCr4Mask = false;
9380 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
9381 }
9382 }
9383 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9384 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9385
9386 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9387 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9388 {
9389 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9390 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9391 }
9392 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9393 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9394
9395 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
9396 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9397 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
9398 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9399 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
9400 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9401 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
9402 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9403#if 0 /** @todo too slow, fix handler. */
9404 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
9405#endif
9406 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9407
9408 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9409 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9410 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9411 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9412 {
9413 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9414 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9415 }
9416 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9417 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9418 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9419 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9420
9421 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9422 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9423 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9424 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9425 {
9426 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9427 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9428 }
9429 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9430 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9431 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9432 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9433
9434 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9435 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9436 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
9437 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9438 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9439 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9440 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
9441 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9442 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9443 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9444 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
9445 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9446 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
9447 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9448 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9449 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9450 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
9451 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9452 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9453 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9454 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9455 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9456
9457#undef IS_EITHER_ENABLED
9458#undef SET_ONLY_XBM_IF_EITHER_EN
9459#undef SET_CPE1_XBM_IF_EITHER_EN
9460#undef SET_CPEU_XBM_IF_EITHER_EN
9461#undef SET_CPE2_XBM_IF_EITHER_EN
9462
9463 /*
9464 * Sanitize the control stuff.
9465 */
9466 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
9467 if (pDbgState->fCpe2Extra)
9468 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
9469 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
9470 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0;
9471 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
9472 {
9473 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9474 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9475 }
9476
9477 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9478 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9479 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9480 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9481}
9482
9483
9484/**
9485 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9486 * appropriate.
9487 *
9488 * The caller has checked the VM-exit against the
9489 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9490 * already, so we don't have to do that either.
9491 *
9492 * @returns Strict VBox status code (i.e. informational status codes too).
9493 * @param pVCpu The cross context virtual CPU structure.
9494 * @param pVmxTransient Pointer to the VMX-transient structure.
9495 * @param uExitReason The VM-exit reason.
9496 *
9497 * @remarks The name of this function is displayed by dtrace, so keep it short
9498 * and to the point. No longer than 33 chars long, please.
9499 */
9500static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9501{
9502 /*
9503 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9504 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9505 *
9506 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9507 * does. Must add/change/remove both places. Same ordering, please.
9508 *
9509 * Added/removed events must also be reflected in the next section
9510 * where we dispatch dtrace events.
9511 */
9512 bool fDtrace1 = false;
9513 bool fDtrace2 = false;
9514 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9515 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9516 uint32_t uEventArg = 0;
9517#define SET_EXIT(a_EventSubName) \
9518 do { \
9519 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9520 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9521 } while (0)
9522#define SET_BOTH(a_EventSubName) \
9523 do { \
9524 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9525 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9526 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9527 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9528 } while (0)
9529 switch (uExitReason)
9530 {
9531 case VMX_EXIT_MTF:
9532 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9533
9534 case VMX_EXIT_XCPT_OR_NMI:
9535 {
9536 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9537 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
9538 {
9539 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
9540 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
9541 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
9542 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9543 {
9544 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
9545 {
9546 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9547 uEventArg = pVmxTransient->uExitIntErrorCode;
9548 }
9549 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9550 switch (enmEvent1)
9551 {
9552 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9553 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9554 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9555 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9556 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9557 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9558 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9559 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9560 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9561 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9562 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9563 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9564 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9565 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9566 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9567 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9568 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9569 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9570 default: break;
9571 }
9572 }
9573 else
9574 AssertFailed();
9575 break;
9576
9577 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
9578 uEventArg = idxVector;
9579 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9580 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9581 break;
9582 }
9583 break;
9584 }
9585
9586 case VMX_EXIT_TRIPLE_FAULT:
9587 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9588 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9589 break;
9590 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9591 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9592 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9593 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9594 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9595
9596 /* Instruction specific VM-exits: */
9597 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9598 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9599 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9600 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9601 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9602 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9603 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9604 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9605 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9606 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9607 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9608 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9609 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9610 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9611 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9612 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9613 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9614 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9615 case VMX_EXIT_MOV_CRX:
9616 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9617 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
9618 SET_BOTH(CRX_READ);
9619 else
9620 SET_BOTH(CRX_WRITE);
9621 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
9622 break;
9623 case VMX_EXIT_MOV_DRX:
9624 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9625 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
9626 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
9627 SET_BOTH(DRX_READ);
9628 else
9629 SET_BOTH(DRX_WRITE);
9630 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
9631 break;
9632 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9633 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9634 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9635 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9636 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9637 case VMX_EXIT_XDTR_ACCESS:
9638 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9639 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
9640 {
9641 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9642 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9643 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9644 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9645 }
9646 break;
9647
9648 case VMX_EXIT_TR_ACCESS:
9649 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9650 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
9651 {
9652 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9653 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9654 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9655 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9656 }
9657 break;
9658
9659 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9660 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9661 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9662 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9663 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9664 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9665 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9666 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9667 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9668 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9669 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9670
9671 /* Events that aren't relevant at this point. */
9672 case VMX_EXIT_EXT_INT:
9673 case VMX_EXIT_INT_WINDOW:
9674 case VMX_EXIT_NMI_WINDOW:
9675 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9676 case VMX_EXIT_PREEMPT_TIMER:
9677 case VMX_EXIT_IO_INSTR:
9678 break;
9679
9680 /* Errors and unexpected events. */
9681 case VMX_EXIT_INIT_SIGNAL:
9682 case VMX_EXIT_SIPI:
9683 case VMX_EXIT_IO_SMI:
9684 case VMX_EXIT_SMI:
9685 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9686 case VMX_EXIT_ERR_MSR_LOAD:
9687 case VMX_EXIT_ERR_MACHINE_CHECK:
9688 break;
9689
9690 default:
9691 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9692 break;
9693 }
9694#undef SET_BOTH
9695#undef SET_EXIT
9696
9697 /*
9698 * Dtrace tracepoints go first. We do them here at once so we don't
9699 * have to copy the guest state saving and stuff a few dozen times.
9700 * Down side is that we've got to repeat the switch, though this time
9701 * we use enmEvent since the probes are a subset of what DBGF does.
9702 */
9703 if (fDtrace1 || fDtrace2)
9704 {
9705 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9706 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9707 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9708 switch (enmEvent1)
9709 {
9710 /** @todo consider which extra parameters would be helpful for each probe. */
9711 case DBGFEVENT_END: break;
9712 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
9713 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
9714 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
9715 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
9716 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
9717 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
9718 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
9719 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
9720 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
9721 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
9722 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
9723 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
9724 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
9725 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
9726 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
9727 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
9728 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
9729 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
9730 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9731 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9732 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
9733 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
9734 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
9735 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
9736 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
9737 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
9738 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
9739 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9740 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9741 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9742 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9743 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9744 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
9745 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9746 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
9747 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
9748 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
9749 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
9750 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
9751 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
9752 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
9753 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
9754 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
9755 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
9756 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
9757 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
9758 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
9759 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
9760 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
9761 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
9762 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
9763 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
9764 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
9765 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
9766 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
9767 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
9768 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
9769 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
9770 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
9771 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
9772 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
9773 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
9774 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
9775 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
9776 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
9777 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
9778 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9779 }
9780 switch (enmEvent2)
9781 {
9782 /** @todo consider which extra parameters would be helpful for each probe. */
9783 case DBGFEVENT_END: break;
9784 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
9785 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9786 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
9787 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
9788 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
9789 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
9790 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
9791 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
9792 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
9793 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9794 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9795 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9796 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9797 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9798 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
9799 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9800 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
9801 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
9802 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
9803 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
9804 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
9805 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
9806 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
9807 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
9808 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
9809 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
9810 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
9811 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
9812 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
9813 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
9814 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
9815 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
9816 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
9817 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
9818 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
9819 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
9820 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
9821 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
9822 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
9823 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
9824 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
9825 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
9826 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
9827 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
9828 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
9829 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
9830 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
9831 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
9832 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
9833 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
9834 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
9835 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
9836 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9837 }
9838 }
9839
9840 /*
9841 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9842 * the DBGF call will do a full check).
9843 *
9844 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9845 * Note! If we have to events, we prioritize the first, i.e. the instruction
9846 * one, in order to avoid event nesting.
9847 */
9848 PVM pVM = pVCpu->CTX_SUFF(pVM);
9849 if ( enmEvent1 != DBGFEVENT_END
9850 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9851 {
9852 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
9853 if (rcStrict != VINF_SUCCESS)
9854 return rcStrict;
9855 }
9856 else if ( enmEvent2 != DBGFEVENT_END
9857 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9858 {
9859 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
9860 if (rcStrict != VINF_SUCCESS)
9861 return rcStrict;
9862 }
9863
9864 return VINF_SUCCESS;
9865}
9866
9867
9868/**
9869 * Single-stepping VM-exit filtering.
9870 *
9871 * This is preprocessing the VM-exits and deciding whether we've gotten far
9872 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
9873 * handling is performed.
9874 *
9875 * @returns Strict VBox status code (i.e. informational status codes too).
9876 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9877 * @param pVmxTransient Pointer to the VMX-transient structure.
9878 * @param pDbgState The debug state.
9879 */
9880DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
9881{
9882 /*
9883 * Expensive (saves context) generic dtrace VM-exit probe.
9884 */
9885 uint32_t const uExitReason = pVmxTransient->uExitReason;
9886 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9887 { /* more likely */ }
9888 else
9889 {
9890 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9891 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9892 AssertRC(rc);
9893 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
9894 }
9895
9896 /*
9897 * Check for host NMI, just to get that out of the way.
9898 */
9899 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9900 { /* normally likely */ }
9901 else
9902 {
9903 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9904 AssertRCReturn(rc2, rc2);
9905 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
9906 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
9907 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
9908 }
9909
9910 /*
9911 * Check for single stepping event if we're stepping.
9912 */
9913 if (pVCpu->hm.s.fSingleInstruction)
9914 {
9915 switch (uExitReason)
9916 {
9917 case VMX_EXIT_MTF:
9918 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9919
9920 /* Various events: */
9921 case VMX_EXIT_XCPT_OR_NMI:
9922 case VMX_EXIT_EXT_INT:
9923 case VMX_EXIT_TRIPLE_FAULT:
9924 case VMX_EXIT_INT_WINDOW:
9925 case VMX_EXIT_NMI_WINDOW:
9926 case VMX_EXIT_TASK_SWITCH:
9927 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9928 case VMX_EXIT_APIC_ACCESS:
9929 case VMX_EXIT_EPT_VIOLATION:
9930 case VMX_EXIT_EPT_MISCONFIG:
9931 case VMX_EXIT_PREEMPT_TIMER:
9932
9933 /* Instruction specific VM-exits: */
9934 case VMX_EXIT_CPUID:
9935 case VMX_EXIT_GETSEC:
9936 case VMX_EXIT_HLT:
9937 case VMX_EXIT_INVD:
9938 case VMX_EXIT_INVLPG:
9939 case VMX_EXIT_RDPMC:
9940 case VMX_EXIT_RDTSC:
9941 case VMX_EXIT_RSM:
9942 case VMX_EXIT_VMCALL:
9943 case VMX_EXIT_VMCLEAR:
9944 case VMX_EXIT_VMLAUNCH:
9945 case VMX_EXIT_VMPTRLD:
9946 case VMX_EXIT_VMPTRST:
9947 case VMX_EXIT_VMREAD:
9948 case VMX_EXIT_VMRESUME:
9949 case VMX_EXIT_VMWRITE:
9950 case VMX_EXIT_VMXOFF:
9951 case VMX_EXIT_VMXON:
9952 case VMX_EXIT_MOV_CRX:
9953 case VMX_EXIT_MOV_DRX:
9954 case VMX_EXIT_IO_INSTR:
9955 case VMX_EXIT_RDMSR:
9956 case VMX_EXIT_WRMSR:
9957 case VMX_EXIT_MWAIT:
9958 case VMX_EXIT_MONITOR:
9959 case VMX_EXIT_PAUSE:
9960 case VMX_EXIT_XDTR_ACCESS:
9961 case VMX_EXIT_TR_ACCESS:
9962 case VMX_EXIT_INVEPT:
9963 case VMX_EXIT_RDTSCP:
9964 case VMX_EXIT_INVVPID:
9965 case VMX_EXIT_WBINVD:
9966 case VMX_EXIT_XSETBV:
9967 case VMX_EXIT_RDRAND:
9968 case VMX_EXIT_INVPCID:
9969 case VMX_EXIT_VMFUNC:
9970 case VMX_EXIT_RDSEED:
9971 case VMX_EXIT_XSAVES:
9972 case VMX_EXIT_XRSTORS:
9973 {
9974 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9975 AssertRCReturn(rc, rc);
9976 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
9977 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
9978 return VINF_EM_DBG_STEPPED;
9979 break;
9980 }
9981
9982 /* Errors and unexpected events: */
9983 case VMX_EXIT_INIT_SIGNAL:
9984 case VMX_EXIT_SIPI:
9985 case VMX_EXIT_IO_SMI:
9986 case VMX_EXIT_SMI:
9987 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9988 case VMX_EXIT_ERR_MSR_LOAD:
9989 case VMX_EXIT_ERR_MACHINE_CHECK:
9990 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
9991 break;
9992
9993 default:
9994 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9995 break;
9996 }
9997 }
9998
9999 /*
10000 * Check for debugger event breakpoints and dtrace probes.
10001 */
10002 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10003 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10004 {
10005 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
10006 if (rcStrict != VINF_SUCCESS)
10007 return rcStrict;
10008 }
10009
10010 /*
10011 * Normal processing.
10012 */
10013#ifdef HMVMX_USE_FUNCTION_TABLE
10014 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
10015#else
10016 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
10017#endif
10018}
10019
10020
10021/**
10022 * Single steps guest code using VT-x.
10023 *
10024 * @returns Strict VBox status code (i.e. informational status codes too).
10025 * @param pVCpu The cross context virtual CPU structure.
10026 *
10027 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10028 */
10029static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu)
10030{
10031 VMXTRANSIENT VmxTransient;
10032 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10033
10034 /* Set HMCPU indicators. */
10035 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10036 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10037 pVCpu->hm.s.fDebugWantRdTscExit = false;
10038 pVCpu->hm.s.fUsingDebugLoop = true;
10039
10040 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10041 VMXRUNDBGSTATE DbgState;
10042 hmR0VmxRunDebugStateInit(pVCpu, &DbgState);
10043 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10044
10045 /*
10046 * The loop.
10047 */
10048 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10049 for (uint32_t cLoops = 0; ; cLoops++)
10050 {
10051 Assert(!HMR0SuspendPending());
10052 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10053 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10054
10055 /*
10056 * Preparatory work for running guest code, this may force us to return
10057 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10058 */
10059 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10060 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10061 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
10062 if (rcStrict != VINF_SUCCESS)
10063 break;
10064
10065 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10066 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10067
10068 /*
10069 * Now we can run the guest code.
10070 */
10071 int rcRun = hmR0VmxRunGuest(pVCpu);
10072
10073 /*
10074 * Restore any residual host-state and save any bits shared between host
10075 * and guest into the guest-CPU state. Re-enables interrupts!
10076 */
10077 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10078
10079 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10080 if (RT_SUCCESS(rcRun))
10081 { /* very likely */ }
10082 else
10083 {
10084 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10085 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10086 return rcRun;
10087 }
10088
10089 /* Profile the VM-exit. */
10090 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10091 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10092 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10093 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10094 HMVMX_START_EXIT_DISPATCH_PROF();
10095
10096 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10097
10098 /*
10099 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10100 */
10101 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
10102 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10103 if (rcStrict != VINF_SUCCESS)
10104 break;
10105 if (cLoops > pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
10106 {
10107 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10108 rcStrict = VINF_EM_RAW_INTERRUPT;
10109 break;
10110 }
10111
10112 /*
10113 * Stepping: Did the RIP change, if so, consider it a single step.
10114 * Otherwise, make sure one of the TFs gets set.
10115 */
10116 if (fStepping)
10117 {
10118 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
10119 AssertRC(rc);
10120 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
10121 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
10122 {
10123 rcStrict = VINF_EM_DBG_STEPPED;
10124 break;
10125 }
10126 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
10127 }
10128
10129 /*
10130 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10131 */
10132 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10133 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10134 }
10135
10136 /*
10137 * Clear the X86_EFL_TF if necessary.
10138 */
10139 if (pVCpu->hm.s.fClearTrapFlag)
10140 {
10141 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
10142 AssertRC(rc);
10143 pVCpu->hm.s.fClearTrapFlag = false;
10144 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
10145 }
10146 /** @todo there seems to be issues with the resume flag when the monitor trap
10147 * flag is pending without being used. Seen early in bios init when
10148 * accessing APIC page in protected mode. */
10149
10150 /*
10151 * Restore VM-exit control settings as we may not reenter this function the
10152 * next time around.
10153 */
10154 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10155
10156 /* Restore HMCPU indicators. */
10157 pVCpu->hm.s.fUsingDebugLoop = false;
10158 pVCpu->hm.s.fDebugWantRdTscExit = false;
10159 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10160
10161 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10162 return rcStrict;
10163}
10164
10165
10166/** @} */
10167
10168
10169/**
10170 * Checks if any expensive dtrace probes are enabled and we should go to the
10171 * debug loop.
10172 *
10173 * @returns true if we should use debug loop, false if not.
10174 */
10175static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10176{
10177 /* It's probably faster to OR the raw 32-bit counter variables together.
10178 Since the variables are in an array and the probes are next to one
10179 another (more or less), we have good locality. So, better read
10180 eight-nine cache lines ever time and only have one conditional, than
10181 128+ conditionals, right? */
10182 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10183 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10184 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10185 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10186 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10187 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10188 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10189 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10190 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10191 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10192 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10193 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10194 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10195 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10196 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10197 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10198 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10199 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10200 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10201 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10202 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10203 ) != 0
10204 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10205 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10206 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10207 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10208 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10209 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10210 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10211 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10212 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10213 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10214 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10215 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10216 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10217 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10218 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10219 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10220 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10221 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10222 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10223 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10224 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10225 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10226 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10227 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10228 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10229 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10230 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10231 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10232 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10233 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10234 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10235 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10236 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10237 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10238 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10239 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10240 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10241 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10242 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10243 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10244 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10245 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10246 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10247 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10248 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10249 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10250 ) != 0
10251 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10252 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10253 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10254 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10255 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10256 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10257 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10258 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10259 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10260 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10261 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10262 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10263 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10264 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10265 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10266 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10267 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10268 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10269 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10270 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10271 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10272 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10273 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10274 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10275 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10276 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10277 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10278 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10279 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10280 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10281 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10282 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10283 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10284 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10285 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10286 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10287 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10288 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10289 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10290 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10291 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10292 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10293 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10294 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10295 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10296 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10297 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10298 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10299 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10300 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10301 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10302 ) != 0;
10303}
10304
10305
10306/**
10307 * Runs the guest code using VT-x.
10308 *
10309 * @returns Strict VBox status code (i.e. informational status codes too).
10310 * @param pVCpu The cross context virtual CPU structure.
10311 */
10312VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
10313{
10314 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10315 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10316 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10317 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
10318
10319 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10320
10321 VBOXSTRICTRC rcStrict;
10322 if ( !pVCpu->hm.s.fUseDebugLoop
10323 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10324 && !DBGFIsStepping(pVCpu)
10325 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
10326 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu);
10327 else
10328 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu);
10329
10330 if (rcStrict == VERR_EM_INTERPRETER)
10331 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10332 else if (rcStrict == VINF_EM_RESET)
10333 rcStrict = VINF_EM_TRIPLE_FAULT;
10334
10335 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
10336 if (RT_FAILURE(rc2))
10337 {
10338 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10339 rcStrict = rc2;
10340 }
10341 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10342 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10343 return rcStrict;
10344}
10345
10346
10347#ifndef HMVMX_USE_FUNCTION_TABLE
10348DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10349{
10350#ifdef DEBUG_ramshankar
10351#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
10352 do { \
10353 if (a_fSave != 0) \
10354 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
10355 VBOXSTRICTRC rcStrict = a_CallExpr; \
10356 if (a_fSave != 0) \
10357 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
10358 return rcStrict; \
10359 } while (0)
10360#else
10361# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
10362#endif
10363 switch (rcReason)
10364 {
10365 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
10366 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
10367 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
10368 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
10369 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
10370 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
10371 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
10372 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
10373 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
10374 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
10375 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
10376 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
10377 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
10378 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
10379 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
10380 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
10381 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
10382 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
10383 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
10384 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
10385 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
10386 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
10387 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
10388 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
10389 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
10390 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
10391 case VMX_EXIT_XDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10392 case VMX_EXIT_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10393 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
10394 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
10395 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
10396 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
10397 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
10398 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
10399
10400 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
10401 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
10402 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
10403 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
10404 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
10405 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
10406 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
10407 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
10408 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
10409
10410 case VMX_EXIT_VMCLEAR:
10411 case VMX_EXIT_VMLAUNCH:
10412 case VMX_EXIT_VMPTRLD:
10413 case VMX_EXIT_VMPTRST:
10414 case VMX_EXIT_VMREAD:
10415 case VMX_EXIT_VMRESUME:
10416 case VMX_EXIT_VMWRITE:
10417 case VMX_EXIT_VMXOFF:
10418 case VMX_EXIT_VMXON:
10419 case VMX_EXIT_INVEPT:
10420 case VMX_EXIT_INVVPID:
10421 case VMX_EXIT_VMFUNC:
10422 case VMX_EXIT_XSAVES:
10423 case VMX_EXIT_XRSTORS:
10424 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10425
10426 case VMX_EXIT_ENCLS:
10427 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10428 case VMX_EXIT_PML_FULL:
10429 default:
10430 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
10431 }
10432#undef VMEXIT_CALL_RET
10433}
10434#endif /* !HMVMX_USE_FUNCTION_TABLE */
10435
10436
10437#ifdef VBOX_STRICT
10438/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10439# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10440 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10441
10442# define HMVMX_ASSERT_PREEMPT_CPUID() \
10443 do { \
10444 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10445 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10446 } while (0)
10447
10448# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10449 do { \
10450 AssertPtr((a_pVCpu)); \
10451 AssertPtr((a_pVmxTransient)); \
10452 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
10453 Assert(ASMIntAreEnabled()); \
10454 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10455 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10456 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
10457 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10458 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
10459 HMVMX_ASSERT_PREEMPT_CPUID(); \
10460 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10461 } while (0)
10462
10463# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10464 do { \
10465 Log4Func(("\n")); \
10466 } while (0)
10467#else
10468# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10469 do { \
10470 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10471 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
10472 } while (0)
10473# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
10474#endif
10475
10476
10477/**
10478 * Advances the guest RIP by the specified number of bytes.
10479 *
10480 * @param pVCpu The cross context virtual CPU structure.
10481 * @param cbInstr Number of bytes to advance the RIP by.
10482 *
10483 * @remarks No-long-jump zone!!!
10484 */
10485DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
10486{
10487 /* Advance the RIP. */
10488 pVCpu->cpum.GstCtx.rip += cbInstr;
10489 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
10490
10491 /* Update interrupt inhibition. */
10492 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10493 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
10494 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10495}
10496
10497
10498/**
10499 * Advances the guest RIP after reading it from the VMCS.
10500 *
10501 * @returns VBox status code, no informational status codes.
10502 * @param pVCpu The cross context virtual CPU structure.
10503 * @param pVmxTransient Pointer to the VMX transient structure.
10504 *
10505 * @remarks No-long-jump zone!!!
10506 */
10507static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10508{
10509 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10510 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
10511 AssertRCReturn(rc, rc);
10512
10513 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
10514
10515 /*
10516 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10517 * pending debug exception field as it takes care of priority of events.
10518 *
10519 * See Intel spec. 32.2.1 "Debug Exceptions".
10520 */
10521 if ( !pVCpu->hm.s.fSingleInstruction
10522 && pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
10523 {
10524 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10525 AssertRCReturn(rc, rc);
10526 }
10527
10528 return VINF_SUCCESS;
10529}
10530
10531
10532/**
10533 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10534 * and update error record fields accordingly.
10535 *
10536 * @return VMX_IGS_* return codes.
10537 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10538 * wrong with the guest state.
10539 *
10540 * @param pVCpu The cross context virtual CPU structure.
10541 *
10542 * @remarks This function assumes our cache of the VMCS controls
10543 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10544 */
10545static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu)
10546{
10547#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10548#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10549 uError = (err); \
10550 break; \
10551 } else do { } while (0)
10552
10553 int rc;
10554 PVM pVM = pVCpu->CTX_SUFF(pVM);
10555 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10556 uint32_t uError = VMX_IGS_ERROR;
10557 uint32_t u32Val;
10558 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10559
10560 do
10561 {
10562 /*
10563 * CR0.
10564 */
10565 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10566 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10567 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10568 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10569 if (fUnrestrictedGuest)
10570 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
10571
10572 uint32_t u32GuestCr0;
10573 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
10574 AssertRCBreak(rc);
10575 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
10576 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
10577 if ( !fUnrestrictedGuest
10578 && (u32GuestCr0 & X86_CR0_PG)
10579 && !(u32GuestCr0 & X86_CR0_PE))
10580 {
10581 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10582 }
10583
10584 /*
10585 * CR4.
10586 */
10587 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10588 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10589
10590 uint32_t u32GuestCr4;
10591 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
10592 AssertRCBreak(rc);
10593 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
10594 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
10595
10596 /*
10597 * IA32_DEBUGCTL MSR.
10598 */
10599 uint64_t u64Val;
10600 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10601 AssertRCBreak(rc);
10602 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10603 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10604 {
10605 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10606 }
10607 uint64_t u64DebugCtlMsr = u64Val;
10608
10609#ifdef VBOX_STRICT
10610 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10611 AssertRCBreak(rc);
10612 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10613#endif
10614 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
10615
10616 /*
10617 * RIP and RFLAGS.
10618 */
10619 uint32_t u32Eflags;
10620#if HC_ARCH_BITS == 64
10621 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10622 AssertRCBreak(rc);
10623 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10624 if ( !fLongModeGuest
10625 || !pCtx->cs.Attr.n.u1Long)
10626 {
10627 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10628 }
10629 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10630 * must be identical if the "IA-32e mode guest" VM-entry
10631 * control is 1 and CS.L is 1. No check applies if the
10632 * CPU supports 64 linear-address bits. */
10633
10634 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10635 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10636 AssertRCBreak(rc);
10637 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10638 VMX_IGS_RFLAGS_RESERVED);
10639 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10640 u32Eflags = u64Val;
10641#else
10642 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10643 AssertRCBreak(rc);
10644 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10645 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10646#endif
10647
10648 if ( fLongModeGuest
10649 || ( fUnrestrictedGuest
10650 && !(u32GuestCr0 & X86_CR0_PE)))
10651 {
10652 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10653 }
10654
10655 uint32_t u32EntryInfo;
10656 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10657 AssertRCBreak(rc);
10658 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
10659 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10660 {
10661 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10662 }
10663
10664 /*
10665 * 64-bit checks.
10666 */
10667#if HC_ARCH_BITS == 64
10668 if (fLongModeGuest)
10669 {
10670 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10671 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10672 }
10673
10674 if ( !fLongModeGuest
10675 && (u32GuestCr4 & X86_CR4_PCIDE))
10676 {
10677 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10678 }
10679
10680 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10681 * 51:32 beyond the processor's physical-address width are 0. */
10682
10683 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10684 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10685 {
10686 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10687 }
10688
10689 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10690 AssertRCBreak(rc);
10691 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10692
10693 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10694 AssertRCBreak(rc);
10695 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10696#endif
10697
10698 /*
10699 * PERF_GLOBAL MSR.
10700 */
10701 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
10702 {
10703 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10704 AssertRCBreak(rc);
10705 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10706 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10707 }
10708
10709 /*
10710 * PAT MSR.
10711 */
10712 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
10713 {
10714 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10715 AssertRCBreak(rc);
10716 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10717 for (unsigned i = 0; i < 8; i++)
10718 {
10719 uint8_t u8Val = (u64Val & 0xff);
10720 if ( u8Val != 0 /* UC */
10721 && u8Val != 1 /* WC */
10722 && u8Val != 4 /* WT */
10723 && u8Val != 5 /* WP */
10724 && u8Val != 6 /* WB */
10725 && u8Val != 7 /* UC- */)
10726 {
10727 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10728 }
10729 u64Val >>= 8;
10730 }
10731 }
10732
10733 /*
10734 * EFER MSR.
10735 */
10736 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
10737 {
10738 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10739 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10740 AssertRCBreak(rc);
10741 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10742 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10743 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10744 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
10745 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10746 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10747 || !(u32GuestCr0 & X86_CR0_PG)
10748 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10749 VMX_IGS_EFER_LMA_LME_MISMATCH);
10750 }
10751
10752 /*
10753 * Segment registers.
10754 */
10755 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10756 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10757 if (!(u32Eflags & X86_EFL_VM))
10758 {
10759 /* CS */
10760 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10761 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10762 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10763 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10764 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10765 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10766 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10767 /* CS cannot be loaded with NULL in protected mode. */
10768 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10769 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10770 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10771 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10772 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10773 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10774 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10775 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10776 else
10777 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10778
10779 /* SS */
10780 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10781 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10782 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10783 if ( !(pCtx->cr0 & X86_CR0_PE)
10784 || pCtx->cs.Attr.n.u4Type == 3)
10785 {
10786 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10787 }
10788 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10789 {
10790 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10791 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10792 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10793 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10794 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10795 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10796 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10797 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10798 }
10799
10800 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmenReg(). */
10801 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10802 {
10803 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10804 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10805 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10806 || pCtx->ds.Attr.n.u4Type > 11
10807 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10808 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10809 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10810 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10811 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10812 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10813 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10814 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10815 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10816 }
10817 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10818 {
10819 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10820 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10821 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10822 || pCtx->es.Attr.n.u4Type > 11
10823 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10824 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10825 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10826 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10827 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10828 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10829 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10830 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10831 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10832 }
10833 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10834 {
10835 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10836 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10837 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10838 || pCtx->fs.Attr.n.u4Type > 11
10839 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10840 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10841 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10842 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10843 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10844 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10845 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10846 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10847 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10848 }
10849 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10850 {
10851 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10852 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10853 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10854 || pCtx->gs.Attr.n.u4Type > 11
10855 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10856 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10857 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10858 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10859 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10860 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10861 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10862 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10863 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10864 }
10865 /* 64-bit capable CPUs. */
10866#if HC_ARCH_BITS == 64
10867 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10868 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10869 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10870 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10871 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10872 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10873 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10874 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10875 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10876 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10877 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10878#endif
10879 }
10880 else
10881 {
10882 /* V86 mode checks. */
10883 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10884 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10885 {
10886 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10887 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10888 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10889 }
10890 else
10891 {
10892 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10893 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10894 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10895 }
10896
10897 /* CS */
10898 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10899 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10900 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10901 /* SS */
10902 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10903 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10904 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10905 /* DS */
10906 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10907 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10908 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10909 /* ES */
10910 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10911 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10912 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10913 /* FS */
10914 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10915 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10916 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10917 /* GS */
10918 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10919 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10920 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10921 /* 64-bit capable CPUs. */
10922#if HC_ARCH_BITS == 64
10923 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10924 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10925 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10926 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10927 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10928 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10929 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10930 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10931 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10932 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10933 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10934#endif
10935 }
10936
10937 /*
10938 * TR.
10939 */
10940 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
10941 /* 64-bit capable CPUs. */
10942#if HC_ARCH_BITS == 64
10943 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
10944#endif
10945 if (fLongModeGuest)
10946 {
10947 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
10948 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
10949 }
10950 else
10951 {
10952 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
10953 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
10954 VMX_IGS_TR_ATTR_TYPE_INVALID);
10955 }
10956 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
10957 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
10958 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
10959 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
10960 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10961 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
10962 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10963 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
10964
10965 /*
10966 * GDTR and IDTR.
10967 */
10968#if HC_ARCH_BITS == 64
10969 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
10970 AssertRCBreak(rc);
10971 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
10972
10973 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
10974 AssertRCBreak(rc);
10975 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
10976#endif
10977
10978 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
10979 AssertRCBreak(rc);
10980 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10981
10982 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
10983 AssertRCBreak(rc);
10984 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10985
10986 /*
10987 * Guest Non-Register State.
10988 */
10989 /* Activity State. */
10990 uint32_t u32ActivityState;
10991 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
10992 AssertRCBreak(rc);
10993 HMVMX_CHECK_BREAK( !u32ActivityState
10994 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
10995 VMX_IGS_ACTIVITY_STATE_INVALID);
10996 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
10997 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
10998 uint32_t u32IntrState;
10999 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
11000 AssertRCBreak(rc);
11001 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
11002 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11003 {
11004 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11005 }
11006
11007 /** @todo Activity state and injecting interrupts. Left as a todo since we
11008 * currently don't use activity states but ACTIVE. */
11009
11010 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
11011 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11012
11013 /* Guest interruptibility-state. */
11014 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11015 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
11016 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11017 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11018 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11019 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
11020 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11021 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
11022 {
11023 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
11024 {
11025 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11026 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11027 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11028 }
11029 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11030 {
11031 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11032 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11033 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
11034 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11035 }
11036 }
11037 /** @todo Assumes the processor is not in SMM. */
11038 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11039 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11040 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
11041 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11042 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11043 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
11044 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
11045 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11046 {
11047 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
11048 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11049 }
11050
11051 /* Pending debug exceptions. */
11052#if HC_ARCH_BITS == 64
11053 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
11054 AssertRCBreak(rc);
11055 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11056 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11057 u32Val = u64Val; /* For pending debug exceptions checks below. */
11058#else
11059 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
11060 AssertRCBreak(rc);
11061 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11062 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11063#endif
11064
11065 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11066 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
11067 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11068 {
11069 if ( (u32Eflags & X86_EFL_TF)
11070 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11071 {
11072 /* Bit 14 is PendingDebug.BS. */
11073 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11074 }
11075 if ( !(u32Eflags & X86_EFL_TF)
11076 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11077 {
11078 /* Bit 14 is PendingDebug.BS. */
11079 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11080 }
11081 }
11082
11083 /* VMCS link pointer. */
11084 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11085 AssertRCBreak(rc);
11086 if (u64Val != UINT64_C(0xffffffffffffffff))
11087 {
11088 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11089 /** @todo Bits beyond the processor's physical-address width MBZ. */
11090 /** @todo 32-bit located in memory referenced by value of this field (as a
11091 * physical address) must contain the processor's VMCS revision ID. */
11092 /** @todo SMM checks. */
11093 }
11094
11095 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11096 * not using Nested Paging? */
11097 if ( pVM->hm.s.fNestedPaging
11098 && !fLongModeGuest
11099 && CPUMIsGuestInPAEModeEx(pCtx))
11100 {
11101 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11102 AssertRCBreak(rc);
11103 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11104
11105 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11106 AssertRCBreak(rc);
11107 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11108
11109 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11110 AssertRCBreak(rc);
11111 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11112
11113 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11114 AssertRCBreak(rc);
11115 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11116 }
11117
11118 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11119 if (uError == VMX_IGS_ERROR)
11120 uError = VMX_IGS_REASON_NOT_FOUND;
11121 } while (0);
11122
11123 pVCpu->hm.s.u32HMError = uError;
11124 return uError;
11125
11126#undef HMVMX_ERROR_BREAK
11127#undef HMVMX_CHECK_BREAK
11128}
11129
11130
11131/** @name VM-exit handlers.
11132 * @{
11133 */
11134/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11135/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11136/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11137
11138/**
11139 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11140 */
11141HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11142{
11143 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11144 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11145 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11146 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11147 return VINF_SUCCESS;
11148 return VINF_EM_RAW_INTERRUPT;
11149}
11150
11151
11152/**
11153 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11154 */
11155HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11156{
11157 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11158 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11159
11160 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11161 AssertRCReturn(rc, rc);
11162
11163 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11164 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
11165 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
11166 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11167
11168 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11169 {
11170 /*
11171 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
11172 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
11173 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
11174 *
11175 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11176 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
11177 */
11178 VMXDispatchHostNmi();
11179 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11180 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11181 return VINF_SUCCESS;
11182 }
11183
11184 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11185 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
11186 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11187 { /* likely */ }
11188 else
11189 {
11190 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11191 rcStrictRc1 = VINF_SUCCESS;
11192 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11193 return rcStrictRc1;
11194 }
11195
11196 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11197 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
11198 switch (uIntType)
11199 {
11200 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11201 Assert(uVector == X86_XCPT_DB);
11202 RT_FALL_THRU();
11203 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11204 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
11205 RT_FALL_THRU();
11206 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11207 {
11208 /*
11209 * If there's any exception caused as a result of event injection, the resulting
11210 * secondary/final execption will be pending, we shall continue guest execution
11211 * after injecting the event. The page-fault case is complicated and we manually
11212 * handle any currently pending event in hmR0VmxExitXcptPF.
11213 */
11214 if (!pVCpu->hm.s.Event.fPending)
11215 { /* likely */ }
11216 else if (uVector != X86_XCPT_PF)
11217 {
11218 rc = VINF_SUCCESS;
11219 break;
11220 }
11221
11222 switch (uVector)
11223 {
11224 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
11225 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
11226 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
11227 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
11228 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
11229 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
11230
11231 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11232 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11233 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11234 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11235 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11236 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11237 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11238 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11239 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11240 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11241 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11242 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11243 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11244 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11245 default:
11246 {
11247 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11248 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11249 {
11250 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11251 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11252 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
11253
11254 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
11255 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11256 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11257 AssertRCReturn(rc, rc);
11258 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11259 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11260 0 /* GCPtrFaultAddress */);
11261 }
11262 else
11263 {
11264 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11265 pVCpu->hm.s.u32HMError = uVector;
11266 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11267 }
11268 break;
11269 }
11270 }
11271 break;
11272 }
11273
11274 default:
11275 {
11276 pVCpu->hm.s.u32HMError = uExitIntInfo;
11277 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11278 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
11279 break;
11280 }
11281 }
11282 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11283 return rc;
11284}
11285
11286
11287/**
11288 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11289 */
11290HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11291{
11292 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11293
11294 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11295 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11296
11297 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11298 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11299 return VINF_SUCCESS;
11300}
11301
11302
11303/**
11304 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11305 */
11306HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11307{
11308 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11309 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)))
11310 {
11311 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11312 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11313 }
11314
11315 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11316
11317 /*
11318 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11319 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11320 */
11321 uint32_t fIntrState = 0;
11322 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11323 AssertRCReturn(rc, rc);
11324
11325 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
11326 if ( fBlockSti
11327 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11328 {
11329 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11330 }
11331
11332 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11333 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11334
11335 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11336 return VINF_SUCCESS;
11337}
11338
11339
11340/**
11341 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11342 */
11343HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11344{
11345 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11346 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11347}
11348
11349
11350/**
11351 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11352 */
11353HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11354{
11355 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11356 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11357}
11358
11359
11360/**
11361 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11362 */
11363HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11364{
11365 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11366
11367 /*
11368 * Get the state we need and update the exit history entry.
11369 */
11370 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11371 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
11372 AssertRCReturn(rc, rc);
11373
11374 VBOXSTRICTRC rcStrict;
11375 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
11376 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
11377 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
11378 if (!pExitRec)
11379 {
11380 /*
11381 * Regular CPUID instruction execution.
11382 */
11383 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
11384 if (rcStrict == VINF_SUCCESS)
11385 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RAX
11386 | HM_CHANGED_GUEST_RCX | HM_CHANGED_GUEST_RDX | HM_CHANGED_GUEST_RBX);
11387 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11388 {
11389 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11390 rcStrict = VINF_SUCCESS;
11391 }
11392 }
11393 else
11394 {
11395 /*
11396 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
11397 */
11398 int rc2 = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11399 AssertRCReturn(rc2, rc2);
11400
11401 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
11402 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
11403
11404 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
11405 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
11406
11407 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
11408 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
11409 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
11410 }
11411 return rcStrict;
11412}
11413
11414
11415/**
11416 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11417 */
11418HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11419{
11420 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11421 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR4);
11422 AssertRCReturn(rc, rc);
11423
11424 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
11425 return VINF_EM_RAW_EMULATE_INSTR;
11426
11427 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11428 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11429}
11430
11431
11432/**
11433 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11434 */
11435HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11436{
11437 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11438 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
11439 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11440 AssertRCReturn(rc, rc);
11441
11442 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
11443 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11444 {
11445 /* If we get a spurious VM-exit when offsetting is enabled,
11446 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11447 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11448 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11449 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11450 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11451 }
11452 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11453 {
11454 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11455 rcStrict = VINF_SUCCESS;
11456 }
11457 return rcStrict;
11458}
11459
11460
11461/**
11462 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11463 */
11464HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11465{
11466 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11467 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
11468 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11469 AssertRCReturn(rc, rc);
11470
11471 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
11472 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11473 {
11474 /* If we get a spurious VM-exit when offsetting is enabled,
11475 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11476 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11477 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11478 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11479 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX | HM_CHANGED_GUEST_RCX);
11480 }
11481 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11482 {
11483 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11484 rcStrict = VINF_SUCCESS;
11485 }
11486 return rcStrict;
11487}
11488
11489
11490/**
11491 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11492 */
11493HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11494{
11495 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11496 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11497 AssertRCReturn(rc, rc);
11498
11499 PVM pVM = pVCpu->CTX_SUFF(pVM);
11500 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11501 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11502 if (RT_LIKELY(rc == VINF_SUCCESS))
11503 {
11504 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11505 Assert(pVmxTransient->cbInstr == 2);
11506 }
11507 else
11508 {
11509 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11510 rc = VERR_EM_INTERPRETER;
11511 }
11512 return rc;
11513}
11514
11515
11516/**
11517 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11518 */
11519HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11520{
11521 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11522
11523 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11524 if (EMAreHypercallInstructionsEnabled(pVCpu))
11525 {
11526 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_SS
11527 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
11528 AssertRCReturn(rc, rc);
11529
11530 /* Perform the hypercall. */
11531 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
11532 if (rcStrict == VINF_SUCCESS)
11533 {
11534 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11535 AssertRCReturn(rc, rc);
11536 }
11537 else
11538 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11539 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11540 || RT_FAILURE(rcStrict));
11541
11542 /* If the hypercall changes anything other than guest's general-purpose registers,
11543 we would need to reload the guest changed bits here before VM-entry. */
11544 }
11545 else
11546 Log4Func(("Hypercalls not enabled\n"));
11547
11548 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11549 if (RT_FAILURE(rcStrict))
11550 {
11551 hmR0VmxSetPendingXcptUD(pVCpu);
11552 rcStrict = VINF_SUCCESS;
11553 }
11554
11555 return rcStrict;
11556}
11557
11558
11559/**
11560 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11561 */
11562HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11563{
11564 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11565 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11566
11567 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11568 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11569 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
11570 AssertRCReturn(rc, rc);
11571
11572 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
11573
11574 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
11575 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11576 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11577 {
11578 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11579 rcStrict = VINF_SUCCESS;
11580 }
11581 else
11582 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
11583 VBOXSTRICTRC_VAL(rcStrict)));
11584 return rcStrict;
11585}
11586
11587
11588/**
11589 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11590 */
11591HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11592{
11593 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11594 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11595 AssertRCReturn(rc, rc);
11596
11597 PVM pVM = pVCpu->CTX_SUFF(pVM);
11598 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11599 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11600 if (RT_LIKELY(rc == VINF_SUCCESS))
11601 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11602 else
11603 {
11604 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11605 rc = VERR_EM_INTERPRETER;
11606 }
11607 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11608 return rc;
11609}
11610
11611
11612/**
11613 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11614 */
11615HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11616{
11617 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11618 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11619 AssertRCReturn(rc, rc);
11620
11621 PVM pVM = pVCpu->CTX_SUFF(pVM);
11622 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11623 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11624 rc = VBOXSTRICTRC_VAL(rc2);
11625 if (RT_LIKELY( rc == VINF_SUCCESS
11626 || rc == VINF_EM_HALT))
11627 {
11628 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11629 AssertRCReturn(rc3, rc3);
11630
11631 if ( rc == VINF_EM_HALT
11632 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
11633 rc = VINF_SUCCESS;
11634 }
11635 else
11636 {
11637 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11638 rc = VERR_EM_INTERPRETER;
11639 }
11640 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11641 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11642 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11643 return rc;
11644}
11645
11646
11647/**
11648 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11649 */
11650HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11651{
11652 /*
11653 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
11654 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
11655 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
11656 * VMX root operation. If we get here, something funny is going on.
11657 *
11658 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
11659 */
11660 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11661 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
11662 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11663}
11664
11665
11666/**
11667 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11668 */
11669HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11670{
11671 /*
11672 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
11673 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
11674 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
11675 * an SMI. If we get here, something funny is going on.
11676 *
11677 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
11678 * See Intel spec. 25.3 "Other Causes of VM-Exits"
11679 */
11680 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11681 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
11682 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11683}
11684
11685
11686/**
11687 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11688 */
11689HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11690{
11691 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11692 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11693 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
11694 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11695}
11696
11697
11698/**
11699 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11700 */
11701HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11702{
11703 /*
11704 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
11705 * We don't make use of it as our guests don't have direct access to the host LAPIC.
11706 * See Intel spec. 25.3 "Other Causes of VM-exits".
11707 */
11708 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11709 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
11710 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11711}
11712
11713
11714/**
11715 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11716 * VM-exit.
11717 */
11718HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11719{
11720 /*
11721 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11722 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11723 *
11724 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11725 * See Intel spec. "23.8 Restrictions on VMX operation".
11726 */
11727 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11728 return VINF_SUCCESS;
11729}
11730
11731
11732/**
11733 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11734 * VM-exit.
11735 */
11736HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11737{
11738 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11739 return VINF_EM_RESET;
11740}
11741
11742
11743/**
11744 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11745 */
11746HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11747{
11748 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11749 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_HLT_EXIT);
11750
11751 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11752 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
11753 AssertRCReturn(rc, rc);
11754
11755 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
11756 rc = VINF_SUCCESS;
11757 else
11758 rc = VINF_EM_HALT;
11759
11760 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11761 if (rc != VINF_SUCCESS)
11762 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11763 return rc;
11764}
11765
11766
11767/**
11768 * VM-exit handler for instructions that result in a \#UD exception delivered to
11769 * the guest.
11770 */
11771HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11772{
11773 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11774 hmR0VmxSetPendingXcptUD(pVCpu);
11775 return VINF_SUCCESS;
11776}
11777
11778
11779/**
11780 * VM-exit handler for expiry of the VMX preemption timer.
11781 */
11782HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11783{
11784 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11785
11786 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11787 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11788
11789 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11790 PVM pVM = pVCpu->CTX_SUFF(pVM);
11791 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11792 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11793 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11794}
11795
11796
11797/**
11798 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11799 */
11800HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11801{
11802 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11803
11804 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11805 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
11806 AssertRCReturn(rc, rc);
11807
11808 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11809 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11810 : HM_CHANGED_RAISED_XCPT_MASK);
11811
11812 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11813 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
11814
11815 return rcStrict;
11816}
11817
11818
11819/**
11820 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11821 */
11822HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11823{
11824 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11825 /** @todo Use VM-exit instruction information. */
11826 return VERR_EM_INTERPRETER;
11827}
11828
11829
11830/**
11831 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11832 * Error VM-exit.
11833 */
11834HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11835{
11836 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11837 AssertRCReturn(rc, rc);
11838 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11839 if (RT_FAILURE(rc))
11840 return rc;
11841
11842 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
11843 NOREF(uInvalidReason);
11844
11845#ifdef VBOX_STRICT
11846 uint32_t fIntrState;
11847 RTHCUINTREG uHCReg;
11848 uint64_t u64Val;
11849 uint32_t u32Val;
11850
11851 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11852 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11853 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11854 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11855 AssertRCReturn(rc, rc);
11856
11857 Log4(("uInvalidReason %u\n", uInvalidReason));
11858 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11859 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11860 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11861 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
11862
11863 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11864 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11865 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11866 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11867 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11868 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11869 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11870 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11871 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11872 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11873 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11874 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11875
11876 hmR0DumpRegs(pVCpu);
11877#else
11878 NOREF(pVmxTransient);
11879#endif
11880
11881 return VERR_VMX_INVALID_GUEST_STATE;
11882}
11883
11884
11885/**
11886 * VM-exit handler for VM-entry failure due to an MSR-load
11887 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11888 */
11889HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11890{
11891 AssertMsgFailed(("Unexpected MSR-load exit\n"));
11892 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11893}
11894
11895
11896/**
11897 * VM-exit handler for VM-entry failure due to a machine-check event
11898 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11899 */
11900HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11901{
11902 AssertMsgFailed(("Unexpected machine-check event exit\n"));
11903 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11904}
11905
11906
11907/**
11908 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11909 * theory.
11910 */
11911HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11912{
11913 RT_NOREF2(pVCpu, pVmxTransient);
11914 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
11915 return VERR_VMX_UNDEFINED_EXIT_CODE;
11916}
11917
11918
11919/**
11920 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11921 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11922 * Conditional VM-exit.
11923 */
11924HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11925{
11926 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11927
11928 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
11929 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11930 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
11931 return VERR_EM_INTERPRETER;
11932 AssertMsgFailed(("Unexpected XDTR access\n"));
11933 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11934}
11935
11936
11937/**
11938 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11939 */
11940HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11941{
11942 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11943
11944 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
11945 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
11946 return VERR_EM_INTERPRETER;
11947 AssertMsgFailed(("Unexpected RDRAND exit\n"));
11948 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11949}
11950
11951
11952/**
11953 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11954 */
11955HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11956{
11957 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11958
11959 /** @todo Optimize this: We currently drag in in the whole MSR state
11960 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11961 * MSRs required. That would require changes to IEM and possibly CPUM too.
11962 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11963 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; NOREF(idMsr); /* Save it. */
11964 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11965 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11966 AssertRCReturn(rc, rc);
11967
11968 Log4Func(("ecx=%#RX32\n", idMsr));
11969
11970#ifdef VBOX_STRICT
11971 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
11972 {
11973 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr)
11974 && idMsr != MSR_K6_EFER)
11975 {
11976 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
11977 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11978 }
11979 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
11980 {
11981 VMXMSREXITREAD enmRead;
11982 VMXMSREXITWRITE enmWrite;
11983 int rc2 = hmR0VmxGetMsrPermission(pVCpu, idMsr, &enmRead, &enmWrite);
11984 AssertRCReturn(rc2, rc2);
11985 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
11986 {
11987 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
11988 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11989 }
11990 }
11991 }
11992#endif
11993
11994 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
11995 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
11996 if (rcStrict == VINF_SUCCESS)
11997 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11998 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11999 else if (rcStrict == VINF_IEM_RAISED_XCPT)
12000 {
12001 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12002 rcStrict = VINF_SUCCESS;
12003 }
12004 else
12005 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12006
12007 return rcStrict;
12008}
12009
12010
12011/**
12012 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12013 */
12014HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12015{
12016 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12017
12018 /** @todo Optimize this: We currently drag in in the whole MSR state
12019 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
12020 * MSRs required. That would require changes to IEM and possibly CPUM too.
12021 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
12022 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; /* Save it. */
12023 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12024 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
12025 AssertRCReturn(rc, rc);
12026
12027 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
12028
12029 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
12030 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12031
12032 if (rcStrict == VINF_SUCCESS)
12033 {
12034 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12035
12036 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12037 if ( idMsr == MSR_IA32_APICBASE
12038 || ( idMsr >= MSR_IA32_X2APIC_START
12039 && idMsr <= MSR_IA32_X2APIC_END))
12040 {
12041 /*
12042 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12043 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before IEM changes it.
12044 */
12045 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
12046 }
12047 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12048 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12049 else if (idMsr == MSR_K6_EFER)
12050 {
12051 /*
12052 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12053 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12054 * the other bits as well, SCE and NXE. See @bugref{7368}.
12055 */
12056 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS
12057 | HM_CHANGED_VMX_EXIT_CTLS);
12058 }
12059
12060 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12061 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
12062 {
12063 switch (idMsr)
12064 {
12065 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12066 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12067 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12068 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
12069 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
12070 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
12071 default:
12072 {
12073 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12074 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12075 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12076 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
12077 break;
12078 }
12079 }
12080 }
12081#ifdef VBOX_STRICT
12082 else
12083 {
12084 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12085 switch (idMsr)
12086 {
12087 case MSR_IA32_SYSENTER_CS:
12088 case MSR_IA32_SYSENTER_EIP:
12089 case MSR_IA32_SYSENTER_ESP:
12090 case MSR_K8_FS_BASE:
12091 case MSR_K8_GS_BASE:
12092 {
12093 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
12094 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12095 }
12096
12097 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12098 default:
12099 {
12100 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12101 {
12102 /* EFER writes are always intercepted, see hmR0VmxExportGuestMsrs(). */
12103 if (idMsr != MSR_K6_EFER)
12104 {
12105 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12106 idMsr));
12107 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12108 }
12109 }
12110
12111 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12112 {
12113 VMXMSREXITREAD enmRead;
12114 VMXMSREXITWRITE enmWrite;
12115 int rc2 = hmR0VmxGetMsrPermission(pVCpu, idMsr, &enmRead, &enmWrite);
12116 AssertRCReturn(rc2, rc2);
12117 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12118 {
12119 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
12120 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12121 }
12122 }
12123 break;
12124 }
12125 }
12126 }
12127#endif /* VBOX_STRICT */
12128 }
12129 else if (rcStrict == VINF_IEM_RAISED_XCPT)
12130 {
12131 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12132 rcStrict = VINF_SUCCESS;
12133 }
12134 else
12135 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12136
12137 return rcStrict;
12138}
12139
12140
12141/**
12142 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12143 */
12144HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12145{
12146 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12147 /** @todo The guest has likely hit a contended spinlock. We might want to
12148 * poke a schedule different guest VCPU. */
12149 return VINF_EM_RAW_INTERRUPT;
12150}
12151
12152
12153/**
12154 * VM-exit handler for when the TPR value is lowered below the specified
12155 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12156 */
12157HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12158{
12159 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12160 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
12161
12162 /*
12163 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12164 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12165 */
12166 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12167 return VINF_SUCCESS;
12168}
12169
12170
12171/**
12172 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12173 * VM-exit.
12174 *
12175 * @retval VINF_SUCCESS when guest execution can continue.
12176 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12177 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12178 * interpreter.
12179 */
12180HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12181{
12182 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12183 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12184
12185 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12186 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12187 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12188 AssertRCReturn(rc, rc);
12189
12190 VBOXSTRICTRC rcStrict;
12191 PVM pVM = pVCpu->CTX_SUFF(pVM);
12192 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
12193 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
12194 switch (uAccessType)
12195 {
12196 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
12197 {
12198 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
12199 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12200 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
12201 AssertMsg( rcStrict == VINF_SUCCESS
12202 || rcStrict == VINF_IEM_RAISED_XCPT
12203 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12204
12205 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12206 {
12207 case 0:
12208 {
12209 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12210 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12211 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
12212 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
12213
12214 /*
12215 * This is a kludge for handling switches back to real mode when we try to use
12216 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
12217 * deal with special selector values, so we have to return to ring-3 and run
12218 * there till the selector values are V86 mode compatible.
12219 *
12220 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
12221 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
12222 * at the end of this function.
12223 */
12224 if ( rc == VINF_SUCCESS
12225 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
12226 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
12227 && (uOldCr0 & X86_CR0_PE)
12228 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
12229 {
12230 /** @todo check selectors rather than returning all the time. */
12231 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
12232 rcStrict = VINF_EM_RESCHEDULE_REM;
12233 }
12234 break;
12235 }
12236
12237 case 2:
12238 {
12239 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
12240 /* Nothing to do here, CR2 it's not part of the VMCS. */
12241 break;
12242 }
12243
12244 case 3:
12245 {
12246 Assert( !pVM->hm.s.fNestedPaging
12247 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12248 || pVCpu->hm.s.fUsingDebugLoop);
12249 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
12250 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12251 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
12252 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
12253 break;
12254 }
12255
12256 case 4:
12257 {
12258 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
12259 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12260 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
12261 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
12262 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12263 break;
12264 }
12265
12266 case 8:
12267 {
12268 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
12269 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12270 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12271 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
12272 break;
12273 }
12274 default:
12275 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
12276 break;
12277 }
12278 break;
12279 }
12280
12281 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
12282 {
12283 Assert( !pVM->hm.s.fNestedPaging
12284 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12285 || pVCpu->hm.s.fUsingDebugLoop
12286 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
12287 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12288 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
12289 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12290
12291 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
12292 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
12293 AssertMsg( rcStrict == VINF_SUCCESS
12294 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12295#ifdef VBOX_WITH_STATISTICS
12296 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12297 {
12298 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
12299 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
12300 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
12301 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
12302 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
12303 }
12304#endif
12305 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12306 VBOXSTRICTRC_VAL(rcStrict)));
12307 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
12308 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
12309 else
12310 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12311 break;
12312 }
12313
12314 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12315 {
12316 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12317 AssertMsg( rcStrict == VINF_SUCCESS
12318 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12319
12320 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12321 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12322 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12323 break;
12324 }
12325
12326 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12327 {
12328 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
12329 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual));
12330 AssertMsg( rcStrict == VINF_SUCCESS
12331 || rcStrict == VINF_IEM_RAISED_XCPT
12332 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12333
12334 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12335 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12336 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12337 break;
12338 }
12339
12340 default:
12341 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12342 VERR_VMX_UNEXPECTED_EXCEPTION);
12343 }
12344
12345 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
12346 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
12347 if (rcStrict == VINF_IEM_RAISED_XCPT)
12348 {
12349 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12350 rcStrict = VINF_SUCCESS;
12351 }
12352
12353 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12354 NOREF(pVM);
12355 return rcStrict;
12356}
12357
12358
12359/**
12360 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12361 * VM-exit.
12362 */
12363HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12364{
12365 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12366 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12367
12368 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12369 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12370 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12371 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER);
12372 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12373 AssertRCReturn(rc, rc);
12374
12375 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12376 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
12377 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
12378 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
12379 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
12380 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
12381 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12382 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12383
12384 /*
12385 * Update exit history to see if this exit can be optimized.
12386 */
12387 VBOXSTRICTRC rcStrict;
12388 PCEMEXITREC pExitRec = NULL;
12389 if ( !fGstStepping
12390 && !fDbgStepping)
12391 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12392 !fIOString
12393 ? !fIOWrite
12394 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
12395 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
12396 : !fIOWrite
12397 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
12398 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
12399 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12400 if (!pExitRec)
12401 {
12402 /* I/O operation lookup arrays. */
12403 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12404 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
12405 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12406 uint32_t const cbInstr = pVmxTransient->cbInstr;
12407 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12408 PVM pVM = pVCpu->CTX_SUFF(pVM);
12409 if (fIOString)
12410 {
12411 /*
12412 * INS/OUTS - I/O String instruction.
12413 *
12414 * Use instruction-information if available, otherwise fall back on
12415 * interpreting the instruction.
12416 */
12417 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12418 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
12419 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
12420 if (fInsOutsInfo)
12421 {
12422 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12423 AssertRCReturn(rc2, rc2);
12424 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12425 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12426 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12427 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
12428 if (fIOWrite)
12429 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12430 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12431 else
12432 {
12433 /*
12434 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12435 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12436 * See Intel Instruction spec. for "INS".
12437 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12438 */
12439 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12440 }
12441 }
12442 else
12443 rcStrict = IEMExecOne(pVCpu);
12444
12445 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12446 fUpdateRipAlready = true;
12447 }
12448 else
12449 {
12450 /*
12451 * IN/OUT - I/O instruction.
12452 */
12453 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12454 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12455 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
12456 if (fIOWrite)
12457 {
12458 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
12459 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12460 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12461 && !pCtx->eflags.Bits.u1TF)
12462 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
12463 }
12464 else
12465 {
12466 uint32_t u32Result = 0;
12467 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12468 if (IOM_SUCCESS(rcStrict))
12469 {
12470 /* Save result of I/O IN instr. in AL/AX/EAX. */
12471 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12472 }
12473 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12474 && !pCtx->eflags.Bits.u1TF)
12475 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
12476 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12477 }
12478 }
12479
12480 if (IOM_SUCCESS(rcStrict))
12481 {
12482 if (!fUpdateRipAlready)
12483 {
12484 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
12485 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12486 }
12487
12488 /*
12489 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
12490 * while booting Fedora 17 64-bit guest.
12491 *
12492 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12493 */
12494 if (fIOString)
12495 {
12496 /** @todo Single-step for INS/OUTS with REP prefix? */
12497 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
12498 }
12499 else if ( !fDbgStepping
12500 && fGstStepping)
12501 {
12502 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12503 AssertRCReturn(rc, rc);
12504 }
12505
12506 /*
12507 * If any I/O breakpoints are armed, we need to check if one triggered
12508 * and take appropriate action.
12509 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12510 */
12511 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_DR7);
12512 AssertRCReturn(rc, rc);
12513
12514 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12515 * execution engines about whether hyper BPs and such are pending. */
12516 uint32_t const uDr7 = pCtx->dr[7];
12517 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12518 && X86_DR7_ANY_RW_IO(uDr7)
12519 && (pCtx->cr4 & X86_CR4_DE))
12520 || DBGFBpIsHwIoArmed(pVM)))
12521 {
12522 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12523
12524 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12525 VMMRZCallRing3Disable(pVCpu);
12526 HM_DISABLE_PREEMPT(pVCpu);
12527
12528 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12529
12530 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
12531 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12532 {
12533 /* Raise #DB. */
12534 if (fIsGuestDbgActive)
12535 ASMSetDR6(pCtx->dr[6]);
12536 if (pCtx->dr[7] != uDr7)
12537 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
12538
12539 hmR0VmxSetPendingXcptDB(pVCpu);
12540 }
12541 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12542 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12543 else if ( rcStrict2 != VINF_SUCCESS
12544 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12545 rcStrict = rcStrict2;
12546 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12547
12548 HM_RESTORE_PREEMPT();
12549 VMMRZCallRing3Enable(pVCpu);
12550 }
12551 }
12552
12553#ifdef VBOX_STRICT
12554 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12555 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
12556 Assert(!fIOWrite);
12557 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12558 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
12559 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
12560 Assert(fIOWrite);
12561 else
12562 {
12563# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12564 * statuses, that the VMM device and some others may return. See
12565 * IOM_SUCCESS() for guidance. */
12566 AssertMsg( RT_FAILURE(rcStrict)
12567 || rcStrict == VINF_SUCCESS
12568 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12569 || rcStrict == VINF_EM_DBG_BREAKPOINT
12570 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12571 || rcStrict == VINF_EM_RAW_TO_R3
12572 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12573# endif
12574 }
12575#endif
12576 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12577 }
12578 else
12579 {
12580 /*
12581 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12582 */
12583 int rc2 = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
12584 AssertRCReturn(rc2, rc2);
12585 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
12586 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
12587 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
12588 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12589 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
12590 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
12591
12592 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12593 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12594
12595 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12596 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12597 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12598 }
12599 return rcStrict;
12600}
12601
12602
12603/**
12604 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12605 * VM-exit.
12606 */
12607HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12608{
12609 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12610
12611 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12612 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12613 AssertRCReturn(rc, rc);
12614 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
12615 {
12616 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12617 AssertRCReturn(rc, rc);
12618 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12619 {
12620 uint32_t uErrCode;
12621 RTGCUINTPTR GCPtrFaultAddress;
12622 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12623 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12624 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
12625 if (fErrorCodeValid)
12626 {
12627 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12628 AssertRCReturn(rc, rc);
12629 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
12630 }
12631 else
12632 uErrCode = 0;
12633
12634 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12635 && uVector == X86_XCPT_PF)
12636 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
12637 else
12638 GCPtrFaultAddress = 0;
12639
12640 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12641 0 /* cbInstr */, uErrCode, GCPtrFaultAddress);
12642
12643 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
12644 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12645 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12646 }
12647 }
12648
12649 /* Fall back to the interpreter to emulate the task-switch. */
12650 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12651 return VERR_EM_INTERPRETER;
12652}
12653
12654
12655/**
12656 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12657 */
12658HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12659{
12660 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12661 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
12662 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
12663 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12664 AssertRCReturn(rc, rc);
12665 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12666 return VINF_EM_DBG_STEPPED;
12667}
12668
12669
12670/**
12671 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12672 */
12673HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12674{
12675 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12676
12677 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12678
12679 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12680 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12681 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12682 {
12683 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12684 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12685 {
12686 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12687 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12688 }
12689 }
12690 else
12691 {
12692 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12693 rcStrict1 = VINF_SUCCESS;
12694 return rcStrict1;
12695 }
12696
12697 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
12698 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12699 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12700 AssertRCReturn(rc, rc);
12701
12702 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12703 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
12704 VBOXSTRICTRC rcStrict2;
12705 switch (uAccessType)
12706 {
12707 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12708 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12709 {
12710 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
12711 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
12712 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12713
12714 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12715 GCPhys &= PAGE_BASE_GC_MASK;
12716 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
12717 PVM pVM = pVCpu->CTX_SUFF(pVM);
12718 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12719 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
12720
12721 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12722 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12723 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12724 CPUMCTX2CORE(pCtx), GCPhys);
12725 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12726 if ( rcStrict2 == VINF_SUCCESS
12727 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12728 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12729 {
12730 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12731 | HM_CHANGED_GUEST_APIC_TPR);
12732 rcStrict2 = VINF_SUCCESS;
12733 }
12734 break;
12735 }
12736
12737 default:
12738 Log4Func(("uAccessType=%#x\n", uAccessType));
12739 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12740 break;
12741 }
12742
12743 if (rcStrict2 != VINF_SUCCESS)
12744 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12745 return rcStrict2;
12746}
12747
12748
12749/**
12750 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12751 * VM-exit.
12752 */
12753HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12754{
12755 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12756
12757 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12758 if (pVmxTransient->fWasGuestDebugStateActive)
12759 {
12760 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
12761 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12762 }
12763
12764 if ( !pVCpu->hm.s.fSingleInstruction
12765 && !pVmxTransient->fWasHyperDebugStateActive)
12766 {
12767 Assert(!DBGFIsStepping(pVCpu));
12768 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12769
12770 /* Don't intercept MOV DRx any more. */
12771 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
12772 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12773 AssertRCReturn(rc, rc);
12774
12775 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12776 VMMRZCallRing3Disable(pVCpu);
12777 HM_DISABLE_PREEMPT(pVCpu);
12778
12779 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12780 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12781 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12782
12783 HM_RESTORE_PREEMPT();
12784 VMMRZCallRing3Enable(pVCpu);
12785
12786#ifdef VBOX_WITH_STATISTICS
12787 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12788 AssertRCReturn(rc, rc);
12789 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12790 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12791 else
12792 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12793#endif
12794 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12795 return VINF_SUCCESS;
12796 }
12797
12798 /*
12799 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12800 * Update the segment registers and DR7 from the CPU.
12801 */
12802 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12803 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12804 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
12805 AssertRCReturn(rc, rc);
12806 Log4Func(("CS:RIP=%04x:%08RX64\n", pCtx->cs.Sel, pCtx->rip));
12807
12808 PVM pVM = pVCpu->CTX_SUFF(pVM);
12809 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12810 {
12811 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12812 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
12813 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
12814 if (RT_SUCCESS(rc))
12815 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12816 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12817 }
12818 else
12819 {
12820 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12821 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
12822 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
12823 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12824 }
12825
12826 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12827 if (RT_SUCCESS(rc))
12828 {
12829 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12830 AssertRCReturn(rc2, rc2);
12831 return VINF_SUCCESS;
12832 }
12833 return rc;
12834}
12835
12836
12837/**
12838 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12839 * Conditional VM-exit.
12840 */
12841HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12842{
12843 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12844 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12845
12846 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12847 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12848 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12849 {
12850 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12851 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12852 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12853 {
12854 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12855 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12856 }
12857 }
12858 else
12859 {
12860 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12861 rcStrict1 = VINF_SUCCESS;
12862 return rcStrict1;
12863 }
12864
12865 /*
12866 * Get sufficent state and update the exit history entry.
12867 */
12868 RTGCPHYS GCPhys;
12869 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12870 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12871 AssertRCReturn(rc, rc);
12872
12873 VBOXSTRICTRC rcStrict;
12874 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12875 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
12876 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12877 if (!pExitRec)
12878 {
12879 /*
12880 * If we succeed, resume guest execution.
12881 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12882 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12883 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12884 * weird case. See @bugref{6043}.
12885 */
12886 PVM pVM = pVCpu->CTX_SUFF(pVM);
12887 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12888 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
12889 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
12890 if ( rcStrict == VINF_SUCCESS
12891 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
12892 || rcStrict == VERR_PAGE_NOT_PRESENT)
12893 {
12894 /* Successfully handled MMIO operation. */
12895 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12896 | HM_CHANGED_GUEST_APIC_TPR);
12897 rcStrict = VINF_SUCCESS;
12898 }
12899 }
12900 else
12901 {
12902 /*
12903 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12904 */
12905 int rc2 = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12906 AssertRCReturn(rc2, rc2);
12907
12908 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
12909 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
12910
12911 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12912 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12913
12914 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12915 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12916 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12917 }
12918 return VBOXSTRICTRC_TODO(rcStrict);
12919}
12920
12921
12922/**
12923 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12924 * VM-exit.
12925 */
12926HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12927{
12928 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12929 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12930
12931 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12932 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12933 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12934 {
12935 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12936 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12937 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12938 }
12939 else
12940 {
12941 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12942 rcStrict1 = VINF_SUCCESS;
12943 return rcStrict1;
12944 }
12945
12946 RTGCPHYS GCPhys;
12947 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12948 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12949 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12950 AssertRCReturn(rc, rc);
12951
12952 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12953 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
12954
12955 RTGCUINT uErrorCode = 0;
12956 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
12957 uErrorCode |= X86_TRAP_PF_ID;
12958 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
12959 uErrorCode |= X86_TRAP_PF_RW;
12960 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
12961 uErrorCode |= X86_TRAP_PF_P;
12962
12963 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12964
12965
12966 /* Handle the pagefault trap for the nested shadow table. */
12967 PVM pVM = pVCpu->CTX_SUFF(pVM);
12968 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12969
12970 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
12971 pCtx->cs.Sel, pCtx->rip));
12972
12973 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
12974 TRPMResetTrap(pVCpu);
12975
12976 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12977 if ( rcStrict2 == VINF_SUCCESS
12978 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12979 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12980 {
12981 /* Successfully synced our nested page tables. */
12982 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12983 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
12984 return VINF_SUCCESS;
12985 }
12986
12987 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12988 return rcStrict2;
12989}
12990
12991/** @} */
12992
12993/** @name VM-exit exception handlers.
12994 * @{
12995 */
12996/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12997/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12998/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12999
13000/**
13001 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13002 */
13003static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13004{
13005 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13006 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13007
13008 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
13009 AssertRCReturn(rc, rc);
13010
13011 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
13012 {
13013 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13014 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13015
13016 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13017 * provides VM-exit instruction length. If this causes problem later,
13018 * disassemble the instruction like it's done on AMD-V. */
13019 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13020 AssertRCReturn(rc2, rc2);
13021 return rc;
13022 }
13023
13024 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13025 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13026 return rc;
13027}
13028
13029
13030/**
13031 * VM-exit exception handler for \#BP (Breakpoint exception).
13032 */
13033static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13034{
13035 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13036 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13037
13038 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13039 AssertRCReturn(rc, rc);
13040
13041 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13042 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13043 if (rc == VINF_EM_RAW_GUEST_TRAP)
13044 {
13045 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13046 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13047 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13048 AssertRCReturn(rc, rc);
13049
13050 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13051 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13052 }
13053
13054 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13055 return rc;
13056}
13057
13058
13059/**
13060 * VM-exit exception handler for \#AC (alignment check exception).
13061 */
13062static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13063{
13064 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13065
13066 /*
13067 * Re-inject it. We'll detect any nesting before getting here.
13068 */
13069 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13070 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13071 AssertRCReturn(rc, rc);
13072 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13073
13074 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13075 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13076 return VINF_SUCCESS;
13077}
13078
13079
13080/**
13081 * VM-exit exception handler for \#DB (Debug exception).
13082 */
13083static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13084{
13085 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13086 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13087
13088 /*
13089 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13090 * for processing.
13091 */
13092 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13093
13094 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13095 uint64_t uDR6 = X86_DR6_INIT_VAL;
13096 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13097
13098 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13099 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13100 Log6Func(("rc=%Rrc\n", rc));
13101 if (rc == VINF_EM_RAW_GUEST_TRAP)
13102 {
13103 /*
13104 * The exception was for the guest. Update DR6, DR7.GD and
13105 * IA32_DEBUGCTL.LBR before forwarding it.
13106 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13107 */
13108 VMMRZCallRing3Disable(pVCpu);
13109 HM_DISABLE_PREEMPT(pVCpu);
13110
13111 pCtx->dr[6] &= ~X86_DR6_B_MASK;
13112 pCtx->dr[6] |= uDR6;
13113 if (CPUMIsGuestDebugStateActive(pVCpu))
13114 ASMSetDR6(pCtx->dr[6]);
13115
13116 HM_RESTORE_PREEMPT();
13117 VMMRZCallRing3Enable(pVCpu);
13118
13119 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_DR7);
13120 AssertRCReturn(rc, rc);
13121
13122 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13123 pCtx->dr[7] &= ~X86_DR7_GD;
13124
13125 /* Paranoia. */
13126 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13127 pCtx->dr[7] |= X86_DR7_RA1_MASK;
13128
13129 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
13130 AssertRCReturn(rc, rc);
13131
13132 /*
13133 * Raise #DB in the guest.
13134 *
13135 * It is important to reflect exactly what the VM-exit gave us (preserving the
13136 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
13137 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
13138 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
13139 *
13140 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
13141 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
13142 */
13143 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13144 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13145 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13146 AssertRCReturn(rc, rc);
13147 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13148 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13149 return VINF_SUCCESS;
13150 }
13151
13152 /*
13153 * Not a guest trap, must be a hypervisor related debug event then.
13154 * Update DR6 in case someone is interested in it.
13155 */
13156 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13157 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13158 CPUMSetHyperDR6(pVCpu, uDR6);
13159
13160 return rc;
13161}
13162
13163/**
13164 * VM-exit exception handler for \#GP (General-protection exception).
13165 *
13166 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13167 */
13168static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13169{
13170 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13171 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13172
13173 int rc;
13174 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13175 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13176 { /* likely */ }
13177 else
13178 {
13179#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13180 Assert(pVCpu->hm.s.fUsingDebugLoop);
13181#endif
13182 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13183 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13184 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13185 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13186 rc |= hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13187 AssertRCReturn(rc, rc);
13188 Log4Func(("Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pCtx->cs.Sel, pCtx->rip,
13189 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
13190 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13191 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13192 return rc;
13193 }
13194
13195 Assert(CPUMIsGuestInRealModeEx(pCtx));
13196 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13197
13198 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
13199 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13200 AssertRCReturn(rc, rc);
13201
13202 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
13203 uint32_t cbOp = 0;
13204 PVM pVM = pVCpu->CTX_SUFF(pVM);
13205 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
13206 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
13207 if (RT_SUCCESS(rc))
13208 {
13209 rc = VINF_SUCCESS;
13210 Assert(cbOp == pDis->cbInstr);
13211 Log4Func(("Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pCtx->cs.Sel, pCtx->rip));
13212 switch (pDis->pCurInstr->uOpcode)
13213 {
13214 case OP_CLI:
13215 {
13216 pCtx->eflags.Bits.u1IF = 0;
13217 pCtx->eflags.Bits.u1RF = 0;
13218 pCtx->rip += pDis->cbInstr;
13219 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13220 if ( !fDbgStepping
13221 && pCtx->eflags.Bits.u1TF)
13222 {
13223 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13224 AssertRCReturn(rc, rc);
13225 }
13226 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
13227 break;
13228 }
13229
13230 case OP_STI:
13231 {
13232 bool fOldIF = pCtx->eflags.Bits.u1IF;
13233 pCtx->eflags.Bits.u1IF = 1;
13234 pCtx->eflags.Bits.u1RF = 0;
13235 pCtx->rip += pDis->cbInstr;
13236 if (!fOldIF)
13237 {
13238 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
13239 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
13240 }
13241 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13242 if ( !fDbgStepping
13243 && pCtx->eflags.Bits.u1TF)
13244 {
13245 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13246 AssertRCReturn(rc, rc);
13247 }
13248 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
13249 break;
13250 }
13251
13252 case OP_HLT:
13253 {
13254 rc = VINF_EM_HALT;
13255 pCtx->rip += pDis->cbInstr;
13256 pCtx->eflags.Bits.u1RF = 0;
13257 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13258 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
13259 break;
13260 }
13261
13262 case OP_POPF:
13263 {
13264 Log4Func(("POPF CS:EIP %04x:%04RX64\n", pCtx->cs.Sel, pCtx->rip));
13265 uint32_t cbParm;
13266 uint32_t uMask;
13267 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
13268 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13269 {
13270 cbParm = 4;
13271 uMask = 0xffffffff;
13272 }
13273 else
13274 {
13275 cbParm = 2;
13276 uMask = 0xffff;
13277 }
13278
13279 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
13280 RTGCPTR GCPtrStack = 0;
13281 X86EFLAGS Eflags;
13282 Eflags.u32 = 0;
13283 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13284 &GCPtrStack);
13285 if (RT_SUCCESS(rc))
13286 {
13287 Assert(sizeof(Eflags.u32) >= cbParm);
13288 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
13289 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13290 }
13291 if (RT_FAILURE(rc))
13292 {
13293 rc = VERR_EM_INTERPRETER;
13294 break;
13295 }
13296 Log4Func(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pCtx->rsp, uMask, pCtx->rip));
13297 pCtx->eflags.u32 = (pCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
13298 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
13299 pCtx->esp += cbParm;
13300 pCtx->esp &= uMask;
13301 pCtx->rip += pDis->cbInstr;
13302 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
13303 /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
13304 POPF restores EFLAGS.TF. */
13305 if ( !fDbgStepping
13306 && fGstStepping)
13307 {
13308 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13309 AssertRCReturn(rc, rc);
13310 }
13311 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
13312 break;
13313 }
13314
13315 case OP_PUSHF:
13316 {
13317 uint32_t cbParm;
13318 uint32_t uMask;
13319 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13320 {
13321 cbParm = 4;
13322 uMask = 0xffffffff;
13323 }
13324 else
13325 {
13326 cbParm = 2;
13327 uMask = 0xffff;
13328 }
13329
13330 /* Get the stack pointer & push the contents of eflags onto the stack. */
13331 RTGCPTR GCPtrStack = 0;
13332 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), (pCtx->esp - cbParm) & uMask,
13333 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
13334 if (RT_FAILURE(rc))
13335 {
13336 rc = VERR_EM_INTERPRETER;
13337 break;
13338 }
13339 X86EFLAGS Eflags = pCtx->eflags;
13340 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
13341 Eflags.Bits.u1RF = 0;
13342 Eflags.Bits.u1VM = 0;
13343
13344 rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
13345 if (RT_UNLIKELY(rc != VINF_SUCCESS))
13346 {
13347 AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
13348 rc = VERR_EM_INTERPRETER;
13349 break;
13350 }
13351 Log4Func(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
13352 pCtx->esp -= cbParm;
13353 pCtx->esp &= uMask;
13354 pCtx->rip += pDis->cbInstr;
13355 pCtx->eflags.Bits.u1RF = 0;
13356 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
13357 if ( !fDbgStepping
13358 && pCtx->eflags.Bits.u1TF)
13359 {
13360 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13361 AssertRCReturn(rc, rc);
13362 }
13363 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
13364 break;
13365 }
13366
13367 case OP_IRET:
13368 {
13369 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
13370 * instruction reference. */
13371 RTGCPTR GCPtrStack = 0;
13372 uint32_t uMask = 0xffff;
13373 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
13374 uint16_t aIretFrame[3];
13375 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
13376 {
13377 rc = VERR_EM_INTERPRETER;
13378 break;
13379 }
13380 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13381 &GCPtrStack);
13382 if (RT_SUCCESS(rc))
13383 {
13384 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
13385 PGMACCESSORIGIN_HM));
13386 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13387 }
13388 if (RT_FAILURE(rc))
13389 {
13390 rc = VERR_EM_INTERPRETER;
13391 break;
13392 }
13393 pCtx->eip = 0;
13394 pCtx->ip = aIretFrame[0];
13395 pCtx->cs.Sel = aIretFrame[1];
13396 pCtx->cs.ValidSel = aIretFrame[1];
13397 pCtx->cs.u64Base = (uint64_t)pCtx->cs.Sel << 4;
13398 pCtx->eflags.u32 = (pCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
13399 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
13400 pCtx->sp += sizeof(aIretFrame);
13401 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
13402 | HM_CHANGED_GUEST_CS);
13403 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
13404 if ( !fDbgStepping
13405 && fGstStepping)
13406 {
13407 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13408 AssertRCReturn(rc, rc);
13409 }
13410 Log4Func(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pCtx->cs.Sel, pCtx->ip));
13411 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
13412 break;
13413 }
13414
13415 case OP_INT:
13416 {
13417 uint16_t uVector = pDis->Param1.uValue & 0xff;
13418 hmR0VmxSetPendingIntN(pVCpu, uVector, pDis->cbInstr);
13419 /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13420 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13421 break;
13422 }
13423
13424 case OP_INTO:
13425 {
13426 if (pCtx->eflags.Bits.u1OF)
13427 {
13428 hmR0VmxSetPendingXcptOF(pVCpu, pDis->cbInstr);
13429 /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13430 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13431 }
13432 else
13433 {
13434 pCtx->eflags.Bits.u1RF = 0;
13435 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
13436 }
13437 break;
13438 }
13439
13440 default:
13441 {
13442 pCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
13443 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pCtx), 0 /* pvFault */,
13444 EMCODETYPE_SUPERVISOR);
13445 rc = VBOXSTRICTRC_VAL(rc2);
13446 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13447 /** @todo We have to set pending-debug exceptions here when the guest is
13448 * single-stepping depending on the instruction that was interpreted. */
13449
13450 /*
13451 * HACK ALERT! Detect mode change and go to ring-3 to properly exit this
13452 * real mode emulation stuff.
13453 */
13454 if ( rc == VINF_SUCCESS
13455 && (pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
13456 {
13457 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
13458 /** @todo Exit fRealOnV86Active here w/o dropping back to ring-3. */
13459 rc = VINF_EM_RESCHEDULE;
13460 }
13461
13462 Log4Func(("#GP rc=%Rrc\n", rc));
13463 break;
13464 }
13465 }
13466 }
13467 else
13468 rc = VERR_EM_INTERPRETER;
13469
13470 AssertMsg( rc == VINF_SUCCESS
13471 || rc == VERR_EM_INTERPRETER
13472 || rc == VINF_EM_HALT
13473 || rc == VINF_EM_RESCHEDULE
13474 , ("#GP Unexpected rc=%Rrc\n", rc));
13475 return rc;
13476}
13477
13478
13479/**
13480 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13481 * the exception reported in the VMX transient structure back into the VM.
13482 *
13483 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13484 * up-to-date.
13485 */
13486static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13487{
13488 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13489#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13490 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13491 ("uVector=%#x u32XcptBitmap=%#X32\n",
13492 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13493#endif
13494
13495 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13496 hmR0VmxCheckExitDueToEventDelivery(). */
13497 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13498 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13499 AssertRCReturn(rc, rc);
13500 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13501
13502#ifdef DEBUG_ramshankar
13503 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
13504 uint8_t uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13505 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13506#endif
13507
13508 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13509 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13510 return VINF_SUCCESS;
13511}
13512
13513
13514/**
13515 * VM-exit exception handler for \#PF (Page-fault exception).
13516 */
13517static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13518{
13519 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13520 PVM pVM = pVCpu->CTX_SUFF(pVM);
13521 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13522 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13523 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13524 AssertRCReturn(rc, rc);
13525
13526 if (!pVM->hm.s.fNestedPaging)
13527 { /* likely */ }
13528 else
13529 {
13530#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13531 Assert(pVCpu->hm.s.fUsingDebugLoop);
13532#endif
13533 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13534 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13535 {
13536 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13537 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13538 }
13539 else
13540 {
13541 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13542 hmR0VmxSetPendingXcptDF(pVCpu);
13543 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13544 }
13545 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13546 return rc;
13547 }
13548
13549 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13550 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13551 if (pVmxTransient->fVectoringPF)
13552 {
13553 Assert(pVCpu->hm.s.Event.fPending);
13554 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13555 }
13556
13557 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13558 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13559 AssertRCReturn(rc, rc);
13560
13561 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
13562 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
13563
13564 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13565 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13566
13567 Log4Func(("#PF: rc=%Rrc\n", rc));
13568 if (rc == VINF_SUCCESS)
13569 {
13570 /*
13571 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13572 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13573 */
13574 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13575 TRPMResetTrap(pVCpu);
13576 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13577 return rc;
13578 }
13579
13580 if (rc == VINF_EM_RAW_GUEST_TRAP)
13581 {
13582 if (!pVmxTransient->fVectoringDoublePF)
13583 {
13584 /* It's a guest page fault and needs to be reflected to the guest. */
13585 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13586 TRPMResetTrap(pVCpu);
13587 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13588 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13589 uGstErrorCode, pVmxTransient->uExitQual);
13590 }
13591 else
13592 {
13593 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13594 TRPMResetTrap(pVCpu);
13595 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13596 hmR0VmxSetPendingXcptDF(pVCpu);
13597 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13598 }
13599
13600 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13601 return VINF_SUCCESS;
13602 }
13603
13604 TRPMResetTrap(pVCpu);
13605 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13606 return rc;
13607}
13608
13609/** @} */
13610
13611#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13612
13613/** @name Nested-guest VM-exit handlers.
13614 * @{
13615 */
13616/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13617/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Nested-guest VM-exit handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13618/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13619
13620/**
13621 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
13622 */
13623HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13624{
13625 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13626
13627 /** @todo NSTVMX: Vmclear. */
13628 hmR0VmxSetPendingXcptUD(pVCpu);
13629 return VINF_SUCCESS;
13630}
13631
13632
13633/**
13634 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
13635 */
13636HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13637{
13638 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13639
13640 /** @todo NSTVMX: Vmlaunch. */
13641 hmR0VmxSetPendingXcptUD(pVCpu);
13642 return VINF_SUCCESS;
13643}
13644
13645
13646/**
13647 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
13648 */
13649HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13650{
13651 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13652
13653 /** @todo NSTVMX: Vmptrld. */
13654 hmR0VmxSetPendingXcptUD(pVCpu);
13655 return VINF_SUCCESS;
13656}
13657
13658
13659/**
13660 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
13661 */
13662HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13663{
13664 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13665
13666 /** @todo NSTVMX: Vmptrst. */
13667 hmR0VmxSetPendingXcptUD(pVCpu);
13668 return VINF_SUCCESS;
13669}
13670
13671
13672/**
13673 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
13674 */
13675HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13676{
13677 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13678
13679 /** @todo NSTVMX: Vmread. */
13680 hmR0VmxSetPendingXcptUD(pVCpu);
13681 return VINF_SUCCESS;
13682}
13683
13684
13685/**
13686 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
13687 */
13688HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13689{
13690 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13691
13692 /** @todo NSTVMX: Vmresume. */
13693 hmR0VmxSetPendingXcptUD(pVCpu);
13694 return VINF_SUCCESS;
13695}
13696
13697
13698/**
13699 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
13700 */
13701HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13702{
13703 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13704
13705 /** @todo NSTVMX: Vmwrite. */
13706 hmR0VmxSetPendingXcptUD(pVCpu);
13707 return VINF_SUCCESS;
13708}
13709
13710
13711/**
13712 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
13713 */
13714HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13715{
13716 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13717
13718 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13719 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13720 AssertRCReturn(rc, rc);
13721
13722 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
13723 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13724 {
13725 /* VMXOFF on success changes the internal hwvirt state but not anything that's visible to the guest. */
13726 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
13727 }
13728 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13729 {
13730 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13731 rcStrict = VINF_SUCCESS;
13732 }
13733 return rcStrict;
13734}
13735
13736
13737/**
13738 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
13739 */
13740HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13741{
13742 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13743
13744 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13745 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13746 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13747 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13748 AssertRCReturn(rc, rc);
13749
13750 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToVmxInstr(pVCpu, pVmxTransient);
13751 if (rcStrict == VINF_SUCCESS)
13752 { /* likely */ }
13753 else if (rcStrict == VINF_HM_PENDING_XCPT)
13754 {
13755 Log4Func(("Privilege checks failed, raising xcpt %#x!\n", VMX_ENTRY_INT_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo)));
13756 return VINF_SUCCESS;
13757 }
13758 else
13759 {
13760 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13761 return rcStrict;
13762 }
13763
13764 RTGCPTR GCPtrVmxon;
13765 PCVMXEXITINSTRINFO pExitInstrInfo = &pVmxTransient->ExitInstrInfo;
13766 RTGCPTR const GCPtrDisp = pVmxTransient->uExitQual;
13767 rcStrict = hmR0VmxDecodeMemOperand(pVCpu, pExitInstrInfo, GCPtrDisp, false /*fIsWrite*/, &GCPtrVmxon);
13768 if (rcStrict == VINF_SUCCESS)
13769 { /* likely */ }
13770 else if (rcStrict == VINF_HM_PENDING_XCPT)
13771 {
13772 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", VMX_ENTRY_INT_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo)));
13773 return VINF_SUCCESS;
13774 }
13775 else
13776 {
13777 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13778 return rcStrict;
13779 }
13780
13781 rcStrict = IEMExecDecodedVmxon(pVCpu, pVmxTransient->cbInstr, GCPtrVmxon, pExitInstrInfo->u, GCPtrDisp);
13782 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13783 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13784 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13785 {
13786 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13787 rcStrict = VINF_SUCCESS;
13788 }
13789 return rcStrict;
13790}
13791
13792/** @} */
13793#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13794
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette