VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 73617

Last change on this file since 73617 was 73617, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: Use IEMExecOne() rather than manually interpreting a select few instructions in the
real-on-v86 mode when unrestricted-guest execution is not allowed.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 569.6 KB
Line 
1/* $Id: HMVMXR0.cpp 73617 2018-08-10 14:09:55Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include "HMVMXR0.h"
43#include "dtrace/VBoxVMM.h"
44
45#ifdef DEBUG_ramshankar
46# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CHECK_GUEST_STATE
50# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
51# define HMVMX_ALWAYS_TRAP_PF
52# define HMVMX_ALWAYS_FLUSH_TLB
53# define HMVMX_ALWAYS_SWAP_EFER
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name HMVMX_READ_XXX
70 * Flags to skip redundant reads of some common VMCS fields that are not part of
71 * the guest-CPU or VCPU state but are needed while handling VM-exits.
72 */
73#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
74#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
75#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
76#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
77#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
78#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
79#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
80/** @} */
81
82/**
83 * States of the VMCS.
84 *
85 * This does not reflect all possible VMCS states but currently only those
86 * needed for maintaining the VMCS consistently even when thread-context hooks
87 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
88 */
89#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
90#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
91#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
92
93/**
94 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
95 * guest using hardware-assisted VMX.
96 *
97 * This excludes state like GPRs (other than RSP) which are always are
98 * swapped and restored across the world-switch and also registers like EFER,
99 * MSR which cannot be modified by the guest without causing a VM-exit.
100 */
101#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
102 | CPUMCTX_EXTRN_RFLAGS \
103 | CPUMCTX_EXTRN_RSP \
104 | CPUMCTX_EXTRN_SREG_MASK \
105 | CPUMCTX_EXTRN_TABLE_MASK \
106 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
107 | CPUMCTX_EXTRN_SYSCALL_MSRS \
108 | CPUMCTX_EXTRN_SYSENTER_MSRS \
109 | CPUMCTX_EXTRN_TSC_AUX \
110 | CPUMCTX_EXTRN_OTHER_MSRS \
111 | CPUMCTX_EXTRN_CR0 \
112 | CPUMCTX_EXTRN_CR3 \
113 | CPUMCTX_EXTRN_CR4 \
114 | CPUMCTX_EXTRN_DR7 \
115 | CPUMCTX_EXTRN_HM_VMX_MASK)
116
117/**
118 * Exception bitmap mask for real-mode guests (real-on-v86).
119 *
120 * We need to intercept all exceptions manually except:
121 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
122 * due to bugs in Intel CPUs.
123 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
124 * support.
125 */
126#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
127 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
128 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
129 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
130 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
131 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
132 | RT_BIT(X86_XCPT_XF))
133
134/** Maximum VM-instruction error number. */
135#define HMVMX_INSTR_ERROR_MAX 28
136
137/** Profiling macro. */
138#ifdef HM_PROFILE_EXIT_DISPATCH
139# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
140# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
141#else
142# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
143# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
144#endif
145
146/** Assert that preemption is disabled or covered by thread-context hooks. */
147#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
148 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
149
150/** Assert that we haven't migrated CPUs when thread-context hooks are not
151 * used. */
152#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
153 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
154 ("Illegal migration! Entered on CPU %u Current %u\n", \
155 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
156
157/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
158 * context. */
159#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
160 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
161 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
162
163/** Helper macro for VM-exit handlers called unexpectedly. */
164#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
165 do { \
166 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
167 return VERR_VMX_UNEXPECTED_EXIT; \
168 } while (0)
169
170/** Macro for importing segment registers to the VMCS from the guest-CPU context. */
171#ifdef VMX_USE_CACHED_VMCS_ACCESSES
172# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
173 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
174 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
175#else
176# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
177 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
178 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
179#endif
180
181/** Macro for exporting segment registers to the VMCS from the guest-CPU context. */
182# define HMVMX_EXPORT_SREG(Sel, a_pCtxSelReg) \
183 hmR0VmxExportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
184 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
185
186
187/*********************************************************************************************************************************
188* Structures and Typedefs *
189*********************************************************************************************************************************/
190/**
191 * VMX transient state.
192 *
193 * A state structure for holding miscellaneous information across
194 * VMX non-root operation and restored after the transition.
195 */
196typedef struct VMXTRANSIENT
197{
198 /** The host's rflags/eflags. */
199 RTCCUINTREG fEFlags;
200#if HC_ARCH_BITS == 32
201 uint32_t u32Alignment0;
202#endif
203 /** The guest's TPR value used for TPR shadowing. */
204 uint8_t u8GuestTpr;
205 /** Alignment. */
206 uint8_t abAlignment0[7];
207
208 /** The basic VM-exit reason. */
209 uint16_t uExitReason;
210 /** Alignment. */
211 uint16_t u16Alignment0;
212 /** The VM-exit interruption error code. */
213 uint32_t uExitIntErrorCode;
214 /** The VM-exit exit code qualification. */
215 uint64_t uExitQual;
216
217 /** The VM-exit interruption-information field. */
218 uint32_t uExitIntInfo;
219 /** The VM-exit instruction-length field. */
220 uint32_t cbInstr;
221 /** The VM-exit instruction-information field. */
222 VMXEXITINSTRINFO ExitInstrInfo;
223 /** Whether the VM-entry failed or not. */
224 bool fVMEntryFailed;
225 /** Alignment. */
226 uint8_t abAlignment1[3];
227
228 /** The VM-entry interruption-information field. */
229 uint32_t uEntryIntInfo;
230 /** The VM-entry exception error code field. */
231 uint32_t uEntryXcptErrorCode;
232 /** The VM-entry instruction length field. */
233 uint32_t cbEntryInstr;
234
235 /** IDT-vectoring information field. */
236 uint32_t uIdtVectoringInfo;
237 /** IDT-vectoring error code. */
238 uint32_t uIdtVectoringErrorCode;
239
240 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
241 uint32_t fVmcsFieldsRead;
242
243 /** Whether the guest debug state was active at the time of VM-exit. */
244 bool fWasGuestDebugStateActive;
245 /** Whether the hyper debug state was active at the time of VM-exit. */
246 bool fWasHyperDebugStateActive;
247 /** Whether TSC-offsetting should be setup before VM-entry. */
248 bool fUpdateTscOffsettingAndPreemptTimer;
249 /** Whether the VM-exit was caused by a page-fault during delivery of a
250 * contributory exception or a page-fault. */
251 bool fVectoringDoublePF;
252 /** Whether the VM-exit was caused by a page-fault during delivery of an
253 * external interrupt or NMI. */
254 bool fVectoringPF;
255} VMXTRANSIENT;
256AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
257AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
258AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
259AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
260AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
261/** Pointer to VMX transient state. */
262typedef VMXTRANSIENT *PVMXTRANSIENT;
263
264
265/**
266 * MSR-bitmap read permissions.
267 */
268typedef enum VMXMSREXITREAD
269{
270 /** Reading this MSR causes a VM-exit. */
271 VMXMSREXIT_INTERCEPT_READ = 0xb,
272 /** Reading this MSR does not cause a VM-exit. */
273 VMXMSREXIT_PASSTHRU_READ
274} VMXMSREXITREAD;
275/** Pointer to MSR-bitmap read permissions. */
276typedef VMXMSREXITREAD* PVMXMSREXITREAD;
277
278/**
279 * MSR-bitmap write permissions.
280 */
281typedef enum VMXMSREXITWRITE
282{
283 /** Writing to this MSR causes a VM-exit. */
284 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
285 /** Writing to this MSR does not cause a VM-exit. */
286 VMXMSREXIT_PASSTHRU_WRITE
287} VMXMSREXITWRITE;
288/** Pointer to MSR-bitmap write permissions. */
289typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
290
291
292/**
293 * VMX VM-exit handler.
294 *
295 * @returns Strict VBox status code (i.e. informational status codes too).
296 * @param pVCpu The cross context virtual CPU structure.
297 * @param pVmxTransient Pointer to the VMX-transient structure.
298 */
299#ifndef HMVMX_USE_FUNCTION_TABLE
300typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
301#else
302typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
303/** Pointer to VM-exit handler. */
304typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
305#endif
306
307/**
308 * VMX VM-exit handler, non-strict status code.
309 *
310 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
311 *
312 * @returns VBox status code, no informational status code returned.
313 * @param pVCpu The cross context virtual CPU structure.
314 * @param pVmxTransient Pointer to the VMX-transient structure.
315 *
316 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
317 * use of that status code will be replaced with VINF_EM_SOMETHING
318 * later when switching over to IEM.
319 */
320#ifndef HMVMX_USE_FUNCTION_TABLE
321typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
322#else
323typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
324#endif
325
326
327/*********************************************************************************************************************************
328* Internal Functions *
329*********************************************************************************************************************************/
330static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush);
331static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr);
332static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
333static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat);
334static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
335 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState);
336#if HC_ARCH_BITS == 32
337static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
338#endif
339#ifndef HMVMX_USE_FUNCTION_TABLE
340DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
341# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
342# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
343#else
344# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
345# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
346#endif
347
348
349/** @name VM-exit handlers.
350 * @{
351 */
352static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
353static FNVMXEXITHANDLER hmR0VmxExitExtInt;
354static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
355static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
356static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
357static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
358static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
359static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
360static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
361static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
362static FNVMXEXITHANDLER hmR0VmxExitCpuid;
363static FNVMXEXITHANDLER hmR0VmxExitGetsec;
364static FNVMXEXITHANDLER hmR0VmxExitHlt;
365static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
366static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
367static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
368static FNVMXEXITHANDLER hmR0VmxExitVmcall;
369#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
370static FNVMXEXITHANDLER hmR0VmxExitVmclear;
371static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
372static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
373static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
374static FNVMXEXITHANDLER hmR0VmxExitVmread;
375static FNVMXEXITHANDLER hmR0VmxExitVmresume;
376static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
377static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
378static FNVMXEXITHANDLER hmR0VmxExitVmxon;
379#endif
380static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
381static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
382static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
383static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
384static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
385static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
386static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
387static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
391static FNVMXEXITHANDLER hmR0VmxExitMwait;
392static FNVMXEXITHANDLER hmR0VmxExitMtf;
393static FNVMXEXITHANDLER hmR0VmxExitMonitor;
394static FNVMXEXITHANDLER hmR0VmxExitPause;
395static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
396static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
397static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
398static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
399static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
400static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
401static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
402static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
403static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
405static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
406static FNVMXEXITHANDLER hmR0VmxExitRdrand;
407static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
408/** @} */
409
410static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
411static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
412static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
413static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
414static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
415static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
416static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
417static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu);
418
419
420/*********************************************************************************************************************************
421* Global Variables *
422*********************************************************************************************************************************/
423#ifdef HMVMX_USE_FUNCTION_TABLE
424
425/**
426 * VMX_EXIT dispatch table.
427 */
428static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
429{
430 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
431 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
432 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
433 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
434 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
435 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
436 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
437 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
438 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
439 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
440 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
441 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
442 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
443 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
444 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
445 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
446 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
447 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
448 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
449#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
450 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
451 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
452 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
453 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
454 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
455 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
456 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
457 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
458 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
459#else
460 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
461 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
462 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
463 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
464 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
465 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
466 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
467 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
468 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
469#endif
470 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
471 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
472 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
473 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
474 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
475 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
476 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
477 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
478 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
479 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
480 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
481 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
482 /* 40 UNDEFINED */ hmR0VmxExitPause,
483 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
484 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
485 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
486 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
487 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
488 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
489 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
490 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
491 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
492 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
493 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
494 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
495 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
496 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
497 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
498 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
499 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
500 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
501 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
502 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
503 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
504 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
505 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
506 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
507};
508#endif /* HMVMX_USE_FUNCTION_TABLE */
509
510#ifdef VBOX_STRICT
511static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
512{
513 /* 0 */ "(Not Used)",
514 /* 1 */ "VMCALL executed in VMX root operation.",
515 /* 2 */ "VMCLEAR with invalid physical address.",
516 /* 3 */ "VMCLEAR with VMXON pointer.",
517 /* 4 */ "VMLAUNCH with non-clear VMCS.",
518 /* 5 */ "VMRESUME with non-launched VMCS.",
519 /* 6 */ "VMRESUME after VMXOFF",
520 /* 7 */ "VM-entry with invalid control fields.",
521 /* 8 */ "VM-entry with invalid host state fields.",
522 /* 9 */ "VMPTRLD with invalid physical address.",
523 /* 10 */ "VMPTRLD with VMXON pointer.",
524 /* 11 */ "VMPTRLD with incorrect revision identifier.",
525 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
526 /* 13 */ "VMWRITE to read-only VMCS component.",
527 /* 14 */ "(Not Used)",
528 /* 15 */ "VMXON executed in VMX root operation.",
529 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
530 /* 17 */ "VM-entry with non-launched executing VMCS.",
531 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
532 /* 19 */ "VMCALL with non-clear VMCS.",
533 /* 20 */ "VMCALL with invalid VM-exit control fields.",
534 /* 21 */ "(Not Used)",
535 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
536 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
537 /* 24 */ "VMCALL with invalid SMM-monitor features.",
538 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
539 /* 26 */ "VM-entry with events blocked by MOV SS.",
540 /* 27 */ "(Not Used)",
541 /* 28 */ "Invalid operand to INVEPT/INVVPID."
542};
543#endif /* VBOX_STRICT */
544
545
546
547/**
548 * Updates the VM's last error record.
549 *
550 * If there was a VMX instruction error, reads the error data from the VMCS and
551 * updates VCPU's last error record as well.
552 *
553 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
554 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
555 * VERR_VMX_INVALID_VMCS_FIELD.
556 * @param rc The error code.
557 */
558static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
559{
560 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
561 || rc == VERR_VMX_UNABLE_TO_START_VM)
562 {
563 AssertPtrReturnVoid(pVCpu);
564 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
565 }
566 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
567}
568
569
570/**
571 * Reads the VM-entry interruption-information field from the VMCS into the VMX
572 * transient structure.
573 *
574 * @returns VBox status code.
575 * @param pVmxTransient Pointer to the VMX transient structure.
576 *
577 * @remarks No-long-jump zone!!!
578 */
579DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
580{
581 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
582 AssertRCReturn(rc, rc);
583 return VINF_SUCCESS;
584}
585
586#ifdef VBOX_STRICT
587/**
588 * Reads the VM-entry exception error code field from the VMCS into
589 * the VMX transient structure.
590 *
591 * @returns VBox status code.
592 * @param pVmxTransient Pointer to the VMX transient structure.
593 *
594 * @remarks No-long-jump zone!!!
595 */
596DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
597{
598 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
599 AssertRCReturn(rc, rc);
600 return VINF_SUCCESS;
601}
602
603
604/**
605 * Reads the VM-entry exception error code field from the VMCS into
606 * the VMX transient structure.
607 *
608 * @returns VBox status code.
609 * @param pVmxTransient Pointer to the VMX transient structure.
610 *
611 * @remarks No-long-jump zone!!!
612 */
613DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
614{
615 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
616 AssertRCReturn(rc, rc);
617 return VINF_SUCCESS;
618}
619#endif /* VBOX_STRICT */
620
621
622/**
623 * Reads the VM-exit interruption-information field from the VMCS into the VMX
624 * transient structure.
625 *
626 * @returns VBox status code.
627 * @param pVmxTransient Pointer to the VMX transient structure.
628 */
629DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
630{
631 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
632 {
633 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
634 AssertRCReturn(rc,rc);
635 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
636 }
637 return VINF_SUCCESS;
638}
639
640
641/**
642 * Reads the VM-exit interruption error code from the VMCS into the VMX
643 * transient structure.
644 *
645 * @returns VBox status code.
646 * @param pVmxTransient Pointer to the VMX transient structure.
647 */
648DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
649{
650 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
651 {
652 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
653 AssertRCReturn(rc, rc);
654 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
655 }
656 return VINF_SUCCESS;
657}
658
659
660/**
661 * Reads the VM-exit instruction length field from the VMCS into the VMX
662 * transient structure.
663 *
664 * @returns VBox status code.
665 * @param pVmxTransient Pointer to the VMX transient structure.
666 */
667DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
668{
669 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
670 {
671 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
672 AssertRCReturn(rc, rc);
673 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
674 }
675 return VINF_SUCCESS;
676}
677
678
679/**
680 * Reads the VM-exit instruction-information field from the VMCS into
681 * the VMX transient structure.
682 *
683 * @returns VBox status code.
684 * @param pVmxTransient Pointer to the VMX transient structure.
685 */
686DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
687{
688 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
689 {
690 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
691 AssertRCReturn(rc, rc);
692 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
693 }
694 return VINF_SUCCESS;
695}
696
697
698/**
699 * Reads the exit code qualification from the VMCS into the VMX transient
700 * structure.
701 *
702 * @returns VBox status code.
703 * @param pVCpu The cross context virtual CPU structure of the
704 * calling EMT. (Required for the VMCS cache case.)
705 * @param pVmxTransient Pointer to the VMX transient structure.
706 */
707DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
708{
709 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
710 {
711 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
712 AssertRCReturn(rc, rc);
713 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
714 }
715 return VINF_SUCCESS;
716}
717
718
719/**
720 * Reads the IDT-vectoring information field from the VMCS into the VMX
721 * transient structure.
722 *
723 * @returns VBox status code.
724 * @param pVmxTransient Pointer to the VMX transient structure.
725 *
726 * @remarks No-long-jump zone!!!
727 */
728DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
729{
730 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
731 {
732 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
733 AssertRCReturn(rc, rc);
734 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
735 }
736 return VINF_SUCCESS;
737}
738
739
740/**
741 * Reads the IDT-vectoring error code from the VMCS into the VMX
742 * transient structure.
743 *
744 * @returns VBox status code.
745 * @param pVmxTransient Pointer to the VMX transient structure.
746 */
747DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
748{
749 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
750 {
751 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
752 AssertRCReturn(rc, rc);
753 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
754 }
755 return VINF_SUCCESS;
756}
757
758
759/**
760 * Enters VMX root mode operation on the current CPU.
761 *
762 * @returns VBox status code.
763 * @param pVM The cross context VM structure. Can be
764 * NULL, after a resume.
765 * @param HCPhysCpuPage Physical address of the VMXON region.
766 * @param pvCpuPage Pointer to the VMXON region.
767 */
768static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
769{
770 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
771 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
772 Assert(pvCpuPage);
773 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
774
775 if (pVM)
776 {
777 /* Write the VMCS revision dword to the VMXON region. */
778 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
779 }
780
781 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
782 RTCCUINTREG fEFlags = ASMIntDisableFlags();
783
784 /* Enable the VMX bit in CR4 if necessary. */
785 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
786
787 /* Enter VMX root mode. */
788 int rc = VMXEnable(HCPhysCpuPage);
789 if (RT_FAILURE(rc))
790 {
791 if (!(uOldCr4 & X86_CR4_VMXE))
792 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
793
794 if (pVM)
795 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
796 }
797
798 /* Restore interrupts. */
799 ASMSetFlags(fEFlags);
800 return rc;
801}
802
803
804/**
805 * Exits VMX root mode operation on the current CPU.
806 *
807 * @returns VBox status code.
808 */
809static int hmR0VmxLeaveRootMode(void)
810{
811 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
812
813 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
814 RTCCUINTREG fEFlags = ASMIntDisableFlags();
815
816 /* If we're for some reason not in VMX root mode, then don't leave it. */
817 RTCCUINTREG uHostCR4 = ASMGetCR4();
818
819 int rc;
820 if (uHostCR4 & X86_CR4_VMXE)
821 {
822 /* Exit VMX root mode and clear the VMX bit in CR4. */
823 VMXDisable();
824 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
825 rc = VINF_SUCCESS;
826 }
827 else
828 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
829
830 /* Restore interrupts. */
831 ASMSetFlags(fEFlags);
832 return rc;
833}
834
835
836/**
837 * Allocates and maps one physically contiguous page. The allocated page is
838 * zero'd out. (Used by various VT-x structures).
839 *
840 * @returns IPRT status code.
841 * @param pMemObj Pointer to the ring-0 memory object.
842 * @param ppVirt Where to store the virtual address of the
843 * allocation.
844 * @param pHCPhys Where to store the physical address of the
845 * allocation.
846 */
847static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
848{
849 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
850 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
851 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
852
853 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
854 if (RT_FAILURE(rc))
855 return rc;
856 *ppVirt = RTR0MemObjAddress(*pMemObj);
857 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
858 ASMMemZero32(*ppVirt, PAGE_SIZE);
859 return VINF_SUCCESS;
860}
861
862
863/**
864 * Frees and unmaps an allocated physical page.
865 *
866 * @param pMemObj Pointer to the ring-0 memory object.
867 * @param ppVirt Where to re-initialize the virtual address of
868 * allocation as 0.
869 * @param pHCPhys Where to re-initialize the physical address of the
870 * allocation as 0.
871 */
872static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
873{
874 AssertPtr(pMemObj);
875 AssertPtr(ppVirt);
876 AssertPtr(pHCPhys);
877 if (*pMemObj != NIL_RTR0MEMOBJ)
878 {
879 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
880 AssertRC(rc);
881 *pMemObj = NIL_RTR0MEMOBJ;
882 *ppVirt = 0;
883 *pHCPhys = 0;
884 }
885}
886
887
888/**
889 * Worker function to free VT-x related structures.
890 *
891 * @returns IPRT status code.
892 * @param pVM The cross context VM structure.
893 */
894static void hmR0VmxStructsFree(PVM pVM)
895{
896 for (VMCPUID i = 0; i < pVM->cCpus; i++)
897 {
898 PVMCPU pVCpu = &pVM->aCpus[i];
899 AssertPtr(pVCpu);
900
901 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
902 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
903
904 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
905 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
906
907 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
908 }
909
910 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
911#ifdef VBOX_WITH_CRASHDUMP_MAGIC
912 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
913#endif
914}
915
916
917/**
918 * Worker function to allocate VT-x related VM structures.
919 *
920 * @returns IPRT status code.
921 * @param pVM The cross context VM structure.
922 */
923static int hmR0VmxStructsAlloc(PVM pVM)
924{
925 /*
926 * Initialize members up-front so we can cleanup properly on allocation failure.
927 */
928#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
929 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
930 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
931 pVM->hm.s.vmx.HCPhys##a_Name = 0;
932
933#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
934 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
935 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
936 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
937
938#ifdef VBOX_WITH_CRASHDUMP_MAGIC
939 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
940#endif
941 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
942
943 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
944 for (VMCPUID i = 0; i < pVM->cCpus; i++)
945 {
946 PVMCPU pVCpu = &pVM->aCpus[i];
947 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
948 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
949 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
950 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
951 }
952#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
953#undef VMXLOCAL_INIT_VM_MEMOBJ
954
955 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
956 AssertReturnStmt(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE) <= PAGE_SIZE,
957 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
958 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
959
960 /*
961 * Allocate all the VT-x structures.
962 */
963 int rc = VINF_SUCCESS;
964#ifdef VBOX_WITH_CRASHDUMP_MAGIC
965 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
966 if (RT_FAILURE(rc))
967 goto cleanup;
968 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
969 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
970#endif
971
972 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
973 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
974 {
975 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
976 &pVM->hm.s.vmx.HCPhysApicAccess);
977 if (RT_FAILURE(rc))
978 goto cleanup;
979 }
980
981 /*
982 * Initialize per-VCPU VT-x structures.
983 */
984 for (VMCPUID i = 0; i < pVM->cCpus; i++)
985 {
986 PVMCPU pVCpu = &pVM->aCpus[i];
987 AssertPtr(pVCpu);
988
989 /* Allocate the VM control structure (VMCS). */
990 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
991 if (RT_FAILURE(rc))
992 goto cleanup;
993
994 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
995 if ( PDMHasApic(pVM)
996 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
997 {
998 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
999 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1000 if (RT_FAILURE(rc))
1001 goto cleanup;
1002 }
1003
1004 /*
1005 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1006 * transparent accesses of specific MSRs.
1007 *
1008 * If the condition for enabling MSR bitmaps changes here, don't forget to
1009 * update HMAreMsrBitmapsAvailable().
1010 */
1011 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1012 {
1013 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1014 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1015 if (RT_FAILURE(rc))
1016 goto cleanup;
1017 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1018 }
1019
1020 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1021 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1022 if (RT_FAILURE(rc))
1023 goto cleanup;
1024
1025 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1026 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1027 if (RT_FAILURE(rc))
1028 goto cleanup;
1029 }
1030
1031 return VINF_SUCCESS;
1032
1033cleanup:
1034 hmR0VmxStructsFree(pVM);
1035 return rc;
1036}
1037
1038
1039/**
1040 * Does global VT-x initialization (called during module initialization).
1041 *
1042 * @returns VBox status code.
1043 */
1044VMMR0DECL(int) VMXR0GlobalInit(void)
1045{
1046#ifdef HMVMX_USE_FUNCTION_TABLE
1047 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1048# ifdef VBOX_STRICT
1049 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1050 Assert(g_apfnVMExitHandlers[i]);
1051# endif
1052#endif
1053 return VINF_SUCCESS;
1054}
1055
1056
1057/**
1058 * Does global VT-x termination (called during module termination).
1059 */
1060VMMR0DECL(void) VMXR0GlobalTerm()
1061{
1062 /* Nothing to do currently. */
1063}
1064
1065
1066/**
1067 * Sets up and activates VT-x on the current CPU.
1068 *
1069 * @returns VBox status code.
1070 * @param pHostCpu Pointer to the global CPU info struct.
1071 * @param pVM The cross context VM structure. Can be
1072 * NULL after a host resume operation.
1073 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1074 * fEnabledByHost is @c true).
1075 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1076 * @a fEnabledByHost is @c true).
1077 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1078 * enable VT-x on the host.
1079 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1080 */
1081VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1082 void *pvMsrs)
1083{
1084 Assert(pHostCpu);
1085 Assert(pvMsrs);
1086 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1087
1088 /* Enable VT-x if it's not already enabled by the host. */
1089 if (!fEnabledByHost)
1090 {
1091 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1092 if (RT_FAILURE(rc))
1093 return rc;
1094 }
1095
1096 /*
1097 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
1098 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
1099 * invalidated when flushing by VPID.
1100 */
1101 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1102 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1103 {
1104 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
1105 pHostCpu->fFlushAsidBeforeUse = false;
1106 }
1107 else
1108 pHostCpu->fFlushAsidBeforeUse = true;
1109
1110 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1111 ++pHostCpu->cTlbFlushes;
1112
1113 return VINF_SUCCESS;
1114}
1115
1116
1117/**
1118 * Deactivates VT-x on the current CPU.
1119 *
1120 * @returns VBox status code.
1121 * @param pHostCpu Pointer to the global CPU info struct.
1122 * @param pvCpuPage Pointer to the VMXON region.
1123 * @param HCPhysCpuPage Physical address of the VMXON region.
1124 *
1125 * @remarks This function should never be called when SUPR0EnableVTx() or
1126 * similar was used to enable VT-x on the host.
1127 */
1128VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1129{
1130 RT_NOREF3(pHostCpu, pvCpuPage, HCPhysCpuPage);
1131
1132 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1133 return hmR0VmxLeaveRootMode();
1134}
1135
1136
1137/**
1138 * Sets the permission bits for the specified MSR in the MSR bitmap.
1139 *
1140 * @param pVCpu The cross context virtual CPU structure.
1141 * @param uMsr The MSR value.
1142 * @param enmRead Whether reading this MSR causes a VM-exit.
1143 * @param enmWrite Whether writing this MSR causes a VM-exit.
1144 */
1145static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1146{
1147 int32_t iBit;
1148 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1149
1150 /*
1151 * Layout:
1152 * 0x000 - 0x3ff - Low MSR read bits
1153 * 0x400 - 0x7ff - High MSR read bits
1154 * 0x800 - 0xbff - Low MSR write bits
1155 * 0xc00 - 0xfff - High MSR write bits
1156 */
1157 if (uMsr <= 0x00001fff)
1158 iBit = uMsr;
1159 else if (uMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1160 {
1161 iBit = uMsr - UINT32_C(0xc0000000);
1162 pbMsrBitmap += 0x400;
1163 }
1164 else
1165 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1166
1167 Assert(iBit <= 0x1fff);
1168 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1169 ASMBitSet(pbMsrBitmap, iBit);
1170 else
1171 ASMBitClear(pbMsrBitmap, iBit);
1172
1173 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1174 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1175 else
1176 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1177}
1178
1179
1180#ifdef VBOX_STRICT
1181/**
1182 * Gets the permission bits for the specified MSR in the MSR bitmap.
1183 *
1184 * @returns VBox status code.
1185 * @retval VINF_SUCCESS if the specified MSR is found.
1186 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1187 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1188 *
1189 * @param pVCpu The cross context virtual CPU structure.
1190 * @param uMsr The MSR.
1191 * @param penmRead Where to store the read permissions.
1192 * @param penmWrite Where to store the write permissions.
1193 */
1194static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1195{
1196 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1197 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1198 int32_t iBit;
1199 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1200
1201 /* See hmR0VmxSetMsrPermission() for the layout. */
1202 if (uMsr <= 0x00001fff)
1203 iBit = uMsr;
1204 else if ( uMsr >= 0xc0000000
1205 && uMsr <= 0xc0001fff)
1206 {
1207 iBit = (uMsr - 0xc0000000);
1208 pbMsrBitmap += 0x400;
1209 }
1210 else
1211 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1212
1213 Assert(iBit <= 0x1fff);
1214 if (ASMBitTest(pbMsrBitmap, iBit))
1215 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1216 else
1217 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1218
1219 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1220 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1221 else
1222 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1223 return VINF_SUCCESS;
1224}
1225#endif /* VBOX_STRICT */
1226
1227
1228/**
1229 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1230 * area.
1231 *
1232 * @returns VBox status code.
1233 * @param pVCpu The cross context virtual CPU structure.
1234 * @param cMsrs The number of MSRs.
1235 */
1236static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1237{
1238 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1239 uint64_t const uVmxMiscMsr = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc;
1240 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(uVmxMiscMsr);
1241 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1242 {
1243 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1244 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1245 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1246 }
1247
1248 /* Update number of guest MSRs to load/store across the world-switch. */
1249 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1250 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1251
1252 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1253 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1254 AssertRCReturn(rc, rc);
1255
1256 /* Update the VCPU's copy of the MSR count. */
1257 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1258
1259 return VINF_SUCCESS;
1260}
1261
1262
1263/**
1264 * Adds a new (or updates the value of an existing) guest/host MSR
1265 * pair to be swapped during the world-switch as part of the
1266 * auto-load/store MSR area in the VMCS.
1267 *
1268 * @returns VBox status code.
1269 * @param pVCpu The cross context virtual CPU structure.
1270 * @param uMsr The MSR.
1271 * @param uGuestMsrValue Value of the guest MSR.
1272 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1273 * necessary.
1274 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1275 * its value was updated. Optional, can be NULL.
1276 */
1277static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1278 bool *pfAddedAndUpdated)
1279{
1280 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1281 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1282 uint32_t i;
1283 for (i = 0; i < cMsrs; i++)
1284 {
1285 if (pGuestMsr->u32Msr == uMsr)
1286 break;
1287 pGuestMsr++;
1288 }
1289
1290 bool fAdded = false;
1291 if (i == cMsrs)
1292 {
1293 ++cMsrs;
1294 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1295 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1296
1297 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1298 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1299 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1300
1301 fAdded = true;
1302 }
1303
1304 /* Update the MSR values in the auto-load/store MSR area. */
1305 pGuestMsr->u32Msr = uMsr;
1306 pGuestMsr->u64Value = uGuestMsrValue;
1307
1308 /* Create/update the MSR slot in the host MSR area. */
1309 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1310 pHostMsr += i;
1311 pHostMsr->u32Msr = uMsr;
1312
1313 /*
1314 * Update the host MSR only when requested by the caller AND when we're
1315 * adding it to the auto-load/store area. Otherwise, it would have been
1316 * updated by hmR0VmxExportHostMsrs(). We do this for performance reasons.
1317 */
1318 bool fUpdatedMsrValue = false;
1319 if ( fAdded
1320 && fUpdateHostMsr)
1321 {
1322 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1323 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1324 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1325 fUpdatedMsrValue = true;
1326 }
1327
1328 if (pfAddedAndUpdated)
1329 *pfAddedAndUpdated = fUpdatedMsrValue;
1330 return VINF_SUCCESS;
1331}
1332
1333
1334/**
1335 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1336 * auto-load/store MSR area in the VMCS.
1337 *
1338 * @returns VBox status code.
1339 * @param pVCpu The cross context virtual CPU structure.
1340 * @param uMsr The MSR.
1341 */
1342static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1343{
1344 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1345 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1346 for (uint32_t i = 0; i < cMsrs; i++)
1347 {
1348 /* Find the MSR. */
1349 if (pGuestMsr->u32Msr == uMsr)
1350 {
1351 /* If it's the last MSR, simply reduce the count. */
1352 if (i == cMsrs - 1)
1353 {
1354 --cMsrs;
1355 break;
1356 }
1357
1358 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1359 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1360 pLastGuestMsr += cMsrs - 1;
1361 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1362 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1363
1364 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1365 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1366 pLastHostMsr += cMsrs - 1;
1367 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1368 pHostMsr->u64Value = pLastHostMsr->u64Value;
1369 --cMsrs;
1370 break;
1371 }
1372 pGuestMsr++;
1373 }
1374
1375 /* Update the VMCS if the count changed (meaning the MSR was found). */
1376 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1377 {
1378 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1379 AssertRCReturn(rc, rc);
1380
1381 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1382 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1383 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1384
1385 Log4Func(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1386 return VINF_SUCCESS;
1387 }
1388
1389 return VERR_NOT_FOUND;
1390}
1391
1392
1393/**
1394 * Checks if the specified guest MSR is part of the auto-load/store area in
1395 * the VMCS.
1396 *
1397 * @returns true if found, false otherwise.
1398 * @param pVCpu The cross context virtual CPU structure.
1399 * @param uMsr The MSR to find.
1400 */
1401static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1402{
1403 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1404 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1405
1406 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1407 {
1408 if (pGuestMsr->u32Msr == uMsr)
1409 return true;
1410 }
1411 return false;
1412}
1413
1414
1415/**
1416 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1417 *
1418 * @param pVCpu The cross context virtual CPU structure.
1419 *
1420 * @remarks No-long-jump zone!!!
1421 */
1422static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1423{
1424 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1425 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1426 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1427 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1428
1429 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1430 {
1431 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1432
1433 /*
1434 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1435 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1436 */
1437 if (pHostMsr->u32Msr == MSR_K6_EFER)
1438 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1439 else
1440 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1441 }
1442
1443 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1444}
1445
1446
1447/**
1448 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1449 * perform lazy restoration of the host MSRs while leaving VT-x.
1450 *
1451 * @param pVCpu The cross context virtual CPU structure.
1452 *
1453 * @remarks No-long-jump zone!!!
1454 */
1455static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1456{
1457 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1458
1459 /*
1460 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1461 */
1462 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1463 {
1464 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1465#if HC_ARCH_BITS == 64
1466 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1467 {
1468 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1469 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1470 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1471 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1472 }
1473#endif
1474 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1475 }
1476}
1477
1478
1479/**
1480 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1481 * lazily while leaving VT-x.
1482 *
1483 * @returns true if it does, false otherwise.
1484 * @param pVCpu The cross context virtual CPU structure.
1485 * @param uMsr The MSR to check.
1486 */
1487static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1488{
1489 NOREF(pVCpu);
1490#if HC_ARCH_BITS == 64
1491 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1492 {
1493 switch (uMsr)
1494 {
1495 case MSR_K8_LSTAR:
1496 case MSR_K6_STAR:
1497 case MSR_K8_SF_MASK:
1498 case MSR_K8_KERNEL_GS_BASE:
1499 return true;
1500 }
1501 }
1502#else
1503 RT_NOREF(pVCpu, uMsr);
1504#endif
1505 return false;
1506}
1507
1508
1509/**
1510 * Loads a set of guests MSRs to allow read/passthru to the guest.
1511 *
1512 * The name of this function is slightly confusing. This function does NOT
1513 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1514 * common prefix for functions dealing with "lazy restoration" of the shared
1515 * MSRs.
1516 *
1517 * @param pVCpu The cross context virtual CPU structure.
1518 *
1519 * @remarks No-long-jump zone!!!
1520 */
1521static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1522{
1523 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1524 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1525
1526 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1527#if HC_ARCH_BITS == 64
1528 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1529 {
1530 /*
1531 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1532 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1533 * we can skip a few MSR writes.
1534 *
1535 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1536 * guest MSR values in the guest-CPU context might be different to what's currently
1537 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1538 * CPU, see @bugref{8728}.
1539 */
1540 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1541 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1542 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1543 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1544 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1545 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1546 {
1547#ifdef VBOX_STRICT
1548 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1549 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1550 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1551 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1552#endif
1553 }
1554 else
1555 {
1556 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1557 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
1558 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
1559 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1560 }
1561 }
1562#endif
1563 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1564}
1565
1566
1567/**
1568 * Performs lazy restoration of the set of host MSRs if they were previously
1569 * loaded with guest MSR values.
1570 *
1571 * @param pVCpu The cross context virtual CPU structure.
1572 *
1573 * @remarks No-long-jump zone!!!
1574 * @remarks The guest MSRs should have been saved back into the guest-CPU
1575 * context by hmR0VmxImportGuestState()!!!
1576 */
1577static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1578{
1579 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1580 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1581
1582 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1583 {
1584 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1585#if HC_ARCH_BITS == 64
1586 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1587 {
1588 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1589 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1590 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1591 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1592 }
1593#endif
1594 }
1595 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1596}
1597
1598
1599/**
1600 * Verifies that our cached values of the VMCS fields are all consistent with
1601 * what's actually present in the VMCS.
1602 *
1603 * @returns VBox status code.
1604 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
1605 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
1606 * VMCS content. HMCPU error-field is
1607 * updated, see VMX_VCI_XXX.
1608 * @param pVCpu The cross context virtual CPU structure.
1609 */
1610static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1611{
1612 uint32_t u32Val;
1613 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1614 AssertRCReturn(rc, rc);
1615 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32EntryCtls == u32Val,
1616 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1617 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
1618 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1619
1620 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1621 AssertRCReturn(rc, rc);
1622 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ExitCtls == u32Val,
1623 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1624 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
1625 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1626
1627 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1628 AssertRCReturn(rc, rc);
1629 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32PinCtls == u32Val,
1630 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1631 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
1632 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1633
1634 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1635 AssertRCReturn(rc, rc);
1636 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls == u32Val,
1637 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1638 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
1639 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1640
1641 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1642 {
1643 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1644 AssertRCReturn(rc, rc);
1645 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1646 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1647 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
1648 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1649 }
1650
1651 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
1652 AssertRCReturn(rc, rc);
1653 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32XcptBitmap == u32Val,
1654 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap, u32Val),
1655 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
1656 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1657
1658 uint64_t u64Val;
1659 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
1660 AssertRCReturn(rc, rc);
1661 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u64TscOffset == u64Val,
1662 ("Cache=%#RX64 VMCS=%#RX64\n", pVCpu->hm.s.vmx.u64TscOffset, u64Val),
1663 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
1664 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1665
1666 return VINF_SUCCESS;
1667}
1668
1669
1670#ifdef VBOX_STRICT
1671/**
1672 * Verifies that our cached host EFER value has not changed
1673 * since we cached it.
1674 *
1675 * @param pVCpu The cross context virtual CPU structure.
1676 */
1677static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1678{
1679 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1680
1681 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1682 {
1683 uint64_t u64Val;
1684 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1685 AssertRC(rc);
1686
1687 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1688 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1689 }
1690}
1691
1692
1693/**
1694 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1695 * VMCS are correct.
1696 *
1697 * @param pVCpu The cross context virtual CPU structure.
1698 */
1699static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1700{
1701 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1702
1703 /* Verify MSR counts in the VMCS are what we think it should be. */
1704 uint32_t cMsrs;
1705 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1706 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1707
1708 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1709 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1710
1711 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1712 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1713
1714 PCVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1715 PCVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1716 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1717 {
1718 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1719 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1720 pGuestMsr->u32Msr, cMsrs));
1721
1722 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1723 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1724 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1725
1726 /* Verify that the permissions are as expected in the MSR bitmap. */
1727 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1728 {
1729 VMXMSREXITREAD enmRead;
1730 VMXMSREXITWRITE enmWrite;
1731 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1732 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1733 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1734 {
1735 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1736 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1737 }
1738 else
1739 {
1740 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1741 pGuestMsr->u32Msr, cMsrs));
1742 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1743 pGuestMsr->u32Msr, cMsrs));
1744 }
1745 }
1746 }
1747}
1748#endif /* VBOX_STRICT */
1749
1750
1751/**
1752 * Flushes the TLB using EPT.
1753 *
1754 * @returns VBox status code.
1755 * @param pVCpu The cross context virtual CPU structure of the calling
1756 * EMT. Can be NULL depending on @a enmTlbFlush.
1757 * @param enmTlbFlush Type of flush.
1758 *
1759 * @remarks Caller is responsible for making sure this function is called only
1760 * when NestedPaging is supported and providing @a enmTlbFlush that is
1761 * supported by the CPU.
1762 * @remarks Can be called with interrupts disabled.
1763 */
1764static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush)
1765{
1766 uint64_t au64Descriptor[2];
1767 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1768 au64Descriptor[0] = 0;
1769 else
1770 {
1771 Assert(pVCpu);
1772 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1773 }
1774 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1775
1776 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
1777 AssertMsg(rc == VINF_SUCCESS,
1778 ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0, rc));
1779
1780 if ( RT_SUCCESS(rc)
1781 && pVCpu)
1782 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1783}
1784
1785
1786/**
1787 * Flushes the TLB using VPID.
1788 *
1789 * @returns VBox status code.
1790 * @param pVCpu The cross context virtual CPU structure of the calling
1791 * EMT. Can be NULL depending on @a enmTlbFlush.
1792 * @param enmTlbFlush Type of flush.
1793 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1794 * on @a enmTlbFlush).
1795 *
1796 * @remarks Can be called with interrupts disabled.
1797 */
1798static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
1799{
1800 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
1801
1802 uint64_t au64Descriptor[2];
1803 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1804 {
1805 au64Descriptor[0] = 0;
1806 au64Descriptor[1] = 0;
1807 }
1808 else
1809 {
1810 AssertPtr(pVCpu);
1811 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1812 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1813 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1814 au64Descriptor[1] = GCPtr;
1815 }
1816
1817 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
1818 AssertMsg(rc == VINF_SUCCESS,
1819 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1820
1821 if ( RT_SUCCESS(rc)
1822 && pVCpu)
1823 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1824 NOREF(rc);
1825}
1826
1827
1828/**
1829 * Invalidates a guest page by guest virtual address. Only relevant for
1830 * EPT/VPID, otherwise there is nothing really to invalidate.
1831 *
1832 * @returns VBox status code.
1833 * @param pVCpu The cross context virtual CPU structure.
1834 * @param GCVirt Guest virtual address of the page to invalidate.
1835 */
1836VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1837{
1838 AssertPtr(pVCpu);
1839 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
1840
1841 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1842 if (!fFlushPending)
1843 {
1844 /*
1845 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
1846 * the EPT case. See @bugref{6043} and @bugref{6177}.
1847 *
1848 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
1849 * as this function maybe called in a loop with individual addresses.
1850 */
1851 PVM pVM = pVCpu->CTX_SUFF(pVM);
1852 if (pVM->hm.s.vmx.fVpid)
1853 {
1854 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1855
1856#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1857 /*
1858 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
1859 * where executing INVVPID outside 64-bit mode does not flush translations of
1860 * 64-bit linear addresses, see @bugref{6208#c72}.
1861 */
1862 if (RT_HI_U32(GCVirt))
1863 fVpidFlush = false;
1864#endif
1865
1866 if (fVpidFlush)
1867 {
1868 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
1869 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1870 }
1871 else
1872 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1873 }
1874 else if (pVM->hm.s.fNestedPaging)
1875 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1876 }
1877
1878 return VINF_SUCCESS;
1879}
1880
1881
1882/**
1883 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1884 * case where neither EPT nor VPID is supported by the CPU.
1885 *
1886 * @param pVCpu The cross context virtual CPU structure.
1887 * @param pCpu Pointer to the global HM struct.
1888 *
1889 * @remarks Called with interrupts disabled.
1890 */
1891static void hmR0VmxFlushTaggedTlbNone(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1892{
1893 AssertPtr(pVCpu);
1894 AssertPtr(pCpu);
1895
1896 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1897
1898 Assert(pCpu->idCpu != NIL_RTCPUID);
1899 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1900 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1901 pVCpu->hm.s.fForceTLBFlush = false;
1902 return;
1903}
1904
1905
1906/**
1907 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1908 *
1909 * @param pVCpu The cross context virtual CPU structure.
1910 * @param pCpu Pointer to the global HM CPU struct.
1911 *
1912 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
1913 * nomenclature. The reason is, to avoid confusion in compare statements
1914 * since the host-CPU copies are named "ASID".
1915 *
1916 * @remarks Called with interrupts disabled.
1917 */
1918static void hmR0VmxFlushTaggedTlbBoth(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1919{
1920#ifdef VBOX_WITH_STATISTICS
1921 bool fTlbFlushed = false;
1922# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1923# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1924 if (!fTlbFlushed) \
1925 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1926 } while (0)
1927#else
1928# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1929# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1930#endif
1931
1932 AssertPtr(pCpu);
1933 AssertPtr(pVCpu);
1934 Assert(pCpu->idCpu != NIL_RTCPUID);
1935
1936 PVM pVM = pVCpu->CTX_SUFF(pVM);
1937 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1938 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1939 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1940
1941 /*
1942 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
1943 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
1944 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
1945 * cannot reuse the current ASID anymore.
1946 */
1947 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1948 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1949 {
1950 ++pCpu->uCurrentAsid;
1951 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1952 {
1953 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1954 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1955 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1956 }
1957
1958 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1959 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1960 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1961
1962 /*
1963 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1964 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1965 */
1966 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1967 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1968 HMVMX_SET_TAGGED_TLB_FLUSHED();
1969 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1970 }
1971 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
1972 {
1973 /*
1974 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
1975 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
1976 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
1977 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
1978 * mappings, see @bugref{6568}.
1979 *
1980 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
1981 */
1982 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1983 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1984 HMVMX_SET_TAGGED_TLB_FLUSHED();
1985 }
1986
1987 pVCpu->hm.s.fForceTLBFlush = false;
1988 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1989
1990 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
1991 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
1992 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1993 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1994 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1995 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
1996 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
1997 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1998 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1999
2000 /* Update VMCS with the VPID. */
2001 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2002 AssertRC(rc);
2003
2004#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2005}
2006
2007
2008/**
2009 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2010 *
2011 * @returns VBox status code.
2012 * @param pVCpu The cross context virtual CPU structure.
2013 * @param pCpu Pointer to the global HM CPU struct.
2014 *
2015 * @remarks Called with interrupts disabled.
2016 */
2017static void hmR0VmxFlushTaggedTlbEpt(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2018{
2019 AssertPtr(pVCpu);
2020 AssertPtr(pCpu);
2021 Assert(pCpu->idCpu != NIL_RTCPUID);
2022 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2023 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2024
2025 /*
2026 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2027 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2028 */
2029 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2030 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2031 {
2032 pVCpu->hm.s.fForceTLBFlush = true;
2033 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2034 }
2035
2036 /* Check for explicit TLB flushes. */
2037 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2038 {
2039 pVCpu->hm.s.fForceTLBFlush = true;
2040 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2041 }
2042
2043 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2044 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2045
2046 if (pVCpu->hm.s.fForceTLBFlush)
2047 {
2048 hmR0VmxFlushEpt(pVCpu, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2049 pVCpu->hm.s.fForceTLBFlush = false;
2050 }
2051}
2052
2053
2054/**
2055 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2056 *
2057 * @returns VBox status code.
2058 * @param pVCpu The cross context virtual CPU structure.
2059 * @param pCpu Pointer to the global HM CPU struct.
2060 *
2061 * @remarks Called with interrupts disabled.
2062 */
2063static void hmR0VmxFlushTaggedTlbVpid(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2064{
2065 AssertPtr(pVCpu);
2066 AssertPtr(pCpu);
2067 Assert(pCpu->idCpu != NIL_RTCPUID);
2068 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2069 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2070
2071 /*
2072 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2073 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2074 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2075 * cannot reuse the current ASID anymore.
2076 */
2077 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2078 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2079 {
2080 pVCpu->hm.s.fForceTLBFlush = true;
2081 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2082 }
2083
2084 /* Check for explicit TLB flushes. */
2085 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2086 {
2087 /*
2088 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2089 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2090 * fExplicitFlush = true here and change the pCpu->fFlushAsidBeforeUse check below to
2091 * include fExplicitFlush's too) - an obscure corner case.
2092 */
2093 pVCpu->hm.s.fForceTLBFlush = true;
2094 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2095 }
2096
2097 PVM pVM = pVCpu->CTX_SUFF(pVM);
2098 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2099 if (pVCpu->hm.s.fForceTLBFlush)
2100 {
2101 ++pCpu->uCurrentAsid;
2102 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2103 {
2104 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2105 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2106 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2107 }
2108
2109 pVCpu->hm.s.fForceTLBFlush = false;
2110 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2111 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2112 if (pCpu->fFlushAsidBeforeUse)
2113 {
2114 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2115 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2116 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2117 {
2118 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2119 pCpu->fFlushAsidBeforeUse = false;
2120 }
2121 else
2122 {
2123 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2124 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2125 }
2126 }
2127 }
2128
2129 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2130 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2131 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2132 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2133 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2134 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2135 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2136
2137 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2138 AssertRC(rc);
2139}
2140
2141
2142/**
2143 * Flushes the guest TLB entry based on CPU capabilities.
2144 *
2145 * @param pVCpu The cross context virtual CPU structure.
2146 * @param pCpu Pointer to the global HM CPU struct.
2147 */
2148DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2149{
2150#ifdef HMVMX_ALWAYS_FLUSH_TLB
2151 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2152#endif
2153 PVM pVM = pVCpu->CTX_SUFF(pVM);
2154 switch (pVM->hm.s.vmx.enmTlbFlushType)
2155 {
2156 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVCpu, pCpu); break;
2157 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pVCpu, pCpu); break;
2158 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pVCpu, pCpu); break;
2159 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pVCpu, pCpu); break;
2160 default:
2161 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2162 break;
2163 }
2164 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2165}
2166
2167
2168/**
2169 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2170 * TLB entries from the host TLB before VM-entry.
2171 *
2172 * @returns VBox status code.
2173 * @param pVM The cross context VM structure.
2174 */
2175static int hmR0VmxSetupTaggedTlb(PVM pVM)
2176{
2177 /*
2178 * Determine optimal flush type for Nested Paging.
2179 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2180 * guest execution (see hmR3InitFinalizeR0()).
2181 */
2182 if (pVM->hm.s.fNestedPaging)
2183 {
2184 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2185 {
2186 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2187 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2188 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2189 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2190 else
2191 {
2192 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2193 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2194 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2195 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2196 }
2197
2198 /* Make sure the write-back cacheable memory type for EPT is supported. */
2199 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2200 {
2201 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2202 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2203 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2204 }
2205
2206 /* EPT requires a page-walk length of 4. */
2207 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2208 {
2209 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2210 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2211 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2212 }
2213 }
2214 else
2215 {
2216 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2217 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2218 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2219 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2220 }
2221 }
2222
2223 /*
2224 * Determine optimal flush type for VPID.
2225 */
2226 if (pVM->hm.s.vmx.fVpid)
2227 {
2228 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2229 {
2230 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2231 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2232 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2233 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2234 else
2235 {
2236 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2237 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2238 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2239 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2240 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2241 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2242 pVM->hm.s.vmx.fVpid = false;
2243 }
2244 }
2245 else
2246 {
2247 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2248 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2249 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2250 pVM->hm.s.vmx.fVpid = false;
2251 }
2252 }
2253
2254 /*
2255 * Setup the handler for flushing tagged-TLBs.
2256 */
2257 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2258 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2259 else if (pVM->hm.s.fNestedPaging)
2260 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2261 else if (pVM->hm.s.vmx.fVpid)
2262 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2263 else
2264 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2265 return VINF_SUCCESS;
2266}
2267
2268
2269/**
2270 * Sets up pin-based VM-execution controls in the VMCS.
2271 *
2272 * @returns VBox status code.
2273 * @param pVCpu The cross context virtual CPU structure.
2274 *
2275 * @remarks We don't really care about optimizing vmwrites here as it's done only
2276 * once per VM and hence we don't care about VMCS-field cache comparisons.
2277 */
2278static int hmR0VmxSetupPinCtls(PVMCPU pVCpu)
2279{
2280 PVM pVM = pVCpu->CTX_SUFF(pVM);
2281 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0; /* Bits set here must always be set. */
2282 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2283
2284 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2285 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2286
2287 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2288 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2289
2290 /* Enable the VMX preemption timer. */
2291 if (pVM->hm.s.vmx.fUsePreemptTimer)
2292 {
2293 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2294 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2295 }
2296
2297#if 0
2298 /* Enable posted-interrupt processing. */
2299 if (pVM->hm.s.fPostedIntrs)
2300 {
2301 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2302 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2303 fVal |= VMX_PIN_CTL_POSTED_INT;
2304 }
2305#endif
2306
2307 if ((fVal & fZap) != fVal)
2308 {
2309 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2310 pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0, fVal, fZap));
2311 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2312 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2313 }
2314
2315 /* Commit it to the VMCS and update our cache. */
2316 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2317 AssertRCReturn(rc, rc);
2318 pVCpu->hm.s.vmx.u32PinCtls = fVal;
2319
2320 return VINF_SUCCESS;
2321}
2322
2323
2324/**
2325 * Sets up secondary processor-based VM-execution controls in the VMCS.
2326 *
2327 * @returns VBox status code.
2328 * @param pVCpu The cross context virtual CPU structure.
2329 *
2330 * @remarks We don't really care about optimizing vmwrites here as it's done only
2331 * once per VM and hence we don't care about VMCS-field cache comparisons.
2332 */
2333static int hmR0VmxSetupProcCtls2(PVMCPU pVCpu)
2334{
2335 PVM pVM = pVCpu->CTX_SUFF(pVM);
2336 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2337 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2338
2339 /* WBINVD causes a VM-exit. */
2340 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2341 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2342
2343 /* Enable EPT (aka nested-paging). */
2344 if (pVM->hm.s.fNestedPaging)
2345 fVal |= VMX_PROC_CTLS2_EPT;
2346
2347 /*
2348 * Enable the INVPCID instruction if supported by the hardware and we expose
2349 * it to the guest. Without this, guest executing INVPCID would cause a #UD.
2350 */
2351 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2352 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2353 fVal |= VMX_PROC_CTLS2_INVPCID;
2354
2355 /* Enable VPID. */
2356 if (pVM->hm.s.vmx.fVpid)
2357 fVal |= VMX_PROC_CTLS2_VPID;
2358
2359 /* Enable Unrestricted guest execution. */
2360 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2361 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2362
2363#if 0
2364 if (pVM->hm.s.fVirtApicRegs)
2365 {
2366 /* Enable APIC-register virtualization. */
2367 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2368 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2369
2370 /* Enable virtual-interrupt delivery. */
2371 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2372 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2373 }
2374#endif
2375
2376 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
2377 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2378 * done dynamically. */
2379 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2380 {
2381 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2382 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2383 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS; /* Virtualize APIC accesses. */
2384 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2385 AssertRCReturn(rc, rc);
2386 }
2387
2388 /* Enable RDTSCP. */
2389 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
2390 fVal |= VMX_PROC_CTLS2_RDTSCP;
2391
2392 /* Enable Pause-Loop exiting. */
2393 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
2394 && pVM->hm.s.vmx.cPleGapTicks
2395 && pVM->hm.s.vmx.cPleWindowTicks)
2396 {
2397 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2398
2399 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2400 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2401 AssertRCReturn(rc, rc);
2402 }
2403
2404 if ((fVal & fZap) != fVal)
2405 {
2406 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2407 pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0, fVal, fZap));
2408 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2409 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2410 }
2411
2412 /* Commit it to the VMCS and update our cache. */
2413 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2414 AssertRCReturn(rc, rc);
2415 pVCpu->hm.s.vmx.u32ProcCtls2 = fVal;
2416
2417 return VINF_SUCCESS;
2418}
2419
2420
2421/**
2422 * Sets up processor-based VM-execution controls in the VMCS.
2423 *
2424 * @returns VBox status code.
2425 * @param pVCpu The cross context virtual CPU structure.
2426 *
2427 * @remarks We don't really care about optimizing vmwrites here as it's done only
2428 * once per VM and hence we don't care about VMCS-field cache comparisons.
2429 */
2430static int hmR0VmxSetupProcCtls(PVMCPU pVCpu)
2431{
2432 PVM pVM = pVCpu->CTX_SUFF(pVM);
2433 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2434 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2435
2436 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2437 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2438 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2439 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2440 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2441 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2442 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2443
2444 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2445 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2446 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2447 {
2448 LogRelFunc(("Unsupported VMX_PROC_CTLS_MOV_DR_EXIT combo!"));
2449 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2450 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2451 }
2452
2453 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2454 if (!pVM->hm.s.fNestedPaging)
2455 {
2456 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2457 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
2458 | VMX_PROC_CTLS_CR3_LOAD_EXIT
2459 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2460 }
2461
2462 /* Use TPR shadowing if supported by the CPU. */
2463 if ( PDMHasApic(pVM)
2464 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
2465 {
2466 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2467 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2468 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2469 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2470 AssertRCReturn(rc, rc);
2471
2472 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2473 /* CR8 writes cause a VM-exit based on TPR threshold. */
2474 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2475 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2476 }
2477 else
2478 {
2479 /*
2480 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2481 * Set this control only for 64-bit guests.
2482 */
2483 if (pVM->hm.s.fAllow64BitGuests)
2484 {
2485 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2486 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2487 }
2488 }
2489
2490 /* Use MSR-bitmaps if supported by the CPU. */
2491 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2492 {
2493 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
2494
2495 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2496 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2497 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2498 AssertRCReturn(rc, rc);
2499
2500 /*
2501 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2502 * automatically using dedicated fields in the VMCS.
2503 */
2504 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2505 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2506 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2507 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2508 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2509#if HC_ARCH_BITS == 64
2510 /*
2511 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2512 */
2513 if (pVM->hm.s.fAllow64BitGuests)
2514 {
2515 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2516 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2517 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2518 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2519 }
2520#endif
2521 /*
2522 * The IA32_PRED_CMD MSR is write-only and has no state associated with it. We never need to intercept
2523 * access (writes need to be executed without exiting, reds will #GP-fault anyway).
2524 */
2525 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2526 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2527
2528 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2529 }
2530
2531 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2532 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2533 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2534
2535 if ((fVal & fZap) != fVal)
2536 {
2537 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2538 pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0, fVal, fZap));
2539 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2540 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2541 }
2542
2543 /* Commit it to the VMCS and update our cache. */
2544 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2545 AssertRCReturn(rc, rc);
2546 pVCpu->hm.s.vmx.u32ProcCtls = fVal;
2547
2548 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
2549 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2550 return hmR0VmxSetupProcCtls2(pVCpu);
2551
2552 /* Sanity check, should not really happen. */
2553 if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2554 {
2555 LogRelFunc(("Unrestricted Guest enabled when secondary processor-based VM-execution controls not available\n"));
2556 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2557 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2558 }
2559
2560 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
2561 return VINF_SUCCESS;
2562}
2563
2564
2565/**
2566 * Sets up miscellaneous (everything other than Pin & Processor-based
2567 * VM-execution) control fields in the VMCS.
2568 *
2569 * @returns VBox status code.
2570 * @param pVCpu The cross context virtual CPU structure.
2571 */
2572static int hmR0VmxSetupMiscCtls(PVMCPU pVCpu)
2573{
2574 AssertPtr(pVCpu);
2575
2576 int rc = VERR_GENERAL_FAILURE;
2577
2578 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2579#if 0
2580 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxExportGuestCR3AndCR4())*/
2581 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2582 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2583
2584 /*
2585 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2586 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2587 * We thus use the exception bitmap to control it rather than use both.
2588 */
2589 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2590 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2591
2592 /* All IO & IOIO instructions cause VM-exits. */
2593 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2594 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2595
2596 /* Initialize the MSR-bitmap area. */
2597 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2598 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2599 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2600 AssertRCReturn(rc, rc);
2601#endif
2602
2603 /* Setup MSR auto-load/store area. */
2604 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2605 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2606 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2607 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2608 AssertRCReturn(rc, rc);
2609
2610 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2611 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2612 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2613 AssertRCReturn(rc, rc);
2614
2615 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2616 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2617 AssertRCReturn(rc, rc);
2618
2619 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2620#if 0
2621 /* Setup debug controls */
2622 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
2623 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2624 AssertRCReturn(rc, rc);
2625#endif
2626
2627 return rc;
2628}
2629
2630
2631/**
2632 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2633 *
2634 * We shall setup those exception intercepts that don't change during the
2635 * lifetime of the VM here. The rest are done dynamically while loading the
2636 * guest state.
2637 *
2638 * @returns VBox status code.
2639 * @param pVCpu The cross context virtual CPU structure.
2640 */
2641static int hmR0VmxInitXcptBitmap(PVMCPU pVCpu)
2642{
2643 AssertPtr(pVCpu);
2644
2645 uint32_t uXcptBitmap;
2646
2647 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2648 uXcptBitmap = RT_BIT_32(X86_XCPT_AC);
2649
2650 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2651 and writes, and because recursive #DBs can cause the CPU hang, we must always
2652 intercept #DB. */
2653 uXcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2654
2655 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2656 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
2657 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
2658
2659 /* Commit it to the VMCS. */
2660 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2661 AssertRCReturn(rc, rc);
2662
2663 /* Update our cache of the exception bitmap. */
2664 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
2665 return VINF_SUCCESS;
2666}
2667
2668
2669/**
2670 * Does per-VM VT-x initialization.
2671 *
2672 * @returns VBox status code.
2673 * @param pVM The cross context VM structure.
2674 */
2675VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2676{
2677 LogFlowFunc(("pVM=%p\n", pVM));
2678
2679 int rc = hmR0VmxStructsAlloc(pVM);
2680 if (RT_FAILURE(rc))
2681 {
2682 LogRelFunc(("hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2683 return rc;
2684 }
2685
2686 return VINF_SUCCESS;
2687}
2688
2689
2690/**
2691 * Does per-VM VT-x termination.
2692 *
2693 * @returns VBox status code.
2694 * @param pVM The cross context VM structure.
2695 */
2696VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2697{
2698 LogFlowFunc(("pVM=%p\n", pVM));
2699
2700#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2701 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2702 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2703#endif
2704 hmR0VmxStructsFree(pVM);
2705 return VINF_SUCCESS;
2706}
2707
2708
2709/**
2710 * Sets up the VM for execution under VT-x.
2711 * This function is only called once per-VM during initialization.
2712 *
2713 * @returns VBox status code.
2714 * @param pVM The cross context VM structure.
2715 */
2716VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2717{
2718 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2719 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2720
2721 LogFlowFunc(("pVM=%p\n", pVM));
2722
2723 /*
2724 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be
2725 * allocated. We no longer support the highly unlikely case of UnrestrictedGuest without
2726 * pRealModeTSS, see hmR3InitFinalizeR0Intel().
2727 */
2728 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2729 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2730 || !pVM->hm.s.vmx.pRealModeTSS))
2731 {
2732 LogRelFunc(("Invalid real-on-v86 state.\n"));
2733 return VERR_INTERNAL_ERROR;
2734 }
2735
2736 /* Initialize these always, see hmR3InitFinalizeR0().*/
2737 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
2738 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
2739
2740 /* Setup the tagged-TLB flush handlers. */
2741 int rc = hmR0VmxSetupTaggedTlb(pVM);
2742 if (RT_FAILURE(rc))
2743 {
2744 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2745 return rc;
2746 }
2747
2748 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2749 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2750#if HC_ARCH_BITS == 64
2751 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2752 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2753 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
2754 {
2755 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2756 }
2757#endif
2758
2759 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2760 RTCCUINTREG uHostCR4 = ASMGetCR4();
2761 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2762 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2763
2764 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2765 {
2766 PVMCPU pVCpu = &pVM->aCpus[i];
2767 AssertPtr(pVCpu);
2768 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2769
2770 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2771 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2772
2773 /* Set revision dword at the beginning of the VMCS structure. */
2774 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
2775
2776 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2777 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2778 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc\n", rc),
2779 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2780
2781 /* Load this VMCS as the current VMCS. */
2782 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2783 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc\n", rc),
2784 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2785
2786 rc = hmR0VmxSetupPinCtls(pVCpu);
2787 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc\n", rc),
2788 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2789
2790 rc = hmR0VmxSetupProcCtls(pVCpu);
2791 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc\n", rc),
2792 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2793
2794 rc = hmR0VmxSetupMiscCtls(pVCpu);
2795 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc\n", rc),
2796 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2797
2798 rc = hmR0VmxInitXcptBitmap(pVCpu);
2799 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc\n", rc),
2800 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2801
2802#if HC_ARCH_BITS == 32
2803 rc = hmR0VmxInitVmcsReadCache(pVCpu);
2804 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc\n", rc),
2805 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2806#endif
2807
2808 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2809 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2810 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc\n", rc),
2811 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2812
2813 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2814
2815 hmR0VmxUpdateErrorRecord(pVCpu, rc);
2816 }
2817
2818 return VINF_SUCCESS;
2819}
2820
2821
2822/**
2823 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2824 * the VMCS.
2825 *
2826 * @returns VBox status code.
2827 */
2828static int hmR0VmxExportHostControlRegs(void)
2829{
2830 RTCCUINTREG uReg = ASMGetCR0();
2831 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2832 AssertRCReturn(rc, rc);
2833
2834 uReg = ASMGetCR3();
2835 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2836 AssertRCReturn(rc, rc);
2837
2838 uReg = ASMGetCR4();
2839 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2840 AssertRCReturn(rc, rc);
2841 return rc;
2842}
2843
2844
2845/**
2846 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2847 * the host-state area in the VMCS.
2848 *
2849 * @returns VBox status code.
2850 * @param pVCpu The cross context virtual CPU structure.
2851 */
2852static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
2853{
2854#if HC_ARCH_BITS == 64
2855/**
2856 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2857 * requirements. See hmR0VmxExportHostSegmentRegs().
2858 */
2859# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2860 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2861 { \
2862 bool fValidSelector = true; \
2863 if ((selValue) & X86_SEL_LDT) \
2864 { \
2865 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2866 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2867 } \
2868 if (fValidSelector) \
2869 { \
2870 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2871 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2872 } \
2873 (selValue) = 0; \
2874 }
2875
2876 /*
2877 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2878 * should -not- save the messed up state without restoring the original host-state,
2879 * see @bugref{7240}.
2880 *
2881 * This apparently can happen (most likely the FPU changes), deal with it rather than
2882 * asserting. Was observed booting Solaris 10u10 32-bit guest.
2883 */
2884 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2885 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2886 {
2887 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2888 pVCpu->idCpu));
2889 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2890 }
2891 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2892#else
2893 RT_NOREF(pVCpu);
2894#endif
2895
2896 /*
2897 * Host DS, ES, FS and GS segment registers.
2898 */
2899#if HC_ARCH_BITS == 64
2900 RTSEL uSelDS = ASMGetDS();
2901 RTSEL uSelES = ASMGetES();
2902 RTSEL uSelFS = ASMGetFS();
2903 RTSEL uSelGS = ASMGetGS();
2904#else
2905 RTSEL uSelDS = 0;
2906 RTSEL uSelES = 0;
2907 RTSEL uSelFS = 0;
2908 RTSEL uSelGS = 0;
2909#endif
2910
2911 /*
2912 * Host CS and SS segment registers.
2913 */
2914 RTSEL uSelCS = ASMGetCS();
2915 RTSEL uSelSS = ASMGetSS();
2916
2917 /*
2918 * Host TR segment register.
2919 */
2920 RTSEL uSelTR = ASMGetTR();
2921
2922#if HC_ARCH_BITS == 64
2923 /*
2924 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
2925 * gain VM-entry and restore them before we get preempted.
2926 *
2927 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2928 */
2929 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2930 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2931 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2932 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2933# undef VMXLOCAL_ADJUST_HOST_SEG
2934#endif
2935
2936 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2937 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2938 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2939 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2940 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2941 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2942 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2943 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2944 Assert(uSelCS);
2945 Assert(uSelTR);
2946
2947 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2948#if 0
2949 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE))
2950 Assert(uSelSS != 0);
2951#endif
2952
2953 /* Write these host selector fields into the host-state area in the VMCS. */
2954 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2955 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2956#if HC_ARCH_BITS == 64
2957 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2958 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2959 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2960 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2961#else
2962 NOREF(uSelDS);
2963 NOREF(uSelES);
2964 NOREF(uSelFS);
2965 NOREF(uSelGS);
2966#endif
2967 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2968 AssertRCReturn(rc, rc);
2969
2970 /*
2971 * Host GDTR and IDTR.
2972 */
2973 RTGDTR Gdtr;
2974 RTIDTR Idtr;
2975 RT_ZERO(Gdtr);
2976 RT_ZERO(Idtr);
2977 ASMGetGDTR(&Gdtr);
2978 ASMGetIDTR(&Idtr);
2979 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
2980 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
2981 AssertRCReturn(rc, rc);
2982
2983#if HC_ARCH_BITS == 64
2984 /*
2985 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
2986 * them to the maximum limit (0xffff) on every VM-exit.
2987 */
2988 if (Gdtr.cbGdt != 0xffff)
2989 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
2990
2991 /*
2992 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
2993 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
2994 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
2995 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
2996 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
2997 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
2998 * at 0xffff on hosts where we are sure it won't cause trouble.
2999 */
3000# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3001 if (Idtr.cbIdt < 0x0fff)
3002# else
3003 if (Idtr.cbIdt != 0xffff)
3004# endif
3005 {
3006 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3007 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3008 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3009 }
3010#endif
3011
3012 /*
3013 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
3014 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
3015 * RPL should be too in most cases.
3016 */
3017 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3018 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
3019
3020 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3021#if HC_ARCH_BITS == 64
3022 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3023
3024 /*
3025 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
3026 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
3027 * restoration if the host has something else. Task switching is not supported in 64-bit
3028 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
3029 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3030 *
3031 * [1] See Intel spec. 3.5 "System Descriptor Types".
3032 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3033 */
3034 PVM pVM = pVCpu->CTX_SUFF(pVM);
3035 Assert(pDesc->System.u4Type == 11);
3036 if ( pDesc->System.u16LimitLow != 0x67
3037 || pDesc->System.u4LimitHigh)
3038 {
3039 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3040 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3041 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3042 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3043 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3044 }
3045
3046 /*
3047 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
3048 */
3049 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
3050 {
3051 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3052 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3053 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
3054 {
3055 /* The GDT is read-only but the writable GDT is available. */
3056 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
3057 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
3058 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
3059 AssertRCReturn(rc, rc);
3060 }
3061 }
3062#else
3063 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3064#endif
3065 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3066 AssertRCReturn(rc, rc);
3067
3068 /*
3069 * Host FS base and GS base.
3070 */
3071#if HC_ARCH_BITS == 64
3072 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3073 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3074 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3075 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3076 AssertRCReturn(rc, rc);
3077
3078 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3079 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3080 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3081 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3082 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3083#endif
3084 return VINF_SUCCESS;
3085}
3086
3087
3088/**
3089 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
3090 * host-state area of the VMCS.
3091 *
3092 * Theses MSRs will be automatically restored on the host after every successful
3093 * VM-exit.
3094 *
3095 * @returns VBox status code.
3096 * @param pVCpu The cross context virtual CPU structure.
3097 *
3098 * @remarks No-long-jump zone!!!
3099 */
3100static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
3101{
3102 AssertPtr(pVCpu);
3103 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3104
3105 /*
3106 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3107 * rather than swapping them on every VM-entry.
3108 */
3109 hmR0VmxLazySaveHostMsrs(pVCpu);
3110
3111 /*
3112 * Host Sysenter MSRs.
3113 */
3114 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3115#if HC_ARCH_BITS == 32
3116 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3117 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3118#else
3119 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3120 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3121#endif
3122 AssertRCReturn(rc, rc);
3123
3124 /*
3125 * Host EFER MSR.
3126 *
3127 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
3128 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
3129 */
3130 PVM pVM = pVCpu->CTX_SUFF(pVM);
3131 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3132 {
3133 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3134 AssertRCReturn(rc, rc);
3135 }
3136
3137 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see hmR0VmxExportGuestExitCtls(). */
3138
3139 return VINF_SUCCESS;
3140}
3141
3142
3143/**
3144 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3145 *
3146 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3147 * these two bits are handled by VM-entry, see hmR0VmxExportGuestExitCtls() and
3148 * hmR0VMxExportGuestEntryCtls().
3149 *
3150 * @returns true if we need to load guest EFER, false otherwise.
3151 * @param pVCpu The cross context virtual CPU structure.
3152 *
3153 * @remarks Requires EFER, CR4.
3154 * @remarks No-long-jump zone!!!
3155 */
3156static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
3157{
3158#ifdef HMVMX_ALWAYS_SWAP_EFER
3159 return true;
3160#endif
3161
3162 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3163#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3164 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3165 if (CPUMIsGuestInLongModeEx(pCtx))
3166 return false;
3167#endif
3168
3169 PVM pVM = pVCpu->CTX_SUFF(pVM);
3170 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3171 uint64_t const u64GuestEfer = pCtx->msrEFER;
3172
3173 /*
3174 * For 64-bit guests, if EFER.SCE bit differs, we need to swap EFER to ensure that the
3175 * guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
3176 */
3177 if ( CPUMIsGuestInLongModeEx(pCtx)
3178 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3179 {
3180 return true;
3181 }
3182
3183 /*
3184 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3185 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3186 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3187 */
3188 if ( (pCtx->cr4 & X86_CR4_PAE)
3189 && (pCtx->cr0 & X86_CR0_PG)
3190 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3191 {
3192 /* Assert that host is NX capable. */
3193 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
3194 return true;
3195 }
3196
3197 return false;
3198}
3199
3200
3201/**
3202 * Exports the guest state with appropriate VM-entry controls in the VMCS.
3203 *
3204 * These controls can affect things done on VM-exit; e.g. "load debug controls",
3205 * see Intel spec. 24.8.1 "VM-entry controls".
3206 *
3207 * @returns VBox status code.
3208 * @param pVCpu The cross context virtual CPU structure.
3209 *
3210 * @remarks Requires EFER.
3211 * @remarks No-long-jump zone!!!
3212 */
3213static int hmR0VmxExportGuestEntryCtls(PVMCPU pVCpu)
3214{
3215 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_CTLS)
3216 {
3217 PVM pVM = pVCpu->CTX_SUFF(pVM);
3218 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3219 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3220
3221 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3222 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
3223
3224 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3225 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
3226 {
3227 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
3228 Log4Func(("VMX_ENTRY_CTLS_IA32E_MODE_GUEST\n"));
3229 }
3230 else
3231 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
3232
3233 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3234 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3235 && hmR0VmxShouldSwapEferMsr(pVCpu))
3236 {
3237 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
3238 Log4Func(("VMX_ENTRY_CTLS_LOAD_EFER_MSR\n"));
3239 }
3240
3241 /*
3242 * The following should -not- be set (since we're not in SMM mode):
3243 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
3244 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
3245 */
3246
3247 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
3248 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
3249
3250 if ((fVal & fZap) != fVal)
3251 {
3252 Log4Func(("Invalid VM-entry controls combo! Cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3253 pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0, fVal, fZap));
3254 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3255 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3256 }
3257
3258 /* Commit it to the VMCS and update our cache. */
3259 if (pVCpu->hm.s.vmx.u32EntryCtls != fVal)
3260 {
3261 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
3262 AssertRCReturn(rc, rc);
3263 pVCpu->hm.s.vmx.u32EntryCtls = fVal;
3264 }
3265
3266 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_CTLS);
3267 }
3268 return VINF_SUCCESS;
3269}
3270
3271
3272/**
3273 * Exports the guest state with appropriate VM-exit controls in the VMCS.
3274 *
3275 * @returns VBox status code.
3276 * @param pVCpu The cross context virtual CPU structure.
3277 *
3278 * @remarks Requires EFER.
3279 */
3280static int hmR0VmxExportGuestExitCtls(PVMCPU pVCpu)
3281{
3282 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_EXIT_CTLS)
3283 {
3284 PVM pVM = pVCpu->CTX_SUFF(pVM);
3285 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3286 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3287
3288 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3289 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
3290
3291 /*
3292 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3293 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in
3294 * hmR0VmxExportHostMsrs().
3295 */
3296#if HC_ARCH_BITS == 64
3297 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3298 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3299#else
3300 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3301 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3302 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3303 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3304 {
3305 /* The switcher returns to long mode, EFER is managed by the switcher. */
3306 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3307 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3308 }
3309 else
3310 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
3311#endif
3312
3313 /* If the newer VMCS fields for managing EFER exists, use it. */
3314 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3315 && hmR0VmxShouldSwapEferMsr(pVCpu))
3316 {
3317 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
3318 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
3319 Log4Func(("VMX_EXIT_CTLS_SAVE_EFER_MSR and VMX_EXIT_CTLS_LOAD_EFER_MSR\n"));
3320 }
3321
3322 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3323 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
3324
3325 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
3326 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
3327 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
3328
3329 /* Enable saving of the VMX preemption timer value on VM-exit. */
3330 if ( pVM->hm.s.vmx.fUsePreemptTimer
3331 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER))
3332 fVal |= VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER;
3333
3334 if ((fVal & fZap) != fVal)
3335 {
3336 LogRelFunc(("Invalid VM-exit controls combo! cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3337 pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0, fVal, fZap));
3338 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3339 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3340 }
3341
3342 /* Commit it to the VMCS and update our cache. */
3343 if (pVCpu->hm.s.vmx.u32ExitCtls != fVal)
3344 {
3345 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
3346 AssertRCReturn(rc, rc);
3347 pVCpu->hm.s.vmx.u32ExitCtls = fVal;
3348 }
3349
3350 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_EXIT_CTLS);
3351 }
3352 return VINF_SUCCESS;
3353}
3354
3355
3356/**
3357 * Sets the TPR threshold in the VMCS.
3358 *
3359 * @returns VBox status code.
3360 * @param pVCpu The cross context virtual CPU structure.
3361 * @param u32TprThreshold The TPR threshold (task-priority class only).
3362 */
3363DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3364{
3365 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3366 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3367 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3368}
3369
3370
3371/**
3372 * Exports the guest APIC TPR state into the VMCS.
3373 *
3374 * @returns VBox status code.
3375 * @param pVCpu The cross context virtual CPU structure.
3376 *
3377 * @remarks No-long-jump zone!!!
3378 */
3379static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu)
3380{
3381 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
3382 {
3383 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
3384
3385 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3386 && APICIsEnabled(pVCpu))
3387 {
3388 /*
3389 * Setup TPR shadowing.
3390 */
3391 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3392 {
3393 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3394
3395 bool fPendingIntr = false;
3396 uint8_t u8Tpr = 0;
3397 uint8_t u8PendingIntr = 0;
3398 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3399 AssertRCReturn(rc, rc);
3400
3401 /*
3402 * If there are interrupts pending but masked by the TPR, instruct VT-x to
3403 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
3404 * priority of the pending interrupt so we can deliver the interrupt. If there
3405 * are no interrupts pending, set threshold to 0 to not cause any
3406 * TPR-below-threshold VM-exits.
3407 */
3408 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3409 uint32_t u32TprThreshold = 0;
3410 if (fPendingIntr)
3411 {
3412 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3413 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3414 const uint8_t u8TprPriority = u8Tpr >> 4;
3415 if (u8PendingPriority <= u8TprPriority)
3416 u32TprThreshold = u8PendingPriority;
3417 }
3418
3419 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3420 AssertRCReturn(rc, rc);
3421 }
3422 }
3423 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
3424 }
3425 return VINF_SUCCESS;
3426}
3427
3428
3429/**
3430 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3431 *
3432 * @returns Guest's interruptibility-state.
3433 * @param pVCpu The cross context virtual CPU structure.
3434 *
3435 * @remarks No-long-jump zone!!!
3436 */
3437static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu)
3438{
3439 /*
3440 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3441 */
3442 uint32_t fIntrState = 0;
3443 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3444 {
3445 /* If inhibition is active, RIP & RFLAGS should've been accessed
3446 (i.e. read previously from the VMCS or from ring-3). */
3447 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3448#ifdef VBOX_STRICT
3449 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
3450 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
3451#endif
3452 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3453 {
3454 if (pCtx->eflags.Bits.u1IF)
3455 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
3456 else
3457 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
3458 }
3459 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3460 {
3461 /*
3462 * We can clear the inhibit force flag as even if we go back to the recompiler
3463 * without executing guest code in VT-x, the flag's condition to be cleared is
3464 * met and thus the cleared state is correct.
3465 */
3466 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3467 }
3468 }
3469
3470 /*
3471 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3472 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3473 * setting this would block host-NMIs and IRET will not clear the blocking.
3474 *
3475 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3476 */
3477 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3478 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3479 {
3480 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
3481 }
3482
3483 return fIntrState;
3484}
3485
3486
3487/**
3488 * Exports the guest's interruptibility-state into the guest-state area in the
3489 * VMCS.
3490 *
3491 * @returns VBox status code.
3492 * @param pVCpu The cross context virtual CPU structure.
3493 * @param fIntrState The interruptibility-state to set.
3494 */
3495static int hmR0VmxExportGuestIntrState(PVMCPU pVCpu, uint32_t fIntrState)
3496{
3497 NOREF(pVCpu);
3498 AssertMsg(!(fIntrState & 0xfffffff0), ("%#x\n", fIntrState)); /* Bits 31:4 MBZ. */
3499 Assert((fIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3500 return VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
3501}
3502
3503
3504/**
3505 * Exports the exception intercepts required for guest execution in the VMCS.
3506 *
3507 * @returns VBox status code.
3508 * @param pVCpu The cross context virtual CPU structure.
3509 *
3510 * @remarks No-long-jump zone!!!
3511 */
3512static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu)
3513{
3514 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
3515 {
3516 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3517
3518 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxExportSharedCR0(). */
3519 if (pVCpu->hm.s.fGIMTrapXcptUD)
3520 uXcptBitmap |= RT_BIT(X86_XCPT_UD);
3521#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3522 else
3523 uXcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3524#endif
3525
3526 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_AC));
3527 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_DB));
3528
3529 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3530 {
3531 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3532 AssertRCReturn(rc, rc);
3533 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3534 }
3535
3536 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
3537 Log4Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64\n", uXcptBitmap));
3538 }
3539 return VINF_SUCCESS;
3540}
3541
3542
3543/**
3544 * Exports the guest's RIP into the guest-state area in the VMCS.
3545 *
3546 * @returns VBox status code.
3547 * @param pVCpu The cross context virtual CPU structure.
3548 *
3549 * @remarks No-long-jump zone!!!
3550 */
3551static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
3552{
3553 int rc = VINF_SUCCESS;
3554 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
3555 {
3556 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
3557
3558 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
3559 AssertRCReturn(rc, rc);
3560
3561 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
3562 Log4Func(("RIP=%#RX64\n", pVCpu->cpum.GstCtx.rip));
3563 }
3564 return rc;
3565}
3566
3567
3568/**
3569 * Exports the guest's RSP into the guest-state area in the VMCS.
3570 *
3571 * @returns VBox status code.
3572 * @param pVCpu The cross context virtual CPU structure.
3573 *
3574 * @remarks No-long-jump zone!!!
3575 */
3576static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
3577{
3578 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
3579 {
3580 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
3581
3582 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
3583 AssertRCReturn(rc, rc);
3584
3585 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
3586 }
3587 return VINF_SUCCESS;
3588}
3589
3590
3591/**
3592 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
3593 *
3594 * @returns VBox status code.
3595 * @param pVCpu The cross context virtual CPU structure.
3596 *
3597 * @remarks No-long-jump zone!!!
3598 */
3599static int hmR0VmxExportGuestRflags(PVMCPU pVCpu)
3600{
3601 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
3602 {
3603 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
3604
3605 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3606 Let us assert it as such and use 32-bit VMWRITE. */
3607 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
3608 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
3609 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
3610 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3611
3612 /*
3613 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
3614 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
3615 * can run the real-mode guest code under Virtual 8086 mode.
3616 */
3617 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3618 {
3619 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3620 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3621 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
3622 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3623 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3624 }
3625
3626 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
3627 AssertRCReturn(rc, rc);
3628
3629 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
3630 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
3631 }
3632 return VINF_SUCCESS;
3633}
3634
3635
3636/**
3637 * Exports the guest CR0 control register into the guest-state area in the VMCS.
3638 *
3639 * The guest FPU state is always pre-loaded hence we don't need to bother about
3640 * sharing FPU related CR0 bits between the guest and host.
3641 *
3642 * @returns VBox status code.
3643 * @param pVCpu The cross context virtual CPU structure.
3644 *
3645 * @remarks No-long-jump zone!!!
3646 */
3647static int hmR0VmxExportGuestCR0(PVMCPU pVCpu)
3648{
3649 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
3650 {
3651 PVM pVM = pVCpu->CTX_SUFF(pVM);
3652 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3653 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.cr0));
3654
3655 uint32_t const u32ShadowCr0 = pVCpu->cpum.GstCtx.cr0;
3656 uint32_t u32GuestCr0 = pVCpu->cpum.GstCtx.cr0;
3657
3658 /*
3659 * Setup VT-x's view of the guest CR0.
3660 * Minimize VM-exits due to CR3 changes when we have NestedPaging.
3661 */
3662 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
3663 if (pVM->hm.s.fNestedPaging)
3664 {
3665 if (CPUMIsGuestPagingEnabled(pVCpu))
3666 {
3667 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3668 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
3669 | VMX_PROC_CTLS_CR3_STORE_EXIT);
3670 }
3671 else
3672 {
3673 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3674 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
3675 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3676 }
3677
3678 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3679 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3680 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
3681 }
3682 else
3683 {
3684 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3685 u32GuestCr0 |= X86_CR0_WP;
3686 }
3687
3688 /*
3689 * Guest FPU bits.
3690 *
3691 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
3692 * using CR0.TS.
3693 *
3694 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
3695 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3696 */
3697 u32GuestCr0 |= X86_CR0_NE;
3698
3699 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
3700 bool const fInterceptMF = !(u32ShadowCr0 & X86_CR0_NE);
3701
3702 /*
3703 * Update exception intercepts.
3704 */
3705 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3706 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3707 {
3708 Assert(PDMVmmDevHeapIsEnabled(pVM));
3709 Assert(pVM->hm.s.vmx.pRealModeTSS);
3710 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3711 }
3712 else
3713 {
3714 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3715 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3716 if (fInterceptMF)
3717 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
3718 }
3719
3720 /* Additional intercepts for debugging, define these yourself explicitly. */
3721#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3722 uXcptBitmap |= 0
3723 | RT_BIT(X86_XCPT_BP)
3724 | RT_BIT(X86_XCPT_DE)
3725 | RT_BIT(X86_XCPT_NM)
3726 | RT_BIT(X86_XCPT_TS)
3727 | RT_BIT(X86_XCPT_UD)
3728 | RT_BIT(X86_XCPT_NP)
3729 | RT_BIT(X86_XCPT_SS)
3730 | RT_BIT(X86_XCPT_GP)
3731 | RT_BIT(X86_XCPT_PF)
3732 | RT_BIT(X86_XCPT_MF)
3733 ;
3734#elif defined(HMVMX_ALWAYS_TRAP_PF)
3735 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
3736#endif
3737 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
3738
3739 /*
3740 * Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW).
3741 */
3742 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3743 uint32_t fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3744 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3745 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
3746 else
3747 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3748
3749 u32GuestCr0 |= fSetCr0;
3750 u32GuestCr0 &= fZapCr0;
3751 u32GuestCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3752
3753 /*
3754 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3755 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3756 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3757 */
3758 uint32_t u32Cr0Mask = X86_CR0_PE
3759 | X86_CR0_NE
3760 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
3761 | X86_CR0_PG
3762 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3763 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3764 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3765
3766 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3767 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3768 * and @bugref{6944}. */
3769#if 0
3770 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3771 u32Cr0Mask &= ~X86_CR0_PE;
3772#endif
3773 /*
3774 * Finally, update VMCS fields with the CR0 values and the exception bitmap.
3775 */
3776 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCr0);
3777 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32ShadowCr0);
3778 if (u32Cr0Mask != pVCpu->hm.s.vmx.u32Cr0Mask)
3779 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32Cr0Mask);
3780 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
3781 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
3782 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3783 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3784 AssertRCReturn(rc, rc);
3785
3786 /* Update our caches. */
3787 pVCpu->hm.s.vmx.u32Cr0Mask = u32Cr0Mask;
3788 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
3789 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3790
3791 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
3792
3793 Log4Func(("u32Cr0Mask=%#RX32 u32ShadowCr0=%#RX32 u32GuestCr0=%#RX32 (fSetCr0=%#RX32 fZapCr0=%#RX32\n", u32Cr0Mask,
3794 u32ShadowCr0, u32GuestCr0, fSetCr0, fZapCr0));
3795 }
3796
3797 return VINF_SUCCESS;
3798}
3799
3800
3801/**
3802 * Exports the guest control registers (CR3, CR4) into the guest-state area
3803 * in the VMCS.
3804 *
3805 * @returns VBox strict status code.
3806 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3807 * without unrestricted guest access and the VMMDev is not presently
3808 * mapped (e.g. EFI32).
3809 *
3810 * @param pVCpu The cross context virtual CPU structure.
3811 *
3812 * @remarks No-long-jump zone!!!
3813 */
3814static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu)
3815{
3816 int rc = VINF_SUCCESS;
3817 PVM pVM = pVCpu->CTX_SUFF(pVM);
3818
3819 /*
3820 * Guest CR2.
3821 * It's always loaded in the assembler code. Nothing to do here.
3822 */
3823
3824 /*
3825 * Guest CR3.
3826 */
3827 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
3828 {
3829 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3830
3831 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3832 if (pVM->hm.s.fNestedPaging)
3833 {
3834 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3835
3836 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3837 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3838 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3839 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3840
3841 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3842 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3843 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3844
3845 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3846 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3847 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3848 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3849 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3850 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3851 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3852
3853 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3854 AssertRCReturn(rc, rc);
3855
3856 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3857 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3858 || CPUMIsGuestPagingEnabledEx(pCtx))
3859 {
3860 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3861 if (CPUMIsGuestInPAEModeEx(pCtx))
3862 {
3863 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3864 AssertRCReturn(rc, rc);
3865 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3866 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3867 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3868 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3869 AssertRCReturn(rc, rc);
3870 }
3871
3872 /*
3873 * The guest's view of its CR3 is unblemished with Nested Paging when the
3874 * guest is using paging or we have unrestricted guest execution to handle
3875 * the guest when it's not using paging.
3876 */
3877 GCPhysGuestCR3 = pCtx->cr3;
3878 }
3879 else
3880 {
3881 /*
3882 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
3883 * thinks it accesses physical memory directly, we use our identity-mapped
3884 * page table to map guest-linear to guest-physical addresses. EPT takes care
3885 * of translating it to host-physical addresses.
3886 */
3887 RTGCPHYS GCPhys;
3888 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3889
3890 /* We obtain it here every time as the guest could have relocated this PCI region. */
3891 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3892 if (RT_SUCCESS(rc))
3893 { /* likely */ }
3894 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3895 {
3896 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
3897 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3898 }
3899 else
3900 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3901
3902 GCPhysGuestCR3 = GCPhys;
3903 }
3904
3905 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
3906 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3907 AssertRCReturn(rc, rc);
3908 }
3909 else
3910 {
3911 /* Non-nested paging case, just use the hypervisor's CR3. */
3912 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3913
3914 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
3915 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3916 AssertRCReturn(rc, rc);
3917 }
3918
3919 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
3920 }
3921
3922 /*
3923 * Guest CR4.
3924 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3925 */
3926 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
3927 {
3928 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3929 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3930 Assert(!RT_HI_U32(pCtx->cr4));
3931
3932 uint32_t u32GuestCr4 = pCtx->cr4;
3933 uint32_t const u32ShadowCr4 = pCtx->cr4;
3934
3935 /*
3936 * Setup VT-x's view of the guest CR4.
3937 *
3938 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
3939 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
3940 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3941 *
3942 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3943 */
3944 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3945 {
3946 Assert(pVM->hm.s.vmx.pRealModeTSS);
3947 Assert(PDMVmmDevHeapIsEnabled(pVM));
3948 u32GuestCr4 &= ~X86_CR4_VME;
3949 }
3950
3951 if (pVM->hm.s.fNestedPaging)
3952 {
3953 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
3954 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3955 {
3956 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3957 u32GuestCr4 |= X86_CR4_PSE;
3958 /* Our identity mapping is a 32-bit page directory. */
3959 u32GuestCr4 &= ~X86_CR4_PAE;
3960 }
3961 /* else use guest CR4.*/
3962 }
3963 else
3964 {
3965 /*
3966 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3967 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3968 */
3969 switch (pVCpu->hm.s.enmShadowMode)
3970 {
3971 case PGMMODE_REAL: /* Real-mode. */
3972 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3973 case PGMMODE_32_BIT: /* 32-bit paging. */
3974 {
3975 u32GuestCr4 &= ~X86_CR4_PAE;
3976 break;
3977 }
3978
3979 case PGMMODE_PAE: /* PAE paging. */
3980 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3981 {
3982 u32GuestCr4 |= X86_CR4_PAE;
3983 break;
3984 }
3985
3986 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
3987 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
3988#ifdef VBOX_ENABLE_64_BITS_GUESTS
3989 break;
3990#endif
3991 default:
3992 AssertFailed();
3993 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
3994 }
3995 }
3996
3997 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
3998 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3999 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4000 u32GuestCr4 |= fSetCr4;
4001 u32GuestCr4 &= fZapCr4;
4002
4003 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them,
4004 that would cause a VM-exit. */
4005 uint32_t u32Cr4Mask = X86_CR4_VME
4006 | X86_CR4_PAE
4007 | X86_CR4_PGE
4008 | X86_CR4_PSE
4009 | X86_CR4_VMXE;
4010 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4011 u32Cr4Mask |= X86_CR4_OSXSAVE;
4012 if (pVM->cpum.ro.GuestFeatures.fPcid)
4013 u32Cr4Mask |= X86_CR4_PCIDE;
4014
4015 /* Write VT-x's view of the guest CR4, the CR4 modify mask and the read-only CR4 shadow
4016 into the VMCS and update our cache. */
4017 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCr4);
4018 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32ShadowCr4);
4019 if (pVCpu->hm.s.vmx.u32Cr4Mask != u32Cr4Mask)
4020 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32Cr4Mask);
4021 AssertRCReturn(rc, rc);
4022 pVCpu->hm.s.vmx.u32Cr4Mask = u32Cr4Mask;
4023
4024 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4025 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4026
4027 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
4028
4029 Log4Func(("u32GuestCr4=%#RX32 u32ShadowCr4=%#RX32 (fSetCr4=%#RX32 fZapCr4=%#RX32)\n", u32GuestCr4, u32ShadowCr4, fSetCr4,
4030 fZapCr4));
4031 }
4032 return rc;
4033}
4034
4035
4036/**
4037 * Exports the guest debug registers into the guest-state area in the VMCS.
4038 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4039 *
4040 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4041 *
4042 * @returns VBox status code.
4043 * @param pVCpu The cross context virtual CPU structure.
4044 *
4045 * @remarks No-long-jump zone!!!
4046 */
4047static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu)
4048{
4049 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4050
4051#ifdef VBOX_STRICT
4052 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4053 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4054 {
4055 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4056 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
4057 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
4058 }
4059#endif
4060
4061 bool fSteppingDB = false;
4062 bool fInterceptMovDRx = false;
4063 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
4064 if (pVCpu->hm.s.fSingleInstruction)
4065 {
4066 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4067 PVM pVM = pVCpu->CTX_SUFF(pVM);
4068 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
4069 {
4070 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
4071 Assert(fSteppingDB == false);
4072 }
4073 else
4074 {
4075 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
4076 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
4077 pVCpu->hm.s.fClearTrapFlag = true;
4078 fSteppingDB = true;
4079 }
4080 }
4081
4082 uint32_t u32GuestDr7;
4083 if ( fSteppingDB
4084 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4085 {
4086 /*
4087 * Use the combined guest and host DRx values found in the hypervisor register set
4088 * because the debugger has breakpoints active or someone is single stepping on the
4089 * host side without a monitor trap flag.
4090 *
4091 * Note! DBGF expects a clean DR6 state before executing guest code.
4092 */
4093#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4094 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4095 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4096 {
4097 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4098 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4099 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4100 }
4101 else
4102#endif
4103 if (!CPUMIsHyperDebugStateActive(pVCpu))
4104 {
4105 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4106 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4107 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4108 }
4109
4110 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
4111 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
4112 pVCpu->hm.s.fUsingHyperDR7 = true;
4113 fInterceptMovDRx = true;
4114 }
4115 else
4116 {
4117 /*
4118 * If the guest has enabled debug registers, we need to load them prior to
4119 * executing guest code so they'll trigger at the right time.
4120 */
4121 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
4122 {
4123#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4124 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4125 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4126 {
4127 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4128 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4129 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4130 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4131 }
4132 else
4133#endif
4134 if (!CPUMIsGuestDebugStateActive(pVCpu))
4135 {
4136 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4137 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4138 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4139 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4140 }
4141 Assert(!fInterceptMovDRx);
4142 }
4143 /*
4144 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4145 * must intercept #DB in order to maintain a correct DR6 guest value, and
4146 * because we need to intercept it to prevent nested #DBs from hanging the
4147 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4148 */
4149#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4150 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4151 && !CPUMIsGuestDebugStateActive(pVCpu))
4152#else
4153 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4154#endif
4155 {
4156 fInterceptMovDRx = true;
4157 }
4158
4159 /* Update DR7 with the actual guest value. */
4160 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
4161 pVCpu->hm.s.fUsingHyperDR7 = false;
4162 }
4163
4164 if (fInterceptMovDRx)
4165 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
4166 else
4167 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
4168
4169 /*
4170 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
4171 * monitor-trap flag and update our cache.
4172 */
4173 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
4174 {
4175 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4176 AssertRCReturn(rc2, rc2);
4177 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
4178 }
4179
4180 /*
4181 * Update guest DR7.
4182 */
4183 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
4184 AssertRCReturn(rc, rc);
4185
4186 return VINF_SUCCESS;
4187}
4188
4189
4190#ifdef VBOX_STRICT
4191/**
4192 * Strict function to validate segment registers.
4193 *
4194 * @param pVCpu The cross context virtual CPU structure.
4195 *
4196 * @remarks Will import guest CR0 on strict builds during validation of
4197 * segments.
4198 */
4199static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu)
4200{
4201 /*
4202 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4203 *
4204 * The reason we check for attribute value 0 in this function and not just the unusable bit is
4205 * because hmR0VmxExportGuestSegmentReg() only updates the VMCS' copy of the value with the unusable bit
4206 * and doesn't change the guest-context value.
4207 */
4208 PVM pVM = pVCpu->CTX_SUFF(pVM);
4209 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4210 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
4211 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4212 && ( !CPUMIsGuestInRealModeEx(pCtx)
4213 && !CPUMIsGuestInV86ModeEx(pCtx)))
4214 {
4215 /* Protected mode checks */
4216 /* CS */
4217 Assert(pCtx->cs.Attr.n.u1Present);
4218 Assert(!(pCtx->cs.Attr.u & 0xf00));
4219 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4220 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4221 || !(pCtx->cs.Attr.n.u1Granularity));
4222 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4223 || (pCtx->cs.Attr.n.u1Granularity));
4224 /* CS cannot be loaded with NULL in protected mode. */
4225 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4226 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4227 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4228 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4229 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4230 else
4231 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4232 /* SS */
4233 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4234 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4235 if ( !(pCtx->cr0 & X86_CR0_PE)
4236 || pCtx->cs.Attr.n.u4Type == 3)
4237 {
4238 Assert(!pCtx->ss.Attr.n.u2Dpl);
4239 }
4240 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4241 {
4242 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4243 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4244 Assert(pCtx->ss.Attr.n.u1Present);
4245 Assert(!(pCtx->ss.Attr.u & 0xf00));
4246 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4247 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4248 || !(pCtx->ss.Attr.n.u1Granularity));
4249 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4250 || (pCtx->ss.Attr.n.u1Granularity));
4251 }
4252 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmentReg(). */
4253 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4254 {
4255 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4256 Assert(pCtx->ds.Attr.n.u1Present);
4257 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4258 Assert(!(pCtx->ds.Attr.u & 0xf00));
4259 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4260 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4261 || !(pCtx->ds.Attr.n.u1Granularity));
4262 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4263 || (pCtx->ds.Attr.n.u1Granularity));
4264 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4265 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4266 }
4267 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4268 {
4269 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4270 Assert(pCtx->es.Attr.n.u1Present);
4271 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4272 Assert(!(pCtx->es.Attr.u & 0xf00));
4273 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4274 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4275 || !(pCtx->es.Attr.n.u1Granularity));
4276 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4277 || (pCtx->es.Attr.n.u1Granularity));
4278 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4279 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4280 }
4281 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4282 {
4283 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4284 Assert(pCtx->fs.Attr.n.u1Present);
4285 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4286 Assert(!(pCtx->fs.Attr.u & 0xf00));
4287 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4288 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4289 || !(pCtx->fs.Attr.n.u1Granularity));
4290 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4291 || (pCtx->fs.Attr.n.u1Granularity));
4292 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4293 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4294 }
4295 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4296 {
4297 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4298 Assert(pCtx->gs.Attr.n.u1Present);
4299 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4300 Assert(!(pCtx->gs.Attr.u & 0xf00));
4301 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4302 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4303 || !(pCtx->gs.Attr.n.u1Granularity));
4304 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4305 || (pCtx->gs.Attr.n.u1Granularity));
4306 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4307 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4308 }
4309 /* 64-bit capable CPUs. */
4310# if HC_ARCH_BITS == 64
4311 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4312 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
4313 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
4314 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
4315# endif
4316 }
4317 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4318 || ( CPUMIsGuestInRealModeEx(pCtx)
4319 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4320 {
4321 /* Real and v86 mode checks. */
4322 /* hmR0VmxExportGuestSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4323 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4324 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4325 {
4326 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4327 }
4328 else
4329 {
4330 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4331 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4332 }
4333
4334 /* CS */
4335 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4336 Assert(pCtx->cs.u32Limit == 0xffff);
4337 Assert(u32CSAttr == 0xf3);
4338 /* SS */
4339 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4340 Assert(pCtx->ss.u32Limit == 0xffff);
4341 Assert(u32SSAttr == 0xf3);
4342 /* DS */
4343 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4344 Assert(pCtx->ds.u32Limit == 0xffff);
4345 Assert(u32DSAttr == 0xf3);
4346 /* ES */
4347 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4348 Assert(pCtx->es.u32Limit == 0xffff);
4349 Assert(u32ESAttr == 0xf3);
4350 /* FS */
4351 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4352 Assert(pCtx->fs.u32Limit == 0xffff);
4353 Assert(u32FSAttr == 0xf3);
4354 /* GS */
4355 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4356 Assert(pCtx->gs.u32Limit == 0xffff);
4357 Assert(u32GSAttr == 0xf3);
4358 /* 64-bit capable CPUs. */
4359# if HC_ARCH_BITS == 64
4360 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4361 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
4362 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
4363 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
4364# endif
4365 }
4366}
4367#endif /* VBOX_STRICT */
4368
4369
4370/**
4371 * Exports a guest segment register into the guest-state area in the VMCS.
4372 *
4373 * @returns VBox status code.
4374 * @param pVCpu The cross context virtual CPU structure.
4375 * @param idxSel Index of the selector in the VMCS.
4376 * @param idxLimit Index of the segment limit in the VMCS.
4377 * @param idxBase Index of the segment base in the VMCS.
4378 * @param idxAccess Index of the access rights of the segment in the VMCS.
4379 * @param pSelReg Pointer to the segment selector.
4380 *
4381 * @remarks No-long-jump zone!!!
4382 */
4383static int hmR0VmxExportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
4384 PCCPUMSELREG pSelReg)
4385{
4386 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4387 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4388 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4389 AssertRCReturn(rc, rc);
4390
4391 uint32_t u32Access = pSelReg->Attr.u;
4392 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4393 {
4394 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4395 u32Access = 0xf3;
4396 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4397 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4398 }
4399 else
4400 {
4401 /*
4402 * The way to differentiate between whether this is really a null selector or was just
4403 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
4404 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
4405 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
4406 * NULL selectors loaded in protected-mode have their attribute as 0.
4407 */
4408 if (!u32Access)
4409 u32Access = X86DESCATTR_UNUSABLE;
4410 }
4411
4412 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4413 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4414 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4415
4416 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4417 AssertRCReturn(rc, rc);
4418 return rc;
4419}
4420
4421
4422/**
4423 * Exports the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4424 * into the guest-state area in the VMCS.
4425 *
4426 * @returns VBox status code.
4427 * @param pVCpu The cross context virtual CPU structure.
4428 *
4429 * @remarks Will import guest CR0 on strict builds during validation of
4430 * segments.
4431 * @remarks No-long-jump zone!!!
4432 */
4433static int hmR0VmxExportGuestSegmentRegs(PVMCPU pVCpu)
4434{
4435 int rc = VERR_INTERNAL_ERROR_5;
4436 PVM pVM = pVCpu->CTX_SUFF(pVM);
4437 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4438
4439 /*
4440 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4441 */
4442 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
4443 {
4444#ifdef VBOX_WITH_REM
4445 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4446 {
4447 Assert(pVM->hm.s.vmx.pRealModeTSS);
4448 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4449 if ( pVCpu->hm.s.vmx.fWasInRealMode
4450 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4451 {
4452 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4453 in real-mode (e.g. OpenBSD 4.0) */
4454 REMFlushTBs(pVM);
4455 Log4Func(("Switch to protected mode detected!\n"));
4456 pVCpu->hm.s.vmx.fWasInRealMode = false;
4457 }
4458 }
4459#endif
4460 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
4461 {
4462 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
4463 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4464 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pCtx->cs.Attr.u;
4465 rc = HMVMX_EXPORT_SREG(CS, &pCtx->cs);
4466 AssertRCReturn(rc, rc);
4467 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
4468 }
4469
4470 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
4471 {
4472 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
4473 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4474 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pCtx->ss.Attr.u;
4475 rc = HMVMX_EXPORT_SREG(SS, &pCtx->ss);
4476 AssertRCReturn(rc, rc);
4477 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
4478 }
4479
4480 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
4481 {
4482 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
4483 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4484 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pCtx->ds.Attr.u;
4485 rc = HMVMX_EXPORT_SREG(DS, &pCtx->ds);
4486 AssertRCReturn(rc, rc);
4487 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
4488 }
4489
4490 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
4491 {
4492 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
4493 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4494 pVCpu->hm.s.vmx.RealMode.AttrES.u = pCtx->es.Attr.u;
4495 rc = HMVMX_EXPORT_SREG(ES, &pCtx->es);
4496 AssertRCReturn(rc, rc);
4497 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
4498 }
4499
4500 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
4501 {
4502 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
4503 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4504 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pCtx->fs.Attr.u;
4505 rc = HMVMX_EXPORT_SREG(FS, &pCtx->fs);
4506 AssertRCReturn(rc, rc);
4507 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
4508 }
4509
4510 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
4511 {
4512 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
4513 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4514 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pCtx->gs.Attr.u;
4515 rc = HMVMX_EXPORT_SREG(GS, &pCtx->gs);
4516 AssertRCReturn(rc, rc);
4517 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
4518 }
4519
4520#ifdef VBOX_STRICT
4521 hmR0VmxValidateSegmentRegs(pVCpu);
4522#endif
4523
4524 Log4Func(("CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pCtx->cs.Sel, pCtx->cs.u64Base,
4525 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
4526 }
4527
4528 /*
4529 * Guest TR.
4530 */
4531 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
4532 {
4533 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
4534
4535 /*
4536 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
4537 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
4538 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4539 */
4540 uint16_t u16Sel = 0;
4541 uint32_t u32Limit = 0;
4542 uint64_t u64Base = 0;
4543 uint32_t u32AccessRights = 0;
4544
4545 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4546 {
4547 u16Sel = pCtx->tr.Sel;
4548 u32Limit = pCtx->tr.u32Limit;
4549 u64Base = pCtx->tr.u64Base;
4550 u32AccessRights = pCtx->tr.Attr.u;
4551 }
4552 else
4553 {
4554 Assert(pVM->hm.s.vmx.pRealModeTSS);
4555 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
4556
4557 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4558 RTGCPHYS GCPhys;
4559 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4560 AssertRCReturn(rc, rc);
4561
4562 X86DESCATTR DescAttr;
4563 DescAttr.u = 0;
4564 DescAttr.n.u1Present = 1;
4565 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4566
4567 u16Sel = 0;
4568 u32Limit = HM_VTX_TSS_SIZE;
4569 u64Base = GCPhys; /* in real-mode phys = virt. */
4570 u32AccessRights = DescAttr.u;
4571 }
4572
4573 /* Validate. */
4574 Assert(!(u16Sel & RT_BIT(2)));
4575 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4576 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4577 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4578 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4579 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4580 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4581 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4582 Assert( (u32Limit & 0xfff) == 0xfff
4583 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4584 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
4585 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4586
4587 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4588 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4589 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4590 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4591 AssertRCReturn(rc, rc);
4592
4593 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
4594 Log4Func(("TR base=%#RX64\n", pCtx->tr.u64Base));
4595 }
4596
4597 /*
4598 * Guest GDTR.
4599 */
4600 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
4601 {
4602 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
4603
4604 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
4605 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
4606 AssertRCReturn(rc, rc);
4607
4608 /* Validate. */
4609 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4610
4611 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
4612 Log4Func(("GDTR base=%#RX64\n", pCtx->gdtr.pGdt));
4613 }
4614
4615 /*
4616 * Guest LDTR.
4617 */
4618 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
4619 {
4620 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
4621
4622 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4623 uint32_t u32Access = 0;
4624 if (!pCtx->ldtr.Attr.u)
4625 u32Access = X86DESCATTR_UNUSABLE;
4626 else
4627 u32Access = pCtx->ldtr.Attr.u;
4628
4629 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
4630 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
4631 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4632 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
4633 AssertRCReturn(rc, rc);
4634
4635 /* Validate. */
4636 if (!(u32Access & X86DESCATTR_UNUSABLE))
4637 {
4638 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4639 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4640 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4641 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4642 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4643 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4644 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
4645 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4646 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
4647 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4648 }
4649
4650 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
4651 Log4Func(("LDTR base=%#RX64\n", pCtx->ldtr.u64Base));
4652 }
4653
4654 /*
4655 * Guest IDTR.
4656 */
4657 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
4658 {
4659 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
4660
4661 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
4662 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
4663 AssertRCReturn(rc, rc);
4664
4665 /* Validate. */
4666 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4667
4668 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
4669 Log4Func(("IDTR base=%#RX64\n", pCtx->idtr.pIdt));
4670 }
4671
4672 return VINF_SUCCESS;
4673}
4674
4675
4676/**
4677 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4678 * areas.
4679 *
4680 * These MSRs will automatically be loaded to the host CPU on every successful
4681 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4682 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4683 * -not- updated here for performance reasons. See hmR0VmxExportHostMsrs().
4684 *
4685 * Also exports the guest sysenter MSRs into the guest-state area in the VMCS.
4686 *
4687 * @returns VBox status code.
4688 * @param pVCpu The cross context virtual CPU structure.
4689 *
4690 * @remarks No-long-jump zone!!!
4691 */
4692static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu)
4693{
4694 AssertPtr(pVCpu);
4695 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4696
4697 /*
4698 * MSRs that we use the auto-load/store MSR area in the VMCS.
4699 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
4700 */
4701 PVM pVM = pVCpu->CTX_SUFF(pVM);
4702 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4703 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
4704 {
4705 if (pVM->hm.s.fAllow64BitGuests)
4706 {
4707#if HC_ARCH_BITS == 32
4708 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
4709
4710 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pCtx->msrLSTAR, false, NULL);
4711 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pCtx->msrSTAR, false, NULL);
4712 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pCtx->msrSFMASK, false, NULL);
4713 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, false, NULL);
4714 AssertRCReturn(rc, rc);
4715# ifdef LOG_ENABLED
4716 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4717 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4718 Log4Func(("MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4719# endif
4720#endif
4721 }
4722 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4723 }
4724
4725 /*
4726 * Guest Sysenter MSRs.
4727 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4728 * VM-exits on WRMSRs for these MSRs.
4729 */
4730 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
4731 {
4732 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4733
4734 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
4735 {
4736 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
4737 AssertRCReturn(rc, rc);
4738 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4739 }
4740
4741 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
4742 {
4743 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
4744 AssertRCReturn(rc, rc);
4745 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4746 }
4747
4748 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
4749 {
4750 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
4751 AssertRCReturn(rc, rc);
4752 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4753 }
4754 }
4755
4756 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
4757 {
4758 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
4759
4760 if (hmR0VmxShouldSwapEferMsr(pVCpu))
4761 {
4762 /*
4763 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4764 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4765 */
4766 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4767 {
4768 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
4769 AssertRCReturn(rc,rc);
4770 Log4Func(("EFER=%#RX64\n", pCtx->msrEFER));
4771 }
4772 else
4773 {
4774 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pCtx->msrEFER, false /* fUpdateHostMsr */,
4775 NULL /* pfAddedAndUpdated */);
4776 AssertRCReturn(rc, rc);
4777
4778 /* We need to intercept reads too, see @bugref{7386#c16}. */
4779 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4780 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4781 Log4Func(("MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", MSR_K6_EFER, pCtx->msrEFER,
4782 pVCpu->hm.s.vmx.cMsrs));
4783 }
4784 }
4785 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4786 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4787 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
4788 }
4789
4790 return VINF_SUCCESS;
4791}
4792
4793
4794#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4795/**
4796 * Check if guest state allows safe use of 32-bit switcher again.
4797 *
4798 * Segment bases and protected mode structures must be 32-bit addressable
4799 * because the 32-bit switcher will ignore high dword when writing these VMCS
4800 * fields. See @bugref{8432} for details.
4801 *
4802 * @returns true if safe, false if must continue to use the 64-bit switcher.
4803 * @param pCtx Pointer to the guest-CPU context.
4804 *
4805 * @remarks No-long-jump zone!!!
4806 */
4807static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
4808{
4809 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
4810 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
4811 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4812 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4813 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
4814 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4815 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
4816 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
4817 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4818 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4819
4820 /* All good, bases are 32-bit. */
4821 return true;
4822}
4823#endif
4824
4825
4826/**
4827 * Selects up the appropriate function to run guest code.
4828 *
4829 * @returns VBox status code.
4830 * @param pVCpu The cross context virtual CPU structure.
4831 *
4832 * @remarks No-long-jump zone!!!
4833 */
4834static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu)
4835{
4836 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4837 if (CPUMIsGuestInLongModeEx(pCtx))
4838 {
4839#ifndef VBOX_ENABLE_64_BITS_GUESTS
4840 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4841#endif
4842 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4843#if HC_ARCH_BITS == 32
4844 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4845 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4846 {
4847#ifdef VBOX_STRICT
4848 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4849 {
4850 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4851 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4852 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4853 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4854 | HM_CHANGED_VMX_ENTRY_CTLS
4855 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4856 }
4857#endif
4858 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4859
4860 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4861 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4862 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4863 Log4Func(("Selected 64-bit switcher\n"));
4864 }
4865#else
4866 /* 64-bit host. */
4867 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4868#endif
4869 }
4870 else
4871 {
4872 /* Guest is not in long mode, use the 32-bit handler. */
4873#if HC_ARCH_BITS == 32
4874 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4875 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4876 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4877 {
4878# ifdef VBOX_STRICT
4879 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4880 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4881 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4882 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4883 | HM_CHANGED_VMX_ENTRY_CTLS
4884 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4885# endif
4886 }
4887# ifdef VBOX_ENABLE_64_BITS_GUESTS
4888 /*
4889 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
4890 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
4891 * switcher flag because now we know the guest is in a sane state where it's safe
4892 * to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4893 * the much faster 32-bit switcher again.
4894 */
4895 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4896 {
4897 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4898 Log4Func(("Selected 32-bit switcher\n"));
4899 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4900 }
4901 else
4902 {
4903 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4904 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4905 || hmR0VmxIs32BitSwitcherSafe(pCtx))
4906 {
4907 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4908 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4909 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
4910 | HM_CHANGED_VMX_ENTRY_CTLS
4911 | HM_CHANGED_VMX_EXIT_CTLS
4912 | HM_CHANGED_HOST_CONTEXT);
4913 Log4Func(("Selected 32-bit switcher (safe)\n"));
4914 }
4915 }
4916# else
4917 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4918# endif
4919#else
4920 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4921#endif
4922 }
4923 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4924 return VINF_SUCCESS;
4925}
4926
4927
4928/**
4929 * Wrapper for running the guest code in VT-x.
4930 *
4931 * @returns VBox status code, no informational status codes.
4932 * @param pVCpu The cross context virtual CPU structure.
4933 *
4934 * @remarks No-long-jump zone!!!
4935 */
4936DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu)
4937{
4938 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4939 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4940 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4941
4942 /*
4943 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4944 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4945 * callee-saved and thus the need for this XMM wrapper.
4946 *
4947 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4948 */
4949 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4950 /** @todo Add stats for resume vs launch. */
4951 PVM pVM = pVCpu->CTX_SUFF(pVM);
4952#ifdef VBOX_WITH_KERNEL_USING_XMM
4953 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4954#else
4955 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4956#endif
4957 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4958 return rc;
4959}
4960
4961
4962/**
4963 * Reports world-switch error and dumps some useful debug info.
4964 *
4965 * @param pVCpu The cross context virtual CPU structure.
4966 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4967 * @param pVmxTransient Pointer to the VMX transient structure (only
4968 * exitReason updated).
4969 */
4970static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
4971{
4972 Assert(pVCpu);
4973 Assert(pVmxTransient);
4974 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
4975
4976 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
4977 switch (rcVMRun)
4978 {
4979 case VERR_VMX_INVALID_VMXON_PTR:
4980 AssertFailed();
4981 break;
4982 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4983 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
4984 {
4985 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
4986 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
4987 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
4988 AssertRC(rc);
4989
4990 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
4991 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
4992 Cannot do it here as we may have been long preempted. */
4993
4994#ifdef VBOX_STRICT
4995 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
4996 pVmxTransient->uExitReason));
4997 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
4998 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
4999 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5000 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5001 else
5002 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5003 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5004 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5005
5006 /* VMX control bits. */
5007 uint32_t u32Val;
5008 uint64_t u64Val;
5009 RTHCUINTREG uHCReg;
5010 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5011 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5012 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5013 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5014 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
5015 {
5016 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5017 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5018 }
5019 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5020 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5021 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5022 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5023 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5024 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5025 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5026 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5027 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5028 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5029 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5030 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5031 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5032 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5033 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5034 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5035 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5036 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5037 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5038 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5039 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5040 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5041 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5042 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5043 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5044 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5045 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5046 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5047 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5048 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5049 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5050 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5051 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5052 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5053 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5054 {
5055 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5056 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5057 }
5058
5059 /* Guest bits. */
5060 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5061 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
5062 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5063 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
5064 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5065 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
5066 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
5067 {
5068 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5069 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5070 }
5071
5072 /* Host bits. */
5073 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5074 Log4(("Host CR0 %#RHr\n", uHCReg));
5075 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5076 Log4(("Host CR3 %#RHr\n", uHCReg));
5077 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5078 Log4(("Host CR4 %#RHr\n", uHCReg));
5079
5080 RTGDTR HostGdtr;
5081 PCX86DESCHC pDesc;
5082 ASMGetGDTR(&HostGdtr);
5083 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5084 Log4(("Host CS %#08x\n", u32Val));
5085 if (u32Val < HostGdtr.cbGdt)
5086 {
5087 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5088 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5089 }
5090
5091 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5092 Log4(("Host DS %#08x\n", u32Val));
5093 if (u32Val < HostGdtr.cbGdt)
5094 {
5095 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5096 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5097 }
5098
5099 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5100 Log4(("Host ES %#08x\n", u32Val));
5101 if (u32Val < HostGdtr.cbGdt)
5102 {
5103 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5104 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5105 }
5106
5107 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5108 Log4(("Host FS %#08x\n", u32Val));
5109 if (u32Val < HostGdtr.cbGdt)
5110 {
5111 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5112 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5113 }
5114
5115 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5116 Log4(("Host GS %#08x\n", u32Val));
5117 if (u32Val < HostGdtr.cbGdt)
5118 {
5119 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5120 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5121 }
5122
5123 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5124 Log4(("Host SS %#08x\n", u32Val));
5125 if (u32Val < HostGdtr.cbGdt)
5126 {
5127 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5128 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5129 }
5130
5131 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5132 Log4(("Host TR %#08x\n", u32Val));
5133 if (u32Val < HostGdtr.cbGdt)
5134 {
5135 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5136 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5137 }
5138
5139 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5140 Log4(("Host TR Base %#RHv\n", uHCReg));
5141 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5142 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5143 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5144 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5145 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5146 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5147 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5148 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5149 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5150 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5151 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5152 Log4(("Host RSP %#RHv\n", uHCReg));
5153 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5154 Log4(("Host RIP %#RHv\n", uHCReg));
5155# if HC_ARCH_BITS == 64
5156 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5157 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5158 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5159 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5160 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5161 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5162# endif
5163#endif /* VBOX_STRICT */
5164 break;
5165 }
5166
5167 default:
5168 /* Impossible */
5169 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5170 break;
5171 }
5172}
5173
5174
5175#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5176#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5177# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5178#endif
5179#ifdef VBOX_STRICT
5180static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5181{
5182 switch (idxField)
5183 {
5184 case VMX_VMCS_GUEST_RIP:
5185 case VMX_VMCS_GUEST_RSP:
5186 case VMX_VMCS_GUEST_SYSENTER_EIP:
5187 case VMX_VMCS_GUEST_SYSENTER_ESP:
5188 case VMX_VMCS_GUEST_GDTR_BASE:
5189 case VMX_VMCS_GUEST_IDTR_BASE:
5190 case VMX_VMCS_GUEST_CS_BASE:
5191 case VMX_VMCS_GUEST_DS_BASE:
5192 case VMX_VMCS_GUEST_ES_BASE:
5193 case VMX_VMCS_GUEST_FS_BASE:
5194 case VMX_VMCS_GUEST_GS_BASE:
5195 case VMX_VMCS_GUEST_SS_BASE:
5196 case VMX_VMCS_GUEST_LDTR_BASE:
5197 case VMX_VMCS_GUEST_TR_BASE:
5198 case VMX_VMCS_GUEST_CR3:
5199 return true;
5200 }
5201 return false;
5202}
5203
5204static bool hmR0VmxIsValidReadField(uint32_t idxField)
5205{
5206 switch (idxField)
5207 {
5208 /* Read-only fields. */
5209 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5210 return true;
5211 }
5212 /* Remaining readable fields should also be writable. */
5213 return hmR0VmxIsValidWriteField(idxField);
5214}
5215#endif /* VBOX_STRICT */
5216
5217
5218/**
5219 * Executes the specified handler in 64-bit mode.
5220 *
5221 * @returns VBox status code (no informational status codes).
5222 * @param pVCpu The cross context virtual CPU structure.
5223 * @param enmOp The operation to perform.
5224 * @param cParams Number of parameters.
5225 * @param paParam Array of 32-bit parameters.
5226 */
5227VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
5228{
5229 PVM pVM = pVCpu->CTX_SUFF(pVM);
5230 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5231 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5232 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5233 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5234
5235#ifdef VBOX_STRICT
5236 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5237 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5238
5239 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5240 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5241#endif
5242
5243 /* Disable interrupts. */
5244 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5245
5246#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5247 RTCPUID idHostCpu = RTMpCpuId();
5248 CPUMR0SetLApic(pVCpu, idHostCpu);
5249#endif
5250
5251 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5252 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5253
5254 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5255 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5256 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5257
5258 /* Leave VMX Root Mode. */
5259 VMXDisable();
5260
5261 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5262
5263 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5264 CPUMSetHyperEIP(pVCpu, enmOp);
5265 for (int i = (int)cParams - 1; i >= 0; i--)
5266 CPUMPushHyper(pVCpu, paParam[i]);
5267
5268 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5269
5270 /* Call the switcher. */
5271 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
5272 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5273
5274 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5275 /* Make sure the VMX instructions don't cause #UD faults. */
5276 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5277
5278 /* Re-enter VMX Root Mode */
5279 int rc2 = VMXEnable(HCPhysCpuPage);
5280 if (RT_FAILURE(rc2))
5281 {
5282 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5283 ASMSetFlags(fOldEFlags);
5284 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5285 return rc2;
5286 }
5287
5288 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5289 AssertRC(rc2);
5290 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5291 Assert(!(ASMGetFlags() & X86_EFL_IF));
5292 ASMSetFlags(fOldEFlags);
5293 return rc;
5294}
5295
5296
5297/**
5298 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5299 * supporting 64-bit guests.
5300 *
5301 * @returns VBox status code.
5302 * @param fResume Whether to VMLAUNCH or VMRESUME.
5303 * @param pCtx Pointer to the guest-CPU context.
5304 * @param pCache Pointer to the VMCS cache.
5305 * @param pVM The cross context VM structure.
5306 * @param pVCpu The cross context virtual CPU structure.
5307 */
5308DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5309{
5310 NOREF(fResume);
5311
5312 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5313 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5314
5315#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5316 pCache->uPos = 1;
5317 pCache->interPD = PGMGetInterPaeCR3(pVM);
5318 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5319#endif
5320
5321#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5322 pCache->TestIn.HCPhysCpuPage = 0;
5323 pCache->TestIn.HCPhysVmcs = 0;
5324 pCache->TestIn.pCache = 0;
5325 pCache->TestOut.HCPhysVmcs = 0;
5326 pCache->TestOut.pCache = 0;
5327 pCache->TestOut.pCtx = 0;
5328 pCache->TestOut.eflags = 0;
5329#else
5330 NOREF(pCache);
5331#endif
5332
5333 uint32_t aParam[10];
5334 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5335 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
5336 aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5337 aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
5338 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5339 aParam[5] = 0;
5340 aParam[6] = VM_RC_ADDR(pVM, pVM);
5341 aParam[7] = 0;
5342 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5343 aParam[9] = 0;
5344
5345#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5346 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5347 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5348#endif
5349 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5350
5351#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5352 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5353 Assert(pCtx->dr[4] == 10);
5354 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5355#endif
5356
5357#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5358 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5359 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5360 pVCpu->hm.s.vmx.HCPhysVmcs));
5361 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5362 pCache->TestOut.HCPhysVmcs));
5363 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5364 pCache->TestOut.pCache));
5365 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5366 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5367 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5368 pCache->TestOut.pCtx));
5369 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5370#endif
5371 NOREF(pCtx);
5372 return rc;
5373}
5374
5375
5376/**
5377 * Initialize the VMCS-Read cache.
5378 *
5379 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5380 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5381 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5382 * (those that have a 32-bit FULL & HIGH part).
5383 *
5384 * @returns VBox status code.
5385 * @param pVCpu The cross context virtual CPU structure.
5386 */
5387static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
5388{
5389#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5390 do { \
5391 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5392 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5393 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5394 ++cReadFields; \
5395 } while (0)
5396
5397 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5398 uint32_t cReadFields = 0;
5399
5400 /*
5401 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5402 * and serve to indicate exceptions to the rules.
5403 */
5404
5405 /* Guest-natural selector base fields. */
5406#if 0
5407 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5408 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5409 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5410#endif
5411 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5412 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5413 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5414 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5415 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5416 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5417 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5418 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5419 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5420 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5421 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5422 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5423#if 0
5424 /* Unused natural width guest-state fields. */
5425 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5426 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5427#endif
5428 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5429 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5430
5431 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
5432 these 64-bit fields (using "FULL" and "HIGH" fields). */
5433#if 0
5434 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5435 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5436 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5437 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5438 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5439 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5440 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5441 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5442 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5443#endif
5444
5445 /* Natural width guest-state fields. */
5446 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5447#if 0
5448 /* Currently unused field. */
5449 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5450#endif
5451
5452 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5453 {
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5455 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5456 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5457 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5458 }
5459 else
5460 {
5461 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5462 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5463 }
5464
5465#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5466 return VINF_SUCCESS;
5467}
5468
5469
5470/**
5471 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5472 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5473 * darwin, running 64-bit guests).
5474 *
5475 * @returns VBox status code.
5476 * @param pVCpu The cross context virtual CPU structure.
5477 * @param idxField The VMCS field encoding.
5478 * @param u64Val 16, 32 or 64-bit value.
5479 */
5480VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5481{
5482 int rc;
5483 switch (idxField)
5484 {
5485 /*
5486 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5487 */
5488 /* 64-bit Control fields. */
5489 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5490 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5491 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5492 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5493 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5494 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5495 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5496 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5497 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
5498 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5499 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5500 case VMX_VMCS64_CTRL_EPTP_FULL:
5501 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5502 /* 64-bit Guest-state fields. */
5503 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5504 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5505 case VMX_VMCS64_GUEST_PAT_FULL:
5506 case VMX_VMCS64_GUEST_EFER_FULL:
5507 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5508 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5509 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5510 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5511 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5512 /* 64-bit Host-state fields. */
5513 case VMX_VMCS64_HOST_PAT_FULL:
5514 case VMX_VMCS64_HOST_EFER_FULL:
5515 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5516 {
5517 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5518 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
5519 break;
5520 }
5521
5522 /*
5523 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5524 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5525 */
5526 /* Natural-width Guest-state fields. */
5527 case VMX_VMCS_GUEST_CR3:
5528 case VMX_VMCS_GUEST_ES_BASE:
5529 case VMX_VMCS_GUEST_CS_BASE:
5530 case VMX_VMCS_GUEST_SS_BASE:
5531 case VMX_VMCS_GUEST_DS_BASE:
5532 case VMX_VMCS_GUEST_FS_BASE:
5533 case VMX_VMCS_GUEST_GS_BASE:
5534 case VMX_VMCS_GUEST_LDTR_BASE:
5535 case VMX_VMCS_GUEST_TR_BASE:
5536 case VMX_VMCS_GUEST_GDTR_BASE:
5537 case VMX_VMCS_GUEST_IDTR_BASE:
5538 case VMX_VMCS_GUEST_RSP:
5539 case VMX_VMCS_GUEST_RIP:
5540 case VMX_VMCS_GUEST_SYSENTER_ESP:
5541 case VMX_VMCS_GUEST_SYSENTER_EIP:
5542 {
5543 if (!(RT_HI_U32(u64Val)))
5544 {
5545 /* If this field is 64-bit, VT-x will zero out the top bits. */
5546 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5547 }
5548 else
5549 {
5550 /* Assert that only the 32->64 switcher case should ever come here. */
5551 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5552 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5553 }
5554 break;
5555 }
5556
5557 default:
5558 {
5559 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5560 rc = VERR_INVALID_PARAMETER;
5561 break;
5562 }
5563 }
5564 AssertRCReturn(rc, rc);
5565 return rc;
5566}
5567
5568
5569/**
5570 * Queue up a VMWRITE by using the VMCS write cache.
5571 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5572 *
5573 * @param pVCpu The cross context virtual CPU structure.
5574 * @param idxField The VMCS field encoding.
5575 * @param u64Val 16, 32 or 64-bit value.
5576 */
5577VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5578{
5579 AssertPtr(pVCpu);
5580 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5581
5582 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5583 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5584
5585 /* Make sure there are no duplicates. */
5586 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5587 {
5588 if (pCache->Write.aField[i] == idxField)
5589 {
5590 pCache->Write.aFieldVal[i] = u64Val;
5591 return VINF_SUCCESS;
5592 }
5593 }
5594
5595 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5596 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5597 pCache->Write.cValidEntries++;
5598 return VINF_SUCCESS;
5599}
5600#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5601
5602
5603/**
5604 * Sets up the usage of TSC-offsetting and updates the VMCS.
5605 *
5606 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5607 * VMX preemption timer.
5608 *
5609 * @returns VBox status code.
5610 * @param pVCpu The cross context virtual CPU structure.
5611 *
5612 * @remarks No-long-jump zone!!!
5613 */
5614static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5615{
5616 bool fOffsettedTsc;
5617 bool fParavirtTsc;
5618 PVM pVM = pVCpu->CTX_SUFF(pVM);
5619 uint64_t uTscOffset;
5620 if (pVM->hm.s.vmx.fUsePreemptTimer)
5621 {
5622 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
5623
5624 /* Make sure the returned values have sane upper and lower boundaries. */
5625 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5626 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5627 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5628 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5629
5630 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5631 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
5632 AssertRC(rc);
5633 }
5634 else
5635 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
5636
5637 if (fParavirtTsc)
5638 {
5639 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5640 information before every VM-entry, hence disable it for performance sake. */
5641#if 0
5642 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5643 AssertRC(rc);
5644#endif
5645 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5646 }
5647
5648 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
5649 if ( fOffsettedTsc
5650 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5651 {
5652 if (pVCpu->hm.s.vmx.u64TscOffset != uTscOffset)
5653 {
5654 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
5655 AssertRC(rc);
5656 pVCpu->hm.s.vmx.u64TscOffset = uTscOffset;
5657 }
5658
5659 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
5660 {
5661 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
5662 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5663 AssertRC(rc);
5664 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5665 }
5666 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5667 }
5668 else
5669 {
5670 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5671 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
5672 {
5673 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
5674 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5675 AssertRC(rc);
5676 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5677 }
5678 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5679 }
5680}
5681
5682
5683/**
5684 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5685 * VM-exit interruption info type.
5686 *
5687 * @returns The IEM exception flags.
5688 * @param uVector The event vector.
5689 * @param uVmxVectorType The VMX event type.
5690 *
5691 * @remarks This function currently only constructs flags required for
5692 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5693 * and CR2 aspects of an exception are not included).
5694 */
5695static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5696{
5697 uint32_t fIemXcptFlags;
5698 switch (uVmxVectorType)
5699 {
5700 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5701 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5702 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5703 break;
5704
5705 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5706 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5707 break;
5708
5709 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5710 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5711 break;
5712
5713 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5714 {
5715 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5716 if (uVector == X86_XCPT_BP)
5717 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5718 else if (uVector == X86_XCPT_OF)
5719 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5720 else
5721 {
5722 fIemXcptFlags = 0;
5723 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5724 }
5725 break;
5726 }
5727
5728 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5729 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5730 break;
5731
5732 default:
5733 fIemXcptFlags = 0;
5734 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5735 break;
5736 }
5737 return fIemXcptFlags;
5738}
5739
5740
5741/**
5742 * Sets an event as a pending event to be injected into the guest.
5743 *
5744 * @param pVCpu The cross context virtual CPU structure.
5745 * @param u32IntInfo The VM-entry interruption-information field.
5746 * @param cbInstr The VM-entry instruction length in bytes (for software
5747 * interrupts, exceptions and privileged software
5748 * exceptions).
5749 * @param u32ErrCode The VM-entry exception error code.
5750 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5751 * page-fault.
5752 *
5753 * @remarks Statistics counter assumes this is a guest event being injected or
5754 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5755 * always incremented.
5756 */
5757DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5758 RTGCUINTPTR GCPtrFaultAddress)
5759{
5760 Assert(!pVCpu->hm.s.Event.fPending);
5761 pVCpu->hm.s.Event.fPending = true;
5762 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5763 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5764 pVCpu->hm.s.Event.cbInstr = cbInstr;
5765 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5766}
5767
5768
5769/**
5770 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5771 *
5772 * @param pVCpu The cross context virtual CPU structure.
5773 */
5774DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
5775{
5776 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
5777 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5778 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5779 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5780 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5781}
5782
5783
5784/**
5785 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
5786 *
5787 * @param pVCpu The cross context virtual CPU structure.
5788 */
5789DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
5790{
5791 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
5792 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5793 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5794 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5795 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5796}
5797
5798
5799/**
5800 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
5801 *
5802 * @param pVCpu The cross context virtual CPU structure.
5803 */
5804DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
5805{
5806 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
5807 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5808 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5809 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5810 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5811}
5812
5813
5814/**
5815 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
5816 *
5817 * @param pVCpu The cross context virtual CPU structure.
5818 * @param cbInstr The value of RIP that is to be pushed on the guest
5819 * stack.
5820 */
5821DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, uint32_t cbInstr)
5822{
5823 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_OF)
5824 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_SW_INT)
5825 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5826 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5827 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5828}
5829
5830
5831#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5832/**
5833 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
5834 *
5835 * @param pVCpu The cross context virtual CPU structure.
5836 * @param u32ErrCode The error code for the general-protection exception.
5837 */
5838DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
5839{
5840 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
5841 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5842 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5843 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5844 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5845}
5846
5847
5848/**
5849 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
5850 *
5851 * @param pVCpu The cross context virtual CPU structure.
5852 * @param u32ErrCode The error code for the stack exception.
5853 */
5854DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
5855{
5856 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
5857 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5858 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5859 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5860 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5861}
5862
5863
5864/**
5865 * Decodes the memory operand of a VM-exit due to instruction execution.
5866 *
5867 * For instructions with two operands, the second operand is usually found in the
5868 * VM-exit qualification field.
5869 *
5870 * @returns Strict VBox status code (i.e. informational status codes too).
5871 * @retval VINF_SUCCESS if the operand was successfully decoded.
5872 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
5873 * operand.
5874 * @param pVCpu The cross context virtual CPU structure.
5875 * @param pExitInstrInfo Pointer to the VM-exit instruction information.
5876 * @param fIsWrite Whether the operand is a destination memory operand
5877 * (i.e. writeable memory location) or not.
5878 * @param GCPtrDisp The instruction displacement field, if any. For
5879 * RIP-relative addressing pass RIP + displacement here.
5880 * @param pGCPtrMem Where to store the destination memory operand.
5881 */
5882static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, PCVMXEXITINSTRINFO pExitInstrInfo, RTGCPTR GCPtrDisp, bool fIsWrite,
5883 PRTGCPTR pGCPtrMem)
5884{
5885 Assert(pExitInstrInfo);
5886 Assert(pGCPtrMem);
5887 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
5888
5889 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
5890 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
5891 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
5892
5893 uint8_t const uAddrSize = pExitInstrInfo->InvVmxXsaves.u3AddrSize;
5894 uint8_t const iSegReg = pExitInstrInfo->InvVmxXsaves.iSegReg;
5895 bool const fIdxRegValid = !pExitInstrInfo->InvVmxXsaves.fIdxRegInvalid;
5896 uint8_t const iIdxReg = pExitInstrInfo->InvVmxXsaves.iIdxReg;
5897 uint8_t const uScale = pExitInstrInfo->InvVmxXsaves.u2Scaling;
5898 bool const fBaseRegValid = !pExitInstrInfo->InvVmxXsaves.fBaseRegInvalid;
5899 uint8_t const iBaseReg = pExitInstrInfo->InvVmxXsaves.iBaseReg;
5900 bool const fIsMemOperand = !pExitInstrInfo->InvVmxXsaves.fIsRegOperand;
5901 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
5902
5903 /*
5904 * Validate instruction information.
5905 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
5906 */
5907 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
5908 ("Invalid address size. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_1);
5909 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
5910 ("Invalid segment register. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_2);
5911 AssertLogRelMsgReturn(fIsMemOperand,
5912 ("Expected memory operand. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_3);
5913
5914 /*
5915 * Compute the complete effective address.
5916 *
5917 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
5918 * See AMD spec. 4.5.2 "Segment Registers".
5919 */
5920 RTGCPTR GCPtrMem = GCPtrDisp;
5921 if (fBaseRegValid)
5922 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
5923 if (fIdxRegValid)
5924 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
5925
5926 RTGCPTR const GCPtrOff = GCPtrMem;
5927 if ( !fIsLongMode
5928 || iSegReg >= X86_SREG_FS)
5929 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
5930 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
5931
5932 /*
5933 * Validate effective address.
5934 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
5935 */
5936 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
5937 Assert(cbAccess > 0);
5938 if (fIsLongMode)
5939 {
5940 if (X86_IS_CANONICAL(GCPtrMem))
5941 {
5942 *pGCPtrMem = GCPtrMem;
5943 return VINF_SUCCESS;
5944 }
5945
5946 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
5947 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5948 return VINF_HM_PENDING_XCPT;
5949 }
5950
5951 /*
5952 * This is a watered down version of iemMemApplySegment().
5953 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
5954 * and segment CPL/DPL checks are skipped.
5955 */
5956 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
5957 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
5958 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
5959
5960 /* Check if the segment is present and usable. */
5961 if ( pSel->Attr.n.u1Present
5962 && !pSel->Attr.n.u1Unusable)
5963 {
5964 Assert(pSel->Attr.n.u1DescType);
5965 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
5966 {
5967 /* Check permissions for the data segment. */
5968 if ( fIsWrite
5969 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
5970 {
5971 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
5972 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
5973 return VINF_HM_PENDING_XCPT;
5974 }
5975
5976 /* Check limits if it's a normal data segment. */
5977 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
5978 {
5979 if ( GCPtrFirst32 > pSel->u32Limit
5980 || GCPtrLast32 > pSel->u32Limit)
5981 {
5982 Log4Func(("Data segment limit exceeded."
5983 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
5984 GCPtrLast32, pSel->u32Limit));
5985 if (iSegReg == X86_SREG_SS)
5986 hmR0VmxSetPendingXcptSS(pVCpu, 0);
5987 else
5988 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5989 return VINF_HM_PENDING_XCPT;
5990 }
5991 }
5992 else
5993 {
5994 /* Check limits if it's an expand-down data segment.
5995 Note! The upper boundary is defined by the B bit, not the G bit! */
5996 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
5997 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
5998 {
5999 Log4Func(("Expand-down data segment limit exceeded."
6000 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6001 GCPtrLast32, pSel->u32Limit));
6002 if (iSegReg == X86_SREG_SS)
6003 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6004 else
6005 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6006 return VINF_HM_PENDING_XCPT;
6007 }
6008 }
6009 }
6010 else
6011 {
6012 /* Check permissions for the code segment. */
6013 if ( fIsWrite
6014 || !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ))
6015 {
6016 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6017 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6018 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6019 return VINF_HM_PENDING_XCPT;
6020 }
6021
6022 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6023 if ( GCPtrFirst32 > pSel->u32Limit
6024 || GCPtrLast32 > pSel->u32Limit)
6025 {
6026 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6027 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6028 if (iSegReg == X86_SREG_SS)
6029 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6030 else
6031 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6032 return VINF_HM_PENDING_XCPT;
6033 }
6034 }
6035 }
6036 else
6037 {
6038 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6039 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6040 return VINF_HM_PENDING_XCPT;
6041 }
6042
6043 *pGCPtrMem = GCPtrMem;
6044 return VINF_SUCCESS;
6045}
6046
6047
6048/**
6049 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6050 * guest attempting to execute a VMX instruction.
6051 *
6052 * @returns Strict VBox status code (i.e. informational status codes too).
6053 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6054 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6055 *
6056 * @param pVCpu The cross context virtual CPU structure.
6057 * @param pVmxTransient Pointer to the VMX transient structure.
6058 *
6059 * @todo NstVmx: Document other error codes when VM-exit is implemented.
6060 * @remarks No-long-jump zone!!!
6061 */
6062static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6063{
6064 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6065 | CPUMCTX_EXTRN_HWVIRT);
6066
6067 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6068 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6069 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6070 {
6071 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6072 hmR0VmxSetPendingXcptUD(pVCpu);
6073 return VINF_HM_PENDING_XCPT;
6074 }
6075
6076 if (pVmxTransient->uExitReason == VMX_EXIT_VMXON)
6077 {
6078 /*
6079 * We check CR4.VMXE because it is required to be always set while in VMX operation
6080 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6081 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6082 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6083 */
6084 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6085 {
6086 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6087 hmR0VmxSetPendingXcptUD(pVCpu);
6088 return VINF_HM_PENDING_XCPT;
6089 }
6090 }
6091 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6092 {
6093 /*
6094 * The guest has not entered VMX operation but attempted to execute a VMX instruction
6095 * (other than VMXON), we need to raise a #UD.
6096 */
6097 Log4Func(("Not in VMX root mode -> #UD\n"));
6098 hmR0VmxSetPendingXcptUD(pVCpu);
6099 return VINF_HM_PENDING_XCPT;
6100 }
6101
6102 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
6103 {
6104 /*
6105 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
6106 * the guest hypervisor deal with it.
6107 */
6108 /** @todo NSTVMX: Trigger a VM-exit */
6109 }
6110
6111 /*
6112 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
6113 * (above) takes preceedence over the CPL check.
6114 */
6115 if (CPUMGetGuestCPL(pVCpu) > 0)
6116 {
6117 Log4Func(("CPL > 0 -> #GP(0)\n"));
6118 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6119 return VINF_HM_PENDING_XCPT;
6120 }
6121
6122 return VINF_SUCCESS;
6123}
6124
6125#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
6126
6127
6128/**
6129 * Handle a condition that occurred while delivering an event through the guest
6130 * IDT.
6131 *
6132 * @returns Strict VBox status code (i.e. informational status codes too).
6133 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6134 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
6135 * to continue execution of the guest which will delivery the \#DF.
6136 * @retval VINF_EM_RESET if we detected a triple-fault condition.
6137 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
6138 *
6139 * @param pVCpu The cross context virtual CPU structure.
6140 * @param pVmxTransient Pointer to the VMX transient structure.
6141 *
6142 * @remarks No-long-jump zone!!!
6143 */
6144static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6145{
6146 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
6147
6148 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
6149 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
6150 AssertRCReturn(rc2, rc2);
6151
6152 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
6153 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6154 {
6155 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
6156 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
6157
6158 /*
6159 * If the event was a software interrupt (generated with INT n) or a software exception
6160 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
6161 * can handle the VM-exit and continue guest execution which will re-execute the
6162 * instruction rather than re-injecting the exception, as that can cause premature
6163 * trips to ring-3 before injection and involve TRPM which currently has no way of
6164 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
6165 * the problem).
6166 */
6167 IEMXCPTRAISE enmRaise;
6168 IEMXCPTRAISEINFO fRaiseInfo;
6169 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6170 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6171 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6172 {
6173 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
6174 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6175 }
6176 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6177 {
6178 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
6179 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
6180 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
6181 /** @todo Make AssertMsgReturn as just AssertMsg later. */
6182 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
6183 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
6184 uExitVectorType), VERR_VMX_IPE_5);
6185
6186 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
6187
6188 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
6189 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
6190 {
6191 pVmxTransient->fVectoringPF = true;
6192 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6193 }
6194 }
6195 else
6196 {
6197 /*
6198 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
6199 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
6200 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
6201 */
6202 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6203 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6204 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
6205 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6206 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6207 }
6208
6209 /*
6210 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
6211 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
6212 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
6213 * subsequent VM-entry would fail.
6214 *
6215 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6216 */
6217 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
6218 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6219 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
6220 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
6221 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6222 {
6223 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6224 }
6225
6226 switch (enmRaise)
6227 {
6228 case IEMXCPTRAISE_CURRENT_XCPT:
6229 {
6230 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
6231 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
6232 Assert(rcStrict == VINF_SUCCESS);
6233 break;
6234 }
6235
6236 case IEMXCPTRAISE_PREV_EVENT:
6237 {
6238 uint32_t u32ErrCode;
6239 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
6240 {
6241 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6242 AssertRCReturn(rc2, rc2);
6243 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6244 }
6245 else
6246 u32ErrCode = 0;
6247
6248 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
6249 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6250 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6251 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
6252
6253 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
6254 pVCpu->hm.s.Event.u32ErrCode));
6255 Assert(rcStrict == VINF_SUCCESS);
6256 break;
6257 }
6258
6259 case IEMXCPTRAISE_REEXEC_INSTR:
6260 Assert(rcStrict == VINF_SUCCESS);
6261 break;
6262
6263 case IEMXCPTRAISE_DOUBLE_FAULT:
6264 {
6265 /*
6266 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6267 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6268 */
6269 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6270 {
6271 pVmxTransient->fVectoringDoublePF = true;
6272 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
6273 pVCpu->cpum.GstCtx.cr2));
6274 rcStrict = VINF_SUCCESS;
6275 }
6276 else
6277 {
6278 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6279 hmR0VmxSetPendingXcptDF(pVCpu);
6280 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
6281 uIdtVector, uExitVector));
6282 rcStrict = VINF_HM_DOUBLE_FAULT;
6283 }
6284 break;
6285 }
6286
6287 case IEMXCPTRAISE_TRIPLE_FAULT:
6288 {
6289 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
6290 rcStrict = VINF_EM_RESET;
6291 break;
6292 }
6293
6294 case IEMXCPTRAISE_CPU_HANG:
6295 {
6296 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
6297 rcStrict = VERR_EM_GUEST_CPU_HANG;
6298 break;
6299 }
6300
6301 default:
6302 {
6303 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6304 rcStrict = VERR_VMX_IPE_2;
6305 break;
6306 }
6307 }
6308 }
6309 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6310 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6311 && uExitVector != X86_XCPT_DF
6312 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6313 {
6314 /*
6315 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6316 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6317 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6318 */
6319 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6320 {
6321 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
6322 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6323 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6324 }
6325 }
6326
6327 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6328 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6329 return rcStrict;
6330}
6331
6332
6333/**
6334 * Imports a guest segment register from the current VMCS into
6335 * the guest-CPU context.
6336 *
6337 * @returns VBox status code.
6338 * @param pVCpu The cross context virtual CPU structure.
6339 * @param idxSel Index of the selector in the VMCS.
6340 * @param idxLimit Index of the segment limit in the VMCS.
6341 * @param idxBase Index of the segment base in the VMCS.
6342 * @param idxAccess Index of the access rights of the segment in the VMCS.
6343 * @param pSelReg Pointer to the segment selector.
6344 *
6345 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6346 * do not log!
6347 *
6348 * @remarks Never call this function directly!!! Use the
6349 * HMVMX_IMPORT_SREG() macro as that takes care
6350 * of whether to read from the VMCS cache or not.
6351 */
6352static int hmR0VmxImportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6353 PCPUMSELREG pSelReg)
6354{
6355 NOREF(pVCpu);
6356
6357 uint32_t u32Sel;
6358 uint32_t u32Limit;
6359 uint32_t u32Attr;
6360 uint64_t u64Base;
6361 int rc = VMXReadVmcs32(idxSel, &u32Sel);
6362 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
6363 rc |= VMXReadVmcs32(idxAccess, &u32Attr);
6364 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
6365 AssertRCReturn(rc, rc);
6366
6367 pSelReg->Sel = (uint16_t)u32Sel;
6368 pSelReg->ValidSel = (uint16_t)u32Sel;
6369 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6370 pSelReg->u32Limit = u32Limit;
6371 pSelReg->u64Base = u64Base;
6372 pSelReg->Attr.u = u32Attr;
6373
6374 /*
6375 * If VT-x marks the segment as unusable, most other bits remain undefined:
6376 * - For CS the L, D and G bits have meaning.
6377 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6378 * - For the remaining data segments no bits are defined.
6379 *
6380 * The present bit and the unusable bit has been observed to be set at the
6381 * same time (the selector was supposed to be invalid as we started executing
6382 * a V8086 interrupt in ring-0).
6383 *
6384 * What should be important for the rest of the VBox code, is that the P bit is
6385 * cleared. Some of the other VBox code recognizes the unusable bit, but
6386 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6387 * safe side here, we'll strip off P and other bits we don't care about. If
6388 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6389 *
6390 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6391 */
6392 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6393 {
6394 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6395
6396 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6397 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6398 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6399#ifdef VBOX_STRICT
6400 VMMRZCallRing3Disable(pVCpu);
6401 Log4Func(("Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Sel, pSelReg->Attr.u));
6402# ifdef DEBUG_bird
6403 AssertMsg((u32Attr & ~X86DESCATTR_P) == pSelReg->Attr.u,
6404 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6405 idxSel, u32Sel, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6406# endif
6407 VMMRZCallRing3Enable(pVCpu);
6408#endif
6409 }
6410 return VINF_SUCCESS;
6411}
6412
6413
6414/**
6415 * Imports the guest RIP from the VMCS back into the guest-CPU context.
6416 *
6417 * @returns VBox status code.
6418 * @param pVCpu The cross context virtual CPU structure.
6419 *
6420 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6421 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6422 * instead!!!
6423 */
6424DECLINLINE(int) hmR0VmxImportGuestRip(PVMCPU pVCpu)
6425{
6426 uint64_t u64Val;
6427 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6428 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
6429 {
6430 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6431 if (RT_SUCCESS(rc))
6432 {
6433 pCtx->rip = u64Val;
6434 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
6435 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
6436 }
6437 return rc;
6438 }
6439 return VINF_SUCCESS;
6440}
6441
6442
6443/**
6444 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
6445 *
6446 * @returns VBox status code.
6447 * @param pVCpu The cross context virtual CPU structure.
6448 *
6449 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6450 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6451 * instead!!!
6452 */
6453DECLINLINE(int) hmR0VmxImportGuestRFlags(PVMCPU pVCpu)
6454{
6455 uint32_t u32Val;
6456 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6457 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
6458 {
6459 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
6460 if (RT_SUCCESS(rc))
6461 {
6462 pCtx->eflags.u32 = u32Val;
6463
6464 /* Restore eflags for real-on-v86-mode hack. */
6465 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6466 {
6467 pCtx->eflags.Bits.u1VM = 0;
6468 pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6469 }
6470 }
6471 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
6472 return rc;
6473 }
6474 return VINF_SUCCESS;
6475}
6476
6477
6478/**
6479 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
6480 * context.
6481 *
6482 * @returns VBox status code.
6483 * @param pVCpu The cross context virtual CPU structure.
6484 *
6485 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6486 * do not log!
6487 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6488 * instead!!!
6489 */
6490DECLINLINE(int) hmR0VmxImportGuestIntrState(PVMCPU pVCpu)
6491{
6492 uint32_t u32Val;
6493 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6494 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
6495 if (RT_SUCCESS(rc))
6496 {
6497 /*
6498 * We additionally have a requirement to import RIP, RFLAGS depending on whether we
6499 * might need them in hmR0VmxEvaluatePendingEvent().
6500 */
6501 if (!u32Val)
6502 {
6503 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6504 {
6505 rc = hmR0VmxImportGuestRip(pVCpu);
6506 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6507 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6508 }
6509
6510 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6511 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6512 }
6513 else
6514 {
6515 rc = hmR0VmxImportGuestRip(pVCpu);
6516 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6517
6518 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
6519 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
6520 {
6521 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
6522 }
6523 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6524 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6525
6526 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6527 {
6528 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6529 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6530 }
6531 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6532 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6533 }
6534 }
6535 return rc;
6536}
6537
6538
6539/**
6540 * Worker for VMXR0ImportStateOnDemand.
6541 *
6542 * @returns VBox status code.
6543 * @param pVCpu The cross context virtual CPU structure.
6544 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6545 */
6546static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
6547{
6548#define VMXLOCAL_BREAK_RC(a_rc) \
6549 if (RT_FAILURE(a_rc)) \
6550 break
6551
6552 int rc = VINF_SUCCESS;
6553 PVM pVM = pVCpu->CTX_SUFF(pVM);
6554 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6555 uint64_t u64Val;
6556 uint32_t u32Val;
6557
6558 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
6559 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
6560
6561 /*
6562 * We disable interrupts to make the updating of the state and in particular
6563 * the fExtrn modification atomic wrt to preemption hooks.
6564 */
6565 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
6566
6567 fWhat &= pCtx->fExtrn;
6568 if (fWhat)
6569 {
6570 do
6571 {
6572 if (fWhat & CPUMCTX_EXTRN_RIP)
6573 {
6574 rc = hmR0VmxImportGuestRip(pVCpu);
6575 VMXLOCAL_BREAK_RC(rc);
6576 }
6577
6578 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
6579 {
6580 rc = hmR0VmxImportGuestRFlags(pVCpu);
6581 VMXLOCAL_BREAK_RC(rc);
6582 }
6583
6584 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
6585 {
6586 rc = hmR0VmxImportGuestIntrState(pVCpu);
6587 VMXLOCAL_BREAK_RC(rc);
6588 }
6589
6590 if (fWhat & CPUMCTX_EXTRN_RSP)
6591 {
6592 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6593 VMXLOCAL_BREAK_RC(rc);
6594 pCtx->rsp = u64Val;
6595 }
6596
6597 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
6598 {
6599 if (fWhat & CPUMCTX_EXTRN_CS)
6600 {
6601 rc = HMVMX_IMPORT_SREG(CS, &pCtx->cs);
6602 rc |= hmR0VmxImportGuestRip(pVCpu);
6603 VMXLOCAL_BREAK_RC(rc);
6604 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6605 pCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6606 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true);
6607 }
6608 if (fWhat & CPUMCTX_EXTRN_SS)
6609 {
6610 rc = HMVMX_IMPORT_SREG(SS, &pCtx->ss);
6611 VMXLOCAL_BREAK_RC(rc);
6612 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6613 pCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6614 }
6615 if (fWhat & CPUMCTX_EXTRN_DS)
6616 {
6617 rc = HMVMX_IMPORT_SREG(DS, &pCtx->ds);
6618 VMXLOCAL_BREAK_RC(rc);
6619 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6620 pCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6621 }
6622 if (fWhat & CPUMCTX_EXTRN_ES)
6623 {
6624 rc = HMVMX_IMPORT_SREG(ES, &pCtx->es);
6625 VMXLOCAL_BREAK_RC(rc);
6626 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6627 pCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6628 }
6629 if (fWhat & CPUMCTX_EXTRN_FS)
6630 {
6631 rc = HMVMX_IMPORT_SREG(FS, &pCtx->fs);
6632 VMXLOCAL_BREAK_RC(rc);
6633 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6634 pCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6635 }
6636 if (fWhat & CPUMCTX_EXTRN_GS)
6637 {
6638 rc = HMVMX_IMPORT_SREG(GS, &pCtx->gs);
6639 VMXLOCAL_BREAK_RC(rc);
6640 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6641 pCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6642 }
6643 }
6644
6645 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
6646 {
6647 if (fWhat & CPUMCTX_EXTRN_LDTR)
6648 {
6649 rc = HMVMX_IMPORT_SREG(LDTR, &pCtx->ldtr);
6650 VMXLOCAL_BREAK_RC(rc);
6651 }
6652
6653 if (fWhat & CPUMCTX_EXTRN_GDTR)
6654 {
6655 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6656 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
6657 VMXLOCAL_BREAK_RC(rc);
6658 pCtx->gdtr.pGdt = u64Val;
6659 pCtx->gdtr.cbGdt = u32Val;
6660 }
6661
6662 /* Guest IDTR. */
6663 if (fWhat & CPUMCTX_EXTRN_IDTR)
6664 {
6665 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6666 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
6667 VMXLOCAL_BREAK_RC(rc);
6668 pCtx->idtr.pIdt = u64Val;
6669 pCtx->idtr.cbIdt = u32Val;
6670 }
6671
6672 /* Guest TR. */
6673 if (fWhat & CPUMCTX_EXTRN_TR)
6674 {
6675 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, don't save that one. */
6676 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6677 {
6678 rc = HMVMX_IMPORT_SREG(TR, &pCtx->tr);
6679 VMXLOCAL_BREAK_RC(rc);
6680 }
6681 }
6682 }
6683
6684 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
6685 {
6686 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
6687 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
6688 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
6689 pCtx->SysEnter.cs = u32Val;
6690 VMXLOCAL_BREAK_RC(rc);
6691 }
6692
6693#if HC_ARCH_BITS == 64
6694 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
6695 {
6696 if ( pVM->hm.s.fAllow64BitGuests
6697 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6698 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
6699 }
6700
6701 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
6702 {
6703 if ( pVM->hm.s.fAllow64BitGuests
6704 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6705 {
6706 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
6707 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
6708 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
6709 }
6710 }
6711#endif
6712
6713 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
6714#if HC_ARCH_BITS == 32
6715 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
6716#endif
6717 )
6718 {
6719 PCVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6720 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
6721 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6722 {
6723 switch (pMsr->u32Msr)
6724 {
6725#if HC_ARCH_BITS == 32
6726 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
6727 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
6728 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
6729 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6730#endif
6731 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
6732 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
6733 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit */ break;
6734 default:
6735 {
6736 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6737 ASMSetFlags(fEFlags);
6738 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
6739 cMsrs));
6740 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6741 }
6742 }
6743 }
6744 }
6745
6746 if (fWhat & CPUMCTX_EXTRN_DR7)
6747 {
6748 if (!pVCpu->hm.s.fUsingHyperDR7)
6749 {
6750 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6751 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
6752 VMXLOCAL_BREAK_RC(rc);
6753 pCtx->dr[7] = u32Val;
6754 }
6755 }
6756
6757 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
6758 {
6759 uint32_t u32Shadow;
6760 if (fWhat & CPUMCTX_EXTRN_CR0)
6761 {
6762 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
6763 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
6764 VMXLOCAL_BREAK_RC(rc);
6765 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr0Mask)
6766 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr0Mask);
6767 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
6768 CPUMSetGuestCR0(pVCpu, u32Val);
6769 VMMRZCallRing3Enable(pVCpu);
6770 }
6771
6772 if (fWhat & CPUMCTX_EXTRN_CR4)
6773 {
6774 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
6775 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
6776 VMXLOCAL_BREAK_RC(rc);
6777 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr4Mask)
6778 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr4Mask);
6779 CPUMSetGuestCR4(pVCpu, u32Val);
6780 }
6781
6782 if (fWhat & CPUMCTX_EXTRN_CR3)
6783 {
6784 /* CR0.PG bit changes are always intercepted, so it's up to date. */
6785 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6786 || ( pVM->hm.s.fNestedPaging
6787 && CPUMIsGuestPagingEnabledEx(pCtx)))
6788 {
6789 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6790 if (pCtx->cr3 != u64Val)
6791 {
6792 CPUMSetGuestCR3(pVCpu, u64Val);
6793 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6794 }
6795
6796 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
6797 Note: CR4.PAE, CR0.PG, EFER bit changes are always intercepted, so they're up to date. */
6798 if (CPUMIsGuestInPAEModeEx(pCtx))
6799 {
6800 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6801 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6802 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6803 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6804 VMXLOCAL_BREAK_RC(rc);
6805 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6806 }
6807 }
6808 }
6809 }
6810 } while (0);
6811
6812 if (RT_SUCCESS(rc))
6813 {
6814 /* Update fExtrn. */
6815 pCtx->fExtrn &= ~fWhat;
6816
6817 /* If everything has been imported, clear the HM keeper bit. */
6818 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
6819 {
6820 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
6821 Assert(!pCtx->fExtrn);
6822 }
6823 }
6824 }
6825 else
6826 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
6827
6828 ASMSetFlags(fEFlags);
6829
6830 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
6831
6832 /*
6833 * Honor any pending CR3 updates.
6834 *
6835 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6836 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6837 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
6838 *
6839 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6840 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6841 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6842 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
6843 *
6844 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6845 */
6846 if (VMMRZCallRing3IsEnabled(pVCpu))
6847 {
6848 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6849 {
6850 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
6851 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6852 }
6853
6854 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6855 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6856
6857 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6858 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6859 }
6860
6861 return VINF_SUCCESS;
6862#undef VMXLOCAL_BREAK_RC
6863}
6864
6865
6866/**
6867 * Saves the guest state from the VMCS into the guest-CPU context.
6868 *
6869 * @returns VBox status code.
6870 * @param pVCpu The cross context virtual CPU structure.
6871 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6872 */
6873VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
6874{
6875 return hmR0VmxImportGuestState(pVCpu, fWhat);
6876}
6877
6878
6879/**
6880 * Check per-VM and per-VCPU force flag actions that require us to go back to
6881 * ring-3 for one reason or another.
6882 *
6883 * @returns Strict VBox status code (i.e. informational status codes too)
6884 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6885 * ring-3.
6886 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6887 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6888 * interrupts)
6889 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6890 * all EMTs to be in ring-3.
6891 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6892 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6893 * to the EM loop.
6894 *
6895 * @param pVCpu The cross context virtual CPU structure.
6896 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6897 */
6898static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
6899{
6900 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6901
6902 /*
6903 * Anything pending? Should be more likely than not if we're doing a good job.
6904 */
6905 PVM pVM = pVCpu->CTX_SUFF(pVM);
6906 if ( !fStepping
6907 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6908 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6909 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6910 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6911 return VINF_SUCCESS;
6912
6913 /* Pending PGM C3 sync. */
6914 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6915 {
6916 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6917 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
6918 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
6919 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6920 if (rcStrict2 != VINF_SUCCESS)
6921 {
6922 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6923 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6924 return rcStrict2;
6925 }
6926 }
6927
6928 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6929 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6930 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6931 {
6932 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6933 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6934 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6935 return rc2;
6936 }
6937
6938 /* Pending VM request packets, such as hardware interrupts. */
6939 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6940 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6941 {
6942 Log4Func(("Pending VM request forcing us back to ring-3\n"));
6943 return VINF_EM_PENDING_REQUEST;
6944 }
6945
6946 /* Pending PGM pool flushes. */
6947 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6948 {
6949 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
6950 return VINF_PGM_POOL_FLUSH_PENDING;
6951 }
6952
6953 /* Pending DMA requests. */
6954 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6955 {
6956 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
6957 return VINF_EM_RAW_TO_R3;
6958 }
6959
6960 return VINF_SUCCESS;
6961}
6962
6963
6964/**
6965 * Converts any TRPM trap into a pending HM event. This is typically used when
6966 * entering from ring-3 (not longjmp returns).
6967 *
6968 * @param pVCpu The cross context virtual CPU structure.
6969 */
6970static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6971{
6972 Assert(TRPMHasTrap(pVCpu));
6973 Assert(!pVCpu->hm.s.Event.fPending);
6974
6975 uint8_t uVector;
6976 TRPMEVENT enmTrpmEvent;
6977 RTGCUINT uErrCode;
6978 RTGCUINTPTR GCPtrFaultAddress;
6979 uint8_t cbInstr;
6980
6981 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6982 AssertRC(rc);
6983
6984 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6985 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
6986 if (enmTrpmEvent == TRPM_TRAP)
6987 {
6988 switch (uVector)
6989 {
6990 case X86_XCPT_NMI:
6991 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6992 break;
6993
6994 case X86_XCPT_BP:
6995 case X86_XCPT_OF:
6996 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6997 break;
6998
6999 case X86_XCPT_PF:
7000 case X86_XCPT_DF:
7001 case X86_XCPT_TS:
7002 case X86_XCPT_NP:
7003 case X86_XCPT_SS:
7004 case X86_XCPT_GP:
7005 case X86_XCPT_AC:
7006 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7007 RT_FALL_THRU();
7008 default:
7009 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7010 break;
7011 }
7012 }
7013 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7014 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7015 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7016 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7017 else
7018 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7019
7020 rc = TRPMResetTrap(pVCpu);
7021 AssertRC(rc);
7022 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7023 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7024
7025 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7026}
7027
7028
7029/**
7030 * Converts the pending HM event into a TRPM trap.
7031 *
7032 * @param pVCpu The cross context virtual CPU structure.
7033 */
7034static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7035{
7036 Assert(pVCpu->hm.s.Event.fPending);
7037
7038 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7039 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7040 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7041 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7042
7043 /* If a trap was already pending, we did something wrong! */
7044 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7045
7046 TRPMEVENT enmTrapType;
7047 switch (uVectorType)
7048 {
7049 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7050 enmTrapType = TRPM_HARDWARE_INT;
7051 break;
7052
7053 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7054 enmTrapType = TRPM_SOFTWARE_INT;
7055 break;
7056
7057 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7058 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7059 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7060 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7061 enmTrapType = TRPM_TRAP;
7062 break;
7063
7064 default:
7065 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7066 enmTrapType = TRPM_32BIT_HACK;
7067 break;
7068 }
7069
7070 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7071
7072 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7073 AssertRC(rc);
7074
7075 if (fErrorCodeValid)
7076 TRPMSetErrorCode(pVCpu, uErrorCode);
7077
7078 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7079 && uVector == X86_XCPT_PF)
7080 {
7081 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7082 }
7083 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7084 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7085 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7086 {
7087 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7088 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7089 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7090 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7091 }
7092
7093 /* Clear any pending events from the VMCS. */
7094 VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7095 VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);
7096
7097 /* We're now done converting the pending event. */
7098 pVCpu->hm.s.Event.fPending = false;
7099}
7100
7101
7102/**
7103 * Does the necessary state syncing before returning to ring-3 for any reason
7104 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7105 *
7106 * @returns VBox status code.
7107 * @param pVCpu The cross context virtual CPU structure.
7108 * @param fImportState Whether to import the guest state from the VMCS back
7109 * to the guest-CPU context.
7110 *
7111 * @remarks No-long-jmp zone!!!
7112 */
7113static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7114{
7115 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7116 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7117
7118 RTCPUID idCpu = RTMpCpuId();
7119 Log4Func(("HostCpuId=%u\n", idCpu));
7120
7121 /*
7122 * !!! IMPORTANT !!!
7123 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7124 */
7125
7126 /* Save the guest state if necessary. */
7127 if (fImportState)
7128 {
7129 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7130 AssertRCReturn(rc, rc);
7131 }
7132
7133 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
7134 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7135 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7136
7137 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
7138#ifdef VBOX_STRICT
7139 if (CPUMIsHyperDebugStateActive(pVCpu))
7140 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
7141#endif
7142 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7143 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7144 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7145
7146#if HC_ARCH_BITS == 64
7147 /* Restore host-state bits that VT-x only restores partially. */
7148 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7149 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7150 {
7151 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7152 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7153 }
7154 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7155#endif
7156
7157 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7158 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7159 {
7160 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
7161 if (!fImportState)
7162 {
7163 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
7164 AssertRCReturn(rc, rc);
7165 }
7166 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7167 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7168 }
7169 else
7170 pVCpu->hm.s.vmx.fLazyMsrs = 0;
7171
7172 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7173 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7174
7175 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7176 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
7177 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
7178 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
7179 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
7180 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7181 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7182 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7183 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7184
7185 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7186
7187 /** @todo This partially defeats the purpose of having preemption hooks.
7188 * The problem is, deregistering the hooks should be moved to a place that
7189 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7190 * context.
7191 */
7192 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7193 {
7194 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7195 AssertRCReturn(rc, rc);
7196
7197 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7198 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7199 }
7200 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7201 NOREF(idCpu);
7202
7203 return VINF_SUCCESS;
7204}
7205
7206
7207/**
7208 * Leaves the VT-x session.
7209 *
7210 * @returns VBox status code.
7211 * @param pVCpu The cross context virtual CPU structure.
7212 *
7213 * @remarks No-long-jmp zone!!!
7214 */
7215static int hmR0VmxLeaveSession(PVMCPU pVCpu)
7216{
7217 HM_DISABLE_PREEMPT(pVCpu);
7218 HMVMX_ASSERT_CPU_SAFE(pVCpu);
7219 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7220 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7221
7222 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7223 and done this from the VMXR0ThreadCtxCallback(). */
7224 if (!pVCpu->hm.s.fLeaveDone)
7225 {
7226 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
7227 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7228 pVCpu->hm.s.fLeaveDone = true;
7229 }
7230 Assert(!pVCpu->cpum.GstCtx.fExtrn);
7231
7232 /*
7233 * !!! IMPORTANT !!!
7234 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7235 */
7236
7237 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7238 /** @todo Deregistering here means we need to VMCLEAR always
7239 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
7240 * for calling VMMR0ThreadCtxHookDisable here! */
7241 VMMR0ThreadCtxHookDisable(pVCpu);
7242
7243 /* Leave HM context. This takes care of local init (term). */
7244 int rc = HMR0LeaveCpu(pVCpu);
7245
7246 HM_RESTORE_PREEMPT();
7247 return rc;
7248}
7249
7250
7251/**
7252 * Does the necessary state syncing before doing a longjmp to ring-3.
7253 *
7254 * @returns VBox status code.
7255 * @param pVCpu The cross context virtual CPU structure.
7256 *
7257 * @remarks No-long-jmp zone!!!
7258 */
7259DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
7260{
7261 return hmR0VmxLeaveSession(pVCpu);
7262}
7263
7264
7265/**
7266 * Take necessary actions before going back to ring-3.
7267 *
7268 * An action requires us to go back to ring-3. This function does the necessary
7269 * steps before we can safely return to ring-3. This is not the same as longjmps
7270 * to ring-3, this is voluntary and prepares the guest so it may continue
7271 * executing outside HM (recompiler/IEM).
7272 *
7273 * @returns VBox status code.
7274 * @param pVCpu The cross context virtual CPU structure.
7275 * @param rcExit The reason for exiting to ring-3. Can be
7276 * VINF_VMM_UNKNOWN_RING3_CALL.
7277 */
7278static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
7279{
7280 Assert(pVCpu);
7281 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7282
7283 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7284 {
7285 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7286 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7287 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7288 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7289 }
7290
7291 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7292 VMMRZCallRing3Disable(pVCpu);
7293 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
7294
7295 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7296 if (pVCpu->hm.s.Event.fPending)
7297 {
7298 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7299 Assert(!pVCpu->hm.s.Event.fPending);
7300 }
7301
7302 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7303 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7304
7305 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7306 and if we're injecting an event we should have a TRPM trap pending. */
7307 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7308#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
7309 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7310#endif
7311
7312 /* Save guest state and restore host state bits. */
7313 int rc = hmR0VmxLeaveSession(pVCpu);
7314 AssertRCReturn(rc, rc);
7315 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7316 /* Thread-context hooks are unregistered at this point!!! */
7317
7318 /* Sync recompiler state. */
7319 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7320 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7321 | CPUM_CHANGED_LDTR
7322 | CPUM_CHANGED_GDTR
7323 | CPUM_CHANGED_IDTR
7324 | CPUM_CHANGED_TR
7325 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7326 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
7327 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
7328 {
7329 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7330 }
7331
7332 Assert(!pVCpu->hm.s.fClearTrapFlag);
7333
7334 /* Update the exit-to-ring 3 reason. */
7335 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
7336
7337 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7338 if (rcExit != VINF_EM_RAW_INTERRUPT)
7339 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7340
7341 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7342
7343 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7344 VMMRZCallRing3RemoveNotification(pVCpu);
7345 VMMRZCallRing3Enable(pVCpu);
7346
7347 return rc;
7348}
7349
7350
7351/**
7352 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7353 * longjump to ring-3 and possibly get preempted.
7354 *
7355 * @returns VBox status code.
7356 * @param pVCpu The cross context virtual CPU structure.
7357 * @param enmOperation The operation causing the ring-3 longjump.
7358 * @param pvUser User argument, currently unused, NULL.
7359 */
7360static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7361{
7362 RT_NOREF(pvUser);
7363 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7364 {
7365 /*
7366 * !!! IMPORTANT !!!
7367 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7368 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7369 */
7370 VMMRZCallRing3RemoveNotification(pVCpu);
7371 VMMRZCallRing3Disable(pVCpu);
7372 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7373 RTThreadPreemptDisable(&PreemptState);
7374
7375 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7376 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7377 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7378
7379#if HC_ARCH_BITS == 64
7380 /* Restore host-state bits that VT-x only restores partially. */
7381 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7382 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7383 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7384 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7385#endif
7386
7387 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7388 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7389 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7390
7391 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7392 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7393 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7394 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7395 {
7396 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7397 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7398 }
7399
7400 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7401 VMMR0ThreadCtxHookDisable(pVCpu);
7402 HMR0LeaveCpu(pVCpu);
7403 RTThreadPreemptRestore(&PreemptState);
7404 return VINF_SUCCESS;
7405 }
7406
7407 Assert(pVCpu);
7408 Assert(pvUser);
7409 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7410 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7411
7412 VMMRZCallRing3Disable(pVCpu);
7413 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7414
7415 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
7416
7417 int rc = hmR0VmxLongJmpToRing3(pVCpu);
7418 AssertRCReturn(rc, rc);
7419
7420 VMMRZCallRing3Enable(pVCpu);
7421 return VINF_SUCCESS;
7422}
7423
7424
7425/**
7426 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7427 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7428 *
7429 * @param pVCpu The cross context virtual CPU structure.
7430 */
7431DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7432{
7433 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7434 {
7435 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7436 {
7437 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7438 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7439 AssertRC(rc);
7440 Log4Func(("Setup interrupt-window exiting\n"));
7441 }
7442 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7443}
7444
7445
7446/**
7447 * Clears the interrupt-window exiting control in the VMCS.
7448 *
7449 * @param pVCpu The cross context virtual CPU structure.
7450 */
7451DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7452{
7453 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
7454 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7455 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7456 AssertRC(rc);
7457 Log4Func(("Cleared interrupt-window exiting\n"));
7458}
7459
7460
7461/**
7462 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7463 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7464 *
7465 * @param pVCpu The cross context virtual CPU structure.
7466 */
7467DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7468{
7469 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7470 {
7471 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7472 {
7473 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7474 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7475 AssertRC(rc);
7476 Log4Func(("Setup NMI-window exiting\n"));
7477 }
7478 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7479}
7480
7481
7482/**
7483 * Clears the NMI-window exiting control in the VMCS.
7484 *
7485 * @param pVCpu The cross context virtual CPU structure.
7486 */
7487DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7488{
7489 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
7490 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7491 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7492 AssertRC(rc);
7493 Log4Func(("Cleared NMI-window exiting\n"));
7494}
7495
7496
7497/**
7498 * Evaluates the event to be delivered to the guest and sets it as the pending
7499 * event.
7500 *
7501 * @returns The VT-x guest-interruptibility state.
7502 * @param pVCpu The cross context virtual CPU structure.
7503 */
7504static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu)
7505{
7506 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7507 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7508 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu);
7509 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7510 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7511 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7512
7513 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7514 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7515 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7516 Assert(!TRPMHasTrap(pVCpu));
7517
7518 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7519 APICUpdatePendingInterrupts(pVCpu);
7520
7521 /*
7522 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7523 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7524 */
7525 /** @todo SMI. SMIs take priority over NMIs. */
7526 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7527 {
7528 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7529 if ( !pVCpu->hm.s.Event.fPending
7530 && !fBlockNmi
7531 && !fBlockSti
7532 && !fBlockMovSS)
7533 {
7534 Log4Func(("Pending NMI\n"));
7535 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INT_INFO_VALID;
7536 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7537
7538 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7539 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7540 }
7541 else
7542 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7543 }
7544 /*
7545 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7546 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7547 */
7548 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7549 && !pVCpu->hm.s.fSingleInstruction)
7550 {
7551 Assert(!DBGFIsStepping(pVCpu));
7552 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7553 AssertRCReturn(rc, 0);
7554 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7555 if ( !pVCpu->hm.s.Event.fPending
7556 && !fBlockInt
7557 && !fBlockSti
7558 && !fBlockMovSS)
7559 {
7560 uint8_t u8Interrupt;
7561 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7562 if (RT_SUCCESS(rc))
7563 {
7564 Log4Func(("Pending external interrupt u8Interrupt=%#x\n", u8Interrupt));
7565 uint32_t u32IntInfo = u8Interrupt
7566 | VMX_EXIT_INT_INFO_VALID
7567 | (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7568
7569 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7570 }
7571 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7572 {
7573 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7574 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7575 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7576
7577 /*
7578 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7579 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7580 * need to re-set this force-flag here.
7581 */
7582 }
7583 else
7584 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7585 }
7586 else
7587 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7588 }
7589
7590 return fIntrState;
7591}
7592
7593
7594/**
7595 * Sets a pending-debug exception to be delivered to the guest if the guest is
7596 * single-stepping in the VMCS.
7597 *
7598 * @param pVCpu The cross context virtual CPU structure.
7599 */
7600DECLINLINE(int) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7601{
7602 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7603 RT_NOREF(pVCpu);
7604 return VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
7605}
7606
7607
7608/**
7609 * Injects any pending events into the guest if the guest is in a state to
7610 * receive them.
7611 *
7612 * @returns Strict VBox status code (i.e. informational status codes too).
7613 * @param pVCpu The cross context virtual CPU structure.
7614 * @param fIntrState The VT-x guest-interruptibility state.
7615 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7616 * return VINF_EM_DBG_STEPPED if the event was
7617 * dispatched directly.
7618 */
7619static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, uint32_t fIntrState, bool fStepping)
7620{
7621 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7622 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7623
7624 bool fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7625 bool fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7626
7627 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7628 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7629 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7630 Assert(!TRPMHasTrap(pVCpu));
7631
7632 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7633 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7634 if (pVCpu->hm.s.Event.fPending)
7635 {
7636 /*
7637 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7638 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7639 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7640 *
7641 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7642 */
7643 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7644#ifdef VBOX_STRICT
7645 if (uIntType == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
7646 {
7647 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7648 Assert(!fBlockInt);
7649 Assert(!fBlockSti);
7650 Assert(!fBlockMovSS);
7651 }
7652 else if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
7653 {
7654 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7655 Assert(!fBlockSti);
7656 Assert(!fBlockMovSS);
7657 Assert(!fBlockNmi);
7658 }
7659#endif
7660 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7661 uIntType));
7662 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7663 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping,
7664 &fIntrState);
7665 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7666
7667 /* Update the interruptibility-state as it could have been changed by
7668 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7669 fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7670 fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7671
7672 if (uIntType == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
7673 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7674 else
7675 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7676 }
7677
7678 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7679 if ( fBlockSti
7680 || fBlockMovSS)
7681 {
7682 if (!pVCpu->hm.s.fSingleInstruction)
7683 {
7684 /*
7685 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7686 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7687 * See Intel spec. 27.3.4 "Saving Non-Register State".
7688 */
7689 Assert(!DBGFIsStepping(pVCpu));
7690 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7691 AssertRCReturn(rc, rc);
7692 if (pCtx->eflags.Bits.u1TF)
7693 {
7694 int rc2 = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7695 AssertRCReturn(rc2, rc2);
7696 }
7697 }
7698 else if (pCtx->eflags.Bits.u1TF)
7699 {
7700 /*
7701 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7702 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7703 */
7704 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
7705 fIntrState = 0;
7706 }
7707 }
7708
7709 /*
7710 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7711 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7712 */
7713 int rc3 = hmR0VmxExportGuestIntrState(pVCpu, fIntrState);
7714 AssertRCReturn(rc3, rc3);
7715
7716 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7717 NOREF(fBlockMovSS); NOREF(fBlockSti);
7718 return rcStrict;
7719}
7720
7721
7722/**
7723 * Injects a double-fault (\#DF) exception into the VM.
7724 *
7725 * @returns Strict VBox status code (i.e. informational status codes too).
7726 * @param pVCpu The cross context virtual CPU structure.
7727 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7728 * and should return VINF_EM_DBG_STEPPED if the event
7729 * is injected directly (register modified by us, not
7730 * by hardware on VM-entry).
7731 * @param pfIntrState Pointer to the current guest interruptibility-state.
7732 * This interruptibility-state will be updated if
7733 * necessary. This cannot not be NULL.
7734 */
7735DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, bool fStepping, uint32_t *pfIntrState)
7736{
7737 uint32_t const u32IntInfo = X86_XCPT_DF | VMX_EXIT_INT_INFO_VALID
7738 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7739 | VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7740 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */, fStepping,
7741 pfIntrState);
7742}
7743
7744
7745/**
7746 * Injects a general-protection (\#GP) fault into the VM.
7747 *
7748 * @returns Strict VBox status code (i.e. informational status codes too).
7749 * @param pVCpu The cross context virtual CPU structure.
7750 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7751 * mode, i.e. in real-mode it's not valid).
7752 * @param u32ErrorCode The error code associated with the \#GP.
7753 * @param fStepping Whether we're running in
7754 * hmR0VmxRunGuestCodeStep() and should return
7755 * VINF_EM_DBG_STEPPED if the event is injected
7756 * directly (register modified by us, not by
7757 * hardware on VM-entry).
7758 * @param pfIntrState Pointer to the current guest interruptibility-state.
7759 * This interruptibility-state will be updated if
7760 * necessary. This cannot not be NULL.
7761 */
7762DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, bool fErrorCodeValid, uint32_t u32ErrorCode, bool fStepping,
7763 uint32_t *pfIntrState)
7764{
7765 uint32_t const u32IntInfo = X86_XCPT_GP | VMX_EXIT_INT_INFO_VALID
7766 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7767 | (fErrorCodeValid ? VMX_EXIT_INT_INFO_ERROR_CODE_VALID : 0);
7768 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */, fStepping,
7769 pfIntrState);
7770}
7771
7772
7773/**
7774 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7775 *
7776 * @param pVCpu The cross context virtual CPU structure.
7777 * @param uVector The software interrupt vector number.
7778 * @param cbInstr The value of RIP that is to be pushed on the guest
7779 * stack.
7780 */
7781DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, uint16_t uVector, uint32_t cbInstr)
7782{
7783 bool const fIsSwXcpt = RT_BOOL(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7784 uint32_t const u32IntType = fIsSwXcpt ? VMX_EXIT_INT_INFO_TYPE_SW_XCPT : VMX_EXIT_INT_INFO_TYPE_SW_INT;
7785 uint32_t const u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID
7786 | (u32IntType << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7787 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7788}
7789
7790
7791/**
7792 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7793 * stack.
7794 *
7795 * @returns Strict VBox status code (i.e. informational status codes too).
7796 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7797 * @param pVCpu The cross context virtual CPU structure.
7798 * @param uValue The value to push to the guest stack.
7799 */
7800static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
7801{
7802 /*
7803 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7804 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7805 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7806 */
7807 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7808 if (pCtx->sp == 1)
7809 return VINF_EM_RESET;
7810 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7811 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
7812 AssertRC(rc);
7813 return rc;
7814}
7815
7816
7817/**
7818 * Injects an event into the guest upon VM-entry by updating the relevant fields
7819 * in the VM-entry area in the VMCS.
7820 *
7821 * @returns Strict VBox status code (i.e. informational status codes too).
7822 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7823 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7824 *
7825 * @param pVCpu The cross context virtual CPU structure.
7826 * @param u64IntInfo The VM-entry interruption-information field.
7827 * @param cbInstr The VM-entry instruction length in bytes (for
7828 * software interrupts, exceptions and privileged
7829 * software exceptions).
7830 * @param u32ErrCode The VM-entry exception error code.
7831 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7832 * @param pfIntrState Pointer to the current guest interruptibility-state.
7833 * This interruptibility-state will be updated if
7834 * necessary. This cannot not be NULL.
7835 * @param fStepping Whether we're running in
7836 * hmR0VmxRunGuestCodeStep() and should return
7837 * VINF_EM_DBG_STEPPED if the event is injected
7838 * directly (register modified by us, not by
7839 * hardware on VM-entry).
7840 */
7841static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7842 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState)
7843{
7844 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7845 AssertMsg(!RT_HI_U32(u64IntInfo), ("%#RX64\n", u64IntInfo));
7846 Assert(pfIntrState);
7847
7848 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7849 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7850 uint32_t const uVector = VMX_EXIT_INT_INFO_VECTOR(u32IntInfo);
7851 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(u32IntInfo);
7852
7853#ifdef VBOX_STRICT
7854 /*
7855 * Validate the error-code-valid bit for hardware exceptions.
7856 * No error codes for exceptions in real-mode.
7857 *
7858 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7859 */
7860 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7861 && !CPUMIsGuestInRealModeEx(pCtx))
7862 {
7863 switch (uVector)
7864 {
7865 case X86_XCPT_PF:
7866 case X86_XCPT_DF:
7867 case X86_XCPT_TS:
7868 case X86_XCPT_NP:
7869 case X86_XCPT_SS:
7870 case X86_XCPT_GP:
7871 case X86_XCPT_AC:
7872 AssertMsg(VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
7873 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7874 RT_FALL_THRU();
7875 default:
7876 break;
7877 }
7878 }
7879#endif
7880
7881 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7882 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7883 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
7884
7885 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7886
7887 /*
7888 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
7889 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
7890 * interrupt handler in the (real-mode) guest.
7891 *
7892 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
7893 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7894 */
7895 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
7896 {
7897 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
7898 {
7899 /*
7900 * For unrestricted execution enabled CPUs running real-mode guests, we must not
7901 * set the deliver-error-code bit.
7902 *
7903 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7904 */
7905 u32IntInfo &= ~VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7906 }
7907 else
7908 {
7909 PVM pVM = pVCpu->CTX_SUFF(pVM);
7910 Assert(PDMVmmDevHeapIsEnabled(pVM));
7911 Assert(pVM->hm.s.vmx.pRealModeTSS);
7912
7913 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
7914 int rc2 = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_RIP
7915 | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
7916 AssertRCReturn(rc2, rc2);
7917
7918 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7919 size_t const cbIdtEntry = sizeof(X86IDTR16);
7920 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
7921 {
7922 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7923 if (uVector == X86_XCPT_DF)
7924 return VINF_EM_RESET;
7925
7926 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7927 if (uVector == X86_XCPT_GP)
7928 return hmR0VmxInjectXcptDF(pVCpu, fStepping, pfIntrState);
7929
7930 /*
7931 * If we're injecting an event with no valid IDT entry, inject a #GP.
7932 * No error codes for exceptions in real-mode.
7933 *
7934 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7935 */
7936 return hmR0VmxInjectXcptGP(pVCpu, false /* fErrCodeValid */, 0 /* u32ErrCode */, fStepping, pfIntrState);
7937 }
7938
7939 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7940 uint16_t uGuestIp = pCtx->ip;
7941 if (uIntType == VMX_EXIT_INT_INFO_TYPE_SW_XCPT)
7942 {
7943 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7944 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7945 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7946 }
7947 else if (uIntType == VMX_EXIT_INT_INFO_TYPE_SW_INT)
7948 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7949
7950 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7951 X86IDTR16 IdtEntry;
7952 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
7953 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7954 AssertRCReturn(rc2, rc2);
7955
7956 /* Construct the stack frame for the interrupt/exception handler. */
7957 VBOXSTRICTRC rcStrict;
7958 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
7959 if (rcStrict == VINF_SUCCESS)
7960 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
7961 if (rcStrict == VINF_SUCCESS)
7962 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
7963
7964 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7965 if (rcStrict == VINF_SUCCESS)
7966 {
7967 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7968 pCtx->rip = IdtEntry.offSel;
7969 pCtx->cs.Sel = IdtEntry.uSel;
7970 pCtx->cs.ValidSel = IdtEntry.uSel;
7971 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7972 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7973 && uVector == X86_XCPT_PF)
7974 pCtx->cr2 = GCPtrFaultAddress;
7975
7976 /* If any other guest-state bits are changed here, make sure to update
7977 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7978 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
7979 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
7980 | HM_CHANGED_GUEST_RSP);
7981
7982 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7983 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
7984 {
7985 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7986 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
7987 Log4Func(("Clearing inhibition due to STI\n"));
7988 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
7989 }
7990 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
7991 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
7992
7993 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7994 it, if we are returning to ring-3 before executing guest code. */
7995 pVCpu->hm.s.Event.fPending = false;
7996
7997 /* Make hmR0VmxPreRunGuest() return if we're stepping since we've changed cs:rip. */
7998 if (fStepping)
7999 rcStrict = VINF_EM_DBG_STEPPED;
8000 }
8001 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8002 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8003 return rcStrict;
8004 }
8005 }
8006
8007 /* Validate. */
8008 Assert(VMX_EXIT_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8009 Assert(!VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8010 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8011
8012 /* Inject. */
8013 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8014 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8015 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8016 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8017 AssertRCReturn(rc, rc);
8018
8019 /* Update CR2. */
8020 if ( VMX_EXIT_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8021 && uVector == X86_XCPT_PF)
8022 pCtx->cr2 = GCPtrFaultAddress;
8023
8024 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8025
8026 return VINF_SUCCESS;
8027}
8028
8029
8030/**
8031 * Clears the interrupt-window exiting control in the VMCS and if necessary
8032 * clears the current event in the VMCS as well.
8033 *
8034 * @returns VBox status code.
8035 * @param pVCpu The cross context virtual CPU structure.
8036 *
8037 * @remarks Use this function only to clear events that have not yet been
8038 * delivered to the guest but are injected in the VMCS!
8039 * @remarks No-long-jump zone!!!
8040 */
8041static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8042{
8043 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8044 {
8045 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8046 Log4Func(("Cleared interrupt widow\n"));
8047 }
8048
8049 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8050 {
8051 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8052 Log4Func(("Cleared interrupt widow\n"));
8053 }
8054}
8055
8056
8057/**
8058 * Enters the VT-x session.
8059 *
8060 * @returns VBox status code.
8061 * @param pVCpu The cross context virtual CPU structure.
8062 * @param pHostCpu Pointer to the global CPU info struct.
8063 */
8064VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
8065{
8066 AssertPtr(pVCpu);
8067 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8068 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8069 RT_NOREF(pHostCpu);
8070
8071 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8072 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8073 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8074
8075#ifdef VBOX_STRICT
8076 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8077 RTCCUINTREG uHostCR4 = ASMGetCR4();
8078 if (!(uHostCR4 & X86_CR4_VMXE))
8079 {
8080 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8081 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8082 }
8083#endif
8084
8085 /*
8086 * Load the VCPU's VMCS as the current (and active) one.
8087 */
8088 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8089 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8090 if (RT_FAILURE(rc))
8091 return rc;
8092
8093 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8094 pVCpu->hm.s.fLeaveDone = false;
8095 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8096
8097 return VINF_SUCCESS;
8098}
8099
8100
8101/**
8102 * The thread-context callback (only on platforms which support it).
8103 *
8104 * @param enmEvent The thread-context event.
8105 * @param pVCpu The cross context virtual CPU structure.
8106 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8107 * @thread EMT(pVCpu)
8108 */
8109VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8110{
8111 NOREF(fGlobalInit);
8112
8113 switch (enmEvent)
8114 {
8115 case RTTHREADCTXEVENT_OUT:
8116 {
8117 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8118 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8119 VMCPU_ASSERT_EMT(pVCpu);
8120
8121 /* No longjmps (logger flushes, locks) in this fragile context. */
8122 VMMRZCallRing3Disable(pVCpu);
8123 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8124
8125 /*
8126 * Restore host-state (FPU, debug etc.)
8127 */
8128 if (!pVCpu->hm.s.fLeaveDone)
8129 {
8130 /*
8131 * Do -not- import the guest-state here as we might already be in the middle of importing
8132 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8133 */
8134 hmR0VmxLeave(pVCpu, false /* fImportState */);
8135 pVCpu->hm.s.fLeaveDone = true;
8136 }
8137
8138 /* Leave HM context, takes care of local init (term). */
8139 int rc = HMR0LeaveCpu(pVCpu);
8140 AssertRC(rc); NOREF(rc);
8141
8142 /* Restore longjmp state. */
8143 VMMRZCallRing3Enable(pVCpu);
8144 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8145 break;
8146 }
8147
8148 case RTTHREADCTXEVENT_IN:
8149 {
8150 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8151 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8152 VMCPU_ASSERT_EMT(pVCpu);
8153
8154 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8155 VMMRZCallRing3Disable(pVCpu);
8156 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8157
8158 /* Initialize the bare minimum state required for HM. This takes care of
8159 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8160 int rc = hmR0EnterCpu(pVCpu);
8161 AssertRC(rc);
8162 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8163 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8164
8165 /* Load the active VMCS as the current one. */
8166 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8167 {
8168 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8169 AssertRC(rc); NOREF(rc);
8170 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8171 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8172 }
8173 pVCpu->hm.s.fLeaveDone = false;
8174
8175 /* Restore longjmp state. */
8176 VMMRZCallRing3Enable(pVCpu);
8177 break;
8178 }
8179
8180 default:
8181 break;
8182 }
8183}
8184
8185
8186/**
8187 * Exports the host state into the VMCS host-state area.
8188 * Sets up the VM-exit MSR-load area.
8189 *
8190 * The CPU state will be loaded from these fields on every successful VM-exit.
8191 *
8192 * @returns VBox status code.
8193 * @param pVCpu The cross context virtual CPU structure.
8194 *
8195 * @remarks No-long-jump zone!!!
8196 */
8197static int hmR0VmxExportHostState(PVMCPU pVCpu)
8198{
8199 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8200
8201 int rc = VINF_SUCCESS;
8202 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8203 {
8204 rc = hmR0VmxExportHostControlRegs();
8205 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8206
8207 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8208 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8209
8210 rc = hmR0VmxExportHostMsrs(pVCpu);
8211 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8212
8213 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8214 }
8215 return rc;
8216}
8217
8218
8219/**
8220 * Saves the host state in the VMCS host-state.
8221 *
8222 * @returns VBox status code.
8223 * @param pVCpu The cross context virtual CPU structure.
8224 *
8225 * @remarks No-long-jump zone!!!
8226 */
8227VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8228{
8229 AssertPtr(pVCpu);
8230 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8231
8232 /*
8233 * Export the host state here while entering HM context.
8234 * When thread-context hooks are used, we might get preempted and have to re-save the host
8235 * state but most of the time we won't be, so do it here before we disable interrupts.
8236 */
8237 return hmR0VmxExportHostState(pVCpu);
8238}
8239
8240
8241/**
8242 * Exports the guest state into the VMCS guest-state area.
8243 *
8244 * The will typically be done before VM-entry when the guest-CPU state and the
8245 * VMCS state may potentially be out of sync.
8246 *
8247 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8248 * VM-entry controls.
8249 * Sets up the appropriate VMX non-root function to execute guest code based on
8250 * the guest CPU mode.
8251 *
8252 * @returns VBox strict status code.
8253 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8254 * without unrestricted guest access and the VMMDev is not presently
8255 * mapped (e.g. EFI32).
8256 *
8257 * @param pVCpu The cross context virtual CPU structure.
8258 *
8259 * @remarks No-long-jump zone!!!
8260 */
8261static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu)
8262{
8263 AssertPtr(pVCpu);
8264 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8265
8266 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8267
8268 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
8269
8270 /* Determine real-on-v86 mode. */
8271 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8272 if ( !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
8273 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
8274 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8275
8276 /*
8277 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8278 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8279 */
8280 int rc = hmR0VmxSelectVMRunHandler(pVCpu);
8281 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8282
8283 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8284 rc = hmR0VmxExportGuestEntryCtls(pVCpu);
8285 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8286
8287 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8288 rc = hmR0VmxExportGuestExitCtls(pVCpu);
8289 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8290
8291 rc = hmR0VmxExportGuestCR0(pVCpu);
8292 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8293
8294 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu);
8295 if (rcStrict == VINF_SUCCESS)
8296 { /* likely */ }
8297 else
8298 {
8299 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8300 return rcStrict;
8301 }
8302
8303 rc = hmR0VmxExportGuestSegmentRegs(pVCpu);
8304 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8305
8306 /* This needs to be done after hmR0VmxExportGuestEntryCtls() and hmR0VmxExportGuestExitCtls() as it
8307 may alter controls if we determine we don't have to swap EFER after all. */
8308 rc = hmR0VmxExportGuestMsrs(pVCpu);
8309 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8310
8311 rc = hmR0VmxExportGuestApicTpr(pVCpu);
8312 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8313
8314 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu);
8315 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8316
8317 /* Exporting RFLAGS here is fine, even though RFLAGS.TF might depend on guest debug state which is
8318 not exported here. It is re-evaluated and updated if necessary in hmR0VmxExportSharedState(). */
8319 rc = hmR0VmxExportGuestRip(pVCpu);
8320 rc |= hmR0VmxExportGuestRsp(pVCpu);
8321 rc |= hmR0VmxExportGuestRflags(pVCpu);
8322 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8323
8324 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
8325 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
8326 | HM_CHANGED_GUEST_CR2
8327 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
8328 | HM_CHANGED_GUEST_X87
8329 | HM_CHANGED_GUEST_SSE_AVX
8330 | HM_CHANGED_GUEST_OTHER_XSAVE
8331 | HM_CHANGED_GUEST_XCRx
8332 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
8333 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
8334 | HM_CHANGED_GUEST_TSC_AUX
8335 | HM_CHANGED_GUEST_OTHER_MSRS
8336 | HM_CHANGED_GUEST_HWVIRT
8337 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
8338
8339 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
8340 return rc;
8341}
8342
8343
8344/**
8345 * Exports the state shared between the host and guest into the VMCS.
8346 *
8347 * @param pVCpu The cross context virtual CPU structure.
8348 *
8349 * @remarks No-long-jump zone!!!
8350 */
8351static void hmR0VmxExportSharedState(PVMCPU pVCpu)
8352{
8353 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8354 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8355
8356 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
8357 {
8358 int rc = hmR0VmxExportSharedDebugState(pVCpu);
8359 AssertRC(rc);
8360 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
8361
8362 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8363 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
8364 {
8365 rc = hmR0VmxExportGuestRflags(pVCpu);
8366 AssertRC(rc);
8367 }
8368 }
8369
8370 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
8371 {
8372 hmR0VmxLazyLoadGuestMsrs(pVCpu);
8373 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
8374 }
8375
8376 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
8377 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8378}
8379
8380
8381/**
8382 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8383 *
8384 * @returns Strict VBox status code (i.e. informational status codes too).
8385 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8386 * without unrestricted guest access and the VMMDev is not presently
8387 * mapped (e.g. EFI32).
8388 *
8389 * @param pVCpu The cross context virtual CPU structure.
8390 *
8391 * @remarks No-long-jump zone!!!
8392 */
8393static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu)
8394{
8395 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8396 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8397 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8398
8399#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8400 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8401#endif
8402
8403 /*
8404 * For many exits it's only RIP that changes and hence try to export it first
8405 * without going through a lot of change flag checks.
8406 */
8407 VBOXSTRICTRC rcStrict;
8408 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8409 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8410 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
8411 {
8412 rcStrict = hmR0VmxExportGuestRip(pVCpu);
8413 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8414 { /* likely */}
8415 else
8416 AssertMsgFailedReturn(("hmR0VmxExportGuestRip failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8417 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
8418 }
8419 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8420 {
8421 rcStrict = hmR0VmxExportGuestState(pVCpu);
8422 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8423 { /* likely */}
8424 else
8425 {
8426 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("hmR0VmxExportGuestState failed! rc=%Rrc\n",
8427 VBOXSTRICTRC_VAL(rcStrict)));
8428 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8429 return rcStrict;
8430 }
8431 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
8432 }
8433 else
8434 rcStrict = VINF_SUCCESS;
8435
8436#ifdef VBOX_STRICT
8437 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8438 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8439 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8440 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
8441 ("fCtxChanged=%#RX64\n", fCtxChanged));
8442#endif
8443 return rcStrict;
8444}
8445
8446
8447/**
8448 * Does the preparations before executing guest code in VT-x.
8449 *
8450 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8451 * recompiler/IEM. We must be cautious what we do here regarding committing
8452 * guest-state information into the VMCS assuming we assuredly execute the
8453 * guest in VT-x mode.
8454 *
8455 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8456 * the common-state (TRPM/forceflags), we must undo those changes so that the
8457 * recompiler/IEM can (and should) use them when it resumes guest execution.
8458 * Otherwise such operations must be done when we can no longer exit to ring-3.
8459 *
8460 * @returns Strict VBox status code (i.e. informational status codes too).
8461 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8462 * have been disabled.
8463 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8464 * double-fault into the guest.
8465 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8466 * dispatched directly.
8467 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8468 *
8469 * @param pVCpu The cross context virtual CPU structure.
8470 * @param pVmxTransient Pointer to the VMX transient structure.
8471 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8472 * us ignore some of the reasons for returning to
8473 * ring-3, and return VINF_EM_DBG_STEPPED if event
8474 * dispatching took place.
8475 */
8476static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
8477{
8478 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8479
8480#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_ONLY_IN_IEM
8481 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
8482 return VINF_EM_RESCHEDULE_REM;
8483#endif
8484
8485#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8486 PGMRZDynMapFlushAutoSet(pVCpu);
8487#endif
8488
8489 /* Check force flag actions that might require us to go back to ring-3. */
8490 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
8491 if (rcStrict == VINF_SUCCESS)
8492 { /* FFs doesn't get set all the time. */ }
8493 else
8494 return rcStrict;
8495
8496 /*
8497 * Setup the virtualized-APIC accesses.
8498 *
8499 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8500 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8501 *
8502 * This is the reason we do it here and not in hmR0VmxExportGuestState().
8503 */
8504 PVM pVM = pVCpu->CTX_SUFF(pVM);
8505 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8506 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
8507 && PDMHasApic(pVM))
8508 {
8509 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8510 Assert(u64MsrApicBase);
8511 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8512
8513 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8514
8515 /* Unalias any existing mapping. */
8516 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8517 AssertRCReturn(rc, rc);
8518
8519 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8520 Log4Func(("Mapped HC APIC-access page at %#RGp\n", GCPhysApicBase));
8521 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8522 AssertRCReturn(rc, rc);
8523
8524 /* Update the per-VCPU cache of the APIC base MSR. */
8525 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8526 }
8527
8528 if (TRPMHasTrap(pVCpu))
8529 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8530 uint32_t fIntrState = hmR0VmxEvaluatePendingEvent(pVCpu);
8531
8532 /*
8533 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
8534 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
8535 * also result in triple-faulting the VM.
8536 */
8537 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, fIntrState, fStepping);
8538 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8539 { /* likely */ }
8540 else
8541 {
8542 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8543 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8544 return rcStrict;
8545 }
8546
8547 /*
8548 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
8549 * import CR3 themselves. We will need to update them here, as even as late as the above
8550 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
8551 * the below force flags to be set.
8552 */
8553 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
8554 {
8555 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
8556 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
8557 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
8558 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
8559 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8560 }
8561 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
8562 {
8563 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
8564 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8565 }
8566
8567 /*
8568 * No longjmps to ring-3 from this point on!!!
8569 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8570 * This also disables flushing of the R0-logger instance (if any).
8571 */
8572 VMMRZCallRing3Disable(pVCpu);
8573
8574 /*
8575 * Export the guest state bits.
8576 *
8577 * We cannot perform longjmps while loading the guest state because we do not preserve the
8578 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8579 * CPU migration.
8580 *
8581 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8582 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8583 * Hence, loading of the guest state needs to be done -after- injection of events.
8584 */
8585 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu);
8586 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8587 { /* likely */ }
8588 else
8589 {
8590 VMMRZCallRing3Enable(pVCpu);
8591 return rcStrict;
8592 }
8593
8594 /*
8595 * We disable interrupts so that we don't miss any interrupts that would flag preemption
8596 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
8597 * preemption disabled for a while. Since this is purly to aid the
8598 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
8599 * disable interrupt on NT.
8600 *
8601 * We need to check for force-flags that could've possible been altered since we last
8602 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
8603 * see @bugref{6398}).
8604 *
8605 * We also check a couple of other force-flags as a last opportunity to get the EMT back
8606 * to ring-3 before executing guest code.
8607 */
8608 pVmxTransient->fEFlags = ASMIntDisableFlags();
8609
8610 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8611 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8612 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8613 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8614 {
8615 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8616 {
8617 pVCpu->hm.s.Event.fPending = false;
8618
8619 /*
8620 * We've injected any pending events. This is really the point of no return (to ring-3).
8621 *
8622 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8623 * returns from this function, so don't enable them here.
8624 */
8625 return VINF_SUCCESS;
8626 }
8627
8628 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
8629 rcStrict = VINF_EM_RAW_INTERRUPT;
8630 }
8631 else
8632 {
8633 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8634 rcStrict = VINF_EM_RAW_TO_R3;
8635 }
8636
8637 ASMSetFlags(pVmxTransient->fEFlags);
8638 VMMRZCallRing3Enable(pVCpu);
8639
8640 return rcStrict;
8641}
8642
8643
8644/**
8645 * Prepares to run guest code in VT-x and we've committed to doing so. This
8646 * means there is no backing out to ring-3 or anywhere else at this
8647 * point.
8648 *
8649 * @param pVCpu The cross context virtual CPU structure.
8650 * @param pVmxTransient Pointer to the VMX transient structure.
8651 *
8652 * @remarks Called with preemption disabled.
8653 * @remarks No-long-jump zone!!!
8654 */
8655static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
8656{
8657 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8658 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8659 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8660
8661 /*
8662 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8663 */
8664 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8665 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8666
8667 PVM pVM = pVCpu->CTX_SUFF(pVM);
8668 if (!CPUMIsGuestFPUStateActive(pVCpu))
8669 {
8670 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8671 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8672 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
8673 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8674 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
8675 }
8676
8677 /*
8678 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8679 */
8680 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8681 && pVCpu->hm.s.vmx.cMsrs > 0)
8682 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8683
8684 /*
8685 * Re-save the host state bits as we may've been preempted (only happens when
8686 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8687 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8688 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8689 * See @bugref{8432}.
8690 */
8691 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8692 {
8693 int rc = hmR0VmxExportHostState(pVCpu);
8694 AssertRC(rc);
8695 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
8696 }
8697 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
8698
8699 /*
8700 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
8701 */
8702 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
8703 hmR0VmxExportSharedState(pVCpu);
8704 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8705
8706 /* Store status of the shared guest-host state at the time of VM-entry. */
8707#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8708 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
8709 {
8710 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8711 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8712 }
8713 else
8714#endif
8715 {
8716 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8717 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8718 }
8719
8720 /*
8721 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8722 */
8723 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8724 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
8725
8726 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
8727 RTCPUID idCurrentCpu = pCpu->idCpu;
8728 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8729 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8730 {
8731 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8732 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8733 }
8734
8735 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8736 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8737 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8738 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8739
8740 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8741
8742 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8743 to start executing. */
8744
8745 /*
8746 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8747 */
8748 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
8749 {
8750 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8751 {
8752 bool fMsrUpdated;
8753 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
8754 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8755 &fMsrUpdated);
8756 AssertRC(rc2);
8757 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8758 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8759 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8760 }
8761 else
8762 {
8763 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8764 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8765 }
8766 }
8767
8768 if (pVM->cpum.ro.GuestFeatures.fIbrs)
8769 {
8770 bool fMsrUpdated;
8771 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
8772 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
8773 &fMsrUpdated);
8774 AssertRC(rc2);
8775 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8776 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8777 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8778 }
8779
8780#ifdef VBOX_STRICT
8781 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8782 hmR0VmxCheckHostEferMsr(pVCpu);
8783 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8784#endif
8785#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8786 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
8787 {
8788 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
8789 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8790 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8791 }
8792#endif
8793}
8794
8795
8796/**
8797 * Performs some essential restoration of state after running guest code in
8798 * VT-x.
8799 *
8800 * @param pVCpu The cross context virtual CPU structure.
8801 * @param pVmxTransient Pointer to the VMX transient structure.
8802 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8803 *
8804 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8805 *
8806 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8807 * unconditionally when it is safe to do so.
8808 */
8809static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8810{
8811 uint64_t const uHostTsc = ASMReadTSC();
8812 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8813
8814 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8815 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8816 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
8817 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8818 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8819 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8820
8821 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8822 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVCpu->hm.s.vmx.u64TscOffset);
8823
8824 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
8825 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8826 Assert(!ASMIntAreEnabled());
8827 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8828
8829#if HC_ARCH_BITS == 64
8830 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8831#endif
8832#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8833 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8834 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8835 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8836#else
8837 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8838#endif
8839#ifdef VBOX_STRICT
8840 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8841#endif
8842 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8843
8844 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8845 uint32_t uExitReason;
8846 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8847 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8848 AssertRC(rc);
8849 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8850 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INT_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8851
8852 if (rcVMRun == VINF_SUCCESS)
8853 {
8854 /*
8855 * Update the VM-exit history array here even if the VM-entry failed due to:
8856 * - Invalid guest state.
8857 * - MSR loading.
8858 * - Machine-check event.
8859 *
8860 * In any of the above cases we will still have a "valid" VM-exit reason
8861 * despite @a fVMEntryFailed being false.
8862 *
8863 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
8864 *
8865 * Note! We don't have CS or RIP at this point. Will probably address that later
8866 * by amending the history entry added here.
8867 */
8868 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
8869 UINT64_MAX, uHostTsc);
8870
8871 if (!pVmxTransient->fVMEntryFailed)
8872 {
8873 VMMRZCallRing3Enable(pVCpu);
8874
8875 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8876 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8877
8878#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8879 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
8880 AssertRC(rc);
8881#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8882 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_RFLAGS);
8883 AssertRC(rc);
8884#else
8885 /*
8886 * Import the guest-interruptibility state always as we need it while evaluating
8887 * injecting events on re-entry.
8888 *
8889 * We don't import CR0 (when Unrestricted guest execution is unavailable) despite
8890 * checking for real-mode while exporting the state because all bits that cause
8891 * mode changes wrt CR0 are intercepted.
8892 */
8893 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
8894 AssertRC(rc);
8895#endif
8896
8897 /*
8898 * Sync the TPR shadow with our APIC state.
8899 */
8900 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8901 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
8902 {
8903 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
8904 AssertRC(rc);
8905 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
8906 }
8907
8908 return;
8909 }
8910 }
8911 else
8912 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
8913
8914 VMMRZCallRing3Enable(pVCpu);
8915}
8916
8917
8918/**
8919 * Runs the guest code using VT-x the normal way.
8920 *
8921 * @returns VBox status code.
8922 * @param pVCpu The cross context virtual CPU structure.
8923 *
8924 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8925 */
8926static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu)
8927{
8928 VMXTRANSIENT VmxTransient;
8929 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8930 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8931 uint32_t cLoops = 0;
8932
8933 for (;; cLoops++)
8934 {
8935 Assert(!HMR0SuspendPending());
8936 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8937
8938 /* Preparatory work for running guest code, this may force us to return
8939 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8940 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8941 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
8942 if (rcStrict != VINF_SUCCESS)
8943 break;
8944
8945 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
8946 int rcRun = hmR0VmxRunGuest(pVCpu);
8947
8948 /* Restore any residual host-state and save any bits shared between host
8949 and guest into the guest-CPU state. Re-enables interrupts! */
8950 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
8951
8952 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8953 if (RT_SUCCESS(rcRun))
8954 { /* very likely */ }
8955 else
8956 {
8957 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
8958 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
8959 return rcRun;
8960 }
8961
8962 /* Profile the VM-exit. */
8963 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8964 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8965 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8966 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
8967 HMVMX_START_EXIT_DISPATCH_PROF();
8968
8969 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
8970
8971 /* Handle the VM-exit. */
8972#ifdef HMVMX_USE_FUNCTION_TABLE
8973 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
8974#else
8975 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient, VmxTransient.uExitReason);
8976#endif
8977 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
8978 if (rcStrict == VINF_SUCCESS)
8979 {
8980 if (cLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
8981 continue; /* likely */
8982 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8983 rcStrict = VINF_EM_RAW_INTERRUPT;
8984 }
8985 break;
8986 }
8987
8988 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8989 return rcStrict;
8990}
8991
8992
8993
8994/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
8995 * probes.
8996 *
8997 * The following few functions and associated structure contains the bloat
8998 * necessary for providing detailed debug events and dtrace probes as well as
8999 * reliable host side single stepping. This works on the principle of
9000 * "subclassing" the normal execution loop and workers. We replace the loop
9001 * method completely and override selected helpers to add necessary adjustments
9002 * to their core operation.
9003 *
9004 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9005 * any performance for debug and analysis features.
9006 *
9007 * @{
9008 */
9009
9010/**
9011 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
9012 * the debug run loop.
9013 */
9014typedef struct VMXRUNDBGSTATE
9015{
9016 /** The RIP we started executing at. This is for detecting that we stepped. */
9017 uint64_t uRipStart;
9018 /** The CS we started executing with. */
9019 uint16_t uCsStart;
9020
9021 /** Whether we've actually modified the 1st execution control field. */
9022 bool fModifiedProcCtls : 1;
9023 /** Whether we've actually modified the 2nd execution control field. */
9024 bool fModifiedProcCtls2 : 1;
9025 /** Whether we've actually modified the exception bitmap. */
9026 bool fModifiedXcptBitmap : 1;
9027
9028 /** We desire the modified the CR0 mask to be cleared. */
9029 bool fClearCr0Mask : 1;
9030 /** We desire the modified the CR4 mask to be cleared. */
9031 bool fClearCr4Mask : 1;
9032 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9033 uint32_t fCpe1Extra;
9034 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9035 uint32_t fCpe1Unwanted;
9036 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9037 uint32_t fCpe2Extra;
9038 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9039 uint32_t bmXcptExtra;
9040 /** The sequence number of the Dtrace provider settings the state was
9041 * configured against. */
9042 uint32_t uDtraceSettingsSeqNo;
9043 /** VM-exits to check (one bit per VM-exit). */
9044 uint32_t bmExitsToCheck[3];
9045
9046 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9047 uint32_t fProcCtlsInitial;
9048 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9049 uint32_t fProcCtls2Initial;
9050 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9051 uint32_t bmXcptInitial;
9052} VMXRUNDBGSTATE;
9053AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9054typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9055
9056
9057/**
9058 * Initializes the VMXRUNDBGSTATE structure.
9059 *
9060 * @param pVCpu The cross context virtual CPU structure of the
9061 * calling EMT.
9062 * @param pDbgState The structure to initialize.
9063 */
9064static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9065{
9066 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
9067 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
9068
9069 pDbgState->fModifiedProcCtls = false;
9070 pDbgState->fModifiedProcCtls2 = false;
9071 pDbgState->fModifiedXcptBitmap = false;
9072 pDbgState->fClearCr0Mask = false;
9073 pDbgState->fClearCr4Mask = false;
9074 pDbgState->fCpe1Extra = 0;
9075 pDbgState->fCpe1Unwanted = 0;
9076 pDbgState->fCpe2Extra = 0;
9077 pDbgState->bmXcptExtra = 0;
9078 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9079 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9080 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9081}
9082
9083
9084/**
9085 * Updates the VMSC fields with changes requested by @a pDbgState.
9086 *
9087 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9088 * immediately before executing guest code, i.e. when interrupts are disabled.
9089 * We don't check status codes here as we cannot easily assert or return in the
9090 * latter case.
9091 *
9092 * @param pVCpu The cross context virtual CPU structure.
9093 * @param pDbgState The debug state.
9094 */
9095static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9096{
9097 /*
9098 * Ensure desired flags in VMCS control fields are set.
9099 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9100 *
9101 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9102 * there should be no stale data in pCtx at this point.
9103 */
9104 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9105 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9106 {
9107 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9108 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9109 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9110 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9111 pDbgState->fModifiedProcCtls = true;
9112 }
9113
9114 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9115 {
9116 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9117 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9118 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9119 pDbgState->fModifiedProcCtls2 = true;
9120 }
9121
9122 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9123 {
9124 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9125 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9126 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9127 pDbgState->fModifiedXcptBitmap = true;
9128 }
9129
9130 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32Cr0Mask != 0)
9131 {
9132 pVCpu->hm.s.vmx.u32Cr0Mask = 0;
9133 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9134 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9135 }
9136
9137 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32Cr4Mask != 0)
9138 {
9139 pVCpu->hm.s.vmx.u32Cr4Mask = 0;
9140 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9141 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9142 }
9143}
9144
9145
9146/**
9147 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
9148 * re-entry next time around.
9149 *
9150 * @returns Strict VBox status code (i.e. informational status codes too).
9151 * @param pVCpu The cross context virtual CPU structure.
9152 * @param pDbgState The debug state.
9153 * @param rcStrict The return code from executing the guest using single
9154 * stepping.
9155 */
9156static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9157{
9158 /*
9159 * Restore VM-exit control settings as we may not reenter this function the
9160 * next time around.
9161 */
9162 /* We reload the initial value, trigger what we can of recalculations the
9163 next time around. From the looks of things, that's all that's required atm. */
9164 if (pDbgState->fModifiedProcCtls)
9165 {
9166 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9167 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9168 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9169 AssertRCReturn(rc2, rc2);
9170 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9171 }
9172
9173 /* We're currently the only ones messing with this one, so just restore the
9174 cached value and reload the field. */
9175 if ( pDbgState->fModifiedProcCtls2
9176 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9177 {
9178 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9179 AssertRCReturn(rc2, rc2);
9180 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9181 }
9182
9183 /* If we've modified the exception bitmap, we restore it and trigger
9184 reloading and partial recalculation the next time around. */
9185 if (pDbgState->fModifiedXcptBitmap)
9186 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9187
9188 return rcStrict;
9189}
9190
9191
9192/**
9193 * Configures VM-exit controls for current DBGF and DTrace settings.
9194 *
9195 * This updates @a pDbgState and the VMCS execution control fields to reflect
9196 * the necessary VM-exits demanded by DBGF and DTrace.
9197 *
9198 * @param pVCpu The cross context virtual CPU structure.
9199 * @param pDbgState The debug state.
9200 * @param pVmxTransient Pointer to the VMX transient structure. May update
9201 * fUpdateTscOffsettingAndPreemptTimer.
9202 */
9203static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9204{
9205 /*
9206 * Take down the dtrace serial number so we can spot changes.
9207 */
9208 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9209 ASMCompilerBarrier();
9210
9211 /*
9212 * We'll rebuild most of the middle block of data members (holding the
9213 * current settings) as we go along here, so start by clearing it all.
9214 */
9215 pDbgState->bmXcptExtra = 0;
9216 pDbgState->fCpe1Extra = 0;
9217 pDbgState->fCpe1Unwanted = 0;
9218 pDbgState->fCpe2Extra = 0;
9219 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9220 pDbgState->bmExitsToCheck[i] = 0;
9221
9222 /*
9223 * Software interrupts (INT XXh) - no idea how to trigger these...
9224 */
9225 PVM pVM = pVCpu->CTX_SUFF(pVM);
9226 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9227 || VBOXVMM_INT_SOFTWARE_ENABLED())
9228 {
9229 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9230 }
9231
9232 /*
9233 * INT3 breakpoints - triggered by #BP exceptions.
9234 */
9235 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9236 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9237
9238 /*
9239 * Exception bitmap and XCPT events+probes.
9240 */
9241 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9242 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9243 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9244
9245 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9246 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9247 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9248 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9249 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9250 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9251 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9252 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9253 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9254 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9255 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9256 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9257 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9258 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9259 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9260 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9261 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9262 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9263
9264 if (pDbgState->bmXcptExtra)
9265 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9266
9267 /*
9268 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9269 *
9270 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
9271 * So, when adding/changing/removing please don't forget to update it.
9272 *
9273 * Some of the macros are picking up local variables to save horizontal space,
9274 * (being able to see it in a table is the lesser evil here).
9275 */
9276#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9277 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9278 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9279#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9280 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9281 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9282 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9283 } else do { } while (0)
9284#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9285 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9286 { \
9287 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9288 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9289 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9290 } else do { } while (0)
9291#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9292 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9293 { \
9294 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9295 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9296 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9297 } else do { } while (0)
9298#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9299 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9300 { \
9301 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9302 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9303 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9304 } else do { } while (0)
9305
9306 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9307 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9308 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9309 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9310 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9311
9312 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9313 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9314 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9315 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9316 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
9317 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9318 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9319 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9320 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
9321 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9322 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
9323 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9324 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
9325 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9326 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9327 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9328 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9329 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9330 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9331 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9332 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9333 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9334 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9335 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9336 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9337 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9338 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9339 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9340 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9341 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9342 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9343 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9344 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9345 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9346 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9347 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9348
9349 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9350 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9351 {
9352 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
9353 AssertRC(rc);
9354
9355#if 0 /** @todo fix me */
9356 pDbgState->fClearCr0Mask = true;
9357 pDbgState->fClearCr4Mask = true;
9358#endif
9359 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9360 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
9361 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9362 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
9363 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
9364 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9365 require clearing here and in the loop if we start using it. */
9366 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9367 }
9368 else
9369 {
9370 if (pDbgState->fClearCr0Mask)
9371 {
9372 pDbgState->fClearCr0Mask = false;
9373 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
9374 }
9375 if (pDbgState->fClearCr4Mask)
9376 {
9377 pDbgState->fClearCr4Mask = false;
9378 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
9379 }
9380 }
9381 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9382 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9383
9384 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9385 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9386 {
9387 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9388 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9389 }
9390 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9391 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9392
9393 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
9394 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9395 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
9396 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9397 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
9398 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9399 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
9400 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9401#if 0 /** @todo too slow, fix handler. */
9402 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
9403#endif
9404 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9405
9406 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9407 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9408 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9409 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9410 {
9411 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9412 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9413 }
9414 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9415 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9416 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9417 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9418
9419 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9420 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9421 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9422 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9423 {
9424 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9425 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9426 }
9427 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9428 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9429 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9430 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9431
9432 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9433 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9434 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
9435 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9436 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9437 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9438 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
9439 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9440 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9441 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9442 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
9443 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9444 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
9445 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9446 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9447 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9448 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
9449 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9450 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9451 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9452 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9453 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9454
9455#undef IS_EITHER_ENABLED
9456#undef SET_ONLY_XBM_IF_EITHER_EN
9457#undef SET_CPE1_XBM_IF_EITHER_EN
9458#undef SET_CPEU_XBM_IF_EITHER_EN
9459#undef SET_CPE2_XBM_IF_EITHER_EN
9460
9461 /*
9462 * Sanitize the control stuff.
9463 */
9464 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
9465 if (pDbgState->fCpe2Extra)
9466 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
9467 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
9468 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0;
9469 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
9470 {
9471 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9472 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9473 }
9474
9475 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9476 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9477 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9478 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9479}
9480
9481
9482/**
9483 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9484 * appropriate.
9485 *
9486 * The caller has checked the VM-exit against the
9487 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9488 * already, so we don't have to do that either.
9489 *
9490 * @returns Strict VBox status code (i.e. informational status codes too).
9491 * @param pVCpu The cross context virtual CPU structure.
9492 * @param pVmxTransient Pointer to the VMX-transient structure.
9493 * @param uExitReason The VM-exit reason.
9494 *
9495 * @remarks The name of this function is displayed by dtrace, so keep it short
9496 * and to the point. No longer than 33 chars long, please.
9497 */
9498static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9499{
9500 /*
9501 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9502 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9503 *
9504 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9505 * does. Must add/change/remove both places. Same ordering, please.
9506 *
9507 * Added/removed events must also be reflected in the next section
9508 * where we dispatch dtrace events.
9509 */
9510 bool fDtrace1 = false;
9511 bool fDtrace2 = false;
9512 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9513 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9514 uint32_t uEventArg = 0;
9515#define SET_EXIT(a_EventSubName) \
9516 do { \
9517 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9518 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9519 } while (0)
9520#define SET_BOTH(a_EventSubName) \
9521 do { \
9522 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9523 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9524 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9525 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9526 } while (0)
9527 switch (uExitReason)
9528 {
9529 case VMX_EXIT_MTF:
9530 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9531
9532 case VMX_EXIT_XCPT_OR_NMI:
9533 {
9534 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9535 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
9536 {
9537 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
9538 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
9539 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
9540 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9541 {
9542 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
9543 {
9544 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9545 uEventArg = pVmxTransient->uExitIntErrorCode;
9546 }
9547 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9548 switch (enmEvent1)
9549 {
9550 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9551 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9552 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9553 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9554 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9555 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9556 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9557 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9558 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9559 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9560 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9561 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9562 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9563 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9564 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9565 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9566 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9567 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9568 default: break;
9569 }
9570 }
9571 else
9572 AssertFailed();
9573 break;
9574
9575 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
9576 uEventArg = idxVector;
9577 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9578 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9579 break;
9580 }
9581 break;
9582 }
9583
9584 case VMX_EXIT_TRIPLE_FAULT:
9585 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9586 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9587 break;
9588 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9589 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9590 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9591 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9592 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9593
9594 /* Instruction specific VM-exits: */
9595 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9596 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9597 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9598 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9599 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9600 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9601 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9602 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9603 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9604 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9605 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9606 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9607 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9608 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9609 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9610 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9611 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9612 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9613 case VMX_EXIT_MOV_CRX:
9614 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9615 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
9616 SET_BOTH(CRX_READ);
9617 else
9618 SET_BOTH(CRX_WRITE);
9619 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
9620 break;
9621 case VMX_EXIT_MOV_DRX:
9622 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9623 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
9624 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
9625 SET_BOTH(DRX_READ);
9626 else
9627 SET_BOTH(DRX_WRITE);
9628 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
9629 break;
9630 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9631 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9632 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9633 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9634 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9635 case VMX_EXIT_XDTR_ACCESS:
9636 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9637 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
9638 {
9639 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9640 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9641 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9642 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9643 }
9644 break;
9645
9646 case VMX_EXIT_TR_ACCESS:
9647 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9648 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
9649 {
9650 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9651 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9652 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9653 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9654 }
9655 break;
9656
9657 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9658 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9659 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9660 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9661 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9662 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9663 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9664 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9665 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9666 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9667 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9668
9669 /* Events that aren't relevant at this point. */
9670 case VMX_EXIT_EXT_INT:
9671 case VMX_EXIT_INT_WINDOW:
9672 case VMX_EXIT_NMI_WINDOW:
9673 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9674 case VMX_EXIT_PREEMPT_TIMER:
9675 case VMX_EXIT_IO_INSTR:
9676 break;
9677
9678 /* Errors and unexpected events. */
9679 case VMX_EXIT_INIT_SIGNAL:
9680 case VMX_EXIT_SIPI:
9681 case VMX_EXIT_IO_SMI:
9682 case VMX_EXIT_SMI:
9683 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9684 case VMX_EXIT_ERR_MSR_LOAD:
9685 case VMX_EXIT_ERR_MACHINE_CHECK:
9686 break;
9687
9688 default:
9689 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9690 break;
9691 }
9692#undef SET_BOTH
9693#undef SET_EXIT
9694
9695 /*
9696 * Dtrace tracepoints go first. We do them here at once so we don't
9697 * have to copy the guest state saving and stuff a few dozen times.
9698 * Down side is that we've got to repeat the switch, though this time
9699 * we use enmEvent since the probes are a subset of what DBGF does.
9700 */
9701 if (fDtrace1 || fDtrace2)
9702 {
9703 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9704 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9705 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9706 switch (enmEvent1)
9707 {
9708 /** @todo consider which extra parameters would be helpful for each probe. */
9709 case DBGFEVENT_END: break;
9710 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
9711 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
9712 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
9713 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
9714 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
9715 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
9716 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
9717 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
9718 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
9719 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
9720 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
9721 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
9722 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
9723 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
9724 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
9725 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
9726 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
9727 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
9728 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9729 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9730 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
9731 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
9732 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
9733 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
9734 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
9735 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
9736 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
9737 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9738 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9739 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9740 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9741 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9742 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
9743 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9744 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
9745 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
9746 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
9747 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
9748 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
9749 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
9750 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
9751 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
9752 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
9753 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
9754 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
9755 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
9756 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
9757 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
9758 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
9759 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
9760 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
9761 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
9762 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
9763 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
9764 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
9765 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
9766 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
9767 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
9768 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
9769 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
9770 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
9771 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
9772 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
9773 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
9774 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
9775 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
9776 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9777 }
9778 switch (enmEvent2)
9779 {
9780 /** @todo consider which extra parameters would be helpful for each probe. */
9781 case DBGFEVENT_END: break;
9782 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
9783 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9784 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
9785 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
9786 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
9787 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
9788 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
9789 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
9790 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
9791 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9792 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9793 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9794 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9795 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9796 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
9797 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9798 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
9799 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
9800 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
9801 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
9802 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
9803 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
9804 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
9805 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
9806 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
9807 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
9808 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
9809 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
9810 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
9811 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
9812 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
9813 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
9814 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
9815 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
9816 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
9817 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
9818 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
9819 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
9820 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
9821 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
9822 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
9823 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
9824 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
9825 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
9826 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
9827 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
9828 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
9829 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
9830 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
9831 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
9832 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
9833 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
9834 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9835 }
9836 }
9837
9838 /*
9839 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9840 * the DBGF call will do a full check).
9841 *
9842 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9843 * Note! If we have to events, we prioritize the first, i.e. the instruction
9844 * one, in order to avoid event nesting.
9845 */
9846 PVM pVM = pVCpu->CTX_SUFF(pVM);
9847 if ( enmEvent1 != DBGFEVENT_END
9848 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9849 {
9850 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
9851 if (rcStrict != VINF_SUCCESS)
9852 return rcStrict;
9853 }
9854 else if ( enmEvent2 != DBGFEVENT_END
9855 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9856 {
9857 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
9858 if (rcStrict != VINF_SUCCESS)
9859 return rcStrict;
9860 }
9861
9862 return VINF_SUCCESS;
9863}
9864
9865
9866/**
9867 * Single-stepping VM-exit filtering.
9868 *
9869 * This is preprocessing the VM-exits and deciding whether we've gotten far
9870 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
9871 * handling is performed.
9872 *
9873 * @returns Strict VBox status code (i.e. informational status codes too).
9874 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9875 * @param pVmxTransient Pointer to the VMX-transient structure.
9876 * @param pDbgState The debug state.
9877 */
9878DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
9879{
9880 /*
9881 * Expensive (saves context) generic dtrace VM-exit probe.
9882 */
9883 uint32_t const uExitReason = pVmxTransient->uExitReason;
9884 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9885 { /* more likely */ }
9886 else
9887 {
9888 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9889 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9890 AssertRC(rc);
9891 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
9892 }
9893
9894 /*
9895 * Check for host NMI, just to get that out of the way.
9896 */
9897 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9898 { /* normally likely */ }
9899 else
9900 {
9901 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9902 AssertRCReturn(rc2, rc2);
9903 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
9904 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
9905 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
9906 }
9907
9908 /*
9909 * Check for single stepping event if we're stepping.
9910 */
9911 if (pVCpu->hm.s.fSingleInstruction)
9912 {
9913 switch (uExitReason)
9914 {
9915 case VMX_EXIT_MTF:
9916 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9917
9918 /* Various events: */
9919 case VMX_EXIT_XCPT_OR_NMI:
9920 case VMX_EXIT_EXT_INT:
9921 case VMX_EXIT_TRIPLE_FAULT:
9922 case VMX_EXIT_INT_WINDOW:
9923 case VMX_EXIT_NMI_WINDOW:
9924 case VMX_EXIT_TASK_SWITCH:
9925 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9926 case VMX_EXIT_APIC_ACCESS:
9927 case VMX_EXIT_EPT_VIOLATION:
9928 case VMX_EXIT_EPT_MISCONFIG:
9929 case VMX_EXIT_PREEMPT_TIMER:
9930
9931 /* Instruction specific VM-exits: */
9932 case VMX_EXIT_CPUID:
9933 case VMX_EXIT_GETSEC:
9934 case VMX_EXIT_HLT:
9935 case VMX_EXIT_INVD:
9936 case VMX_EXIT_INVLPG:
9937 case VMX_EXIT_RDPMC:
9938 case VMX_EXIT_RDTSC:
9939 case VMX_EXIT_RSM:
9940 case VMX_EXIT_VMCALL:
9941 case VMX_EXIT_VMCLEAR:
9942 case VMX_EXIT_VMLAUNCH:
9943 case VMX_EXIT_VMPTRLD:
9944 case VMX_EXIT_VMPTRST:
9945 case VMX_EXIT_VMREAD:
9946 case VMX_EXIT_VMRESUME:
9947 case VMX_EXIT_VMWRITE:
9948 case VMX_EXIT_VMXOFF:
9949 case VMX_EXIT_VMXON:
9950 case VMX_EXIT_MOV_CRX:
9951 case VMX_EXIT_MOV_DRX:
9952 case VMX_EXIT_IO_INSTR:
9953 case VMX_EXIT_RDMSR:
9954 case VMX_EXIT_WRMSR:
9955 case VMX_EXIT_MWAIT:
9956 case VMX_EXIT_MONITOR:
9957 case VMX_EXIT_PAUSE:
9958 case VMX_EXIT_XDTR_ACCESS:
9959 case VMX_EXIT_TR_ACCESS:
9960 case VMX_EXIT_INVEPT:
9961 case VMX_EXIT_RDTSCP:
9962 case VMX_EXIT_INVVPID:
9963 case VMX_EXIT_WBINVD:
9964 case VMX_EXIT_XSETBV:
9965 case VMX_EXIT_RDRAND:
9966 case VMX_EXIT_INVPCID:
9967 case VMX_EXIT_VMFUNC:
9968 case VMX_EXIT_RDSEED:
9969 case VMX_EXIT_XSAVES:
9970 case VMX_EXIT_XRSTORS:
9971 {
9972 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9973 AssertRCReturn(rc, rc);
9974 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
9975 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
9976 return VINF_EM_DBG_STEPPED;
9977 break;
9978 }
9979
9980 /* Errors and unexpected events: */
9981 case VMX_EXIT_INIT_SIGNAL:
9982 case VMX_EXIT_SIPI:
9983 case VMX_EXIT_IO_SMI:
9984 case VMX_EXIT_SMI:
9985 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9986 case VMX_EXIT_ERR_MSR_LOAD:
9987 case VMX_EXIT_ERR_MACHINE_CHECK:
9988 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
9989 break;
9990
9991 default:
9992 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9993 break;
9994 }
9995 }
9996
9997 /*
9998 * Check for debugger event breakpoints and dtrace probes.
9999 */
10000 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10001 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10002 {
10003 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
10004 if (rcStrict != VINF_SUCCESS)
10005 return rcStrict;
10006 }
10007
10008 /*
10009 * Normal processing.
10010 */
10011#ifdef HMVMX_USE_FUNCTION_TABLE
10012 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
10013#else
10014 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
10015#endif
10016}
10017
10018
10019/**
10020 * Single steps guest code using VT-x.
10021 *
10022 * @returns Strict VBox status code (i.e. informational status codes too).
10023 * @param pVCpu The cross context virtual CPU structure.
10024 *
10025 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10026 */
10027static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu)
10028{
10029 VMXTRANSIENT VmxTransient;
10030 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10031
10032 /* Set HMCPU indicators. */
10033 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10034 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10035 pVCpu->hm.s.fDebugWantRdTscExit = false;
10036 pVCpu->hm.s.fUsingDebugLoop = true;
10037
10038 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10039 VMXRUNDBGSTATE DbgState;
10040 hmR0VmxRunDebugStateInit(pVCpu, &DbgState);
10041 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10042
10043 /*
10044 * The loop.
10045 */
10046 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10047 for (uint32_t cLoops = 0; ; cLoops++)
10048 {
10049 Assert(!HMR0SuspendPending());
10050 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10051 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10052
10053 /*
10054 * Preparatory work for running guest code, this may force us to return
10055 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10056 */
10057 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10058 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10059 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
10060 if (rcStrict != VINF_SUCCESS)
10061 break;
10062
10063 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10064 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10065
10066 /*
10067 * Now we can run the guest code.
10068 */
10069 int rcRun = hmR0VmxRunGuest(pVCpu);
10070
10071 /*
10072 * Restore any residual host-state and save any bits shared between host
10073 * and guest into the guest-CPU state. Re-enables interrupts!
10074 */
10075 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10076
10077 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10078 if (RT_SUCCESS(rcRun))
10079 { /* very likely */ }
10080 else
10081 {
10082 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10083 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10084 return rcRun;
10085 }
10086
10087 /* Profile the VM-exit. */
10088 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10089 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10090 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10091 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10092 HMVMX_START_EXIT_DISPATCH_PROF();
10093
10094 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10095
10096 /*
10097 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10098 */
10099 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
10100 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10101 if (rcStrict != VINF_SUCCESS)
10102 break;
10103 if (cLoops > pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
10104 {
10105 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10106 rcStrict = VINF_EM_RAW_INTERRUPT;
10107 break;
10108 }
10109
10110 /*
10111 * Stepping: Did the RIP change, if so, consider it a single step.
10112 * Otherwise, make sure one of the TFs gets set.
10113 */
10114 if (fStepping)
10115 {
10116 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
10117 AssertRC(rc);
10118 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
10119 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
10120 {
10121 rcStrict = VINF_EM_DBG_STEPPED;
10122 break;
10123 }
10124 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
10125 }
10126
10127 /*
10128 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10129 */
10130 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10131 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10132 }
10133
10134 /*
10135 * Clear the X86_EFL_TF if necessary.
10136 */
10137 if (pVCpu->hm.s.fClearTrapFlag)
10138 {
10139 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
10140 AssertRC(rc);
10141 pVCpu->hm.s.fClearTrapFlag = false;
10142 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
10143 }
10144 /** @todo there seems to be issues with the resume flag when the monitor trap
10145 * flag is pending without being used. Seen early in bios init when
10146 * accessing APIC page in protected mode. */
10147
10148 /*
10149 * Restore VM-exit control settings as we may not reenter this function the
10150 * next time around.
10151 */
10152 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10153
10154 /* Restore HMCPU indicators. */
10155 pVCpu->hm.s.fUsingDebugLoop = false;
10156 pVCpu->hm.s.fDebugWantRdTscExit = false;
10157 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10158
10159 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10160 return rcStrict;
10161}
10162
10163
10164/** @} */
10165
10166
10167/**
10168 * Checks if any expensive dtrace probes are enabled and we should go to the
10169 * debug loop.
10170 *
10171 * @returns true if we should use debug loop, false if not.
10172 */
10173static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10174{
10175 /* It's probably faster to OR the raw 32-bit counter variables together.
10176 Since the variables are in an array and the probes are next to one
10177 another (more or less), we have good locality. So, better read
10178 eight-nine cache lines ever time and only have one conditional, than
10179 128+ conditionals, right? */
10180 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10181 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10182 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10183 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10184 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10185 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10186 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10187 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10188 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10189 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10190 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10191 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10192 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10193 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10194 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10195 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10196 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10197 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10198 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10199 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10200 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10201 ) != 0
10202 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10203 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10204 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10205 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10206 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10207 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10208 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10209 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10210 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10211 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10212 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10213 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10214 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10215 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10216 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10217 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10218 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10219 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10220 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10221 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10222 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10223 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10224 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10225 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10226 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10227 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10228 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10229 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10230 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10231 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10232 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10233 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10234 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10235 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10236 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10237 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10238 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10239 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10240 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10241 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10242 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10243 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10244 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10245 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10246 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10247 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10248 ) != 0
10249 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10250 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10251 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10252 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10253 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10254 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10255 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10256 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10257 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10258 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10259 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10260 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10261 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10262 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10263 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10264 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10265 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10266 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10267 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10268 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10269 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10270 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10271 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10272 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10273 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10274 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10275 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10276 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10277 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10278 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10279 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10280 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10281 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10282 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10283 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10284 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10285 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10286 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10287 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10288 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10289 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10290 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10291 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10292 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10293 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10294 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10295 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10296 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10297 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10298 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10299 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10300 ) != 0;
10301}
10302
10303
10304/**
10305 * Runs the guest code using VT-x.
10306 *
10307 * @returns Strict VBox status code (i.e. informational status codes too).
10308 * @param pVCpu The cross context virtual CPU structure.
10309 */
10310VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
10311{
10312 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10313 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10314 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10315 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
10316
10317 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10318
10319 VBOXSTRICTRC rcStrict;
10320 if ( !pVCpu->hm.s.fUseDebugLoop
10321 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10322 && !DBGFIsStepping(pVCpu)
10323 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
10324 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu);
10325 else
10326 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu);
10327
10328 if (rcStrict == VERR_EM_INTERPRETER)
10329 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10330 else if (rcStrict == VINF_EM_RESET)
10331 rcStrict = VINF_EM_TRIPLE_FAULT;
10332
10333 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
10334 if (RT_FAILURE(rc2))
10335 {
10336 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10337 rcStrict = rc2;
10338 }
10339 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10340 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10341 return rcStrict;
10342}
10343
10344
10345#ifndef HMVMX_USE_FUNCTION_TABLE
10346DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10347{
10348#ifdef DEBUG_ramshankar
10349#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
10350 do { \
10351 if (a_fSave != 0) \
10352 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
10353 VBOXSTRICTRC rcStrict = a_CallExpr; \
10354 if (a_fSave != 0) \
10355 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
10356 return rcStrict; \
10357 } while (0)
10358#else
10359# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
10360#endif
10361 switch (rcReason)
10362 {
10363 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
10364 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
10365 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
10366 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
10367 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
10368 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
10369 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
10370 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
10371 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
10372 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
10373 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
10374 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
10375 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
10376 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
10377 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
10378 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
10379 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
10380 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
10381 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
10382 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
10383 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
10384 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
10385 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
10386 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
10387 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
10388 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
10389 case VMX_EXIT_XDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10390 case VMX_EXIT_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10391 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
10392 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
10393 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
10394 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
10395 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
10396 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
10397
10398 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
10399 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
10400 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
10401 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
10402 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
10403 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
10404 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
10405 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
10406 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
10407
10408 case VMX_EXIT_VMCLEAR:
10409 case VMX_EXIT_VMLAUNCH:
10410 case VMX_EXIT_VMPTRLD:
10411 case VMX_EXIT_VMPTRST:
10412 case VMX_EXIT_VMREAD:
10413 case VMX_EXIT_VMRESUME:
10414 case VMX_EXIT_VMWRITE:
10415 case VMX_EXIT_VMXOFF:
10416 case VMX_EXIT_VMXON:
10417 case VMX_EXIT_INVEPT:
10418 case VMX_EXIT_INVVPID:
10419 case VMX_EXIT_VMFUNC:
10420 case VMX_EXIT_XSAVES:
10421 case VMX_EXIT_XRSTORS:
10422 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10423
10424 case VMX_EXIT_ENCLS:
10425 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10426 case VMX_EXIT_PML_FULL:
10427 default:
10428 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
10429 }
10430#undef VMEXIT_CALL_RET
10431}
10432#endif /* !HMVMX_USE_FUNCTION_TABLE */
10433
10434
10435#ifdef VBOX_STRICT
10436/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10437# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10438 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10439
10440# define HMVMX_ASSERT_PREEMPT_CPUID() \
10441 do { \
10442 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10443 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10444 } while (0)
10445
10446# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10447 do { \
10448 AssertPtr((a_pVCpu)); \
10449 AssertPtr((a_pVmxTransient)); \
10450 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
10451 Assert(ASMIntAreEnabled()); \
10452 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10453 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10454 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
10455 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10456 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
10457 HMVMX_ASSERT_PREEMPT_CPUID(); \
10458 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10459 } while (0)
10460
10461# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10462 do { \
10463 Log4Func(("\n")); \
10464 } while (0)
10465#else
10466# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10467 do { \
10468 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10469 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
10470 } while (0)
10471# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
10472#endif
10473
10474
10475/**
10476 * Advances the guest RIP by the specified number of bytes.
10477 *
10478 * @param pVCpu The cross context virtual CPU structure.
10479 * @param cbInstr Number of bytes to advance the RIP by.
10480 *
10481 * @remarks No-long-jump zone!!!
10482 */
10483DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
10484{
10485 /* Advance the RIP. */
10486 pVCpu->cpum.GstCtx.rip += cbInstr;
10487 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
10488
10489 /* Update interrupt inhibition. */
10490 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10491 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
10492 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10493}
10494
10495
10496/**
10497 * Advances the guest RIP after reading it from the VMCS.
10498 *
10499 * @returns VBox status code, no informational status codes.
10500 * @param pVCpu The cross context virtual CPU structure.
10501 * @param pVmxTransient Pointer to the VMX transient structure.
10502 *
10503 * @remarks No-long-jump zone!!!
10504 */
10505static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10506{
10507 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10508 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
10509 AssertRCReturn(rc, rc);
10510
10511 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
10512
10513 /*
10514 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10515 * pending debug exception field as it takes care of priority of events.
10516 *
10517 * See Intel spec. 32.2.1 "Debug Exceptions".
10518 */
10519 if ( !pVCpu->hm.s.fSingleInstruction
10520 && pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
10521 {
10522 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10523 AssertRCReturn(rc, rc);
10524 }
10525
10526 return VINF_SUCCESS;
10527}
10528
10529
10530/**
10531 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10532 * and update error record fields accordingly.
10533 *
10534 * @return VMX_IGS_* return codes.
10535 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10536 * wrong with the guest state.
10537 *
10538 * @param pVCpu The cross context virtual CPU structure.
10539 *
10540 * @remarks This function assumes our cache of the VMCS controls
10541 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10542 */
10543static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu)
10544{
10545#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10546#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10547 uError = (err); \
10548 break; \
10549 } else do { } while (0)
10550
10551 int rc;
10552 PVM pVM = pVCpu->CTX_SUFF(pVM);
10553 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10554 uint32_t uError = VMX_IGS_ERROR;
10555 uint32_t u32Val;
10556 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10557
10558 do
10559 {
10560 /*
10561 * CR0.
10562 */
10563 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10564 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10565 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10566 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10567 if (fUnrestrictedGuest)
10568 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
10569
10570 uint32_t u32GuestCr0;
10571 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
10572 AssertRCBreak(rc);
10573 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
10574 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
10575 if ( !fUnrestrictedGuest
10576 && (u32GuestCr0 & X86_CR0_PG)
10577 && !(u32GuestCr0 & X86_CR0_PE))
10578 {
10579 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10580 }
10581
10582 /*
10583 * CR4.
10584 */
10585 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10586 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10587
10588 uint32_t u32GuestCr4;
10589 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
10590 AssertRCBreak(rc);
10591 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
10592 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
10593
10594 /*
10595 * IA32_DEBUGCTL MSR.
10596 */
10597 uint64_t u64Val;
10598 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10599 AssertRCBreak(rc);
10600 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10601 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10602 {
10603 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10604 }
10605 uint64_t u64DebugCtlMsr = u64Val;
10606
10607#ifdef VBOX_STRICT
10608 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10609 AssertRCBreak(rc);
10610 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10611#endif
10612 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
10613
10614 /*
10615 * RIP and RFLAGS.
10616 */
10617 uint32_t u32Eflags;
10618#if HC_ARCH_BITS == 64
10619 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10620 AssertRCBreak(rc);
10621 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10622 if ( !fLongModeGuest
10623 || !pCtx->cs.Attr.n.u1Long)
10624 {
10625 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10626 }
10627 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10628 * must be identical if the "IA-32e mode guest" VM-entry
10629 * control is 1 and CS.L is 1. No check applies if the
10630 * CPU supports 64 linear-address bits. */
10631
10632 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10633 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10634 AssertRCBreak(rc);
10635 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10636 VMX_IGS_RFLAGS_RESERVED);
10637 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10638 u32Eflags = u64Val;
10639#else
10640 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10641 AssertRCBreak(rc);
10642 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10643 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10644#endif
10645
10646 if ( fLongModeGuest
10647 || ( fUnrestrictedGuest
10648 && !(u32GuestCr0 & X86_CR0_PE)))
10649 {
10650 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10651 }
10652
10653 uint32_t u32EntryInfo;
10654 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10655 AssertRCBreak(rc);
10656 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
10657 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10658 {
10659 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10660 }
10661
10662 /*
10663 * 64-bit checks.
10664 */
10665#if HC_ARCH_BITS == 64
10666 if (fLongModeGuest)
10667 {
10668 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10669 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10670 }
10671
10672 if ( !fLongModeGuest
10673 && (u32GuestCr4 & X86_CR4_PCIDE))
10674 {
10675 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10676 }
10677
10678 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10679 * 51:32 beyond the processor's physical-address width are 0. */
10680
10681 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10682 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10683 {
10684 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10685 }
10686
10687 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10688 AssertRCBreak(rc);
10689 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10690
10691 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10692 AssertRCBreak(rc);
10693 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10694#endif
10695
10696 /*
10697 * PERF_GLOBAL MSR.
10698 */
10699 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
10700 {
10701 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10702 AssertRCBreak(rc);
10703 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10704 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10705 }
10706
10707 /*
10708 * PAT MSR.
10709 */
10710 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
10711 {
10712 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10713 AssertRCBreak(rc);
10714 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10715 for (unsigned i = 0; i < 8; i++)
10716 {
10717 uint8_t u8Val = (u64Val & 0xff);
10718 if ( u8Val != 0 /* UC */
10719 && u8Val != 1 /* WC */
10720 && u8Val != 4 /* WT */
10721 && u8Val != 5 /* WP */
10722 && u8Val != 6 /* WB */
10723 && u8Val != 7 /* UC- */)
10724 {
10725 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10726 }
10727 u64Val >>= 8;
10728 }
10729 }
10730
10731 /*
10732 * EFER MSR.
10733 */
10734 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
10735 {
10736 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10737 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10738 AssertRCBreak(rc);
10739 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10740 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10741 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10742 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
10743 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10744 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10745 || !(u32GuestCr0 & X86_CR0_PG)
10746 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10747 VMX_IGS_EFER_LMA_LME_MISMATCH);
10748 }
10749
10750 /*
10751 * Segment registers.
10752 */
10753 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10754 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10755 if (!(u32Eflags & X86_EFL_VM))
10756 {
10757 /* CS */
10758 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10759 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10760 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10761 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10762 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10763 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10764 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10765 /* CS cannot be loaded with NULL in protected mode. */
10766 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10767 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10768 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10769 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10770 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10771 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10772 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10773 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10774 else
10775 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10776
10777 /* SS */
10778 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10779 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10780 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10781 if ( !(pCtx->cr0 & X86_CR0_PE)
10782 || pCtx->cs.Attr.n.u4Type == 3)
10783 {
10784 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10785 }
10786 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10787 {
10788 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10789 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10790 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10791 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10792 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10793 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10794 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10795 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10796 }
10797
10798 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmenReg(). */
10799 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10800 {
10801 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10802 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10803 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10804 || pCtx->ds.Attr.n.u4Type > 11
10805 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10806 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10807 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10808 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10809 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10810 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10811 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10812 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10813 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10814 }
10815 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10816 {
10817 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10818 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10819 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10820 || pCtx->es.Attr.n.u4Type > 11
10821 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10822 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10823 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10824 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10825 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10826 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10827 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10828 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10829 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10830 }
10831 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10832 {
10833 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10834 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10835 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10836 || pCtx->fs.Attr.n.u4Type > 11
10837 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10838 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10839 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10840 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10841 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10842 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10843 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10844 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10845 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10846 }
10847 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10848 {
10849 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10850 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10851 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10852 || pCtx->gs.Attr.n.u4Type > 11
10853 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10854 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10855 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10856 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10857 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10858 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10859 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10860 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10861 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10862 }
10863 /* 64-bit capable CPUs. */
10864#if HC_ARCH_BITS == 64
10865 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10866 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10867 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10868 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10869 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10870 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10871 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10872 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10873 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10874 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10875 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10876#endif
10877 }
10878 else
10879 {
10880 /* V86 mode checks. */
10881 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10882 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10883 {
10884 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10885 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10886 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10887 }
10888 else
10889 {
10890 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10891 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10892 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10893 }
10894
10895 /* CS */
10896 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10897 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10898 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10899 /* SS */
10900 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10901 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10902 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10903 /* DS */
10904 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10905 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10906 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10907 /* ES */
10908 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10909 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10910 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10911 /* FS */
10912 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10913 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10914 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10915 /* GS */
10916 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10917 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10918 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10919 /* 64-bit capable CPUs. */
10920#if HC_ARCH_BITS == 64
10921 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10922 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10923 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10924 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10925 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10926 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10927 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10928 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10929 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10930 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10931 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10932#endif
10933 }
10934
10935 /*
10936 * TR.
10937 */
10938 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
10939 /* 64-bit capable CPUs. */
10940#if HC_ARCH_BITS == 64
10941 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
10942#endif
10943 if (fLongModeGuest)
10944 {
10945 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
10946 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
10947 }
10948 else
10949 {
10950 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
10951 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
10952 VMX_IGS_TR_ATTR_TYPE_INVALID);
10953 }
10954 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
10955 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
10956 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
10957 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
10958 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10959 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
10960 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10961 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
10962
10963 /*
10964 * GDTR and IDTR.
10965 */
10966#if HC_ARCH_BITS == 64
10967 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
10968 AssertRCBreak(rc);
10969 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
10970
10971 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
10972 AssertRCBreak(rc);
10973 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
10974#endif
10975
10976 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
10977 AssertRCBreak(rc);
10978 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10979
10980 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
10981 AssertRCBreak(rc);
10982 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10983
10984 /*
10985 * Guest Non-Register State.
10986 */
10987 /* Activity State. */
10988 uint32_t u32ActivityState;
10989 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
10990 AssertRCBreak(rc);
10991 HMVMX_CHECK_BREAK( !u32ActivityState
10992 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
10993 VMX_IGS_ACTIVITY_STATE_INVALID);
10994 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
10995 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
10996 uint32_t u32IntrState;
10997 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
10998 AssertRCBreak(rc);
10999 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
11000 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11001 {
11002 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11003 }
11004
11005 /** @todo Activity state and injecting interrupts. Left as a todo since we
11006 * currently don't use activity states but ACTIVE. */
11007
11008 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
11009 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11010
11011 /* Guest interruptibility-state. */
11012 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11013 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
11014 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11015 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11016 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11017 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
11018 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11019 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
11020 {
11021 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
11022 {
11023 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11024 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11025 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11026 }
11027 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11028 {
11029 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11030 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11031 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
11032 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11033 }
11034 }
11035 /** @todo Assumes the processor is not in SMM. */
11036 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11037 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11038 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
11039 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11040 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11041 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
11042 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
11043 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11044 {
11045 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
11046 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11047 }
11048
11049 /* Pending debug exceptions. */
11050#if HC_ARCH_BITS == 64
11051 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
11052 AssertRCBreak(rc);
11053 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11054 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11055 u32Val = u64Val; /* For pending debug exceptions checks below. */
11056#else
11057 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
11058 AssertRCBreak(rc);
11059 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11060 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11061#endif
11062
11063 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11064 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
11065 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11066 {
11067 if ( (u32Eflags & X86_EFL_TF)
11068 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11069 {
11070 /* Bit 14 is PendingDebug.BS. */
11071 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11072 }
11073 if ( !(u32Eflags & X86_EFL_TF)
11074 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11075 {
11076 /* Bit 14 is PendingDebug.BS. */
11077 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11078 }
11079 }
11080
11081 /* VMCS link pointer. */
11082 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11083 AssertRCBreak(rc);
11084 if (u64Val != UINT64_C(0xffffffffffffffff))
11085 {
11086 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11087 /** @todo Bits beyond the processor's physical-address width MBZ. */
11088 /** @todo 32-bit located in memory referenced by value of this field (as a
11089 * physical address) must contain the processor's VMCS revision ID. */
11090 /** @todo SMM checks. */
11091 }
11092
11093 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11094 * not using Nested Paging? */
11095 if ( pVM->hm.s.fNestedPaging
11096 && !fLongModeGuest
11097 && CPUMIsGuestInPAEModeEx(pCtx))
11098 {
11099 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11100 AssertRCBreak(rc);
11101 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11102
11103 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11104 AssertRCBreak(rc);
11105 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11106
11107 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11108 AssertRCBreak(rc);
11109 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11110
11111 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11112 AssertRCBreak(rc);
11113 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11114 }
11115
11116 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11117 if (uError == VMX_IGS_ERROR)
11118 uError = VMX_IGS_REASON_NOT_FOUND;
11119 } while (0);
11120
11121 pVCpu->hm.s.u32HMError = uError;
11122 return uError;
11123
11124#undef HMVMX_ERROR_BREAK
11125#undef HMVMX_CHECK_BREAK
11126}
11127
11128
11129/** @name VM-exit handlers.
11130 * @{
11131 */
11132/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11133/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11134/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11135
11136/**
11137 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11138 */
11139HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11140{
11141 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11142 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11143 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11144 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11145 return VINF_SUCCESS;
11146 return VINF_EM_RAW_INTERRUPT;
11147}
11148
11149
11150/**
11151 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11152 */
11153HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11154{
11155 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11156 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11157
11158 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11159 AssertRCReturn(rc, rc);
11160
11161 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11162 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
11163 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
11164 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11165
11166 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11167 {
11168 /*
11169 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
11170 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
11171 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
11172 *
11173 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11174 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
11175 */
11176 VMXDispatchHostNmi();
11177 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11178 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11179 return VINF_SUCCESS;
11180 }
11181
11182 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11183 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
11184 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11185 { /* likely */ }
11186 else
11187 {
11188 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11189 rcStrictRc1 = VINF_SUCCESS;
11190 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11191 return rcStrictRc1;
11192 }
11193
11194 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11195 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
11196 switch (uIntType)
11197 {
11198 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11199 Assert(uVector == X86_XCPT_DB);
11200 RT_FALL_THRU();
11201 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11202 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
11203 RT_FALL_THRU();
11204 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11205 {
11206 /*
11207 * If there's any exception caused as a result of event injection, the resulting
11208 * secondary/final execption will be pending, we shall continue guest execution
11209 * after injecting the event. The page-fault case is complicated and we manually
11210 * handle any currently pending event in hmR0VmxExitXcptPF.
11211 */
11212 if (!pVCpu->hm.s.Event.fPending)
11213 { /* likely */ }
11214 else if (uVector != X86_XCPT_PF)
11215 {
11216 rc = VINF_SUCCESS;
11217 break;
11218 }
11219
11220 switch (uVector)
11221 {
11222 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
11223 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
11224 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
11225 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
11226 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
11227 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
11228
11229 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11230 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11231 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11232 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11233 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11234 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11235 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11236 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11237 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11238 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11239 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11240 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11241 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11242 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11243 default:
11244 {
11245 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11246 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11247 {
11248 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11249 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11250 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
11251
11252 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
11253 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11254 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11255 AssertRCReturn(rc, rc);
11256 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11257 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11258 0 /* GCPtrFaultAddress */);
11259 }
11260 else
11261 {
11262 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11263 pVCpu->hm.s.u32HMError = uVector;
11264 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11265 }
11266 break;
11267 }
11268 }
11269 break;
11270 }
11271
11272 default:
11273 {
11274 pVCpu->hm.s.u32HMError = uExitIntInfo;
11275 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11276 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
11277 break;
11278 }
11279 }
11280 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11281 return rc;
11282}
11283
11284
11285/**
11286 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11287 */
11288HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11289{
11290 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11291
11292 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11293 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11294
11295 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11296 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11297 return VINF_SUCCESS;
11298}
11299
11300
11301/**
11302 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11303 */
11304HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11305{
11306 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11307 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)))
11308 {
11309 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11310 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11311 }
11312
11313 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11314
11315 /*
11316 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11317 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11318 */
11319 uint32_t fIntrState = 0;
11320 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11321 AssertRCReturn(rc, rc);
11322
11323 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
11324 if ( fBlockSti
11325 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11326 {
11327 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11328 }
11329
11330 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11331 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11332
11333 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11334 return VINF_SUCCESS;
11335}
11336
11337
11338/**
11339 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11340 */
11341HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11342{
11343 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11344 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11345}
11346
11347
11348/**
11349 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11350 */
11351HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11352{
11353 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11354 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11355}
11356
11357
11358/**
11359 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11360 */
11361HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11362{
11363 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11364
11365 /*
11366 * Get the state we need and update the exit history entry.
11367 */
11368 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11369 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
11370 AssertRCReturn(rc, rc);
11371
11372 VBOXSTRICTRC rcStrict;
11373 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
11374 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
11375 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
11376 if (!pExitRec)
11377 {
11378 /*
11379 * Regular CPUID instruction execution.
11380 */
11381 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
11382 if (rcStrict == VINF_SUCCESS)
11383 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RAX
11384 | HM_CHANGED_GUEST_RCX | HM_CHANGED_GUEST_RDX | HM_CHANGED_GUEST_RBX);
11385 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11386 {
11387 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11388 rcStrict = VINF_SUCCESS;
11389 }
11390 }
11391 else
11392 {
11393 /*
11394 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
11395 */
11396 int rc2 = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11397 AssertRCReturn(rc2, rc2);
11398
11399 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
11400 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
11401
11402 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
11403 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
11404
11405 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
11406 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
11407 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
11408 }
11409 return rcStrict;
11410}
11411
11412
11413/**
11414 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11415 */
11416HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11417{
11418 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11419 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR4);
11420 AssertRCReturn(rc, rc);
11421
11422 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
11423 return VINF_EM_RAW_EMULATE_INSTR;
11424
11425 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11426 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11427}
11428
11429
11430/**
11431 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11432 */
11433HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11434{
11435 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11436 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
11437 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11438 AssertRCReturn(rc, rc);
11439
11440 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
11441 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11442 {
11443 /* If we get a spurious VM-exit when offsetting is enabled,
11444 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11445 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11446 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11447 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11448 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11449 }
11450 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11451 {
11452 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11453 rcStrict = VINF_SUCCESS;
11454 }
11455 return rcStrict;
11456}
11457
11458
11459/**
11460 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11461 */
11462HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11463{
11464 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11465 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
11466 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11467 AssertRCReturn(rc, rc);
11468
11469 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
11470 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11471 {
11472 /* If we get a spurious VM-exit when offsetting is enabled,
11473 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11474 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11475 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11476 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11477 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX | HM_CHANGED_GUEST_RCX);
11478 }
11479 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11480 {
11481 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11482 rcStrict = VINF_SUCCESS;
11483 }
11484 return rcStrict;
11485}
11486
11487
11488/**
11489 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11490 */
11491HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11492{
11493 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11494 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11495 AssertRCReturn(rc, rc);
11496
11497 PVM pVM = pVCpu->CTX_SUFF(pVM);
11498 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11499 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11500 if (RT_LIKELY(rc == VINF_SUCCESS))
11501 {
11502 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11503 Assert(pVmxTransient->cbInstr == 2);
11504 }
11505 else
11506 {
11507 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11508 rc = VERR_EM_INTERPRETER;
11509 }
11510 return rc;
11511}
11512
11513
11514/**
11515 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11516 */
11517HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11518{
11519 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11520
11521 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11522 if (EMAreHypercallInstructionsEnabled(pVCpu))
11523 {
11524 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_SS
11525 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
11526 AssertRCReturn(rc, rc);
11527
11528 /* Perform the hypercall. */
11529 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
11530 if (rcStrict == VINF_SUCCESS)
11531 {
11532 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11533 AssertRCReturn(rc, rc);
11534 }
11535 else
11536 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11537 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11538 || RT_FAILURE(rcStrict));
11539
11540 /* If the hypercall changes anything other than guest's general-purpose registers,
11541 we would need to reload the guest changed bits here before VM-entry. */
11542 }
11543 else
11544 Log4Func(("Hypercalls not enabled\n"));
11545
11546 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11547 if (RT_FAILURE(rcStrict))
11548 {
11549 hmR0VmxSetPendingXcptUD(pVCpu);
11550 rcStrict = VINF_SUCCESS;
11551 }
11552
11553 return rcStrict;
11554}
11555
11556
11557/**
11558 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11559 */
11560HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11561{
11562 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11563 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11564
11565 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11566 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11567 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
11568 AssertRCReturn(rc, rc);
11569
11570 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
11571
11572 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
11573 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11574 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11575 {
11576 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11577 rcStrict = VINF_SUCCESS;
11578 }
11579 else
11580 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
11581 VBOXSTRICTRC_VAL(rcStrict)));
11582 return rcStrict;
11583}
11584
11585
11586/**
11587 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11588 */
11589HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11590{
11591 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11592 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11593 AssertRCReturn(rc, rc);
11594
11595 PVM pVM = pVCpu->CTX_SUFF(pVM);
11596 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11597 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11598 if (RT_LIKELY(rc == VINF_SUCCESS))
11599 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11600 else
11601 {
11602 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11603 rc = VERR_EM_INTERPRETER;
11604 }
11605 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11606 return rc;
11607}
11608
11609
11610/**
11611 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11612 */
11613HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11614{
11615 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11616 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11617 AssertRCReturn(rc, rc);
11618
11619 PVM pVM = pVCpu->CTX_SUFF(pVM);
11620 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11621 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11622 rc = VBOXSTRICTRC_VAL(rc2);
11623 if (RT_LIKELY( rc == VINF_SUCCESS
11624 || rc == VINF_EM_HALT))
11625 {
11626 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11627 AssertRCReturn(rc3, rc3);
11628
11629 if ( rc == VINF_EM_HALT
11630 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
11631 rc = VINF_SUCCESS;
11632 }
11633 else
11634 {
11635 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11636 rc = VERR_EM_INTERPRETER;
11637 }
11638 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11639 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11640 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11641 return rc;
11642}
11643
11644
11645/**
11646 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11647 */
11648HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11649{
11650 /*
11651 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
11652 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
11653 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
11654 * VMX root operation. If we get here, something funny is going on.
11655 *
11656 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
11657 */
11658 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11659 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
11660 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11661}
11662
11663
11664/**
11665 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11666 */
11667HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11668{
11669 /*
11670 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
11671 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
11672 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
11673 * an SMI. If we get here, something funny is going on.
11674 *
11675 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
11676 * See Intel spec. 25.3 "Other Causes of VM-Exits"
11677 */
11678 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11679 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
11680 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11681}
11682
11683
11684/**
11685 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11686 */
11687HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11688{
11689 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11690 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11691 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
11692 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11693}
11694
11695
11696/**
11697 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11698 */
11699HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11700{
11701 /*
11702 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
11703 * We don't make use of it as our guests don't have direct access to the host LAPIC.
11704 * See Intel spec. 25.3 "Other Causes of VM-exits".
11705 */
11706 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11707 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
11708 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11709}
11710
11711
11712/**
11713 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11714 * VM-exit.
11715 */
11716HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11717{
11718 /*
11719 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11720 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11721 *
11722 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11723 * See Intel spec. "23.8 Restrictions on VMX operation".
11724 */
11725 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11726 return VINF_SUCCESS;
11727}
11728
11729
11730/**
11731 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11732 * VM-exit.
11733 */
11734HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11735{
11736 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11737 return VINF_EM_RESET;
11738}
11739
11740
11741/**
11742 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11743 */
11744HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11745{
11746 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11747 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_HLT_EXIT);
11748
11749 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11750 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
11751 AssertRCReturn(rc, rc);
11752
11753 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
11754 rc = VINF_SUCCESS;
11755 else
11756 rc = VINF_EM_HALT;
11757
11758 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11759 if (rc != VINF_SUCCESS)
11760 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11761 return rc;
11762}
11763
11764
11765/**
11766 * VM-exit handler for instructions that result in a \#UD exception delivered to
11767 * the guest.
11768 */
11769HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11770{
11771 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11772 hmR0VmxSetPendingXcptUD(pVCpu);
11773 return VINF_SUCCESS;
11774}
11775
11776
11777/**
11778 * VM-exit handler for expiry of the VMX preemption timer.
11779 */
11780HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11781{
11782 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11783
11784 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11785 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11786
11787 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11788 PVM pVM = pVCpu->CTX_SUFF(pVM);
11789 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11790 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11791 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11792}
11793
11794
11795/**
11796 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11797 */
11798HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11799{
11800 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11801
11802 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11803 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
11804 AssertRCReturn(rc, rc);
11805
11806 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11807 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11808 : HM_CHANGED_RAISED_XCPT_MASK);
11809
11810 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11811 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
11812
11813 return rcStrict;
11814}
11815
11816
11817/**
11818 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11819 */
11820HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11821{
11822 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11823 /** @todo Use VM-exit instruction information. */
11824 return VERR_EM_INTERPRETER;
11825}
11826
11827
11828/**
11829 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11830 * Error VM-exit.
11831 */
11832HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11833{
11834 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11835 AssertRCReturn(rc, rc);
11836 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11837 if (RT_FAILURE(rc))
11838 return rc;
11839
11840 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
11841 NOREF(uInvalidReason);
11842
11843#ifdef VBOX_STRICT
11844 uint32_t fIntrState;
11845 RTHCUINTREG uHCReg;
11846 uint64_t u64Val;
11847 uint32_t u32Val;
11848
11849 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11850 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11851 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11852 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11853 AssertRCReturn(rc, rc);
11854
11855 Log4(("uInvalidReason %u\n", uInvalidReason));
11856 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11857 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11858 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11859 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
11860
11861 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11862 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11863 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11864 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11865 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11866 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11867 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11868 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11869 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11870 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11871 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11872 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11873
11874 hmR0DumpRegs(pVCpu);
11875#else
11876 NOREF(pVmxTransient);
11877#endif
11878
11879 return VERR_VMX_INVALID_GUEST_STATE;
11880}
11881
11882
11883/**
11884 * VM-exit handler for VM-entry failure due to an MSR-load
11885 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11886 */
11887HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11888{
11889 AssertMsgFailed(("Unexpected MSR-load exit\n"));
11890 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11891}
11892
11893
11894/**
11895 * VM-exit handler for VM-entry failure due to a machine-check event
11896 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11897 */
11898HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11899{
11900 AssertMsgFailed(("Unexpected machine-check event exit\n"));
11901 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11902}
11903
11904
11905/**
11906 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11907 * theory.
11908 */
11909HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11910{
11911 RT_NOREF2(pVCpu, pVmxTransient);
11912 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
11913 return VERR_VMX_UNDEFINED_EXIT_CODE;
11914}
11915
11916
11917/**
11918 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11919 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11920 * Conditional VM-exit.
11921 */
11922HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11923{
11924 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11925
11926 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
11927 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11928 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
11929 return VERR_EM_INTERPRETER;
11930 AssertMsgFailed(("Unexpected XDTR access\n"));
11931 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11932}
11933
11934
11935/**
11936 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11937 */
11938HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11939{
11940 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11941
11942 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
11943 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
11944 return VERR_EM_INTERPRETER;
11945 AssertMsgFailed(("Unexpected RDRAND exit\n"));
11946 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11947}
11948
11949
11950/**
11951 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11952 */
11953HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11954{
11955 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11956
11957 /** @todo Optimize this: We currently drag in in the whole MSR state
11958 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11959 * MSRs required. That would require changes to IEM and possibly CPUM too.
11960 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11961 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; NOREF(idMsr); /* Save it. */
11962 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11963 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11964 AssertRCReturn(rc, rc);
11965
11966 Log4Func(("ecx=%#RX32\n", idMsr));
11967
11968#ifdef VBOX_STRICT
11969 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
11970 {
11971 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr)
11972 && idMsr != MSR_K6_EFER)
11973 {
11974 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
11975 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11976 }
11977 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
11978 {
11979 VMXMSREXITREAD enmRead;
11980 VMXMSREXITWRITE enmWrite;
11981 int rc2 = hmR0VmxGetMsrPermission(pVCpu, idMsr, &enmRead, &enmWrite);
11982 AssertRCReturn(rc2, rc2);
11983 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
11984 {
11985 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
11986 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11987 }
11988 }
11989 }
11990#endif
11991
11992 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
11993 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
11994 if (rcStrict == VINF_SUCCESS)
11995 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11996 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11997 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11998 {
11999 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12000 rcStrict = VINF_SUCCESS;
12001 }
12002 else
12003 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12004
12005 return rcStrict;
12006}
12007
12008
12009/**
12010 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12011 */
12012HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12013{
12014 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12015
12016 /** @todo Optimize this: We currently drag in in the whole MSR state
12017 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
12018 * MSRs required. That would require changes to IEM and possibly CPUM too.
12019 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
12020 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; /* Save it. */
12021 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12022 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
12023 AssertRCReturn(rc, rc);
12024
12025 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
12026
12027 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
12028 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12029
12030 if (rcStrict == VINF_SUCCESS)
12031 {
12032 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12033
12034 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12035 if ( idMsr == MSR_IA32_APICBASE
12036 || ( idMsr >= MSR_IA32_X2APIC_START
12037 && idMsr <= MSR_IA32_X2APIC_END))
12038 {
12039 /*
12040 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12041 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before IEM changes it.
12042 */
12043 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
12044 }
12045 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12046 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12047 else if (idMsr == MSR_K6_EFER)
12048 {
12049 /*
12050 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12051 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12052 * the other bits as well, SCE and NXE. See @bugref{7368}.
12053 */
12054 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS
12055 | HM_CHANGED_VMX_EXIT_CTLS);
12056 }
12057
12058 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12059 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
12060 {
12061 switch (idMsr)
12062 {
12063 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12064 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12065 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12066 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
12067 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
12068 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
12069 default:
12070 {
12071 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12072 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12073 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12074 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
12075 break;
12076 }
12077 }
12078 }
12079#ifdef VBOX_STRICT
12080 else
12081 {
12082 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12083 switch (idMsr)
12084 {
12085 case MSR_IA32_SYSENTER_CS:
12086 case MSR_IA32_SYSENTER_EIP:
12087 case MSR_IA32_SYSENTER_ESP:
12088 case MSR_K8_FS_BASE:
12089 case MSR_K8_GS_BASE:
12090 {
12091 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
12092 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12093 }
12094
12095 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12096 default:
12097 {
12098 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12099 {
12100 /* EFER writes are always intercepted, see hmR0VmxExportGuestMsrs(). */
12101 if (idMsr != MSR_K6_EFER)
12102 {
12103 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12104 idMsr));
12105 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12106 }
12107 }
12108
12109 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12110 {
12111 VMXMSREXITREAD enmRead;
12112 VMXMSREXITWRITE enmWrite;
12113 int rc2 = hmR0VmxGetMsrPermission(pVCpu, idMsr, &enmRead, &enmWrite);
12114 AssertRCReturn(rc2, rc2);
12115 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12116 {
12117 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
12118 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12119 }
12120 }
12121 break;
12122 }
12123 }
12124 }
12125#endif /* VBOX_STRICT */
12126 }
12127 else if (rcStrict == VINF_IEM_RAISED_XCPT)
12128 {
12129 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12130 rcStrict = VINF_SUCCESS;
12131 }
12132 else
12133 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12134
12135 return rcStrict;
12136}
12137
12138
12139/**
12140 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12141 */
12142HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12143{
12144 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12145 /** @todo The guest has likely hit a contended spinlock. We might want to
12146 * poke a schedule different guest VCPU. */
12147 return VINF_EM_RAW_INTERRUPT;
12148}
12149
12150
12151/**
12152 * VM-exit handler for when the TPR value is lowered below the specified
12153 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12154 */
12155HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12156{
12157 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12158 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
12159
12160 /*
12161 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12162 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12163 */
12164 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12165 return VINF_SUCCESS;
12166}
12167
12168
12169/**
12170 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12171 * VM-exit.
12172 *
12173 * @retval VINF_SUCCESS when guest execution can continue.
12174 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12175 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12176 * interpreter.
12177 */
12178HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12179{
12180 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12181 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12182
12183 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12184 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12185 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12186 AssertRCReturn(rc, rc);
12187
12188 VBOXSTRICTRC rcStrict;
12189 PVM pVM = pVCpu->CTX_SUFF(pVM);
12190 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
12191 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
12192 switch (uAccessType)
12193 {
12194 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
12195 {
12196 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
12197 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12198 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
12199 AssertMsg( rcStrict == VINF_SUCCESS
12200 || rcStrict == VINF_IEM_RAISED_XCPT
12201 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12202
12203 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12204 {
12205 case 0:
12206 {
12207 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12208 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12209 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
12210 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
12211
12212 /*
12213 * This is a kludge for handling switches back to real mode when we try to use
12214 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
12215 * deal with special selector values, so we have to return to ring-3 and run
12216 * there till the selector values are V86 mode compatible.
12217 *
12218 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
12219 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
12220 * at the end of this function.
12221 */
12222 if ( rc == VINF_SUCCESS
12223 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
12224 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
12225 && (uOldCr0 & X86_CR0_PE)
12226 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
12227 {
12228 /** @todo check selectors rather than returning all the time. */
12229 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
12230 rcStrict = VINF_EM_RESCHEDULE_REM;
12231 }
12232 break;
12233 }
12234
12235 case 2:
12236 {
12237 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
12238 /* Nothing to do here, CR2 it's not part of the VMCS. */
12239 break;
12240 }
12241
12242 case 3:
12243 {
12244 Assert( !pVM->hm.s.fNestedPaging
12245 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12246 || pVCpu->hm.s.fUsingDebugLoop);
12247 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
12248 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12249 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
12250 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
12251 break;
12252 }
12253
12254 case 4:
12255 {
12256 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
12257 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12258 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
12259 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
12260 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12261 break;
12262 }
12263
12264 case 8:
12265 {
12266 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
12267 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12268 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12269 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
12270 break;
12271 }
12272 default:
12273 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
12274 break;
12275 }
12276 break;
12277 }
12278
12279 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
12280 {
12281 Assert( !pVM->hm.s.fNestedPaging
12282 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12283 || pVCpu->hm.s.fUsingDebugLoop
12284 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
12285 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12286 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
12287 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12288
12289 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
12290 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
12291 AssertMsg( rcStrict == VINF_SUCCESS
12292 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12293#ifdef VBOX_WITH_STATISTICS
12294 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12295 {
12296 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
12297 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
12298 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
12299 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
12300 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
12301 }
12302#endif
12303 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12304 VBOXSTRICTRC_VAL(rcStrict)));
12305 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
12306 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
12307 else
12308 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12309 break;
12310 }
12311
12312 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12313 {
12314 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12315 AssertMsg( rcStrict == VINF_SUCCESS
12316 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12317
12318 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12319 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12320 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12321 break;
12322 }
12323
12324 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12325 {
12326 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
12327 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual));
12328 AssertMsg( rcStrict == VINF_SUCCESS
12329 || rcStrict == VINF_IEM_RAISED_XCPT
12330 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12331
12332 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12333 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12334 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12335 break;
12336 }
12337
12338 default:
12339 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12340 VERR_VMX_UNEXPECTED_EXCEPTION);
12341 }
12342
12343 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
12344 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
12345 if (rcStrict == VINF_IEM_RAISED_XCPT)
12346 {
12347 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12348 rcStrict = VINF_SUCCESS;
12349 }
12350
12351 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12352 NOREF(pVM);
12353 return rcStrict;
12354}
12355
12356
12357/**
12358 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12359 * VM-exit.
12360 */
12361HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12362{
12363 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12364 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12365
12366 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12367 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12368 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12369 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER);
12370 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12371 AssertRCReturn(rc, rc);
12372
12373 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12374 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
12375 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
12376 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
12377 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
12378 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
12379 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12380 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12381
12382 /*
12383 * Update exit history to see if this exit can be optimized.
12384 */
12385 VBOXSTRICTRC rcStrict;
12386 PCEMEXITREC pExitRec = NULL;
12387 if ( !fGstStepping
12388 && !fDbgStepping)
12389 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12390 !fIOString
12391 ? !fIOWrite
12392 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
12393 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
12394 : !fIOWrite
12395 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
12396 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
12397 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12398 if (!pExitRec)
12399 {
12400 /* I/O operation lookup arrays. */
12401 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12402 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
12403 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12404 uint32_t const cbInstr = pVmxTransient->cbInstr;
12405 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12406 PVM pVM = pVCpu->CTX_SUFF(pVM);
12407 if (fIOString)
12408 {
12409 /*
12410 * INS/OUTS - I/O String instruction.
12411 *
12412 * Use instruction-information if available, otherwise fall back on
12413 * interpreting the instruction.
12414 */
12415 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12416 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
12417 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
12418 if (fInsOutsInfo)
12419 {
12420 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12421 AssertRCReturn(rc2, rc2);
12422 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12423 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12424 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12425 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
12426 if (fIOWrite)
12427 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12428 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12429 else
12430 {
12431 /*
12432 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12433 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12434 * See Intel Instruction spec. for "INS".
12435 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12436 */
12437 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12438 }
12439 }
12440 else
12441 rcStrict = IEMExecOne(pVCpu);
12442
12443 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12444 fUpdateRipAlready = true;
12445 }
12446 else
12447 {
12448 /*
12449 * IN/OUT - I/O instruction.
12450 */
12451 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12452 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12453 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
12454 if (fIOWrite)
12455 {
12456 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
12457 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12458 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12459 && !pCtx->eflags.Bits.u1TF)
12460 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
12461 }
12462 else
12463 {
12464 uint32_t u32Result = 0;
12465 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12466 if (IOM_SUCCESS(rcStrict))
12467 {
12468 /* Save result of I/O IN instr. in AL/AX/EAX. */
12469 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12470 }
12471 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12472 && !pCtx->eflags.Bits.u1TF)
12473 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
12474 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12475 }
12476 }
12477
12478 if (IOM_SUCCESS(rcStrict))
12479 {
12480 if (!fUpdateRipAlready)
12481 {
12482 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
12483 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12484 }
12485
12486 /*
12487 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
12488 * while booting Fedora 17 64-bit guest.
12489 *
12490 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12491 */
12492 if (fIOString)
12493 {
12494 /** @todo Single-step for INS/OUTS with REP prefix? */
12495 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
12496 }
12497 else if ( !fDbgStepping
12498 && fGstStepping)
12499 {
12500 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12501 AssertRCReturn(rc, rc);
12502 }
12503
12504 /*
12505 * If any I/O breakpoints are armed, we need to check if one triggered
12506 * and take appropriate action.
12507 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12508 */
12509 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_DR7);
12510 AssertRCReturn(rc, rc);
12511
12512 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12513 * execution engines about whether hyper BPs and such are pending. */
12514 uint32_t const uDr7 = pCtx->dr[7];
12515 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12516 && X86_DR7_ANY_RW_IO(uDr7)
12517 && (pCtx->cr4 & X86_CR4_DE))
12518 || DBGFBpIsHwIoArmed(pVM)))
12519 {
12520 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12521
12522 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12523 VMMRZCallRing3Disable(pVCpu);
12524 HM_DISABLE_PREEMPT(pVCpu);
12525
12526 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12527
12528 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
12529 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12530 {
12531 /* Raise #DB. */
12532 if (fIsGuestDbgActive)
12533 ASMSetDR6(pCtx->dr[6]);
12534 if (pCtx->dr[7] != uDr7)
12535 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
12536
12537 hmR0VmxSetPendingXcptDB(pVCpu);
12538 }
12539 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12540 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12541 else if ( rcStrict2 != VINF_SUCCESS
12542 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12543 rcStrict = rcStrict2;
12544 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12545
12546 HM_RESTORE_PREEMPT();
12547 VMMRZCallRing3Enable(pVCpu);
12548 }
12549 }
12550
12551#ifdef VBOX_STRICT
12552 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12553 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
12554 Assert(!fIOWrite);
12555 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12556 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
12557 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
12558 Assert(fIOWrite);
12559 else
12560 {
12561# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12562 * statuses, that the VMM device and some others may return. See
12563 * IOM_SUCCESS() for guidance. */
12564 AssertMsg( RT_FAILURE(rcStrict)
12565 || rcStrict == VINF_SUCCESS
12566 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12567 || rcStrict == VINF_EM_DBG_BREAKPOINT
12568 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12569 || rcStrict == VINF_EM_RAW_TO_R3
12570 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12571# endif
12572 }
12573#endif
12574 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12575 }
12576 else
12577 {
12578 /*
12579 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12580 */
12581 int rc2 = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
12582 AssertRCReturn(rc2, rc2);
12583 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
12584 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
12585 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
12586 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12587 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
12588 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
12589
12590 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12591 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12592
12593 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12594 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12595 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12596 }
12597 return rcStrict;
12598}
12599
12600
12601/**
12602 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12603 * VM-exit.
12604 */
12605HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12606{
12607 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12608
12609 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12610 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12611 AssertRCReturn(rc, rc);
12612 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
12613 {
12614 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12615 AssertRCReturn(rc, rc);
12616 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12617 {
12618 uint32_t uErrCode;
12619 RTGCUINTPTR GCPtrFaultAddress;
12620 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12621 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12622 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
12623 if (fErrorCodeValid)
12624 {
12625 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12626 AssertRCReturn(rc, rc);
12627 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
12628 }
12629 else
12630 uErrCode = 0;
12631
12632 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12633 && uVector == X86_XCPT_PF)
12634 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
12635 else
12636 GCPtrFaultAddress = 0;
12637
12638 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12639 0 /* cbInstr */, uErrCode, GCPtrFaultAddress);
12640
12641 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
12642 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12643 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12644 }
12645 }
12646
12647 /* Fall back to the interpreter to emulate the task-switch. */
12648 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12649 return VERR_EM_INTERPRETER;
12650}
12651
12652
12653/**
12654 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12655 */
12656HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12657{
12658 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12659 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
12660 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
12661 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12662 AssertRCReturn(rc, rc);
12663 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12664 return VINF_EM_DBG_STEPPED;
12665}
12666
12667
12668/**
12669 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12670 */
12671HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12672{
12673 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12674
12675 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12676
12677 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12678 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12679 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12680 {
12681 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12682 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12683 {
12684 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12685 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12686 }
12687 }
12688 else
12689 {
12690 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12691 rcStrict1 = VINF_SUCCESS;
12692 return rcStrict1;
12693 }
12694
12695 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
12696 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12697 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12698 AssertRCReturn(rc, rc);
12699
12700 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12701 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
12702 VBOXSTRICTRC rcStrict2;
12703 switch (uAccessType)
12704 {
12705 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12706 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12707 {
12708 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
12709 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
12710 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12711
12712 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12713 GCPhys &= PAGE_BASE_GC_MASK;
12714 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
12715 PVM pVM = pVCpu->CTX_SUFF(pVM);
12716 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12717 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
12718
12719 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12720 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12721 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12722 CPUMCTX2CORE(pCtx), GCPhys);
12723 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12724 if ( rcStrict2 == VINF_SUCCESS
12725 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12726 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12727 {
12728 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12729 | HM_CHANGED_GUEST_APIC_TPR);
12730 rcStrict2 = VINF_SUCCESS;
12731 }
12732 break;
12733 }
12734
12735 default:
12736 Log4Func(("uAccessType=%#x\n", uAccessType));
12737 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12738 break;
12739 }
12740
12741 if (rcStrict2 != VINF_SUCCESS)
12742 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12743 return rcStrict2;
12744}
12745
12746
12747/**
12748 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12749 * VM-exit.
12750 */
12751HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12752{
12753 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12754
12755 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12756 if (pVmxTransient->fWasGuestDebugStateActive)
12757 {
12758 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
12759 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12760 }
12761
12762 if ( !pVCpu->hm.s.fSingleInstruction
12763 && !pVmxTransient->fWasHyperDebugStateActive)
12764 {
12765 Assert(!DBGFIsStepping(pVCpu));
12766 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12767
12768 /* Don't intercept MOV DRx any more. */
12769 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
12770 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12771 AssertRCReturn(rc, rc);
12772
12773 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12774 VMMRZCallRing3Disable(pVCpu);
12775 HM_DISABLE_PREEMPT(pVCpu);
12776
12777 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12778 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12779 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12780
12781 HM_RESTORE_PREEMPT();
12782 VMMRZCallRing3Enable(pVCpu);
12783
12784#ifdef VBOX_WITH_STATISTICS
12785 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12786 AssertRCReturn(rc, rc);
12787 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12788 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12789 else
12790 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12791#endif
12792 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12793 return VINF_SUCCESS;
12794 }
12795
12796 /*
12797 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12798 * Update the segment registers and DR7 from the CPU.
12799 */
12800 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12801 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12802 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
12803 AssertRCReturn(rc, rc);
12804 Log4Func(("CS:RIP=%04x:%08RX64\n", pCtx->cs.Sel, pCtx->rip));
12805
12806 PVM pVM = pVCpu->CTX_SUFF(pVM);
12807 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12808 {
12809 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12810 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
12811 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
12812 if (RT_SUCCESS(rc))
12813 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12814 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12815 }
12816 else
12817 {
12818 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12819 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
12820 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
12821 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12822 }
12823
12824 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12825 if (RT_SUCCESS(rc))
12826 {
12827 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12828 AssertRCReturn(rc2, rc2);
12829 return VINF_SUCCESS;
12830 }
12831 return rc;
12832}
12833
12834
12835/**
12836 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12837 * Conditional VM-exit.
12838 */
12839HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12840{
12841 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12842 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12843
12844 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12845 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12846 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12847 {
12848 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12849 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12850 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12851 {
12852 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12853 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12854 }
12855 }
12856 else
12857 {
12858 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12859 rcStrict1 = VINF_SUCCESS;
12860 return rcStrict1;
12861 }
12862
12863 /*
12864 * Get sufficent state and update the exit history entry.
12865 */
12866 RTGCPHYS GCPhys;
12867 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12868 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12869 AssertRCReturn(rc, rc);
12870
12871 VBOXSTRICTRC rcStrict;
12872 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12873 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
12874 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12875 if (!pExitRec)
12876 {
12877 /*
12878 * If we succeed, resume guest execution.
12879 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12880 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12881 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12882 * weird case. See @bugref{6043}.
12883 */
12884 PVM pVM = pVCpu->CTX_SUFF(pVM);
12885 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12886 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
12887 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
12888 if ( rcStrict == VINF_SUCCESS
12889 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
12890 || rcStrict == VERR_PAGE_NOT_PRESENT)
12891 {
12892 /* Successfully handled MMIO operation. */
12893 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12894 | HM_CHANGED_GUEST_APIC_TPR);
12895 rcStrict = VINF_SUCCESS;
12896 }
12897 }
12898 else
12899 {
12900 /*
12901 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12902 */
12903 int rc2 = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12904 AssertRCReturn(rc2, rc2);
12905
12906 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
12907 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
12908
12909 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12910 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12911
12912 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12913 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12914 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12915 }
12916 return VBOXSTRICTRC_TODO(rcStrict);
12917}
12918
12919
12920/**
12921 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12922 * VM-exit.
12923 */
12924HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12925{
12926 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12927 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12928
12929 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12930 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12931 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12932 {
12933 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12934 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12935 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12936 }
12937 else
12938 {
12939 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12940 rcStrict1 = VINF_SUCCESS;
12941 return rcStrict1;
12942 }
12943
12944 RTGCPHYS GCPhys;
12945 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12946 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12947 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12948 AssertRCReturn(rc, rc);
12949
12950 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12951 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
12952
12953 RTGCUINT uErrorCode = 0;
12954 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
12955 uErrorCode |= X86_TRAP_PF_ID;
12956 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
12957 uErrorCode |= X86_TRAP_PF_RW;
12958 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
12959 uErrorCode |= X86_TRAP_PF_P;
12960
12961 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12962
12963
12964 /* Handle the pagefault trap for the nested shadow table. */
12965 PVM pVM = pVCpu->CTX_SUFF(pVM);
12966 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12967
12968 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
12969 pCtx->cs.Sel, pCtx->rip));
12970
12971 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
12972 TRPMResetTrap(pVCpu);
12973
12974 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12975 if ( rcStrict2 == VINF_SUCCESS
12976 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12977 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12978 {
12979 /* Successfully synced our nested page tables. */
12980 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12981 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
12982 return VINF_SUCCESS;
12983 }
12984
12985 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12986 return rcStrict2;
12987}
12988
12989/** @} */
12990
12991/** @name VM-exit exception handlers.
12992 * @{
12993 */
12994/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12995/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12996/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12997
12998/**
12999 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13000 */
13001static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13002{
13003 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13004 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13005
13006 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
13007 AssertRCReturn(rc, rc);
13008
13009 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
13010 {
13011 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13012 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13013
13014 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13015 * provides VM-exit instruction length. If this causes problem later,
13016 * disassemble the instruction like it's done on AMD-V. */
13017 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13018 AssertRCReturn(rc2, rc2);
13019 return rc;
13020 }
13021
13022 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13023 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13024 return rc;
13025}
13026
13027
13028/**
13029 * VM-exit exception handler for \#BP (Breakpoint exception).
13030 */
13031static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13032{
13033 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13034 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13035
13036 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13037 AssertRCReturn(rc, rc);
13038
13039 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13040 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13041 if (rc == VINF_EM_RAW_GUEST_TRAP)
13042 {
13043 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13044 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13045 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13046 AssertRCReturn(rc, rc);
13047
13048 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13049 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13050 }
13051
13052 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13053 return rc;
13054}
13055
13056
13057/**
13058 * VM-exit exception handler for \#AC (alignment check exception).
13059 */
13060static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13061{
13062 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13063
13064 /*
13065 * Re-inject it. We'll detect any nesting before getting here.
13066 */
13067 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13068 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13069 AssertRCReturn(rc, rc);
13070 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13071
13072 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13073 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13074 return VINF_SUCCESS;
13075}
13076
13077
13078/**
13079 * VM-exit exception handler for \#DB (Debug exception).
13080 */
13081static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13082{
13083 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13084 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13085
13086 /*
13087 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13088 * for processing.
13089 */
13090 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13091
13092 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13093 uint64_t uDR6 = X86_DR6_INIT_VAL;
13094 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13095
13096 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13097 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13098 Log6Func(("rc=%Rrc\n", rc));
13099 if (rc == VINF_EM_RAW_GUEST_TRAP)
13100 {
13101 /*
13102 * The exception was for the guest. Update DR6, DR7.GD and
13103 * IA32_DEBUGCTL.LBR before forwarding it.
13104 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13105 */
13106 VMMRZCallRing3Disable(pVCpu);
13107 HM_DISABLE_PREEMPT(pVCpu);
13108
13109 pCtx->dr[6] &= ~X86_DR6_B_MASK;
13110 pCtx->dr[6] |= uDR6;
13111 if (CPUMIsGuestDebugStateActive(pVCpu))
13112 ASMSetDR6(pCtx->dr[6]);
13113
13114 HM_RESTORE_PREEMPT();
13115 VMMRZCallRing3Enable(pVCpu);
13116
13117 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_DR7);
13118 AssertRCReturn(rc, rc);
13119
13120 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13121 pCtx->dr[7] &= ~X86_DR7_GD;
13122
13123 /* Paranoia. */
13124 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13125 pCtx->dr[7] |= X86_DR7_RA1_MASK;
13126
13127 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
13128 AssertRCReturn(rc, rc);
13129
13130 /*
13131 * Raise #DB in the guest.
13132 *
13133 * It is important to reflect exactly what the VM-exit gave us (preserving the
13134 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
13135 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
13136 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
13137 *
13138 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
13139 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
13140 */
13141 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13142 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13143 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13144 AssertRCReturn(rc, rc);
13145 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13146 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13147 return VINF_SUCCESS;
13148 }
13149
13150 /*
13151 * Not a guest trap, must be a hypervisor related debug event then.
13152 * Update DR6 in case someone is interested in it.
13153 */
13154 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13155 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13156 CPUMSetHyperDR6(pVCpu, uDR6);
13157
13158 return rc;
13159}
13160
13161/**
13162 * VM-exit exception handler for \#GP (General-protection exception).
13163 *
13164 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13165 */
13166static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13167{
13168 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13169 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13170
13171 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13172 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13173 { /* likely */ }
13174 else
13175 {
13176#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13177 Assert(pVCpu->hm.s.fUsingDebugLoop);
13178#endif
13179 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13180 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13181 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13182 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13183 rc |= hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13184 AssertRCReturn(rc, rc);
13185 Log4Func(("Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pCtx->cs.Sel, pCtx->rip,
13186 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
13187 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13188 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13189 return rc;
13190 }
13191
13192 Assert(CPUMIsGuestInRealModeEx(pCtx));
13193 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13194
13195 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13196 AssertRCReturn(rc, rc);
13197
13198 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
13199 if (rcStrict == VINF_SUCCESS)
13200 {
13201 if (!CPUMIsGuestInRealModeEx(pCtx))
13202 {
13203 /*
13204 * The guest is no longer in real-mode, check if we can continue executing the
13205 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
13206 */
13207 if (HMVmxCanExecuteGuest(pVCpu, pCtx))
13208 {
13209 Log4Func(("Mode changed but guest still suitable for executing using VT-x\n"));
13210 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
13211 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13212 }
13213 else
13214 {
13215 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
13216 rcStrict = VINF_EM_RESCHEDULE;
13217 }
13218 }
13219 else
13220 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13221 }
13222 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13223 {
13224 rcStrict = VINF_SUCCESS;
13225 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13226 }
13227 return VBOXSTRICTRC_VAL(rcStrict);
13228}
13229
13230
13231/**
13232 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13233 * the exception reported in the VMX transient structure back into the VM.
13234 *
13235 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13236 * up-to-date.
13237 */
13238static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13239{
13240 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13241#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13242 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13243 ("uVector=%#x u32XcptBitmap=%#X32\n",
13244 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13245#endif
13246
13247 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13248 hmR0VmxCheckExitDueToEventDelivery(). */
13249 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13250 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13251 AssertRCReturn(rc, rc);
13252 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13253
13254#ifdef DEBUG_ramshankar
13255 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
13256 uint8_t uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13257 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13258#endif
13259
13260 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13261 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13262 return VINF_SUCCESS;
13263}
13264
13265
13266/**
13267 * VM-exit exception handler for \#PF (Page-fault exception).
13268 */
13269static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13270{
13271 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13272 PVM pVM = pVCpu->CTX_SUFF(pVM);
13273 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13274 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13275 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13276 AssertRCReturn(rc, rc);
13277
13278 if (!pVM->hm.s.fNestedPaging)
13279 { /* likely */ }
13280 else
13281 {
13282#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13283 Assert(pVCpu->hm.s.fUsingDebugLoop);
13284#endif
13285 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13286 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13287 {
13288 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13289 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13290 }
13291 else
13292 {
13293 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13294 hmR0VmxSetPendingXcptDF(pVCpu);
13295 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13296 }
13297 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13298 return rc;
13299 }
13300
13301 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13302 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13303 if (pVmxTransient->fVectoringPF)
13304 {
13305 Assert(pVCpu->hm.s.Event.fPending);
13306 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13307 }
13308
13309 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13310 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13311 AssertRCReturn(rc, rc);
13312
13313 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
13314 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
13315
13316 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13317 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13318
13319 Log4Func(("#PF: rc=%Rrc\n", rc));
13320 if (rc == VINF_SUCCESS)
13321 {
13322 /*
13323 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13324 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13325 */
13326 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13327 TRPMResetTrap(pVCpu);
13328 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13329 return rc;
13330 }
13331
13332 if (rc == VINF_EM_RAW_GUEST_TRAP)
13333 {
13334 if (!pVmxTransient->fVectoringDoublePF)
13335 {
13336 /* It's a guest page fault and needs to be reflected to the guest. */
13337 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13338 TRPMResetTrap(pVCpu);
13339 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13340 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13341 uGstErrorCode, pVmxTransient->uExitQual);
13342 }
13343 else
13344 {
13345 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13346 TRPMResetTrap(pVCpu);
13347 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13348 hmR0VmxSetPendingXcptDF(pVCpu);
13349 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13350 }
13351
13352 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13353 return VINF_SUCCESS;
13354 }
13355
13356 TRPMResetTrap(pVCpu);
13357 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13358 return rc;
13359}
13360
13361/** @} */
13362
13363#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13364
13365/** @name Nested-guest VM-exit handlers.
13366 * @{
13367 */
13368/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13369/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Nested-guest VM-exit handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13370/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13371
13372/**
13373 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
13374 */
13375HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13376{
13377 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13378
13379 /** @todo NSTVMX: Vmclear. */
13380 hmR0VmxSetPendingXcptUD(pVCpu);
13381 return VINF_SUCCESS;
13382}
13383
13384
13385/**
13386 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
13387 */
13388HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13389{
13390 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13391
13392 /** @todo NSTVMX: Vmlaunch. */
13393 hmR0VmxSetPendingXcptUD(pVCpu);
13394 return VINF_SUCCESS;
13395}
13396
13397
13398/**
13399 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
13400 */
13401HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13402{
13403 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13404
13405 /** @todo NSTVMX: Vmptrld. */
13406 hmR0VmxSetPendingXcptUD(pVCpu);
13407 return VINF_SUCCESS;
13408}
13409
13410
13411/**
13412 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
13413 */
13414HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13415{
13416 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13417
13418 /** @todo NSTVMX: Vmptrst. */
13419 hmR0VmxSetPendingXcptUD(pVCpu);
13420 return VINF_SUCCESS;
13421}
13422
13423
13424/**
13425 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
13426 */
13427HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13428{
13429 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13430
13431 /** @todo NSTVMX: Vmread. */
13432 hmR0VmxSetPendingXcptUD(pVCpu);
13433 return VINF_SUCCESS;
13434}
13435
13436
13437/**
13438 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
13439 */
13440HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13441{
13442 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13443
13444 /** @todo NSTVMX: Vmresume. */
13445 hmR0VmxSetPendingXcptUD(pVCpu);
13446 return VINF_SUCCESS;
13447}
13448
13449
13450/**
13451 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
13452 */
13453HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13454{
13455 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13456
13457 /** @todo NSTVMX: Vmwrite. */
13458 hmR0VmxSetPendingXcptUD(pVCpu);
13459 return VINF_SUCCESS;
13460}
13461
13462
13463/**
13464 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
13465 */
13466HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13467{
13468 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13469
13470 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13471 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13472 AssertRCReturn(rc, rc);
13473
13474 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
13475 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13476 {
13477 /* VMXOFF on success changes the internal hwvirt state but not anything that's visible to the guest. */
13478 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
13479 }
13480 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13481 {
13482 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13483 rcStrict = VINF_SUCCESS;
13484 }
13485 return rcStrict;
13486}
13487
13488
13489/**
13490 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
13491 */
13492HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13493{
13494 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13495
13496 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13497 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13498 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13499 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13500 AssertRCReturn(rc, rc);
13501
13502 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToVmxInstr(pVCpu, pVmxTransient);
13503 if (rcStrict == VINF_SUCCESS)
13504 { /* likely */ }
13505 else if (rcStrict == VINF_HM_PENDING_XCPT)
13506 {
13507 Log4Func(("Privilege checks failed, raising xcpt %#x!\n", VMX_ENTRY_INT_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo)));
13508 return VINF_SUCCESS;
13509 }
13510 else
13511 {
13512 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13513 return rcStrict;
13514 }
13515
13516 RTGCPTR GCPtrVmxon;
13517 PCVMXEXITINSTRINFO pExitInstrInfo = &pVmxTransient->ExitInstrInfo;
13518 RTGCPTR const GCPtrDisp = pVmxTransient->uExitQual;
13519 rcStrict = hmR0VmxDecodeMemOperand(pVCpu, pExitInstrInfo, GCPtrDisp, false /*fIsWrite*/, &GCPtrVmxon);
13520 if (rcStrict == VINF_SUCCESS)
13521 { /* likely */ }
13522 else if (rcStrict == VINF_HM_PENDING_XCPT)
13523 {
13524 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", VMX_ENTRY_INT_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo)));
13525 return VINF_SUCCESS;
13526 }
13527 else
13528 {
13529 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13530 return rcStrict;
13531 }
13532
13533 rcStrict = IEMExecDecodedVmxon(pVCpu, pVmxTransient->cbInstr, GCPtrVmxon, pExitInstrInfo->u, GCPtrDisp);
13534 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13535 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13536 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13537 {
13538 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13539 rcStrict = VINF_SUCCESS;
13540 }
13541 return rcStrict;
13542}
13543
13544/** @} */
13545#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13546
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette