VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 73620

Last change on this file since 73620 was 73620, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: Unused functions build fix.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 568.0 KB
Line 
1/* $Id: HMVMXR0.cpp 73620 2018-08-10 15:04:31Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include "HMVMXR0.h"
43#include "dtrace/VBoxVMM.h"
44
45#ifdef DEBUG_ramshankar
46# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CHECK_GUEST_STATE
50# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
51# define HMVMX_ALWAYS_TRAP_PF
52# define HMVMX_ALWAYS_FLUSH_TLB
53# define HMVMX_ALWAYS_SWAP_EFER
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name HMVMX_READ_XXX
70 * Flags to skip redundant reads of some common VMCS fields that are not part of
71 * the guest-CPU or VCPU state but are needed while handling VM-exits.
72 */
73#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
74#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
75#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
76#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
77#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
78#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
79#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
80/** @} */
81
82/**
83 * States of the VMCS.
84 *
85 * This does not reflect all possible VMCS states but currently only those
86 * needed for maintaining the VMCS consistently even when thread-context hooks
87 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
88 */
89#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
90#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
91#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
92
93/**
94 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
95 * guest using hardware-assisted VMX.
96 *
97 * This excludes state like GPRs (other than RSP) which are always are
98 * swapped and restored across the world-switch and also registers like EFER,
99 * MSR which cannot be modified by the guest without causing a VM-exit.
100 */
101#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
102 | CPUMCTX_EXTRN_RFLAGS \
103 | CPUMCTX_EXTRN_RSP \
104 | CPUMCTX_EXTRN_SREG_MASK \
105 | CPUMCTX_EXTRN_TABLE_MASK \
106 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
107 | CPUMCTX_EXTRN_SYSCALL_MSRS \
108 | CPUMCTX_EXTRN_SYSENTER_MSRS \
109 | CPUMCTX_EXTRN_TSC_AUX \
110 | CPUMCTX_EXTRN_OTHER_MSRS \
111 | CPUMCTX_EXTRN_CR0 \
112 | CPUMCTX_EXTRN_CR3 \
113 | CPUMCTX_EXTRN_CR4 \
114 | CPUMCTX_EXTRN_DR7 \
115 | CPUMCTX_EXTRN_HM_VMX_MASK)
116
117/**
118 * Exception bitmap mask for real-mode guests (real-on-v86).
119 *
120 * We need to intercept all exceptions manually except:
121 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
122 * due to bugs in Intel CPUs.
123 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
124 * support.
125 */
126#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
127 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
128 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
129 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
130 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
131 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
132 | RT_BIT(X86_XCPT_XF))
133
134/** Maximum VM-instruction error number. */
135#define HMVMX_INSTR_ERROR_MAX 28
136
137/** Profiling macro. */
138#ifdef HM_PROFILE_EXIT_DISPATCH
139# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
140# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
141#else
142# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
143# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
144#endif
145
146/** Assert that preemption is disabled or covered by thread-context hooks. */
147#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
148 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
149
150/** Assert that we haven't migrated CPUs when thread-context hooks are not
151 * used. */
152#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
153 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
154 ("Illegal migration! Entered on CPU %u Current %u\n", \
155 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
156
157/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
158 * context. */
159#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
160 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
161 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
162
163/** Helper macro for VM-exit handlers called unexpectedly. */
164#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
165 do { \
166 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
167 return VERR_VMX_UNEXPECTED_EXIT; \
168 } while (0)
169
170/** Macro for importing segment registers to the VMCS from the guest-CPU context. */
171#ifdef VMX_USE_CACHED_VMCS_ACCESSES
172# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
173 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
174 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
175#else
176# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
177 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
178 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
179#endif
180
181/** Macro for exporting segment registers to the VMCS from the guest-CPU context. */
182# define HMVMX_EXPORT_SREG(Sel, a_pCtxSelReg) \
183 hmR0VmxExportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
184 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
185
186
187/*********************************************************************************************************************************
188* Structures and Typedefs *
189*********************************************************************************************************************************/
190/**
191 * VMX transient state.
192 *
193 * A state structure for holding miscellaneous information across
194 * VMX non-root operation and restored after the transition.
195 */
196typedef struct VMXTRANSIENT
197{
198 /** The host's rflags/eflags. */
199 RTCCUINTREG fEFlags;
200#if HC_ARCH_BITS == 32
201 uint32_t u32Alignment0;
202#endif
203 /** The guest's TPR value used for TPR shadowing. */
204 uint8_t u8GuestTpr;
205 /** Alignment. */
206 uint8_t abAlignment0[7];
207
208 /** The basic VM-exit reason. */
209 uint16_t uExitReason;
210 /** Alignment. */
211 uint16_t u16Alignment0;
212 /** The VM-exit interruption error code. */
213 uint32_t uExitIntErrorCode;
214 /** The VM-exit exit code qualification. */
215 uint64_t uExitQual;
216
217 /** The VM-exit interruption-information field. */
218 uint32_t uExitIntInfo;
219 /** The VM-exit instruction-length field. */
220 uint32_t cbInstr;
221 /** The VM-exit instruction-information field. */
222 VMXEXITINSTRINFO ExitInstrInfo;
223 /** Whether the VM-entry failed or not. */
224 bool fVMEntryFailed;
225 /** Alignment. */
226 uint8_t abAlignment1[3];
227
228 /** The VM-entry interruption-information field. */
229 uint32_t uEntryIntInfo;
230 /** The VM-entry exception error code field. */
231 uint32_t uEntryXcptErrorCode;
232 /** The VM-entry instruction length field. */
233 uint32_t cbEntryInstr;
234
235 /** IDT-vectoring information field. */
236 uint32_t uIdtVectoringInfo;
237 /** IDT-vectoring error code. */
238 uint32_t uIdtVectoringErrorCode;
239
240 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
241 uint32_t fVmcsFieldsRead;
242
243 /** Whether the guest debug state was active at the time of VM-exit. */
244 bool fWasGuestDebugStateActive;
245 /** Whether the hyper debug state was active at the time of VM-exit. */
246 bool fWasHyperDebugStateActive;
247 /** Whether TSC-offsetting should be setup before VM-entry. */
248 bool fUpdateTscOffsettingAndPreemptTimer;
249 /** Whether the VM-exit was caused by a page-fault during delivery of a
250 * contributory exception or a page-fault. */
251 bool fVectoringDoublePF;
252 /** Whether the VM-exit was caused by a page-fault during delivery of an
253 * external interrupt or NMI. */
254 bool fVectoringPF;
255} VMXTRANSIENT;
256AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
257AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
258AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
259AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
260AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
261/** Pointer to VMX transient state. */
262typedef VMXTRANSIENT *PVMXTRANSIENT;
263
264
265/**
266 * MSR-bitmap read permissions.
267 */
268typedef enum VMXMSREXITREAD
269{
270 /** Reading this MSR causes a VM-exit. */
271 VMXMSREXIT_INTERCEPT_READ = 0xb,
272 /** Reading this MSR does not cause a VM-exit. */
273 VMXMSREXIT_PASSTHRU_READ
274} VMXMSREXITREAD;
275/** Pointer to MSR-bitmap read permissions. */
276typedef VMXMSREXITREAD* PVMXMSREXITREAD;
277
278/**
279 * MSR-bitmap write permissions.
280 */
281typedef enum VMXMSREXITWRITE
282{
283 /** Writing to this MSR causes a VM-exit. */
284 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
285 /** Writing to this MSR does not cause a VM-exit. */
286 VMXMSREXIT_PASSTHRU_WRITE
287} VMXMSREXITWRITE;
288/** Pointer to MSR-bitmap write permissions. */
289typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
290
291
292/**
293 * VMX VM-exit handler.
294 *
295 * @returns Strict VBox status code (i.e. informational status codes too).
296 * @param pVCpu The cross context virtual CPU structure.
297 * @param pVmxTransient Pointer to the VMX-transient structure.
298 */
299#ifndef HMVMX_USE_FUNCTION_TABLE
300typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
301#else
302typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
303/** Pointer to VM-exit handler. */
304typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
305#endif
306
307/**
308 * VMX VM-exit handler, non-strict status code.
309 *
310 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
311 *
312 * @returns VBox status code, no informational status code returned.
313 * @param pVCpu The cross context virtual CPU structure.
314 * @param pVmxTransient Pointer to the VMX-transient structure.
315 *
316 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
317 * use of that status code will be replaced with VINF_EM_SOMETHING
318 * later when switching over to IEM.
319 */
320#ifndef HMVMX_USE_FUNCTION_TABLE
321typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
322#else
323typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
324#endif
325
326
327/*********************************************************************************************************************************
328* Internal Functions *
329*********************************************************************************************************************************/
330static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush);
331static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr);
332static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
333static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat);
334static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
335 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState);
336#if HC_ARCH_BITS == 32
337static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
338#endif
339#ifndef HMVMX_USE_FUNCTION_TABLE
340DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
341# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
342# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
343#else
344# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
345# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
346#endif
347
348
349/** @name VM-exit handlers.
350 * @{
351 */
352static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
353static FNVMXEXITHANDLER hmR0VmxExitExtInt;
354static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
355static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
356static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
357static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
358static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
359static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
360static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
361static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
362static FNVMXEXITHANDLER hmR0VmxExitCpuid;
363static FNVMXEXITHANDLER hmR0VmxExitGetsec;
364static FNVMXEXITHANDLER hmR0VmxExitHlt;
365static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
366static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
367static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
368static FNVMXEXITHANDLER hmR0VmxExitVmcall;
369#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
370static FNVMXEXITHANDLER hmR0VmxExitVmclear;
371static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
372static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
373static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
374static FNVMXEXITHANDLER hmR0VmxExitVmread;
375static FNVMXEXITHANDLER hmR0VmxExitVmresume;
376static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
377static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
378static FNVMXEXITHANDLER hmR0VmxExitVmxon;
379#endif
380static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
381static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
382static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
383static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
384static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
385static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
386static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
387static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
391static FNVMXEXITHANDLER hmR0VmxExitMwait;
392static FNVMXEXITHANDLER hmR0VmxExitMtf;
393static FNVMXEXITHANDLER hmR0VmxExitMonitor;
394static FNVMXEXITHANDLER hmR0VmxExitPause;
395static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
396static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
397static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
398static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
399static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
400static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
401static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
402static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
403static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
405static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
406static FNVMXEXITHANDLER hmR0VmxExitRdrand;
407static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
408/** @} */
409
410static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
411static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
412static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
413static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
414static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
415static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
416static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
417static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu);
418
419
420/*********************************************************************************************************************************
421* Global Variables *
422*********************************************************************************************************************************/
423#ifdef HMVMX_USE_FUNCTION_TABLE
424
425/**
426 * VMX_EXIT dispatch table.
427 */
428static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
429{
430 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
431 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
432 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
433 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
434 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
435 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
436 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
437 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
438 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
439 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
440 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
441 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
442 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
443 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
444 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
445 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
446 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
447 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
448 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
449#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
450 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
451 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
452 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
453 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
454 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
455 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
456 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
457 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
458 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
459#else
460 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
461 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
462 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
463 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
464 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
465 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
466 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
467 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
468 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
469#endif
470 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
471 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
472 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
473 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
474 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
475 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
476 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
477 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
478 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
479 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
480 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
481 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
482 /* 40 UNDEFINED */ hmR0VmxExitPause,
483 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
484 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
485 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
486 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
487 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
488 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
489 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
490 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
491 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
492 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
493 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
494 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
495 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
496 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
497 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
498 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
499 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
500 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
501 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
502 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
503 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
504 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
505 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
506 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
507};
508#endif /* HMVMX_USE_FUNCTION_TABLE */
509
510#ifdef VBOX_STRICT
511static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
512{
513 /* 0 */ "(Not Used)",
514 /* 1 */ "VMCALL executed in VMX root operation.",
515 /* 2 */ "VMCLEAR with invalid physical address.",
516 /* 3 */ "VMCLEAR with VMXON pointer.",
517 /* 4 */ "VMLAUNCH with non-clear VMCS.",
518 /* 5 */ "VMRESUME with non-launched VMCS.",
519 /* 6 */ "VMRESUME after VMXOFF",
520 /* 7 */ "VM-entry with invalid control fields.",
521 /* 8 */ "VM-entry with invalid host state fields.",
522 /* 9 */ "VMPTRLD with invalid physical address.",
523 /* 10 */ "VMPTRLD with VMXON pointer.",
524 /* 11 */ "VMPTRLD with incorrect revision identifier.",
525 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
526 /* 13 */ "VMWRITE to read-only VMCS component.",
527 /* 14 */ "(Not Used)",
528 /* 15 */ "VMXON executed in VMX root operation.",
529 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
530 /* 17 */ "VM-entry with non-launched executing VMCS.",
531 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
532 /* 19 */ "VMCALL with non-clear VMCS.",
533 /* 20 */ "VMCALL with invalid VM-exit control fields.",
534 /* 21 */ "(Not Used)",
535 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
536 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
537 /* 24 */ "VMCALL with invalid SMM-monitor features.",
538 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
539 /* 26 */ "VM-entry with events blocked by MOV SS.",
540 /* 27 */ "(Not Used)",
541 /* 28 */ "Invalid operand to INVEPT/INVVPID."
542};
543#endif /* VBOX_STRICT */
544
545
546
547/**
548 * Updates the VM's last error record.
549 *
550 * If there was a VMX instruction error, reads the error data from the VMCS and
551 * updates VCPU's last error record as well.
552 *
553 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
554 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
555 * VERR_VMX_INVALID_VMCS_FIELD.
556 * @param rc The error code.
557 */
558static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
559{
560 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
561 || rc == VERR_VMX_UNABLE_TO_START_VM)
562 {
563 AssertPtrReturnVoid(pVCpu);
564 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
565 }
566 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
567}
568
569
570/**
571 * Reads the VM-entry interruption-information field from the VMCS into the VMX
572 * transient structure.
573 *
574 * @returns VBox status code.
575 * @param pVmxTransient Pointer to the VMX transient structure.
576 *
577 * @remarks No-long-jump zone!!!
578 */
579DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
580{
581 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
582 AssertRCReturn(rc, rc);
583 return VINF_SUCCESS;
584}
585
586#ifdef VBOX_STRICT
587/**
588 * Reads the VM-entry exception error code field from the VMCS into
589 * the VMX transient structure.
590 *
591 * @returns VBox status code.
592 * @param pVmxTransient Pointer to the VMX transient structure.
593 *
594 * @remarks No-long-jump zone!!!
595 */
596DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
597{
598 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
599 AssertRCReturn(rc, rc);
600 return VINF_SUCCESS;
601}
602
603
604/**
605 * Reads the VM-entry exception error code field from the VMCS into
606 * the VMX transient structure.
607 *
608 * @returns VBox status code.
609 * @param pVmxTransient Pointer to the VMX transient structure.
610 *
611 * @remarks No-long-jump zone!!!
612 */
613DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
614{
615 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
616 AssertRCReturn(rc, rc);
617 return VINF_SUCCESS;
618}
619#endif /* VBOX_STRICT */
620
621
622/**
623 * Reads the VM-exit interruption-information field from the VMCS into the VMX
624 * transient structure.
625 *
626 * @returns VBox status code.
627 * @param pVmxTransient Pointer to the VMX transient structure.
628 */
629DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
630{
631 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
632 {
633 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
634 AssertRCReturn(rc,rc);
635 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
636 }
637 return VINF_SUCCESS;
638}
639
640
641/**
642 * Reads the VM-exit interruption error code from the VMCS into the VMX
643 * transient structure.
644 *
645 * @returns VBox status code.
646 * @param pVmxTransient Pointer to the VMX transient structure.
647 */
648DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
649{
650 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
651 {
652 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
653 AssertRCReturn(rc, rc);
654 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
655 }
656 return VINF_SUCCESS;
657}
658
659
660/**
661 * Reads the VM-exit instruction length field from the VMCS into the VMX
662 * transient structure.
663 *
664 * @returns VBox status code.
665 * @param pVmxTransient Pointer to the VMX transient structure.
666 */
667DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
668{
669 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
670 {
671 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
672 AssertRCReturn(rc, rc);
673 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
674 }
675 return VINF_SUCCESS;
676}
677
678
679/**
680 * Reads the VM-exit instruction-information field from the VMCS into
681 * the VMX transient structure.
682 *
683 * @returns VBox status code.
684 * @param pVmxTransient Pointer to the VMX transient structure.
685 */
686DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
687{
688 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
689 {
690 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
691 AssertRCReturn(rc, rc);
692 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
693 }
694 return VINF_SUCCESS;
695}
696
697
698/**
699 * Reads the exit code qualification from the VMCS into the VMX transient
700 * structure.
701 *
702 * @returns VBox status code.
703 * @param pVCpu The cross context virtual CPU structure of the
704 * calling EMT. (Required for the VMCS cache case.)
705 * @param pVmxTransient Pointer to the VMX transient structure.
706 */
707DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
708{
709 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
710 {
711 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
712 AssertRCReturn(rc, rc);
713 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
714 }
715 return VINF_SUCCESS;
716}
717
718
719/**
720 * Reads the IDT-vectoring information field from the VMCS into the VMX
721 * transient structure.
722 *
723 * @returns VBox status code.
724 * @param pVmxTransient Pointer to the VMX transient structure.
725 *
726 * @remarks No-long-jump zone!!!
727 */
728DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
729{
730 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
731 {
732 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
733 AssertRCReturn(rc, rc);
734 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
735 }
736 return VINF_SUCCESS;
737}
738
739
740/**
741 * Reads the IDT-vectoring error code from the VMCS into the VMX
742 * transient structure.
743 *
744 * @returns VBox status code.
745 * @param pVmxTransient Pointer to the VMX transient structure.
746 */
747DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
748{
749 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
750 {
751 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
752 AssertRCReturn(rc, rc);
753 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
754 }
755 return VINF_SUCCESS;
756}
757
758
759/**
760 * Enters VMX root mode operation on the current CPU.
761 *
762 * @returns VBox status code.
763 * @param pVM The cross context VM structure. Can be
764 * NULL, after a resume.
765 * @param HCPhysCpuPage Physical address of the VMXON region.
766 * @param pvCpuPage Pointer to the VMXON region.
767 */
768static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
769{
770 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
771 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
772 Assert(pvCpuPage);
773 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
774
775 if (pVM)
776 {
777 /* Write the VMCS revision dword to the VMXON region. */
778 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
779 }
780
781 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
782 RTCCUINTREG fEFlags = ASMIntDisableFlags();
783
784 /* Enable the VMX bit in CR4 if necessary. */
785 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
786
787 /* Enter VMX root mode. */
788 int rc = VMXEnable(HCPhysCpuPage);
789 if (RT_FAILURE(rc))
790 {
791 if (!(uOldCr4 & X86_CR4_VMXE))
792 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
793
794 if (pVM)
795 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
796 }
797
798 /* Restore interrupts. */
799 ASMSetFlags(fEFlags);
800 return rc;
801}
802
803
804/**
805 * Exits VMX root mode operation on the current CPU.
806 *
807 * @returns VBox status code.
808 */
809static int hmR0VmxLeaveRootMode(void)
810{
811 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
812
813 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
814 RTCCUINTREG fEFlags = ASMIntDisableFlags();
815
816 /* If we're for some reason not in VMX root mode, then don't leave it. */
817 RTCCUINTREG uHostCR4 = ASMGetCR4();
818
819 int rc;
820 if (uHostCR4 & X86_CR4_VMXE)
821 {
822 /* Exit VMX root mode and clear the VMX bit in CR4. */
823 VMXDisable();
824 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
825 rc = VINF_SUCCESS;
826 }
827 else
828 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
829
830 /* Restore interrupts. */
831 ASMSetFlags(fEFlags);
832 return rc;
833}
834
835
836/**
837 * Allocates and maps one physically contiguous page. The allocated page is
838 * zero'd out. (Used by various VT-x structures).
839 *
840 * @returns IPRT status code.
841 * @param pMemObj Pointer to the ring-0 memory object.
842 * @param ppVirt Where to store the virtual address of the
843 * allocation.
844 * @param pHCPhys Where to store the physical address of the
845 * allocation.
846 */
847static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
848{
849 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
850 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
851 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
852
853 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
854 if (RT_FAILURE(rc))
855 return rc;
856 *ppVirt = RTR0MemObjAddress(*pMemObj);
857 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
858 ASMMemZero32(*ppVirt, PAGE_SIZE);
859 return VINF_SUCCESS;
860}
861
862
863/**
864 * Frees and unmaps an allocated physical page.
865 *
866 * @param pMemObj Pointer to the ring-0 memory object.
867 * @param ppVirt Where to re-initialize the virtual address of
868 * allocation as 0.
869 * @param pHCPhys Where to re-initialize the physical address of the
870 * allocation as 0.
871 */
872static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
873{
874 AssertPtr(pMemObj);
875 AssertPtr(ppVirt);
876 AssertPtr(pHCPhys);
877 if (*pMemObj != NIL_RTR0MEMOBJ)
878 {
879 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
880 AssertRC(rc);
881 *pMemObj = NIL_RTR0MEMOBJ;
882 *ppVirt = 0;
883 *pHCPhys = 0;
884 }
885}
886
887
888/**
889 * Worker function to free VT-x related structures.
890 *
891 * @returns IPRT status code.
892 * @param pVM The cross context VM structure.
893 */
894static void hmR0VmxStructsFree(PVM pVM)
895{
896 for (VMCPUID i = 0; i < pVM->cCpus; i++)
897 {
898 PVMCPU pVCpu = &pVM->aCpus[i];
899 AssertPtr(pVCpu);
900
901 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
902 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
903
904 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
905 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
906
907 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
908 }
909
910 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
911#ifdef VBOX_WITH_CRASHDUMP_MAGIC
912 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
913#endif
914}
915
916
917/**
918 * Worker function to allocate VT-x related VM structures.
919 *
920 * @returns IPRT status code.
921 * @param pVM The cross context VM structure.
922 */
923static int hmR0VmxStructsAlloc(PVM pVM)
924{
925 /*
926 * Initialize members up-front so we can cleanup properly on allocation failure.
927 */
928#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
929 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
930 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
931 pVM->hm.s.vmx.HCPhys##a_Name = 0;
932
933#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
934 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
935 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
936 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
937
938#ifdef VBOX_WITH_CRASHDUMP_MAGIC
939 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
940#endif
941 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
942
943 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
944 for (VMCPUID i = 0; i < pVM->cCpus; i++)
945 {
946 PVMCPU pVCpu = &pVM->aCpus[i];
947 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
948 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
949 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
950 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
951 }
952#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
953#undef VMXLOCAL_INIT_VM_MEMOBJ
954
955 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
956 AssertReturnStmt(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE) <= PAGE_SIZE,
957 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
958 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
959
960 /*
961 * Allocate all the VT-x structures.
962 */
963 int rc = VINF_SUCCESS;
964#ifdef VBOX_WITH_CRASHDUMP_MAGIC
965 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
966 if (RT_FAILURE(rc))
967 goto cleanup;
968 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
969 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
970#endif
971
972 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
973 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
974 {
975 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
976 &pVM->hm.s.vmx.HCPhysApicAccess);
977 if (RT_FAILURE(rc))
978 goto cleanup;
979 }
980
981 /*
982 * Initialize per-VCPU VT-x structures.
983 */
984 for (VMCPUID i = 0; i < pVM->cCpus; i++)
985 {
986 PVMCPU pVCpu = &pVM->aCpus[i];
987 AssertPtr(pVCpu);
988
989 /* Allocate the VM control structure (VMCS). */
990 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
991 if (RT_FAILURE(rc))
992 goto cleanup;
993
994 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
995 if ( PDMHasApic(pVM)
996 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
997 {
998 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
999 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1000 if (RT_FAILURE(rc))
1001 goto cleanup;
1002 }
1003
1004 /*
1005 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1006 * transparent accesses of specific MSRs.
1007 *
1008 * If the condition for enabling MSR bitmaps changes here, don't forget to
1009 * update HMAreMsrBitmapsAvailable().
1010 */
1011 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1012 {
1013 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1014 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1015 if (RT_FAILURE(rc))
1016 goto cleanup;
1017 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1018 }
1019
1020 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1021 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1022 if (RT_FAILURE(rc))
1023 goto cleanup;
1024
1025 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1026 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1027 if (RT_FAILURE(rc))
1028 goto cleanup;
1029 }
1030
1031 return VINF_SUCCESS;
1032
1033cleanup:
1034 hmR0VmxStructsFree(pVM);
1035 return rc;
1036}
1037
1038
1039/**
1040 * Does global VT-x initialization (called during module initialization).
1041 *
1042 * @returns VBox status code.
1043 */
1044VMMR0DECL(int) VMXR0GlobalInit(void)
1045{
1046#ifdef HMVMX_USE_FUNCTION_TABLE
1047 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1048# ifdef VBOX_STRICT
1049 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1050 Assert(g_apfnVMExitHandlers[i]);
1051# endif
1052#endif
1053 return VINF_SUCCESS;
1054}
1055
1056
1057/**
1058 * Does global VT-x termination (called during module termination).
1059 */
1060VMMR0DECL(void) VMXR0GlobalTerm()
1061{
1062 /* Nothing to do currently. */
1063}
1064
1065
1066/**
1067 * Sets up and activates VT-x on the current CPU.
1068 *
1069 * @returns VBox status code.
1070 * @param pHostCpu Pointer to the global CPU info struct.
1071 * @param pVM The cross context VM structure. Can be
1072 * NULL after a host resume operation.
1073 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1074 * fEnabledByHost is @c true).
1075 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1076 * @a fEnabledByHost is @c true).
1077 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1078 * enable VT-x on the host.
1079 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1080 */
1081VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1082 void *pvMsrs)
1083{
1084 Assert(pHostCpu);
1085 Assert(pvMsrs);
1086 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1087
1088 /* Enable VT-x if it's not already enabled by the host. */
1089 if (!fEnabledByHost)
1090 {
1091 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1092 if (RT_FAILURE(rc))
1093 return rc;
1094 }
1095
1096 /*
1097 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
1098 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
1099 * invalidated when flushing by VPID.
1100 */
1101 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1102 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1103 {
1104 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
1105 pHostCpu->fFlushAsidBeforeUse = false;
1106 }
1107 else
1108 pHostCpu->fFlushAsidBeforeUse = true;
1109
1110 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1111 ++pHostCpu->cTlbFlushes;
1112
1113 return VINF_SUCCESS;
1114}
1115
1116
1117/**
1118 * Deactivates VT-x on the current CPU.
1119 *
1120 * @returns VBox status code.
1121 * @param pHostCpu Pointer to the global CPU info struct.
1122 * @param pvCpuPage Pointer to the VMXON region.
1123 * @param HCPhysCpuPage Physical address of the VMXON region.
1124 *
1125 * @remarks This function should never be called when SUPR0EnableVTx() or
1126 * similar was used to enable VT-x on the host.
1127 */
1128VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1129{
1130 RT_NOREF3(pHostCpu, pvCpuPage, HCPhysCpuPage);
1131
1132 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1133 return hmR0VmxLeaveRootMode();
1134}
1135
1136
1137/**
1138 * Sets the permission bits for the specified MSR in the MSR bitmap.
1139 *
1140 * @param pVCpu The cross context virtual CPU structure.
1141 * @param uMsr The MSR value.
1142 * @param enmRead Whether reading this MSR causes a VM-exit.
1143 * @param enmWrite Whether writing this MSR causes a VM-exit.
1144 */
1145static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1146{
1147 int32_t iBit;
1148 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1149
1150 /*
1151 * Layout:
1152 * 0x000 - 0x3ff - Low MSR read bits
1153 * 0x400 - 0x7ff - High MSR read bits
1154 * 0x800 - 0xbff - Low MSR write bits
1155 * 0xc00 - 0xfff - High MSR write bits
1156 */
1157 if (uMsr <= 0x00001fff)
1158 iBit = uMsr;
1159 else if (uMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1160 {
1161 iBit = uMsr - UINT32_C(0xc0000000);
1162 pbMsrBitmap += 0x400;
1163 }
1164 else
1165 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1166
1167 Assert(iBit <= 0x1fff);
1168 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1169 ASMBitSet(pbMsrBitmap, iBit);
1170 else
1171 ASMBitClear(pbMsrBitmap, iBit);
1172
1173 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1174 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1175 else
1176 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1177}
1178
1179
1180#ifdef VBOX_STRICT
1181/**
1182 * Gets the permission bits for the specified MSR in the MSR bitmap.
1183 *
1184 * @returns VBox status code.
1185 * @retval VINF_SUCCESS if the specified MSR is found.
1186 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1187 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1188 *
1189 * @param pVCpu The cross context virtual CPU structure.
1190 * @param uMsr The MSR.
1191 * @param penmRead Where to store the read permissions.
1192 * @param penmWrite Where to store the write permissions.
1193 */
1194static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1195{
1196 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1197 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1198 int32_t iBit;
1199 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1200
1201 /* See hmR0VmxSetMsrPermission() for the layout. */
1202 if (uMsr <= 0x00001fff)
1203 iBit = uMsr;
1204 else if ( uMsr >= 0xc0000000
1205 && uMsr <= 0xc0001fff)
1206 {
1207 iBit = (uMsr - 0xc0000000);
1208 pbMsrBitmap += 0x400;
1209 }
1210 else
1211 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1212
1213 Assert(iBit <= 0x1fff);
1214 if (ASMBitTest(pbMsrBitmap, iBit))
1215 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1216 else
1217 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1218
1219 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1220 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1221 else
1222 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1223 return VINF_SUCCESS;
1224}
1225#endif /* VBOX_STRICT */
1226
1227
1228/**
1229 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1230 * area.
1231 *
1232 * @returns VBox status code.
1233 * @param pVCpu The cross context virtual CPU structure.
1234 * @param cMsrs The number of MSRs.
1235 */
1236static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1237{
1238 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1239 uint64_t const uVmxMiscMsr = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc;
1240 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(uVmxMiscMsr);
1241 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1242 {
1243 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1244 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1245 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1246 }
1247
1248 /* Update number of guest MSRs to load/store across the world-switch. */
1249 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1250 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1251
1252 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1253 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1254 AssertRCReturn(rc, rc);
1255
1256 /* Update the VCPU's copy of the MSR count. */
1257 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1258
1259 return VINF_SUCCESS;
1260}
1261
1262
1263/**
1264 * Adds a new (or updates the value of an existing) guest/host MSR
1265 * pair to be swapped during the world-switch as part of the
1266 * auto-load/store MSR area in the VMCS.
1267 *
1268 * @returns VBox status code.
1269 * @param pVCpu The cross context virtual CPU structure.
1270 * @param uMsr The MSR.
1271 * @param uGuestMsrValue Value of the guest MSR.
1272 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1273 * necessary.
1274 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1275 * its value was updated. Optional, can be NULL.
1276 */
1277static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1278 bool *pfAddedAndUpdated)
1279{
1280 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1281 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1282 uint32_t i;
1283 for (i = 0; i < cMsrs; i++)
1284 {
1285 if (pGuestMsr->u32Msr == uMsr)
1286 break;
1287 pGuestMsr++;
1288 }
1289
1290 bool fAdded = false;
1291 if (i == cMsrs)
1292 {
1293 ++cMsrs;
1294 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1295 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1296
1297 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1298 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1299 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1300
1301 fAdded = true;
1302 }
1303
1304 /* Update the MSR values in the auto-load/store MSR area. */
1305 pGuestMsr->u32Msr = uMsr;
1306 pGuestMsr->u64Value = uGuestMsrValue;
1307
1308 /* Create/update the MSR slot in the host MSR area. */
1309 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1310 pHostMsr += i;
1311 pHostMsr->u32Msr = uMsr;
1312
1313 /*
1314 * Update the host MSR only when requested by the caller AND when we're
1315 * adding it to the auto-load/store area. Otherwise, it would have been
1316 * updated by hmR0VmxExportHostMsrs(). We do this for performance reasons.
1317 */
1318 bool fUpdatedMsrValue = false;
1319 if ( fAdded
1320 && fUpdateHostMsr)
1321 {
1322 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1323 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1324 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1325 fUpdatedMsrValue = true;
1326 }
1327
1328 if (pfAddedAndUpdated)
1329 *pfAddedAndUpdated = fUpdatedMsrValue;
1330 return VINF_SUCCESS;
1331}
1332
1333
1334/**
1335 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1336 * auto-load/store MSR area in the VMCS.
1337 *
1338 * @returns VBox status code.
1339 * @param pVCpu The cross context virtual CPU structure.
1340 * @param uMsr The MSR.
1341 */
1342static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1343{
1344 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1345 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1346 for (uint32_t i = 0; i < cMsrs; i++)
1347 {
1348 /* Find the MSR. */
1349 if (pGuestMsr->u32Msr == uMsr)
1350 {
1351 /* If it's the last MSR, simply reduce the count. */
1352 if (i == cMsrs - 1)
1353 {
1354 --cMsrs;
1355 break;
1356 }
1357
1358 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1359 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1360 pLastGuestMsr += cMsrs - 1;
1361 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1362 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1363
1364 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1365 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1366 pLastHostMsr += cMsrs - 1;
1367 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1368 pHostMsr->u64Value = pLastHostMsr->u64Value;
1369 --cMsrs;
1370 break;
1371 }
1372 pGuestMsr++;
1373 }
1374
1375 /* Update the VMCS if the count changed (meaning the MSR was found). */
1376 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1377 {
1378 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1379 AssertRCReturn(rc, rc);
1380
1381 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1382 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1383 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1384
1385 Log4Func(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1386 return VINF_SUCCESS;
1387 }
1388
1389 return VERR_NOT_FOUND;
1390}
1391
1392
1393/**
1394 * Checks if the specified guest MSR is part of the auto-load/store area in
1395 * the VMCS.
1396 *
1397 * @returns true if found, false otherwise.
1398 * @param pVCpu The cross context virtual CPU structure.
1399 * @param uMsr The MSR to find.
1400 */
1401static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1402{
1403 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1404 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1405
1406 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1407 {
1408 if (pGuestMsr->u32Msr == uMsr)
1409 return true;
1410 }
1411 return false;
1412}
1413
1414
1415/**
1416 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1417 *
1418 * @param pVCpu The cross context virtual CPU structure.
1419 *
1420 * @remarks No-long-jump zone!!!
1421 */
1422static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1423{
1424 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1425 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1426 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1427 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1428
1429 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1430 {
1431 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1432
1433 /*
1434 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1435 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1436 */
1437 if (pHostMsr->u32Msr == MSR_K6_EFER)
1438 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1439 else
1440 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1441 }
1442
1443 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1444}
1445
1446
1447/**
1448 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1449 * perform lazy restoration of the host MSRs while leaving VT-x.
1450 *
1451 * @param pVCpu The cross context virtual CPU structure.
1452 *
1453 * @remarks No-long-jump zone!!!
1454 */
1455static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1456{
1457 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1458
1459 /*
1460 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1461 */
1462 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1463 {
1464 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1465#if HC_ARCH_BITS == 64
1466 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1467 {
1468 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1469 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1470 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1471 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1472 }
1473#endif
1474 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1475 }
1476}
1477
1478
1479/**
1480 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1481 * lazily while leaving VT-x.
1482 *
1483 * @returns true if it does, false otherwise.
1484 * @param pVCpu The cross context virtual CPU structure.
1485 * @param uMsr The MSR to check.
1486 */
1487static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1488{
1489 NOREF(pVCpu);
1490#if HC_ARCH_BITS == 64
1491 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1492 {
1493 switch (uMsr)
1494 {
1495 case MSR_K8_LSTAR:
1496 case MSR_K6_STAR:
1497 case MSR_K8_SF_MASK:
1498 case MSR_K8_KERNEL_GS_BASE:
1499 return true;
1500 }
1501 }
1502#else
1503 RT_NOREF(pVCpu, uMsr);
1504#endif
1505 return false;
1506}
1507
1508
1509/**
1510 * Loads a set of guests MSRs to allow read/passthru to the guest.
1511 *
1512 * The name of this function is slightly confusing. This function does NOT
1513 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1514 * common prefix for functions dealing with "lazy restoration" of the shared
1515 * MSRs.
1516 *
1517 * @param pVCpu The cross context virtual CPU structure.
1518 *
1519 * @remarks No-long-jump zone!!!
1520 */
1521static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1522{
1523 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1524 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1525
1526 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1527#if HC_ARCH_BITS == 64
1528 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1529 {
1530 /*
1531 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1532 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1533 * we can skip a few MSR writes.
1534 *
1535 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1536 * guest MSR values in the guest-CPU context might be different to what's currently
1537 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1538 * CPU, see @bugref{8728}.
1539 */
1540 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1541 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1542 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1543 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1544 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1545 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1546 {
1547#ifdef VBOX_STRICT
1548 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1549 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1550 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1551 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1552#endif
1553 }
1554 else
1555 {
1556 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1557 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
1558 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
1559 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1560 }
1561 }
1562#endif
1563 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1564}
1565
1566
1567/**
1568 * Performs lazy restoration of the set of host MSRs if they were previously
1569 * loaded with guest MSR values.
1570 *
1571 * @param pVCpu The cross context virtual CPU structure.
1572 *
1573 * @remarks No-long-jump zone!!!
1574 * @remarks The guest MSRs should have been saved back into the guest-CPU
1575 * context by hmR0VmxImportGuestState()!!!
1576 */
1577static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1578{
1579 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1580 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1581
1582 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1583 {
1584 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1585#if HC_ARCH_BITS == 64
1586 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1587 {
1588 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1589 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1590 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1591 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1592 }
1593#endif
1594 }
1595 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1596}
1597
1598
1599/**
1600 * Verifies that our cached values of the VMCS fields are all consistent with
1601 * what's actually present in the VMCS.
1602 *
1603 * @returns VBox status code.
1604 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
1605 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
1606 * VMCS content. HMCPU error-field is
1607 * updated, see VMX_VCI_XXX.
1608 * @param pVCpu The cross context virtual CPU structure.
1609 */
1610static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1611{
1612 uint32_t u32Val;
1613 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1614 AssertRCReturn(rc, rc);
1615 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32EntryCtls == u32Val,
1616 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1617 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
1618 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1619
1620 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1621 AssertRCReturn(rc, rc);
1622 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ExitCtls == u32Val,
1623 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1624 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
1625 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1626
1627 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1628 AssertRCReturn(rc, rc);
1629 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32PinCtls == u32Val,
1630 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1631 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
1632 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1633
1634 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1635 AssertRCReturn(rc, rc);
1636 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls == u32Val,
1637 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1638 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
1639 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1640
1641 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1642 {
1643 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1644 AssertRCReturn(rc, rc);
1645 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1646 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1647 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
1648 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1649 }
1650
1651 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
1652 AssertRCReturn(rc, rc);
1653 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32XcptBitmap == u32Val,
1654 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap, u32Val),
1655 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
1656 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1657
1658 uint64_t u64Val;
1659 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
1660 AssertRCReturn(rc, rc);
1661 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u64TscOffset == u64Val,
1662 ("Cache=%#RX64 VMCS=%#RX64\n", pVCpu->hm.s.vmx.u64TscOffset, u64Val),
1663 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
1664 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1665
1666 return VINF_SUCCESS;
1667}
1668
1669
1670#ifdef VBOX_STRICT
1671/**
1672 * Verifies that our cached host EFER value has not changed
1673 * since we cached it.
1674 *
1675 * @param pVCpu The cross context virtual CPU structure.
1676 */
1677static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1678{
1679 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1680
1681 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1682 {
1683 uint64_t u64Val;
1684 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1685 AssertRC(rc);
1686
1687 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1688 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1689 }
1690}
1691
1692
1693/**
1694 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1695 * VMCS are correct.
1696 *
1697 * @param pVCpu The cross context virtual CPU structure.
1698 */
1699static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1700{
1701 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1702
1703 /* Verify MSR counts in the VMCS are what we think it should be. */
1704 uint32_t cMsrs;
1705 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1706 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1707
1708 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1709 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1710
1711 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1712 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1713
1714 PCVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1715 PCVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1716 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1717 {
1718 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1719 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1720 pGuestMsr->u32Msr, cMsrs));
1721
1722 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1723 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1724 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1725
1726 /* Verify that the permissions are as expected in the MSR bitmap. */
1727 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1728 {
1729 VMXMSREXITREAD enmRead;
1730 VMXMSREXITWRITE enmWrite;
1731 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1732 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1733 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1734 {
1735 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1736 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1737 }
1738 else
1739 {
1740 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1741 pGuestMsr->u32Msr, cMsrs));
1742 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1743 pGuestMsr->u32Msr, cMsrs));
1744 }
1745 }
1746 }
1747}
1748#endif /* VBOX_STRICT */
1749
1750
1751/**
1752 * Flushes the TLB using EPT.
1753 *
1754 * @returns VBox status code.
1755 * @param pVCpu The cross context virtual CPU structure of the calling
1756 * EMT. Can be NULL depending on @a enmTlbFlush.
1757 * @param enmTlbFlush Type of flush.
1758 *
1759 * @remarks Caller is responsible for making sure this function is called only
1760 * when NestedPaging is supported and providing @a enmTlbFlush that is
1761 * supported by the CPU.
1762 * @remarks Can be called with interrupts disabled.
1763 */
1764static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush)
1765{
1766 uint64_t au64Descriptor[2];
1767 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1768 au64Descriptor[0] = 0;
1769 else
1770 {
1771 Assert(pVCpu);
1772 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1773 }
1774 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1775
1776 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
1777 AssertMsg(rc == VINF_SUCCESS,
1778 ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0, rc));
1779
1780 if ( RT_SUCCESS(rc)
1781 && pVCpu)
1782 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1783}
1784
1785
1786/**
1787 * Flushes the TLB using VPID.
1788 *
1789 * @returns VBox status code.
1790 * @param pVCpu The cross context virtual CPU structure of the calling
1791 * EMT. Can be NULL depending on @a enmTlbFlush.
1792 * @param enmTlbFlush Type of flush.
1793 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1794 * on @a enmTlbFlush).
1795 *
1796 * @remarks Can be called with interrupts disabled.
1797 */
1798static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
1799{
1800 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
1801
1802 uint64_t au64Descriptor[2];
1803 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1804 {
1805 au64Descriptor[0] = 0;
1806 au64Descriptor[1] = 0;
1807 }
1808 else
1809 {
1810 AssertPtr(pVCpu);
1811 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1812 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1813 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1814 au64Descriptor[1] = GCPtr;
1815 }
1816
1817 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
1818 AssertMsg(rc == VINF_SUCCESS,
1819 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1820
1821 if ( RT_SUCCESS(rc)
1822 && pVCpu)
1823 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1824 NOREF(rc);
1825}
1826
1827
1828/**
1829 * Invalidates a guest page by guest virtual address. Only relevant for
1830 * EPT/VPID, otherwise there is nothing really to invalidate.
1831 *
1832 * @returns VBox status code.
1833 * @param pVCpu The cross context virtual CPU structure.
1834 * @param GCVirt Guest virtual address of the page to invalidate.
1835 */
1836VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1837{
1838 AssertPtr(pVCpu);
1839 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
1840
1841 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1842 if (!fFlushPending)
1843 {
1844 /*
1845 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
1846 * the EPT case. See @bugref{6043} and @bugref{6177}.
1847 *
1848 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
1849 * as this function maybe called in a loop with individual addresses.
1850 */
1851 PVM pVM = pVCpu->CTX_SUFF(pVM);
1852 if (pVM->hm.s.vmx.fVpid)
1853 {
1854 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1855
1856#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1857 /*
1858 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
1859 * where executing INVVPID outside 64-bit mode does not flush translations of
1860 * 64-bit linear addresses, see @bugref{6208#c72}.
1861 */
1862 if (RT_HI_U32(GCVirt))
1863 fVpidFlush = false;
1864#endif
1865
1866 if (fVpidFlush)
1867 {
1868 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
1869 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1870 }
1871 else
1872 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1873 }
1874 else if (pVM->hm.s.fNestedPaging)
1875 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1876 }
1877
1878 return VINF_SUCCESS;
1879}
1880
1881
1882/**
1883 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1884 * case where neither EPT nor VPID is supported by the CPU.
1885 *
1886 * @param pVCpu The cross context virtual CPU structure.
1887 * @param pCpu Pointer to the global HM struct.
1888 *
1889 * @remarks Called with interrupts disabled.
1890 */
1891static void hmR0VmxFlushTaggedTlbNone(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1892{
1893 AssertPtr(pVCpu);
1894 AssertPtr(pCpu);
1895
1896 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1897
1898 Assert(pCpu->idCpu != NIL_RTCPUID);
1899 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1900 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1901 pVCpu->hm.s.fForceTLBFlush = false;
1902 return;
1903}
1904
1905
1906/**
1907 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1908 *
1909 * @param pVCpu The cross context virtual CPU structure.
1910 * @param pCpu Pointer to the global HM CPU struct.
1911 *
1912 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
1913 * nomenclature. The reason is, to avoid confusion in compare statements
1914 * since the host-CPU copies are named "ASID".
1915 *
1916 * @remarks Called with interrupts disabled.
1917 */
1918static void hmR0VmxFlushTaggedTlbBoth(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1919{
1920#ifdef VBOX_WITH_STATISTICS
1921 bool fTlbFlushed = false;
1922# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1923# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1924 if (!fTlbFlushed) \
1925 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1926 } while (0)
1927#else
1928# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1929# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1930#endif
1931
1932 AssertPtr(pCpu);
1933 AssertPtr(pVCpu);
1934 Assert(pCpu->idCpu != NIL_RTCPUID);
1935
1936 PVM pVM = pVCpu->CTX_SUFF(pVM);
1937 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1938 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1939 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1940
1941 /*
1942 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
1943 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
1944 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
1945 * cannot reuse the current ASID anymore.
1946 */
1947 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1948 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1949 {
1950 ++pCpu->uCurrentAsid;
1951 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1952 {
1953 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1954 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1955 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1956 }
1957
1958 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1959 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1960 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1961
1962 /*
1963 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1964 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1965 */
1966 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1967 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1968 HMVMX_SET_TAGGED_TLB_FLUSHED();
1969 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1970 }
1971 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
1972 {
1973 /*
1974 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
1975 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
1976 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
1977 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
1978 * mappings, see @bugref{6568}.
1979 *
1980 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
1981 */
1982 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1983 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1984 HMVMX_SET_TAGGED_TLB_FLUSHED();
1985 }
1986
1987 pVCpu->hm.s.fForceTLBFlush = false;
1988 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1989
1990 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
1991 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
1992 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1993 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1994 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1995 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
1996 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
1997 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1998 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1999
2000 /* Update VMCS with the VPID. */
2001 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2002 AssertRC(rc);
2003
2004#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2005}
2006
2007
2008/**
2009 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2010 *
2011 * @returns VBox status code.
2012 * @param pVCpu The cross context virtual CPU structure.
2013 * @param pCpu Pointer to the global HM CPU struct.
2014 *
2015 * @remarks Called with interrupts disabled.
2016 */
2017static void hmR0VmxFlushTaggedTlbEpt(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2018{
2019 AssertPtr(pVCpu);
2020 AssertPtr(pCpu);
2021 Assert(pCpu->idCpu != NIL_RTCPUID);
2022 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2023 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2024
2025 /*
2026 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2027 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2028 */
2029 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2030 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2031 {
2032 pVCpu->hm.s.fForceTLBFlush = true;
2033 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2034 }
2035
2036 /* Check for explicit TLB flushes. */
2037 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2038 {
2039 pVCpu->hm.s.fForceTLBFlush = true;
2040 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2041 }
2042
2043 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2044 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2045
2046 if (pVCpu->hm.s.fForceTLBFlush)
2047 {
2048 hmR0VmxFlushEpt(pVCpu, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2049 pVCpu->hm.s.fForceTLBFlush = false;
2050 }
2051}
2052
2053
2054/**
2055 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2056 *
2057 * @returns VBox status code.
2058 * @param pVCpu The cross context virtual CPU structure.
2059 * @param pCpu Pointer to the global HM CPU struct.
2060 *
2061 * @remarks Called with interrupts disabled.
2062 */
2063static void hmR0VmxFlushTaggedTlbVpid(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2064{
2065 AssertPtr(pVCpu);
2066 AssertPtr(pCpu);
2067 Assert(pCpu->idCpu != NIL_RTCPUID);
2068 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2069 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2070
2071 /*
2072 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2073 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2074 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2075 * cannot reuse the current ASID anymore.
2076 */
2077 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2078 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2079 {
2080 pVCpu->hm.s.fForceTLBFlush = true;
2081 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2082 }
2083
2084 /* Check for explicit TLB flushes. */
2085 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2086 {
2087 /*
2088 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2089 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2090 * fExplicitFlush = true here and change the pCpu->fFlushAsidBeforeUse check below to
2091 * include fExplicitFlush's too) - an obscure corner case.
2092 */
2093 pVCpu->hm.s.fForceTLBFlush = true;
2094 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2095 }
2096
2097 PVM pVM = pVCpu->CTX_SUFF(pVM);
2098 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2099 if (pVCpu->hm.s.fForceTLBFlush)
2100 {
2101 ++pCpu->uCurrentAsid;
2102 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2103 {
2104 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2105 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2106 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2107 }
2108
2109 pVCpu->hm.s.fForceTLBFlush = false;
2110 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2111 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2112 if (pCpu->fFlushAsidBeforeUse)
2113 {
2114 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2115 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2116 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2117 {
2118 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2119 pCpu->fFlushAsidBeforeUse = false;
2120 }
2121 else
2122 {
2123 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2124 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2125 }
2126 }
2127 }
2128
2129 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2130 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2131 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2132 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2133 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2134 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2135 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2136
2137 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2138 AssertRC(rc);
2139}
2140
2141
2142/**
2143 * Flushes the guest TLB entry based on CPU capabilities.
2144 *
2145 * @param pVCpu The cross context virtual CPU structure.
2146 * @param pCpu Pointer to the global HM CPU struct.
2147 */
2148DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2149{
2150#ifdef HMVMX_ALWAYS_FLUSH_TLB
2151 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2152#endif
2153 PVM pVM = pVCpu->CTX_SUFF(pVM);
2154 switch (pVM->hm.s.vmx.enmTlbFlushType)
2155 {
2156 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVCpu, pCpu); break;
2157 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pVCpu, pCpu); break;
2158 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pVCpu, pCpu); break;
2159 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pVCpu, pCpu); break;
2160 default:
2161 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2162 break;
2163 }
2164 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2165}
2166
2167
2168/**
2169 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2170 * TLB entries from the host TLB before VM-entry.
2171 *
2172 * @returns VBox status code.
2173 * @param pVM The cross context VM structure.
2174 */
2175static int hmR0VmxSetupTaggedTlb(PVM pVM)
2176{
2177 /*
2178 * Determine optimal flush type for Nested Paging.
2179 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2180 * guest execution (see hmR3InitFinalizeR0()).
2181 */
2182 if (pVM->hm.s.fNestedPaging)
2183 {
2184 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2185 {
2186 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2187 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2188 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2189 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2190 else
2191 {
2192 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2193 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2194 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2195 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2196 }
2197
2198 /* Make sure the write-back cacheable memory type for EPT is supported. */
2199 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2200 {
2201 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2202 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2203 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2204 }
2205
2206 /* EPT requires a page-walk length of 4. */
2207 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2208 {
2209 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2210 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2211 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2212 }
2213 }
2214 else
2215 {
2216 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2217 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2218 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2219 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2220 }
2221 }
2222
2223 /*
2224 * Determine optimal flush type for VPID.
2225 */
2226 if (pVM->hm.s.vmx.fVpid)
2227 {
2228 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2229 {
2230 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2231 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2232 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2233 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2234 else
2235 {
2236 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2237 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2238 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2239 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2240 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2241 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2242 pVM->hm.s.vmx.fVpid = false;
2243 }
2244 }
2245 else
2246 {
2247 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2248 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2249 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2250 pVM->hm.s.vmx.fVpid = false;
2251 }
2252 }
2253
2254 /*
2255 * Setup the handler for flushing tagged-TLBs.
2256 */
2257 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2258 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2259 else if (pVM->hm.s.fNestedPaging)
2260 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2261 else if (pVM->hm.s.vmx.fVpid)
2262 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2263 else
2264 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2265 return VINF_SUCCESS;
2266}
2267
2268
2269/**
2270 * Sets up pin-based VM-execution controls in the VMCS.
2271 *
2272 * @returns VBox status code.
2273 * @param pVCpu The cross context virtual CPU structure.
2274 *
2275 * @remarks We don't really care about optimizing vmwrites here as it's done only
2276 * once per VM and hence we don't care about VMCS-field cache comparisons.
2277 */
2278static int hmR0VmxSetupPinCtls(PVMCPU pVCpu)
2279{
2280 PVM pVM = pVCpu->CTX_SUFF(pVM);
2281 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0; /* Bits set here must always be set. */
2282 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2283
2284 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2285 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2286
2287 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2288 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2289
2290 /* Enable the VMX preemption timer. */
2291 if (pVM->hm.s.vmx.fUsePreemptTimer)
2292 {
2293 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2294 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2295 }
2296
2297#if 0
2298 /* Enable posted-interrupt processing. */
2299 if (pVM->hm.s.fPostedIntrs)
2300 {
2301 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2302 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2303 fVal |= VMX_PIN_CTL_POSTED_INT;
2304 }
2305#endif
2306
2307 if ((fVal & fZap) != fVal)
2308 {
2309 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2310 pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0, fVal, fZap));
2311 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2312 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2313 }
2314
2315 /* Commit it to the VMCS and update our cache. */
2316 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2317 AssertRCReturn(rc, rc);
2318 pVCpu->hm.s.vmx.u32PinCtls = fVal;
2319
2320 return VINF_SUCCESS;
2321}
2322
2323
2324/**
2325 * Sets up secondary processor-based VM-execution controls in the VMCS.
2326 *
2327 * @returns VBox status code.
2328 * @param pVCpu The cross context virtual CPU structure.
2329 *
2330 * @remarks We don't really care about optimizing vmwrites here as it's done only
2331 * once per VM and hence we don't care about VMCS-field cache comparisons.
2332 */
2333static int hmR0VmxSetupProcCtls2(PVMCPU pVCpu)
2334{
2335 PVM pVM = pVCpu->CTX_SUFF(pVM);
2336 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2337 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2338
2339 /* WBINVD causes a VM-exit. */
2340 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2341 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2342
2343 /* Enable EPT (aka nested-paging). */
2344 if (pVM->hm.s.fNestedPaging)
2345 fVal |= VMX_PROC_CTLS2_EPT;
2346
2347 /*
2348 * Enable the INVPCID instruction if supported by the hardware and we expose
2349 * it to the guest. Without this, guest executing INVPCID would cause a #UD.
2350 */
2351 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2352 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2353 fVal |= VMX_PROC_CTLS2_INVPCID;
2354
2355 /* Enable VPID. */
2356 if (pVM->hm.s.vmx.fVpid)
2357 fVal |= VMX_PROC_CTLS2_VPID;
2358
2359 /* Enable Unrestricted guest execution. */
2360 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2361 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2362
2363#if 0
2364 if (pVM->hm.s.fVirtApicRegs)
2365 {
2366 /* Enable APIC-register virtualization. */
2367 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2368 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2369
2370 /* Enable virtual-interrupt delivery. */
2371 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2372 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2373 }
2374#endif
2375
2376 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
2377 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2378 * done dynamically. */
2379 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2380 {
2381 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2382 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2383 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS; /* Virtualize APIC accesses. */
2384 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2385 AssertRCReturn(rc, rc);
2386 }
2387
2388 /* Enable RDTSCP. */
2389 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
2390 fVal |= VMX_PROC_CTLS2_RDTSCP;
2391
2392 /* Enable Pause-Loop exiting. */
2393 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
2394 && pVM->hm.s.vmx.cPleGapTicks
2395 && pVM->hm.s.vmx.cPleWindowTicks)
2396 {
2397 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2398
2399 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2400 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2401 AssertRCReturn(rc, rc);
2402 }
2403
2404 if ((fVal & fZap) != fVal)
2405 {
2406 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2407 pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0, fVal, fZap));
2408 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2409 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2410 }
2411
2412 /* Commit it to the VMCS and update our cache. */
2413 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2414 AssertRCReturn(rc, rc);
2415 pVCpu->hm.s.vmx.u32ProcCtls2 = fVal;
2416
2417 return VINF_SUCCESS;
2418}
2419
2420
2421/**
2422 * Sets up processor-based VM-execution controls in the VMCS.
2423 *
2424 * @returns VBox status code.
2425 * @param pVCpu The cross context virtual CPU structure.
2426 *
2427 * @remarks We don't really care about optimizing vmwrites here as it's done only
2428 * once per VM and hence we don't care about VMCS-field cache comparisons.
2429 */
2430static int hmR0VmxSetupProcCtls(PVMCPU pVCpu)
2431{
2432 PVM pVM = pVCpu->CTX_SUFF(pVM);
2433 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2434 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2435
2436 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2437 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2438 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2439 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2440 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2441 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2442 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2443
2444 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2445 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2446 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2447 {
2448 LogRelFunc(("Unsupported VMX_PROC_CTLS_MOV_DR_EXIT combo!"));
2449 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2450 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2451 }
2452
2453 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2454 if (!pVM->hm.s.fNestedPaging)
2455 {
2456 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2457 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
2458 | VMX_PROC_CTLS_CR3_LOAD_EXIT
2459 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2460 }
2461
2462 /* Use TPR shadowing if supported by the CPU. */
2463 if ( PDMHasApic(pVM)
2464 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
2465 {
2466 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2467 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2468 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2469 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2470 AssertRCReturn(rc, rc);
2471
2472 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2473 /* CR8 writes cause a VM-exit based on TPR threshold. */
2474 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2475 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2476 }
2477 else
2478 {
2479 /*
2480 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2481 * Set this control only for 64-bit guests.
2482 */
2483 if (pVM->hm.s.fAllow64BitGuests)
2484 {
2485 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2486 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2487 }
2488 }
2489
2490 /* Use MSR-bitmaps if supported by the CPU. */
2491 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2492 {
2493 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
2494
2495 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2496 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2497 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2498 AssertRCReturn(rc, rc);
2499
2500 /*
2501 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2502 * automatically using dedicated fields in the VMCS.
2503 */
2504 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2505 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2506 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2507 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2508 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2509#if HC_ARCH_BITS == 64
2510 /*
2511 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2512 */
2513 if (pVM->hm.s.fAllow64BitGuests)
2514 {
2515 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2516 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2517 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2518 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2519 }
2520#endif
2521 /*
2522 * The IA32_PRED_CMD MSR is write-only and has no state associated with it. We never need to intercept
2523 * access (writes need to be executed without exiting, reds will #GP-fault anyway).
2524 */
2525 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2526 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2527
2528 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2529 }
2530
2531 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2532 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2533 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2534
2535 if ((fVal & fZap) != fVal)
2536 {
2537 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2538 pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0, fVal, fZap));
2539 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2540 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2541 }
2542
2543 /* Commit it to the VMCS and update our cache. */
2544 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2545 AssertRCReturn(rc, rc);
2546 pVCpu->hm.s.vmx.u32ProcCtls = fVal;
2547
2548 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
2549 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2550 return hmR0VmxSetupProcCtls2(pVCpu);
2551
2552 /* Sanity check, should not really happen. */
2553 if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2554 {
2555 LogRelFunc(("Unrestricted Guest enabled when secondary processor-based VM-execution controls not available\n"));
2556 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2557 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2558 }
2559
2560 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
2561 return VINF_SUCCESS;
2562}
2563
2564
2565/**
2566 * Sets up miscellaneous (everything other than Pin & Processor-based
2567 * VM-execution) control fields in the VMCS.
2568 *
2569 * @returns VBox status code.
2570 * @param pVCpu The cross context virtual CPU structure.
2571 */
2572static int hmR0VmxSetupMiscCtls(PVMCPU pVCpu)
2573{
2574 AssertPtr(pVCpu);
2575
2576 int rc = VERR_GENERAL_FAILURE;
2577
2578 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2579#if 0
2580 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxExportGuestCR3AndCR4())*/
2581 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2582 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2583
2584 /*
2585 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2586 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2587 * We thus use the exception bitmap to control it rather than use both.
2588 */
2589 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2590 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2591
2592 /* All IO & IOIO instructions cause VM-exits. */
2593 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2594 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2595
2596 /* Initialize the MSR-bitmap area. */
2597 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2598 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2599 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2600 AssertRCReturn(rc, rc);
2601#endif
2602
2603 /* Setup MSR auto-load/store area. */
2604 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2605 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2606 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2607 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2608 AssertRCReturn(rc, rc);
2609
2610 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2611 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2612 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2613 AssertRCReturn(rc, rc);
2614
2615 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2616 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2617 AssertRCReturn(rc, rc);
2618
2619 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2620#if 0
2621 /* Setup debug controls */
2622 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
2623 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2624 AssertRCReturn(rc, rc);
2625#endif
2626
2627 return rc;
2628}
2629
2630
2631/**
2632 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2633 *
2634 * We shall setup those exception intercepts that don't change during the
2635 * lifetime of the VM here. The rest are done dynamically while loading the
2636 * guest state.
2637 *
2638 * @returns VBox status code.
2639 * @param pVCpu The cross context virtual CPU structure.
2640 */
2641static int hmR0VmxInitXcptBitmap(PVMCPU pVCpu)
2642{
2643 AssertPtr(pVCpu);
2644
2645 uint32_t uXcptBitmap;
2646
2647 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2648 uXcptBitmap = RT_BIT_32(X86_XCPT_AC);
2649
2650 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2651 and writes, and because recursive #DBs can cause the CPU hang, we must always
2652 intercept #DB. */
2653 uXcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2654
2655 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2656 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
2657 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
2658
2659 /* Commit it to the VMCS. */
2660 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2661 AssertRCReturn(rc, rc);
2662
2663 /* Update our cache of the exception bitmap. */
2664 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
2665 return VINF_SUCCESS;
2666}
2667
2668
2669/**
2670 * Does per-VM VT-x initialization.
2671 *
2672 * @returns VBox status code.
2673 * @param pVM The cross context VM structure.
2674 */
2675VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2676{
2677 LogFlowFunc(("pVM=%p\n", pVM));
2678
2679 int rc = hmR0VmxStructsAlloc(pVM);
2680 if (RT_FAILURE(rc))
2681 {
2682 LogRelFunc(("hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2683 return rc;
2684 }
2685
2686 return VINF_SUCCESS;
2687}
2688
2689
2690/**
2691 * Does per-VM VT-x termination.
2692 *
2693 * @returns VBox status code.
2694 * @param pVM The cross context VM structure.
2695 */
2696VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2697{
2698 LogFlowFunc(("pVM=%p\n", pVM));
2699
2700#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2701 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2702 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2703#endif
2704 hmR0VmxStructsFree(pVM);
2705 return VINF_SUCCESS;
2706}
2707
2708
2709/**
2710 * Sets up the VM for execution under VT-x.
2711 * This function is only called once per-VM during initialization.
2712 *
2713 * @returns VBox status code.
2714 * @param pVM The cross context VM structure.
2715 */
2716VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2717{
2718 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2719 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2720
2721 LogFlowFunc(("pVM=%p\n", pVM));
2722
2723 /*
2724 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be
2725 * allocated. We no longer support the highly unlikely case of UnrestrictedGuest without
2726 * pRealModeTSS, see hmR3InitFinalizeR0Intel().
2727 */
2728 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2729 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2730 || !pVM->hm.s.vmx.pRealModeTSS))
2731 {
2732 LogRelFunc(("Invalid real-on-v86 state.\n"));
2733 return VERR_INTERNAL_ERROR;
2734 }
2735
2736 /* Initialize these always, see hmR3InitFinalizeR0().*/
2737 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
2738 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
2739
2740 /* Setup the tagged-TLB flush handlers. */
2741 int rc = hmR0VmxSetupTaggedTlb(pVM);
2742 if (RT_FAILURE(rc))
2743 {
2744 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2745 return rc;
2746 }
2747
2748 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2749 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2750#if HC_ARCH_BITS == 64
2751 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2752 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2753 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
2754 {
2755 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2756 }
2757#endif
2758
2759 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2760 RTCCUINTREG uHostCR4 = ASMGetCR4();
2761 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2762 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2763
2764 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2765 {
2766 PVMCPU pVCpu = &pVM->aCpus[i];
2767 AssertPtr(pVCpu);
2768 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2769
2770 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2771 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2772
2773 /* Set revision dword at the beginning of the VMCS structure. */
2774 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
2775
2776 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2777 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2778 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc\n", rc),
2779 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2780
2781 /* Load this VMCS as the current VMCS. */
2782 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2783 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc\n", rc),
2784 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2785
2786 rc = hmR0VmxSetupPinCtls(pVCpu);
2787 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc\n", rc),
2788 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2789
2790 rc = hmR0VmxSetupProcCtls(pVCpu);
2791 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc\n", rc),
2792 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2793
2794 rc = hmR0VmxSetupMiscCtls(pVCpu);
2795 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc\n", rc),
2796 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2797
2798 rc = hmR0VmxInitXcptBitmap(pVCpu);
2799 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc\n", rc),
2800 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2801
2802#if HC_ARCH_BITS == 32
2803 rc = hmR0VmxInitVmcsReadCache(pVCpu);
2804 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc\n", rc),
2805 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2806#endif
2807
2808 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2809 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2810 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc\n", rc),
2811 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2812
2813 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2814
2815 hmR0VmxUpdateErrorRecord(pVCpu, rc);
2816 }
2817
2818 return VINF_SUCCESS;
2819}
2820
2821
2822/**
2823 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2824 * the VMCS.
2825 *
2826 * @returns VBox status code.
2827 */
2828static int hmR0VmxExportHostControlRegs(void)
2829{
2830 RTCCUINTREG uReg = ASMGetCR0();
2831 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2832 AssertRCReturn(rc, rc);
2833
2834 uReg = ASMGetCR3();
2835 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2836 AssertRCReturn(rc, rc);
2837
2838 uReg = ASMGetCR4();
2839 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2840 AssertRCReturn(rc, rc);
2841 return rc;
2842}
2843
2844
2845/**
2846 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2847 * the host-state area in the VMCS.
2848 *
2849 * @returns VBox status code.
2850 * @param pVCpu The cross context virtual CPU structure.
2851 */
2852static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
2853{
2854#if HC_ARCH_BITS == 64
2855/**
2856 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2857 * requirements. See hmR0VmxExportHostSegmentRegs().
2858 */
2859# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2860 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2861 { \
2862 bool fValidSelector = true; \
2863 if ((selValue) & X86_SEL_LDT) \
2864 { \
2865 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2866 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2867 } \
2868 if (fValidSelector) \
2869 { \
2870 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2871 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2872 } \
2873 (selValue) = 0; \
2874 }
2875
2876 /*
2877 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2878 * should -not- save the messed up state without restoring the original host-state,
2879 * see @bugref{7240}.
2880 *
2881 * This apparently can happen (most likely the FPU changes), deal with it rather than
2882 * asserting. Was observed booting Solaris 10u10 32-bit guest.
2883 */
2884 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2885 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2886 {
2887 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2888 pVCpu->idCpu));
2889 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2890 }
2891 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2892#else
2893 RT_NOREF(pVCpu);
2894#endif
2895
2896 /*
2897 * Host DS, ES, FS and GS segment registers.
2898 */
2899#if HC_ARCH_BITS == 64
2900 RTSEL uSelDS = ASMGetDS();
2901 RTSEL uSelES = ASMGetES();
2902 RTSEL uSelFS = ASMGetFS();
2903 RTSEL uSelGS = ASMGetGS();
2904#else
2905 RTSEL uSelDS = 0;
2906 RTSEL uSelES = 0;
2907 RTSEL uSelFS = 0;
2908 RTSEL uSelGS = 0;
2909#endif
2910
2911 /*
2912 * Host CS and SS segment registers.
2913 */
2914 RTSEL uSelCS = ASMGetCS();
2915 RTSEL uSelSS = ASMGetSS();
2916
2917 /*
2918 * Host TR segment register.
2919 */
2920 RTSEL uSelTR = ASMGetTR();
2921
2922#if HC_ARCH_BITS == 64
2923 /*
2924 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
2925 * gain VM-entry and restore them before we get preempted.
2926 *
2927 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2928 */
2929 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2930 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2931 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2932 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2933# undef VMXLOCAL_ADJUST_HOST_SEG
2934#endif
2935
2936 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2937 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2938 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2939 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2940 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2941 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2942 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2943 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2944 Assert(uSelCS);
2945 Assert(uSelTR);
2946
2947 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2948#if 0
2949 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE))
2950 Assert(uSelSS != 0);
2951#endif
2952
2953 /* Write these host selector fields into the host-state area in the VMCS. */
2954 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2955 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2956#if HC_ARCH_BITS == 64
2957 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2958 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2959 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2960 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2961#else
2962 NOREF(uSelDS);
2963 NOREF(uSelES);
2964 NOREF(uSelFS);
2965 NOREF(uSelGS);
2966#endif
2967 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2968 AssertRCReturn(rc, rc);
2969
2970 /*
2971 * Host GDTR and IDTR.
2972 */
2973 RTGDTR Gdtr;
2974 RTIDTR Idtr;
2975 RT_ZERO(Gdtr);
2976 RT_ZERO(Idtr);
2977 ASMGetGDTR(&Gdtr);
2978 ASMGetIDTR(&Idtr);
2979 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
2980 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
2981 AssertRCReturn(rc, rc);
2982
2983#if HC_ARCH_BITS == 64
2984 /*
2985 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
2986 * them to the maximum limit (0xffff) on every VM-exit.
2987 */
2988 if (Gdtr.cbGdt != 0xffff)
2989 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
2990
2991 /*
2992 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
2993 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
2994 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
2995 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
2996 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
2997 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
2998 * at 0xffff on hosts where we are sure it won't cause trouble.
2999 */
3000# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3001 if (Idtr.cbIdt < 0x0fff)
3002# else
3003 if (Idtr.cbIdt != 0xffff)
3004# endif
3005 {
3006 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3007 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3008 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3009 }
3010#endif
3011
3012 /*
3013 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
3014 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
3015 * RPL should be too in most cases.
3016 */
3017 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3018 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
3019
3020 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3021#if HC_ARCH_BITS == 64
3022 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3023
3024 /*
3025 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
3026 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
3027 * restoration if the host has something else. Task switching is not supported in 64-bit
3028 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
3029 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3030 *
3031 * [1] See Intel spec. 3.5 "System Descriptor Types".
3032 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3033 */
3034 PVM pVM = pVCpu->CTX_SUFF(pVM);
3035 Assert(pDesc->System.u4Type == 11);
3036 if ( pDesc->System.u16LimitLow != 0x67
3037 || pDesc->System.u4LimitHigh)
3038 {
3039 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3040 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3041 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3042 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3043 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3044 }
3045
3046 /*
3047 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
3048 */
3049 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
3050 {
3051 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3052 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3053 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
3054 {
3055 /* The GDT is read-only but the writable GDT is available. */
3056 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
3057 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
3058 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
3059 AssertRCReturn(rc, rc);
3060 }
3061 }
3062#else
3063 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3064#endif
3065 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3066 AssertRCReturn(rc, rc);
3067
3068 /*
3069 * Host FS base and GS base.
3070 */
3071#if HC_ARCH_BITS == 64
3072 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3073 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3074 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3075 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3076 AssertRCReturn(rc, rc);
3077
3078 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3079 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3080 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3081 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3082 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3083#endif
3084 return VINF_SUCCESS;
3085}
3086
3087
3088/**
3089 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
3090 * host-state area of the VMCS.
3091 *
3092 * Theses MSRs will be automatically restored on the host after every successful
3093 * VM-exit.
3094 *
3095 * @returns VBox status code.
3096 * @param pVCpu The cross context virtual CPU structure.
3097 *
3098 * @remarks No-long-jump zone!!!
3099 */
3100static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
3101{
3102 AssertPtr(pVCpu);
3103 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3104
3105 /*
3106 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3107 * rather than swapping them on every VM-entry.
3108 */
3109 hmR0VmxLazySaveHostMsrs(pVCpu);
3110
3111 /*
3112 * Host Sysenter MSRs.
3113 */
3114 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3115#if HC_ARCH_BITS == 32
3116 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3117 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3118#else
3119 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3120 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3121#endif
3122 AssertRCReturn(rc, rc);
3123
3124 /*
3125 * Host EFER MSR.
3126 *
3127 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
3128 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
3129 */
3130 PVM pVM = pVCpu->CTX_SUFF(pVM);
3131 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3132 {
3133 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3134 AssertRCReturn(rc, rc);
3135 }
3136
3137 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see hmR0VmxExportGuestExitCtls(). */
3138
3139 return VINF_SUCCESS;
3140}
3141
3142
3143/**
3144 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3145 *
3146 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3147 * these two bits are handled by VM-entry, see hmR0VmxExportGuestExitCtls() and
3148 * hmR0VMxExportGuestEntryCtls().
3149 *
3150 * @returns true if we need to load guest EFER, false otherwise.
3151 * @param pVCpu The cross context virtual CPU structure.
3152 *
3153 * @remarks Requires EFER, CR4.
3154 * @remarks No-long-jump zone!!!
3155 */
3156static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
3157{
3158#ifdef HMVMX_ALWAYS_SWAP_EFER
3159 return true;
3160#endif
3161
3162 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3163#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3164 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3165 if (CPUMIsGuestInLongModeEx(pCtx))
3166 return false;
3167#endif
3168
3169 PVM pVM = pVCpu->CTX_SUFF(pVM);
3170 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3171 uint64_t const u64GuestEfer = pCtx->msrEFER;
3172
3173 /*
3174 * For 64-bit guests, if EFER.SCE bit differs, we need to swap EFER to ensure that the
3175 * guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
3176 */
3177 if ( CPUMIsGuestInLongModeEx(pCtx)
3178 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3179 {
3180 return true;
3181 }
3182
3183 /*
3184 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3185 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3186 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3187 */
3188 if ( (pCtx->cr4 & X86_CR4_PAE)
3189 && (pCtx->cr0 & X86_CR0_PG)
3190 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3191 {
3192 /* Assert that host is NX capable. */
3193 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
3194 return true;
3195 }
3196
3197 return false;
3198}
3199
3200
3201/**
3202 * Exports the guest state with appropriate VM-entry controls in the VMCS.
3203 *
3204 * These controls can affect things done on VM-exit; e.g. "load debug controls",
3205 * see Intel spec. 24.8.1 "VM-entry controls".
3206 *
3207 * @returns VBox status code.
3208 * @param pVCpu The cross context virtual CPU structure.
3209 *
3210 * @remarks Requires EFER.
3211 * @remarks No-long-jump zone!!!
3212 */
3213static int hmR0VmxExportGuestEntryCtls(PVMCPU pVCpu)
3214{
3215 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_CTLS)
3216 {
3217 PVM pVM = pVCpu->CTX_SUFF(pVM);
3218 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3219 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3220
3221 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3222 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
3223
3224 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3225 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
3226 {
3227 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
3228 Log4Func(("VMX_ENTRY_CTLS_IA32E_MODE_GUEST\n"));
3229 }
3230 else
3231 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
3232
3233 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3234 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3235 && hmR0VmxShouldSwapEferMsr(pVCpu))
3236 {
3237 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
3238 Log4Func(("VMX_ENTRY_CTLS_LOAD_EFER_MSR\n"));
3239 }
3240
3241 /*
3242 * The following should -not- be set (since we're not in SMM mode):
3243 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
3244 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
3245 */
3246
3247 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
3248 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
3249
3250 if ((fVal & fZap) != fVal)
3251 {
3252 Log4Func(("Invalid VM-entry controls combo! Cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3253 pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0, fVal, fZap));
3254 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3255 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3256 }
3257
3258 /* Commit it to the VMCS and update our cache. */
3259 if (pVCpu->hm.s.vmx.u32EntryCtls != fVal)
3260 {
3261 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
3262 AssertRCReturn(rc, rc);
3263 pVCpu->hm.s.vmx.u32EntryCtls = fVal;
3264 }
3265
3266 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_CTLS);
3267 }
3268 return VINF_SUCCESS;
3269}
3270
3271
3272/**
3273 * Exports the guest state with appropriate VM-exit controls in the VMCS.
3274 *
3275 * @returns VBox status code.
3276 * @param pVCpu The cross context virtual CPU structure.
3277 *
3278 * @remarks Requires EFER.
3279 */
3280static int hmR0VmxExportGuestExitCtls(PVMCPU pVCpu)
3281{
3282 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_EXIT_CTLS)
3283 {
3284 PVM pVM = pVCpu->CTX_SUFF(pVM);
3285 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3286 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3287
3288 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3289 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
3290
3291 /*
3292 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3293 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in
3294 * hmR0VmxExportHostMsrs().
3295 */
3296#if HC_ARCH_BITS == 64
3297 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3298 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3299#else
3300 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3301 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3302 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3303 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3304 {
3305 /* The switcher returns to long mode, EFER is managed by the switcher. */
3306 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3307 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3308 }
3309 else
3310 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
3311#endif
3312
3313 /* If the newer VMCS fields for managing EFER exists, use it. */
3314 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3315 && hmR0VmxShouldSwapEferMsr(pVCpu))
3316 {
3317 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
3318 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
3319 Log4Func(("VMX_EXIT_CTLS_SAVE_EFER_MSR and VMX_EXIT_CTLS_LOAD_EFER_MSR\n"));
3320 }
3321
3322 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3323 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
3324
3325 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
3326 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
3327 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
3328
3329 /* Enable saving of the VMX preemption timer value on VM-exit. */
3330 if ( pVM->hm.s.vmx.fUsePreemptTimer
3331 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER))
3332 fVal |= VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER;
3333
3334 if ((fVal & fZap) != fVal)
3335 {
3336 LogRelFunc(("Invalid VM-exit controls combo! cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3337 pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0, fVal, fZap));
3338 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3339 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3340 }
3341
3342 /* Commit it to the VMCS and update our cache. */
3343 if (pVCpu->hm.s.vmx.u32ExitCtls != fVal)
3344 {
3345 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
3346 AssertRCReturn(rc, rc);
3347 pVCpu->hm.s.vmx.u32ExitCtls = fVal;
3348 }
3349
3350 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_EXIT_CTLS);
3351 }
3352 return VINF_SUCCESS;
3353}
3354
3355
3356/**
3357 * Sets the TPR threshold in the VMCS.
3358 *
3359 * @returns VBox status code.
3360 * @param pVCpu The cross context virtual CPU structure.
3361 * @param u32TprThreshold The TPR threshold (task-priority class only).
3362 */
3363DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3364{
3365 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3366 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3367 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3368}
3369
3370
3371/**
3372 * Exports the guest APIC TPR state into the VMCS.
3373 *
3374 * @returns VBox status code.
3375 * @param pVCpu The cross context virtual CPU structure.
3376 *
3377 * @remarks No-long-jump zone!!!
3378 */
3379static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu)
3380{
3381 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
3382 {
3383 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
3384
3385 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3386 && APICIsEnabled(pVCpu))
3387 {
3388 /*
3389 * Setup TPR shadowing.
3390 */
3391 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3392 {
3393 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3394
3395 bool fPendingIntr = false;
3396 uint8_t u8Tpr = 0;
3397 uint8_t u8PendingIntr = 0;
3398 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3399 AssertRCReturn(rc, rc);
3400
3401 /*
3402 * If there are interrupts pending but masked by the TPR, instruct VT-x to
3403 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
3404 * priority of the pending interrupt so we can deliver the interrupt. If there
3405 * are no interrupts pending, set threshold to 0 to not cause any
3406 * TPR-below-threshold VM-exits.
3407 */
3408 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3409 uint32_t u32TprThreshold = 0;
3410 if (fPendingIntr)
3411 {
3412 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3413 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3414 const uint8_t u8TprPriority = u8Tpr >> 4;
3415 if (u8PendingPriority <= u8TprPriority)
3416 u32TprThreshold = u8PendingPriority;
3417 }
3418
3419 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3420 AssertRCReturn(rc, rc);
3421 }
3422 }
3423 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
3424 }
3425 return VINF_SUCCESS;
3426}
3427
3428
3429/**
3430 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3431 *
3432 * @returns Guest's interruptibility-state.
3433 * @param pVCpu The cross context virtual CPU structure.
3434 *
3435 * @remarks No-long-jump zone!!!
3436 */
3437static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu)
3438{
3439 /*
3440 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3441 */
3442 uint32_t fIntrState = 0;
3443 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3444 {
3445 /* If inhibition is active, RIP & RFLAGS should've been accessed
3446 (i.e. read previously from the VMCS or from ring-3). */
3447 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3448#ifdef VBOX_STRICT
3449 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
3450 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
3451#endif
3452 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3453 {
3454 if (pCtx->eflags.Bits.u1IF)
3455 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
3456 else
3457 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
3458 }
3459 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3460 {
3461 /*
3462 * We can clear the inhibit force flag as even if we go back to the recompiler
3463 * without executing guest code in VT-x, the flag's condition to be cleared is
3464 * met and thus the cleared state is correct.
3465 */
3466 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3467 }
3468 }
3469
3470 /*
3471 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3472 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3473 * setting this would block host-NMIs and IRET will not clear the blocking.
3474 *
3475 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3476 */
3477 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3478 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3479 {
3480 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
3481 }
3482
3483 return fIntrState;
3484}
3485
3486
3487/**
3488 * Exports the guest's interruptibility-state into the guest-state area in the
3489 * VMCS.
3490 *
3491 * @returns VBox status code.
3492 * @param pVCpu The cross context virtual CPU structure.
3493 * @param fIntrState The interruptibility-state to set.
3494 */
3495static int hmR0VmxExportGuestIntrState(PVMCPU pVCpu, uint32_t fIntrState)
3496{
3497 NOREF(pVCpu);
3498 AssertMsg(!(fIntrState & 0xfffffff0), ("%#x\n", fIntrState)); /* Bits 31:4 MBZ. */
3499 Assert((fIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3500 return VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
3501}
3502
3503
3504/**
3505 * Exports the exception intercepts required for guest execution in the VMCS.
3506 *
3507 * @returns VBox status code.
3508 * @param pVCpu The cross context virtual CPU structure.
3509 *
3510 * @remarks No-long-jump zone!!!
3511 */
3512static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu)
3513{
3514 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
3515 {
3516 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3517
3518 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxExportSharedCR0(). */
3519 if (pVCpu->hm.s.fGIMTrapXcptUD)
3520 uXcptBitmap |= RT_BIT(X86_XCPT_UD);
3521#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3522 else
3523 uXcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3524#endif
3525
3526 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_AC));
3527 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_DB));
3528
3529 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3530 {
3531 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3532 AssertRCReturn(rc, rc);
3533 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3534 }
3535
3536 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
3537 Log4Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64\n", uXcptBitmap));
3538 }
3539 return VINF_SUCCESS;
3540}
3541
3542
3543/**
3544 * Exports the guest's RIP into the guest-state area in the VMCS.
3545 *
3546 * @returns VBox status code.
3547 * @param pVCpu The cross context virtual CPU structure.
3548 *
3549 * @remarks No-long-jump zone!!!
3550 */
3551static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
3552{
3553 int rc = VINF_SUCCESS;
3554 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
3555 {
3556 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
3557
3558 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
3559 AssertRCReturn(rc, rc);
3560
3561 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
3562 Log4Func(("RIP=%#RX64\n", pVCpu->cpum.GstCtx.rip));
3563 }
3564 return rc;
3565}
3566
3567
3568/**
3569 * Exports the guest's RSP into the guest-state area in the VMCS.
3570 *
3571 * @returns VBox status code.
3572 * @param pVCpu The cross context virtual CPU structure.
3573 *
3574 * @remarks No-long-jump zone!!!
3575 */
3576static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
3577{
3578 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
3579 {
3580 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
3581
3582 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
3583 AssertRCReturn(rc, rc);
3584
3585 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
3586 }
3587 return VINF_SUCCESS;
3588}
3589
3590
3591/**
3592 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
3593 *
3594 * @returns VBox status code.
3595 * @param pVCpu The cross context virtual CPU structure.
3596 *
3597 * @remarks No-long-jump zone!!!
3598 */
3599static int hmR0VmxExportGuestRflags(PVMCPU pVCpu)
3600{
3601 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
3602 {
3603 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
3604
3605 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3606 Let us assert it as such and use 32-bit VMWRITE. */
3607 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
3608 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
3609 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
3610 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3611
3612 /*
3613 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
3614 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
3615 * can run the real-mode guest code under Virtual 8086 mode.
3616 */
3617 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3618 {
3619 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3620 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3621 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
3622 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3623 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3624 }
3625
3626 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
3627 AssertRCReturn(rc, rc);
3628
3629 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
3630 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
3631 }
3632 return VINF_SUCCESS;
3633}
3634
3635
3636/**
3637 * Exports the guest CR0 control register into the guest-state area in the VMCS.
3638 *
3639 * The guest FPU state is always pre-loaded hence we don't need to bother about
3640 * sharing FPU related CR0 bits between the guest and host.
3641 *
3642 * @returns VBox status code.
3643 * @param pVCpu The cross context virtual CPU structure.
3644 *
3645 * @remarks No-long-jump zone!!!
3646 */
3647static int hmR0VmxExportGuestCR0(PVMCPU pVCpu)
3648{
3649 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
3650 {
3651 PVM pVM = pVCpu->CTX_SUFF(pVM);
3652 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3653 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.cr0));
3654
3655 uint32_t const u32ShadowCr0 = pVCpu->cpum.GstCtx.cr0;
3656 uint32_t u32GuestCr0 = pVCpu->cpum.GstCtx.cr0;
3657
3658 /*
3659 * Setup VT-x's view of the guest CR0.
3660 * Minimize VM-exits due to CR3 changes when we have NestedPaging.
3661 */
3662 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
3663 if (pVM->hm.s.fNestedPaging)
3664 {
3665 if (CPUMIsGuestPagingEnabled(pVCpu))
3666 {
3667 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3668 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
3669 | VMX_PROC_CTLS_CR3_STORE_EXIT);
3670 }
3671 else
3672 {
3673 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3674 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
3675 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3676 }
3677
3678 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3679 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3680 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
3681 }
3682 else
3683 {
3684 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3685 u32GuestCr0 |= X86_CR0_WP;
3686 }
3687
3688 /*
3689 * Guest FPU bits.
3690 *
3691 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
3692 * using CR0.TS.
3693 *
3694 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
3695 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3696 */
3697 u32GuestCr0 |= X86_CR0_NE;
3698
3699 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
3700 bool const fInterceptMF = !(u32ShadowCr0 & X86_CR0_NE);
3701
3702 /*
3703 * Update exception intercepts.
3704 */
3705 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3706 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3707 {
3708 Assert(PDMVmmDevHeapIsEnabled(pVM));
3709 Assert(pVM->hm.s.vmx.pRealModeTSS);
3710 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3711 }
3712 else
3713 {
3714 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3715 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3716 if (fInterceptMF)
3717 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
3718 }
3719
3720 /* Additional intercepts for debugging, define these yourself explicitly. */
3721#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3722 uXcptBitmap |= 0
3723 | RT_BIT(X86_XCPT_BP)
3724 | RT_BIT(X86_XCPT_DE)
3725 | RT_BIT(X86_XCPT_NM)
3726 | RT_BIT(X86_XCPT_TS)
3727 | RT_BIT(X86_XCPT_UD)
3728 | RT_BIT(X86_XCPT_NP)
3729 | RT_BIT(X86_XCPT_SS)
3730 | RT_BIT(X86_XCPT_GP)
3731 | RT_BIT(X86_XCPT_PF)
3732 | RT_BIT(X86_XCPT_MF)
3733 ;
3734#elif defined(HMVMX_ALWAYS_TRAP_PF)
3735 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
3736#endif
3737 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
3738
3739 /*
3740 * Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW).
3741 */
3742 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3743 uint32_t fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3744 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3745 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
3746 else
3747 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3748
3749 u32GuestCr0 |= fSetCr0;
3750 u32GuestCr0 &= fZapCr0;
3751 u32GuestCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3752
3753 /*
3754 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3755 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3756 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3757 */
3758 uint32_t u32Cr0Mask = X86_CR0_PE
3759 | X86_CR0_NE
3760 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
3761 | X86_CR0_PG
3762 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3763 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3764 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3765
3766 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3767 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3768 * and @bugref{6944}. */
3769#if 0
3770 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3771 u32Cr0Mask &= ~X86_CR0_PE;
3772#endif
3773 /*
3774 * Finally, update VMCS fields with the CR0 values and the exception bitmap.
3775 */
3776 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCr0);
3777 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32ShadowCr0);
3778 if (u32Cr0Mask != pVCpu->hm.s.vmx.u32Cr0Mask)
3779 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32Cr0Mask);
3780 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
3781 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
3782 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3783 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3784 AssertRCReturn(rc, rc);
3785
3786 /* Update our caches. */
3787 pVCpu->hm.s.vmx.u32Cr0Mask = u32Cr0Mask;
3788 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
3789 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3790
3791 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
3792
3793 Log4Func(("u32Cr0Mask=%#RX32 u32ShadowCr0=%#RX32 u32GuestCr0=%#RX32 (fSetCr0=%#RX32 fZapCr0=%#RX32\n", u32Cr0Mask,
3794 u32ShadowCr0, u32GuestCr0, fSetCr0, fZapCr0));
3795 }
3796
3797 return VINF_SUCCESS;
3798}
3799
3800
3801/**
3802 * Exports the guest control registers (CR3, CR4) into the guest-state area
3803 * in the VMCS.
3804 *
3805 * @returns VBox strict status code.
3806 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3807 * without unrestricted guest access and the VMMDev is not presently
3808 * mapped (e.g. EFI32).
3809 *
3810 * @param pVCpu The cross context virtual CPU structure.
3811 *
3812 * @remarks No-long-jump zone!!!
3813 */
3814static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu)
3815{
3816 int rc = VINF_SUCCESS;
3817 PVM pVM = pVCpu->CTX_SUFF(pVM);
3818
3819 /*
3820 * Guest CR2.
3821 * It's always loaded in the assembler code. Nothing to do here.
3822 */
3823
3824 /*
3825 * Guest CR3.
3826 */
3827 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
3828 {
3829 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3830
3831 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3832 if (pVM->hm.s.fNestedPaging)
3833 {
3834 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3835
3836 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3837 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3838 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3839 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3840
3841 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3842 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3843 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3844
3845 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3846 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3847 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3848 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3849 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3850 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3851 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3852
3853 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3854 AssertRCReturn(rc, rc);
3855
3856 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3857 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3858 || CPUMIsGuestPagingEnabledEx(pCtx))
3859 {
3860 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3861 if (CPUMIsGuestInPAEModeEx(pCtx))
3862 {
3863 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3864 AssertRCReturn(rc, rc);
3865 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3866 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3867 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3868 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3869 AssertRCReturn(rc, rc);
3870 }
3871
3872 /*
3873 * The guest's view of its CR3 is unblemished with Nested Paging when the
3874 * guest is using paging or we have unrestricted guest execution to handle
3875 * the guest when it's not using paging.
3876 */
3877 GCPhysGuestCR3 = pCtx->cr3;
3878 }
3879 else
3880 {
3881 /*
3882 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
3883 * thinks it accesses physical memory directly, we use our identity-mapped
3884 * page table to map guest-linear to guest-physical addresses. EPT takes care
3885 * of translating it to host-physical addresses.
3886 */
3887 RTGCPHYS GCPhys;
3888 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3889
3890 /* We obtain it here every time as the guest could have relocated this PCI region. */
3891 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3892 if (RT_SUCCESS(rc))
3893 { /* likely */ }
3894 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3895 {
3896 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
3897 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3898 }
3899 else
3900 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3901
3902 GCPhysGuestCR3 = GCPhys;
3903 }
3904
3905 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
3906 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3907 AssertRCReturn(rc, rc);
3908 }
3909 else
3910 {
3911 /* Non-nested paging case, just use the hypervisor's CR3. */
3912 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3913
3914 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
3915 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3916 AssertRCReturn(rc, rc);
3917 }
3918
3919 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
3920 }
3921
3922 /*
3923 * Guest CR4.
3924 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3925 */
3926 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
3927 {
3928 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3929 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3930 Assert(!RT_HI_U32(pCtx->cr4));
3931
3932 uint32_t u32GuestCr4 = pCtx->cr4;
3933 uint32_t const u32ShadowCr4 = pCtx->cr4;
3934
3935 /*
3936 * Setup VT-x's view of the guest CR4.
3937 *
3938 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
3939 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
3940 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3941 *
3942 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3943 */
3944 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3945 {
3946 Assert(pVM->hm.s.vmx.pRealModeTSS);
3947 Assert(PDMVmmDevHeapIsEnabled(pVM));
3948 u32GuestCr4 &= ~X86_CR4_VME;
3949 }
3950
3951 if (pVM->hm.s.fNestedPaging)
3952 {
3953 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
3954 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3955 {
3956 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3957 u32GuestCr4 |= X86_CR4_PSE;
3958 /* Our identity mapping is a 32-bit page directory. */
3959 u32GuestCr4 &= ~X86_CR4_PAE;
3960 }
3961 /* else use guest CR4.*/
3962 }
3963 else
3964 {
3965 /*
3966 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3967 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3968 */
3969 switch (pVCpu->hm.s.enmShadowMode)
3970 {
3971 case PGMMODE_REAL: /* Real-mode. */
3972 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3973 case PGMMODE_32_BIT: /* 32-bit paging. */
3974 {
3975 u32GuestCr4 &= ~X86_CR4_PAE;
3976 break;
3977 }
3978
3979 case PGMMODE_PAE: /* PAE paging. */
3980 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3981 {
3982 u32GuestCr4 |= X86_CR4_PAE;
3983 break;
3984 }
3985
3986 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
3987 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
3988#ifdef VBOX_ENABLE_64_BITS_GUESTS
3989 break;
3990#endif
3991 default:
3992 AssertFailed();
3993 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
3994 }
3995 }
3996
3997 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
3998 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3999 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4000 u32GuestCr4 |= fSetCr4;
4001 u32GuestCr4 &= fZapCr4;
4002
4003 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them,
4004 that would cause a VM-exit. */
4005 uint32_t u32Cr4Mask = X86_CR4_VME
4006 | X86_CR4_PAE
4007 | X86_CR4_PGE
4008 | X86_CR4_PSE
4009 | X86_CR4_VMXE;
4010 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4011 u32Cr4Mask |= X86_CR4_OSXSAVE;
4012 if (pVM->cpum.ro.GuestFeatures.fPcid)
4013 u32Cr4Mask |= X86_CR4_PCIDE;
4014
4015 /* Write VT-x's view of the guest CR4, the CR4 modify mask and the read-only CR4 shadow
4016 into the VMCS and update our cache. */
4017 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCr4);
4018 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32ShadowCr4);
4019 if (pVCpu->hm.s.vmx.u32Cr4Mask != u32Cr4Mask)
4020 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32Cr4Mask);
4021 AssertRCReturn(rc, rc);
4022 pVCpu->hm.s.vmx.u32Cr4Mask = u32Cr4Mask;
4023
4024 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4025 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4026
4027 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
4028
4029 Log4Func(("u32GuestCr4=%#RX32 u32ShadowCr4=%#RX32 (fSetCr4=%#RX32 fZapCr4=%#RX32)\n", u32GuestCr4, u32ShadowCr4, fSetCr4,
4030 fZapCr4));
4031 }
4032 return rc;
4033}
4034
4035
4036/**
4037 * Exports the guest debug registers into the guest-state area in the VMCS.
4038 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4039 *
4040 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4041 *
4042 * @returns VBox status code.
4043 * @param pVCpu The cross context virtual CPU structure.
4044 *
4045 * @remarks No-long-jump zone!!!
4046 */
4047static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu)
4048{
4049 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4050
4051#ifdef VBOX_STRICT
4052 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4053 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4054 {
4055 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4056 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
4057 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
4058 }
4059#endif
4060
4061 bool fSteppingDB = false;
4062 bool fInterceptMovDRx = false;
4063 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
4064 if (pVCpu->hm.s.fSingleInstruction)
4065 {
4066 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4067 PVM pVM = pVCpu->CTX_SUFF(pVM);
4068 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
4069 {
4070 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
4071 Assert(fSteppingDB == false);
4072 }
4073 else
4074 {
4075 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
4076 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
4077 pVCpu->hm.s.fClearTrapFlag = true;
4078 fSteppingDB = true;
4079 }
4080 }
4081
4082 uint32_t u32GuestDr7;
4083 if ( fSteppingDB
4084 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4085 {
4086 /*
4087 * Use the combined guest and host DRx values found in the hypervisor register set
4088 * because the debugger has breakpoints active or someone is single stepping on the
4089 * host side without a monitor trap flag.
4090 *
4091 * Note! DBGF expects a clean DR6 state before executing guest code.
4092 */
4093#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4094 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4095 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4096 {
4097 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4098 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4099 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4100 }
4101 else
4102#endif
4103 if (!CPUMIsHyperDebugStateActive(pVCpu))
4104 {
4105 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4106 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4107 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4108 }
4109
4110 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
4111 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
4112 pVCpu->hm.s.fUsingHyperDR7 = true;
4113 fInterceptMovDRx = true;
4114 }
4115 else
4116 {
4117 /*
4118 * If the guest has enabled debug registers, we need to load them prior to
4119 * executing guest code so they'll trigger at the right time.
4120 */
4121 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
4122 {
4123#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4124 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4125 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4126 {
4127 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4128 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4129 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4130 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4131 }
4132 else
4133#endif
4134 if (!CPUMIsGuestDebugStateActive(pVCpu))
4135 {
4136 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4137 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4138 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4139 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4140 }
4141 Assert(!fInterceptMovDRx);
4142 }
4143 /*
4144 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4145 * must intercept #DB in order to maintain a correct DR6 guest value, and
4146 * because we need to intercept it to prevent nested #DBs from hanging the
4147 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4148 */
4149#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4150 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4151 && !CPUMIsGuestDebugStateActive(pVCpu))
4152#else
4153 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4154#endif
4155 {
4156 fInterceptMovDRx = true;
4157 }
4158
4159 /* Update DR7 with the actual guest value. */
4160 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
4161 pVCpu->hm.s.fUsingHyperDR7 = false;
4162 }
4163
4164 if (fInterceptMovDRx)
4165 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
4166 else
4167 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
4168
4169 /*
4170 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
4171 * monitor-trap flag and update our cache.
4172 */
4173 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
4174 {
4175 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4176 AssertRCReturn(rc2, rc2);
4177 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
4178 }
4179
4180 /*
4181 * Update guest DR7.
4182 */
4183 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
4184 AssertRCReturn(rc, rc);
4185
4186 return VINF_SUCCESS;
4187}
4188
4189
4190#ifdef VBOX_STRICT
4191/**
4192 * Strict function to validate segment registers.
4193 *
4194 * @param pVCpu The cross context virtual CPU structure.
4195 *
4196 * @remarks Will import guest CR0 on strict builds during validation of
4197 * segments.
4198 */
4199static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu)
4200{
4201 /*
4202 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4203 *
4204 * The reason we check for attribute value 0 in this function and not just the unusable bit is
4205 * because hmR0VmxExportGuestSegmentReg() only updates the VMCS' copy of the value with the unusable bit
4206 * and doesn't change the guest-context value.
4207 */
4208 PVM pVM = pVCpu->CTX_SUFF(pVM);
4209 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4210 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
4211 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4212 && ( !CPUMIsGuestInRealModeEx(pCtx)
4213 && !CPUMIsGuestInV86ModeEx(pCtx)))
4214 {
4215 /* Protected mode checks */
4216 /* CS */
4217 Assert(pCtx->cs.Attr.n.u1Present);
4218 Assert(!(pCtx->cs.Attr.u & 0xf00));
4219 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4220 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4221 || !(pCtx->cs.Attr.n.u1Granularity));
4222 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4223 || (pCtx->cs.Attr.n.u1Granularity));
4224 /* CS cannot be loaded with NULL in protected mode. */
4225 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4226 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4227 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4228 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4229 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4230 else
4231 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4232 /* SS */
4233 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4234 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4235 if ( !(pCtx->cr0 & X86_CR0_PE)
4236 || pCtx->cs.Attr.n.u4Type == 3)
4237 {
4238 Assert(!pCtx->ss.Attr.n.u2Dpl);
4239 }
4240 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4241 {
4242 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4243 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4244 Assert(pCtx->ss.Attr.n.u1Present);
4245 Assert(!(pCtx->ss.Attr.u & 0xf00));
4246 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4247 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4248 || !(pCtx->ss.Attr.n.u1Granularity));
4249 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4250 || (pCtx->ss.Attr.n.u1Granularity));
4251 }
4252 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmentReg(). */
4253 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4254 {
4255 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4256 Assert(pCtx->ds.Attr.n.u1Present);
4257 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4258 Assert(!(pCtx->ds.Attr.u & 0xf00));
4259 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4260 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4261 || !(pCtx->ds.Attr.n.u1Granularity));
4262 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4263 || (pCtx->ds.Attr.n.u1Granularity));
4264 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4265 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4266 }
4267 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4268 {
4269 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4270 Assert(pCtx->es.Attr.n.u1Present);
4271 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4272 Assert(!(pCtx->es.Attr.u & 0xf00));
4273 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4274 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4275 || !(pCtx->es.Attr.n.u1Granularity));
4276 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4277 || (pCtx->es.Attr.n.u1Granularity));
4278 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4279 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4280 }
4281 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4282 {
4283 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4284 Assert(pCtx->fs.Attr.n.u1Present);
4285 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4286 Assert(!(pCtx->fs.Attr.u & 0xf00));
4287 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4288 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4289 || !(pCtx->fs.Attr.n.u1Granularity));
4290 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4291 || (pCtx->fs.Attr.n.u1Granularity));
4292 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4293 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4294 }
4295 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4296 {
4297 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4298 Assert(pCtx->gs.Attr.n.u1Present);
4299 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4300 Assert(!(pCtx->gs.Attr.u & 0xf00));
4301 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4302 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4303 || !(pCtx->gs.Attr.n.u1Granularity));
4304 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4305 || (pCtx->gs.Attr.n.u1Granularity));
4306 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4307 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4308 }
4309 /* 64-bit capable CPUs. */
4310# if HC_ARCH_BITS == 64
4311 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4312 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
4313 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
4314 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
4315# endif
4316 }
4317 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4318 || ( CPUMIsGuestInRealModeEx(pCtx)
4319 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4320 {
4321 /* Real and v86 mode checks. */
4322 /* hmR0VmxExportGuestSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4323 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4324 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4325 {
4326 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4327 }
4328 else
4329 {
4330 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4331 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4332 }
4333
4334 /* CS */
4335 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4336 Assert(pCtx->cs.u32Limit == 0xffff);
4337 Assert(u32CSAttr == 0xf3);
4338 /* SS */
4339 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4340 Assert(pCtx->ss.u32Limit == 0xffff);
4341 Assert(u32SSAttr == 0xf3);
4342 /* DS */
4343 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4344 Assert(pCtx->ds.u32Limit == 0xffff);
4345 Assert(u32DSAttr == 0xf3);
4346 /* ES */
4347 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4348 Assert(pCtx->es.u32Limit == 0xffff);
4349 Assert(u32ESAttr == 0xf3);
4350 /* FS */
4351 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4352 Assert(pCtx->fs.u32Limit == 0xffff);
4353 Assert(u32FSAttr == 0xf3);
4354 /* GS */
4355 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4356 Assert(pCtx->gs.u32Limit == 0xffff);
4357 Assert(u32GSAttr == 0xf3);
4358 /* 64-bit capable CPUs. */
4359# if HC_ARCH_BITS == 64
4360 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4361 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
4362 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
4363 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
4364# endif
4365 }
4366}
4367#endif /* VBOX_STRICT */
4368
4369
4370/**
4371 * Exports a guest segment register into the guest-state area in the VMCS.
4372 *
4373 * @returns VBox status code.
4374 * @param pVCpu The cross context virtual CPU structure.
4375 * @param idxSel Index of the selector in the VMCS.
4376 * @param idxLimit Index of the segment limit in the VMCS.
4377 * @param idxBase Index of the segment base in the VMCS.
4378 * @param idxAccess Index of the access rights of the segment in the VMCS.
4379 * @param pSelReg Pointer to the segment selector.
4380 *
4381 * @remarks No-long-jump zone!!!
4382 */
4383static int hmR0VmxExportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
4384 PCCPUMSELREG pSelReg)
4385{
4386 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4387 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4388 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4389 AssertRCReturn(rc, rc);
4390
4391 uint32_t u32Access = pSelReg->Attr.u;
4392 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4393 {
4394 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4395 u32Access = 0xf3;
4396 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4397 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4398 }
4399 else
4400 {
4401 /*
4402 * The way to differentiate between whether this is really a null selector or was just
4403 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
4404 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
4405 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
4406 * NULL selectors loaded in protected-mode have their attribute as 0.
4407 */
4408 if (!u32Access)
4409 u32Access = X86DESCATTR_UNUSABLE;
4410 }
4411
4412 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4413 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4414 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4415
4416 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4417 AssertRCReturn(rc, rc);
4418 return rc;
4419}
4420
4421
4422/**
4423 * Exports the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4424 * into the guest-state area in the VMCS.
4425 *
4426 * @returns VBox status code.
4427 * @param pVCpu The cross context virtual CPU structure.
4428 *
4429 * @remarks Will import guest CR0 on strict builds during validation of
4430 * segments.
4431 * @remarks No-long-jump zone!!!
4432 */
4433static int hmR0VmxExportGuestSegmentRegs(PVMCPU pVCpu)
4434{
4435 int rc = VERR_INTERNAL_ERROR_5;
4436 PVM pVM = pVCpu->CTX_SUFF(pVM);
4437 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4438
4439 /*
4440 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4441 */
4442 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
4443 {
4444#ifdef VBOX_WITH_REM
4445 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4446 {
4447 Assert(pVM->hm.s.vmx.pRealModeTSS);
4448 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4449 if ( pVCpu->hm.s.vmx.fWasInRealMode
4450 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4451 {
4452 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4453 in real-mode (e.g. OpenBSD 4.0) */
4454 REMFlushTBs(pVM);
4455 Log4Func(("Switch to protected mode detected!\n"));
4456 pVCpu->hm.s.vmx.fWasInRealMode = false;
4457 }
4458 }
4459#endif
4460 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
4461 {
4462 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
4463 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4464 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pCtx->cs.Attr.u;
4465 rc = HMVMX_EXPORT_SREG(CS, &pCtx->cs);
4466 AssertRCReturn(rc, rc);
4467 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
4468 }
4469
4470 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
4471 {
4472 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
4473 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4474 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pCtx->ss.Attr.u;
4475 rc = HMVMX_EXPORT_SREG(SS, &pCtx->ss);
4476 AssertRCReturn(rc, rc);
4477 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
4478 }
4479
4480 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
4481 {
4482 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
4483 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4484 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pCtx->ds.Attr.u;
4485 rc = HMVMX_EXPORT_SREG(DS, &pCtx->ds);
4486 AssertRCReturn(rc, rc);
4487 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
4488 }
4489
4490 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
4491 {
4492 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
4493 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4494 pVCpu->hm.s.vmx.RealMode.AttrES.u = pCtx->es.Attr.u;
4495 rc = HMVMX_EXPORT_SREG(ES, &pCtx->es);
4496 AssertRCReturn(rc, rc);
4497 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
4498 }
4499
4500 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
4501 {
4502 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
4503 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4504 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pCtx->fs.Attr.u;
4505 rc = HMVMX_EXPORT_SREG(FS, &pCtx->fs);
4506 AssertRCReturn(rc, rc);
4507 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
4508 }
4509
4510 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
4511 {
4512 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
4513 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4514 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pCtx->gs.Attr.u;
4515 rc = HMVMX_EXPORT_SREG(GS, &pCtx->gs);
4516 AssertRCReturn(rc, rc);
4517 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
4518 }
4519
4520#ifdef VBOX_STRICT
4521 hmR0VmxValidateSegmentRegs(pVCpu);
4522#endif
4523
4524 Log4Func(("CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pCtx->cs.Sel, pCtx->cs.u64Base,
4525 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
4526 }
4527
4528 /*
4529 * Guest TR.
4530 */
4531 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
4532 {
4533 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
4534
4535 /*
4536 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
4537 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
4538 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4539 */
4540 uint16_t u16Sel = 0;
4541 uint32_t u32Limit = 0;
4542 uint64_t u64Base = 0;
4543 uint32_t u32AccessRights = 0;
4544
4545 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4546 {
4547 u16Sel = pCtx->tr.Sel;
4548 u32Limit = pCtx->tr.u32Limit;
4549 u64Base = pCtx->tr.u64Base;
4550 u32AccessRights = pCtx->tr.Attr.u;
4551 }
4552 else
4553 {
4554 Assert(pVM->hm.s.vmx.pRealModeTSS);
4555 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
4556
4557 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4558 RTGCPHYS GCPhys;
4559 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4560 AssertRCReturn(rc, rc);
4561
4562 X86DESCATTR DescAttr;
4563 DescAttr.u = 0;
4564 DescAttr.n.u1Present = 1;
4565 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4566
4567 u16Sel = 0;
4568 u32Limit = HM_VTX_TSS_SIZE;
4569 u64Base = GCPhys; /* in real-mode phys = virt. */
4570 u32AccessRights = DescAttr.u;
4571 }
4572
4573 /* Validate. */
4574 Assert(!(u16Sel & RT_BIT(2)));
4575 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4576 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4577 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4578 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4579 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4580 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4581 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4582 Assert( (u32Limit & 0xfff) == 0xfff
4583 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4584 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
4585 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4586
4587 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4588 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4589 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4590 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4591 AssertRCReturn(rc, rc);
4592
4593 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
4594 Log4Func(("TR base=%#RX64\n", pCtx->tr.u64Base));
4595 }
4596
4597 /*
4598 * Guest GDTR.
4599 */
4600 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
4601 {
4602 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
4603
4604 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
4605 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
4606 AssertRCReturn(rc, rc);
4607
4608 /* Validate. */
4609 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4610
4611 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
4612 Log4Func(("GDTR base=%#RX64\n", pCtx->gdtr.pGdt));
4613 }
4614
4615 /*
4616 * Guest LDTR.
4617 */
4618 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
4619 {
4620 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
4621
4622 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4623 uint32_t u32Access = 0;
4624 if (!pCtx->ldtr.Attr.u)
4625 u32Access = X86DESCATTR_UNUSABLE;
4626 else
4627 u32Access = pCtx->ldtr.Attr.u;
4628
4629 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
4630 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
4631 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4632 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
4633 AssertRCReturn(rc, rc);
4634
4635 /* Validate. */
4636 if (!(u32Access & X86DESCATTR_UNUSABLE))
4637 {
4638 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4639 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4640 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4641 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4642 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4643 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4644 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
4645 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4646 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
4647 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4648 }
4649
4650 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
4651 Log4Func(("LDTR base=%#RX64\n", pCtx->ldtr.u64Base));
4652 }
4653
4654 /*
4655 * Guest IDTR.
4656 */
4657 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
4658 {
4659 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
4660
4661 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
4662 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
4663 AssertRCReturn(rc, rc);
4664
4665 /* Validate. */
4666 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4667
4668 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
4669 Log4Func(("IDTR base=%#RX64\n", pCtx->idtr.pIdt));
4670 }
4671
4672 return VINF_SUCCESS;
4673}
4674
4675
4676/**
4677 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4678 * areas.
4679 *
4680 * These MSRs will automatically be loaded to the host CPU on every successful
4681 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4682 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4683 * -not- updated here for performance reasons. See hmR0VmxExportHostMsrs().
4684 *
4685 * Also exports the guest sysenter MSRs into the guest-state area in the VMCS.
4686 *
4687 * @returns VBox status code.
4688 * @param pVCpu The cross context virtual CPU structure.
4689 *
4690 * @remarks No-long-jump zone!!!
4691 */
4692static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu)
4693{
4694 AssertPtr(pVCpu);
4695 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4696
4697 /*
4698 * MSRs that we use the auto-load/store MSR area in the VMCS.
4699 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
4700 */
4701 PVM pVM = pVCpu->CTX_SUFF(pVM);
4702 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4703 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
4704 {
4705 if (pVM->hm.s.fAllow64BitGuests)
4706 {
4707#if HC_ARCH_BITS == 32
4708 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
4709
4710 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pCtx->msrLSTAR, false, NULL);
4711 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pCtx->msrSTAR, false, NULL);
4712 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pCtx->msrSFMASK, false, NULL);
4713 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, false, NULL);
4714 AssertRCReturn(rc, rc);
4715# ifdef LOG_ENABLED
4716 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4717 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4718 Log4Func(("MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4719# endif
4720#endif
4721 }
4722 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4723 }
4724
4725 /*
4726 * Guest Sysenter MSRs.
4727 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4728 * VM-exits on WRMSRs for these MSRs.
4729 */
4730 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
4731 {
4732 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4733
4734 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
4735 {
4736 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
4737 AssertRCReturn(rc, rc);
4738 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4739 }
4740
4741 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
4742 {
4743 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
4744 AssertRCReturn(rc, rc);
4745 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4746 }
4747
4748 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
4749 {
4750 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
4751 AssertRCReturn(rc, rc);
4752 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4753 }
4754 }
4755
4756 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
4757 {
4758 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
4759
4760 if (hmR0VmxShouldSwapEferMsr(pVCpu))
4761 {
4762 /*
4763 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4764 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4765 */
4766 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4767 {
4768 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
4769 AssertRCReturn(rc,rc);
4770 Log4Func(("EFER=%#RX64\n", pCtx->msrEFER));
4771 }
4772 else
4773 {
4774 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pCtx->msrEFER, false /* fUpdateHostMsr */,
4775 NULL /* pfAddedAndUpdated */);
4776 AssertRCReturn(rc, rc);
4777
4778 /* We need to intercept reads too, see @bugref{7386#c16}. */
4779 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4780 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4781 Log4Func(("MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", MSR_K6_EFER, pCtx->msrEFER,
4782 pVCpu->hm.s.vmx.cMsrs));
4783 }
4784 }
4785 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4786 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4787 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
4788 }
4789
4790 return VINF_SUCCESS;
4791}
4792
4793
4794#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4795/**
4796 * Check if guest state allows safe use of 32-bit switcher again.
4797 *
4798 * Segment bases and protected mode structures must be 32-bit addressable
4799 * because the 32-bit switcher will ignore high dword when writing these VMCS
4800 * fields. See @bugref{8432} for details.
4801 *
4802 * @returns true if safe, false if must continue to use the 64-bit switcher.
4803 * @param pCtx Pointer to the guest-CPU context.
4804 *
4805 * @remarks No-long-jump zone!!!
4806 */
4807static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
4808{
4809 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
4810 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
4811 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4812 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4813 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
4814 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4815 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
4816 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
4817 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4818 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4819
4820 /* All good, bases are 32-bit. */
4821 return true;
4822}
4823#endif
4824
4825
4826/**
4827 * Selects up the appropriate function to run guest code.
4828 *
4829 * @returns VBox status code.
4830 * @param pVCpu The cross context virtual CPU structure.
4831 *
4832 * @remarks No-long-jump zone!!!
4833 */
4834static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu)
4835{
4836 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4837 if (CPUMIsGuestInLongModeEx(pCtx))
4838 {
4839#ifndef VBOX_ENABLE_64_BITS_GUESTS
4840 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4841#endif
4842 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4843#if HC_ARCH_BITS == 32
4844 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4845 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4846 {
4847#ifdef VBOX_STRICT
4848 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4849 {
4850 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4851 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4852 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4853 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4854 | HM_CHANGED_VMX_ENTRY_CTLS
4855 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4856 }
4857#endif
4858 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4859
4860 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4861 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4862 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4863 Log4Func(("Selected 64-bit switcher\n"));
4864 }
4865#else
4866 /* 64-bit host. */
4867 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4868#endif
4869 }
4870 else
4871 {
4872 /* Guest is not in long mode, use the 32-bit handler. */
4873#if HC_ARCH_BITS == 32
4874 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4875 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4876 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4877 {
4878# ifdef VBOX_STRICT
4879 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4880 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4881 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4882 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4883 | HM_CHANGED_VMX_ENTRY_CTLS
4884 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4885# endif
4886 }
4887# ifdef VBOX_ENABLE_64_BITS_GUESTS
4888 /*
4889 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
4890 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
4891 * switcher flag because now we know the guest is in a sane state where it's safe
4892 * to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4893 * the much faster 32-bit switcher again.
4894 */
4895 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4896 {
4897 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4898 Log4Func(("Selected 32-bit switcher\n"));
4899 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4900 }
4901 else
4902 {
4903 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4904 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4905 || hmR0VmxIs32BitSwitcherSafe(pCtx))
4906 {
4907 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4908 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4909 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
4910 | HM_CHANGED_VMX_ENTRY_CTLS
4911 | HM_CHANGED_VMX_EXIT_CTLS
4912 | HM_CHANGED_HOST_CONTEXT);
4913 Log4Func(("Selected 32-bit switcher (safe)\n"));
4914 }
4915 }
4916# else
4917 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4918# endif
4919#else
4920 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4921#endif
4922 }
4923 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4924 return VINF_SUCCESS;
4925}
4926
4927
4928/**
4929 * Wrapper for running the guest code in VT-x.
4930 *
4931 * @returns VBox status code, no informational status codes.
4932 * @param pVCpu The cross context virtual CPU structure.
4933 *
4934 * @remarks No-long-jump zone!!!
4935 */
4936DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu)
4937{
4938 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4939 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4940 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4941
4942 /*
4943 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4944 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4945 * callee-saved and thus the need for this XMM wrapper.
4946 *
4947 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4948 */
4949 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4950 /** @todo Add stats for resume vs launch. */
4951 PVM pVM = pVCpu->CTX_SUFF(pVM);
4952#ifdef VBOX_WITH_KERNEL_USING_XMM
4953 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4954#else
4955 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4956#endif
4957 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4958 return rc;
4959}
4960
4961
4962/**
4963 * Reports world-switch error and dumps some useful debug info.
4964 *
4965 * @param pVCpu The cross context virtual CPU structure.
4966 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4967 * @param pVmxTransient Pointer to the VMX transient structure (only
4968 * exitReason updated).
4969 */
4970static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
4971{
4972 Assert(pVCpu);
4973 Assert(pVmxTransient);
4974 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
4975
4976 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
4977 switch (rcVMRun)
4978 {
4979 case VERR_VMX_INVALID_VMXON_PTR:
4980 AssertFailed();
4981 break;
4982 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4983 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
4984 {
4985 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
4986 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
4987 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
4988 AssertRC(rc);
4989
4990 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
4991 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
4992 Cannot do it here as we may have been long preempted. */
4993
4994#ifdef VBOX_STRICT
4995 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
4996 pVmxTransient->uExitReason));
4997 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
4998 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
4999 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5000 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5001 else
5002 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5003 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5004 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5005
5006 /* VMX control bits. */
5007 uint32_t u32Val;
5008 uint64_t u64Val;
5009 RTHCUINTREG uHCReg;
5010 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5011 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5012 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5013 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5014 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
5015 {
5016 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5017 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5018 }
5019 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5020 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5021 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5022 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5023 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5024 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5025 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5026 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5027 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5028 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5029 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5030 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5031 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5032 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5033 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5034 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5035 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5036 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5037 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5038 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5039 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5040 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5041 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5042 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5043 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5044 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5045 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5046 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5047 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5048 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5049 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5050 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5051 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5052 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5053 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5054 {
5055 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5056 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5057 }
5058
5059 /* Guest bits. */
5060 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5061 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
5062 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5063 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
5064 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5065 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
5066 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
5067 {
5068 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5069 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5070 }
5071
5072 /* Host bits. */
5073 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5074 Log4(("Host CR0 %#RHr\n", uHCReg));
5075 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5076 Log4(("Host CR3 %#RHr\n", uHCReg));
5077 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5078 Log4(("Host CR4 %#RHr\n", uHCReg));
5079
5080 RTGDTR HostGdtr;
5081 PCX86DESCHC pDesc;
5082 ASMGetGDTR(&HostGdtr);
5083 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5084 Log4(("Host CS %#08x\n", u32Val));
5085 if (u32Val < HostGdtr.cbGdt)
5086 {
5087 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5088 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5089 }
5090
5091 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5092 Log4(("Host DS %#08x\n", u32Val));
5093 if (u32Val < HostGdtr.cbGdt)
5094 {
5095 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5096 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5097 }
5098
5099 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5100 Log4(("Host ES %#08x\n", u32Val));
5101 if (u32Val < HostGdtr.cbGdt)
5102 {
5103 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5104 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5105 }
5106
5107 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5108 Log4(("Host FS %#08x\n", u32Val));
5109 if (u32Val < HostGdtr.cbGdt)
5110 {
5111 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5112 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5113 }
5114
5115 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5116 Log4(("Host GS %#08x\n", u32Val));
5117 if (u32Val < HostGdtr.cbGdt)
5118 {
5119 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5120 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5121 }
5122
5123 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5124 Log4(("Host SS %#08x\n", u32Val));
5125 if (u32Val < HostGdtr.cbGdt)
5126 {
5127 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5128 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5129 }
5130
5131 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5132 Log4(("Host TR %#08x\n", u32Val));
5133 if (u32Val < HostGdtr.cbGdt)
5134 {
5135 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5136 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5137 }
5138
5139 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5140 Log4(("Host TR Base %#RHv\n", uHCReg));
5141 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5142 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5143 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5144 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5145 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5146 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5147 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5148 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5149 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5150 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5151 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5152 Log4(("Host RSP %#RHv\n", uHCReg));
5153 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5154 Log4(("Host RIP %#RHv\n", uHCReg));
5155# if HC_ARCH_BITS == 64
5156 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5157 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5158 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5159 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5160 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5161 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5162# endif
5163#endif /* VBOX_STRICT */
5164 break;
5165 }
5166
5167 default:
5168 /* Impossible */
5169 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5170 break;
5171 }
5172}
5173
5174
5175#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5176#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5177# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5178#endif
5179#ifdef VBOX_STRICT
5180static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5181{
5182 switch (idxField)
5183 {
5184 case VMX_VMCS_GUEST_RIP:
5185 case VMX_VMCS_GUEST_RSP:
5186 case VMX_VMCS_GUEST_SYSENTER_EIP:
5187 case VMX_VMCS_GUEST_SYSENTER_ESP:
5188 case VMX_VMCS_GUEST_GDTR_BASE:
5189 case VMX_VMCS_GUEST_IDTR_BASE:
5190 case VMX_VMCS_GUEST_CS_BASE:
5191 case VMX_VMCS_GUEST_DS_BASE:
5192 case VMX_VMCS_GUEST_ES_BASE:
5193 case VMX_VMCS_GUEST_FS_BASE:
5194 case VMX_VMCS_GUEST_GS_BASE:
5195 case VMX_VMCS_GUEST_SS_BASE:
5196 case VMX_VMCS_GUEST_LDTR_BASE:
5197 case VMX_VMCS_GUEST_TR_BASE:
5198 case VMX_VMCS_GUEST_CR3:
5199 return true;
5200 }
5201 return false;
5202}
5203
5204static bool hmR0VmxIsValidReadField(uint32_t idxField)
5205{
5206 switch (idxField)
5207 {
5208 /* Read-only fields. */
5209 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5210 return true;
5211 }
5212 /* Remaining readable fields should also be writable. */
5213 return hmR0VmxIsValidWriteField(idxField);
5214}
5215#endif /* VBOX_STRICT */
5216
5217
5218/**
5219 * Executes the specified handler in 64-bit mode.
5220 *
5221 * @returns VBox status code (no informational status codes).
5222 * @param pVCpu The cross context virtual CPU structure.
5223 * @param enmOp The operation to perform.
5224 * @param cParams Number of parameters.
5225 * @param paParam Array of 32-bit parameters.
5226 */
5227VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
5228{
5229 PVM pVM = pVCpu->CTX_SUFF(pVM);
5230 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5231 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5232 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5233 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5234
5235#ifdef VBOX_STRICT
5236 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5237 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5238
5239 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5240 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5241#endif
5242
5243 /* Disable interrupts. */
5244 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5245
5246#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5247 RTCPUID idHostCpu = RTMpCpuId();
5248 CPUMR0SetLApic(pVCpu, idHostCpu);
5249#endif
5250
5251 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5252 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5253
5254 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5255 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5256 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5257
5258 /* Leave VMX Root Mode. */
5259 VMXDisable();
5260
5261 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5262
5263 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5264 CPUMSetHyperEIP(pVCpu, enmOp);
5265 for (int i = (int)cParams - 1; i >= 0; i--)
5266 CPUMPushHyper(pVCpu, paParam[i]);
5267
5268 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5269
5270 /* Call the switcher. */
5271 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
5272 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5273
5274 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5275 /* Make sure the VMX instructions don't cause #UD faults. */
5276 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5277
5278 /* Re-enter VMX Root Mode */
5279 int rc2 = VMXEnable(HCPhysCpuPage);
5280 if (RT_FAILURE(rc2))
5281 {
5282 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5283 ASMSetFlags(fOldEFlags);
5284 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5285 return rc2;
5286 }
5287
5288 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5289 AssertRC(rc2);
5290 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5291 Assert(!(ASMGetFlags() & X86_EFL_IF));
5292 ASMSetFlags(fOldEFlags);
5293 return rc;
5294}
5295
5296
5297/**
5298 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5299 * supporting 64-bit guests.
5300 *
5301 * @returns VBox status code.
5302 * @param fResume Whether to VMLAUNCH or VMRESUME.
5303 * @param pCtx Pointer to the guest-CPU context.
5304 * @param pCache Pointer to the VMCS cache.
5305 * @param pVM The cross context VM structure.
5306 * @param pVCpu The cross context virtual CPU structure.
5307 */
5308DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5309{
5310 NOREF(fResume);
5311
5312 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5313 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5314
5315#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5316 pCache->uPos = 1;
5317 pCache->interPD = PGMGetInterPaeCR3(pVM);
5318 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5319#endif
5320
5321#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5322 pCache->TestIn.HCPhysCpuPage = 0;
5323 pCache->TestIn.HCPhysVmcs = 0;
5324 pCache->TestIn.pCache = 0;
5325 pCache->TestOut.HCPhysVmcs = 0;
5326 pCache->TestOut.pCache = 0;
5327 pCache->TestOut.pCtx = 0;
5328 pCache->TestOut.eflags = 0;
5329#else
5330 NOREF(pCache);
5331#endif
5332
5333 uint32_t aParam[10];
5334 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5335 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
5336 aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5337 aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
5338 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5339 aParam[5] = 0;
5340 aParam[6] = VM_RC_ADDR(pVM, pVM);
5341 aParam[7] = 0;
5342 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5343 aParam[9] = 0;
5344
5345#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5346 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5347 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5348#endif
5349 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5350
5351#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5352 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5353 Assert(pCtx->dr[4] == 10);
5354 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5355#endif
5356
5357#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5358 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5359 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5360 pVCpu->hm.s.vmx.HCPhysVmcs));
5361 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5362 pCache->TestOut.HCPhysVmcs));
5363 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5364 pCache->TestOut.pCache));
5365 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5366 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5367 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5368 pCache->TestOut.pCtx));
5369 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5370#endif
5371 NOREF(pCtx);
5372 return rc;
5373}
5374
5375
5376/**
5377 * Initialize the VMCS-Read cache.
5378 *
5379 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5380 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5381 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5382 * (those that have a 32-bit FULL & HIGH part).
5383 *
5384 * @returns VBox status code.
5385 * @param pVCpu The cross context virtual CPU structure.
5386 */
5387static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
5388{
5389#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5390 do { \
5391 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5392 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5393 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5394 ++cReadFields; \
5395 } while (0)
5396
5397 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5398 uint32_t cReadFields = 0;
5399
5400 /*
5401 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5402 * and serve to indicate exceptions to the rules.
5403 */
5404
5405 /* Guest-natural selector base fields. */
5406#if 0
5407 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5408 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5409 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5410#endif
5411 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5412 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5413 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5414 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5415 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5416 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5417 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5418 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5419 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5420 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5421 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5422 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5423#if 0
5424 /* Unused natural width guest-state fields. */
5425 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5426 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5427#endif
5428 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5429 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5430
5431 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
5432 these 64-bit fields (using "FULL" and "HIGH" fields). */
5433#if 0
5434 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5435 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5436 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5437 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5438 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5439 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5440 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5441 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5442 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5443#endif
5444
5445 /* Natural width guest-state fields. */
5446 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5447#if 0
5448 /* Currently unused field. */
5449 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5450#endif
5451
5452 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5453 {
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5455 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5456 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5457 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5458 }
5459 else
5460 {
5461 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5462 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5463 }
5464
5465#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5466 return VINF_SUCCESS;
5467}
5468
5469
5470/**
5471 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5472 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5473 * darwin, running 64-bit guests).
5474 *
5475 * @returns VBox status code.
5476 * @param pVCpu The cross context virtual CPU structure.
5477 * @param idxField The VMCS field encoding.
5478 * @param u64Val 16, 32 or 64-bit value.
5479 */
5480VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5481{
5482 int rc;
5483 switch (idxField)
5484 {
5485 /*
5486 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5487 */
5488 /* 64-bit Control fields. */
5489 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5490 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5491 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5492 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5493 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5494 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5495 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5496 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5497 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
5498 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5499 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5500 case VMX_VMCS64_CTRL_EPTP_FULL:
5501 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5502 /* 64-bit Guest-state fields. */
5503 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5504 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5505 case VMX_VMCS64_GUEST_PAT_FULL:
5506 case VMX_VMCS64_GUEST_EFER_FULL:
5507 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5508 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5509 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5510 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5511 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5512 /* 64-bit Host-state fields. */
5513 case VMX_VMCS64_HOST_PAT_FULL:
5514 case VMX_VMCS64_HOST_EFER_FULL:
5515 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5516 {
5517 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5518 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
5519 break;
5520 }
5521
5522 /*
5523 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5524 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5525 */
5526 /* Natural-width Guest-state fields. */
5527 case VMX_VMCS_GUEST_CR3:
5528 case VMX_VMCS_GUEST_ES_BASE:
5529 case VMX_VMCS_GUEST_CS_BASE:
5530 case VMX_VMCS_GUEST_SS_BASE:
5531 case VMX_VMCS_GUEST_DS_BASE:
5532 case VMX_VMCS_GUEST_FS_BASE:
5533 case VMX_VMCS_GUEST_GS_BASE:
5534 case VMX_VMCS_GUEST_LDTR_BASE:
5535 case VMX_VMCS_GUEST_TR_BASE:
5536 case VMX_VMCS_GUEST_GDTR_BASE:
5537 case VMX_VMCS_GUEST_IDTR_BASE:
5538 case VMX_VMCS_GUEST_RSP:
5539 case VMX_VMCS_GUEST_RIP:
5540 case VMX_VMCS_GUEST_SYSENTER_ESP:
5541 case VMX_VMCS_GUEST_SYSENTER_EIP:
5542 {
5543 if (!(RT_HI_U32(u64Val)))
5544 {
5545 /* If this field is 64-bit, VT-x will zero out the top bits. */
5546 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5547 }
5548 else
5549 {
5550 /* Assert that only the 32->64 switcher case should ever come here. */
5551 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5552 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5553 }
5554 break;
5555 }
5556
5557 default:
5558 {
5559 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5560 rc = VERR_INVALID_PARAMETER;
5561 break;
5562 }
5563 }
5564 AssertRCReturn(rc, rc);
5565 return rc;
5566}
5567
5568
5569/**
5570 * Queue up a VMWRITE by using the VMCS write cache.
5571 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5572 *
5573 * @param pVCpu The cross context virtual CPU structure.
5574 * @param idxField The VMCS field encoding.
5575 * @param u64Val 16, 32 or 64-bit value.
5576 */
5577VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5578{
5579 AssertPtr(pVCpu);
5580 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5581
5582 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5583 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5584
5585 /* Make sure there are no duplicates. */
5586 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5587 {
5588 if (pCache->Write.aField[i] == idxField)
5589 {
5590 pCache->Write.aFieldVal[i] = u64Val;
5591 return VINF_SUCCESS;
5592 }
5593 }
5594
5595 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5596 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5597 pCache->Write.cValidEntries++;
5598 return VINF_SUCCESS;
5599}
5600#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5601
5602
5603/**
5604 * Sets up the usage of TSC-offsetting and updates the VMCS.
5605 *
5606 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5607 * VMX preemption timer.
5608 *
5609 * @returns VBox status code.
5610 * @param pVCpu The cross context virtual CPU structure.
5611 *
5612 * @remarks No-long-jump zone!!!
5613 */
5614static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5615{
5616 bool fOffsettedTsc;
5617 bool fParavirtTsc;
5618 PVM pVM = pVCpu->CTX_SUFF(pVM);
5619 uint64_t uTscOffset;
5620 if (pVM->hm.s.vmx.fUsePreemptTimer)
5621 {
5622 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
5623
5624 /* Make sure the returned values have sane upper and lower boundaries. */
5625 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5626 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5627 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5628 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5629
5630 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5631 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
5632 AssertRC(rc);
5633 }
5634 else
5635 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
5636
5637 if (fParavirtTsc)
5638 {
5639 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5640 information before every VM-entry, hence disable it for performance sake. */
5641#if 0
5642 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5643 AssertRC(rc);
5644#endif
5645 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5646 }
5647
5648 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
5649 if ( fOffsettedTsc
5650 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5651 {
5652 if (pVCpu->hm.s.vmx.u64TscOffset != uTscOffset)
5653 {
5654 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
5655 AssertRC(rc);
5656 pVCpu->hm.s.vmx.u64TscOffset = uTscOffset;
5657 }
5658
5659 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
5660 {
5661 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
5662 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5663 AssertRC(rc);
5664 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5665 }
5666 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5667 }
5668 else
5669 {
5670 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5671 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
5672 {
5673 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
5674 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5675 AssertRC(rc);
5676 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5677 }
5678 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5679 }
5680}
5681
5682
5683/**
5684 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5685 * VM-exit interruption info type.
5686 *
5687 * @returns The IEM exception flags.
5688 * @param uVector The event vector.
5689 * @param uVmxVectorType The VMX event type.
5690 *
5691 * @remarks This function currently only constructs flags required for
5692 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5693 * and CR2 aspects of an exception are not included).
5694 */
5695static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5696{
5697 uint32_t fIemXcptFlags;
5698 switch (uVmxVectorType)
5699 {
5700 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5701 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5702 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5703 break;
5704
5705 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5706 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5707 break;
5708
5709 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5710 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5711 break;
5712
5713 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5714 {
5715 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5716 if (uVector == X86_XCPT_BP)
5717 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5718 else if (uVector == X86_XCPT_OF)
5719 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5720 else
5721 {
5722 fIemXcptFlags = 0;
5723 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5724 }
5725 break;
5726 }
5727
5728 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5729 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5730 break;
5731
5732 default:
5733 fIemXcptFlags = 0;
5734 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5735 break;
5736 }
5737 return fIemXcptFlags;
5738}
5739
5740
5741/**
5742 * Sets an event as a pending event to be injected into the guest.
5743 *
5744 * @param pVCpu The cross context virtual CPU structure.
5745 * @param u32IntInfo The VM-entry interruption-information field.
5746 * @param cbInstr The VM-entry instruction length in bytes (for software
5747 * interrupts, exceptions and privileged software
5748 * exceptions).
5749 * @param u32ErrCode The VM-entry exception error code.
5750 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5751 * page-fault.
5752 *
5753 * @remarks Statistics counter assumes this is a guest event being injected or
5754 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5755 * always incremented.
5756 */
5757DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5758 RTGCUINTPTR GCPtrFaultAddress)
5759{
5760 Assert(!pVCpu->hm.s.Event.fPending);
5761 pVCpu->hm.s.Event.fPending = true;
5762 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5763 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5764 pVCpu->hm.s.Event.cbInstr = cbInstr;
5765 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5766}
5767
5768
5769/**
5770 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5771 *
5772 * @param pVCpu The cross context virtual CPU structure.
5773 */
5774DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
5775{
5776 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
5777 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5778 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5779 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5780 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5781}
5782
5783
5784/**
5785 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
5786 *
5787 * @param pVCpu The cross context virtual CPU structure.
5788 */
5789DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
5790{
5791 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
5792 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5793 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5794 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5795 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5796}
5797
5798
5799/**
5800 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
5801 *
5802 * @param pVCpu The cross context virtual CPU structure.
5803 */
5804DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
5805{
5806 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
5807 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5808 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5809 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5810 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5811}
5812
5813
5814#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5815/**
5816 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
5817 *
5818 * @param pVCpu The cross context virtual CPU structure.
5819 * @param u32ErrCode The error code for the general-protection exception.
5820 */
5821DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
5822{
5823 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
5824 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5825 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5826 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5827 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5828}
5829
5830
5831/**
5832 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
5833 *
5834 * @param pVCpu The cross context virtual CPU structure.
5835 * @param u32ErrCode The error code for the stack exception.
5836 */
5837DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
5838{
5839 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
5840 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5841 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5842 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5843 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5844}
5845
5846
5847/**
5848 * Decodes the memory operand of a VM-exit due to instruction execution.
5849 *
5850 * For instructions with two operands, the second operand is usually found in the
5851 * VM-exit qualification field.
5852 *
5853 * @returns Strict VBox status code (i.e. informational status codes too).
5854 * @retval VINF_SUCCESS if the operand was successfully decoded.
5855 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
5856 * operand.
5857 * @param pVCpu The cross context virtual CPU structure.
5858 * @param pExitInstrInfo Pointer to the VM-exit instruction information.
5859 * @param fIsWrite Whether the operand is a destination memory operand
5860 * (i.e. writeable memory location) or not.
5861 * @param GCPtrDisp The instruction displacement field, if any. For
5862 * RIP-relative addressing pass RIP + displacement here.
5863 * @param pGCPtrMem Where to store the destination memory operand.
5864 */
5865static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, PCVMXEXITINSTRINFO pExitInstrInfo, RTGCPTR GCPtrDisp, bool fIsWrite,
5866 PRTGCPTR pGCPtrMem)
5867{
5868 Assert(pExitInstrInfo);
5869 Assert(pGCPtrMem);
5870 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
5871
5872 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
5873 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
5874 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
5875
5876 uint8_t const uAddrSize = pExitInstrInfo->InvVmxXsaves.u3AddrSize;
5877 uint8_t const iSegReg = pExitInstrInfo->InvVmxXsaves.iSegReg;
5878 bool const fIdxRegValid = !pExitInstrInfo->InvVmxXsaves.fIdxRegInvalid;
5879 uint8_t const iIdxReg = pExitInstrInfo->InvVmxXsaves.iIdxReg;
5880 uint8_t const uScale = pExitInstrInfo->InvVmxXsaves.u2Scaling;
5881 bool const fBaseRegValid = !pExitInstrInfo->InvVmxXsaves.fBaseRegInvalid;
5882 uint8_t const iBaseReg = pExitInstrInfo->InvVmxXsaves.iBaseReg;
5883 bool const fIsMemOperand = !pExitInstrInfo->InvVmxXsaves.fIsRegOperand;
5884 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
5885
5886 /*
5887 * Validate instruction information.
5888 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
5889 */
5890 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
5891 ("Invalid address size. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_1);
5892 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
5893 ("Invalid segment register. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_2);
5894 AssertLogRelMsgReturn(fIsMemOperand,
5895 ("Expected memory operand. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_3);
5896
5897 /*
5898 * Compute the complete effective address.
5899 *
5900 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
5901 * See AMD spec. 4.5.2 "Segment Registers".
5902 */
5903 RTGCPTR GCPtrMem = GCPtrDisp;
5904 if (fBaseRegValid)
5905 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
5906 if (fIdxRegValid)
5907 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
5908
5909 RTGCPTR const GCPtrOff = GCPtrMem;
5910 if ( !fIsLongMode
5911 || iSegReg >= X86_SREG_FS)
5912 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
5913 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
5914
5915 /*
5916 * Validate effective address.
5917 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
5918 */
5919 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
5920 Assert(cbAccess > 0);
5921 if (fIsLongMode)
5922 {
5923 if (X86_IS_CANONICAL(GCPtrMem))
5924 {
5925 *pGCPtrMem = GCPtrMem;
5926 return VINF_SUCCESS;
5927 }
5928
5929 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
5930 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5931 return VINF_HM_PENDING_XCPT;
5932 }
5933
5934 /*
5935 * This is a watered down version of iemMemApplySegment().
5936 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
5937 * and segment CPL/DPL checks are skipped.
5938 */
5939 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
5940 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
5941 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
5942
5943 /* Check if the segment is present and usable. */
5944 if ( pSel->Attr.n.u1Present
5945 && !pSel->Attr.n.u1Unusable)
5946 {
5947 Assert(pSel->Attr.n.u1DescType);
5948 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
5949 {
5950 /* Check permissions for the data segment. */
5951 if ( fIsWrite
5952 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
5953 {
5954 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
5955 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
5956 return VINF_HM_PENDING_XCPT;
5957 }
5958
5959 /* Check limits if it's a normal data segment. */
5960 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
5961 {
5962 if ( GCPtrFirst32 > pSel->u32Limit
5963 || GCPtrLast32 > pSel->u32Limit)
5964 {
5965 Log4Func(("Data segment limit exceeded."
5966 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
5967 GCPtrLast32, pSel->u32Limit));
5968 if (iSegReg == X86_SREG_SS)
5969 hmR0VmxSetPendingXcptSS(pVCpu, 0);
5970 else
5971 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5972 return VINF_HM_PENDING_XCPT;
5973 }
5974 }
5975 else
5976 {
5977 /* Check limits if it's an expand-down data segment.
5978 Note! The upper boundary is defined by the B bit, not the G bit! */
5979 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
5980 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
5981 {
5982 Log4Func(("Expand-down data segment limit exceeded."
5983 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
5984 GCPtrLast32, pSel->u32Limit));
5985 if (iSegReg == X86_SREG_SS)
5986 hmR0VmxSetPendingXcptSS(pVCpu, 0);
5987 else
5988 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5989 return VINF_HM_PENDING_XCPT;
5990 }
5991 }
5992 }
5993 else
5994 {
5995 /* Check permissions for the code segment. */
5996 if ( fIsWrite
5997 || !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ))
5998 {
5999 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6000 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6001 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6002 return VINF_HM_PENDING_XCPT;
6003 }
6004
6005 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6006 if ( GCPtrFirst32 > pSel->u32Limit
6007 || GCPtrLast32 > pSel->u32Limit)
6008 {
6009 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6010 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6011 if (iSegReg == X86_SREG_SS)
6012 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6013 else
6014 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6015 return VINF_HM_PENDING_XCPT;
6016 }
6017 }
6018 }
6019 else
6020 {
6021 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6022 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6023 return VINF_HM_PENDING_XCPT;
6024 }
6025
6026 *pGCPtrMem = GCPtrMem;
6027 return VINF_SUCCESS;
6028}
6029
6030
6031/**
6032 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6033 * guest attempting to execute a VMX instruction.
6034 *
6035 * @returns Strict VBox status code (i.e. informational status codes too).
6036 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6037 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6038 *
6039 * @param pVCpu The cross context virtual CPU structure.
6040 * @param pVmxTransient Pointer to the VMX transient structure.
6041 *
6042 * @todo NstVmx: Document other error codes when VM-exit is implemented.
6043 * @remarks No-long-jump zone!!!
6044 */
6045static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6046{
6047 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6048 | CPUMCTX_EXTRN_HWVIRT);
6049
6050 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6051 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6052 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6053 {
6054 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6055 hmR0VmxSetPendingXcptUD(pVCpu);
6056 return VINF_HM_PENDING_XCPT;
6057 }
6058
6059 if (pVmxTransient->uExitReason == VMX_EXIT_VMXON)
6060 {
6061 /*
6062 * We check CR4.VMXE because it is required to be always set while in VMX operation
6063 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6064 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6065 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6066 */
6067 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6068 {
6069 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6070 hmR0VmxSetPendingXcptUD(pVCpu);
6071 return VINF_HM_PENDING_XCPT;
6072 }
6073 }
6074 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6075 {
6076 /*
6077 * The guest has not entered VMX operation but attempted to execute a VMX instruction
6078 * (other than VMXON), we need to raise a #UD.
6079 */
6080 Log4Func(("Not in VMX root mode -> #UD\n"));
6081 hmR0VmxSetPendingXcptUD(pVCpu);
6082 return VINF_HM_PENDING_XCPT;
6083 }
6084
6085 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
6086 {
6087 /*
6088 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
6089 * the guest hypervisor deal with it.
6090 */
6091 /** @todo NSTVMX: Trigger a VM-exit */
6092 }
6093
6094 /*
6095 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
6096 * (above) takes preceedence over the CPL check.
6097 */
6098 if (CPUMGetGuestCPL(pVCpu) > 0)
6099 {
6100 Log4Func(("CPL > 0 -> #GP(0)\n"));
6101 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6102 return VINF_HM_PENDING_XCPT;
6103 }
6104
6105 return VINF_SUCCESS;
6106}
6107
6108#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
6109
6110
6111/**
6112 * Handle a condition that occurred while delivering an event through the guest
6113 * IDT.
6114 *
6115 * @returns Strict VBox status code (i.e. informational status codes too).
6116 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6117 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
6118 * to continue execution of the guest which will delivery the \#DF.
6119 * @retval VINF_EM_RESET if we detected a triple-fault condition.
6120 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
6121 *
6122 * @param pVCpu The cross context virtual CPU structure.
6123 * @param pVmxTransient Pointer to the VMX transient structure.
6124 *
6125 * @remarks No-long-jump zone!!!
6126 */
6127static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6128{
6129 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
6130
6131 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
6132 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
6133 AssertRCReturn(rc2, rc2);
6134
6135 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
6136 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6137 {
6138 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
6139 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
6140
6141 /*
6142 * If the event was a software interrupt (generated with INT n) or a software exception
6143 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
6144 * can handle the VM-exit and continue guest execution which will re-execute the
6145 * instruction rather than re-injecting the exception, as that can cause premature
6146 * trips to ring-3 before injection and involve TRPM which currently has no way of
6147 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
6148 * the problem).
6149 */
6150 IEMXCPTRAISE enmRaise;
6151 IEMXCPTRAISEINFO fRaiseInfo;
6152 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6153 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6154 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6155 {
6156 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
6157 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6158 }
6159 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6160 {
6161 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
6162 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
6163 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
6164 /** @todo Make AssertMsgReturn as just AssertMsg later. */
6165 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
6166 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
6167 uExitVectorType), VERR_VMX_IPE_5);
6168
6169 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
6170
6171 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
6172 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
6173 {
6174 pVmxTransient->fVectoringPF = true;
6175 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6176 }
6177 }
6178 else
6179 {
6180 /*
6181 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
6182 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
6183 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
6184 */
6185 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6186 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6187 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
6188 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6189 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6190 }
6191
6192 /*
6193 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
6194 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
6195 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
6196 * subsequent VM-entry would fail.
6197 *
6198 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6199 */
6200 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
6201 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6202 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
6203 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
6204 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6205 {
6206 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6207 }
6208
6209 switch (enmRaise)
6210 {
6211 case IEMXCPTRAISE_CURRENT_XCPT:
6212 {
6213 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
6214 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
6215 Assert(rcStrict == VINF_SUCCESS);
6216 break;
6217 }
6218
6219 case IEMXCPTRAISE_PREV_EVENT:
6220 {
6221 uint32_t u32ErrCode;
6222 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
6223 {
6224 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6225 AssertRCReturn(rc2, rc2);
6226 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6227 }
6228 else
6229 u32ErrCode = 0;
6230
6231 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
6232 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6233 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6234 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
6235
6236 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
6237 pVCpu->hm.s.Event.u32ErrCode));
6238 Assert(rcStrict == VINF_SUCCESS);
6239 break;
6240 }
6241
6242 case IEMXCPTRAISE_REEXEC_INSTR:
6243 Assert(rcStrict == VINF_SUCCESS);
6244 break;
6245
6246 case IEMXCPTRAISE_DOUBLE_FAULT:
6247 {
6248 /*
6249 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6250 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6251 */
6252 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6253 {
6254 pVmxTransient->fVectoringDoublePF = true;
6255 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
6256 pVCpu->cpum.GstCtx.cr2));
6257 rcStrict = VINF_SUCCESS;
6258 }
6259 else
6260 {
6261 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6262 hmR0VmxSetPendingXcptDF(pVCpu);
6263 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
6264 uIdtVector, uExitVector));
6265 rcStrict = VINF_HM_DOUBLE_FAULT;
6266 }
6267 break;
6268 }
6269
6270 case IEMXCPTRAISE_TRIPLE_FAULT:
6271 {
6272 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
6273 rcStrict = VINF_EM_RESET;
6274 break;
6275 }
6276
6277 case IEMXCPTRAISE_CPU_HANG:
6278 {
6279 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
6280 rcStrict = VERR_EM_GUEST_CPU_HANG;
6281 break;
6282 }
6283
6284 default:
6285 {
6286 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6287 rcStrict = VERR_VMX_IPE_2;
6288 break;
6289 }
6290 }
6291 }
6292 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6293 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6294 && uExitVector != X86_XCPT_DF
6295 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6296 {
6297 /*
6298 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6299 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6300 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6301 */
6302 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6303 {
6304 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
6305 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6306 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6307 }
6308 }
6309
6310 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6311 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6312 return rcStrict;
6313}
6314
6315
6316/**
6317 * Imports a guest segment register from the current VMCS into
6318 * the guest-CPU context.
6319 *
6320 * @returns VBox status code.
6321 * @param pVCpu The cross context virtual CPU structure.
6322 * @param idxSel Index of the selector in the VMCS.
6323 * @param idxLimit Index of the segment limit in the VMCS.
6324 * @param idxBase Index of the segment base in the VMCS.
6325 * @param idxAccess Index of the access rights of the segment in the VMCS.
6326 * @param pSelReg Pointer to the segment selector.
6327 *
6328 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6329 * do not log!
6330 *
6331 * @remarks Never call this function directly!!! Use the
6332 * HMVMX_IMPORT_SREG() macro as that takes care
6333 * of whether to read from the VMCS cache or not.
6334 */
6335static int hmR0VmxImportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6336 PCPUMSELREG pSelReg)
6337{
6338 NOREF(pVCpu);
6339
6340 uint32_t u32Sel;
6341 uint32_t u32Limit;
6342 uint32_t u32Attr;
6343 uint64_t u64Base;
6344 int rc = VMXReadVmcs32(idxSel, &u32Sel);
6345 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
6346 rc |= VMXReadVmcs32(idxAccess, &u32Attr);
6347 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
6348 AssertRCReturn(rc, rc);
6349
6350 pSelReg->Sel = (uint16_t)u32Sel;
6351 pSelReg->ValidSel = (uint16_t)u32Sel;
6352 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6353 pSelReg->u32Limit = u32Limit;
6354 pSelReg->u64Base = u64Base;
6355 pSelReg->Attr.u = u32Attr;
6356
6357 /*
6358 * If VT-x marks the segment as unusable, most other bits remain undefined:
6359 * - For CS the L, D and G bits have meaning.
6360 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6361 * - For the remaining data segments no bits are defined.
6362 *
6363 * The present bit and the unusable bit has been observed to be set at the
6364 * same time (the selector was supposed to be invalid as we started executing
6365 * a V8086 interrupt in ring-0).
6366 *
6367 * What should be important for the rest of the VBox code, is that the P bit is
6368 * cleared. Some of the other VBox code recognizes the unusable bit, but
6369 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6370 * safe side here, we'll strip off P and other bits we don't care about. If
6371 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6372 *
6373 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6374 */
6375 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6376 {
6377 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6378
6379 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6380 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6381 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6382#ifdef VBOX_STRICT
6383 VMMRZCallRing3Disable(pVCpu);
6384 Log4Func(("Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Sel, pSelReg->Attr.u));
6385# ifdef DEBUG_bird
6386 AssertMsg((u32Attr & ~X86DESCATTR_P) == pSelReg->Attr.u,
6387 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6388 idxSel, u32Sel, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6389# endif
6390 VMMRZCallRing3Enable(pVCpu);
6391#endif
6392 }
6393 return VINF_SUCCESS;
6394}
6395
6396
6397/**
6398 * Imports the guest RIP from the VMCS back into the guest-CPU context.
6399 *
6400 * @returns VBox status code.
6401 * @param pVCpu The cross context virtual CPU structure.
6402 *
6403 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6404 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6405 * instead!!!
6406 */
6407DECLINLINE(int) hmR0VmxImportGuestRip(PVMCPU pVCpu)
6408{
6409 uint64_t u64Val;
6410 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6411 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
6412 {
6413 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6414 if (RT_SUCCESS(rc))
6415 {
6416 pCtx->rip = u64Val;
6417 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
6418 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
6419 }
6420 return rc;
6421 }
6422 return VINF_SUCCESS;
6423}
6424
6425
6426/**
6427 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
6428 *
6429 * @returns VBox status code.
6430 * @param pVCpu The cross context virtual CPU structure.
6431 *
6432 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6433 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6434 * instead!!!
6435 */
6436DECLINLINE(int) hmR0VmxImportGuestRFlags(PVMCPU pVCpu)
6437{
6438 uint32_t u32Val;
6439 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6440 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
6441 {
6442 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
6443 if (RT_SUCCESS(rc))
6444 {
6445 pCtx->eflags.u32 = u32Val;
6446
6447 /* Restore eflags for real-on-v86-mode hack. */
6448 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6449 {
6450 pCtx->eflags.Bits.u1VM = 0;
6451 pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6452 }
6453 }
6454 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
6455 return rc;
6456 }
6457 return VINF_SUCCESS;
6458}
6459
6460
6461/**
6462 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
6463 * context.
6464 *
6465 * @returns VBox status code.
6466 * @param pVCpu The cross context virtual CPU structure.
6467 *
6468 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6469 * do not log!
6470 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6471 * instead!!!
6472 */
6473DECLINLINE(int) hmR0VmxImportGuestIntrState(PVMCPU pVCpu)
6474{
6475 uint32_t u32Val;
6476 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6477 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
6478 if (RT_SUCCESS(rc))
6479 {
6480 /*
6481 * We additionally have a requirement to import RIP, RFLAGS depending on whether we
6482 * might need them in hmR0VmxEvaluatePendingEvent().
6483 */
6484 if (!u32Val)
6485 {
6486 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6487 {
6488 rc = hmR0VmxImportGuestRip(pVCpu);
6489 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6490 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6491 }
6492
6493 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6494 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6495 }
6496 else
6497 {
6498 rc = hmR0VmxImportGuestRip(pVCpu);
6499 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6500
6501 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
6502 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
6503 {
6504 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
6505 }
6506 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6507 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6508
6509 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6510 {
6511 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6512 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6513 }
6514 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6515 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6516 }
6517 }
6518 return rc;
6519}
6520
6521
6522/**
6523 * Worker for VMXR0ImportStateOnDemand.
6524 *
6525 * @returns VBox status code.
6526 * @param pVCpu The cross context virtual CPU structure.
6527 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6528 */
6529static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
6530{
6531#define VMXLOCAL_BREAK_RC(a_rc) \
6532 if (RT_FAILURE(a_rc)) \
6533 break
6534
6535 int rc = VINF_SUCCESS;
6536 PVM pVM = pVCpu->CTX_SUFF(pVM);
6537 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6538 uint64_t u64Val;
6539 uint32_t u32Val;
6540
6541 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
6542 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
6543
6544 /*
6545 * We disable interrupts to make the updating of the state and in particular
6546 * the fExtrn modification atomic wrt to preemption hooks.
6547 */
6548 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
6549
6550 fWhat &= pCtx->fExtrn;
6551 if (fWhat)
6552 {
6553 do
6554 {
6555 if (fWhat & CPUMCTX_EXTRN_RIP)
6556 {
6557 rc = hmR0VmxImportGuestRip(pVCpu);
6558 VMXLOCAL_BREAK_RC(rc);
6559 }
6560
6561 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
6562 {
6563 rc = hmR0VmxImportGuestRFlags(pVCpu);
6564 VMXLOCAL_BREAK_RC(rc);
6565 }
6566
6567 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
6568 {
6569 rc = hmR0VmxImportGuestIntrState(pVCpu);
6570 VMXLOCAL_BREAK_RC(rc);
6571 }
6572
6573 if (fWhat & CPUMCTX_EXTRN_RSP)
6574 {
6575 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6576 VMXLOCAL_BREAK_RC(rc);
6577 pCtx->rsp = u64Val;
6578 }
6579
6580 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
6581 {
6582 if (fWhat & CPUMCTX_EXTRN_CS)
6583 {
6584 rc = HMVMX_IMPORT_SREG(CS, &pCtx->cs);
6585 rc |= hmR0VmxImportGuestRip(pVCpu);
6586 VMXLOCAL_BREAK_RC(rc);
6587 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6588 pCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6589 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true);
6590 }
6591 if (fWhat & CPUMCTX_EXTRN_SS)
6592 {
6593 rc = HMVMX_IMPORT_SREG(SS, &pCtx->ss);
6594 VMXLOCAL_BREAK_RC(rc);
6595 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6596 pCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6597 }
6598 if (fWhat & CPUMCTX_EXTRN_DS)
6599 {
6600 rc = HMVMX_IMPORT_SREG(DS, &pCtx->ds);
6601 VMXLOCAL_BREAK_RC(rc);
6602 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6603 pCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6604 }
6605 if (fWhat & CPUMCTX_EXTRN_ES)
6606 {
6607 rc = HMVMX_IMPORT_SREG(ES, &pCtx->es);
6608 VMXLOCAL_BREAK_RC(rc);
6609 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6610 pCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6611 }
6612 if (fWhat & CPUMCTX_EXTRN_FS)
6613 {
6614 rc = HMVMX_IMPORT_SREG(FS, &pCtx->fs);
6615 VMXLOCAL_BREAK_RC(rc);
6616 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6617 pCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6618 }
6619 if (fWhat & CPUMCTX_EXTRN_GS)
6620 {
6621 rc = HMVMX_IMPORT_SREG(GS, &pCtx->gs);
6622 VMXLOCAL_BREAK_RC(rc);
6623 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6624 pCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6625 }
6626 }
6627
6628 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
6629 {
6630 if (fWhat & CPUMCTX_EXTRN_LDTR)
6631 {
6632 rc = HMVMX_IMPORT_SREG(LDTR, &pCtx->ldtr);
6633 VMXLOCAL_BREAK_RC(rc);
6634 }
6635
6636 if (fWhat & CPUMCTX_EXTRN_GDTR)
6637 {
6638 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6639 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
6640 VMXLOCAL_BREAK_RC(rc);
6641 pCtx->gdtr.pGdt = u64Val;
6642 pCtx->gdtr.cbGdt = u32Val;
6643 }
6644
6645 /* Guest IDTR. */
6646 if (fWhat & CPUMCTX_EXTRN_IDTR)
6647 {
6648 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6649 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
6650 VMXLOCAL_BREAK_RC(rc);
6651 pCtx->idtr.pIdt = u64Val;
6652 pCtx->idtr.cbIdt = u32Val;
6653 }
6654
6655 /* Guest TR. */
6656 if (fWhat & CPUMCTX_EXTRN_TR)
6657 {
6658 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, don't save that one. */
6659 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6660 {
6661 rc = HMVMX_IMPORT_SREG(TR, &pCtx->tr);
6662 VMXLOCAL_BREAK_RC(rc);
6663 }
6664 }
6665 }
6666
6667 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
6668 {
6669 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
6670 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
6671 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
6672 pCtx->SysEnter.cs = u32Val;
6673 VMXLOCAL_BREAK_RC(rc);
6674 }
6675
6676#if HC_ARCH_BITS == 64
6677 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
6678 {
6679 if ( pVM->hm.s.fAllow64BitGuests
6680 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6681 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
6682 }
6683
6684 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
6685 {
6686 if ( pVM->hm.s.fAllow64BitGuests
6687 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6688 {
6689 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
6690 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
6691 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
6692 }
6693 }
6694#endif
6695
6696 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
6697#if HC_ARCH_BITS == 32
6698 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
6699#endif
6700 )
6701 {
6702 PCVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6703 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
6704 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6705 {
6706 switch (pMsr->u32Msr)
6707 {
6708#if HC_ARCH_BITS == 32
6709 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
6710 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
6711 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
6712 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6713#endif
6714 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
6715 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
6716 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit */ break;
6717 default:
6718 {
6719 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6720 ASMSetFlags(fEFlags);
6721 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
6722 cMsrs));
6723 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6724 }
6725 }
6726 }
6727 }
6728
6729 if (fWhat & CPUMCTX_EXTRN_DR7)
6730 {
6731 if (!pVCpu->hm.s.fUsingHyperDR7)
6732 {
6733 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6734 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
6735 VMXLOCAL_BREAK_RC(rc);
6736 pCtx->dr[7] = u32Val;
6737 }
6738 }
6739
6740 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
6741 {
6742 uint32_t u32Shadow;
6743 if (fWhat & CPUMCTX_EXTRN_CR0)
6744 {
6745 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
6746 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
6747 VMXLOCAL_BREAK_RC(rc);
6748 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr0Mask)
6749 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr0Mask);
6750 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
6751 CPUMSetGuestCR0(pVCpu, u32Val);
6752 VMMRZCallRing3Enable(pVCpu);
6753 }
6754
6755 if (fWhat & CPUMCTX_EXTRN_CR4)
6756 {
6757 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
6758 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
6759 VMXLOCAL_BREAK_RC(rc);
6760 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr4Mask)
6761 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr4Mask);
6762 CPUMSetGuestCR4(pVCpu, u32Val);
6763 }
6764
6765 if (fWhat & CPUMCTX_EXTRN_CR3)
6766 {
6767 /* CR0.PG bit changes are always intercepted, so it's up to date. */
6768 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6769 || ( pVM->hm.s.fNestedPaging
6770 && CPUMIsGuestPagingEnabledEx(pCtx)))
6771 {
6772 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6773 if (pCtx->cr3 != u64Val)
6774 {
6775 CPUMSetGuestCR3(pVCpu, u64Val);
6776 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6777 }
6778
6779 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
6780 Note: CR4.PAE, CR0.PG, EFER bit changes are always intercepted, so they're up to date. */
6781 if (CPUMIsGuestInPAEModeEx(pCtx))
6782 {
6783 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6784 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6785 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6786 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6787 VMXLOCAL_BREAK_RC(rc);
6788 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6789 }
6790 }
6791 }
6792 }
6793 } while (0);
6794
6795 if (RT_SUCCESS(rc))
6796 {
6797 /* Update fExtrn. */
6798 pCtx->fExtrn &= ~fWhat;
6799
6800 /* If everything has been imported, clear the HM keeper bit. */
6801 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
6802 {
6803 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
6804 Assert(!pCtx->fExtrn);
6805 }
6806 }
6807 }
6808 else
6809 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
6810
6811 ASMSetFlags(fEFlags);
6812
6813 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
6814
6815 /*
6816 * Honor any pending CR3 updates.
6817 *
6818 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6819 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6820 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
6821 *
6822 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6823 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6824 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6825 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
6826 *
6827 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6828 */
6829 if (VMMRZCallRing3IsEnabled(pVCpu))
6830 {
6831 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6832 {
6833 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
6834 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6835 }
6836
6837 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6838 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6839
6840 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6841 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6842 }
6843
6844 return VINF_SUCCESS;
6845#undef VMXLOCAL_BREAK_RC
6846}
6847
6848
6849/**
6850 * Saves the guest state from the VMCS into the guest-CPU context.
6851 *
6852 * @returns VBox status code.
6853 * @param pVCpu The cross context virtual CPU structure.
6854 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6855 */
6856VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
6857{
6858 return hmR0VmxImportGuestState(pVCpu, fWhat);
6859}
6860
6861
6862/**
6863 * Check per-VM and per-VCPU force flag actions that require us to go back to
6864 * ring-3 for one reason or another.
6865 *
6866 * @returns Strict VBox status code (i.e. informational status codes too)
6867 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6868 * ring-3.
6869 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6870 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6871 * interrupts)
6872 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6873 * all EMTs to be in ring-3.
6874 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6875 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6876 * to the EM loop.
6877 *
6878 * @param pVCpu The cross context virtual CPU structure.
6879 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6880 */
6881static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
6882{
6883 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6884
6885 /*
6886 * Anything pending? Should be more likely than not if we're doing a good job.
6887 */
6888 PVM pVM = pVCpu->CTX_SUFF(pVM);
6889 if ( !fStepping
6890 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6891 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6892 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6893 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6894 return VINF_SUCCESS;
6895
6896 /* Pending PGM C3 sync. */
6897 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6898 {
6899 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6900 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
6901 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
6902 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6903 if (rcStrict2 != VINF_SUCCESS)
6904 {
6905 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6906 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6907 return rcStrict2;
6908 }
6909 }
6910
6911 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6912 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6913 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6914 {
6915 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6916 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6917 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6918 return rc2;
6919 }
6920
6921 /* Pending VM request packets, such as hardware interrupts. */
6922 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6923 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6924 {
6925 Log4Func(("Pending VM request forcing us back to ring-3\n"));
6926 return VINF_EM_PENDING_REQUEST;
6927 }
6928
6929 /* Pending PGM pool flushes. */
6930 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6931 {
6932 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
6933 return VINF_PGM_POOL_FLUSH_PENDING;
6934 }
6935
6936 /* Pending DMA requests. */
6937 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6938 {
6939 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
6940 return VINF_EM_RAW_TO_R3;
6941 }
6942
6943 return VINF_SUCCESS;
6944}
6945
6946
6947/**
6948 * Converts any TRPM trap into a pending HM event. This is typically used when
6949 * entering from ring-3 (not longjmp returns).
6950 *
6951 * @param pVCpu The cross context virtual CPU structure.
6952 */
6953static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6954{
6955 Assert(TRPMHasTrap(pVCpu));
6956 Assert(!pVCpu->hm.s.Event.fPending);
6957
6958 uint8_t uVector;
6959 TRPMEVENT enmTrpmEvent;
6960 RTGCUINT uErrCode;
6961 RTGCUINTPTR GCPtrFaultAddress;
6962 uint8_t cbInstr;
6963
6964 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6965 AssertRC(rc);
6966
6967 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6968 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
6969 if (enmTrpmEvent == TRPM_TRAP)
6970 {
6971 switch (uVector)
6972 {
6973 case X86_XCPT_NMI:
6974 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6975 break;
6976
6977 case X86_XCPT_BP:
6978 case X86_XCPT_OF:
6979 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6980 break;
6981
6982 case X86_XCPT_PF:
6983 case X86_XCPT_DF:
6984 case X86_XCPT_TS:
6985 case X86_XCPT_NP:
6986 case X86_XCPT_SS:
6987 case X86_XCPT_GP:
6988 case X86_XCPT_AC:
6989 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
6990 RT_FALL_THRU();
6991 default:
6992 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6993 break;
6994 }
6995 }
6996 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
6997 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6998 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
6999 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7000 else
7001 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7002
7003 rc = TRPMResetTrap(pVCpu);
7004 AssertRC(rc);
7005 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7006 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7007
7008 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7009}
7010
7011
7012/**
7013 * Converts the pending HM event into a TRPM trap.
7014 *
7015 * @param pVCpu The cross context virtual CPU structure.
7016 */
7017static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7018{
7019 Assert(pVCpu->hm.s.Event.fPending);
7020
7021 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7022 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7023 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7024 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7025
7026 /* If a trap was already pending, we did something wrong! */
7027 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7028
7029 TRPMEVENT enmTrapType;
7030 switch (uVectorType)
7031 {
7032 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7033 enmTrapType = TRPM_HARDWARE_INT;
7034 break;
7035
7036 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7037 enmTrapType = TRPM_SOFTWARE_INT;
7038 break;
7039
7040 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7041 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7042 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7043 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7044 enmTrapType = TRPM_TRAP;
7045 break;
7046
7047 default:
7048 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7049 enmTrapType = TRPM_32BIT_HACK;
7050 break;
7051 }
7052
7053 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7054
7055 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7056 AssertRC(rc);
7057
7058 if (fErrorCodeValid)
7059 TRPMSetErrorCode(pVCpu, uErrorCode);
7060
7061 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7062 && uVector == X86_XCPT_PF)
7063 {
7064 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7065 }
7066 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7067 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7068 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7069 {
7070 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7071 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7072 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7073 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7074 }
7075
7076 /* Clear any pending events from the VMCS. */
7077 VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7078 VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);
7079
7080 /* We're now done converting the pending event. */
7081 pVCpu->hm.s.Event.fPending = false;
7082}
7083
7084
7085/**
7086 * Does the necessary state syncing before returning to ring-3 for any reason
7087 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7088 *
7089 * @returns VBox status code.
7090 * @param pVCpu The cross context virtual CPU structure.
7091 * @param fImportState Whether to import the guest state from the VMCS back
7092 * to the guest-CPU context.
7093 *
7094 * @remarks No-long-jmp zone!!!
7095 */
7096static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7097{
7098 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7099 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7100
7101 RTCPUID idCpu = RTMpCpuId();
7102 Log4Func(("HostCpuId=%u\n", idCpu));
7103
7104 /*
7105 * !!! IMPORTANT !!!
7106 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7107 */
7108
7109 /* Save the guest state if necessary. */
7110 if (fImportState)
7111 {
7112 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7113 AssertRCReturn(rc, rc);
7114 }
7115
7116 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
7117 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7118 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7119
7120 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
7121#ifdef VBOX_STRICT
7122 if (CPUMIsHyperDebugStateActive(pVCpu))
7123 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
7124#endif
7125 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7126 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7127 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7128
7129#if HC_ARCH_BITS == 64
7130 /* Restore host-state bits that VT-x only restores partially. */
7131 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7132 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7133 {
7134 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7135 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7136 }
7137 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7138#endif
7139
7140 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7141 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7142 {
7143 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
7144 if (!fImportState)
7145 {
7146 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
7147 AssertRCReturn(rc, rc);
7148 }
7149 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7150 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7151 }
7152 else
7153 pVCpu->hm.s.vmx.fLazyMsrs = 0;
7154
7155 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7156 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7157
7158 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7159 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
7160 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
7161 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
7162 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
7163 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7164 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7165 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7166 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7167
7168 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7169
7170 /** @todo This partially defeats the purpose of having preemption hooks.
7171 * The problem is, deregistering the hooks should be moved to a place that
7172 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7173 * context.
7174 */
7175 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7176 {
7177 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7178 AssertRCReturn(rc, rc);
7179
7180 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7181 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7182 }
7183 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7184 NOREF(idCpu);
7185
7186 return VINF_SUCCESS;
7187}
7188
7189
7190/**
7191 * Leaves the VT-x session.
7192 *
7193 * @returns VBox status code.
7194 * @param pVCpu The cross context virtual CPU structure.
7195 *
7196 * @remarks No-long-jmp zone!!!
7197 */
7198static int hmR0VmxLeaveSession(PVMCPU pVCpu)
7199{
7200 HM_DISABLE_PREEMPT(pVCpu);
7201 HMVMX_ASSERT_CPU_SAFE(pVCpu);
7202 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7203 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7204
7205 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7206 and done this from the VMXR0ThreadCtxCallback(). */
7207 if (!pVCpu->hm.s.fLeaveDone)
7208 {
7209 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
7210 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7211 pVCpu->hm.s.fLeaveDone = true;
7212 }
7213 Assert(!pVCpu->cpum.GstCtx.fExtrn);
7214
7215 /*
7216 * !!! IMPORTANT !!!
7217 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7218 */
7219
7220 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7221 /** @todo Deregistering here means we need to VMCLEAR always
7222 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
7223 * for calling VMMR0ThreadCtxHookDisable here! */
7224 VMMR0ThreadCtxHookDisable(pVCpu);
7225
7226 /* Leave HM context. This takes care of local init (term). */
7227 int rc = HMR0LeaveCpu(pVCpu);
7228
7229 HM_RESTORE_PREEMPT();
7230 return rc;
7231}
7232
7233
7234/**
7235 * Does the necessary state syncing before doing a longjmp to ring-3.
7236 *
7237 * @returns VBox status code.
7238 * @param pVCpu The cross context virtual CPU structure.
7239 *
7240 * @remarks No-long-jmp zone!!!
7241 */
7242DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
7243{
7244 return hmR0VmxLeaveSession(pVCpu);
7245}
7246
7247
7248/**
7249 * Take necessary actions before going back to ring-3.
7250 *
7251 * An action requires us to go back to ring-3. This function does the necessary
7252 * steps before we can safely return to ring-3. This is not the same as longjmps
7253 * to ring-3, this is voluntary and prepares the guest so it may continue
7254 * executing outside HM (recompiler/IEM).
7255 *
7256 * @returns VBox status code.
7257 * @param pVCpu The cross context virtual CPU structure.
7258 * @param rcExit The reason for exiting to ring-3. Can be
7259 * VINF_VMM_UNKNOWN_RING3_CALL.
7260 */
7261static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
7262{
7263 Assert(pVCpu);
7264 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7265
7266 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7267 {
7268 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7269 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7270 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7271 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7272 }
7273
7274 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7275 VMMRZCallRing3Disable(pVCpu);
7276 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
7277
7278 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7279 if (pVCpu->hm.s.Event.fPending)
7280 {
7281 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7282 Assert(!pVCpu->hm.s.Event.fPending);
7283 }
7284
7285 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7286 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7287
7288 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7289 and if we're injecting an event we should have a TRPM trap pending. */
7290 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7291#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
7292 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7293#endif
7294
7295 /* Save guest state and restore host state bits. */
7296 int rc = hmR0VmxLeaveSession(pVCpu);
7297 AssertRCReturn(rc, rc);
7298 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7299 /* Thread-context hooks are unregistered at this point!!! */
7300
7301 /* Sync recompiler state. */
7302 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7303 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7304 | CPUM_CHANGED_LDTR
7305 | CPUM_CHANGED_GDTR
7306 | CPUM_CHANGED_IDTR
7307 | CPUM_CHANGED_TR
7308 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7309 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
7310 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
7311 {
7312 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7313 }
7314
7315 Assert(!pVCpu->hm.s.fClearTrapFlag);
7316
7317 /* Update the exit-to-ring 3 reason. */
7318 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
7319
7320 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7321 if (rcExit != VINF_EM_RAW_INTERRUPT)
7322 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7323
7324 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7325
7326 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7327 VMMRZCallRing3RemoveNotification(pVCpu);
7328 VMMRZCallRing3Enable(pVCpu);
7329
7330 return rc;
7331}
7332
7333
7334/**
7335 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7336 * longjump to ring-3 and possibly get preempted.
7337 *
7338 * @returns VBox status code.
7339 * @param pVCpu The cross context virtual CPU structure.
7340 * @param enmOperation The operation causing the ring-3 longjump.
7341 * @param pvUser User argument, currently unused, NULL.
7342 */
7343static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7344{
7345 RT_NOREF(pvUser);
7346 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7347 {
7348 /*
7349 * !!! IMPORTANT !!!
7350 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7351 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7352 */
7353 VMMRZCallRing3RemoveNotification(pVCpu);
7354 VMMRZCallRing3Disable(pVCpu);
7355 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7356 RTThreadPreemptDisable(&PreemptState);
7357
7358 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7359 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7360 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7361
7362#if HC_ARCH_BITS == 64
7363 /* Restore host-state bits that VT-x only restores partially. */
7364 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7365 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7366 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7367 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7368#endif
7369
7370 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7371 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7372 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7373
7374 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7375 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7376 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7377 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7378 {
7379 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7380 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7381 }
7382
7383 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7384 VMMR0ThreadCtxHookDisable(pVCpu);
7385 HMR0LeaveCpu(pVCpu);
7386 RTThreadPreemptRestore(&PreemptState);
7387 return VINF_SUCCESS;
7388 }
7389
7390 Assert(pVCpu);
7391 Assert(pvUser);
7392 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7393 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7394
7395 VMMRZCallRing3Disable(pVCpu);
7396 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7397
7398 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
7399
7400 int rc = hmR0VmxLongJmpToRing3(pVCpu);
7401 AssertRCReturn(rc, rc);
7402
7403 VMMRZCallRing3Enable(pVCpu);
7404 return VINF_SUCCESS;
7405}
7406
7407
7408/**
7409 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7410 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7411 *
7412 * @param pVCpu The cross context virtual CPU structure.
7413 */
7414DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7415{
7416 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7417 {
7418 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7419 {
7420 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7421 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7422 AssertRC(rc);
7423 Log4Func(("Setup interrupt-window exiting\n"));
7424 }
7425 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7426}
7427
7428
7429/**
7430 * Clears the interrupt-window exiting control in the VMCS.
7431 *
7432 * @param pVCpu The cross context virtual CPU structure.
7433 */
7434DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7435{
7436 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
7437 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7438 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7439 AssertRC(rc);
7440 Log4Func(("Cleared interrupt-window exiting\n"));
7441}
7442
7443
7444/**
7445 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7446 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7447 *
7448 * @param pVCpu The cross context virtual CPU structure.
7449 */
7450DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7451{
7452 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7453 {
7454 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7455 {
7456 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7457 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7458 AssertRC(rc);
7459 Log4Func(("Setup NMI-window exiting\n"));
7460 }
7461 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7462}
7463
7464
7465/**
7466 * Clears the NMI-window exiting control in the VMCS.
7467 *
7468 * @param pVCpu The cross context virtual CPU structure.
7469 */
7470DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7471{
7472 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
7473 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7474 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7475 AssertRC(rc);
7476 Log4Func(("Cleared NMI-window exiting\n"));
7477}
7478
7479
7480/**
7481 * Evaluates the event to be delivered to the guest and sets it as the pending
7482 * event.
7483 *
7484 * @returns The VT-x guest-interruptibility state.
7485 * @param pVCpu The cross context virtual CPU structure.
7486 */
7487static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu)
7488{
7489 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7490 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7491 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu);
7492 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7493 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7494 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7495
7496 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7497 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7498 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7499 Assert(!TRPMHasTrap(pVCpu));
7500
7501 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7502 APICUpdatePendingInterrupts(pVCpu);
7503
7504 /*
7505 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7506 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7507 */
7508 /** @todo SMI. SMIs take priority over NMIs. */
7509 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7510 {
7511 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7512 if ( !pVCpu->hm.s.Event.fPending
7513 && !fBlockNmi
7514 && !fBlockSti
7515 && !fBlockMovSS)
7516 {
7517 Log4Func(("Pending NMI\n"));
7518 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INT_INFO_VALID;
7519 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7520
7521 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7522 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7523 }
7524 else
7525 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7526 }
7527 /*
7528 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7529 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7530 */
7531 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7532 && !pVCpu->hm.s.fSingleInstruction)
7533 {
7534 Assert(!DBGFIsStepping(pVCpu));
7535 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7536 AssertRCReturn(rc, 0);
7537 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7538 if ( !pVCpu->hm.s.Event.fPending
7539 && !fBlockInt
7540 && !fBlockSti
7541 && !fBlockMovSS)
7542 {
7543 uint8_t u8Interrupt;
7544 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7545 if (RT_SUCCESS(rc))
7546 {
7547 Log4Func(("Pending external interrupt u8Interrupt=%#x\n", u8Interrupt));
7548 uint32_t u32IntInfo = u8Interrupt
7549 | VMX_EXIT_INT_INFO_VALID
7550 | (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7551
7552 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7553 }
7554 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7555 {
7556 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7557 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7558 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7559
7560 /*
7561 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7562 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7563 * need to re-set this force-flag here.
7564 */
7565 }
7566 else
7567 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7568 }
7569 else
7570 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7571 }
7572
7573 return fIntrState;
7574}
7575
7576
7577/**
7578 * Sets a pending-debug exception to be delivered to the guest if the guest is
7579 * single-stepping in the VMCS.
7580 *
7581 * @param pVCpu The cross context virtual CPU structure.
7582 */
7583DECLINLINE(int) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7584{
7585 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7586 RT_NOREF(pVCpu);
7587 return VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
7588}
7589
7590
7591/**
7592 * Injects any pending events into the guest if the guest is in a state to
7593 * receive them.
7594 *
7595 * @returns Strict VBox status code (i.e. informational status codes too).
7596 * @param pVCpu The cross context virtual CPU structure.
7597 * @param fIntrState The VT-x guest-interruptibility state.
7598 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7599 * return VINF_EM_DBG_STEPPED if the event was
7600 * dispatched directly.
7601 */
7602static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, uint32_t fIntrState, bool fStepping)
7603{
7604 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7605 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7606
7607 bool fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7608 bool fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7609
7610 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7611 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7612 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7613 Assert(!TRPMHasTrap(pVCpu));
7614
7615 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7616 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7617 if (pVCpu->hm.s.Event.fPending)
7618 {
7619 /*
7620 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7621 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7622 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7623 *
7624 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7625 */
7626 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7627#ifdef VBOX_STRICT
7628 if (uIntType == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
7629 {
7630 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7631 Assert(!fBlockInt);
7632 Assert(!fBlockSti);
7633 Assert(!fBlockMovSS);
7634 }
7635 else if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
7636 {
7637 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7638 Assert(!fBlockSti);
7639 Assert(!fBlockMovSS);
7640 Assert(!fBlockNmi);
7641 }
7642#endif
7643 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7644 uIntType));
7645 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7646 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping,
7647 &fIntrState);
7648 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7649
7650 /* Update the interruptibility-state as it could have been changed by
7651 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7652 fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7653 fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7654
7655 if (uIntType == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
7656 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7657 else
7658 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7659 }
7660
7661 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7662 if ( fBlockSti
7663 || fBlockMovSS)
7664 {
7665 if (!pVCpu->hm.s.fSingleInstruction)
7666 {
7667 /*
7668 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7669 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7670 * See Intel spec. 27.3.4 "Saving Non-Register State".
7671 */
7672 Assert(!DBGFIsStepping(pVCpu));
7673 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7674 AssertRCReturn(rc, rc);
7675 if (pCtx->eflags.Bits.u1TF)
7676 {
7677 int rc2 = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7678 AssertRCReturn(rc2, rc2);
7679 }
7680 }
7681 else if (pCtx->eflags.Bits.u1TF)
7682 {
7683 /*
7684 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7685 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7686 */
7687 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
7688 fIntrState = 0;
7689 }
7690 }
7691
7692 /*
7693 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7694 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7695 */
7696 int rc3 = hmR0VmxExportGuestIntrState(pVCpu, fIntrState);
7697 AssertRCReturn(rc3, rc3);
7698
7699 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7700 NOREF(fBlockMovSS); NOREF(fBlockSti);
7701 return rcStrict;
7702}
7703
7704
7705/**
7706 * Injects a double-fault (\#DF) exception into the VM.
7707 *
7708 * @returns Strict VBox status code (i.e. informational status codes too).
7709 * @param pVCpu The cross context virtual CPU structure.
7710 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7711 * and should return VINF_EM_DBG_STEPPED if the event
7712 * is injected directly (register modified by us, not
7713 * by hardware on VM-entry).
7714 * @param pfIntrState Pointer to the current guest interruptibility-state.
7715 * This interruptibility-state will be updated if
7716 * necessary. This cannot not be NULL.
7717 */
7718DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, bool fStepping, uint32_t *pfIntrState)
7719{
7720 uint32_t const u32IntInfo = X86_XCPT_DF | VMX_EXIT_INT_INFO_VALID
7721 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7722 | VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7723 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */, fStepping,
7724 pfIntrState);
7725}
7726
7727
7728/**
7729 * Injects a general-protection (\#GP) fault into the VM.
7730 *
7731 * @returns Strict VBox status code (i.e. informational status codes too).
7732 * @param pVCpu The cross context virtual CPU structure.
7733 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7734 * mode, i.e. in real-mode it's not valid).
7735 * @param u32ErrorCode The error code associated with the \#GP.
7736 * @param fStepping Whether we're running in
7737 * hmR0VmxRunGuestCodeStep() and should return
7738 * VINF_EM_DBG_STEPPED if the event is injected
7739 * directly (register modified by us, not by
7740 * hardware on VM-entry).
7741 * @param pfIntrState Pointer to the current guest interruptibility-state.
7742 * This interruptibility-state will be updated if
7743 * necessary. This cannot not be NULL.
7744 */
7745DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, bool fErrorCodeValid, uint32_t u32ErrorCode, bool fStepping,
7746 uint32_t *pfIntrState)
7747{
7748 uint32_t const u32IntInfo = X86_XCPT_GP | VMX_EXIT_INT_INFO_VALID
7749 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7750 | (fErrorCodeValid ? VMX_EXIT_INT_INFO_ERROR_CODE_VALID : 0);
7751 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */, fStepping,
7752 pfIntrState);
7753}
7754
7755
7756/**
7757 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7758 * stack.
7759 *
7760 * @returns Strict VBox status code (i.e. informational status codes too).
7761 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7762 * @param pVCpu The cross context virtual CPU structure.
7763 * @param uValue The value to push to the guest stack.
7764 */
7765static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
7766{
7767 /*
7768 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7769 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7770 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7771 */
7772 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7773 if (pCtx->sp == 1)
7774 return VINF_EM_RESET;
7775 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7776 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
7777 AssertRC(rc);
7778 return rc;
7779}
7780
7781
7782/**
7783 * Injects an event into the guest upon VM-entry by updating the relevant fields
7784 * in the VM-entry area in the VMCS.
7785 *
7786 * @returns Strict VBox status code (i.e. informational status codes too).
7787 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7788 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7789 *
7790 * @param pVCpu The cross context virtual CPU structure.
7791 * @param u64IntInfo The VM-entry interruption-information field.
7792 * @param cbInstr The VM-entry instruction length in bytes (for
7793 * software interrupts, exceptions and privileged
7794 * software exceptions).
7795 * @param u32ErrCode The VM-entry exception error code.
7796 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7797 * @param pfIntrState Pointer to the current guest interruptibility-state.
7798 * This interruptibility-state will be updated if
7799 * necessary. This cannot not be NULL.
7800 * @param fStepping Whether we're running in
7801 * hmR0VmxRunGuestCodeStep() and should return
7802 * VINF_EM_DBG_STEPPED if the event is injected
7803 * directly (register modified by us, not by
7804 * hardware on VM-entry).
7805 */
7806static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7807 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState)
7808{
7809 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7810 AssertMsg(!RT_HI_U32(u64IntInfo), ("%#RX64\n", u64IntInfo));
7811 Assert(pfIntrState);
7812
7813 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7814 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7815 uint32_t const uVector = VMX_EXIT_INT_INFO_VECTOR(u32IntInfo);
7816 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(u32IntInfo);
7817
7818#ifdef VBOX_STRICT
7819 /*
7820 * Validate the error-code-valid bit for hardware exceptions.
7821 * No error codes for exceptions in real-mode.
7822 *
7823 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7824 */
7825 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7826 && !CPUMIsGuestInRealModeEx(pCtx))
7827 {
7828 switch (uVector)
7829 {
7830 case X86_XCPT_PF:
7831 case X86_XCPT_DF:
7832 case X86_XCPT_TS:
7833 case X86_XCPT_NP:
7834 case X86_XCPT_SS:
7835 case X86_XCPT_GP:
7836 case X86_XCPT_AC:
7837 AssertMsg(VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
7838 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7839 RT_FALL_THRU();
7840 default:
7841 break;
7842 }
7843 }
7844#endif
7845
7846 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7847 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7848 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
7849
7850 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7851
7852 /*
7853 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
7854 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
7855 * interrupt handler in the (real-mode) guest.
7856 *
7857 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
7858 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7859 */
7860 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
7861 {
7862 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
7863 {
7864 /*
7865 * For unrestricted execution enabled CPUs running real-mode guests, we must not
7866 * set the deliver-error-code bit.
7867 *
7868 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7869 */
7870 u32IntInfo &= ~VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7871 }
7872 else
7873 {
7874 PVM pVM = pVCpu->CTX_SUFF(pVM);
7875 Assert(PDMVmmDevHeapIsEnabled(pVM));
7876 Assert(pVM->hm.s.vmx.pRealModeTSS);
7877
7878 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
7879 int rc2 = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_RIP
7880 | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
7881 AssertRCReturn(rc2, rc2);
7882
7883 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7884 size_t const cbIdtEntry = sizeof(X86IDTR16);
7885 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
7886 {
7887 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7888 if (uVector == X86_XCPT_DF)
7889 return VINF_EM_RESET;
7890
7891 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7892 if (uVector == X86_XCPT_GP)
7893 return hmR0VmxInjectXcptDF(pVCpu, fStepping, pfIntrState);
7894
7895 /*
7896 * If we're injecting an event with no valid IDT entry, inject a #GP.
7897 * No error codes for exceptions in real-mode.
7898 *
7899 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7900 */
7901 return hmR0VmxInjectXcptGP(pVCpu, false /* fErrCodeValid */, 0 /* u32ErrCode */, fStepping, pfIntrState);
7902 }
7903
7904 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7905 uint16_t uGuestIp = pCtx->ip;
7906 if (uIntType == VMX_EXIT_INT_INFO_TYPE_SW_XCPT)
7907 {
7908 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7909 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7910 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7911 }
7912 else if (uIntType == VMX_EXIT_INT_INFO_TYPE_SW_INT)
7913 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7914
7915 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7916 X86IDTR16 IdtEntry;
7917 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
7918 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7919 AssertRCReturn(rc2, rc2);
7920
7921 /* Construct the stack frame for the interrupt/exception handler. */
7922 VBOXSTRICTRC rcStrict;
7923 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
7924 if (rcStrict == VINF_SUCCESS)
7925 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
7926 if (rcStrict == VINF_SUCCESS)
7927 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
7928
7929 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7930 if (rcStrict == VINF_SUCCESS)
7931 {
7932 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7933 pCtx->rip = IdtEntry.offSel;
7934 pCtx->cs.Sel = IdtEntry.uSel;
7935 pCtx->cs.ValidSel = IdtEntry.uSel;
7936 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7937 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7938 && uVector == X86_XCPT_PF)
7939 pCtx->cr2 = GCPtrFaultAddress;
7940
7941 /* If any other guest-state bits are changed here, make sure to update
7942 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7943 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
7944 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
7945 | HM_CHANGED_GUEST_RSP);
7946
7947 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7948 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
7949 {
7950 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7951 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
7952 Log4Func(("Clearing inhibition due to STI\n"));
7953 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
7954 }
7955 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
7956 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
7957
7958 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7959 it, if we are returning to ring-3 before executing guest code. */
7960 pVCpu->hm.s.Event.fPending = false;
7961
7962 /* Make hmR0VmxPreRunGuest() return if we're stepping since we've changed cs:rip. */
7963 if (fStepping)
7964 rcStrict = VINF_EM_DBG_STEPPED;
7965 }
7966 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
7967 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7968 return rcStrict;
7969 }
7970 }
7971
7972 /* Validate. */
7973 Assert(VMX_EXIT_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
7974 Assert(!VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
7975 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
7976
7977 /* Inject. */
7978 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
7979 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
7980 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
7981 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
7982 AssertRCReturn(rc, rc);
7983
7984 /* Update CR2. */
7985 if ( VMX_EXIT_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7986 && uVector == X86_XCPT_PF)
7987 pCtx->cr2 = GCPtrFaultAddress;
7988
7989 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
7990
7991 return VINF_SUCCESS;
7992}
7993
7994
7995/**
7996 * Clears the interrupt-window exiting control in the VMCS and if necessary
7997 * clears the current event in the VMCS as well.
7998 *
7999 * @returns VBox status code.
8000 * @param pVCpu The cross context virtual CPU structure.
8001 *
8002 * @remarks Use this function only to clear events that have not yet been
8003 * delivered to the guest but are injected in the VMCS!
8004 * @remarks No-long-jump zone!!!
8005 */
8006static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8007{
8008 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8009 {
8010 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8011 Log4Func(("Cleared interrupt widow\n"));
8012 }
8013
8014 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8015 {
8016 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8017 Log4Func(("Cleared interrupt widow\n"));
8018 }
8019}
8020
8021
8022/**
8023 * Enters the VT-x session.
8024 *
8025 * @returns VBox status code.
8026 * @param pVCpu The cross context virtual CPU structure.
8027 * @param pHostCpu Pointer to the global CPU info struct.
8028 */
8029VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
8030{
8031 AssertPtr(pVCpu);
8032 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8033 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8034 RT_NOREF(pHostCpu);
8035
8036 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8037 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8038 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8039
8040#ifdef VBOX_STRICT
8041 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8042 RTCCUINTREG uHostCR4 = ASMGetCR4();
8043 if (!(uHostCR4 & X86_CR4_VMXE))
8044 {
8045 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8046 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8047 }
8048#endif
8049
8050 /*
8051 * Load the VCPU's VMCS as the current (and active) one.
8052 */
8053 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8054 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8055 if (RT_FAILURE(rc))
8056 return rc;
8057
8058 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8059 pVCpu->hm.s.fLeaveDone = false;
8060 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8061
8062 return VINF_SUCCESS;
8063}
8064
8065
8066/**
8067 * The thread-context callback (only on platforms which support it).
8068 *
8069 * @param enmEvent The thread-context event.
8070 * @param pVCpu The cross context virtual CPU structure.
8071 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8072 * @thread EMT(pVCpu)
8073 */
8074VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8075{
8076 NOREF(fGlobalInit);
8077
8078 switch (enmEvent)
8079 {
8080 case RTTHREADCTXEVENT_OUT:
8081 {
8082 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8083 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8084 VMCPU_ASSERT_EMT(pVCpu);
8085
8086 /* No longjmps (logger flushes, locks) in this fragile context. */
8087 VMMRZCallRing3Disable(pVCpu);
8088 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8089
8090 /*
8091 * Restore host-state (FPU, debug etc.)
8092 */
8093 if (!pVCpu->hm.s.fLeaveDone)
8094 {
8095 /*
8096 * Do -not- import the guest-state here as we might already be in the middle of importing
8097 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8098 */
8099 hmR0VmxLeave(pVCpu, false /* fImportState */);
8100 pVCpu->hm.s.fLeaveDone = true;
8101 }
8102
8103 /* Leave HM context, takes care of local init (term). */
8104 int rc = HMR0LeaveCpu(pVCpu);
8105 AssertRC(rc); NOREF(rc);
8106
8107 /* Restore longjmp state. */
8108 VMMRZCallRing3Enable(pVCpu);
8109 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8110 break;
8111 }
8112
8113 case RTTHREADCTXEVENT_IN:
8114 {
8115 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8116 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8117 VMCPU_ASSERT_EMT(pVCpu);
8118
8119 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8120 VMMRZCallRing3Disable(pVCpu);
8121 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8122
8123 /* Initialize the bare minimum state required for HM. This takes care of
8124 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8125 int rc = hmR0EnterCpu(pVCpu);
8126 AssertRC(rc);
8127 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8128 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8129
8130 /* Load the active VMCS as the current one. */
8131 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8132 {
8133 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8134 AssertRC(rc); NOREF(rc);
8135 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8136 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8137 }
8138 pVCpu->hm.s.fLeaveDone = false;
8139
8140 /* Restore longjmp state. */
8141 VMMRZCallRing3Enable(pVCpu);
8142 break;
8143 }
8144
8145 default:
8146 break;
8147 }
8148}
8149
8150
8151/**
8152 * Exports the host state into the VMCS host-state area.
8153 * Sets up the VM-exit MSR-load area.
8154 *
8155 * The CPU state will be loaded from these fields on every successful VM-exit.
8156 *
8157 * @returns VBox status code.
8158 * @param pVCpu The cross context virtual CPU structure.
8159 *
8160 * @remarks No-long-jump zone!!!
8161 */
8162static int hmR0VmxExportHostState(PVMCPU pVCpu)
8163{
8164 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8165
8166 int rc = VINF_SUCCESS;
8167 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8168 {
8169 rc = hmR0VmxExportHostControlRegs();
8170 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8171
8172 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8173 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8174
8175 rc = hmR0VmxExportHostMsrs(pVCpu);
8176 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8177
8178 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8179 }
8180 return rc;
8181}
8182
8183
8184/**
8185 * Saves the host state in the VMCS host-state.
8186 *
8187 * @returns VBox status code.
8188 * @param pVCpu The cross context virtual CPU structure.
8189 *
8190 * @remarks No-long-jump zone!!!
8191 */
8192VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8193{
8194 AssertPtr(pVCpu);
8195 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8196
8197 /*
8198 * Export the host state here while entering HM context.
8199 * When thread-context hooks are used, we might get preempted and have to re-save the host
8200 * state but most of the time we won't be, so do it here before we disable interrupts.
8201 */
8202 return hmR0VmxExportHostState(pVCpu);
8203}
8204
8205
8206/**
8207 * Exports the guest state into the VMCS guest-state area.
8208 *
8209 * The will typically be done before VM-entry when the guest-CPU state and the
8210 * VMCS state may potentially be out of sync.
8211 *
8212 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8213 * VM-entry controls.
8214 * Sets up the appropriate VMX non-root function to execute guest code based on
8215 * the guest CPU mode.
8216 *
8217 * @returns VBox strict status code.
8218 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8219 * without unrestricted guest access and the VMMDev is not presently
8220 * mapped (e.g. EFI32).
8221 *
8222 * @param pVCpu The cross context virtual CPU structure.
8223 *
8224 * @remarks No-long-jump zone!!!
8225 */
8226static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu)
8227{
8228 AssertPtr(pVCpu);
8229 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8230
8231 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8232
8233 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
8234
8235 /* Determine real-on-v86 mode. */
8236 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8237 if ( !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
8238 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
8239 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8240
8241 /*
8242 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8243 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8244 */
8245 int rc = hmR0VmxSelectVMRunHandler(pVCpu);
8246 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8247
8248 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8249 rc = hmR0VmxExportGuestEntryCtls(pVCpu);
8250 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8251
8252 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8253 rc = hmR0VmxExportGuestExitCtls(pVCpu);
8254 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8255
8256 rc = hmR0VmxExportGuestCR0(pVCpu);
8257 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8258
8259 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu);
8260 if (rcStrict == VINF_SUCCESS)
8261 { /* likely */ }
8262 else
8263 {
8264 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8265 return rcStrict;
8266 }
8267
8268 rc = hmR0VmxExportGuestSegmentRegs(pVCpu);
8269 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8270
8271 /* This needs to be done after hmR0VmxExportGuestEntryCtls() and hmR0VmxExportGuestExitCtls() as it
8272 may alter controls if we determine we don't have to swap EFER after all. */
8273 rc = hmR0VmxExportGuestMsrs(pVCpu);
8274 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8275
8276 rc = hmR0VmxExportGuestApicTpr(pVCpu);
8277 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8278
8279 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu);
8280 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8281
8282 /* Exporting RFLAGS here is fine, even though RFLAGS.TF might depend on guest debug state which is
8283 not exported here. It is re-evaluated and updated if necessary in hmR0VmxExportSharedState(). */
8284 rc = hmR0VmxExportGuestRip(pVCpu);
8285 rc |= hmR0VmxExportGuestRsp(pVCpu);
8286 rc |= hmR0VmxExportGuestRflags(pVCpu);
8287 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8288
8289 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
8290 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
8291 | HM_CHANGED_GUEST_CR2
8292 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
8293 | HM_CHANGED_GUEST_X87
8294 | HM_CHANGED_GUEST_SSE_AVX
8295 | HM_CHANGED_GUEST_OTHER_XSAVE
8296 | HM_CHANGED_GUEST_XCRx
8297 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
8298 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
8299 | HM_CHANGED_GUEST_TSC_AUX
8300 | HM_CHANGED_GUEST_OTHER_MSRS
8301 | HM_CHANGED_GUEST_HWVIRT
8302 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
8303
8304 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
8305 return rc;
8306}
8307
8308
8309/**
8310 * Exports the state shared between the host and guest into the VMCS.
8311 *
8312 * @param pVCpu The cross context virtual CPU structure.
8313 *
8314 * @remarks No-long-jump zone!!!
8315 */
8316static void hmR0VmxExportSharedState(PVMCPU pVCpu)
8317{
8318 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8319 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8320
8321 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
8322 {
8323 int rc = hmR0VmxExportSharedDebugState(pVCpu);
8324 AssertRC(rc);
8325 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
8326
8327 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8328 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
8329 {
8330 rc = hmR0VmxExportGuestRflags(pVCpu);
8331 AssertRC(rc);
8332 }
8333 }
8334
8335 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
8336 {
8337 hmR0VmxLazyLoadGuestMsrs(pVCpu);
8338 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
8339 }
8340
8341 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
8342 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8343}
8344
8345
8346/**
8347 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8348 *
8349 * @returns Strict VBox status code (i.e. informational status codes too).
8350 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8351 * without unrestricted guest access and the VMMDev is not presently
8352 * mapped (e.g. EFI32).
8353 *
8354 * @param pVCpu The cross context virtual CPU structure.
8355 *
8356 * @remarks No-long-jump zone!!!
8357 */
8358static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu)
8359{
8360 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8361 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8362 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8363
8364#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8365 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8366#endif
8367
8368 /*
8369 * For many exits it's only RIP that changes and hence try to export it first
8370 * without going through a lot of change flag checks.
8371 */
8372 VBOXSTRICTRC rcStrict;
8373 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8374 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8375 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
8376 {
8377 rcStrict = hmR0VmxExportGuestRip(pVCpu);
8378 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8379 { /* likely */}
8380 else
8381 AssertMsgFailedReturn(("hmR0VmxExportGuestRip failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8382 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
8383 }
8384 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8385 {
8386 rcStrict = hmR0VmxExportGuestState(pVCpu);
8387 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8388 { /* likely */}
8389 else
8390 {
8391 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("hmR0VmxExportGuestState failed! rc=%Rrc\n",
8392 VBOXSTRICTRC_VAL(rcStrict)));
8393 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8394 return rcStrict;
8395 }
8396 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
8397 }
8398 else
8399 rcStrict = VINF_SUCCESS;
8400
8401#ifdef VBOX_STRICT
8402 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8403 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8404 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8405 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
8406 ("fCtxChanged=%#RX64\n", fCtxChanged));
8407#endif
8408 return rcStrict;
8409}
8410
8411
8412/**
8413 * Does the preparations before executing guest code in VT-x.
8414 *
8415 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8416 * recompiler/IEM. We must be cautious what we do here regarding committing
8417 * guest-state information into the VMCS assuming we assuredly execute the
8418 * guest in VT-x mode.
8419 *
8420 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8421 * the common-state (TRPM/forceflags), we must undo those changes so that the
8422 * recompiler/IEM can (and should) use them when it resumes guest execution.
8423 * Otherwise such operations must be done when we can no longer exit to ring-3.
8424 *
8425 * @returns Strict VBox status code (i.e. informational status codes too).
8426 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8427 * have been disabled.
8428 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8429 * double-fault into the guest.
8430 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8431 * dispatched directly.
8432 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8433 *
8434 * @param pVCpu The cross context virtual CPU structure.
8435 * @param pVmxTransient Pointer to the VMX transient structure.
8436 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8437 * us ignore some of the reasons for returning to
8438 * ring-3, and return VINF_EM_DBG_STEPPED if event
8439 * dispatching took place.
8440 */
8441static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
8442{
8443 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8444
8445#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_ONLY_IN_IEM
8446 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
8447 return VINF_EM_RESCHEDULE_REM;
8448#endif
8449
8450#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8451 PGMRZDynMapFlushAutoSet(pVCpu);
8452#endif
8453
8454 /* Check force flag actions that might require us to go back to ring-3. */
8455 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
8456 if (rcStrict == VINF_SUCCESS)
8457 { /* FFs doesn't get set all the time. */ }
8458 else
8459 return rcStrict;
8460
8461 /*
8462 * Setup the virtualized-APIC accesses.
8463 *
8464 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8465 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8466 *
8467 * This is the reason we do it here and not in hmR0VmxExportGuestState().
8468 */
8469 PVM pVM = pVCpu->CTX_SUFF(pVM);
8470 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8471 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
8472 && PDMHasApic(pVM))
8473 {
8474 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8475 Assert(u64MsrApicBase);
8476 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8477
8478 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8479
8480 /* Unalias any existing mapping. */
8481 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8482 AssertRCReturn(rc, rc);
8483
8484 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8485 Log4Func(("Mapped HC APIC-access page at %#RGp\n", GCPhysApicBase));
8486 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8487 AssertRCReturn(rc, rc);
8488
8489 /* Update the per-VCPU cache of the APIC base MSR. */
8490 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8491 }
8492
8493 if (TRPMHasTrap(pVCpu))
8494 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8495 uint32_t fIntrState = hmR0VmxEvaluatePendingEvent(pVCpu);
8496
8497 /*
8498 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
8499 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
8500 * also result in triple-faulting the VM.
8501 */
8502 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, fIntrState, fStepping);
8503 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8504 { /* likely */ }
8505 else
8506 {
8507 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8508 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8509 return rcStrict;
8510 }
8511
8512 /*
8513 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
8514 * import CR3 themselves. We will need to update them here, as even as late as the above
8515 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
8516 * the below force flags to be set.
8517 */
8518 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
8519 {
8520 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
8521 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
8522 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
8523 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
8524 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8525 }
8526 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
8527 {
8528 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
8529 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8530 }
8531
8532 /*
8533 * No longjmps to ring-3 from this point on!!!
8534 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8535 * This also disables flushing of the R0-logger instance (if any).
8536 */
8537 VMMRZCallRing3Disable(pVCpu);
8538
8539 /*
8540 * Export the guest state bits.
8541 *
8542 * We cannot perform longjmps while loading the guest state because we do not preserve the
8543 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8544 * CPU migration.
8545 *
8546 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8547 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8548 * Hence, loading of the guest state needs to be done -after- injection of events.
8549 */
8550 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu);
8551 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8552 { /* likely */ }
8553 else
8554 {
8555 VMMRZCallRing3Enable(pVCpu);
8556 return rcStrict;
8557 }
8558
8559 /*
8560 * We disable interrupts so that we don't miss any interrupts that would flag preemption
8561 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
8562 * preemption disabled for a while. Since this is purly to aid the
8563 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
8564 * disable interrupt on NT.
8565 *
8566 * We need to check for force-flags that could've possible been altered since we last
8567 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
8568 * see @bugref{6398}).
8569 *
8570 * We also check a couple of other force-flags as a last opportunity to get the EMT back
8571 * to ring-3 before executing guest code.
8572 */
8573 pVmxTransient->fEFlags = ASMIntDisableFlags();
8574
8575 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8576 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8577 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8578 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8579 {
8580 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8581 {
8582 pVCpu->hm.s.Event.fPending = false;
8583
8584 /*
8585 * We've injected any pending events. This is really the point of no return (to ring-3).
8586 *
8587 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8588 * returns from this function, so don't enable them here.
8589 */
8590 return VINF_SUCCESS;
8591 }
8592
8593 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
8594 rcStrict = VINF_EM_RAW_INTERRUPT;
8595 }
8596 else
8597 {
8598 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8599 rcStrict = VINF_EM_RAW_TO_R3;
8600 }
8601
8602 ASMSetFlags(pVmxTransient->fEFlags);
8603 VMMRZCallRing3Enable(pVCpu);
8604
8605 return rcStrict;
8606}
8607
8608
8609/**
8610 * Prepares to run guest code in VT-x and we've committed to doing so. This
8611 * means there is no backing out to ring-3 or anywhere else at this
8612 * point.
8613 *
8614 * @param pVCpu The cross context virtual CPU structure.
8615 * @param pVmxTransient Pointer to the VMX transient structure.
8616 *
8617 * @remarks Called with preemption disabled.
8618 * @remarks No-long-jump zone!!!
8619 */
8620static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
8621{
8622 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8623 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8624 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8625
8626 /*
8627 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8628 */
8629 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8630 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8631
8632 PVM pVM = pVCpu->CTX_SUFF(pVM);
8633 if (!CPUMIsGuestFPUStateActive(pVCpu))
8634 {
8635 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8636 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8637 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
8638 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8639 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
8640 }
8641
8642 /*
8643 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8644 */
8645 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8646 && pVCpu->hm.s.vmx.cMsrs > 0)
8647 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8648
8649 /*
8650 * Re-save the host state bits as we may've been preempted (only happens when
8651 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8652 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8653 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8654 * See @bugref{8432}.
8655 */
8656 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8657 {
8658 int rc = hmR0VmxExportHostState(pVCpu);
8659 AssertRC(rc);
8660 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
8661 }
8662 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
8663
8664 /*
8665 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
8666 */
8667 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
8668 hmR0VmxExportSharedState(pVCpu);
8669 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8670
8671 /* Store status of the shared guest-host state at the time of VM-entry. */
8672#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8673 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
8674 {
8675 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8676 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8677 }
8678 else
8679#endif
8680 {
8681 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8682 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8683 }
8684
8685 /*
8686 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8687 */
8688 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8689 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
8690
8691 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
8692 RTCPUID idCurrentCpu = pCpu->idCpu;
8693 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8694 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8695 {
8696 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8697 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8698 }
8699
8700 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8701 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8702 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8703 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8704
8705 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8706
8707 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8708 to start executing. */
8709
8710 /*
8711 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8712 */
8713 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
8714 {
8715 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8716 {
8717 bool fMsrUpdated;
8718 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
8719 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8720 &fMsrUpdated);
8721 AssertRC(rc2);
8722 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8723 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8724 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8725 }
8726 else
8727 {
8728 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8729 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8730 }
8731 }
8732
8733 if (pVM->cpum.ro.GuestFeatures.fIbrs)
8734 {
8735 bool fMsrUpdated;
8736 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
8737 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
8738 &fMsrUpdated);
8739 AssertRC(rc2);
8740 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8741 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8742 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8743 }
8744
8745#ifdef VBOX_STRICT
8746 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8747 hmR0VmxCheckHostEferMsr(pVCpu);
8748 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8749#endif
8750#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8751 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
8752 {
8753 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
8754 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8755 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8756 }
8757#endif
8758}
8759
8760
8761/**
8762 * Performs some essential restoration of state after running guest code in
8763 * VT-x.
8764 *
8765 * @param pVCpu The cross context virtual CPU structure.
8766 * @param pVmxTransient Pointer to the VMX transient structure.
8767 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8768 *
8769 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8770 *
8771 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8772 * unconditionally when it is safe to do so.
8773 */
8774static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8775{
8776 uint64_t const uHostTsc = ASMReadTSC();
8777 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8778
8779 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8780 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8781 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
8782 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8783 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8784 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8785
8786 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8787 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVCpu->hm.s.vmx.u64TscOffset);
8788
8789 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
8790 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8791 Assert(!ASMIntAreEnabled());
8792 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8793
8794#if HC_ARCH_BITS == 64
8795 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8796#endif
8797#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8798 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8799 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8800 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8801#else
8802 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8803#endif
8804#ifdef VBOX_STRICT
8805 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8806#endif
8807 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8808
8809 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8810 uint32_t uExitReason;
8811 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8812 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8813 AssertRC(rc);
8814 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8815 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INT_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8816
8817 if (rcVMRun == VINF_SUCCESS)
8818 {
8819 /*
8820 * Update the VM-exit history array here even if the VM-entry failed due to:
8821 * - Invalid guest state.
8822 * - MSR loading.
8823 * - Machine-check event.
8824 *
8825 * In any of the above cases we will still have a "valid" VM-exit reason
8826 * despite @a fVMEntryFailed being false.
8827 *
8828 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
8829 *
8830 * Note! We don't have CS or RIP at this point. Will probably address that later
8831 * by amending the history entry added here.
8832 */
8833 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
8834 UINT64_MAX, uHostTsc);
8835
8836 if (!pVmxTransient->fVMEntryFailed)
8837 {
8838 VMMRZCallRing3Enable(pVCpu);
8839
8840 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8841 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8842
8843#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8844 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
8845 AssertRC(rc);
8846#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8847 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_RFLAGS);
8848 AssertRC(rc);
8849#else
8850 /*
8851 * Import the guest-interruptibility state always as we need it while evaluating
8852 * injecting events on re-entry.
8853 *
8854 * We don't import CR0 (when Unrestricted guest execution is unavailable) despite
8855 * checking for real-mode while exporting the state because all bits that cause
8856 * mode changes wrt CR0 are intercepted.
8857 */
8858 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
8859 AssertRC(rc);
8860#endif
8861
8862 /*
8863 * Sync the TPR shadow with our APIC state.
8864 */
8865 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8866 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
8867 {
8868 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
8869 AssertRC(rc);
8870 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
8871 }
8872
8873 return;
8874 }
8875 }
8876 else
8877 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
8878
8879 VMMRZCallRing3Enable(pVCpu);
8880}
8881
8882
8883/**
8884 * Runs the guest code using VT-x the normal way.
8885 *
8886 * @returns VBox status code.
8887 * @param pVCpu The cross context virtual CPU structure.
8888 *
8889 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8890 */
8891static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu)
8892{
8893 VMXTRANSIENT VmxTransient;
8894 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8895 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8896 uint32_t cLoops = 0;
8897
8898 for (;; cLoops++)
8899 {
8900 Assert(!HMR0SuspendPending());
8901 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8902
8903 /* Preparatory work for running guest code, this may force us to return
8904 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8905 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8906 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
8907 if (rcStrict != VINF_SUCCESS)
8908 break;
8909
8910 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
8911 int rcRun = hmR0VmxRunGuest(pVCpu);
8912
8913 /* Restore any residual host-state and save any bits shared between host
8914 and guest into the guest-CPU state. Re-enables interrupts! */
8915 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
8916
8917 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8918 if (RT_SUCCESS(rcRun))
8919 { /* very likely */ }
8920 else
8921 {
8922 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
8923 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
8924 return rcRun;
8925 }
8926
8927 /* Profile the VM-exit. */
8928 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8929 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8930 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8931 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
8932 HMVMX_START_EXIT_DISPATCH_PROF();
8933
8934 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
8935
8936 /* Handle the VM-exit. */
8937#ifdef HMVMX_USE_FUNCTION_TABLE
8938 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
8939#else
8940 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient, VmxTransient.uExitReason);
8941#endif
8942 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
8943 if (rcStrict == VINF_SUCCESS)
8944 {
8945 if (cLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
8946 continue; /* likely */
8947 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8948 rcStrict = VINF_EM_RAW_INTERRUPT;
8949 }
8950 break;
8951 }
8952
8953 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8954 return rcStrict;
8955}
8956
8957
8958
8959/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
8960 * probes.
8961 *
8962 * The following few functions and associated structure contains the bloat
8963 * necessary for providing detailed debug events and dtrace probes as well as
8964 * reliable host side single stepping. This works on the principle of
8965 * "subclassing" the normal execution loop and workers. We replace the loop
8966 * method completely and override selected helpers to add necessary adjustments
8967 * to their core operation.
8968 *
8969 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
8970 * any performance for debug and analysis features.
8971 *
8972 * @{
8973 */
8974
8975/**
8976 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
8977 * the debug run loop.
8978 */
8979typedef struct VMXRUNDBGSTATE
8980{
8981 /** The RIP we started executing at. This is for detecting that we stepped. */
8982 uint64_t uRipStart;
8983 /** The CS we started executing with. */
8984 uint16_t uCsStart;
8985
8986 /** Whether we've actually modified the 1st execution control field. */
8987 bool fModifiedProcCtls : 1;
8988 /** Whether we've actually modified the 2nd execution control field. */
8989 bool fModifiedProcCtls2 : 1;
8990 /** Whether we've actually modified the exception bitmap. */
8991 bool fModifiedXcptBitmap : 1;
8992
8993 /** We desire the modified the CR0 mask to be cleared. */
8994 bool fClearCr0Mask : 1;
8995 /** We desire the modified the CR4 mask to be cleared. */
8996 bool fClearCr4Mask : 1;
8997 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
8998 uint32_t fCpe1Extra;
8999 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9000 uint32_t fCpe1Unwanted;
9001 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9002 uint32_t fCpe2Extra;
9003 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9004 uint32_t bmXcptExtra;
9005 /** The sequence number of the Dtrace provider settings the state was
9006 * configured against. */
9007 uint32_t uDtraceSettingsSeqNo;
9008 /** VM-exits to check (one bit per VM-exit). */
9009 uint32_t bmExitsToCheck[3];
9010
9011 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9012 uint32_t fProcCtlsInitial;
9013 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9014 uint32_t fProcCtls2Initial;
9015 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9016 uint32_t bmXcptInitial;
9017} VMXRUNDBGSTATE;
9018AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9019typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9020
9021
9022/**
9023 * Initializes the VMXRUNDBGSTATE structure.
9024 *
9025 * @param pVCpu The cross context virtual CPU structure of the
9026 * calling EMT.
9027 * @param pDbgState The structure to initialize.
9028 */
9029static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9030{
9031 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
9032 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
9033
9034 pDbgState->fModifiedProcCtls = false;
9035 pDbgState->fModifiedProcCtls2 = false;
9036 pDbgState->fModifiedXcptBitmap = false;
9037 pDbgState->fClearCr0Mask = false;
9038 pDbgState->fClearCr4Mask = false;
9039 pDbgState->fCpe1Extra = 0;
9040 pDbgState->fCpe1Unwanted = 0;
9041 pDbgState->fCpe2Extra = 0;
9042 pDbgState->bmXcptExtra = 0;
9043 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9044 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9045 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9046}
9047
9048
9049/**
9050 * Updates the VMSC fields with changes requested by @a pDbgState.
9051 *
9052 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9053 * immediately before executing guest code, i.e. when interrupts are disabled.
9054 * We don't check status codes here as we cannot easily assert or return in the
9055 * latter case.
9056 *
9057 * @param pVCpu The cross context virtual CPU structure.
9058 * @param pDbgState The debug state.
9059 */
9060static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9061{
9062 /*
9063 * Ensure desired flags in VMCS control fields are set.
9064 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9065 *
9066 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9067 * there should be no stale data in pCtx at this point.
9068 */
9069 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9070 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9071 {
9072 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9073 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9074 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9075 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9076 pDbgState->fModifiedProcCtls = true;
9077 }
9078
9079 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9080 {
9081 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9082 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9083 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9084 pDbgState->fModifiedProcCtls2 = true;
9085 }
9086
9087 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9088 {
9089 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9090 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9091 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9092 pDbgState->fModifiedXcptBitmap = true;
9093 }
9094
9095 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32Cr0Mask != 0)
9096 {
9097 pVCpu->hm.s.vmx.u32Cr0Mask = 0;
9098 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9099 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9100 }
9101
9102 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32Cr4Mask != 0)
9103 {
9104 pVCpu->hm.s.vmx.u32Cr4Mask = 0;
9105 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9106 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9107 }
9108}
9109
9110
9111/**
9112 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
9113 * re-entry next time around.
9114 *
9115 * @returns Strict VBox status code (i.e. informational status codes too).
9116 * @param pVCpu The cross context virtual CPU structure.
9117 * @param pDbgState The debug state.
9118 * @param rcStrict The return code from executing the guest using single
9119 * stepping.
9120 */
9121static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9122{
9123 /*
9124 * Restore VM-exit control settings as we may not reenter this function the
9125 * next time around.
9126 */
9127 /* We reload the initial value, trigger what we can of recalculations the
9128 next time around. From the looks of things, that's all that's required atm. */
9129 if (pDbgState->fModifiedProcCtls)
9130 {
9131 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9132 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9133 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9134 AssertRCReturn(rc2, rc2);
9135 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9136 }
9137
9138 /* We're currently the only ones messing with this one, so just restore the
9139 cached value and reload the field. */
9140 if ( pDbgState->fModifiedProcCtls2
9141 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9142 {
9143 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9144 AssertRCReturn(rc2, rc2);
9145 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9146 }
9147
9148 /* If we've modified the exception bitmap, we restore it and trigger
9149 reloading and partial recalculation the next time around. */
9150 if (pDbgState->fModifiedXcptBitmap)
9151 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9152
9153 return rcStrict;
9154}
9155
9156
9157/**
9158 * Configures VM-exit controls for current DBGF and DTrace settings.
9159 *
9160 * This updates @a pDbgState and the VMCS execution control fields to reflect
9161 * the necessary VM-exits demanded by DBGF and DTrace.
9162 *
9163 * @param pVCpu The cross context virtual CPU structure.
9164 * @param pDbgState The debug state.
9165 * @param pVmxTransient Pointer to the VMX transient structure. May update
9166 * fUpdateTscOffsettingAndPreemptTimer.
9167 */
9168static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9169{
9170 /*
9171 * Take down the dtrace serial number so we can spot changes.
9172 */
9173 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9174 ASMCompilerBarrier();
9175
9176 /*
9177 * We'll rebuild most of the middle block of data members (holding the
9178 * current settings) as we go along here, so start by clearing it all.
9179 */
9180 pDbgState->bmXcptExtra = 0;
9181 pDbgState->fCpe1Extra = 0;
9182 pDbgState->fCpe1Unwanted = 0;
9183 pDbgState->fCpe2Extra = 0;
9184 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9185 pDbgState->bmExitsToCheck[i] = 0;
9186
9187 /*
9188 * Software interrupts (INT XXh) - no idea how to trigger these...
9189 */
9190 PVM pVM = pVCpu->CTX_SUFF(pVM);
9191 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9192 || VBOXVMM_INT_SOFTWARE_ENABLED())
9193 {
9194 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9195 }
9196
9197 /*
9198 * INT3 breakpoints - triggered by #BP exceptions.
9199 */
9200 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9201 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9202
9203 /*
9204 * Exception bitmap and XCPT events+probes.
9205 */
9206 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9207 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9208 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9209
9210 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9211 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9212 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9213 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9214 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9215 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9216 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9217 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9218 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9219 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9220 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9221 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9222 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9223 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9224 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9225 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9226 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9227 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9228
9229 if (pDbgState->bmXcptExtra)
9230 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9231
9232 /*
9233 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9234 *
9235 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
9236 * So, when adding/changing/removing please don't forget to update it.
9237 *
9238 * Some of the macros are picking up local variables to save horizontal space,
9239 * (being able to see it in a table is the lesser evil here).
9240 */
9241#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9242 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9243 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9244#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9245 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9246 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9247 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9248 } else do { } while (0)
9249#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9250 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9251 { \
9252 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9253 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9254 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9255 } else do { } while (0)
9256#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9257 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9258 { \
9259 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9260 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9261 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9262 } else do { } while (0)
9263#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9264 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9265 { \
9266 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9267 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9268 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9269 } else do { } while (0)
9270
9271 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9272 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9273 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9274 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9275 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9276
9277 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9278 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9279 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9280 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9281 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
9282 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9283 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9284 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9285 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
9286 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9287 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
9288 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9289 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
9290 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9291 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9292 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9293 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9294 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9295 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9296 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9297 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9298 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9299 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9300 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9301 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9302 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9303 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9304 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9305 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9306 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9307 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9308 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9309 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9310 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9311 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9312 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9313
9314 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9315 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9316 {
9317 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
9318 AssertRC(rc);
9319
9320#if 0 /** @todo fix me */
9321 pDbgState->fClearCr0Mask = true;
9322 pDbgState->fClearCr4Mask = true;
9323#endif
9324 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9325 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
9326 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9327 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
9328 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
9329 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9330 require clearing here and in the loop if we start using it. */
9331 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9332 }
9333 else
9334 {
9335 if (pDbgState->fClearCr0Mask)
9336 {
9337 pDbgState->fClearCr0Mask = false;
9338 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
9339 }
9340 if (pDbgState->fClearCr4Mask)
9341 {
9342 pDbgState->fClearCr4Mask = false;
9343 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
9344 }
9345 }
9346 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9347 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9348
9349 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9350 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9351 {
9352 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9353 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9354 }
9355 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9356 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9357
9358 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
9359 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9360 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
9361 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9362 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
9363 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9364 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
9365 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9366#if 0 /** @todo too slow, fix handler. */
9367 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
9368#endif
9369 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9370
9371 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9372 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9373 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9374 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9375 {
9376 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9377 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9378 }
9379 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9380 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9381 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9382 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9383
9384 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9385 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9386 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9387 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9388 {
9389 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9390 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9391 }
9392 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9393 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9394 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9395 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9396
9397 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9398 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9399 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
9400 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9401 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9402 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9403 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
9404 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9405 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9406 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9407 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
9408 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9409 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
9410 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9411 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9412 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9413 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
9414 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9415 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9416 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9417 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9418 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9419
9420#undef IS_EITHER_ENABLED
9421#undef SET_ONLY_XBM_IF_EITHER_EN
9422#undef SET_CPE1_XBM_IF_EITHER_EN
9423#undef SET_CPEU_XBM_IF_EITHER_EN
9424#undef SET_CPE2_XBM_IF_EITHER_EN
9425
9426 /*
9427 * Sanitize the control stuff.
9428 */
9429 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
9430 if (pDbgState->fCpe2Extra)
9431 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
9432 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
9433 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0;
9434 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
9435 {
9436 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9437 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9438 }
9439
9440 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9441 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9442 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9443 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9444}
9445
9446
9447/**
9448 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9449 * appropriate.
9450 *
9451 * The caller has checked the VM-exit against the
9452 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9453 * already, so we don't have to do that either.
9454 *
9455 * @returns Strict VBox status code (i.e. informational status codes too).
9456 * @param pVCpu The cross context virtual CPU structure.
9457 * @param pVmxTransient Pointer to the VMX-transient structure.
9458 * @param uExitReason The VM-exit reason.
9459 *
9460 * @remarks The name of this function is displayed by dtrace, so keep it short
9461 * and to the point. No longer than 33 chars long, please.
9462 */
9463static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9464{
9465 /*
9466 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9467 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9468 *
9469 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9470 * does. Must add/change/remove both places. Same ordering, please.
9471 *
9472 * Added/removed events must also be reflected in the next section
9473 * where we dispatch dtrace events.
9474 */
9475 bool fDtrace1 = false;
9476 bool fDtrace2 = false;
9477 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9478 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9479 uint32_t uEventArg = 0;
9480#define SET_EXIT(a_EventSubName) \
9481 do { \
9482 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9483 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9484 } while (0)
9485#define SET_BOTH(a_EventSubName) \
9486 do { \
9487 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9488 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9489 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9490 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9491 } while (0)
9492 switch (uExitReason)
9493 {
9494 case VMX_EXIT_MTF:
9495 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9496
9497 case VMX_EXIT_XCPT_OR_NMI:
9498 {
9499 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9500 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
9501 {
9502 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
9503 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
9504 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
9505 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9506 {
9507 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
9508 {
9509 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9510 uEventArg = pVmxTransient->uExitIntErrorCode;
9511 }
9512 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9513 switch (enmEvent1)
9514 {
9515 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9516 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9517 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9518 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9519 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9520 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9521 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9522 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9523 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9524 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9525 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9526 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9527 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9528 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9529 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9530 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9531 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9532 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9533 default: break;
9534 }
9535 }
9536 else
9537 AssertFailed();
9538 break;
9539
9540 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
9541 uEventArg = idxVector;
9542 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9543 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9544 break;
9545 }
9546 break;
9547 }
9548
9549 case VMX_EXIT_TRIPLE_FAULT:
9550 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9551 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9552 break;
9553 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9554 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9555 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9556 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9557 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9558
9559 /* Instruction specific VM-exits: */
9560 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9561 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9562 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9563 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9564 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9565 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9566 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9567 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9568 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9569 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9570 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9571 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9572 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9573 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9574 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9575 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9576 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9577 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9578 case VMX_EXIT_MOV_CRX:
9579 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9580 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
9581 SET_BOTH(CRX_READ);
9582 else
9583 SET_BOTH(CRX_WRITE);
9584 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
9585 break;
9586 case VMX_EXIT_MOV_DRX:
9587 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9588 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
9589 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
9590 SET_BOTH(DRX_READ);
9591 else
9592 SET_BOTH(DRX_WRITE);
9593 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
9594 break;
9595 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9596 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9597 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9598 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9599 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9600 case VMX_EXIT_XDTR_ACCESS:
9601 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9602 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
9603 {
9604 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9605 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9606 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9607 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9608 }
9609 break;
9610
9611 case VMX_EXIT_TR_ACCESS:
9612 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9613 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
9614 {
9615 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9616 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9617 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9618 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9619 }
9620 break;
9621
9622 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9623 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9624 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9625 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9626 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9627 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9628 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9629 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9630 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9631 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9632 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9633
9634 /* Events that aren't relevant at this point. */
9635 case VMX_EXIT_EXT_INT:
9636 case VMX_EXIT_INT_WINDOW:
9637 case VMX_EXIT_NMI_WINDOW:
9638 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9639 case VMX_EXIT_PREEMPT_TIMER:
9640 case VMX_EXIT_IO_INSTR:
9641 break;
9642
9643 /* Errors and unexpected events. */
9644 case VMX_EXIT_INIT_SIGNAL:
9645 case VMX_EXIT_SIPI:
9646 case VMX_EXIT_IO_SMI:
9647 case VMX_EXIT_SMI:
9648 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9649 case VMX_EXIT_ERR_MSR_LOAD:
9650 case VMX_EXIT_ERR_MACHINE_CHECK:
9651 break;
9652
9653 default:
9654 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9655 break;
9656 }
9657#undef SET_BOTH
9658#undef SET_EXIT
9659
9660 /*
9661 * Dtrace tracepoints go first. We do them here at once so we don't
9662 * have to copy the guest state saving and stuff a few dozen times.
9663 * Down side is that we've got to repeat the switch, though this time
9664 * we use enmEvent since the probes are a subset of what DBGF does.
9665 */
9666 if (fDtrace1 || fDtrace2)
9667 {
9668 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9669 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9670 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9671 switch (enmEvent1)
9672 {
9673 /** @todo consider which extra parameters would be helpful for each probe. */
9674 case DBGFEVENT_END: break;
9675 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
9676 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
9677 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
9678 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
9679 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
9680 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
9681 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
9682 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
9683 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
9684 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
9685 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
9686 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
9687 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
9688 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
9689 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
9690 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
9691 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
9692 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
9693 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9694 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9695 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
9696 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
9697 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
9698 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
9699 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
9700 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
9701 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
9702 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9703 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9704 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9705 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9706 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9707 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
9708 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9709 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
9710 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
9711 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
9712 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
9713 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
9714 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
9715 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
9716 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
9717 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
9718 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
9719 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
9720 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
9721 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
9722 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
9723 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
9724 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
9725 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
9726 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
9727 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
9728 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
9729 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
9730 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
9731 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
9732 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
9733 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
9734 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
9735 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
9736 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
9737 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
9738 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
9739 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
9740 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
9741 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9742 }
9743 switch (enmEvent2)
9744 {
9745 /** @todo consider which extra parameters would be helpful for each probe. */
9746 case DBGFEVENT_END: break;
9747 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
9748 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9749 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
9750 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
9751 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
9752 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
9753 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
9754 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
9755 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
9756 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9757 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9758 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9759 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9760 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9761 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
9762 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9763 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
9764 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
9765 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
9766 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
9767 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
9768 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
9769 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
9770 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
9771 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
9772 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
9773 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
9774 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
9775 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
9776 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
9777 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
9778 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
9779 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
9780 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
9781 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
9782 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
9783 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
9784 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
9785 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
9786 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
9787 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
9788 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
9789 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
9790 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
9791 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
9792 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
9793 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
9794 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
9795 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
9796 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
9797 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
9798 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
9799 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9800 }
9801 }
9802
9803 /*
9804 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9805 * the DBGF call will do a full check).
9806 *
9807 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9808 * Note! If we have to events, we prioritize the first, i.e. the instruction
9809 * one, in order to avoid event nesting.
9810 */
9811 PVM pVM = pVCpu->CTX_SUFF(pVM);
9812 if ( enmEvent1 != DBGFEVENT_END
9813 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9814 {
9815 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
9816 if (rcStrict != VINF_SUCCESS)
9817 return rcStrict;
9818 }
9819 else if ( enmEvent2 != DBGFEVENT_END
9820 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9821 {
9822 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
9823 if (rcStrict != VINF_SUCCESS)
9824 return rcStrict;
9825 }
9826
9827 return VINF_SUCCESS;
9828}
9829
9830
9831/**
9832 * Single-stepping VM-exit filtering.
9833 *
9834 * This is preprocessing the VM-exits and deciding whether we've gotten far
9835 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
9836 * handling is performed.
9837 *
9838 * @returns Strict VBox status code (i.e. informational status codes too).
9839 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9840 * @param pVmxTransient Pointer to the VMX-transient structure.
9841 * @param pDbgState The debug state.
9842 */
9843DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
9844{
9845 /*
9846 * Expensive (saves context) generic dtrace VM-exit probe.
9847 */
9848 uint32_t const uExitReason = pVmxTransient->uExitReason;
9849 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9850 { /* more likely */ }
9851 else
9852 {
9853 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9854 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9855 AssertRC(rc);
9856 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
9857 }
9858
9859 /*
9860 * Check for host NMI, just to get that out of the way.
9861 */
9862 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9863 { /* normally likely */ }
9864 else
9865 {
9866 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9867 AssertRCReturn(rc2, rc2);
9868 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
9869 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
9870 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
9871 }
9872
9873 /*
9874 * Check for single stepping event if we're stepping.
9875 */
9876 if (pVCpu->hm.s.fSingleInstruction)
9877 {
9878 switch (uExitReason)
9879 {
9880 case VMX_EXIT_MTF:
9881 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9882
9883 /* Various events: */
9884 case VMX_EXIT_XCPT_OR_NMI:
9885 case VMX_EXIT_EXT_INT:
9886 case VMX_EXIT_TRIPLE_FAULT:
9887 case VMX_EXIT_INT_WINDOW:
9888 case VMX_EXIT_NMI_WINDOW:
9889 case VMX_EXIT_TASK_SWITCH:
9890 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9891 case VMX_EXIT_APIC_ACCESS:
9892 case VMX_EXIT_EPT_VIOLATION:
9893 case VMX_EXIT_EPT_MISCONFIG:
9894 case VMX_EXIT_PREEMPT_TIMER:
9895
9896 /* Instruction specific VM-exits: */
9897 case VMX_EXIT_CPUID:
9898 case VMX_EXIT_GETSEC:
9899 case VMX_EXIT_HLT:
9900 case VMX_EXIT_INVD:
9901 case VMX_EXIT_INVLPG:
9902 case VMX_EXIT_RDPMC:
9903 case VMX_EXIT_RDTSC:
9904 case VMX_EXIT_RSM:
9905 case VMX_EXIT_VMCALL:
9906 case VMX_EXIT_VMCLEAR:
9907 case VMX_EXIT_VMLAUNCH:
9908 case VMX_EXIT_VMPTRLD:
9909 case VMX_EXIT_VMPTRST:
9910 case VMX_EXIT_VMREAD:
9911 case VMX_EXIT_VMRESUME:
9912 case VMX_EXIT_VMWRITE:
9913 case VMX_EXIT_VMXOFF:
9914 case VMX_EXIT_VMXON:
9915 case VMX_EXIT_MOV_CRX:
9916 case VMX_EXIT_MOV_DRX:
9917 case VMX_EXIT_IO_INSTR:
9918 case VMX_EXIT_RDMSR:
9919 case VMX_EXIT_WRMSR:
9920 case VMX_EXIT_MWAIT:
9921 case VMX_EXIT_MONITOR:
9922 case VMX_EXIT_PAUSE:
9923 case VMX_EXIT_XDTR_ACCESS:
9924 case VMX_EXIT_TR_ACCESS:
9925 case VMX_EXIT_INVEPT:
9926 case VMX_EXIT_RDTSCP:
9927 case VMX_EXIT_INVVPID:
9928 case VMX_EXIT_WBINVD:
9929 case VMX_EXIT_XSETBV:
9930 case VMX_EXIT_RDRAND:
9931 case VMX_EXIT_INVPCID:
9932 case VMX_EXIT_VMFUNC:
9933 case VMX_EXIT_RDSEED:
9934 case VMX_EXIT_XSAVES:
9935 case VMX_EXIT_XRSTORS:
9936 {
9937 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9938 AssertRCReturn(rc, rc);
9939 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
9940 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
9941 return VINF_EM_DBG_STEPPED;
9942 break;
9943 }
9944
9945 /* Errors and unexpected events: */
9946 case VMX_EXIT_INIT_SIGNAL:
9947 case VMX_EXIT_SIPI:
9948 case VMX_EXIT_IO_SMI:
9949 case VMX_EXIT_SMI:
9950 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9951 case VMX_EXIT_ERR_MSR_LOAD:
9952 case VMX_EXIT_ERR_MACHINE_CHECK:
9953 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
9954 break;
9955
9956 default:
9957 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9958 break;
9959 }
9960 }
9961
9962 /*
9963 * Check for debugger event breakpoints and dtrace probes.
9964 */
9965 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
9966 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
9967 {
9968 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
9969 if (rcStrict != VINF_SUCCESS)
9970 return rcStrict;
9971 }
9972
9973 /*
9974 * Normal processing.
9975 */
9976#ifdef HMVMX_USE_FUNCTION_TABLE
9977 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
9978#else
9979 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
9980#endif
9981}
9982
9983
9984/**
9985 * Single steps guest code using VT-x.
9986 *
9987 * @returns Strict VBox status code (i.e. informational status codes too).
9988 * @param pVCpu The cross context virtual CPU structure.
9989 *
9990 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
9991 */
9992static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu)
9993{
9994 VMXTRANSIENT VmxTransient;
9995 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
9996
9997 /* Set HMCPU indicators. */
9998 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
9999 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10000 pVCpu->hm.s.fDebugWantRdTscExit = false;
10001 pVCpu->hm.s.fUsingDebugLoop = true;
10002
10003 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10004 VMXRUNDBGSTATE DbgState;
10005 hmR0VmxRunDebugStateInit(pVCpu, &DbgState);
10006 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10007
10008 /*
10009 * The loop.
10010 */
10011 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10012 for (uint32_t cLoops = 0; ; cLoops++)
10013 {
10014 Assert(!HMR0SuspendPending());
10015 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10016 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10017
10018 /*
10019 * Preparatory work for running guest code, this may force us to return
10020 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10021 */
10022 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10023 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10024 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
10025 if (rcStrict != VINF_SUCCESS)
10026 break;
10027
10028 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10029 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10030
10031 /*
10032 * Now we can run the guest code.
10033 */
10034 int rcRun = hmR0VmxRunGuest(pVCpu);
10035
10036 /*
10037 * Restore any residual host-state and save any bits shared between host
10038 * and guest into the guest-CPU state. Re-enables interrupts!
10039 */
10040 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10041
10042 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10043 if (RT_SUCCESS(rcRun))
10044 { /* very likely */ }
10045 else
10046 {
10047 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10048 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10049 return rcRun;
10050 }
10051
10052 /* Profile the VM-exit. */
10053 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10054 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10055 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10056 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10057 HMVMX_START_EXIT_DISPATCH_PROF();
10058
10059 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10060
10061 /*
10062 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10063 */
10064 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
10065 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10066 if (rcStrict != VINF_SUCCESS)
10067 break;
10068 if (cLoops > pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
10069 {
10070 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10071 rcStrict = VINF_EM_RAW_INTERRUPT;
10072 break;
10073 }
10074
10075 /*
10076 * Stepping: Did the RIP change, if so, consider it a single step.
10077 * Otherwise, make sure one of the TFs gets set.
10078 */
10079 if (fStepping)
10080 {
10081 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
10082 AssertRC(rc);
10083 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
10084 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
10085 {
10086 rcStrict = VINF_EM_DBG_STEPPED;
10087 break;
10088 }
10089 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
10090 }
10091
10092 /*
10093 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10094 */
10095 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10096 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10097 }
10098
10099 /*
10100 * Clear the X86_EFL_TF if necessary.
10101 */
10102 if (pVCpu->hm.s.fClearTrapFlag)
10103 {
10104 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
10105 AssertRC(rc);
10106 pVCpu->hm.s.fClearTrapFlag = false;
10107 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
10108 }
10109 /** @todo there seems to be issues with the resume flag when the monitor trap
10110 * flag is pending without being used. Seen early in bios init when
10111 * accessing APIC page in protected mode. */
10112
10113 /*
10114 * Restore VM-exit control settings as we may not reenter this function the
10115 * next time around.
10116 */
10117 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10118
10119 /* Restore HMCPU indicators. */
10120 pVCpu->hm.s.fUsingDebugLoop = false;
10121 pVCpu->hm.s.fDebugWantRdTscExit = false;
10122 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10123
10124 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10125 return rcStrict;
10126}
10127
10128
10129/** @} */
10130
10131
10132/**
10133 * Checks if any expensive dtrace probes are enabled and we should go to the
10134 * debug loop.
10135 *
10136 * @returns true if we should use debug loop, false if not.
10137 */
10138static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10139{
10140 /* It's probably faster to OR the raw 32-bit counter variables together.
10141 Since the variables are in an array and the probes are next to one
10142 another (more or less), we have good locality. So, better read
10143 eight-nine cache lines ever time and only have one conditional, than
10144 128+ conditionals, right? */
10145 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10146 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10147 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10148 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10149 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10150 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10151 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10152 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10153 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10154 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10155 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10156 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10157 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10158 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10159 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10160 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10161 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10162 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10163 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10164 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10165 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10166 ) != 0
10167 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10168 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10169 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10170 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10171 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10172 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10173 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10174 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10175 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10176 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10177 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10178 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10179 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10180 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10181 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10182 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10183 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10184 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10185 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10186 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10187 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10188 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10189 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10190 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10191 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10192 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10193 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10194 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10195 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10196 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10197 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10198 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10199 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10200 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10201 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10202 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10203 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10204 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10205 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10206 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10207 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10208 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10209 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10210 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10211 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10212 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10213 ) != 0
10214 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10215 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10216 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10217 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10218 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10219 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10220 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10221 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10222 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10223 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10224 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10225 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10226 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10227 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10228 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10229 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10230 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10231 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10232 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10233 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10234 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10235 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10236 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10237 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10238 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10239 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10240 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10241 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10242 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10243 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10244 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10245 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10246 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10247 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10248 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10249 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10250 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10251 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10252 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10253 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10254 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10255 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10256 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10257 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10258 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10259 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10260 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10261 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10262 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10263 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10264 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10265 ) != 0;
10266}
10267
10268
10269/**
10270 * Runs the guest code using VT-x.
10271 *
10272 * @returns Strict VBox status code (i.e. informational status codes too).
10273 * @param pVCpu The cross context virtual CPU structure.
10274 */
10275VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
10276{
10277 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10278 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10279 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10280 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
10281
10282 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10283
10284 VBOXSTRICTRC rcStrict;
10285 if ( !pVCpu->hm.s.fUseDebugLoop
10286 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10287 && !DBGFIsStepping(pVCpu)
10288 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
10289 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu);
10290 else
10291 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu);
10292
10293 if (rcStrict == VERR_EM_INTERPRETER)
10294 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10295 else if (rcStrict == VINF_EM_RESET)
10296 rcStrict = VINF_EM_TRIPLE_FAULT;
10297
10298 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
10299 if (RT_FAILURE(rc2))
10300 {
10301 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10302 rcStrict = rc2;
10303 }
10304 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10305 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10306 return rcStrict;
10307}
10308
10309
10310#ifndef HMVMX_USE_FUNCTION_TABLE
10311DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10312{
10313#ifdef DEBUG_ramshankar
10314#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
10315 do { \
10316 if (a_fSave != 0) \
10317 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
10318 VBOXSTRICTRC rcStrict = a_CallExpr; \
10319 if (a_fSave != 0) \
10320 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
10321 return rcStrict; \
10322 } while (0)
10323#else
10324# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
10325#endif
10326 switch (rcReason)
10327 {
10328 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
10329 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
10330 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
10331 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
10332 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
10333 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
10334 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
10335 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
10336 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
10337 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
10338 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
10339 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
10340 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
10341 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
10342 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
10343 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
10344 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
10345 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
10346 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
10347 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
10348 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
10349 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
10350 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
10351 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
10352 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
10353 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
10354 case VMX_EXIT_XDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10355 case VMX_EXIT_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10356 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
10357 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
10358 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
10359 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
10360 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
10361 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
10362
10363 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
10364 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
10365 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
10366 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
10367 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
10368 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
10369 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
10370 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
10371 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
10372
10373 case VMX_EXIT_VMCLEAR:
10374 case VMX_EXIT_VMLAUNCH:
10375 case VMX_EXIT_VMPTRLD:
10376 case VMX_EXIT_VMPTRST:
10377 case VMX_EXIT_VMREAD:
10378 case VMX_EXIT_VMRESUME:
10379 case VMX_EXIT_VMWRITE:
10380 case VMX_EXIT_VMXOFF:
10381 case VMX_EXIT_VMXON:
10382 case VMX_EXIT_INVEPT:
10383 case VMX_EXIT_INVVPID:
10384 case VMX_EXIT_VMFUNC:
10385 case VMX_EXIT_XSAVES:
10386 case VMX_EXIT_XRSTORS:
10387 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10388
10389 case VMX_EXIT_ENCLS:
10390 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10391 case VMX_EXIT_PML_FULL:
10392 default:
10393 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
10394 }
10395#undef VMEXIT_CALL_RET
10396}
10397#endif /* !HMVMX_USE_FUNCTION_TABLE */
10398
10399
10400#ifdef VBOX_STRICT
10401/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10402# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10403 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10404
10405# define HMVMX_ASSERT_PREEMPT_CPUID() \
10406 do { \
10407 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10408 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10409 } while (0)
10410
10411# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10412 do { \
10413 AssertPtr((a_pVCpu)); \
10414 AssertPtr((a_pVmxTransient)); \
10415 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
10416 Assert(ASMIntAreEnabled()); \
10417 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10418 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10419 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
10420 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10421 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
10422 HMVMX_ASSERT_PREEMPT_CPUID(); \
10423 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10424 } while (0)
10425
10426# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10427 do { \
10428 Log4Func(("\n")); \
10429 } while (0)
10430#else
10431# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10432 do { \
10433 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10434 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
10435 } while (0)
10436# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
10437#endif
10438
10439
10440/**
10441 * Advances the guest RIP by the specified number of bytes.
10442 *
10443 * @param pVCpu The cross context virtual CPU structure.
10444 * @param cbInstr Number of bytes to advance the RIP by.
10445 *
10446 * @remarks No-long-jump zone!!!
10447 */
10448DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
10449{
10450 /* Advance the RIP. */
10451 pVCpu->cpum.GstCtx.rip += cbInstr;
10452 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
10453
10454 /* Update interrupt inhibition. */
10455 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10456 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
10457 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10458}
10459
10460
10461/**
10462 * Advances the guest RIP after reading it from the VMCS.
10463 *
10464 * @returns VBox status code, no informational status codes.
10465 * @param pVCpu The cross context virtual CPU structure.
10466 * @param pVmxTransient Pointer to the VMX transient structure.
10467 *
10468 * @remarks No-long-jump zone!!!
10469 */
10470static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10471{
10472 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10473 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
10474 AssertRCReturn(rc, rc);
10475
10476 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
10477
10478 /*
10479 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10480 * pending debug exception field as it takes care of priority of events.
10481 *
10482 * See Intel spec. 32.2.1 "Debug Exceptions".
10483 */
10484 if ( !pVCpu->hm.s.fSingleInstruction
10485 && pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
10486 {
10487 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10488 AssertRCReturn(rc, rc);
10489 }
10490
10491 return VINF_SUCCESS;
10492}
10493
10494
10495/**
10496 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10497 * and update error record fields accordingly.
10498 *
10499 * @return VMX_IGS_* return codes.
10500 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10501 * wrong with the guest state.
10502 *
10503 * @param pVCpu The cross context virtual CPU structure.
10504 *
10505 * @remarks This function assumes our cache of the VMCS controls
10506 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10507 */
10508static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu)
10509{
10510#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10511#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10512 uError = (err); \
10513 break; \
10514 } else do { } while (0)
10515
10516 int rc;
10517 PVM pVM = pVCpu->CTX_SUFF(pVM);
10518 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10519 uint32_t uError = VMX_IGS_ERROR;
10520 uint32_t u32Val;
10521 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10522
10523 do
10524 {
10525 /*
10526 * CR0.
10527 */
10528 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10529 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10530 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10531 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10532 if (fUnrestrictedGuest)
10533 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
10534
10535 uint32_t u32GuestCr0;
10536 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
10537 AssertRCBreak(rc);
10538 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
10539 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
10540 if ( !fUnrestrictedGuest
10541 && (u32GuestCr0 & X86_CR0_PG)
10542 && !(u32GuestCr0 & X86_CR0_PE))
10543 {
10544 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10545 }
10546
10547 /*
10548 * CR4.
10549 */
10550 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10551 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10552
10553 uint32_t u32GuestCr4;
10554 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
10555 AssertRCBreak(rc);
10556 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
10557 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
10558
10559 /*
10560 * IA32_DEBUGCTL MSR.
10561 */
10562 uint64_t u64Val;
10563 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10564 AssertRCBreak(rc);
10565 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10566 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10567 {
10568 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10569 }
10570 uint64_t u64DebugCtlMsr = u64Val;
10571
10572#ifdef VBOX_STRICT
10573 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10574 AssertRCBreak(rc);
10575 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10576#endif
10577 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
10578
10579 /*
10580 * RIP and RFLAGS.
10581 */
10582 uint32_t u32Eflags;
10583#if HC_ARCH_BITS == 64
10584 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10585 AssertRCBreak(rc);
10586 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10587 if ( !fLongModeGuest
10588 || !pCtx->cs.Attr.n.u1Long)
10589 {
10590 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10591 }
10592 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10593 * must be identical if the "IA-32e mode guest" VM-entry
10594 * control is 1 and CS.L is 1. No check applies if the
10595 * CPU supports 64 linear-address bits. */
10596
10597 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10598 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10599 AssertRCBreak(rc);
10600 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10601 VMX_IGS_RFLAGS_RESERVED);
10602 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10603 u32Eflags = u64Val;
10604#else
10605 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10606 AssertRCBreak(rc);
10607 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10608 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10609#endif
10610
10611 if ( fLongModeGuest
10612 || ( fUnrestrictedGuest
10613 && !(u32GuestCr0 & X86_CR0_PE)))
10614 {
10615 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10616 }
10617
10618 uint32_t u32EntryInfo;
10619 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10620 AssertRCBreak(rc);
10621 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
10622 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10623 {
10624 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10625 }
10626
10627 /*
10628 * 64-bit checks.
10629 */
10630#if HC_ARCH_BITS == 64
10631 if (fLongModeGuest)
10632 {
10633 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10634 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10635 }
10636
10637 if ( !fLongModeGuest
10638 && (u32GuestCr4 & X86_CR4_PCIDE))
10639 {
10640 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10641 }
10642
10643 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10644 * 51:32 beyond the processor's physical-address width are 0. */
10645
10646 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10647 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10648 {
10649 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10650 }
10651
10652 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10653 AssertRCBreak(rc);
10654 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10655
10656 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10657 AssertRCBreak(rc);
10658 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10659#endif
10660
10661 /*
10662 * PERF_GLOBAL MSR.
10663 */
10664 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
10665 {
10666 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10667 AssertRCBreak(rc);
10668 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10669 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10670 }
10671
10672 /*
10673 * PAT MSR.
10674 */
10675 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
10676 {
10677 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10678 AssertRCBreak(rc);
10679 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10680 for (unsigned i = 0; i < 8; i++)
10681 {
10682 uint8_t u8Val = (u64Val & 0xff);
10683 if ( u8Val != 0 /* UC */
10684 && u8Val != 1 /* WC */
10685 && u8Val != 4 /* WT */
10686 && u8Val != 5 /* WP */
10687 && u8Val != 6 /* WB */
10688 && u8Val != 7 /* UC- */)
10689 {
10690 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10691 }
10692 u64Val >>= 8;
10693 }
10694 }
10695
10696 /*
10697 * EFER MSR.
10698 */
10699 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
10700 {
10701 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10702 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10703 AssertRCBreak(rc);
10704 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10705 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10706 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10707 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
10708 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10709 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10710 || !(u32GuestCr0 & X86_CR0_PG)
10711 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10712 VMX_IGS_EFER_LMA_LME_MISMATCH);
10713 }
10714
10715 /*
10716 * Segment registers.
10717 */
10718 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10719 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10720 if (!(u32Eflags & X86_EFL_VM))
10721 {
10722 /* CS */
10723 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10724 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10725 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10726 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10727 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10728 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10729 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10730 /* CS cannot be loaded with NULL in protected mode. */
10731 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10732 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10733 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10734 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10735 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10736 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10737 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10738 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10739 else
10740 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10741
10742 /* SS */
10743 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10744 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10745 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10746 if ( !(pCtx->cr0 & X86_CR0_PE)
10747 || pCtx->cs.Attr.n.u4Type == 3)
10748 {
10749 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10750 }
10751 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10752 {
10753 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10754 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10755 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10756 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10757 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10758 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10759 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10760 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10761 }
10762
10763 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmenReg(). */
10764 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10765 {
10766 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10767 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10768 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10769 || pCtx->ds.Attr.n.u4Type > 11
10770 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10771 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10772 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10773 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10774 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10775 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10776 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10777 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10778 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10779 }
10780 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10781 {
10782 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10783 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10784 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10785 || pCtx->es.Attr.n.u4Type > 11
10786 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10787 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10788 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10789 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10790 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10791 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10792 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10793 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10794 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10795 }
10796 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10797 {
10798 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10799 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10800 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10801 || pCtx->fs.Attr.n.u4Type > 11
10802 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10803 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10804 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10805 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10806 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10807 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10808 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10809 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10810 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10811 }
10812 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10813 {
10814 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10815 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10816 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10817 || pCtx->gs.Attr.n.u4Type > 11
10818 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10819 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10820 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10821 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10822 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10823 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10824 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10825 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10826 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10827 }
10828 /* 64-bit capable CPUs. */
10829#if HC_ARCH_BITS == 64
10830 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10831 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10832 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10833 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10834 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10835 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10836 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10837 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10838 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10839 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10840 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10841#endif
10842 }
10843 else
10844 {
10845 /* V86 mode checks. */
10846 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10847 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10848 {
10849 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10850 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10851 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10852 }
10853 else
10854 {
10855 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10856 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10857 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10858 }
10859
10860 /* CS */
10861 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10862 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10863 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10864 /* SS */
10865 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10866 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10867 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10868 /* DS */
10869 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10870 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10871 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10872 /* ES */
10873 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10874 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10875 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10876 /* FS */
10877 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10878 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10879 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10880 /* GS */
10881 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10882 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10883 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10884 /* 64-bit capable CPUs. */
10885#if HC_ARCH_BITS == 64
10886 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10887 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10888 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10889 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10890 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10891 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10892 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10893 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10894 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10895 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10896 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10897#endif
10898 }
10899
10900 /*
10901 * TR.
10902 */
10903 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
10904 /* 64-bit capable CPUs. */
10905#if HC_ARCH_BITS == 64
10906 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
10907#endif
10908 if (fLongModeGuest)
10909 {
10910 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
10911 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
10912 }
10913 else
10914 {
10915 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
10916 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
10917 VMX_IGS_TR_ATTR_TYPE_INVALID);
10918 }
10919 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
10920 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
10921 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
10922 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
10923 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10924 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
10925 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10926 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
10927
10928 /*
10929 * GDTR and IDTR.
10930 */
10931#if HC_ARCH_BITS == 64
10932 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
10933 AssertRCBreak(rc);
10934 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
10935
10936 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
10937 AssertRCBreak(rc);
10938 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
10939#endif
10940
10941 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
10942 AssertRCBreak(rc);
10943 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10944
10945 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
10946 AssertRCBreak(rc);
10947 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10948
10949 /*
10950 * Guest Non-Register State.
10951 */
10952 /* Activity State. */
10953 uint32_t u32ActivityState;
10954 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
10955 AssertRCBreak(rc);
10956 HMVMX_CHECK_BREAK( !u32ActivityState
10957 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
10958 VMX_IGS_ACTIVITY_STATE_INVALID);
10959 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
10960 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
10961 uint32_t u32IntrState;
10962 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
10963 AssertRCBreak(rc);
10964 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
10965 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10966 {
10967 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
10968 }
10969
10970 /** @todo Activity state and injecting interrupts. Left as a todo since we
10971 * currently don't use activity states but ACTIVE. */
10972
10973 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
10974 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
10975
10976 /* Guest interruptibility-state. */
10977 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
10978 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
10979 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10980 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
10981 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
10982 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
10983 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
10984 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
10985 {
10986 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10987 {
10988 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10989 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10990 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
10991 }
10992 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
10993 {
10994 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10995 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
10996 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
10997 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
10998 }
10999 }
11000 /** @todo Assumes the processor is not in SMM. */
11001 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11002 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11003 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
11004 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11005 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11006 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
11007 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
11008 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11009 {
11010 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
11011 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11012 }
11013
11014 /* Pending debug exceptions. */
11015#if HC_ARCH_BITS == 64
11016 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
11017 AssertRCBreak(rc);
11018 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11019 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11020 u32Val = u64Val; /* For pending debug exceptions checks below. */
11021#else
11022 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
11023 AssertRCBreak(rc);
11024 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11025 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11026#endif
11027
11028 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11029 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
11030 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11031 {
11032 if ( (u32Eflags & X86_EFL_TF)
11033 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11034 {
11035 /* Bit 14 is PendingDebug.BS. */
11036 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11037 }
11038 if ( !(u32Eflags & X86_EFL_TF)
11039 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11040 {
11041 /* Bit 14 is PendingDebug.BS. */
11042 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11043 }
11044 }
11045
11046 /* VMCS link pointer. */
11047 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11048 AssertRCBreak(rc);
11049 if (u64Val != UINT64_C(0xffffffffffffffff))
11050 {
11051 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11052 /** @todo Bits beyond the processor's physical-address width MBZ. */
11053 /** @todo 32-bit located in memory referenced by value of this field (as a
11054 * physical address) must contain the processor's VMCS revision ID. */
11055 /** @todo SMM checks. */
11056 }
11057
11058 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11059 * not using Nested Paging? */
11060 if ( pVM->hm.s.fNestedPaging
11061 && !fLongModeGuest
11062 && CPUMIsGuestInPAEModeEx(pCtx))
11063 {
11064 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11065 AssertRCBreak(rc);
11066 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11067
11068 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11069 AssertRCBreak(rc);
11070 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11071
11072 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11073 AssertRCBreak(rc);
11074 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11075
11076 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11077 AssertRCBreak(rc);
11078 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11079 }
11080
11081 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11082 if (uError == VMX_IGS_ERROR)
11083 uError = VMX_IGS_REASON_NOT_FOUND;
11084 } while (0);
11085
11086 pVCpu->hm.s.u32HMError = uError;
11087 return uError;
11088
11089#undef HMVMX_ERROR_BREAK
11090#undef HMVMX_CHECK_BREAK
11091}
11092
11093
11094/** @name VM-exit handlers.
11095 * @{
11096 */
11097/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11098/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11099/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11100
11101/**
11102 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11103 */
11104HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11105{
11106 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11107 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11108 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11109 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11110 return VINF_SUCCESS;
11111 return VINF_EM_RAW_INTERRUPT;
11112}
11113
11114
11115/**
11116 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11117 */
11118HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11119{
11120 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11121 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11122
11123 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11124 AssertRCReturn(rc, rc);
11125
11126 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11127 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
11128 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
11129 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11130
11131 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11132 {
11133 /*
11134 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
11135 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
11136 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
11137 *
11138 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11139 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
11140 */
11141 VMXDispatchHostNmi();
11142 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11143 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11144 return VINF_SUCCESS;
11145 }
11146
11147 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11148 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
11149 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11150 { /* likely */ }
11151 else
11152 {
11153 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11154 rcStrictRc1 = VINF_SUCCESS;
11155 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11156 return rcStrictRc1;
11157 }
11158
11159 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11160 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
11161 switch (uIntType)
11162 {
11163 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11164 Assert(uVector == X86_XCPT_DB);
11165 RT_FALL_THRU();
11166 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11167 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
11168 RT_FALL_THRU();
11169 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11170 {
11171 /*
11172 * If there's any exception caused as a result of event injection, the resulting
11173 * secondary/final execption will be pending, we shall continue guest execution
11174 * after injecting the event. The page-fault case is complicated and we manually
11175 * handle any currently pending event in hmR0VmxExitXcptPF.
11176 */
11177 if (!pVCpu->hm.s.Event.fPending)
11178 { /* likely */ }
11179 else if (uVector != X86_XCPT_PF)
11180 {
11181 rc = VINF_SUCCESS;
11182 break;
11183 }
11184
11185 switch (uVector)
11186 {
11187 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
11188 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
11189 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
11190 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
11191 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
11192 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
11193
11194 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11195 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11196 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11197 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11198 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11199 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11200 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11201 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11202 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11203 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11204 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11205 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11206 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11207 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11208 default:
11209 {
11210 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11211 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11212 {
11213 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11214 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11215 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
11216
11217 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
11218 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11219 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11220 AssertRCReturn(rc, rc);
11221 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11222 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11223 0 /* GCPtrFaultAddress */);
11224 }
11225 else
11226 {
11227 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11228 pVCpu->hm.s.u32HMError = uVector;
11229 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11230 }
11231 break;
11232 }
11233 }
11234 break;
11235 }
11236
11237 default:
11238 {
11239 pVCpu->hm.s.u32HMError = uExitIntInfo;
11240 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11241 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
11242 break;
11243 }
11244 }
11245 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11246 return rc;
11247}
11248
11249
11250/**
11251 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11252 */
11253HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11254{
11255 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11256
11257 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11258 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11259
11260 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11261 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11262 return VINF_SUCCESS;
11263}
11264
11265
11266/**
11267 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11268 */
11269HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11270{
11271 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11272 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)))
11273 {
11274 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11275 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11276 }
11277
11278 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11279
11280 /*
11281 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11282 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11283 */
11284 uint32_t fIntrState = 0;
11285 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11286 AssertRCReturn(rc, rc);
11287
11288 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
11289 if ( fBlockSti
11290 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11291 {
11292 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11293 }
11294
11295 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11296 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11297
11298 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11299 return VINF_SUCCESS;
11300}
11301
11302
11303/**
11304 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11305 */
11306HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11307{
11308 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11309 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11310}
11311
11312
11313/**
11314 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11315 */
11316HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11317{
11318 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11319 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11320}
11321
11322
11323/**
11324 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11325 */
11326HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11327{
11328 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11329
11330 /*
11331 * Get the state we need and update the exit history entry.
11332 */
11333 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11334 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
11335 AssertRCReturn(rc, rc);
11336
11337 VBOXSTRICTRC rcStrict;
11338 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
11339 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
11340 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
11341 if (!pExitRec)
11342 {
11343 /*
11344 * Regular CPUID instruction execution.
11345 */
11346 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
11347 if (rcStrict == VINF_SUCCESS)
11348 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RAX
11349 | HM_CHANGED_GUEST_RCX | HM_CHANGED_GUEST_RDX | HM_CHANGED_GUEST_RBX);
11350 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11351 {
11352 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11353 rcStrict = VINF_SUCCESS;
11354 }
11355 }
11356 else
11357 {
11358 /*
11359 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
11360 */
11361 int rc2 = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11362 AssertRCReturn(rc2, rc2);
11363
11364 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
11365 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
11366
11367 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
11368 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
11369
11370 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
11371 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
11372 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
11373 }
11374 return rcStrict;
11375}
11376
11377
11378/**
11379 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11380 */
11381HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11382{
11383 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11384 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR4);
11385 AssertRCReturn(rc, rc);
11386
11387 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
11388 return VINF_EM_RAW_EMULATE_INSTR;
11389
11390 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11391 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11392}
11393
11394
11395/**
11396 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11397 */
11398HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11399{
11400 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11401 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
11402 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11403 AssertRCReturn(rc, rc);
11404
11405 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
11406 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11407 {
11408 /* If we get a spurious VM-exit when offsetting is enabled,
11409 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11410 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11411 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11412 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11413 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11414 }
11415 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11416 {
11417 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11418 rcStrict = VINF_SUCCESS;
11419 }
11420 return rcStrict;
11421}
11422
11423
11424/**
11425 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11426 */
11427HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11428{
11429 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11430 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
11431 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11432 AssertRCReturn(rc, rc);
11433
11434 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
11435 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11436 {
11437 /* If we get a spurious VM-exit when offsetting is enabled,
11438 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11439 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11440 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11441 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11442 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX | HM_CHANGED_GUEST_RCX);
11443 }
11444 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11445 {
11446 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11447 rcStrict = VINF_SUCCESS;
11448 }
11449 return rcStrict;
11450}
11451
11452
11453/**
11454 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11455 */
11456HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11457{
11458 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11459 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11460 AssertRCReturn(rc, rc);
11461
11462 PVM pVM = pVCpu->CTX_SUFF(pVM);
11463 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11464 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11465 if (RT_LIKELY(rc == VINF_SUCCESS))
11466 {
11467 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11468 Assert(pVmxTransient->cbInstr == 2);
11469 }
11470 else
11471 {
11472 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11473 rc = VERR_EM_INTERPRETER;
11474 }
11475 return rc;
11476}
11477
11478
11479/**
11480 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11481 */
11482HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11483{
11484 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11485
11486 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11487 if (EMAreHypercallInstructionsEnabled(pVCpu))
11488 {
11489 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_SS
11490 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
11491 AssertRCReturn(rc, rc);
11492
11493 /* Perform the hypercall. */
11494 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
11495 if (rcStrict == VINF_SUCCESS)
11496 {
11497 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11498 AssertRCReturn(rc, rc);
11499 }
11500 else
11501 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11502 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11503 || RT_FAILURE(rcStrict));
11504
11505 /* If the hypercall changes anything other than guest's general-purpose registers,
11506 we would need to reload the guest changed bits here before VM-entry. */
11507 }
11508 else
11509 Log4Func(("Hypercalls not enabled\n"));
11510
11511 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11512 if (RT_FAILURE(rcStrict))
11513 {
11514 hmR0VmxSetPendingXcptUD(pVCpu);
11515 rcStrict = VINF_SUCCESS;
11516 }
11517
11518 return rcStrict;
11519}
11520
11521
11522/**
11523 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11524 */
11525HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11526{
11527 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11528 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11529
11530 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11531 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11532 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
11533 AssertRCReturn(rc, rc);
11534
11535 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
11536
11537 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
11538 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11539 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11540 {
11541 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11542 rcStrict = VINF_SUCCESS;
11543 }
11544 else
11545 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
11546 VBOXSTRICTRC_VAL(rcStrict)));
11547 return rcStrict;
11548}
11549
11550
11551/**
11552 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11553 */
11554HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11555{
11556 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11557 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11558 AssertRCReturn(rc, rc);
11559
11560 PVM pVM = pVCpu->CTX_SUFF(pVM);
11561 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11562 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11563 if (RT_LIKELY(rc == VINF_SUCCESS))
11564 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11565 else
11566 {
11567 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11568 rc = VERR_EM_INTERPRETER;
11569 }
11570 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11571 return rc;
11572}
11573
11574
11575/**
11576 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11577 */
11578HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11579{
11580 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11581 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11582 AssertRCReturn(rc, rc);
11583
11584 PVM pVM = pVCpu->CTX_SUFF(pVM);
11585 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11586 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11587 rc = VBOXSTRICTRC_VAL(rc2);
11588 if (RT_LIKELY( rc == VINF_SUCCESS
11589 || rc == VINF_EM_HALT))
11590 {
11591 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11592 AssertRCReturn(rc3, rc3);
11593
11594 if ( rc == VINF_EM_HALT
11595 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
11596 rc = VINF_SUCCESS;
11597 }
11598 else
11599 {
11600 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11601 rc = VERR_EM_INTERPRETER;
11602 }
11603 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11604 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11605 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11606 return rc;
11607}
11608
11609
11610/**
11611 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11612 */
11613HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11614{
11615 /*
11616 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
11617 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
11618 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
11619 * VMX root operation. If we get here, something funny is going on.
11620 *
11621 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
11622 */
11623 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11624 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
11625 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11626}
11627
11628
11629/**
11630 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11631 */
11632HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11633{
11634 /*
11635 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
11636 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
11637 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
11638 * an SMI. If we get here, something funny is going on.
11639 *
11640 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
11641 * See Intel spec. 25.3 "Other Causes of VM-Exits"
11642 */
11643 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11644 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
11645 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11646}
11647
11648
11649/**
11650 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11651 */
11652HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11653{
11654 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11655 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11656 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
11657 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11658}
11659
11660
11661/**
11662 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11663 */
11664HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11665{
11666 /*
11667 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
11668 * We don't make use of it as our guests don't have direct access to the host LAPIC.
11669 * See Intel spec. 25.3 "Other Causes of VM-exits".
11670 */
11671 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11672 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
11673 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11674}
11675
11676
11677/**
11678 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11679 * VM-exit.
11680 */
11681HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11682{
11683 /*
11684 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11685 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11686 *
11687 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11688 * See Intel spec. "23.8 Restrictions on VMX operation".
11689 */
11690 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11691 return VINF_SUCCESS;
11692}
11693
11694
11695/**
11696 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11697 * VM-exit.
11698 */
11699HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11700{
11701 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11702 return VINF_EM_RESET;
11703}
11704
11705
11706/**
11707 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11708 */
11709HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11710{
11711 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11712 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_HLT_EXIT);
11713
11714 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11715 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
11716 AssertRCReturn(rc, rc);
11717
11718 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
11719 rc = VINF_SUCCESS;
11720 else
11721 rc = VINF_EM_HALT;
11722
11723 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11724 if (rc != VINF_SUCCESS)
11725 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11726 return rc;
11727}
11728
11729
11730/**
11731 * VM-exit handler for instructions that result in a \#UD exception delivered to
11732 * the guest.
11733 */
11734HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11735{
11736 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11737 hmR0VmxSetPendingXcptUD(pVCpu);
11738 return VINF_SUCCESS;
11739}
11740
11741
11742/**
11743 * VM-exit handler for expiry of the VMX preemption timer.
11744 */
11745HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11746{
11747 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11748
11749 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11750 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11751
11752 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11753 PVM pVM = pVCpu->CTX_SUFF(pVM);
11754 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11755 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11756 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11757}
11758
11759
11760/**
11761 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11762 */
11763HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11764{
11765 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11766
11767 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11768 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
11769 AssertRCReturn(rc, rc);
11770
11771 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11772 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11773 : HM_CHANGED_RAISED_XCPT_MASK);
11774
11775 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11776 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
11777
11778 return rcStrict;
11779}
11780
11781
11782/**
11783 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11784 */
11785HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11786{
11787 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11788 /** @todo Use VM-exit instruction information. */
11789 return VERR_EM_INTERPRETER;
11790}
11791
11792
11793/**
11794 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11795 * Error VM-exit.
11796 */
11797HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11798{
11799 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11800 AssertRCReturn(rc, rc);
11801 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11802 if (RT_FAILURE(rc))
11803 return rc;
11804
11805 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
11806 NOREF(uInvalidReason);
11807
11808#ifdef VBOX_STRICT
11809 uint32_t fIntrState;
11810 RTHCUINTREG uHCReg;
11811 uint64_t u64Val;
11812 uint32_t u32Val;
11813
11814 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11815 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11816 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11817 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11818 AssertRCReturn(rc, rc);
11819
11820 Log4(("uInvalidReason %u\n", uInvalidReason));
11821 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11822 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11823 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11824 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
11825
11826 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11827 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11828 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11829 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11830 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11831 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11832 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11833 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11834 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11835 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11836 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11837 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11838
11839 hmR0DumpRegs(pVCpu);
11840#else
11841 NOREF(pVmxTransient);
11842#endif
11843
11844 return VERR_VMX_INVALID_GUEST_STATE;
11845}
11846
11847
11848/**
11849 * VM-exit handler for VM-entry failure due to an MSR-load
11850 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11851 */
11852HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11853{
11854 AssertMsgFailed(("Unexpected MSR-load exit\n"));
11855 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11856}
11857
11858
11859/**
11860 * VM-exit handler for VM-entry failure due to a machine-check event
11861 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11862 */
11863HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11864{
11865 AssertMsgFailed(("Unexpected machine-check event exit\n"));
11866 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11867}
11868
11869
11870/**
11871 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11872 * theory.
11873 */
11874HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11875{
11876 RT_NOREF2(pVCpu, pVmxTransient);
11877 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
11878 return VERR_VMX_UNDEFINED_EXIT_CODE;
11879}
11880
11881
11882/**
11883 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11884 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11885 * Conditional VM-exit.
11886 */
11887HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11888{
11889 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11890
11891 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
11892 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11893 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
11894 return VERR_EM_INTERPRETER;
11895 AssertMsgFailed(("Unexpected XDTR access\n"));
11896 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11897}
11898
11899
11900/**
11901 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11902 */
11903HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11904{
11905 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11906
11907 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
11908 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
11909 return VERR_EM_INTERPRETER;
11910 AssertMsgFailed(("Unexpected RDRAND exit\n"));
11911 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11912}
11913
11914
11915/**
11916 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11917 */
11918HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11919{
11920 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11921
11922 /** @todo Optimize this: We currently drag in in the whole MSR state
11923 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11924 * MSRs required. That would require changes to IEM and possibly CPUM too.
11925 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11926 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; NOREF(idMsr); /* Save it. */
11927 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11928 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11929 AssertRCReturn(rc, rc);
11930
11931 Log4Func(("ecx=%#RX32\n", idMsr));
11932
11933#ifdef VBOX_STRICT
11934 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
11935 {
11936 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr)
11937 && idMsr != MSR_K6_EFER)
11938 {
11939 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
11940 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11941 }
11942 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
11943 {
11944 VMXMSREXITREAD enmRead;
11945 VMXMSREXITWRITE enmWrite;
11946 int rc2 = hmR0VmxGetMsrPermission(pVCpu, idMsr, &enmRead, &enmWrite);
11947 AssertRCReturn(rc2, rc2);
11948 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
11949 {
11950 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
11951 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11952 }
11953 }
11954 }
11955#endif
11956
11957 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
11958 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
11959 if (rcStrict == VINF_SUCCESS)
11960 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11961 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11962 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11963 {
11964 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11965 rcStrict = VINF_SUCCESS;
11966 }
11967 else
11968 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11969
11970 return rcStrict;
11971}
11972
11973
11974/**
11975 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
11976 */
11977HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11978{
11979 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11980
11981 /** @todo Optimize this: We currently drag in in the whole MSR state
11982 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11983 * MSRs required. That would require changes to IEM and possibly CPUM too.
11984 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11985 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; /* Save it. */
11986 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11987 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11988 AssertRCReturn(rc, rc);
11989
11990 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
11991
11992 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
11993 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
11994
11995 if (rcStrict == VINF_SUCCESS)
11996 {
11997 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11998
11999 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12000 if ( idMsr == MSR_IA32_APICBASE
12001 || ( idMsr >= MSR_IA32_X2APIC_START
12002 && idMsr <= MSR_IA32_X2APIC_END))
12003 {
12004 /*
12005 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12006 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before IEM changes it.
12007 */
12008 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
12009 }
12010 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12011 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12012 else if (idMsr == MSR_K6_EFER)
12013 {
12014 /*
12015 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12016 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12017 * the other bits as well, SCE and NXE. See @bugref{7368}.
12018 */
12019 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS
12020 | HM_CHANGED_VMX_EXIT_CTLS);
12021 }
12022
12023 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12024 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
12025 {
12026 switch (idMsr)
12027 {
12028 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12029 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12030 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12031 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
12032 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
12033 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
12034 default:
12035 {
12036 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12037 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12038 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12039 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
12040 break;
12041 }
12042 }
12043 }
12044#ifdef VBOX_STRICT
12045 else
12046 {
12047 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12048 switch (idMsr)
12049 {
12050 case MSR_IA32_SYSENTER_CS:
12051 case MSR_IA32_SYSENTER_EIP:
12052 case MSR_IA32_SYSENTER_ESP:
12053 case MSR_K8_FS_BASE:
12054 case MSR_K8_GS_BASE:
12055 {
12056 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
12057 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12058 }
12059
12060 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12061 default:
12062 {
12063 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12064 {
12065 /* EFER writes are always intercepted, see hmR0VmxExportGuestMsrs(). */
12066 if (idMsr != MSR_K6_EFER)
12067 {
12068 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12069 idMsr));
12070 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12071 }
12072 }
12073
12074 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12075 {
12076 VMXMSREXITREAD enmRead;
12077 VMXMSREXITWRITE enmWrite;
12078 int rc2 = hmR0VmxGetMsrPermission(pVCpu, idMsr, &enmRead, &enmWrite);
12079 AssertRCReturn(rc2, rc2);
12080 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12081 {
12082 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
12083 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12084 }
12085 }
12086 break;
12087 }
12088 }
12089 }
12090#endif /* VBOX_STRICT */
12091 }
12092 else if (rcStrict == VINF_IEM_RAISED_XCPT)
12093 {
12094 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12095 rcStrict = VINF_SUCCESS;
12096 }
12097 else
12098 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12099
12100 return rcStrict;
12101}
12102
12103
12104/**
12105 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12106 */
12107HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12108{
12109 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12110 /** @todo The guest has likely hit a contended spinlock. We might want to
12111 * poke a schedule different guest VCPU. */
12112 return VINF_EM_RAW_INTERRUPT;
12113}
12114
12115
12116/**
12117 * VM-exit handler for when the TPR value is lowered below the specified
12118 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12119 */
12120HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12121{
12122 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12123 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
12124
12125 /*
12126 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12127 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12128 */
12129 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12130 return VINF_SUCCESS;
12131}
12132
12133
12134/**
12135 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12136 * VM-exit.
12137 *
12138 * @retval VINF_SUCCESS when guest execution can continue.
12139 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12140 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12141 * interpreter.
12142 */
12143HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12144{
12145 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12146 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12147
12148 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12149 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12150 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12151 AssertRCReturn(rc, rc);
12152
12153 VBOXSTRICTRC rcStrict;
12154 PVM pVM = pVCpu->CTX_SUFF(pVM);
12155 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
12156 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
12157 switch (uAccessType)
12158 {
12159 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
12160 {
12161 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
12162 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12163 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
12164 AssertMsg( rcStrict == VINF_SUCCESS
12165 || rcStrict == VINF_IEM_RAISED_XCPT
12166 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12167
12168 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12169 {
12170 case 0:
12171 {
12172 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12173 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12174 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
12175 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
12176
12177 /*
12178 * This is a kludge for handling switches back to real mode when we try to use
12179 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
12180 * deal with special selector values, so we have to return to ring-3 and run
12181 * there till the selector values are V86 mode compatible.
12182 *
12183 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
12184 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
12185 * at the end of this function.
12186 */
12187 if ( rc == VINF_SUCCESS
12188 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
12189 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
12190 && (uOldCr0 & X86_CR0_PE)
12191 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
12192 {
12193 /** @todo check selectors rather than returning all the time. */
12194 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
12195 rcStrict = VINF_EM_RESCHEDULE_REM;
12196 }
12197 break;
12198 }
12199
12200 case 2:
12201 {
12202 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
12203 /* Nothing to do here, CR2 it's not part of the VMCS. */
12204 break;
12205 }
12206
12207 case 3:
12208 {
12209 Assert( !pVM->hm.s.fNestedPaging
12210 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12211 || pVCpu->hm.s.fUsingDebugLoop);
12212 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
12213 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12214 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
12215 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
12216 break;
12217 }
12218
12219 case 4:
12220 {
12221 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
12222 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12223 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
12224 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
12225 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12226 break;
12227 }
12228
12229 case 8:
12230 {
12231 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
12232 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12233 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12234 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
12235 break;
12236 }
12237 default:
12238 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
12239 break;
12240 }
12241 break;
12242 }
12243
12244 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
12245 {
12246 Assert( !pVM->hm.s.fNestedPaging
12247 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12248 || pVCpu->hm.s.fUsingDebugLoop
12249 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
12250 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12251 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
12252 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12253
12254 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
12255 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
12256 AssertMsg( rcStrict == VINF_SUCCESS
12257 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12258#ifdef VBOX_WITH_STATISTICS
12259 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12260 {
12261 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
12262 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
12263 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
12264 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
12265 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
12266 }
12267#endif
12268 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12269 VBOXSTRICTRC_VAL(rcStrict)));
12270 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
12271 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
12272 else
12273 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12274 break;
12275 }
12276
12277 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12278 {
12279 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12280 AssertMsg( rcStrict == VINF_SUCCESS
12281 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12282
12283 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12284 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12285 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12286 break;
12287 }
12288
12289 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12290 {
12291 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
12292 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual));
12293 AssertMsg( rcStrict == VINF_SUCCESS
12294 || rcStrict == VINF_IEM_RAISED_XCPT
12295 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12296
12297 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12298 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12299 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12300 break;
12301 }
12302
12303 default:
12304 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12305 VERR_VMX_UNEXPECTED_EXCEPTION);
12306 }
12307
12308 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
12309 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
12310 if (rcStrict == VINF_IEM_RAISED_XCPT)
12311 {
12312 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12313 rcStrict = VINF_SUCCESS;
12314 }
12315
12316 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12317 NOREF(pVM);
12318 return rcStrict;
12319}
12320
12321
12322/**
12323 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12324 * VM-exit.
12325 */
12326HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12327{
12328 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12329 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12330
12331 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12332 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12333 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12334 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER);
12335 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12336 AssertRCReturn(rc, rc);
12337
12338 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12339 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
12340 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
12341 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
12342 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
12343 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
12344 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12345 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12346
12347 /*
12348 * Update exit history to see if this exit can be optimized.
12349 */
12350 VBOXSTRICTRC rcStrict;
12351 PCEMEXITREC pExitRec = NULL;
12352 if ( !fGstStepping
12353 && !fDbgStepping)
12354 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12355 !fIOString
12356 ? !fIOWrite
12357 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
12358 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
12359 : !fIOWrite
12360 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
12361 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
12362 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12363 if (!pExitRec)
12364 {
12365 /* I/O operation lookup arrays. */
12366 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12367 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
12368 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12369 uint32_t const cbInstr = pVmxTransient->cbInstr;
12370 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12371 PVM pVM = pVCpu->CTX_SUFF(pVM);
12372 if (fIOString)
12373 {
12374 /*
12375 * INS/OUTS - I/O String instruction.
12376 *
12377 * Use instruction-information if available, otherwise fall back on
12378 * interpreting the instruction.
12379 */
12380 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12381 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
12382 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
12383 if (fInsOutsInfo)
12384 {
12385 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12386 AssertRCReturn(rc2, rc2);
12387 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12388 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12389 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12390 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
12391 if (fIOWrite)
12392 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12393 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12394 else
12395 {
12396 /*
12397 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12398 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12399 * See Intel Instruction spec. for "INS".
12400 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12401 */
12402 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12403 }
12404 }
12405 else
12406 rcStrict = IEMExecOne(pVCpu);
12407
12408 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12409 fUpdateRipAlready = true;
12410 }
12411 else
12412 {
12413 /*
12414 * IN/OUT - I/O instruction.
12415 */
12416 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12417 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12418 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
12419 if (fIOWrite)
12420 {
12421 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
12422 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12423 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12424 && !pCtx->eflags.Bits.u1TF)
12425 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
12426 }
12427 else
12428 {
12429 uint32_t u32Result = 0;
12430 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12431 if (IOM_SUCCESS(rcStrict))
12432 {
12433 /* Save result of I/O IN instr. in AL/AX/EAX. */
12434 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12435 }
12436 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12437 && !pCtx->eflags.Bits.u1TF)
12438 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
12439 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12440 }
12441 }
12442
12443 if (IOM_SUCCESS(rcStrict))
12444 {
12445 if (!fUpdateRipAlready)
12446 {
12447 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
12448 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12449 }
12450
12451 /*
12452 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
12453 * while booting Fedora 17 64-bit guest.
12454 *
12455 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12456 */
12457 if (fIOString)
12458 {
12459 /** @todo Single-step for INS/OUTS with REP prefix? */
12460 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
12461 }
12462 else if ( !fDbgStepping
12463 && fGstStepping)
12464 {
12465 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12466 AssertRCReturn(rc, rc);
12467 }
12468
12469 /*
12470 * If any I/O breakpoints are armed, we need to check if one triggered
12471 * and take appropriate action.
12472 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12473 */
12474 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_DR7);
12475 AssertRCReturn(rc, rc);
12476
12477 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12478 * execution engines about whether hyper BPs and such are pending. */
12479 uint32_t const uDr7 = pCtx->dr[7];
12480 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12481 && X86_DR7_ANY_RW_IO(uDr7)
12482 && (pCtx->cr4 & X86_CR4_DE))
12483 || DBGFBpIsHwIoArmed(pVM)))
12484 {
12485 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12486
12487 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12488 VMMRZCallRing3Disable(pVCpu);
12489 HM_DISABLE_PREEMPT(pVCpu);
12490
12491 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12492
12493 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
12494 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12495 {
12496 /* Raise #DB. */
12497 if (fIsGuestDbgActive)
12498 ASMSetDR6(pCtx->dr[6]);
12499 if (pCtx->dr[7] != uDr7)
12500 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
12501
12502 hmR0VmxSetPendingXcptDB(pVCpu);
12503 }
12504 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12505 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12506 else if ( rcStrict2 != VINF_SUCCESS
12507 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12508 rcStrict = rcStrict2;
12509 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12510
12511 HM_RESTORE_PREEMPT();
12512 VMMRZCallRing3Enable(pVCpu);
12513 }
12514 }
12515
12516#ifdef VBOX_STRICT
12517 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12518 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
12519 Assert(!fIOWrite);
12520 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12521 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
12522 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
12523 Assert(fIOWrite);
12524 else
12525 {
12526# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12527 * statuses, that the VMM device and some others may return. See
12528 * IOM_SUCCESS() for guidance. */
12529 AssertMsg( RT_FAILURE(rcStrict)
12530 || rcStrict == VINF_SUCCESS
12531 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12532 || rcStrict == VINF_EM_DBG_BREAKPOINT
12533 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12534 || rcStrict == VINF_EM_RAW_TO_R3
12535 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12536# endif
12537 }
12538#endif
12539 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12540 }
12541 else
12542 {
12543 /*
12544 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12545 */
12546 int rc2 = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
12547 AssertRCReturn(rc2, rc2);
12548 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
12549 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
12550 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
12551 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12552 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
12553 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
12554
12555 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12556 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12557
12558 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12559 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12560 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12561 }
12562 return rcStrict;
12563}
12564
12565
12566/**
12567 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12568 * VM-exit.
12569 */
12570HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12571{
12572 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12573
12574 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12575 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12576 AssertRCReturn(rc, rc);
12577 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
12578 {
12579 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12580 AssertRCReturn(rc, rc);
12581 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12582 {
12583 uint32_t uErrCode;
12584 RTGCUINTPTR GCPtrFaultAddress;
12585 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12586 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12587 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
12588 if (fErrorCodeValid)
12589 {
12590 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12591 AssertRCReturn(rc, rc);
12592 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
12593 }
12594 else
12595 uErrCode = 0;
12596
12597 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12598 && uVector == X86_XCPT_PF)
12599 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
12600 else
12601 GCPtrFaultAddress = 0;
12602
12603 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12604 0 /* cbInstr */, uErrCode, GCPtrFaultAddress);
12605
12606 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
12607 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12608 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12609 }
12610 }
12611
12612 /* Fall back to the interpreter to emulate the task-switch. */
12613 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12614 return VERR_EM_INTERPRETER;
12615}
12616
12617
12618/**
12619 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12620 */
12621HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12622{
12623 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12624 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
12625 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
12626 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12627 AssertRCReturn(rc, rc);
12628 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12629 return VINF_EM_DBG_STEPPED;
12630}
12631
12632
12633/**
12634 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12635 */
12636HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12637{
12638 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12639
12640 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12641
12642 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12643 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12644 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12645 {
12646 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12647 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12648 {
12649 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12650 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12651 }
12652 }
12653 else
12654 {
12655 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12656 rcStrict1 = VINF_SUCCESS;
12657 return rcStrict1;
12658 }
12659
12660 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
12661 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12662 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12663 AssertRCReturn(rc, rc);
12664
12665 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12666 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
12667 VBOXSTRICTRC rcStrict2;
12668 switch (uAccessType)
12669 {
12670 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12671 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12672 {
12673 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
12674 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
12675 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12676
12677 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12678 GCPhys &= PAGE_BASE_GC_MASK;
12679 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
12680 PVM pVM = pVCpu->CTX_SUFF(pVM);
12681 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12682 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
12683
12684 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12685 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12686 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12687 CPUMCTX2CORE(pCtx), GCPhys);
12688 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12689 if ( rcStrict2 == VINF_SUCCESS
12690 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12691 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12692 {
12693 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12694 | HM_CHANGED_GUEST_APIC_TPR);
12695 rcStrict2 = VINF_SUCCESS;
12696 }
12697 break;
12698 }
12699
12700 default:
12701 Log4Func(("uAccessType=%#x\n", uAccessType));
12702 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12703 break;
12704 }
12705
12706 if (rcStrict2 != VINF_SUCCESS)
12707 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12708 return rcStrict2;
12709}
12710
12711
12712/**
12713 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12714 * VM-exit.
12715 */
12716HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12717{
12718 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12719
12720 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12721 if (pVmxTransient->fWasGuestDebugStateActive)
12722 {
12723 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
12724 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12725 }
12726
12727 if ( !pVCpu->hm.s.fSingleInstruction
12728 && !pVmxTransient->fWasHyperDebugStateActive)
12729 {
12730 Assert(!DBGFIsStepping(pVCpu));
12731 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12732
12733 /* Don't intercept MOV DRx any more. */
12734 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
12735 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12736 AssertRCReturn(rc, rc);
12737
12738 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12739 VMMRZCallRing3Disable(pVCpu);
12740 HM_DISABLE_PREEMPT(pVCpu);
12741
12742 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12743 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12744 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12745
12746 HM_RESTORE_PREEMPT();
12747 VMMRZCallRing3Enable(pVCpu);
12748
12749#ifdef VBOX_WITH_STATISTICS
12750 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12751 AssertRCReturn(rc, rc);
12752 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12753 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12754 else
12755 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12756#endif
12757 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12758 return VINF_SUCCESS;
12759 }
12760
12761 /*
12762 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12763 * Update the segment registers and DR7 from the CPU.
12764 */
12765 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12766 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12767 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
12768 AssertRCReturn(rc, rc);
12769 Log4Func(("CS:RIP=%04x:%08RX64\n", pCtx->cs.Sel, pCtx->rip));
12770
12771 PVM pVM = pVCpu->CTX_SUFF(pVM);
12772 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12773 {
12774 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12775 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
12776 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
12777 if (RT_SUCCESS(rc))
12778 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12779 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12780 }
12781 else
12782 {
12783 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12784 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
12785 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
12786 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12787 }
12788
12789 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12790 if (RT_SUCCESS(rc))
12791 {
12792 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12793 AssertRCReturn(rc2, rc2);
12794 return VINF_SUCCESS;
12795 }
12796 return rc;
12797}
12798
12799
12800/**
12801 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12802 * Conditional VM-exit.
12803 */
12804HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12805{
12806 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12807 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12808
12809 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12810 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12811 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12812 {
12813 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12814 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12815 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12816 {
12817 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12818 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12819 }
12820 }
12821 else
12822 {
12823 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12824 rcStrict1 = VINF_SUCCESS;
12825 return rcStrict1;
12826 }
12827
12828 /*
12829 * Get sufficent state and update the exit history entry.
12830 */
12831 RTGCPHYS GCPhys;
12832 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12833 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12834 AssertRCReturn(rc, rc);
12835
12836 VBOXSTRICTRC rcStrict;
12837 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12838 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
12839 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12840 if (!pExitRec)
12841 {
12842 /*
12843 * If we succeed, resume guest execution.
12844 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12845 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12846 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12847 * weird case. See @bugref{6043}.
12848 */
12849 PVM pVM = pVCpu->CTX_SUFF(pVM);
12850 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12851 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
12852 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
12853 if ( rcStrict == VINF_SUCCESS
12854 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
12855 || rcStrict == VERR_PAGE_NOT_PRESENT)
12856 {
12857 /* Successfully handled MMIO operation. */
12858 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12859 | HM_CHANGED_GUEST_APIC_TPR);
12860 rcStrict = VINF_SUCCESS;
12861 }
12862 }
12863 else
12864 {
12865 /*
12866 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12867 */
12868 int rc2 = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12869 AssertRCReturn(rc2, rc2);
12870
12871 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
12872 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
12873
12874 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12875 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12876
12877 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12878 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12879 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12880 }
12881 return VBOXSTRICTRC_TODO(rcStrict);
12882}
12883
12884
12885/**
12886 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12887 * VM-exit.
12888 */
12889HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12890{
12891 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12892 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12893
12894 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12895 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12896 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12897 {
12898 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12899 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12900 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12901 }
12902 else
12903 {
12904 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12905 rcStrict1 = VINF_SUCCESS;
12906 return rcStrict1;
12907 }
12908
12909 RTGCPHYS GCPhys;
12910 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12911 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12912 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12913 AssertRCReturn(rc, rc);
12914
12915 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12916 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
12917
12918 RTGCUINT uErrorCode = 0;
12919 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
12920 uErrorCode |= X86_TRAP_PF_ID;
12921 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
12922 uErrorCode |= X86_TRAP_PF_RW;
12923 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
12924 uErrorCode |= X86_TRAP_PF_P;
12925
12926 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12927
12928
12929 /* Handle the pagefault trap for the nested shadow table. */
12930 PVM pVM = pVCpu->CTX_SUFF(pVM);
12931 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12932
12933 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
12934 pCtx->cs.Sel, pCtx->rip));
12935
12936 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
12937 TRPMResetTrap(pVCpu);
12938
12939 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12940 if ( rcStrict2 == VINF_SUCCESS
12941 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12942 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12943 {
12944 /* Successfully synced our nested page tables. */
12945 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12946 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
12947 return VINF_SUCCESS;
12948 }
12949
12950 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12951 return rcStrict2;
12952}
12953
12954/** @} */
12955
12956/** @name VM-exit exception handlers.
12957 * @{
12958 */
12959/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12960/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12961/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12962
12963/**
12964 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
12965 */
12966static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12967{
12968 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12969 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
12970
12971 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
12972 AssertRCReturn(rc, rc);
12973
12974 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
12975 {
12976 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
12977 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
12978
12979 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
12980 * provides VM-exit instruction length. If this causes problem later,
12981 * disassemble the instruction like it's done on AMD-V. */
12982 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12983 AssertRCReturn(rc2, rc2);
12984 return rc;
12985 }
12986
12987 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
12988 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
12989 return rc;
12990}
12991
12992
12993/**
12994 * VM-exit exception handler for \#BP (Breakpoint exception).
12995 */
12996static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12997{
12998 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12999 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13000
13001 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13002 AssertRCReturn(rc, rc);
13003
13004 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13005 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13006 if (rc == VINF_EM_RAW_GUEST_TRAP)
13007 {
13008 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13009 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13010 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13011 AssertRCReturn(rc, rc);
13012
13013 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13014 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13015 }
13016
13017 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13018 return rc;
13019}
13020
13021
13022/**
13023 * VM-exit exception handler for \#AC (alignment check exception).
13024 */
13025static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13026{
13027 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13028
13029 /*
13030 * Re-inject it. We'll detect any nesting before getting here.
13031 */
13032 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13033 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13034 AssertRCReturn(rc, rc);
13035 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13036
13037 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13038 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13039 return VINF_SUCCESS;
13040}
13041
13042
13043/**
13044 * VM-exit exception handler for \#DB (Debug exception).
13045 */
13046static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13047{
13048 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13049 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13050
13051 /*
13052 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13053 * for processing.
13054 */
13055 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13056
13057 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13058 uint64_t uDR6 = X86_DR6_INIT_VAL;
13059 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13060
13061 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13062 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13063 Log6Func(("rc=%Rrc\n", rc));
13064 if (rc == VINF_EM_RAW_GUEST_TRAP)
13065 {
13066 /*
13067 * The exception was for the guest. Update DR6, DR7.GD and
13068 * IA32_DEBUGCTL.LBR before forwarding it.
13069 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13070 */
13071 VMMRZCallRing3Disable(pVCpu);
13072 HM_DISABLE_PREEMPT(pVCpu);
13073
13074 pCtx->dr[6] &= ~X86_DR6_B_MASK;
13075 pCtx->dr[6] |= uDR6;
13076 if (CPUMIsGuestDebugStateActive(pVCpu))
13077 ASMSetDR6(pCtx->dr[6]);
13078
13079 HM_RESTORE_PREEMPT();
13080 VMMRZCallRing3Enable(pVCpu);
13081
13082 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_DR7);
13083 AssertRCReturn(rc, rc);
13084
13085 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13086 pCtx->dr[7] &= ~X86_DR7_GD;
13087
13088 /* Paranoia. */
13089 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13090 pCtx->dr[7] |= X86_DR7_RA1_MASK;
13091
13092 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
13093 AssertRCReturn(rc, rc);
13094
13095 /*
13096 * Raise #DB in the guest.
13097 *
13098 * It is important to reflect exactly what the VM-exit gave us (preserving the
13099 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
13100 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
13101 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
13102 *
13103 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
13104 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
13105 */
13106 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13107 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13108 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13109 AssertRCReturn(rc, rc);
13110 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13111 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13112 return VINF_SUCCESS;
13113 }
13114
13115 /*
13116 * Not a guest trap, must be a hypervisor related debug event then.
13117 * Update DR6 in case someone is interested in it.
13118 */
13119 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13120 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13121 CPUMSetHyperDR6(pVCpu, uDR6);
13122
13123 return rc;
13124}
13125
13126/**
13127 * VM-exit exception handler for \#GP (General-protection exception).
13128 *
13129 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13130 */
13131static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13132{
13133 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13134 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13135
13136 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13137 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13138 { /* likely */ }
13139 else
13140 {
13141#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13142 Assert(pVCpu->hm.s.fUsingDebugLoop);
13143#endif
13144 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13145 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13146 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13147 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13148 rc |= hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13149 AssertRCReturn(rc, rc);
13150 Log4Func(("Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pCtx->cs.Sel, pCtx->rip,
13151 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
13152 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13153 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13154 return rc;
13155 }
13156
13157 Assert(CPUMIsGuestInRealModeEx(pCtx));
13158 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13159
13160 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13161 AssertRCReturn(rc, rc);
13162
13163 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
13164 if (rcStrict == VINF_SUCCESS)
13165 {
13166 if (!CPUMIsGuestInRealModeEx(pCtx))
13167 {
13168 /*
13169 * The guest is no longer in real-mode, check if we can continue executing the
13170 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
13171 */
13172 if (HMVmxCanExecuteGuest(pVCpu, pCtx))
13173 {
13174 Log4Func(("Mode changed but guest still suitable for executing using VT-x\n"));
13175 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
13176 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13177 }
13178 else
13179 {
13180 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
13181 rcStrict = VINF_EM_RESCHEDULE;
13182 }
13183 }
13184 else
13185 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13186 }
13187 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13188 {
13189 rcStrict = VINF_SUCCESS;
13190 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13191 }
13192 return VBOXSTRICTRC_VAL(rcStrict);
13193}
13194
13195
13196/**
13197 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13198 * the exception reported in the VMX transient structure back into the VM.
13199 *
13200 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13201 * up-to-date.
13202 */
13203static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13204{
13205 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13206#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13207 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13208 ("uVector=%#x u32XcptBitmap=%#X32\n",
13209 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13210#endif
13211
13212 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13213 hmR0VmxCheckExitDueToEventDelivery(). */
13214 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13215 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13216 AssertRCReturn(rc, rc);
13217 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13218
13219#ifdef DEBUG_ramshankar
13220 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
13221 uint8_t uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13222 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13223#endif
13224
13225 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13226 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13227 return VINF_SUCCESS;
13228}
13229
13230
13231/**
13232 * VM-exit exception handler for \#PF (Page-fault exception).
13233 */
13234static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13235{
13236 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13237 PVM pVM = pVCpu->CTX_SUFF(pVM);
13238 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13239 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13240 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13241 AssertRCReturn(rc, rc);
13242
13243 if (!pVM->hm.s.fNestedPaging)
13244 { /* likely */ }
13245 else
13246 {
13247#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13248 Assert(pVCpu->hm.s.fUsingDebugLoop);
13249#endif
13250 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13251 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13252 {
13253 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13254 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13255 }
13256 else
13257 {
13258 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13259 hmR0VmxSetPendingXcptDF(pVCpu);
13260 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13261 }
13262 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13263 return rc;
13264 }
13265
13266 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13267 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13268 if (pVmxTransient->fVectoringPF)
13269 {
13270 Assert(pVCpu->hm.s.Event.fPending);
13271 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13272 }
13273
13274 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13275 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13276 AssertRCReturn(rc, rc);
13277
13278 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
13279 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
13280
13281 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13282 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13283
13284 Log4Func(("#PF: rc=%Rrc\n", rc));
13285 if (rc == VINF_SUCCESS)
13286 {
13287 /*
13288 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13289 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13290 */
13291 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13292 TRPMResetTrap(pVCpu);
13293 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13294 return rc;
13295 }
13296
13297 if (rc == VINF_EM_RAW_GUEST_TRAP)
13298 {
13299 if (!pVmxTransient->fVectoringDoublePF)
13300 {
13301 /* It's a guest page fault and needs to be reflected to the guest. */
13302 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13303 TRPMResetTrap(pVCpu);
13304 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13305 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13306 uGstErrorCode, pVmxTransient->uExitQual);
13307 }
13308 else
13309 {
13310 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13311 TRPMResetTrap(pVCpu);
13312 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13313 hmR0VmxSetPendingXcptDF(pVCpu);
13314 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13315 }
13316
13317 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13318 return VINF_SUCCESS;
13319 }
13320
13321 TRPMResetTrap(pVCpu);
13322 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13323 return rc;
13324}
13325
13326/** @} */
13327
13328#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13329
13330/** @name Nested-guest VM-exit handlers.
13331 * @{
13332 */
13333/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13334/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Nested-guest VM-exit handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13335/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13336
13337/**
13338 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
13339 */
13340HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13341{
13342 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13343
13344 /** @todo NSTVMX: Vmclear. */
13345 hmR0VmxSetPendingXcptUD(pVCpu);
13346 return VINF_SUCCESS;
13347}
13348
13349
13350/**
13351 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
13352 */
13353HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13354{
13355 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13356
13357 /** @todo NSTVMX: Vmlaunch. */
13358 hmR0VmxSetPendingXcptUD(pVCpu);
13359 return VINF_SUCCESS;
13360}
13361
13362
13363/**
13364 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
13365 */
13366HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13367{
13368 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13369
13370 /** @todo NSTVMX: Vmptrld. */
13371 hmR0VmxSetPendingXcptUD(pVCpu);
13372 return VINF_SUCCESS;
13373}
13374
13375
13376/**
13377 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
13378 */
13379HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13380{
13381 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13382
13383 /** @todo NSTVMX: Vmptrst. */
13384 hmR0VmxSetPendingXcptUD(pVCpu);
13385 return VINF_SUCCESS;
13386}
13387
13388
13389/**
13390 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
13391 */
13392HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13393{
13394 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13395
13396 /** @todo NSTVMX: Vmread. */
13397 hmR0VmxSetPendingXcptUD(pVCpu);
13398 return VINF_SUCCESS;
13399}
13400
13401
13402/**
13403 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
13404 */
13405HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13406{
13407 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13408
13409 /** @todo NSTVMX: Vmresume. */
13410 hmR0VmxSetPendingXcptUD(pVCpu);
13411 return VINF_SUCCESS;
13412}
13413
13414
13415/**
13416 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
13417 */
13418HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13419{
13420 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13421
13422 /** @todo NSTVMX: Vmwrite. */
13423 hmR0VmxSetPendingXcptUD(pVCpu);
13424 return VINF_SUCCESS;
13425}
13426
13427
13428/**
13429 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
13430 */
13431HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13432{
13433 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13434
13435 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13436 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13437 AssertRCReturn(rc, rc);
13438
13439 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
13440 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13441 {
13442 /* VMXOFF on success changes the internal hwvirt state but not anything that's visible to the guest. */
13443 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
13444 }
13445 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13446 {
13447 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13448 rcStrict = VINF_SUCCESS;
13449 }
13450 return rcStrict;
13451}
13452
13453
13454/**
13455 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
13456 */
13457HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13458{
13459 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13460
13461 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13462 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13463 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13464 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13465 AssertRCReturn(rc, rc);
13466
13467 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToVmxInstr(pVCpu, pVmxTransient);
13468 if (rcStrict == VINF_SUCCESS)
13469 { /* likely */ }
13470 else if (rcStrict == VINF_HM_PENDING_XCPT)
13471 {
13472 Log4Func(("Privilege checks failed, raising xcpt %#x!\n", VMX_ENTRY_INT_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo)));
13473 return VINF_SUCCESS;
13474 }
13475 else
13476 {
13477 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13478 return rcStrict;
13479 }
13480
13481 RTGCPTR GCPtrVmxon;
13482 PCVMXEXITINSTRINFO pExitInstrInfo = &pVmxTransient->ExitInstrInfo;
13483 RTGCPTR const GCPtrDisp = pVmxTransient->uExitQual;
13484 rcStrict = hmR0VmxDecodeMemOperand(pVCpu, pExitInstrInfo, GCPtrDisp, false /*fIsWrite*/, &GCPtrVmxon);
13485 if (rcStrict == VINF_SUCCESS)
13486 { /* likely */ }
13487 else if (rcStrict == VINF_HM_PENDING_XCPT)
13488 {
13489 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", VMX_ENTRY_INT_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo)));
13490 return VINF_SUCCESS;
13491 }
13492 else
13493 {
13494 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13495 return rcStrict;
13496 }
13497
13498 rcStrict = IEMExecDecodedVmxon(pVCpu, pVmxTransient->cbInstr, GCPtrVmxon, pExitInstrInfo->u, GCPtrDisp);
13499 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13500 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13501 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13502 {
13503 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13504 rcStrict = VINF_SUCCESS;
13505 }
13506 return rcStrict;
13507}
13508
13509/** @} */
13510#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13511
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette