VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 73627

Last change on this file since 73627 was 73627, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: Nested VMX: bugref:9180 todo regarding raising #SS on 64-bit segment checks.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 568.1 KB
Line 
1/* $Id: HMVMXR0.cpp 73627 2018-08-13 03:18:12Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include "HMVMXR0.h"
43#include "dtrace/VBoxVMM.h"
44
45#ifdef DEBUG_ramshankar
46# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CHECK_GUEST_STATE
50# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
51# define HMVMX_ALWAYS_TRAP_PF
52# define HMVMX_ALWAYS_FLUSH_TLB
53# define HMVMX_ALWAYS_SWAP_EFER
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name HMVMX_READ_XXX
70 * Flags to skip redundant reads of some common VMCS fields that are not part of
71 * the guest-CPU or VCPU state but are needed while handling VM-exits.
72 */
73#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
74#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
75#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
76#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
77#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
78#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
79#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
80/** @} */
81
82/**
83 * States of the VMCS.
84 *
85 * This does not reflect all possible VMCS states but currently only those
86 * needed for maintaining the VMCS consistently even when thread-context hooks
87 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
88 */
89#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
90#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
91#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
92
93/**
94 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
95 * guest using hardware-assisted VMX.
96 *
97 * This excludes state like GPRs (other than RSP) which are always are
98 * swapped and restored across the world-switch and also registers like EFER,
99 * MSR which cannot be modified by the guest without causing a VM-exit.
100 */
101#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
102 | CPUMCTX_EXTRN_RFLAGS \
103 | CPUMCTX_EXTRN_RSP \
104 | CPUMCTX_EXTRN_SREG_MASK \
105 | CPUMCTX_EXTRN_TABLE_MASK \
106 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
107 | CPUMCTX_EXTRN_SYSCALL_MSRS \
108 | CPUMCTX_EXTRN_SYSENTER_MSRS \
109 | CPUMCTX_EXTRN_TSC_AUX \
110 | CPUMCTX_EXTRN_OTHER_MSRS \
111 | CPUMCTX_EXTRN_CR0 \
112 | CPUMCTX_EXTRN_CR3 \
113 | CPUMCTX_EXTRN_CR4 \
114 | CPUMCTX_EXTRN_DR7 \
115 | CPUMCTX_EXTRN_HM_VMX_MASK)
116
117/**
118 * Exception bitmap mask for real-mode guests (real-on-v86).
119 *
120 * We need to intercept all exceptions manually except:
121 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
122 * due to bugs in Intel CPUs.
123 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
124 * support.
125 */
126#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
127 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
128 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
129 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
130 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
131 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
132 | RT_BIT(X86_XCPT_XF))
133
134/** Maximum VM-instruction error number. */
135#define HMVMX_INSTR_ERROR_MAX 28
136
137/** Profiling macro. */
138#ifdef HM_PROFILE_EXIT_DISPATCH
139# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
140# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
141#else
142# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
143# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
144#endif
145
146/** Assert that preemption is disabled or covered by thread-context hooks. */
147#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
148 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
149
150/** Assert that we haven't migrated CPUs when thread-context hooks are not
151 * used. */
152#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
153 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
154 ("Illegal migration! Entered on CPU %u Current %u\n", \
155 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
156
157/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
158 * context. */
159#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
160 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
161 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
162
163/** Helper macro for VM-exit handlers called unexpectedly. */
164#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
165 do { \
166 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
167 return VERR_VMX_UNEXPECTED_EXIT; \
168 } while (0)
169
170/** Macro for importing segment registers to the VMCS from the guest-CPU context. */
171#ifdef VMX_USE_CACHED_VMCS_ACCESSES
172# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
173 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
174 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
175#else
176# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
177 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
178 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
179#endif
180
181/** Macro for exporting segment registers to the VMCS from the guest-CPU context. */
182# define HMVMX_EXPORT_SREG(Sel, a_pCtxSelReg) \
183 hmR0VmxExportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
184 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
185
186
187/*********************************************************************************************************************************
188* Structures and Typedefs *
189*********************************************************************************************************************************/
190/**
191 * VMX transient state.
192 *
193 * A state structure for holding miscellaneous information across
194 * VMX non-root operation and restored after the transition.
195 */
196typedef struct VMXTRANSIENT
197{
198 /** The host's rflags/eflags. */
199 RTCCUINTREG fEFlags;
200#if HC_ARCH_BITS == 32
201 uint32_t u32Alignment0;
202#endif
203 /** The guest's TPR value used for TPR shadowing. */
204 uint8_t u8GuestTpr;
205 /** Alignment. */
206 uint8_t abAlignment0[7];
207
208 /** The basic VM-exit reason. */
209 uint16_t uExitReason;
210 /** Alignment. */
211 uint16_t u16Alignment0;
212 /** The VM-exit interruption error code. */
213 uint32_t uExitIntErrorCode;
214 /** The VM-exit exit code qualification. */
215 uint64_t uExitQual;
216
217 /** The VM-exit interruption-information field. */
218 uint32_t uExitIntInfo;
219 /** The VM-exit instruction-length field. */
220 uint32_t cbInstr;
221 /** The VM-exit instruction-information field. */
222 VMXEXITINSTRINFO ExitInstrInfo;
223 /** Whether the VM-entry failed or not. */
224 bool fVMEntryFailed;
225 /** Alignment. */
226 uint8_t abAlignment1[3];
227
228 /** The VM-entry interruption-information field. */
229 uint32_t uEntryIntInfo;
230 /** The VM-entry exception error code field. */
231 uint32_t uEntryXcptErrorCode;
232 /** The VM-entry instruction length field. */
233 uint32_t cbEntryInstr;
234
235 /** IDT-vectoring information field. */
236 uint32_t uIdtVectoringInfo;
237 /** IDT-vectoring error code. */
238 uint32_t uIdtVectoringErrorCode;
239
240 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
241 uint32_t fVmcsFieldsRead;
242
243 /** Whether the guest debug state was active at the time of VM-exit. */
244 bool fWasGuestDebugStateActive;
245 /** Whether the hyper debug state was active at the time of VM-exit. */
246 bool fWasHyperDebugStateActive;
247 /** Whether TSC-offsetting should be setup before VM-entry. */
248 bool fUpdateTscOffsettingAndPreemptTimer;
249 /** Whether the VM-exit was caused by a page-fault during delivery of a
250 * contributory exception or a page-fault. */
251 bool fVectoringDoublePF;
252 /** Whether the VM-exit was caused by a page-fault during delivery of an
253 * external interrupt or NMI. */
254 bool fVectoringPF;
255} VMXTRANSIENT;
256AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
257AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
258AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
259AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
260AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
261/** Pointer to VMX transient state. */
262typedef VMXTRANSIENT *PVMXTRANSIENT;
263
264
265/**
266 * MSR-bitmap read permissions.
267 */
268typedef enum VMXMSREXITREAD
269{
270 /** Reading this MSR causes a VM-exit. */
271 VMXMSREXIT_INTERCEPT_READ = 0xb,
272 /** Reading this MSR does not cause a VM-exit. */
273 VMXMSREXIT_PASSTHRU_READ
274} VMXMSREXITREAD;
275/** Pointer to MSR-bitmap read permissions. */
276typedef VMXMSREXITREAD* PVMXMSREXITREAD;
277
278/**
279 * MSR-bitmap write permissions.
280 */
281typedef enum VMXMSREXITWRITE
282{
283 /** Writing to this MSR causes a VM-exit. */
284 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
285 /** Writing to this MSR does not cause a VM-exit. */
286 VMXMSREXIT_PASSTHRU_WRITE
287} VMXMSREXITWRITE;
288/** Pointer to MSR-bitmap write permissions. */
289typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
290
291
292/**
293 * VMX VM-exit handler.
294 *
295 * @returns Strict VBox status code (i.e. informational status codes too).
296 * @param pVCpu The cross context virtual CPU structure.
297 * @param pVmxTransient Pointer to the VMX-transient structure.
298 */
299#ifndef HMVMX_USE_FUNCTION_TABLE
300typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
301#else
302typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
303/** Pointer to VM-exit handler. */
304typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
305#endif
306
307/**
308 * VMX VM-exit handler, non-strict status code.
309 *
310 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
311 *
312 * @returns VBox status code, no informational status code returned.
313 * @param pVCpu The cross context virtual CPU structure.
314 * @param pVmxTransient Pointer to the VMX-transient structure.
315 *
316 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
317 * use of that status code will be replaced with VINF_EM_SOMETHING
318 * later when switching over to IEM.
319 */
320#ifndef HMVMX_USE_FUNCTION_TABLE
321typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
322#else
323typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
324#endif
325
326
327/*********************************************************************************************************************************
328* Internal Functions *
329*********************************************************************************************************************************/
330static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush);
331static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr);
332static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
333static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat);
334static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
335 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState);
336#if HC_ARCH_BITS == 32
337static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
338#endif
339#ifndef HMVMX_USE_FUNCTION_TABLE
340DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
341# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
342# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
343#else
344# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
345# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
346#endif
347
348
349/** @name VM-exit handlers.
350 * @{
351 */
352static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
353static FNVMXEXITHANDLER hmR0VmxExitExtInt;
354static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
355static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
356static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
357static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
358static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
359static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
360static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
361static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
362static FNVMXEXITHANDLER hmR0VmxExitCpuid;
363static FNVMXEXITHANDLER hmR0VmxExitGetsec;
364static FNVMXEXITHANDLER hmR0VmxExitHlt;
365static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
366static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
367static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
368static FNVMXEXITHANDLER hmR0VmxExitVmcall;
369#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
370static FNVMXEXITHANDLER hmR0VmxExitVmclear;
371static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
372static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
373static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
374static FNVMXEXITHANDLER hmR0VmxExitVmread;
375static FNVMXEXITHANDLER hmR0VmxExitVmresume;
376static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
377static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
378static FNVMXEXITHANDLER hmR0VmxExitVmxon;
379#endif
380static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
381static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
382static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
383static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
384static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
385static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
386static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
387static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
391static FNVMXEXITHANDLER hmR0VmxExitMwait;
392static FNVMXEXITHANDLER hmR0VmxExitMtf;
393static FNVMXEXITHANDLER hmR0VmxExitMonitor;
394static FNVMXEXITHANDLER hmR0VmxExitPause;
395static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
396static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
397static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
398static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
399static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
400static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
401static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
402static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
403static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
405static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
406static FNVMXEXITHANDLER hmR0VmxExitRdrand;
407static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
408/** @} */
409
410static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
411static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
412static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
413static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
414static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
415static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
416static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
417static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu);
418
419
420/*********************************************************************************************************************************
421* Global Variables *
422*********************************************************************************************************************************/
423#ifdef HMVMX_USE_FUNCTION_TABLE
424
425/**
426 * VMX_EXIT dispatch table.
427 */
428static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
429{
430 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
431 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
432 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
433 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
434 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
435 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
436 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
437 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
438 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
439 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
440 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
441 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
442 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
443 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
444 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
445 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
446 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
447 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
448 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
449#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
450 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
451 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
452 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
453 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
454 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
455 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
456 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
457 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
458 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
459#else
460 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
461 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
462 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
463 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
464 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
465 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
466 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
467 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
468 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
469#endif
470 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
471 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
472 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
473 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
474 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
475 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
476 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
477 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
478 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
479 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
480 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
481 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
482 /* 40 UNDEFINED */ hmR0VmxExitPause,
483 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
484 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
485 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
486 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
487 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
488 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
489 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
490 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
491 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
492 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
493 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
494 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
495 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
496 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
497 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
498 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
499 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
500 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
501 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
502 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
503 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
504 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
505 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
506 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
507};
508#endif /* HMVMX_USE_FUNCTION_TABLE */
509
510#ifdef VBOX_STRICT
511static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
512{
513 /* 0 */ "(Not Used)",
514 /* 1 */ "VMCALL executed in VMX root operation.",
515 /* 2 */ "VMCLEAR with invalid physical address.",
516 /* 3 */ "VMCLEAR with VMXON pointer.",
517 /* 4 */ "VMLAUNCH with non-clear VMCS.",
518 /* 5 */ "VMRESUME with non-launched VMCS.",
519 /* 6 */ "VMRESUME after VMXOFF",
520 /* 7 */ "VM-entry with invalid control fields.",
521 /* 8 */ "VM-entry with invalid host state fields.",
522 /* 9 */ "VMPTRLD with invalid physical address.",
523 /* 10 */ "VMPTRLD with VMXON pointer.",
524 /* 11 */ "VMPTRLD with incorrect revision identifier.",
525 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
526 /* 13 */ "VMWRITE to read-only VMCS component.",
527 /* 14 */ "(Not Used)",
528 /* 15 */ "VMXON executed in VMX root operation.",
529 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
530 /* 17 */ "VM-entry with non-launched executing VMCS.",
531 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
532 /* 19 */ "VMCALL with non-clear VMCS.",
533 /* 20 */ "VMCALL with invalid VM-exit control fields.",
534 /* 21 */ "(Not Used)",
535 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
536 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
537 /* 24 */ "VMCALL with invalid SMM-monitor features.",
538 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
539 /* 26 */ "VM-entry with events blocked by MOV SS.",
540 /* 27 */ "(Not Used)",
541 /* 28 */ "Invalid operand to INVEPT/INVVPID."
542};
543#endif /* VBOX_STRICT */
544
545
546
547/**
548 * Updates the VM's last error record.
549 *
550 * If there was a VMX instruction error, reads the error data from the VMCS and
551 * updates VCPU's last error record as well.
552 *
553 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
554 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
555 * VERR_VMX_INVALID_VMCS_FIELD.
556 * @param rc The error code.
557 */
558static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
559{
560 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
561 || rc == VERR_VMX_UNABLE_TO_START_VM)
562 {
563 AssertPtrReturnVoid(pVCpu);
564 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
565 }
566 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
567}
568
569
570/**
571 * Reads the VM-entry interruption-information field from the VMCS into the VMX
572 * transient structure.
573 *
574 * @returns VBox status code.
575 * @param pVmxTransient Pointer to the VMX transient structure.
576 *
577 * @remarks No-long-jump zone!!!
578 */
579DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
580{
581 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
582 AssertRCReturn(rc, rc);
583 return VINF_SUCCESS;
584}
585
586#ifdef VBOX_STRICT
587/**
588 * Reads the VM-entry exception error code field from the VMCS into
589 * the VMX transient structure.
590 *
591 * @returns VBox status code.
592 * @param pVmxTransient Pointer to the VMX transient structure.
593 *
594 * @remarks No-long-jump zone!!!
595 */
596DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
597{
598 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
599 AssertRCReturn(rc, rc);
600 return VINF_SUCCESS;
601}
602
603
604/**
605 * Reads the VM-entry exception error code field from the VMCS into
606 * the VMX transient structure.
607 *
608 * @returns VBox status code.
609 * @param pVmxTransient Pointer to the VMX transient structure.
610 *
611 * @remarks No-long-jump zone!!!
612 */
613DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
614{
615 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
616 AssertRCReturn(rc, rc);
617 return VINF_SUCCESS;
618}
619#endif /* VBOX_STRICT */
620
621
622/**
623 * Reads the VM-exit interruption-information field from the VMCS into the VMX
624 * transient structure.
625 *
626 * @returns VBox status code.
627 * @param pVmxTransient Pointer to the VMX transient structure.
628 */
629DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
630{
631 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
632 {
633 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
634 AssertRCReturn(rc,rc);
635 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
636 }
637 return VINF_SUCCESS;
638}
639
640
641/**
642 * Reads the VM-exit interruption error code from the VMCS into the VMX
643 * transient structure.
644 *
645 * @returns VBox status code.
646 * @param pVmxTransient Pointer to the VMX transient structure.
647 */
648DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
649{
650 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
651 {
652 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
653 AssertRCReturn(rc, rc);
654 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
655 }
656 return VINF_SUCCESS;
657}
658
659
660/**
661 * Reads the VM-exit instruction length field from the VMCS into the VMX
662 * transient structure.
663 *
664 * @returns VBox status code.
665 * @param pVmxTransient Pointer to the VMX transient structure.
666 */
667DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
668{
669 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
670 {
671 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
672 AssertRCReturn(rc, rc);
673 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
674 }
675 return VINF_SUCCESS;
676}
677
678
679/**
680 * Reads the VM-exit instruction-information field from the VMCS into
681 * the VMX transient structure.
682 *
683 * @returns VBox status code.
684 * @param pVmxTransient Pointer to the VMX transient structure.
685 */
686DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
687{
688 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
689 {
690 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
691 AssertRCReturn(rc, rc);
692 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
693 }
694 return VINF_SUCCESS;
695}
696
697
698/**
699 * Reads the exit code qualification from the VMCS into the VMX transient
700 * structure.
701 *
702 * @returns VBox status code.
703 * @param pVCpu The cross context virtual CPU structure of the
704 * calling EMT. (Required for the VMCS cache case.)
705 * @param pVmxTransient Pointer to the VMX transient structure.
706 */
707DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
708{
709 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
710 {
711 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
712 AssertRCReturn(rc, rc);
713 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
714 }
715 return VINF_SUCCESS;
716}
717
718
719/**
720 * Reads the IDT-vectoring information field from the VMCS into the VMX
721 * transient structure.
722 *
723 * @returns VBox status code.
724 * @param pVmxTransient Pointer to the VMX transient structure.
725 *
726 * @remarks No-long-jump zone!!!
727 */
728DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
729{
730 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
731 {
732 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
733 AssertRCReturn(rc, rc);
734 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
735 }
736 return VINF_SUCCESS;
737}
738
739
740/**
741 * Reads the IDT-vectoring error code from the VMCS into the VMX
742 * transient structure.
743 *
744 * @returns VBox status code.
745 * @param pVmxTransient Pointer to the VMX transient structure.
746 */
747DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
748{
749 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
750 {
751 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
752 AssertRCReturn(rc, rc);
753 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
754 }
755 return VINF_SUCCESS;
756}
757
758
759/**
760 * Enters VMX root mode operation on the current CPU.
761 *
762 * @returns VBox status code.
763 * @param pVM The cross context VM structure. Can be
764 * NULL, after a resume.
765 * @param HCPhysCpuPage Physical address of the VMXON region.
766 * @param pvCpuPage Pointer to the VMXON region.
767 */
768static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
769{
770 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
771 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
772 Assert(pvCpuPage);
773 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
774
775 if (pVM)
776 {
777 /* Write the VMCS revision dword to the VMXON region. */
778 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
779 }
780
781 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
782 RTCCUINTREG fEFlags = ASMIntDisableFlags();
783
784 /* Enable the VMX bit in CR4 if necessary. */
785 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
786
787 /* Enter VMX root mode. */
788 int rc = VMXEnable(HCPhysCpuPage);
789 if (RT_FAILURE(rc))
790 {
791 if (!(uOldCr4 & X86_CR4_VMXE))
792 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
793
794 if (pVM)
795 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
796 }
797
798 /* Restore interrupts. */
799 ASMSetFlags(fEFlags);
800 return rc;
801}
802
803
804/**
805 * Exits VMX root mode operation on the current CPU.
806 *
807 * @returns VBox status code.
808 */
809static int hmR0VmxLeaveRootMode(void)
810{
811 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
812
813 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
814 RTCCUINTREG fEFlags = ASMIntDisableFlags();
815
816 /* If we're for some reason not in VMX root mode, then don't leave it. */
817 RTCCUINTREG uHostCR4 = ASMGetCR4();
818
819 int rc;
820 if (uHostCR4 & X86_CR4_VMXE)
821 {
822 /* Exit VMX root mode and clear the VMX bit in CR4. */
823 VMXDisable();
824 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
825 rc = VINF_SUCCESS;
826 }
827 else
828 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
829
830 /* Restore interrupts. */
831 ASMSetFlags(fEFlags);
832 return rc;
833}
834
835
836/**
837 * Allocates and maps one physically contiguous page. The allocated page is
838 * zero'd out. (Used by various VT-x structures).
839 *
840 * @returns IPRT status code.
841 * @param pMemObj Pointer to the ring-0 memory object.
842 * @param ppVirt Where to store the virtual address of the
843 * allocation.
844 * @param pHCPhys Where to store the physical address of the
845 * allocation.
846 */
847static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
848{
849 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
850 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
851 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
852
853 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
854 if (RT_FAILURE(rc))
855 return rc;
856 *ppVirt = RTR0MemObjAddress(*pMemObj);
857 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
858 ASMMemZero32(*ppVirt, PAGE_SIZE);
859 return VINF_SUCCESS;
860}
861
862
863/**
864 * Frees and unmaps an allocated physical page.
865 *
866 * @param pMemObj Pointer to the ring-0 memory object.
867 * @param ppVirt Where to re-initialize the virtual address of
868 * allocation as 0.
869 * @param pHCPhys Where to re-initialize the physical address of the
870 * allocation as 0.
871 */
872static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
873{
874 AssertPtr(pMemObj);
875 AssertPtr(ppVirt);
876 AssertPtr(pHCPhys);
877 if (*pMemObj != NIL_RTR0MEMOBJ)
878 {
879 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
880 AssertRC(rc);
881 *pMemObj = NIL_RTR0MEMOBJ;
882 *ppVirt = 0;
883 *pHCPhys = 0;
884 }
885}
886
887
888/**
889 * Worker function to free VT-x related structures.
890 *
891 * @returns IPRT status code.
892 * @param pVM The cross context VM structure.
893 */
894static void hmR0VmxStructsFree(PVM pVM)
895{
896 for (VMCPUID i = 0; i < pVM->cCpus; i++)
897 {
898 PVMCPU pVCpu = &pVM->aCpus[i];
899 AssertPtr(pVCpu);
900
901 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
902 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
903
904 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
905 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
906
907 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
908 }
909
910 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
911#ifdef VBOX_WITH_CRASHDUMP_MAGIC
912 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
913#endif
914}
915
916
917/**
918 * Worker function to allocate VT-x related VM structures.
919 *
920 * @returns IPRT status code.
921 * @param pVM The cross context VM structure.
922 */
923static int hmR0VmxStructsAlloc(PVM pVM)
924{
925 /*
926 * Initialize members up-front so we can cleanup properly on allocation failure.
927 */
928#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
929 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
930 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
931 pVM->hm.s.vmx.HCPhys##a_Name = 0;
932
933#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
934 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
935 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
936 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
937
938#ifdef VBOX_WITH_CRASHDUMP_MAGIC
939 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
940#endif
941 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
942
943 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
944 for (VMCPUID i = 0; i < pVM->cCpus; i++)
945 {
946 PVMCPU pVCpu = &pVM->aCpus[i];
947 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
948 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
949 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
950 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
951 }
952#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
953#undef VMXLOCAL_INIT_VM_MEMOBJ
954
955 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
956 AssertReturnStmt(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE) <= PAGE_SIZE,
957 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
958 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
959
960 /*
961 * Allocate all the VT-x structures.
962 */
963 int rc = VINF_SUCCESS;
964#ifdef VBOX_WITH_CRASHDUMP_MAGIC
965 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
966 if (RT_FAILURE(rc))
967 goto cleanup;
968 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
969 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
970#endif
971
972 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
973 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
974 {
975 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
976 &pVM->hm.s.vmx.HCPhysApicAccess);
977 if (RT_FAILURE(rc))
978 goto cleanup;
979 }
980
981 /*
982 * Initialize per-VCPU VT-x structures.
983 */
984 for (VMCPUID i = 0; i < pVM->cCpus; i++)
985 {
986 PVMCPU pVCpu = &pVM->aCpus[i];
987 AssertPtr(pVCpu);
988
989 /* Allocate the VM control structure (VMCS). */
990 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
991 if (RT_FAILURE(rc))
992 goto cleanup;
993
994 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
995 if ( PDMHasApic(pVM)
996 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
997 {
998 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
999 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1000 if (RT_FAILURE(rc))
1001 goto cleanup;
1002 }
1003
1004 /*
1005 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1006 * transparent accesses of specific MSRs.
1007 *
1008 * If the condition for enabling MSR bitmaps changes here, don't forget to
1009 * update HMAreMsrBitmapsAvailable().
1010 */
1011 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1012 {
1013 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1014 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1015 if (RT_FAILURE(rc))
1016 goto cleanup;
1017 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1018 }
1019
1020 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1021 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1022 if (RT_FAILURE(rc))
1023 goto cleanup;
1024
1025 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1026 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1027 if (RT_FAILURE(rc))
1028 goto cleanup;
1029 }
1030
1031 return VINF_SUCCESS;
1032
1033cleanup:
1034 hmR0VmxStructsFree(pVM);
1035 return rc;
1036}
1037
1038
1039/**
1040 * Does global VT-x initialization (called during module initialization).
1041 *
1042 * @returns VBox status code.
1043 */
1044VMMR0DECL(int) VMXR0GlobalInit(void)
1045{
1046#ifdef HMVMX_USE_FUNCTION_TABLE
1047 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1048# ifdef VBOX_STRICT
1049 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1050 Assert(g_apfnVMExitHandlers[i]);
1051# endif
1052#endif
1053 return VINF_SUCCESS;
1054}
1055
1056
1057/**
1058 * Does global VT-x termination (called during module termination).
1059 */
1060VMMR0DECL(void) VMXR0GlobalTerm()
1061{
1062 /* Nothing to do currently. */
1063}
1064
1065
1066/**
1067 * Sets up and activates VT-x on the current CPU.
1068 *
1069 * @returns VBox status code.
1070 * @param pHostCpu Pointer to the global CPU info struct.
1071 * @param pVM The cross context VM structure. Can be
1072 * NULL after a host resume operation.
1073 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1074 * fEnabledByHost is @c true).
1075 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1076 * @a fEnabledByHost is @c true).
1077 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1078 * enable VT-x on the host.
1079 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1080 */
1081VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1082 void *pvMsrs)
1083{
1084 Assert(pHostCpu);
1085 Assert(pvMsrs);
1086 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1087
1088 /* Enable VT-x if it's not already enabled by the host. */
1089 if (!fEnabledByHost)
1090 {
1091 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1092 if (RT_FAILURE(rc))
1093 return rc;
1094 }
1095
1096 /*
1097 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
1098 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
1099 * invalidated when flushing by VPID.
1100 */
1101 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1102 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1103 {
1104 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
1105 pHostCpu->fFlushAsidBeforeUse = false;
1106 }
1107 else
1108 pHostCpu->fFlushAsidBeforeUse = true;
1109
1110 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1111 ++pHostCpu->cTlbFlushes;
1112
1113 return VINF_SUCCESS;
1114}
1115
1116
1117/**
1118 * Deactivates VT-x on the current CPU.
1119 *
1120 * @returns VBox status code.
1121 * @param pHostCpu Pointer to the global CPU info struct.
1122 * @param pvCpuPage Pointer to the VMXON region.
1123 * @param HCPhysCpuPage Physical address of the VMXON region.
1124 *
1125 * @remarks This function should never be called when SUPR0EnableVTx() or
1126 * similar was used to enable VT-x on the host.
1127 */
1128VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1129{
1130 RT_NOREF3(pHostCpu, pvCpuPage, HCPhysCpuPage);
1131
1132 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1133 return hmR0VmxLeaveRootMode();
1134}
1135
1136
1137/**
1138 * Sets the permission bits for the specified MSR in the MSR bitmap.
1139 *
1140 * @param pVCpu The cross context virtual CPU structure.
1141 * @param uMsr The MSR value.
1142 * @param enmRead Whether reading this MSR causes a VM-exit.
1143 * @param enmWrite Whether writing this MSR causes a VM-exit.
1144 */
1145static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1146{
1147 int32_t iBit;
1148 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1149
1150 /*
1151 * Layout:
1152 * 0x000 - 0x3ff - Low MSR read bits
1153 * 0x400 - 0x7ff - High MSR read bits
1154 * 0x800 - 0xbff - Low MSR write bits
1155 * 0xc00 - 0xfff - High MSR write bits
1156 */
1157 if (uMsr <= 0x00001fff)
1158 iBit = uMsr;
1159 else if (uMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1160 {
1161 iBit = uMsr - UINT32_C(0xc0000000);
1162 pbMsrBitmap += 0x400;
1163 }
1164 else
1165 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1166
1167 Assert(iBit <= 0x1fff);
1168 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1169 ASMBitSet(pbMsrBitmap, iBit);
1170 else
1171 ASMBitClear(pbMsrBitmap, iBit);
1172
1173 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1174 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1175 else
1176 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1177}
1178
1179
1180#ifdef VBOX_STRICT
1181/**
1182 * Gets the permission bits for the specified MSR in the MSR bitmap.
1183 *
1184 * @returns VBox status code.
1185 * @retval VINF_SUCCESS if the specified MSR is found.
1186 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1187 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1188 *
1189 * @param pVCpu The cross context virtual CPU structure.
1190 * @param uMsr The MSR.
1191 * @param penmRead Where to store the read permissions.
1192 * @param penmWrite Where to store the write permissions.
1193 */
1194static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1195{
1196 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1197 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1198 int32_t iBit;
1199 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1200
1201 /* See hmR0VmxSetMsrPermission() for the layout. */
1202 if (uMsr <= 0x00001fff)
1203 iBit = uMsr;
1204 else if ( uMsr >= 0xc0000000
1205 && uMsr <= 0xc0001fff)
1206 {
1207 iBit = (uMsr - 0xc0000000);
1208 pbMsrBitmap += 0x400;
1209 }
1210 else
1211 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1212
1213 Assert(iBit <= 0x1fff);
1214 if (ASMBitTest(pbMsrBitmap, iBit))
1215 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1216 else
1217 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1218
1219 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1220 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1221 else
1222 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1223 return VINF_SUCCESS;
1224}
1225#endif /* VBOX_STRICT */
1226
1227
1228/**
1229 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1230 * area.
1231 *
1232 * @returns VBox status code.
1233 * @param pVCpu The cross context virtual CPU structure.
1234 * @param cMsrs The number of MSRs.
1235 */
1236static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1237{
1238 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1239 uint64_t const uVmxMiscMsr = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc;
1240 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(uVmxMiscMsr);
1241 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1242 {
1243 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1244 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1245 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1246 }
1247
1248 /* Update number of guest MSRs to load/store across the world-switch. */
1249 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1250 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1251
1252 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1253 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1254 AssertRCReturn(rc, rc);
1255
1256 /* Update the VCPU's copy of the MSR count. */
1257 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1258
1259 return VINF_SUCCESS;
1260}
1261
1262
1263/**
1264 * Adds a new (or updates the value of an existing) guest/host MSR
1265 * pair to be swapped during the world-switch as part of the
1266 * auto-load/store MSR area in the VMCS.
1267 *
1268 * @returns VBox status code.
1269 * @param pVCpu The cross context virtual CPU structure.
1270 * @param uMsr The MSR.
1271 * @param uGuestMsrValue Value of the guest MSR.
1272 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1273 * necessary.
1274 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1275 * its value was updated. Optional, can be NULL.
1276 */
1277static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1278 bool *pfAddedAndUpdated)
1279{
1280 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1281 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1282 uint32_t i;
1283 for (i = 0; i < cMsrs; i++)
1284 {
1285 if (pGuestMsr->u32Msr == uMsr)
1286 break;
1287 pGuestMsr++;
1288 }
1289
1290 bool fAdded = false;
1291 if (i == cMsrs)
1292 {
1293 ++cMsrs;
1294 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1295 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1296
1297 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1298 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1299 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1300
1301 fAdded = true;
1302 }
1303
1304 /* Update the MSR values in the auto-load/store MSR area. */
1305 pGuestMsr->u32Msr = uMsr;
1306 pGuestMsr->u64Value = uGuestMsrValue;
1307
1308 /* Create/update the MSR slot in the host MSR area. */
1309 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1310 pHostMsr += i;
1311 pHostMsr->u32Msr = uMsr;
1312
1313 /*
1314 * Update the host MSR only when requested by the caller AND when we're
1315 * adding it to the auto-load/store area. Otherwise, it would have been
1316 * updated by hmR0VmxExportHostMsrs(). We do this for performance reasons.
1317 */
1318 bool fUpdatedMsrValue = false;
1319 if ( fAdded
1320 && fUpdateHostMsr)
1321 {
1322 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1323 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1324 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1325 fUpdatedMsrValue = true;
1326 }
1327
1328 if (pfAddedAndUpdated)
1329 *pfAddedAndUpdated = fUpdatedMsrValue;
1330 return VINF_SUCCESS;
1331}
1332
1333
1334/**
1335 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1336 * auto-load/store MSR area in the VMCS.
1337 *
1338 * @returns VBox status code.
1339 * @param pVCpu The cross context virtual CPU structure.
1340 * @param uMsr The MSR.
1341 */
1342static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1343{
1344 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1345 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1346 for (uint32_t i = 0; i < cMsrs; i++)
1347 {
1348 /* Find the MSR. */
1349 if (pGuestMsr->u32Msr == uMsr)
1350 {
1351 /* If it's the last MSR, simply reduce the count. */
1352 if (i == cMsrs - 1)
1353 {
1354 --cMsrs;
1355 break;
1356 }
1357
1358 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1359 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1360 pLastGuestMsr += cMsrs - 1;
1361 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1362 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1363
1364 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1365 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1366 pLastHostMsr += cMsrs - 1;
1367 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1368 pHostMsr->u64Value = pLastHostMsr->u64Value;
1369 --cMsrs;
1370 break;
1371 }
1372 pGuestMsr++;
1373 }
1374
1375 /* Update the VMCS if the count changed (meaning the MSR was found). */
1376 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1377 {
1378 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1379 AssertRCReturn(rc, rc);
1380
1381 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1382 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1383 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1384
1385 Log4Func(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1386 return VINF_SUCCESS;
1387 }
1388
1389 return VERR_NOT_FOUND;
1390}
1391
1392
1393/**
1394 * Checks if the specified guest MSR is part of the auto-load/store area in
1395 * the VMCS.
1396 *
1397 * @returns true if found, false otherwise.
1398 * @param pVCpu The cross context virtual CPU structure.
1399 * @param uMsr The MSR to find.
1400 */
1401static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1402{
1403 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1404 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1405
1406 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1407 {
1408 if (pGuestMsr->u32Msr == uMsr)
1409 return true;
1410 }
1411 return false;
1412}
1413
1414
1415/**
1416 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1417 *
1418 * @param pVCpu The cross context virtual CPU structure.
1419 *
1420 * @remarks No-long-jump zone!!!
1421 */
1422static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1423{
1424 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1425 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1426 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1427 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1428
1429 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1430 {
1431 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1432
1433 /*
1434 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1435 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1436 */
1437 if (pHostMsr->u32Msr == MSR_K6_EFER)
1438 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1439 else
1440 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1441 }
1442
1443 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1444}
1445
1446
1447/**
1448 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1449 * perform lazy restoration of the host MSRs while leaving VT-x.
1450 *
1451 * @param pVCpu The cross context virtual CPU structure.
1452 *
1453 * @remarks No-long-jump zone!!!
1454 */
1455static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1456{
1457 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1458
1459 /*
1460 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1461 */
1462 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1463 {
1464 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1465#if HC_ARCH_BITS == 64
1466 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1467 {
1468 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1469 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1470 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1471 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1472 }
1473#endif
1474 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1475 }
1476}
1477
1478
1479/**
1480 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1481 * lazily while leaving VT-x.
1482 *
1483 * @returns true if it does, false otherwise.
1484 * @param pVCpu The cross context virtual CPU structure.
1485 * @param uMsr The MSR to check.
1486 */
1487static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1488{
1489 NOREF(pVCpu);
1490#if HC_ARCH_BITS == 64
1491 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1492 {
1493 switch (uMsr)
1494 {
1495 case MSR_K8_LSTAR:
1496 case MSR_K6_STAR:
1497 case MSR_K8_SF_MASK:
1498 case MSR_K8_KERNEL_GS_BASE:
1499 return true;
1500 }
1501 }
1502#else
1503 RT_NOREF(pVCpu, uMsr);
1504#endif
1505 return false;
1506}
1507
1508
1509/**
1510 * Loads a set of guests MSRs to allow read/passthru to the guest.
1511 *
1512 * The name of this function is slightly confusing. This function does NOT
1513 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1514 * common prefix for functions dealing with "lazy restoration" of the shared
1515 * MSRs.
1516 *
1517 * @param pVCpu The cross context virtual CPU structure.
1518 *
1519 * @remarks No-long-jump zone!!!
1520 */
1521static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1522{
1523 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1524 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1525
1526 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1527#if HC_ARCH_BITS == 64
1528 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1529 {
1530 /*
1531 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1532 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1533 * we can skip a few MSR writes.
1534 *
1535 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1536 * guest MSR values in the guest-CPU context might be different to what's currently
1537 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1538 * CPU, see @bugref{8728}.
1539 */
1540 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1541 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1542 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1543 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1544 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1545 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1546 {
1547#ifdef VBOX_STRICT
1548 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1549 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1550 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1551 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1552#endif
1553 }
1554 else
1555 {
1556 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1557 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
1558 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
1559 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1560 }
1561 }
1562#endif
1563 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1564}
1565
1566
1567/**
1568 * Performs lazy restoration of the set of host MSRs if they were previously
1569 * loaded with guest MSR values.
1570 *
1571 * @param pVCpu The cross context virtual CPU structure.
1572 *
1573 * @remarks No-long-jump zone!!!
1574 * @remarks The guest MSRs should have been saved back into the guest-CPU
1575 * context by hmR0VmxImportGuestState()!!!
1576 */
1577static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1578{
1579 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1580 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1581
1582 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1583 {
1584 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1585#if HC_ARCH_BITS == 64
1586 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1587 {
1588 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1589 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1590 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1591 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1592 }
1593#endif
1594 }
1595 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1596}
1597
1598
1599/**
1600 * Verifies that our cached values of the VMCS fields are all consistent with
1601 * what's actually present in the VMCS.
1602 *
1603 * @returns VBox status code.
1604 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
1605 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
1606 * VMCS content. HMCPU error-field is
1607 * updated, see VMX_VCI_XXX.
1608 * @param pVCpu The cross context virtual CPU structure.
1609 */
1610static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1611{
1612 uint32_t u32Val;
1613 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1614 AssertRCReturn(rc, rc);
1615 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32EntryCtls == u32Val,
1616 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1617 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
1618 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1619
1620 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1621 AssertRCReturn(rc, rc);
1622 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ExitCtls == u32Val,
1623 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1624 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
1625 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1626
1627 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1628 AssertRCReturn(rc, rc);
1629 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32PinCtls == u32Val,
1630 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1631 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
1632 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1633
1634 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1635 AssertRCReturn(rc, rc);
1636 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls == u32Val,
1637 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1638 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
1639 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1640
1641 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1642 {
1643 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1644 AssertRCReturn(rc, rc);
1645 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1646 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1647 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
1648 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1649 }
1650
1651 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
1652 AssertRCReturn(rc, rc);
1653 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32XcptBitmap == u32Val,
1654 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap, u32Val),
1655 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
1656 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1657
1658 uint64_t u64Val;
1659 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
1660 AssertRCReturn(rc, rc);
1661 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u64TscOffset == u64Val,
1662 ("Cache=%#RX64 VMCS=%#RX64\n", pVCpu->hm.s.vmx.u64TscOffset, u64Val),
1663 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
1664 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1665
1666 return VINF_SUCCESS;
1667}
1668
1669
1670#ifdef VBOX_STRICT
1671/**
1672 * Verifies that our cached host EFER value has not changed
1673 * since we cached it.
1674 *
1675 * @param pVCpu The cross context virtual CPU structure.
1676 */
1677static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1678{
1679 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1680
1681 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1682 {
1683 uint64_t u64Val;
1684 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1685 AssertRC(rc);
1686
1687 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1688 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1689 }
1690}
1691
1692
1693/**
1694 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1695 * VMCS are correct.
1696 *
1697 * @param pVCpu The cross context virtual CPU structure.
1698 */
1699static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1700{
1701 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1702
1703 /* Verify MSR counts in the VMCS are what we think it should be. */
1704 uint32_t cMsrs;
1705 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1706 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1707
1708 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1709 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1710
1711 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1712 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1713
1714 PCVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1715 PCVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1716 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1717 {
1718 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1719 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1720 pGuestMsr->u32Msr, cMsrs));
1721
1722 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1723 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1724 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1725
1726 /* Verify that the permissions are as expected in the MSR bitmap. */
1727 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1728 {
1729 VMXMSREXITREAD enmRead;
1730 VMXMSREXITWRITE enmWrite;
1731 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1732 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1733 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1734 {
1735 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1736 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1737 }
1738 else
1739 {
1740 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1741 pGuestMsr->u32Msr, cMsrs));
1742 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1743 pGuestMsr->u32Msr, cMsrs));
1744 }
1745 }
1746 }
1747}
1748#endif /* VBOX_STRICT */
1749
1750
1751/**
1752 * Flushes the TLB using EPT.
1753 *
1754 * @returns VBox status code.
1755 * @param pVCpu The cross context virtual CPU structure of the calling
1756 * EMT. Can be NULL depending on @a enmTlbFlush.
1757 * @param enmTlbFlush Type of flush.
1758 *
1759 * @remarks Caller is responsible for making sure this function is called only
1760 * when NestedPaging is supported and providing @a enmTlbFlush that is
1761 * supported by the CPU.
1762 * @remarks Can be called with interrupts disabled.
1763 */
1764static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush)
1765{
1766 uint64_t au64Descriptor[2];
1767 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1768 au64Descriptor[0] = 0;
1769 else
1770 {
1771 Assert(pVCpu);
1772 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1773 }
1774 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1775
1776 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
1777 AssertMsg(rc == VINF_SUCCESS,
1778 ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0, rc));
1779
1780 if ( RT_SUCCESS(rc)
1781 && pVCpu)
1782 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1783}
1784
1785
1786/**
1787 * Flushes the TLB using VPID.
1788 *
1789 * @returns VBox status code.
1790 * @param pVCpu The cross context virtual CPU structure of the calling
1791 * EMT. Can be NULL depending on @a enmTlbFlush.
1792 * @param enmTlbFlush Type of flush.
1793 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1794 * on @a enmTlbFlush).
1795 *
1796 * @remarks Can be called with interrupts disabled.
1797 */
1798static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
1799{
1800 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
1801
1802 uint64_t au64Descriptor[2];
1803 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1804 {
1805 au64Descriptor[0] = 0;
1806 au64Descriptor[1] = 0;
1807 }
1808 else
1809 {
1810 AssertPtr(pVCpu);
1811 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1812 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1813 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1814 au64Descriptor[1] = GCPtr;
1815 }
1816
1817 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
1818 AssertMsg(rc == VINF_SUCCESS,
1819 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1820
1821 if ( RT_SUCCESS(rc)
1822 && pVCpu)
1823 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1824 NOREF(rc);
1825}
1826
1827
1828/**
1829 * Invalidates a guest page by guest virtual address. Only relevant for
1830 * EPT/VPID, otherwise there is nothing really to invalidate.
1831 *
1832 * @returns VBox status code.
1833 * @param pVCpu The cross context virtual CPU structure.
1834 * @param GCVirt Guest virtual address of the page to invalidate.
1835 */
1836VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1837{
1838 AssertPtr(pVCpu);
1839 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
1840
1841 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1842 if (!fFlushPending)
1843 {
1844 /*
1845 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
1846 * the EPT case. See @bugref{6043} and @bugref{6177}.
1847 *
1848 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
1849 * as this function maybe called in a loop with individual addresses.
1850 */
1851 PVM pVM = pVCpu->CTX_SUFF(pVM);
1852 if (pVM->hm.s.vmx.fVpid)
1853 {
1854 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1855
1856#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1857 /*
1858 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
1859 * where executing INVVPID outside 64-bit mode does not flush translations of
1860 * 64-bit linear addresses, see @bugref{6208#c72}.
1861 */
1862 if (RT_HI_U32(GCVirt))
1863 fVpidFlush = false;
1864#endif
1865
1866 if (fVpidFlush)
1867 {
1868 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
1869 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1870 }
1871 else
1872 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1873 }
1874 else if (pVM->hm.s.fNestedPaging)
1875 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1876 }
1877
1878 return VINF_SUCCESS;
1879}
1880
1881
1882/**
1883 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1884 * case where neither EPT nor VPID is supported by the CPU.
1885 *
1886 * @param pVCpu The cross context virtual CPU structure.
1887 * @param pCpu Pointer to the global HM struct.
1888 *
1889 * @remarks Called with interrupts disabled.
1890 */
1891static void hmR0VmxFlushTaggedTlbNone(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1892{
1893 AssertPtr(pVCpu);
1894 AssertPtr(pCpu);
1895
1896 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1897
1898 Assert(pCpu->idCpu != NIL_RTCPUID);
1899 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1900 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1901 pVCpu->hm.s.fForceTLBFlush = false;
1902 return;
1903}
1904
1905
1906/**
1907 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1908 *
1909 * @param pVCpu The cross context virtual CPU structure.
1910 * @param pCpu Pointer to the global HM CPU struct.
1911 *
1912 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
1913 * nomenclature. The reason is, to avoid confusion in compare statements
1914 * since the host-CPU copies are named "ASID".
1915 *
1916 * @remarks Called with interrupts disabled.
1917 */
1918static void hmR0VmxFlushTaggedTlbBoth(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1919{
1920#ifdef VBOX_WITH_STATISTICS
1921 bool fTlbFlushed = false;
1922# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1923# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1924 if (!fTlbFlushed) \
1925 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1926 } while (0)
1927#else
1928# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1929# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1930#endif
1931
1932 AssertPtr(pCpu);
1933 AssertPtr(pVCpu);
1934 Assert(pCpu->idCpu != NIL_RTCPUID);
1935
1936 PVM pVM = pVCpu->CTX_SUFF(pVM);
1937 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1938 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1939 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1940
1941 /*
1942 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
1943 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
1944 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
1945 * cannot reuse the current ASID anymore.
1946 */
1947 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1948 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1949 {
1950 ++pCpu->uCurrentAsid;
1951 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1952 {
1953 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1954 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1955 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1956 }
1957
1958 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1959 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1960 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1961
1962 /*
1963 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1964 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1965 */
1966 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1967 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1968 HMVMX_SET_TAGGED_TLB_FLUSHED();
1969 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1970 }
1971 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
1972 {
1973 /*
1974 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
1975 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
1976 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
1977 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
1978 * mappings, see @bugref{6568}.
1979 *
1980 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
1981 */
1982 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1983 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1984 HMVMX_SET_TAGGED_TLB_FLUSHED();
1985 }
1986
1987 pVCpu->hm.s.fForceTLBFlush = false;
1988 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1989
1990 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
1991 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
1992 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1993 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1994 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1995 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
1996 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
1997 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1998 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1999
2000 /* Update VMCS with the VPID. */
2001 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2002 AssertRC(rc);
2003
2004#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2005}
2006
2007
2008/**
2009 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2010 *
2011 * @returns VBox status code.
2012 * @param pVCpu The cross context virtual CPU structure.
2013 * @param pCpu Pointer to the global HM CPU struct.
2014 *
2015 * @remarks Called with interrupts disabled.
2016 */
2017static void hmR0VmxFlushTaggedTlbEpt(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2018{
2019 AssertPtr(pVCpu);
2020 AssertPtr(pCpu);
2021 Assert(pCpu->idCpu != NIL_RTCPUID);
2022 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2023 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2024
2025 /*
2026 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2027 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2028 */
2029 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2030 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2031 {
2032 pVCpu->hm.s.fForceTLBFlush = true;
2033 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2034 }
2035
2036 /* Check for explicit TLB flushes. */
2037 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2038 {
2039 pVCpu->hm.s.fForceTLBFlush = true;
2040 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2041 }
2042
2043 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2044 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2045
2046 if (pVCpu->hm.s.fForceTLBFlush)
2047 {
2048 hmR0VmxFlushEpt(pVCpu, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2049 pVCpu->hm.s.fForceTLBFlush = false;
2050 }
2051}
2052
2053
2054/**
2055 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2056 *
2057 * @returns VBox status code.
2058 * @param pVCpu The cross context virtual CPU structure.
2059 * @param pCpu Pointer to the global HM CPU struct.
2060 *
2061 * @remarks Called with interrupts disabled.
2062 */
2063static void hmR0VmxFlushTaggedTlbVpid(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2064{
2065 AssertPtr(pVCpu);
2066 AssertPtr(pCpu);
2067 Assert(pCpu->idCpu != NIL_RTCPUID);
2068 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2069 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2070
2071 /*
2072 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2073 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2074 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2075 * cannot reuse the current ASID anymore.
2076 */
2077 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2078 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2079 {
2080 pVCpu->hm.s.fForceTLBFlush = true;
2081 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2082 }
2083
2084 /* Check for explicit TLB flushes. */
2085 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2086 {
2087 /*
2088 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2089 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2090 * fExplicitFlush = true here and change the pCpu->fFlushAsidBeforeUse check below to
2091 * include fExplicitFlush's too) - an obscure corner case.
2092 */
2093 pVCpu->hm.s.fForceTLBFlush = true;
2094 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2095 }
2096
2097 PVM pVM = pVCpu->CTX_SUFF(pVM);
2098 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2099 if (pVCpu->hm.s.fForceTLBFlush)
2100 {
2101 ++pCpu->uCurrentAsid;
2102 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2103 {
2104 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2105 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2106 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2107 }
2108
2109 pVCpu->hm.s.fForceTLBFlush = false;
2110 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2111 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2112 if (pCpu->fFlushAsidBeforeUse)
2113 {
2114 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2115 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2116 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2117 {
2118 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2119 pCpu->fFlushAsidBeforeUse = false;
2120 }
2121 else
2122 {
2123 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2124 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2125 }
2126 }
2127 }
2128
2129 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2130 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2131 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2132 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2133 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2134 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2135 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2136
2137 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2138 AssertRC(rc);
2139}
2140
2141
2142/**
2143 * Flushes the guest TLB entry based on CPU capabilities.
2144 *
2145 * @param pVCpu The cross context virtual CPU structure.
2146 * @param pCpu Pointer to the global HM CPU struct.
2147 */
2148DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2149{
2150#ifdef HMVMX_ALWAYS_FLUSH_TLB
2151 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2152#endif
2153 PVM pVM = pVCpu->CTX_SUFF(pVM);
2154 switch (pVM->hm.s.vmx.enmTlbFlushType)
2155 {
2156 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVCpu, pCpu); break;
2157 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pVCpu, pCpu); break;
2158 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pVCpu, pCpu); break;
2159 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pVCpu, pCpu); break;
2160 default:
2161 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2162 break;
2163 }
2164 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2165}
2166
2167
2168/**
2169 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2170 * TLB entries from the host TLB before VM-entry.
2171 *
2172 * @returns VBox status code.
2173 * @param pVM The cross context VM structure.
2174 */
2175static int hmR0VmxSetupTaggedTlb(PVM pVM)
2176{
2177 /*
2178 * Determine optimal flush type for Nested Paging.
2179 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2180 * guest execution (see hmR3InitFinalizeR0()).
2181 */
2182 if (pVM->hm.s.fNestedPaging)
2183 {
2184 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2185 {
2186 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2187 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2188 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2189 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2190 else
2191 {
2192 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2193 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2194 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2195 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2196 }
2197
2198 /* Make sure the write-back cacheable memory type for EPT is supported. */
2199 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2200 {
2201 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2202 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2203 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2204 }
2205
2206 /* EPT requires a page-walk length of 4. */
2207 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2208 {
2209 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2210 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2211 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2212 }
2213 }
2214 else
2215 {
2216 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2217 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2218 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2219 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2220 }
2221 }
2222
2223 /*
2224 * Determine optimal flush type for VPID.
2225 */
2226 if (pVM->hm.s.vmx.fVpid)
2227 {
2228 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2229 {
2230 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2231 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2232 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2233 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2234 else
2235 {
2236 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2237 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2238 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2239 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2240 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2241 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2242 pVM->hm.s.vmx.fVpid = false;
2243 }
2244 }
2245 else
2246 {
2247 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2248 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2249 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2250 pVM->hm.s.vmx.fVpid = false;
2251 }
2252 }
2253
2254 /*
2255 * Setup the handler for flushing tagged-TLBs.
2256 */
2257 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2258 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2259 else if (pVM->hm.s.fNestedPaging)
2260 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2261 else if (pVM->hm.s.vmx.fVpid)
2262 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2263 else
2264 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2265 return VINF_SUCCESS;
2266}
2267
2268
2269/**
2270 * Sets up pin-based VM-execution controls in the VMCS.
2271 *
2272 * @returns VBox status code.
2273 * @param pVCpu The cross context virtual CPU structure.
2274 *
2275 * @remarks We don't really care about optimizing vmwrites here as it's done only
2276 * once per VM and hence we don't care about VMCS-field cache comparisons.
2277 */
2278static int hmR0VmxSetupPinCtls(PVMCPU pVCpu)
2279{
2280 PVM pVM = pVCpu->CTX_SUFF(pVM);
2281 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0; /* Bits set here must always be set. */
2282 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2283
2284 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2285 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2286
2287 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2288 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2289
2290 /* Enable the VMX preemption timer. */
2291 if (pVM->hm.s.vmx.fUsePreemptTimer)
2292 {
2293 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2294 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2295 }
2296
2297#if 0
2298 /* Enable posted-interrupt processing. */
2299 if (pVM->hm.s.fPostedIntrs)
2300 {
2301 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2302 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2303 fVal |= VMX_PIN_CTL_POSTED_INT;
2304 }
2305#endif
2306
2307 if ((fVal & fZap) != fVal)
2308 {
2309 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2310 pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0, fVal, fZap));
2311 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2312 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2313 }
2314
2315 /* Commit it to the VMCS and update our cache. */
2316 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2317 AssertRCReturn(rc, rc);
2318 pVCpu->hm.s.vmx.u32PinCtls = fVal;
2319
2320 return VINF_SUCCESS;
2321}
2322
2323
2324/**
2325 * Sets up secondary processor-based VM-execution controls in the VMCS.
2326 *
2327 * @returns VBox status code.
2328 * @param pVCpu The cross context virtual CPU structure.
2329 *
2330 * @remarks We don't really care about optimizing vmwrites here as it's done only
2331 * once per VM and hence we don't care about VMCS-field cache comparisons.
2332 */
2333static int hmR0VmxSetupProcCtls2(PVMCPU pVCpu)
2334{
2335 PVM pVM = pVCpu->CTX_SUFF(pVM);
2336 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2337 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2338
2339 /* WBINVD causes a VM-exit. */
2340 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2341 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2342
2343 /* Enable EPT (aka nested-paging). */
2344 if (pVM->hm.s.fNestedPaging)
2345 fVal |= VMX_PROC_CTLS2_EPT;
2346
2347 /*
2348 * Enable the INVPCID instruction if supported by the hardware and we expose
2349 * it to the guest. Without this, guest executing INVPCID would cause a #UD.
2350 */
2351 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2352 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2353 fVal |= VMX_PROC_CTLS2_INVPCID;
2354
2355 /* Enable VPID. */
2356 if (pVM->hm.s.vmx.fVpid)
2357 fVal |= VMX_PROC_CTLS2_VPID;
2358
2359 /* Enable Unrestricted guest execution. */
2360 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2361 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2362
2363#if 0
2364 if (pVM->hm.s.fVirtApicRegs)
2365 {
2366 /* Enable APIC-register virtualization. */
2367 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2368 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2369
2370 /* Enable virtual-interrupt delivery. */
2371 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2372 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2373 }
2374#endif
2375
2376 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
2377 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2378 * done dynamically. */
2379 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2380 {
2381 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2382 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2383 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS; /* Virtualize APIC accesses. */
2384 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2385 AssertRCReturn(rc, rc);
2386 }
2387
2388 /* Enable RDTSCP. */
2389 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
2390 fVal |= VMX_PROC_CTLS2_RDTSCP;
2391
2392 /* Enable Pause-Loop exiting. */
2393 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
2394 && pVM->hm.s.vmx.cPleGapTicks
2395 && pVM->hm.s.vmx.cPleWindowTicks)
2396 {
2397 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2398
2399 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2400 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2401 AssertRCReturn(rc, rc);
2402 }
2403
2404 if ((fVal & fZap) != fVal)
2405 {
2406 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2407 pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0, fVal, fZap));
2408 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2409 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2410 }
2411
2412 /* Commit it to the VMCS and update our cache. */
2413 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2414 AssertRCReturn(rc, rc);
2415 pVCpu->hm.s.vmx.u32ProcCtls2 = fVal;
2416
2417 return VINF_SUCCESS;
2418}
2419
2420
2421/**
2422 * Sets up processor-based VM-execution controls in the VMCS.
2423 *
2424 * @returns VBox status code.
2425 * @param pVCpu The cross context virtual CPU structure.
2426 *
2427 * @remarks We don't really care about optimizing vmwrites here as it's done only
2428 * once per VM and hence we don't care about VMCS-field cache comparisons.
2429 */
2430static int hmR0VmxSetupProcCtls(PVMCPU pVCpu)
2431{
2432 PVM pVM = pVCpu->CTX_SUFF(pVM);
2433 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2434 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2435
2436 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2437 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2438 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2439 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2440 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2441 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2442 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2443
2444 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2445 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2446 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2447 {
2448 LogRelFunc(("Unsupported VMX_PROC_CTLS_MOV_DR_EXIT combo!"));
2449 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2450 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2451 }
2452
2453 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2454 if (!pVM->hm.s.fNestedPaging)
2455 {
2456 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2457 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
2458 | VMX_PROC_CTLS_CR3_LOAD_EXIT
2459 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2460 }
2461
2462 /* Use TPR shadowing if supported by the CPU. */
2463 if ( PDMHasApic(pVM)
2464 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
2465 {
2466 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2467 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2468 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2469 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2470 AssertRCReturn(rc, rc);
2471
2472 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2473 /* CR8 writes cause a VM-exit based on TPR threshold. */
2474 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2475 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2476 }
2477 else
2478 {
2479 /*
2480 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2481 * Set this control only for 64-bit guests.
2482 */
2483 if (pVM->hm.s.fAllow64BitGuests)
2484 {
2485 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2486 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2487 }
2488 }
2489
2490 /* Use MSR-bitmaps if supported by the CPU. */
2491 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2492 {
2493 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
2494
2495 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2496 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2497 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2498 AssertRCReturn(rc, rc);
2499
2500 /*
2501 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2502 * automatically using dedicated fields in the VMCS.
2503 */
2504 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2505 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2506 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2507 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2508 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2509#if HC_ARCH_BITS == 64
2510 /*
2511 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2512 */
2513 if (pVM->hm.s.fAllow64BitGuests)
2514 {
2515 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2516 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2517 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2518 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2519 }
2520#endif
2521 /*
2522 * The IA32_PRED_CMD MSR is write-only and has no state associated with it. We never need to intercept
2523 * access (writes need to be executed without exiting, reds will #GP-fault anyway).
2524 */
2525 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2526 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2527
2528 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2529 }
2530
2531 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2532 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2533 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2534
2535 if ((fVal & fZap) != fVal)
2536 {
2537 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2538 pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0, fVal, fZap));
2539 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2540 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2541 }
2542
2543 /* Commit it to the VMCS and update our cache. */
2544 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2545 AssertRCReturn(rc, rc);
2546 pVCpu->hm.s.vmx.u32ProcCtls = fVal;
2547
2548 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
2549 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2550 return hmR0VmxSetupProcCtls2(pVCpu);
2551
2552 /* Sanity check, should not really happen. */
2553 if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2554 {
2555 LogRelFunc(("Unrestricted Guest enabled when secondary processor-based VM-execution controls not available\n"));
2556 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2557 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2558 }
2559
2560 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
2561 return VINF_SUCCESS;
2562}
2563
2564
2565/**
2566 * Sets up miscellaneous (everything other than Pin & Processor-based
2567 * VM-execution) control fields in the VMCS.
2568 *
2569 * @returns VBox status code.
2570 * @param pVCpu The cross context virtual CPU structure.
2571 */
2572static int hmR0VmxSetupMiscCtls(PVMCPU pVCpu)
2573{
2574 AssertPtr(pVCpu);
2575
2576 int rc = VERR_GENERAL_FAILURE;
2577
2578 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2579#if 0
2580 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxExportGuestCR3AndCR4())*/
2581 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2582 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2583
2584 /*
2585 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2586 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2587 * We thus use the exception bitmap to control it rather than use both.
2588 */
2589 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2590 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2591
2592 /* All IO & IOIO instructions cause VM-exits. */
2593 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2594 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2595
2596 /* Initialize the MSR-bitmap area. */
2597 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2598 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2599 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2600 AssertRCReturn(rc, rc);
2601#endif
2602
2603 /* Setup MSR auto-load/store area. */
2604 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2605 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2606 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2607 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2608 AssertRCReturn(rc, rc);
2609
2610 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2611 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2612 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2613 AssertRCReturn(rc, rc);
2614
2615 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2616 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2617 AssertRCReturn(rc, rc);
2618
2619 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2620#if 0
2621 /* Setup debug controls */
2622 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
2623 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2624 AssertRCReturn(rc, rc);
2625#endif
2626
2627 return rc;
2628}
2629
2630
2631/**
2632 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2633 *
2634 * We shall setup those exception intercepts that don't change during the
2635 * lifetime of the VM here. The rest are done dynamically while loading the
2636 * guest state.
2637 *
2638 * @returns VBox status code.
2639 * @param pVCpu The cross context virtual CPU structure.
2640 */
2641static int hmR0VmxInitXcptBitmap(PVMCPU pVCpu)
2642{
2643 AssertPtr(pVCpu);
2644
2645 uint32_t uXcptBitmap;
2646
2647 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2648 uXcptBitmap = RT_BIT_32(X86_XCPT_AC);
2649
2650 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2651 and writes, and because recursive #DBs can cause the CPU hang, we must always
2652 intercept #DB. */
2653 uXcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2654
2655 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2656 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
2657 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
2658
2659 /* Commit it to the VMCS. */
2660 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2661 AssertRCReturn(rc, rc);
2662
2663 /* Update our cache of the exception bitmap. */
2664 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
2665 return VINF_SUCCESS;
2666}
2667
2668
2669/**
2670 * Does per-VM VT-x initialization.
2671 *
2672 * @returns VBox status code.
2673 * @param pVM The cross context VM structure.
2674 */
2675VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2676{
2677 LogFlowFunc(("pVM=%p\n", pVM));
2678
2679 int rc = hmR0VmxStructsAlloc(pVM);
2680 if (RT_FAILURE(rc))
2681 {
2682 LogRelFunc(("hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2683 return rc;
2684 }
2685
2686 return VINF_SUCCESS;
2687}
2688
2689
2690/**
2691 * Does per-VM VT-x termination.
2692 *
2693 * @returns VBox status code.
2694 * @param pVM The cross context VM structure.
2695 */
2696VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2697{
2698 LogFlowFunc(("pVM=%p\n", pVM));
2699
2700#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2701 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2702 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2703#endif
2704 hmR0VmxStructsFree(pVM);
2705 return VINF_SUCCESS;
2706}
2707
2708
2709/**
2710 * Sets up the VM for execution under VT-x.
2711 * This function is only called once per-VM during initialization.
2712 *
2713 * @returns VBox status code.
2714 * @param pVM The cross context VM structure.
2715 */
2716VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2717{
2718 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2719 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2720
2721 LogFlowFunc(("pVM=%p\n", pVM));
2722
2723 /*
2724 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be
2725 * allocated. We no longer support the highly unlikely case of UnrestrictedGuest without
2726 * pRealModeTSS, see hmR3InitFinalizeR0Intel().
2727 */
2728 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2729 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2730 || !pVM->hm.s.vmx.pRealModeTSS))
2731 {
2732 LogRelFunc(("Invalid real-on-v86 state.\n"));
2733 return VERR_INTERNAL_ERROR;
2734 }
2735
2736 /* Initialize these always, see hmR3InitFinalizeR0().*/
2737 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
2738 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
2739
2740 /* Setup the tagged-TLB flush handlers. */
2741 int rc = hmR0VmxSetupTaggedTlb(pVM);
2742 if (RT_FAILURE(rc))
2743 {
2744 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2745 return rc;
2746 }
2747
2748 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2749 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2750#if HC_ARCH_BITS == 64
2751 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2752 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2753 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
2754 {
2755 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2756 }
2757#endif
2758
2759 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2760 RTCCUINTREG uHostCR4 = ASMGetCR4();
2761 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2762 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2763
2764 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2765 {
2766 PVMCPU pVCpu = &pVM->aCpus[i];
2767 AssertPtr(pVCpu);
2768 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2769
2770 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2771 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2772
2773 /* Set revision dword at the beginning of the VMCS structure. */
2774 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
2775
2776 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2777 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2778 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc\n", rc),
2779 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2780
2781 /* Load this VMCS as the current VMCS. */
2782 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2783 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc\n", rc),
2784 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2785
2786 rc = hmR0VmxSetupPinCtls(pVCpu);
2787 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc\n", rc),
2788 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2789
2790 rc = hmR0VmxSetupProcCtls(pVCpu);
2791 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc\n", rc),
2792 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2793
2794 rc = hmR0VmxSetupMiscCtls(pVCpu);
2795 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc\n", rc),
2796 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2797
2798 rc = hmR0VmxInitXcptBitmap(pVCpu);
2799 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc\n", rc),
2800 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2801
2802#if HC_ARCH_BITS == 32
2803 rc = hmR0VmxInitVmcsReadCache(pVCpu);
2804 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc\n", rc),
2805 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2806#endif
2807
2808 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2809 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2810 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc\n", rc),
2811 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2812
2813 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2814
2815 hmR0VmxUpdateErrorRecord(pVCpu, rc);
2816 }
2817
2818 return VINF_SUCCESS;
2819}
2820
2821
2822/**
2823 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2824 * the VMCS.
2825 *
2826 * @returns VBox status code.
2827 */
2828static int hmR0VmxExportHostControlRegs(void)
2829{
2830 RTCCUINTREG uReg = ASMGetCR0();
2831 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2832 AssertRCReturn(rc, rc);
2833
2834 uReg = ASMGetCR3();
2835 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2836 AssertRCReturn(rc, rc);
2837
2838 uReg = ASMGetCR4();
2839 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2840 AssertRCReturn(rc, rc);
2841 return rc;
2842}
2843
2844
2845/**
2846 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2847 * the host-state area in the VMCS.
2848 *
2849 * @returns VBox status code.
2850 * @param pVCpu The cross context virtual CPU structure.
2851 */
2852static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
2853{
2854#if HC_ARCH_BITS == 64
2855/**
2856 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2857 * requirements. See hmR0VmxExportHostSegmentRegs().
2858 */
2859# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2860 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2861 { \
2862 bool fValidSelector = true; \
2863 if ((selValue) & X86_SEL_LDT) \
2864 { \
2865 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2866 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2867 } \
2868 if (fValidSelector) \
2869 { \
2870 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2871 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2872 } \
2873 (selValue) = 0; \
2874 }
2875
2876 /*
2877 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2878 * should -not- save the messed up state without restoring the original host-state,
2879 * see @bugref{7240}.
2880 *
2881 * This apparently can happen (most likely the FPU changes), deal with it rather than
2882 * asserting. Was observed booting Solaris 10u10 32-bit guest.
2883 */
2884 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2885 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2886 {
2887 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2888 pVCpu->idCpu));
2889 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2890 }
2891 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2892#else
2893 RT_NOREF(pVCpu);
2894#endif
2895
2896 /*
2897 * Host DS, ES, FS and GS segment registers.
2898 */
2899#if HC_ARCH_BITS == 64
2900 RTSEL uSelDS = ASMGetDS();
2901 RTSEL uSelES = ASMGetES();
2902 RTSEL uSelFS = ASMGetFS();
2903 RTSEL uSelGS = ASMGetGS();
2904#else
2905 RTSEL uSelDS = 0;
2906 RTSEL uSelES = 0;
2907 RTSEL uSelFS = 0;
2908 RTSEL uSelGS = 0;
2909#endif
2910
2911 /*
2912 * Host CS and SS segment registers.
2913 */
2914 RTSEL uSelCS = ASMGetCS();
2915 RTSEL uSelSS = ASMGetSS();
2916
2917 /*
2918 * Host TR segment register.
2919 */
2920 RTSEL uSelTR = ASMGetTR();
2921
2922#if HC_ARCH_BITS == 64
2923 /*
2924 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
2925 * gain VM-entry and restore them before we get preempted.
2926 *
2927 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2928 */
2929 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2930 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2931 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2932 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2933# undef VMXLOCAL_ADJUST_HOST_SEG
2934#endif
2935
2936 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2937 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2938 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2939 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2940 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2941 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2942 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2943 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2944 Assert(uSelCS);
2945 Assert(uSelTR);
2946
2947 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2948#if 0
2949 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE))
2950 Assert(uSelSS != 0);
2951#endif
2952
2953 /* Write these host selector fields into the host-state area in the VMCS. */
2954 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2955 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2956#if HC_ARCH_BITS == 64
2957 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2958 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2959 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2960 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2961#else
2962 NOREF(uSelDS);
2963 NOREF(uSelES);
2964 NOREF(uSelFS);
2965 NOREF(uSelGS);
2966#endif
2967 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2968 AssertRCReturn(rc, rc);
2969
2970 /*
2971 * Host GDTR and IDTR.
2972 */
2973 RTGDTR Gdtr;
2974 RTIDTR Idtr;
2975 RT_ZERO(Gdtr);
2976 RT_ZERO(Idtr);
2977 ASMGetGDTR(&Gdtr);
2978 ASMGetIDTR(&Idtr);
2979 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
2980 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
2981 AssertRCReturn(rc, rc);
2982
2983#if HC_ARCH_BITS == 64
2984 /*
2985 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
2986 * them to the maximum limit (0xffff) on every VM-exit.
2987 */
2988 if (Gdtr.cbGdt != 0xffff)
2989 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
2990
2991 /*
2992 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
2993 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
2994 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
2995 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
2996 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
2997 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
2998 * at 0xffff on hosts where we are sure it won't cause trouble.
2999 */
3000# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3001 if (Idtr.cbIdt < 0x0fff)
3002# else
3003 if (Idtr.cbIdt != 0xffff)
3004# endif
3005 {
3006 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3007 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3008 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3009 }
3010#endif
3011
3012 /*
3013 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
3014 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
3015 * RPL should be too in most cases.
3016 */
3017 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3018 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
3019
3020 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3021#if HC_ARCH_BITS == 64
3022 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3023
3024 /*
3025 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
3026 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
3027 * restoration if the host has something else. Task switching is not supported in 64-bit
3028 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
3029 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3030 *
3031 * [1] See Intel spec. 3.5 "System Descriptor Types".
3032 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3033 */
3034 PVM pVM = pVCpu->CTX_SUFF(pVM);
3035 Assert(pDesc->System.u4Type == 11);
3036 if ( pDesc->System.u16LimitLow != 0x67
3037 || pDesc->System.u4LimitHigh)
3038 {
3039 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3040 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3041 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3042 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3043 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3044 }
3045
3046 /*
3047 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
3048 */
3049 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
3050 {
3051 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3052 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3053 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
3054 {
3055 /* The GDT is read-only but the writable GDT is available. */
3056 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
3057 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
3058 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
3059 AssertRCReturn(rc, rc);
3060 }
3061 }
3062#else
3063 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3064#endif
3065 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3066 AssertRCReturn(rc, rc);
3067
3068 /*
3069 * Host FS base and GS base.
3070 */
3071#if HC_ARCH_BITS == 64
3072 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3073 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3074 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3075 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3076 AssertRCReturn(rc, rc);
3077
3078 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3079 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3080 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3081 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3082 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3083#endif
3084 return VINF_SUCCESS;
3085}
3086
3087
3088/**
3089 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
3090 * host-state area of the VMCS.
3091 *
3092 * Theses MSRs will be automatically restored on the host after every successful
3093 * VM-exit.
3094 *
3095 * @returns VBox status code.
3096 * @param pVCpu The cross context virtual CPU structure.
3097 *
3098 * @remarks No-long-jump zone!!!
3099 */
3100static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
3101{
3102 AssertPtr(pVCpu);
3103 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3104
3105 /*
3106 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3107 * rather than swapping them on every VM-entry.
3108 */
3109 hmR0VmxLazySaveHostMsrs(pVCpu);
3110
3111 /*
3112 * Host Sysenter MSRs.
3113 */
3114 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3115#if HC_ARCH_BITS == 32
3116 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3117 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3118#else
3119 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3120 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3121#endif
3122 AssertRCReturn(rc, rc);
3123
3124 /*
3125 * Host EFER MSR.
3126 *
3127 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
3128 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
3129 */
3130 PVM pVM = pVCpu->CTX_SUFF(pVM);
3131 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3132 {
3133 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3134 AssertRCReturn(rc, rc);
3135 }
3136
3137 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see hmR0VmxExportGuestExitCtls(). */
3138
3139 return VINF_SUCCESS;
3140}
3141
3142
3143/**
3144 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3145 *
3146 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3147 * these two bits are handled by VM-entry, see hmR0VmxExportGuestExitCtls() and
3148 * hmR0VMxExportGuestEntryCtls().
3149 *
3150 * @returns true if we need to load guest EFER, false otherwise.
3151 * @param pVCpu The cross context virtual CPU structure.
3152 *
3153 * @remarks Requires EFER, CR4.
3154 * @remarks No-long-jump zone!!!
3155 */
3156static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
3157{
3158#ifdef HMVMX_ALWAYS_SWAP_EFER
3159 return true;
3160#endif
3161
3162 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3163#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3164 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3165 if (CPUMIsGuestInLongModeEx(pCtx))
3166 return false;
3167#endif
3168
3169 PVM pVM = pVCpu->CTX_SUFF(pVM);
3170 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3171 uint64_t const u64GuestEfer = pCtx->msrEFER;
3172
3173 /*
3174 * For 64-bit guests, if EFER.SCE bit differs, we need to swap EFER to ensure that the
3175 * guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
3176 */
3177 if ( CPUMIsGuestInLongModeEx(pCtx)
3178 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3179 {
3180 return true;
3181 }
3182
3183 /*
3184 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3185 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3186 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3187 */
3188 if ( (pCtx->cr4 & X86_CR4_PAE)
3189 && (pCtx->cr0 & X86_CR0_PG)
3190 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3191 {
3192 /* Assert that host is NX capable. */
3193 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
3194 return true;
3195 }
3196
3197 return false;
3198}
3199
3200
3201/**
3202 * Exports the guest state with appropriate VM-entry controls in the VMCS.
3203 *
3204 * These controls can affect things done on VM-exit; e.g. "load debug controls",
3205 * see Intel spec. 24.8.1 "VM-entry controls".
3206 *
3207 * @returns VBox status code.
3208 * @param pVCpu The cross context virtual CPU structure.
3209 *
3210 * @remarks Requires EFER.
3211 * @remarks No-long-jump zone!!!
3212 */
3213static int hmR0VmxExportGuestEntryCtls(PVMCPU pVCpu)
3214{
3215 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_CTLS)
3216 {
3217 PVM pVM = pVCpu->CTX_SUFF(pVM);
3218 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3219 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3220
3221 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3222 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
3223
3224 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3225 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
3226 {
3227 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
3228 Log4Func(("VMX_ENTRY_CTLS_IA32E_MODE_GUEST\n"));
3229 }
3230 else
3231 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
3232
3233 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3234 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3235 && hmR0VmxShouldSwapEferMsr(pVCpu))
3236 {
3237 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
3238 Log4Func(("VMX_ENTRY_CTLS_LOAD_EFER_MSR\n"));
3239 }
3240
3241 /*
3242 * The following should -not- be set (since we're not in SMM mode):
3243 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
3244 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
3245 */
3246
3247 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
3248 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
3249
3250 if ((fVal & fZap) != fVal)
3251 {
3252 Log4Func(("Invalid VM-entry controls combo! Cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3253 pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0, fVal, fZap));
3254 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3255 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3256 }
3257
3258 /* Commit it to the VMCS and update our cache. */
3259 if (pVCpu->hm.s.vmx.u32EntryCtls != fVal)
3260 {
3261 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
3262 AssertRCReturn(rc, rc);
3263 pVCpu->hm.s.vmx.u32EntryCtls = fVal;
3264 }
3265
3266 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_CTLS);
3267 }
3268 return VINF_SUCCESS;
3269}
3270
3271
3272/**
3273 * Exports the guest state with appropriate VM-exit controls in the VMCS.
3274 *
3275 * @returns VBox status code.
3276 * @param pVCpu The cross context virtual CPU structure.
3277 *
3278 * @remarks Requires EFER.
3279 */
3280static int hmR0VmxExportGuestExitCtls(PVMCPU pVCpu)
3281{
3282 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_EXIT_CTLS)
3283 {
3284 PVM pVM = pVCpu->CTX_SUFF(pVM);
3285 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3286 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3287
3288 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3289 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
3290
3291 /*
3292 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3293 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in
3294 * hmR0VmxExportHostMsrs().
3295 */
3296#if HC_ARCH_BITS == 64
3297 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3298 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3299#else
3300 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3301 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3302 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3303 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3304 {
3305 /* The switcher returns to long mode, EFER is managed by the switcher. */
3306 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3307 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3308 }
3309 else
3310 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
3311#endif
3312
3313 /* If the newer VMCS fields for managing EFER exists, use it. */
3314 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3315 && hmR0VmxShouldSwapEferMsr(pVCpu))
3316 {
3317 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
3318 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
3319 Log4Func(("VMX_EXIT_CTLS_SAVE_EFER_MSR and VMX_EXIT_CTLS_LOAD_EFER_MSR\n"));
3320 }
3321
3322 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3323 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
3324
3325 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
3326 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
3327 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
3328
3329 /* Enable saving of the VMX preemption timer value on VM-exit. */
3330 if ( pVM->hm.s.vmx.fUsePreemptTimer
3331 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER))
3332 fVal |= VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER;
3333
3334 if ((fVal & fZap) != fVal)
3335 {
3336 LogRelFunc(("Invalid VM-exit controls combo! cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3337 pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0, fVal, fZap));
3338 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3339 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3340 }
3341
3342 /* Commit it to the VMCS and update our cache. */
3343 if (pVCpu->hm.s.vmx.u32ExitCtls != fVal)
3344 {
3345 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
3346 AssertRCReturn(rc, rc);
3347 pVCpu->hm.s.vmx.u32ExitCtls = fVal;
3348 }
3349
3350 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_EXIT_CTLS);
3351 }
3352 return VINF_SUCCESS;
3353}
3354
3355
3356/**
3357 * Sets the TPR threshold in the VMCS.
3358 *
3359 * @returns VBox status code.
3360 * @param pVCpu The cross context virtual CPU structure.
3361 * @param u32TprThreshold The TPR threshold (task-priority class only).
3362 */
3363DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3364{
3365 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3366 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3367 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3368}
3369
3370
3371/**
3372 * Exports the guest APIC TPR state into the VMCS.
3373 *
3374 * @returns VBox status code.
3375 * @param pVCpu The cross context virtual CPU structure.
3376 *
3377 * @remarks No-long-jump zone!!!
3378 */
3379static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu)
3380{
3381 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
3382 {
3383 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
3384
3385 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3386 && APICIsEnabled(pVCpu))
3387 {
3388 /*
3389 * Setup TPR shadowing.
3390 */
3391 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3392 {
3393 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3394
3395 bool fPendingIntr = false;
3396 uint8_t u8Tpr = 0;
3397 uint8_t u8PendingIntr = 0;
3398 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3399 AssertRCReturn(rc, rc);
3400
3401 /*
3402 * If there are interrupts pending but masked by the TPR, instruct VT-x to
3403 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
3404 * priority of the pending interrupt so we can deliver the interrupt. If there
3405 * are no interrupts pending, set threshold to 0 to not cause any
3406 * TPR-below-threshold VM-exits.
3407 */
3408 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3409 uint32_t u32TprThreshold = 0;
3410 if (fPendingIntr)
3411 {
3412 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3413 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3414 const uint8_t u8TprPriority = u8Tpr >> 4;
3415 if (u8PendingPriority <= u8TprPriority)
3416 u32TprThreshold = u8PendingPriority;
3417 }
3418
3419 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3420 AssertRCReturn(rc, rc);
3421 }
3422 }
3423 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
3424 }
3425 return VINF_SUCCESS;
3426}
3427
3428
3429/**
3430 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3431 *
3432 * @returns Guest's interruptibility-state.
3433 * @param pVCpu The cross context virtual CPU structure.
3434 *
3435 * @remarks No-long-jump zone!!!
3436 */
3437static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu)
3438{
3439 /*
3440 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3441 */
3442 uint32_t fIntrState = 0;
3443 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3444 {
3445 /* If inhibition is active, RIP & RFLAGS should've been accessed
3446 (i.e. read previously from the VMCS or from ring-3). */
3447 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3448#ifdef VBOX_STRICT
3449 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
3450 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
3451#endif
3452 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3453 {
3454 if (pCtx->eflags.Bits.u1IF)
3455 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
3456 else
3457 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
3458 }
3459 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3460 {
3461 /*
3462 * We can clear the inhibit force flag as even if we go back to the recompiler
3463 * without executing guest code in VT-x, the flag's condition to be cleared is
3464 * met and thus the cleared state is correct.
3465 */
3466 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3467 }
3468 }
3469
3470 /*
3471 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3472 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3473 * setting this would block host-NMIs and IRET will not clear the blocking.
3474 *
3475 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3476 */
3477 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3478 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3479 {
3480 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
3481 }
3482
3483 return fIntrState;
3484}
3485
3486
3487/**
3488 * Exports the guest's interruptibility-state into the guest-state area in the
3489 * VMCS.
3490 *
3491 * @returns VBox status code.
3492 * @param pVCpu The cross context virtual CPU structure.
3493 * @param fIntrState The interruptibility-state to set.
3494 */
3495static int hmR0VmxExportGuestIntrState(PVMCPU pVCpu, uint32_t fIntrState)
3496{
3497 NOREF(pVCpu);
3498 AssertMsg(!(fIntrState & 0xfffffff0), ("%#x\n", fIntrState)); /* Bits 31:4 MBZ. */
3499 Assert((fIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3500 return VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
3501}
3502
3503
3504/**
3505 * Exports the exception intercepts required for guest execution in the VMCS.
3506 *
3507 * @returns VBox status code.
3508 * @param pVCpu The cross context virtual CPU structure.
3509 *
3510 * @remarks No-long-jump zone!!!
3511 */
3512static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu)
3513{
3514 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
3515 {
3516 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3517
3518 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxExportSharedCR0(). */
3519 if (pVCpu->hm.s.fGIMTrapXcptUD)
3520 uXcptBitmap |= RT_BIT(X86_XCPT_UD);
3521#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3522 else
3523 uXcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3524#endif
3525
3526 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_AC));
3527 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_DB));
3528
3529 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3530 {
3531 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3532 AssertRCReturn(rc, rc);
3533 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3534 }
3535
3536 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
3537 Log4Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64\n", uXcptBitmap));
3538 }
3539 return VINF_SUCCESS;
3540}
3541
3542
3543/**
3544 * Exports the guest's RIP into the guest-state area in the VMCS.
3545 *
3546 * @returns VBox status code.
3547 * @param pVCpu The cross context virtual CPU structure.
3548 *
3549 * @remarks No-long-jump zone!!!
3550 */
3551static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
3552{
3553 int rc = VINF_SUCCESS;
3554 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
3555 {
3556 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
3557
3558 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
3559 AssertRCReturn(rc, rc);
3560
3561 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
3562 Log4Func(("RIP=%#RX64\n", pVCpu->cpum.GstCtx.rip));
3563 }
3564 return rc;
3565}
3566
3567
3568/**
3569 * Exports the guest's RSP into the guest-state area in the VMCS.
3570 *
3571 * @returns VBox status code.
3572 * @param pVCpu The cross context virtual CPU structure.
3573 *
3574 * @remarks No-long-jump zone!!!
3575 */
3576static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
3577{
3578 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
3579 {
3580 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
3581
3582 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
3583 AssertRCReturn(rc, rc);
3584
3585 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
3586 }
3587 return VINF_SUCCESS;
3588}
3589
3590
3591/**
3592 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
3593 *
3594 * @returns VBox status code.
3595 * @param pVCpu The cross context virtual CPU structure.
3596 *
3597 * @remarks No-long-jump zone!!!
3598 */
3599static int hmR0VmxExportGuestRflags(PVMCPU pVCpu)
3600{
3601 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
3602 {
3603 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
3604
3605 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3606 Let us assert it as such and use 32-bit VMWRITE. */
3607 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
3608 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
3609 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
3610 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3611
3612 /*
3613 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
3614 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
3615 * can run the real-mode guest code under Virtual 8086 mode.
3616 */
3617 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3618 {
3619 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3620 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3621 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
3622 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3623 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3624 }
3625
3626 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
3627 AssertRCReturn(rc, rc);
3628
3629 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
3630 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
3631 }
3632 return VINF_SUCCESS;
3633}
3634
3635
3636/**
3637 * Exports the guest CR0 control register into the guest-state area in the VMCS.
3638 *
3639 * The guest FPU state is always pre-loaded hence we don't need to bother about
3640 * sharing FPU related CR0 bits between the guest and host.
3641 *
3642 * @returns VBox status code.
3643 * @param pVCpu The cross context virtual CPU structure.
3644 *
3645 * @remarks No-long-jump zone!!!
3646 */
3647static int hmR0VmxExportGuestCR0(PVMCPU pVCpu)
3648{
3649 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
3650 {
3651 PVM pVM = pVCpu->CTX_SUFF(pVM);
3652 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3653 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.cr0));
3654
3655 uint32_t const u32ShadowCr0 = pVCpu->cpum.GstCtx.cr0;
3656 uint32_t u32GuestCr0 = pVCpu->cpum.GstCtx.cr0;
3657
3658 /*
3659 * Setup VT-x's view of the guest CR0.
3660 * Minimize VM-exits due to CR3 changes when we have NestedPaging.
3661 */
3662 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
3663 if (pVM->hm.s.fNestedPaging)
3664 {
3665 if (CPUMIsGuestPagingEnabled(pVCpu))
3666 {
3667 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3668 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
3669 | VMX_PROC_CTLS_CR3_STORE_EXIT);
3670 }
3671 else
3672 {
3673 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3674 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
3675 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3676 }
3677
3678 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3679 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3680 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
3681 }
3682 else
3683 {
3684 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3685 u32GuestCr0 |= X86_CR0_WP;
3686 }
3687
3688 /*
3689 * Guest FPU bits.
3690 *
3691 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
3692 * using CR0.TS.
3693 *
3694 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
3695 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3696 */
3697 u32GuestCr0 |= X86_CR0_NE;
3698
3699 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
3700 bool const fInterceptMF = !(u32ShadowCr0 & X86_CR0_NE);
3701
3702 /*
3703 * Update exception intercepts.
3704 */
3705 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3706 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3707 {
3708 Assert(PDMVmmDevHeapIsEnabled(pVM));
3709 Assert(pVM->hm.s.vmx.pRealModeTSS);
3710 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3711 }
3712 else
3713 {
3714 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3715 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3716 if (fInterceptMF)
3717 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
3718 }
3719
3720 /* Additional intercepts for debugging, define these yourself explicitly. */
3721#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3722 uXcptBitmap |= 0
3723 | RT_BIT(X86_XCPT_BP)
3724 | RT_BIT(X86_XCPT_DE)
3725 | RT_BIT(X86_XCPT_NM)
3726 | RT_BIT(X86_XCPT_TS)
3727 | RT_BIT(X86_XCPT_UD)
3728 | RT_BIT(X86_XCPT_NP)
3729 | RT_BIT(X86_XCPT_SS)
3730 | RT_BIT(X86_XCPT_GP)
3731 | RT_BIT(X86_XCPT_PF)
3732 | RT_BIT(X86_XCPT_MF)
3733 ;
3734#elif defined(HMVMX_ALWAYS_TRAP_PF)
3735 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
3736#endif
3737 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
3738
3739 /*
3740 * Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW).
3741 */
3742 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3743 uint32_t fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3744 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3745 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
3746 else
3747 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3748
3749 u32GuestCr0 |= fSetCr0;
3750 u32GuestCr0 &= fZapCr0;
3751 u32GuestCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3752
3753 /*
3754 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3755 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3756 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3757 */
3758 uint32_t u32Cr0Mask = X86_CR0_PE
3759 | X86_CR0_NE
3760 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
3761 | X86_CR0_PG
3762 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3763 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3764 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3765
3766 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3767 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3768 * and @bugref{6944}. */
3769#if 0
3770 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3771 u32Cr0Mask &= ~X86_CR0_PE;
3772#endif
3773 /*
3774 * Finally, update VMCS fields with the CR0 values and the exception bitmap.
3775 */
3776 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCr0);
3777 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32ShadowCr0);
3778 if (u32Cr0Mask != pVCpu->hm.s.vmx.u32Cr0Mask)
3779 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32Cr0Mask);
3780 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
3781 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
3782 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3783 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3784 AssertRCReturn(rc, rc);
3785
3786 /* Update our caches. */
3787 pVCpu->hm.s.vmx.u32Cr0Mask = u32Cr0Mask;
3788 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
3789 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3790
3791 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
3792
3793 Log4Func(("u32Cr0Mask=%#RX32 u32ShadowCr0=%#RX32 u32GuestCr0=%#RX32 (fSetCr0=%#RX32 fZapCr0=%#RX32\n", u32Cr0Mask,
3794 u32ShadowCr0, u32GuestCr0, fSetCr0, fZapCr0));
3795 }
3796
3797 return VINF_SUCCESS;
3798}
3799
3800
3801/**
3802 * Exports the guest control registers (CR3, CR4) into the guest-state area
3803 * in the VMCS.
3804 *
3805 * @returns VBox strict status code.
3806 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3807 * without unrestricted guest access and the VMMDev is not presently
3808 * mapped (e.g. EFI32).
3809 *
3810 * @param pVCpu The cross context virtual CPU structure.
3811 *
3812 * @remarks No-long-jump zone!!!
3813 */
3814static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu)
3815{
3816 int rc = VINF_SUCCESS;
3817 PVM pVM = pVCpu->CTX_SUFF(pVM);
3818
3819 /*
3820 * Guest CR2.
3821 * It's always loaded in the assembler code. Nothing to do here.
3822 */
3823
3824 /*
3825 * Guest CR3.
3826 */
3827 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
3828 {
3829 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3830
3831 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3832 if (pVM->hm.s.fNestedPaging)
3833 {
3834 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3835
3836 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3837 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3838 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3839 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3840
3841 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3842 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3843 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3844
3845 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3846 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3847 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3848 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3849 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3850 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3851 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3852
3853 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3854 AssertRCReturn(rc, rc);
3855
3856 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3857 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3858 || CPUMIsGuestPagingEnabledEx(pCtx))
3859 {
3860 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3861 if (CPUMIsGuestInPAEModeEx(pCtx))
3862 {
3863 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3864 AssertRCReturn(rc, rc);
3865 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3866 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3867 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3868 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3869 AssertRCReturn(rc, rc);
3870 }
3871
3872 /*
3873 * The guest's view of its CR3 is unblemished with Nested Paging when the
3874 * guest is using paging or we have unrestricted guest execution to handle
3875 * the guest when it's not using paging.
3876 */
3877 GCPhysGuestCR3 = pCtx->cr3;
3878 }
3879 else
3880 {
3881 /*
3882 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
3883 * thinks it accesses physical memory directly, we use our identity-mapped
3884 * page table to map guest-linear to guest-physical addresses. EPT takes care
3885 * of translating it to host-physical addresses.
3886 */
3887 RTGCPHYS GCPhys;
3888 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3889
3890 /* We obtain it here every time as the guest could have relocated this PCI region. */
3891 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3892 if (RT_SUCCESS(rc))
3893 { /* likely */ }
3894 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3895 {
3896 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
3897 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3898 }
3899 else
3900 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3901
3902 GCPhysGuestCR3 = GCPhys;
3903 }
3904
3905 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
3906 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3907 AssertRCReturn(rc, rc);
3908 }
3909 else
3910 {
3911 /* Non-nested paging case, just use the hypervisor's CR3. */
3912 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3913
3914 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
3915 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3916 AssertRCReturn(rc, rc);
3917 }
3918
3919 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
3920 }
3921
3922 /*
3923 * Guest CR4.
3924 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3925 */
3926 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
3927 {
3928 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3929 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3930 Assert(!RT_HI_U32(pCtx->cr4));
3931
3932 uint32_t u32GuestCr4 = pCtx->cr4;
3933 uint32_t const u32ShadowCr4 = pCtx->cr4;
3934
3935 /*
3936 * Setup VT-x's view of the guest CR4.
3937 *
3938 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
3939 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
3940 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3941 *
3942 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3943 */
3944 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3945 {
3946 Assert(pVM->hm.s.vmx.pRealModeTSS);
3947 Assert(PDMVmmDevHeapIsEnabled(pVM));
3948 u32GuestCr4 &= ~X86_CR4_VME;
3949 }
3950
3951 if (pVM->hm.s.fNestedPaging)
3952 {
3953 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
3954 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3955 {
3956 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3957 u32GuestCr4 |= X86_CR4_PSE;
3958 /* Our identity mapping is a 32-bit page directory. */
3959 u32GuestCr4 &= ~X86_CR4_PAE;
3960 }
3961 /* else use guest CR4.*/
3962 }
3963 else
3964 {
3965 /*
3966 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3967 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3968 */
3969 switch (pVCpu->hm.s.enmShadowMode)
3970 {
3971 case PGMMODE_REAL: /* Real-mode. */
3972 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3973 case PGMMODE_32_BIT: /* 32-bit paging. */
3974 {
3975 u32GuestCr4 &= ~X86_CR4_PAE;
3976 break;
3977 }
3978
3979 case PGMMODE_PAE: /* PAE paging. */
3980 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3981 {
3982 u32GuestCr4 |= X86_CR4_PAE;
3983 break;
3984 }
3985
3986 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
3987 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
3988#ifdef VBOX_ENABLE_64_BITS_GUESTS
3989 break;
3990#endif
3991 default:
3992 AssertFailed();
3993 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
3994 }
3995 }
3996
3997 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
3998 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
3999 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4000 u32GuestCr4 |= fSetCr4;
4001 u32GuestCr4 &= fZapCr4;
4002
4003 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them,
4004 that would cause a VM-exit. */
4005 uint32_t u32Cr4Mask = X86_CR4_VME
4006 | X86_CR4_PAE
4007 | X86_CR4_PGE
4008 | X86_CR4_PSE
4009 | X86_CR4_VMXE;
4010 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4011 u32Cr4Mask |= X86_CR4_OSXSAVE;
4012 if (pVM->cpum.ro.GuestFeatures.fPcid)
4013 u32Cr4Mask |= X86_CR4_PCIDE;
4014
4015 /* Write VT-x's view of the guest CR4, the CR4 modify mask and the read-only CR4 shadow
4016 into the VMCS and update our cache. */
4017 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCr4);
4018 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32ShadowCr4);
4019 if (pVCpu->hm.s.vmx.u32Cr4Mask != u32Cr4Mask)
4020 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32Cr4Mask);
4021 AssertRCReturn(rc, rc);
4022 pVCpu->hm.s.vmx.u32Cr4Mask = u32Cr4Mask;
4023
4024 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4025 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4026
4027 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
4028
4029 Log4Func(("u32GuestCr4=%#RX32 u32ShadowCr4=%#RX32 (fSetCr4=%#RX32 fZapCr4=%#RX32)\n", u32GuestCr4, u32ShadowCr4, fSetCr4,
4030 fZapCr4));
4031 }
4032 return rc;
4033}
4034
4035
4036/**
4037 * Exports the guest debug registers into the guest-state area in the VMCS.
4038 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4039 *
4040 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4041 *
4042 * @returns VBox status code.
4043 * @param pVCpu The cross context virtual CPU structure.
4044 *
4045 * @remarks No-long-jump zone!!!
4046 */
4047static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu)
4048{
4049 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4050
4051#ifdef VBOX_STRICT
4052 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4053 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4054 {
4055 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4056 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
4057 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
4058 }
4059#endif
4060
4061 bool fSteppingDB = false;
4062 bool fInterceptMovDRx = false;
4063 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
4064 if (pVCpu->hm.s.fSingleInstruction)
4065 {
4066 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4067 PVM pVM = pVCpu->CTX_SUFF(pVM);
4068 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
4069 {
4070 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
4071 Assert(fSteppingDB == false);
4072 }
4073 else
4074 {
4075 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
4076 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
4077 pVCpu->hm.s.fClearTrapFlag = true;
4078 fSteppingDB = true;
4079 }
4080 }
4081
4082 uint32_t u32GuestDr7;
4083 if ( fSteppingDB
4084 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4085 {
4086 /*
4087 * Use the combined guest and host DRx values found in the hypervisor register set
4088 * because the debugger has breakpoints active or someone is single stepping on the
4089 * host side without a monitor trap flag.
4090 *
4091 * Note! DBGF expects a clean DR6 state before executing guest code.
4092 */
4093#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4094 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4095 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4096 {
4097 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4098 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4099 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4100 }
4101 else
4102#endif
4103 if (!CPUMIsHyperDebugStateActive(pVCpu))
4104 {
4105 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4106 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4107 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4108 }
4109
4110 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
4111 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
4112 pVCpu->hm.s.fUsingHyperDR7 = true;
4113 fInterceptMovDRx = true;
4114 }
4115 else
4116 {
4117 /*
4118 * If the guest has enabled debug registers, we need to load them prior to
4119 * executing guest code so they'll trigger at the right time.
4120 */
4121 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
4122 {
4123#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4124 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4125 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4126 {
4127 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4128 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4129 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4130 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4131 }
4132 else
4133#endif
4134 if (!CPUMIsGuestDebugStateActive(pVCpu))
4135 {
4136 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4137 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4138 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4139 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4140 }
4141 Assert(!fInterceptMovDRx);
4142 }
4143 /*
4144 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4145 * must intercept #DB in order to maintain a correct DR6 guest value, and
4146 * because we need to intercept it to prevent nested #DBs from hanging the
4147 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4148 */
4149#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4150 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4151 && !CPUMIsGuestDebugStateActive(pVCpu))
4152#else
4153 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4154#endif
4155 {
4156 fInterceptMovDRx = true;
4157 }
4158
4159 /* Update DR7 with the actual guest value. */
4160 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
4161 pVCpu->hm.s.fUsingHyperDR7 = false;
4162 }
4163
4164 if (fInterceptMovDRx)
4165 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
4166 else
4167 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
4168
4169 /*
4170 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
4171 * monitor-trap flag and update our cache.
4172 */
4173 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
4174 {
4175 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4176 AssertRCReturn(rc2, rc2);
4177 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
4178 }
4179
4180 /*
4181 * Update guest DR7.
4182 */
4183 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
4184 AssertRCReturn(rc, rc);
4185
4186 return VINF_SUCCESS;
4187}
4188
4189
4190#ifdef VBOX_STRICT
4191/**
4192 * Strict function to validate segment registers.
4193 *
4194 * @param pVCpu The cross context virtual CPU structure.
4195 *
4196 * @remarks Will import guest CR0 on strict builds during validation of
4197 * segments.
4198 */
4199static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu)
4200{
4201 /*
4202 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4203 *
4204 * The reason we check for attribute value 0 in this function and not just the unusable bit is
4205 * because hmR0VmxExportGuestSegmentReg() only updates the VMCS' copy of the value with the unusable bit
4206 * and doesn't change the guest-context value.
4207 */
4208 PVM pVM = pVCpu->CTX_SUFF(pVM);
4209 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4210 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
4211 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4212 && ( !CPUMIsGuestInRealModeEx(pCtx)
4213 && !CPUMIsGuestInV86ModeEx(pCtx)))
4214 {
4215 /* Protected mode checks */
4216 /* CS */
4217 Assert(pCtx->cs.Attr.n.u1Present);
4218 Assert(!(pCtx->cs.Attr.u & 0xf00));
4219 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4220 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4221 || !(pCtx->cs.Attr.n.u1Granularity));
4222 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4223 || (pCtx->cs.Attr.n.u1Granularity));
4224 /* CS cannot be loaded with NULL in protected mode. */
4225 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4226 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4227 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4228 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4229 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4230 else
4231 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4232 /* SS */
4233 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4234 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4235 if ( !(pCtx->cr0 & X86_CR0_PE)
4236 || pCtx->cs.Attr.n.u4Type == 3)
4237 {
4238 Assert(!pCtx->ss.Attr.n.u2Dpl);
4239 }
4240 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4241 {
4242 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4243 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4244 Assert(pCtx->ss.Attr.n.u1Present);
4245 Assert(!(pCtx->ss.Attr.u & 0xf00));
4246 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4247 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4248 || !(pCtx->ss.Attr.n.u1Granularity));
4249 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4250 || (pCtx->ss.Attr.n.u1Granularity));
4251 }
4252 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmentReg(). */
4253 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4254 {
4255 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4256 Assert(pCtx->ds.Attr.n.u1Present);
4257 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4258 Assert(!(pCtx->ds.Attr.u & 0xf00));
4259 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4260 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4261 || !(pCtx->ds.Attr.n.u1Granularity));
4262 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4263 || (pCtx->ds.Attr.n.u1Granularity));
4264 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4265 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4266 }
4267 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4268 {
4269 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4270 Assert(pCtx->es.Attr.n.u1Present);
4271 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4272 Assert(!(pCtx->es.Attr.u & 0xf00));
4273 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4274 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4275 || !(pCtx->es.Attr.n.u1Granularity));
4276 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4277 || (pCtx->es.Attr.n.u1Granularity));
4278 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4279 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4280 }
4281 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4282 {
4283 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4284 Assert(pCtx->fs.Attr.n.u1Present);
4285 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4286 Assert(!(pCtx->fs.Attr.u & 0xf00));
4287 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4288 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4289 || !(pCtx->fs.Attr.n.u1Granularity));
4290 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4291 || (pCtx->fs.Attr.n.u1Granularity));
4292 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4293 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4294 }
4295 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4296 {
4297 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4298 Assert(pCtx->gs.Attr.n.u1Present);
4299 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4300 Assert(!(pCtx->gs.Attr.u & 0xf00));
4301 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4302 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4303 || !(pCtx->gs.Attr.n.u1Granularity));
4304 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4305 || (pCtx->gs.Attr.n.u1Granularity));
4306 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4307 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4308 }
4309 /* 64-bit capable CPUs. */
4310# if HC_ARCH_BITS == 64
4311 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4312 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
4313 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
4314 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
4315# endif
4316 }
4317 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4318 || ( CPUMIsGuestInRealModeEx(pCtx)
4319 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4320 {
4321 /* Real and v86 mode checks. */
4322 /* hmR0VmxExportGuestSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4323 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4324 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4325 {
4326 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4327 }
4328 else
4329 {
4330 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4331 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4332 }
4333
4334 /* CS */
4335 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4336 Assert(pCtx->cs.u32Limit == 0xffff);
4337 Assert(u32CSAttr == 0xf3);
4338 /* SS */
4339 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4340 Assert(pCtx->ss.u32Limit == 0xffff);
4341 Assert(u32SSAttr == 0xf3);
4342 /* DS */
4343 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4344 Assert(pCtx->ds.u32Limit == 0xffff);
4345 Assert(u32DSAttr == 0xf3);
4346 /* ES */
4347 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4348 Assert(pCtx->es.u32Limit == 0xffff);
4349 Assert(u32ESAttr == 0xf3);
4350 /* FS */
4351 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4352 Assert(pCtx->fs.u32Limit == 0xffff);
4353 Assert(u32FSAttr == 0xf3);
4354 /* GS */
4355 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4356 Assert(pCtx->gs.u32Limit == 0xffff);
4357 Assert(u32GSAttr == 0xf3);
4358 /* 64-bit capable CPUs. */
4359# if HC_ARCH_BITS == 64
4360 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4361 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
4362 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
4363 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
4364# endif
4365 }
4366}
4367#endif /* VBOX_STRICT */
4368
4369
4370/**
4371 * Exports a guest segment register into the guest-state area in the VMCS.
4372 *
4373 * @returns VBox status code.
4374 * @param pVCpu The cross context virtual CPU structure.
4375 * @param idxSel Index of the selector in the VMCS.
4376 * @param idxLimit Index of the segment limit in the VMCS.
4377 * @param idxBase Index of the segment base in the VMCS.
4378 * @param idxAccess Index of the access rights of the segment in the VMCS.
4379 * @param pSelReg Pointer to the segment selector.
4380 *
4381 * @remarks No-long-jump zone!!!
4382 */
4383static int hmR0VmxExportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
4384 PCCPUMSELREG pSelReg)
4385{
4386 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4387 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4388 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4389 AssertRCReturn(rc, rc);
4390
4391 uint32_t u32Access = pSelReg->Attr.u;
4392 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4393 {
4394 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4395 u32Access = 0xf3;
4396 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4397 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4398 }
4399 else
4400 {
4401 /*
4402 * The way to differentiate between whether this is really a null selector or was just
4403 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
4404 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
4405 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
4406 * NULL selectors loaded in protected-mode have their attribute as 0.
4407 */
4408 if (!u32Access)
4409 u32Access = X86DESCATTR_UNUSABLE;
4410 }
4411
4412 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4413 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4414 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4415
4416 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4417 AssertRCReturn(rc, rc);
4418 return rc;
4419}
4420
4421
4422/**
4423 * Exports the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4424 * into the guest-state area in the VMCS.
4425 *
4426 * @returns VBox status code.
4427 * @param pVCpu The cross context virtual CPU structure.
4428 *
4429 * @remarks Will import guest CR0 on strict builds during validation of
4430 * segments.
4431 * @remarks No-long-jump zone!!!
4432 */
4433static int hmR0VmxExportGuestSegmentRegs(PVMCPU pVCpu)
4434{
4435 int rc = VERR_INTERNAL_ERROR_5;
4436 PVM pVM = pVCpu->CTX_SUFF(pVM);
4437 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4438
4439 /*
4440 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4441 */
4442 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
4443 {
4444#ifdef VBOX_WITH_REM
4445 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4446 {
4447 Assert(pVM->hm.s.vmx.pRealModeTSS);
4448 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4449 if ( pVCpu->hm.s.vmx.fWasInRealMode
4450 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4451 {
4452 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4453 in real-mode (e.g. OpenBSD 4.0) */
4454 REMFlushTBs(pVM);
4455 Log4Func(("Switch to protected mode detected!\n"));
4456 pVCpu->hm.s.vmx.fWasInRealMode = false;
4457 }
4458 }
4459#endif
4460 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
4461 {
4462 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
4463 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4464 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pCtx->cs.Attr.u;
4465 rc = HMVMX_EXPORT_SREG(CS, &pCtx->cs);
4466 AssertRCReturn(rc, rc);
4467 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
4468 }
4469
4470 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
4471 {
4472 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
4473 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4474 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pCtx->ss.Attr.u;
4475 rc = HMVMX_EXPORT_SREG(SS, &pCtx->ss);
4476 AssertRCReturn(rc, rc);
4477 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
4478 }
4479
4480 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
4481 {
4482 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
4483 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4484 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pCtx->ds.Attr.u;
4485 rc = HMVMX_EXPORT_SREG(DS, &pCtx->ds);
4486 AssertRCReturn(rc, rc);
4487 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
4488 }
4489
4490 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
4491 {
4492 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
4493 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4494 pVCpu->hm.s.vmx.RealMode.AttrES.u = pCtx->es.Attr.u;
4495 rc = HMVMX_EXPORT_SREG(ES, &pCtx->es);
4496 AssertRCReturn(rc, rc);
4497 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
4498 }
4499
4500 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
4501 {
4502 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
4503 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4504 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pCtx->fs.Attr.u;
4505 rc = HMVMX_EXPORT_SREG(FS, &pCtx->fs);
4506 AssertRCReturn(rc, rc);
4507 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
4508 }
4509
4510 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
4511 {
4512 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
4513 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4514 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pCtx->gs.Attr.u;
4515 rc = HMVMX_EXPORT_SREG(GS, &pCtx->gs);
4516 AssertRCReturn(rc, rc);
4517 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
4518 }
4519
4520#ifdef VBOX_STRICT
4521 hmR0VmxValidateSegmentRegs(pVCpu);
4522#endif
4523
4524 Log4Func(("CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pCtx->cs.Sel, pCtx->cs.u64Base,
4525 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
4526 }
4527
4528 /*
4529 * Guest TR.
4530 */
4531 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
4532 {
4533 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
4534
4535 /*
4536 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
4537 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
4538 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4539 */
4540 uint16_t u16Sel = 0;
4541 uint32_t u32Limit = 0;
4542 uint64_t u64Base = 0;
4543 uint32_t u32AccessRights = 0;
4544
4545 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4546 {
4547 u16Sel = pCtx->tr.Sel;
4548 u32Limit = pCtx->tr.u32Limit;
4549 u64Base = pCtx->tr.u64Base;
4550 u32AccessRights = pCtx->tr.Attr.u;
4551 }
4552 else
4553 {
4554 Assert(pVM->hm.s.vmx.pRealModeTSS);
4555 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
4556
4557 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4558 RTGCPHYS GCPhys;
4559 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4560 AssertRCReturn(rc, rc);
4561
4562 X86DESCATTR DescAttr;
4563 DescAttr.u = 0;
4564 DescAttr.n.u1Present = 1;
4565 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4566
4567 u16Sel = 0;
4568 u32Limit = HM_VTX_TSS_SIZE;
4569 u64Base = GCPhys; /* in real-mode phys = virt. */
4570 u32AccessRights = DescAttr.u;
4571 }
4572
4573 /* Validate. */
4574 Assert(!(u16Sel & RT_BIT(2)));
4575 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4576 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4577 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4578 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4579 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4580 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4581 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4582 Assert( (u32Limit & 0xfff) == 0xfff
4583 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4584 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
4585 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4586
4587 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4588 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4589 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4590 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4591 AssertRCReturn(rc, rc);
4592
4593 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
4594 Log4Func(("TR base=%#RX64\n", pCtx->tr.u64Base));
4595 }
4596
4597 /*
4598 * Guest GDTR.
4599 */
4600 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
4601 {
4602 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
4603
4604 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
4605 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
4606 AssertRCReturn(rc, rc);
4607
4608 /* Validate. */
4609 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4610
4611 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
4612 Log4Func(("GDTR base=%#RX64\n", pCtx->gdtr.pGdt));
4613 }
4614
4615 /*
4616 * Guest LDTR.
4617 */
4618 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
4619 {
4620 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
4621
4622 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4623 uint32_t u32Access = 0;
4624 if (!pCtx->ldtr.Attr.u)
4625 u32Access = X86DESCATTR_UNUSABLE;
4626 else
4627 u32Access = pCtx->ldtr.Attr.u;
4628
4629 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
4630 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
4631 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4632 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
4633 AssertRCReturn(rc, rc);
4634
4635 /* Validate. */
4636 if (!(u32Access & X86DESCATTR_UNUSABLE))
4637 {
4638 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4639 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4640 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4641 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4642 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4643 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4644 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
4645 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4646 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
4647 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4648 }
4649
4650 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
4651 Log4Func(("LDTR base=%#RX64\n", pCtx->ldtr.u64Base));
4652 }
4653
4654 /*
4655 * Guest IDTR.
4656 */
4657 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
4658 {
4659 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
4660
4661 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
4662 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
4663 AssertRCReturn(rc, rc);
4664
4665 /* Validate. */
4666 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4667
4668 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
4669 Log4Func(("IDTR base=%#RX64\n", pCtx->idtr.pIdt));
4670 }
4671
4672 return VINF_SUCCESS;
4673}
4674
4675
4676/**
4677 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4678 * areas.
4679 *
4680 * These MSRs will automatically be loaded to the host CPU on every successful
4681 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4682 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4683 * -not- updated here for performance reasons. See hmR0VmxExportHostMsrs().
4684 *
4685 * Also exports the guest sysenter MSRs into the guest-state area in the VMCS.
4686 *
4687 * @returns VBox status code.
4688 * @param pVCpu The cross context virtual CPU structure.
4689 *
4690 * @remarks No-long-jump zone!!!
4691 */
4692static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu)
4693{
4694 AssertPtr(pVCpu);
4695 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4696
4697 /*
4698 * MSRs that we use the auto-load/store MSR area in the VMCS.
4699 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
4700 */
4701 PVM pVM = pVCpu->CTX_SUFF(pVM);
4702 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4703 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
4704 {
4705 if (pVM->hm.s.fAllow64BitGuests)
4706 {
4707#if HC_ARCH_BITS == 32
4708 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
4709
4710 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pCtx->msrLSTAR, false, NULL);
4711 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pCtx->msrSTAR, false, NULL);
4712 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pCtx->msrSFMASK, false, NULL);
4713 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, false, NULL);
4714 AssertRCReturn(rc, rc);
4715# ifdef LOG_ENABLED
4716 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4717 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4718 Log4Func(("MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4719# endif
4720#endif
4721 }
4722 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4723 }
4724
4725 /*
4726 * Guest Sysenter MSRs.
4727 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4728 * VM-exits on WRMSRs for these MSRs.
4729 */
4730 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
4731 {
4732 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4733
4734 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
4735 {
4736 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
4737 AssertRCReturn(rc, rc);
4738 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4739 }
4740
4741 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
4742 {
4743 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
4744 AssertRCReturn(rc, rc);
4745 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4746 }
4747
4748 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
4749 {
4750 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
4751 AssertRCReturn(rc, rc);
4752 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4753 }
4754 }
4755
4756 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
4757 {
4758 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
4759
4760 if (hmR0VmxShouldSwapEferMsr(pVCpu))
4761 {
4762 /*
4763 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4764 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4765 */
4766 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4767 {
4768 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
4769 AssertRCReturn(rc,rc);
4770 Log4Func(("EFER=%#RX64\n", pCtx->msrEFER));
4771 }
4772 else
4773 {
4774 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pCtx->msrEFER, false /* fUpdateHostMsr */,
4775 NULL /* pfAddedAndUpdated */);
4776 AssertRCReturn(rc, rc);
4777
4778 /* We need to intercept reads too, see @bugref{7386#c16}. */
4779 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4780 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4781 Log4Func(("MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", MSR_K6_EFER, pCtx->msrEFER,
4782 pVCpu->hm.s.vmx.cMsrs));
4783 }
4784 }
4785 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4786 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4787 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
4788 }
4789
4790 return VINF_SUCCESS;
4791}
4792
4793
4794#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4795/**
4796 * Check if guest state allows safe use of 32-bit switcher again.
4797 *
4798 * Segment bases and protected mode structures must be 32-bit addressable
4799 * because the 32-bit switcher will ignore high dword when writing these VMCS
4800 * fields. See @bugref{8432} for details.
4801 *
4802 * @returns true if safe, false if must continue to use the 64-bit switcher.
4803 * @param pCtx Pointer to the guest-CPU context.
4804 *
4805 * @remarks No-long-jump zone!!!
4806 */
4807static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
4808{
4809 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
4810 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
4811 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4812 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4813 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
4814 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4815 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
4816 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
4817 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4818 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4819
4820 /* All good, bases are 32-bit. */
4821 return true;
4822}
4823#endif
4824
4825
4826/**
4827 * Selects up the appropriate function to run guest code.
4828 *
4829 * @returns VBox status code.
4830 * @param pVCpu The cross context virtual CPU structure.
4831 *
4832 * @remarks No-long-jump zone!!!
4833 */
4834static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu)
4835{
4836 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4837 if (CPUMIsGuestInLongModeEx(pCtx))
4838 {
4839#ifndef VBOX_ENABLE_64_BITS_GUESTS
4840 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4841#endif
4842 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4843#if HC_ARCH_BITS == 32
4844 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4845 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4846 {
4847#ifdef VBOX_STRICT
4848 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4849 {
4850 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4851 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4852 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4853 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4854 | HM_CHANGED_VMX_ENTRY_CTLS
4855 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4856 }
4857#endif
4858 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4859
4860 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4861 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4862 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4863 Log4Func(("Selected 64-bit switcher\n"));
4864 }
4865#else
4866 /* 64-bit host. */
4867 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4868#endif
4869 }
4870 else
4871 {
4872 /* Guest is not in long mode, use the 32-bit handler. */
4873#if HC_ARCH_BITS == 32
4874 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4875 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4876 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4877 {
4878# ifdef VBOX_STRICT
4879 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4880 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4881 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4882 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4883 | HM_CHANGED_VMX_ENTRY_CTLS
4884 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4885# endif
4886 }
4887# ifdef VBOX_ENABLE_64_BITS_GUESTS
4888 /*
4889 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
4890 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
4891 * switcher flag because now we know the guest is in a sane state where it's safe
4892 * to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4893 * the much faster 32-bit switcher again.
4894 */
4895 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4896 {
4897 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4898 Log4Func(("Selected 32-bit switcher\n"));
4899 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4900 }
4901 else
4902 {
4903 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4904 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4905 || hmR0VmxIs32BitSwitcherSafe(pCtx))
4906 {
4907 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4908 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4909 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
4910 | HM_CHANGED_VMX_ENTRY_CTLS
4911 | HM_CHANGED_VMX_EXIT_CTLS
4912 | HM_CHANGED_HOST_CONTEXT);
4913 Log4Func(("Selected 32-bit switcher (safe)\n"));
4914 }
4915 }
4916# else
4917 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4918# endif
4919#else
4920 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4921#endif
4922 }
4923 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4924 return VINF_SUCCESS;
4925}
4926
4927
4928/**
4929 * Wrapper for running the guest code in VT-x.
4930 *
4931 * @returns VBox status code, no informational status codes.
4932 * @param pVCpu The cross context virtual CPU structure.
4933 *
4934 * @remarks No-long-jump zone!!!
4935 */
4936DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu)
4937{
4938 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4939 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4940 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4941
4942 /*
4943 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4944 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4945 * callee-saved and thus the need for this XMM wrapper.
4946 *
4947 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4948 */
4949 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4950 /** @todo Add stats for resume vs launch. */
4951 PVM pVM = pVCpu->CTX_SUFF(pVM);
4952#ifdef VBOX_WITH_KERNEL_USING_XMM
4953 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4954#else
4955 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4956#endif
4957 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4958 return rc;
4959}
4960
4961
4962/**
4963 * Reports world-switch error and dumps some useful debug info.
4964 *
4965 * @param pVCpu The cross context virtual CPU structure.
4966 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4967 * @param pVmxTransient Pointer to the VMX transient structure (only
4968 * exitReason updated).
4969 */
4970static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
4971{
4972 Assert(pVCpu);
4973 Assert(pVmxTransient);
4974 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
4975
4976 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
4977 switch (rcVMRun)
4978 {
4979 case VERR_VMX_INVALID_VMXON_PTR:
4980 AssertFailed();
4981 break;
4982 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4983 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
4984 {
4985 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
4986 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
4987 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
4988 AssertRC(rc);
4989
4990 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
4991 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
4992 Cannot do it here as we may have been long preempted. */
4993
4994#ifdef VBOX_STRICT
4995 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
4996 pVmxTransient->uExitReason));
4997 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
4998 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
4999 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5000 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5001 else
5002 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5003 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5004 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5005
5006 /* VMX control bits. */
5007 uint32_t u32Val;
5008 uint64_t u64Val;
5009 RTHCUINTREG uHCReg;
5010 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5011 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5012 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5013 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5014 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
5015 {
5016 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5017 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5018 }
5019 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5020 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5021 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5022 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5023 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5024 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5025 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5026 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5027 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5028 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5029 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5030 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5031 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5032 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5033 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5034 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5035 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5036 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5037 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5038 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5039 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5040 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5041 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5042 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5043 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5044 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5045 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5046 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5047 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5048 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5049 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5050 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5051 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5052 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5053 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5054 {
5055 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5056 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5057 }
5058
5059 /* Guest bits. */
5060 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5061 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
5062 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5063 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
5064 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5065 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
5066 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
5067 {
5068 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5069 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5070 }
5071
5072 /* Host bits. */
5073 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5074 Log4(("Host CR0 %#RHr\n", uHCReg));
5075 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5076 Log4(("Host CR3 %#RHr\n", uHCReg));
5077 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5078 Log4(("Host CR4 %#RHr\n", uHCReg));
5079
5080 RTGDTR HostGdtr;
5081 PCX86DESCHC pDesc;
5082 ASMGetGDTR(&HostGdtr);
5083 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5084 Log4(("Host CS %#08x\n", u32Val));
5085 if (u32Val < HostGdtr.cbGdt)
5086 {
5087 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5088 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5089 }
5090
5091 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5092 Log4(("Host DS %#08x\n", u32Val));
5093 if (u32Val < HostGdtr.cbGdt)
5094 {
5095 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5096 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5097 }
5098
5099 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5100 Log4(("Host ES %#08x\n", u32Val));
5101 if (u32Val < HostGdtr.cbGdt)
5102 {
5103 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5104 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5105 }
5106
5107 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5108 Log4(("Host FS %#08x\n", u32Val));
5109 if (u32Val < HostGdtr.cbGdt)
5110 {
5111 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5112 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5113 }
5114
5115 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5116 Log4(("Host GS %#08x\n", u32Val));
5117 if (u32Val < HostGdtr.cbGdt)
5118 {
5119 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5120 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5121 }
5122
5123 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5124 Log4(("Host SS %#08x\n", u32Val));
5125 if (u32Val < HostGdtr.cbGdt)
5126 {
5127 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5128 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5129 }
5130
5131 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5132 Log4(("Host TR %#08x\n", u32Val));
5133 if (u32Val < HostGdtr.cbGdt)
5134 {
5135 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5136 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5137 }
5138
5139 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5140 Log4(("Host TR Base %#RHv\n", uHCReg));
5141 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5142 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5143 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5144 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5145 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5146 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5147 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5148 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5149 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5150 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5151 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5152 Log4(("Host RSP %#RHv\n", uHCReg));
5153 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5154 Log4(("Host RIP %#RHv\n", uHCReg));
5155# if HC_ARCH_BITS == 64
5156 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5157 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5158 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5159 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5160 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5161 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5162# endif
5163#endif /* VBOX_STRICT */
5164 break;
5165 }
5166
5167 default:
5168 /* Impossible */
5169 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5170 break;
5171 }
5172}
5173
5174
5175#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5176#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5177# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5178#endif
5179#ifdef VBOX_STRICT
5180static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5181{
5182 switch (idxField)
5183 {
5184 case VMX_VMCS_GUEST_RIP:
5185 case VMX_VMCS_GUEST_RSP:
5186 case VMX_VMCS_GUEST_SYSENTER_EIP:
5187 case VMX_VMCS_GUEST_SYSENTER_ESP:
5188 case VMX_VMCS_GUEST_GDTR_BASE:
5189 case VMX_VMCS_GUEST_IDTR_BASE:
5190 case VMX_VMCS_GUEST_CS_BASE:
5191 case VMX_VMCS_GUEST_DS_BASE:
5192 case VMX_VMCS_GUEST_ES_BASE:
5193 case VMX_VMCS_GUEST_FS_BASE:
5194 case VMX_VMCS_GUEST_GS_BASE:
5195 case VMX_VMCS_GUEST_SS_BASE:
5196 case VMX_VMCS_GUEST_LDTR_BASE:
5197 case VMX_VMCS_GUEST_TR_BASE:
5198 case VMX_VMCS_GUEST_CR3:
5199 return true;
5200 }
5201 return false;
5202}
5203
5204static bool hmR0VmxIsValidReadField(uint32_t idxField)
5205{
5206 switch (idxField)
5207 {
5208 /* Read-only fields. */
5209 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5210 return true;
5211 }
5212 /* Remaining readable fields should also be writable. */
5213 return hmR0VmxIsValidWriteField(idxField);
5214}
5215#endif /* VBOX_STRICT */
5216
5217
5218/**
5219 * Executes the specified handler in 64-bit mode.
5220 *
5221 * @returns VBox status code (no informational status codes).
5222 * @param pVCpu The cross context virtual CPU structure.
5223 * @param enmOp The operation to perform.
5224 * @param cParams Number of parameters.
5225 * @param paParam Array of 32-bit parameters.
5226 */
5227VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
5228{
5229 PVM pVM = pVCpu->CTX_SUFF(pVM);
5230 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5231 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5232 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5233 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5234
5235#ifdef VBOX_STRICT
5236 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5237 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5238
5239 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5240 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5241#endif
5242
5243 /* Disable interrupts. */
5244 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5245
5246#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5247 RTCPUID idHostCpu = RTMpCpuId();
5248 CPUMR0SetLApic(pVCpu, idHostCpu);
5249#endif
5250
5251 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5252 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5253
5254 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5255 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5256 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5257
5258 /* Leave VMX Root Mode. */
5259 VMXDisable();
5260
5261 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5262
5263 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5264 CPUMSetHyperEIP(pVCpu, enmOp);
5265 for (int i = (int)cParams - 1; i >= 0; i--)
5266 CPUMPushHyper(pVCpu, paParam[i]);
5267
5268 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5269
5270 /* Call the switcher. */
5271 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
5272 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5273
5274 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5275 /* Make sure the VMX instructions don't cause #UD faults. */
5276 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5277
5278 /* Re-enter VMX Root Mode */
5279 int rc2 = VMXEnable(HCPhysCpuPage);
5280 if (RT_FAILURE(rc2))
5281 {
5282 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5283 ASMSetFlags(fOldEFlags);
5284 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5285 return rc2;
5286 }
5287
5288 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5289 AssertRC(rc2);
5290 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5291 Assert(!(ASMGetFlags() & X86_EFL_IF));
5292 ASMSetFlags(fOldEFlags);
5293 return rc;
5294}
5295
5296
5297/**
5298 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5299 * supporting 64-bit guests.
5300 *
5301 * @returns VBox status code.
5302 * @param fResume Whether to VMLAUNCH or VMRESUME.
5303 * @param pCtx Pointer to the guest-CPU context.
5304 * @param pCache Pointer to the VMCS cache.
5305 * @param pVM The cross context VM structure.
5306 * @param pVCpu The cross context virtual CPU structure.
5307 */
5308DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5309{
5310 NOREF(fResume);
5311
5312 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5313 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5314
5315#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5316 pCache->uPos = 1;
5317 pCache->interPD = PGMGetInterPaeCR3(pVM);
5318 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5319#endif
5320
5321#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5322 pCache->TestIn.HCPhysCpuPage = 0;
5323 pCache->TestIn.HCPhysVmcs = 0;
5324 pCache->TestIn.pCache = 0;
5325 pCache->TestOut.HCPhysVmcs = 0;
5326 pCache->TestOut.pCache = 0;
5327 pCache->TestOut.pCtx = 0;
5328 pCache->TestOut.eflags = 0;
5329#else
5330 NOREF(pCache);
5331#endif
5332
5333 uint32_t aParam[10];
5334 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5335 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
5336 aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5337 aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
5338 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5339 aParam[5] = 0;
5340 aParam[6] = VM_RC_ADDR(pVM, pVM);
5341 aParam[7] = 0;
5342 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5343 aParam[9] = 0;
5344
5345#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5346 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5347 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5348#endif
5349 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5350
5351#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5352 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5353 Assert(pCtx->dr[4] == 10);
5354 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5355#endif
5356
5357#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5358 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5359 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5360 pVCpu->hm.s.vmx.HCPhysVmcs));
5361 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5362 pCache->TestOut.HCPhysVmcs));
5363 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5364 pCache->TestOut.pCache));
5365 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5366 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5367 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5368 pCache->TestOut.pCtx));
5369 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5370#endif
5371 NOREF(pCtx);
5372 return rc;
5373}
5374
5375
5376/**
5377 * Initialize the VMCS-Read cache.
5378 *
5379 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5380 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5381 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5382 * (those that have a 32-bit FULL & HIGH part).
5383 *
5384 * @returns VBox status code.
5385 * @param pVCpu The cross context virtual CPU structure.
5386 */
5387static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
5388{
5389#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5390 do { \
5391 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5392 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5393 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5394 ++cReadFields; \
5395 } while (0)
5396
5397 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5398 uint32_t cReadFields = 0;
5399
5400 /*
5401 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5402 * and serve to indicate exceptions to the rules.
5403 */
5404
5405 /* Guest-natural selector base fields. */
5406#if 0
5407 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5408 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5409 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5410#endif
5411 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5412 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5413 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5414 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5415 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5416 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5417 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5418 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5419 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5420 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5421 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5422 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5423#if 0
5424 /* Unused natural width guest-state fields. */
5425 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5426 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5427#endif
5428 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5429 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5430
5431 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
5432 these 64-bit fields (using "FULL" and "HIGH" fields). */
5433#if 0
5434 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5435 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5436 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5437 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5438 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5439 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5440 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5441 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5442 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5443#endif
5444
5445 /* Natural width guest-state fields. */
5446 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5447#if 0
5448 /* Currently unused field. */
5449 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5450#endif
5451
5452 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5453 {
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5455 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5456 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5457 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5458 }
5459 else
5460 {
5461 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5462 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5463 }
5464
5465#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5466 return VINF_SUCCESS;
5467}
5468
5469
5470/**
5471 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5472 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5473 * darwin, running 64-bit guests).
5474 *
5475 * @returns VBox status code.
5476 * @param pVCpu The cross context virtual CPU structure.
5477 * @param idxField The VMCS field encoding.
5478 * @param u64Val 16, 32 or 64-bit value.
5479 */
5480VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5481{
5482 int rc;
5483 switch (idxField)
5484 {
5485 /*
5486 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5487 */
5488 /* 64-bit Control fields. */
5489 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5490 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5491 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5492 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5493 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5494 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5495 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5496 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5497 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
5498 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5499 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5500 case VMX_VMCS64_CTRL_EPTP_FULL:
5501 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5502 /* 64-bit Guest-state fields. */
5503 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5504 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5505 case VMX_VMCS64_GUEST_PAT_FULL:
5506 case VMX_VMCS64_GUEST_EFER_FULL:
5507 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5508 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5509 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5510 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5511 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5512 /* 64-bit Host-state fields. */
5513 case VMX_VMCS64_HOST_PAT_FULL:
5514 case VMX_VMCS64_HOST_EFER_FULL:
5515 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5516 {
5517 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5518 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
5519 break;
5520 }
5521
5522 /*
5523 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5524 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5525 */
5526 /* Natural-width Guest-state fields. */
5527 case VMX_VMCS_GUEST_CR3:
5528 case VMX_VMCS_GUEST_ES_BASE:
5529 case VMX_VMCS_GUEST_CS_BASE:
5530 case VMX_VMCS_GUEST_SS_BASE:
5531 case VMX_VMCS_GUEST_DS_BASE:
5532 case VMX_VMCS_GUEST_FS_BASE:
5533 case VMX_VMCS_GUEST_GS_BASE:
5534 case VMX_VMCS_GUEST_LDTR_BASE:
5535 case VMX_VMCS_GUEST_TR_BASE:
5536 case VMX_VMCS_GUEST_GDTR_BASE:
5537 case VMX_VMCS_GUEST_IDTR_BASE:
5538 case VMX_VMCS_GUEST_RSP:
5539 case VMX_VMCS_GUEST_RIP:
5540 case VMX_VMCS_GUEST_SYSENTER_ESP:
5541 case VMX_VMCS_GUEST_SYSENTER_EIP:
5542 {
5543 if (!(RT_HI_U32(u64Val)))
5544 {
5545 /* If this field is 64-bit, VT-x will zero out the top bits. */
5546 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5547 }
5548 else
5549 {
5550 /* Assert that only the 32->64 switcher case should ever come here. */
5551 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5552 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5553 }
5554 break;
5555 }
5556
5557 default:
5558 {
5559 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5560 rc = VERR_INVALID_PARAMETER;
5561 break;
5562 }
5563 }
5564 AssertRCReturn(rc, rc);
5565 return rc;
5566}
5567
5568
5569/**
5570 * Queue up a VMWRITE by using the VMCS write cache.
5571 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5572 *
5573 * @param pVCpu The cross context virtual CPU structure.
5574 * @param idxField The VMCS field encoding.
5575 * @param u64Val 16, 32 or 64-bit value.
5576 */
5577VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5578{
5579 AssertPtr(pVCpu);
5580 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5581
5582 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5583 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5584
5585 /* Make sure there are no duplicates. */
5586 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5587 {
5588 if (pCache->Write.aField[i] == idxField)
5589 {
5590 pCache->Write.aFieldVal[i] = u64Val;
5591 return VINF_SUCCESS;
5592 }
5593 }
5594
5595 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5596 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5597 pCache->Write.cValidEntries++;
5598 return VINF_SUCCESS;
5599}
5600#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5601
5602
5603/**
5604 * Sets up the usage of TSC-offsetting and updates the VMCS.
5605 *
5606 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5607 * VMX preemption timer.
5608 *
5609 * @returns VBox status code.
5610 * @param pVCpu The cross context virtual CPU structure.
5611 *
5612 * @remarks No-long-jump zone!!!
5613 */
5614static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5615{
5616 bool fOffsettedTsc;
5617 bool fParavirtTsc;
5618 PVM pVM = pVCpu->CTX_SUFF(pVM);
5619 uint64_t uTscOffset;
5620 if (pVM->hm.s.vmx.fUsePreemptTimer)
5621 {
5622 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
5623
5624 /* Make sure the returned values have sane upper and lower boundaries. */
5625 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5626 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5627 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5628 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5629
5630 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5631 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
5632 AssertRC(rc);
5633 }
5634 else
5635 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
5636
5637 if (fParavirtTsc)
5638 {
5639 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5640 information before every VM-entry, hence disable it for performance sake. */
5641#if 0
5642 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5643 AssertRC(rc);
5644#endif
5645 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5646 }
5647
5648 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
5649 if ( fOffsettedTsc
5650 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5651 {
5652 if (pVCpu->hm.s.vmx.u64TscOffset != uTscOffset)
5653 {
5654 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
5655 AssertRC(rc);
5656 pVCpu->hm.s.vmx.u64TscOffset = uTscOffset;
5657 }
5658
5659 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
5660 {
5661 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
5662 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5663 AssertRC(rc);
5664 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5665 }
5666 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5667 }
5668 else
5669 {
5670 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5671 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
5672 {
5673 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
5674 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5675 AssertRC(rc);
5676 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5677 }
5678 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5679 }
5680}
5681
5682
5683/**
5684 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5685 * VM-exit interruption info type.
5686 *
5687 * @returns The IEM exception flags.
5688 * @param uVector The event vector.
5689 * @param uVmxVectorType The VMX event type.
5690 *
5691 * @remarks This function currently only constructs flags required for
5692 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5693 * and CR2 aspects of an exception are not included).
5694 */
5695static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5696{
5697 uint32_t fIemXcptFlags;
5698 switch (uVmxVectorType)
5699 {
5700 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5701 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5702 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5703 break;
5704
5705 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5706 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5707 break;
5708
5709 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5710 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5711 break;
5712
5713 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5714 {
5715 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5716 if (uVector == X86_XCPT_BP)
5717 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5718 else if (uVector == X86_XCPT_OF)
5719 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5720 else
5721 {
5722 fIemXcptFlags = 0;
5723 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5724 }
5725 break;
5726 }
5727
5728 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5729 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5730 break;
5731
5732 default:
5733 fIemXcptFlags = 0;
5734 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5735 break;
5736 }
5737 return fIemXcptFlags;
5738}
5739
5740
5741/**
5742 * Sets an event as a pending event to be injected into the guest.
5743 *
5744 * @param pVCpu The cross context virtual CPU structure.
5745 * @param u32IntInfo The VM-entry interruption-information field.
5746 * @param cbInstr The VM-entry instruction length in bytes (for software
5747 * interrupts, exceptions and privileged software
5748 * exceptions).
5749 * @param u32ErrCode The VM-entry exception error code.
5750 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5751 * page-fault.
5752 *
5753 * @remarks Statistics counter assumes this is a guest event being injected or
5754 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5755 * always incremented.
5756 */
5757DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5758 RTGCUINTPTR GCPtrFaultAddress)
5759{
5760 Assert(!pVCpu->hm.s.Event.fPending);
5761 pVCpu->hm.s.Event.fPending = true;
5762 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5763 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5764 pVCpu->hm.s.Event.cbInstr = cbInstr;
5765 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5766}
5767
5768
5769/**
5770 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5771 *
5772 * @param pVCpu The cross context virtual CPU structure.
5773 */
5774DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
5775{
5776 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
5777 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5778 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5779 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5780 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5781}
5782
5783
5784/**
5785 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
5786 *
5787 * @param pVCpu The cross context virtual CPU structure.
5788 */
5789DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
5790{
5791 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
5792 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5793 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5794 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5795 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5796}
5797
5798
5799/**
5800 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
5801 *
5802 * @param pVCpu The cross context virtual CPU structure.
5803 */
5804DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
5805{
5806 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
5807 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5808 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5809 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5810 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5811}
5812
5813
5814#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5815/**
5816 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
5817 *
5818 * @param pVCpu The cross context virtual CPU structure.
5819 * @param u32ErrCode The error code for the general-protection exception.
5820 */
5821DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
5822{
5823 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
5824 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5825 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5826 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5827 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5828}
5829
5830
5831/**
5832 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
5833 *
5834 * @param pVCpu The cross context virtual CPU structure.
5835 * @param u32ErrCode The error code for the stack exception.
5836 */
5837DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
5838{
5839 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
5840 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5841 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5842 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5843 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5844}
5845
5846
5847/**
5848 * Decodes the memory operand of a VM-exit due to instruction execution.
5849 *
5850 * For instructions with two operands, the second operand is usually found in the
5851 * VM-exit qualification field.
5852 *
5853 * @returns Strict VBox status code (i.e. informational status codes too).
5854 * @retval VINF_SUCCESS if the operand was successfully decoded.
5855 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
5856 * operand.
5857 * @param pVCpu The cross context virtual CPU structure.
5858 * @param pExitInstrInfo Pointer to the VM-exit instruction information.
5859 * @param fIsWrite Whether the operand is a destination memory operand
5860 * (i.e. writeable memory location) or not.
5861 * @param GCPtrDisp The instruction displacement field, if any. For
5862 * RIP-relative addressing pass RIP + displacement here.
5863 * @param pGCPtrMem Where to store the destination memory operand.
5864 */
5865static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, PCVMXEXITINSTRINFO pExitInstrInfo, RTGCPTR GCPtrDisp, bool fIsWrite,
5866 PRTGCPTR pGCPtrMem)
5867{
5868 Assert(pExitInstrInfo);
5869 Assert(pGCPtrMem);
5870 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
5871
5872 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
5873 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
5874 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
5875
5876 uint8_t const uAddrSize = pExitInstrInfo->InvVmxXsaves.u3AddrSize;
5877 uint8_t const iSegReg = pExitInstrInfo->InvVmxXsaves.iSegReg;
5878 bool const fIdxRegValid = !pExitInstrInfo->InvVmxXsaves.fIdxRegInvalid;
5879 uint8_t const iIdxReg = pExitInstrInfo->InvVmxXsaves.iIdxReg;
5880 uint8_t const uScale = pExitInstrInfo->InvVmxXsaves.u2Scaling;
5881 bool const fBaseRegValid = !pExitInstrInfo->InvVmxXsaves.fBaseRegInvalid;
5882 uint8_t const iBaseReg = pExitInstrInfo->InvVmxXsaves.iBaseReg;
5883 bool const fIsMemOperand = !pExitInstrInfo->InvVmxXsaves.fIsRegOperand;
5884 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
5885
5886 /*
5887 * Validate instruction information.
5888 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
5889 */
5890 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
5891 ("Invalid address size. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_1);
5892 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
5893 ("Invalid segment register. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_2);
5894 AssertLogRelMsgReturn(fIsMemOperand,
5895 ("Expected memory operand. ExitInstrInfo=%#RX32\n", pExitInstrInfo->u), VERR_VMX_IPE_3);
5896
5897 /*
5898 * Compute the complete effective address.
5899 *
5900 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
5901 * See AMD spec. 4.5.2 "Segment Registers".
5902 */
5903 RTGCPTR GCPtrMem = GCPtrDisp;
5904 if (fBaseRegValid)
5905 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
5906 if (fIdxRegValid)
5907 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
5908
5909 RTGCPTR const GCPtrOff = GCPtrMem;
5910 if ( !fIsLongMode
5911 || iSegReg >= X86_SREG_FS)
5912 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
5913 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
5914
5915 /*
5916 * Validate effective address.
5917 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
5918 */
5919 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
5920 Assert(cbAccess > 0);
5921 if (fIsLongMode)
5922 {
5923 if (X86_IS_CANONICAL(GCPtrMem))
5924 {
5925 *pGCPtrMem = GCPtrMem;
5926 return VINF_SUCCESS;
5927 }
5928
5929 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
5930 * "Data Limit Checks in 64-bit Mode". */
5931 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
5932 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5933 return VINF_HM_PENDING_XCPT;
5934 }
5935
5936 /*
5937 * This is a watered down version of iemMemApplySegment().
5938 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
5939 * and segment CPL/DPL checks are skipped.
5940 */
5941 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
5942 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
5943 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
5944
5945 /* Check if the segment is present and usable. */
5946 if ( pSel->Attr.n.u1Present
5947 && !pSel->Attr.n.u1Unusable)
5948 {
5949 Assert(pSel->Attr.n.u1DescType);
5950 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
5951 {
5952 /* Check permissions for the data segment. */
5953 if ( fIsWrite
5954 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
5955 {
5956 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
5957 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
5958 return VINF_HM_PENDING_XCPT;
5959 }
5960
5961 /* Check limits if it's a normal data segment. */
5962 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
5963 {
5964 if ( GCPtrFirst32 > pSel->u32Limit
5965 || GCPtrLast32 > pSel->u32Limit)
5966 {
5967 Log4Func(("Data segment limit exceeded."
5968 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
5969 GCPtrLast32, pSel->u32Limit));
5970 if (iSegReg == X86_SREG_SS)
5971 hmR0VmxSetPendingXcptSS(pVCpu, 0);
5972 else
5973 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5974 return VINF_HM_PENDING_XCPT;
5975 }
5976 }
5977 else
5978 {
5979 /* Check limits if it's an expand-down data segment.
5980 Note! The upper boundary is defined by the B bit, not the G bit! */
5981 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
5982 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
5983 {
5984 Log4Func(("Expand-down data segment limit exceeded."
5985 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
5986 GCPtrLast32, pSel->u32Limit));
5987 if (iSegReg == X86_SREG_SS)
5988 hmR0VmxSetPendingXcptSS(pVCpu, 0);
5989 else
5990 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5991 return VINF_HM_PENDING_XCPT;
5992 }
5993 }
5994 }
5995 else
5996 {
5997 /* Check permissions for the code segment. */
5998 if ( fIsWrite
5999 || !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ))
6000 {
6001 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6002 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6003 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6004 return VINF_HM_PENDING_XCPT;
6005 }
6006
6007 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6008 if ( GCPtrFirst32 > pSel->u32Limit
6009 || GCPtrLast32 > pSel->u32Limit)
6010 {
6011 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6012 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6013 if (iSegReg == X86_SREG_SS)
6014 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6015 else
6016 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6017 return VINF_HM_PENDING_XCPT;
6018 }
6019 }
6020 }
6021 else
6022 {
6023 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6024 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6025 return VINF_HM_PENDING_XCPT;
6026 }
6027
6028 *pGCPtrMem = GCPtrMem;
6029 return VINF_SUCCESS;
6030}
6031
6032
6033/**
6034 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6035 * guest attempting to execute a VMX instruction.
6036 *
6037 * @returns Strict VBox status code (i.e. informational status codes too).
6038 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6039 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6040 *
6041 * @param pVCpu The cross context virtual CPU structure.
6042 * @param pVmxTransient Pointer to the VMX transient structure.
6043 *
6044 * @todo NstVmx: Document other error codes when VM-exit is implemented.
6045 * @remarks No-long-jump zone!!!
6046 */
6047static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6048{
6049 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6050 | CPUMCTX_EXTRN_HWVIRT);
6051
6052 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6053 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6054 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6055 {
6056 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6057 hmR0VmxSetPendingXcptUD(pVCpu);
6058 return VINF_HM_PENDING_XCPT;
6059 }
6060
6061 if (pVmxTransient->uExitReason == VMX_EXIT_VMXON)
6062 {
6063 /*
6064 * We check CR4.VMXE because it is required to be always set while in VMX operation
6065 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6066 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6067 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6068 */
6069 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6070 {
6071 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6072 hmR0VmxSetPendingXcptUD(pVCpu);
6073 return VINF_HM_PENDING_XCPT;
6074 }
6075 }
6076 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6077 {
6078 /*
6079 * The guest has not entered VMX operation but attempted to execute a VMX instruction
6080 * (other than VMXON), we need to raise a #UD.
6081 */
6082 Log4Func(("Not in VMX root mode -> #UD\n"));
6083 hmR0VmxSetPendingXcptUD(pVCpu);
6084 return VINF_HM_PENDING_XCPT;
6085 }
6086
6087 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
6088 {
6089 /*
6090 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
6091 * the guest hypervisor deal with it.
6092 */
6093 /** @todo NSTVMX: Trigger a VM-exit */
6094 }
6095
6096 /*
6097 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
6098 * (above) takes preceedence over the CPL check.
6099 */
6100 if (CPUMGetGuestCPL(pVCpu) > 0)
6101 {
6102 Log4Func(("CPL > 0 -> #GP(0)\n"));
6103 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6104 return VINF_HM_PENDING_XCPT;
6105 }
6106
6107 return VINF_SUCCESS;
6108}
6109
6110#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
6111
6112
6113/**
6114 * Handle a condition that occurred while delivering an event through the guest
6115 * IDT.
6116 *
6117 * @returns Strict VBox status code (i.e. informational status codes too).
6118 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6119 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
6120 * to continue execution of the guest which will delivery the \#DF.
6121 * @retval VINF_EM_RESET if we detected a triple-fault condition.
6122 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
6123 *
6124 * @param pVCpu The cross context virtual CPU structure.
6125 * @param pVmxTransient Pointer to the VMX transient structure.
6126 *
6127 * @remarks No-long-jump zone!!!
6128 */
6129static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6130{
6131 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
6132
6133 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
6134 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
6135 AssertRCReturn(rc2, rc2);
6136
6137 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
6138 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6139 {
6140 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
6141 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
6142
6143 /*
6144 * If the event was a software interrupt (generated with INT n) or a software exception
6145 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
6146 * can handle the VM-exit and continue guest execution which will re-execute the
6147 * instruction rather than re-injecting the exception, as that can cause premature
6148 * trips to ring-3 before injection and involve TRPM which currently has no way of
6149 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
6150 * the problem).
6151 */
6152 IEMXCPTRAISE enmRaise;
6153 IEMXCPTRAISEINFO fRaiseInfo;
6154 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6155 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6156 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6157 {
6158 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
6159 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6160 }
6161 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6162 {
6163 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
6164 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
6165 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
6166 /** @todo Make AssertMsgReturn as just AssertMsg later. */
6167 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
6168 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
6169 uExitVectorType), VERR_VMX_IPE_5);
6170
6171 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
6172
6173 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
6174 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
6175 {
6176 pVmxTransient->fVectoringPF = true;
6177 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6178 }
6179 }
6180 else
6181 {
6182 /*
6183 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
6184 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
6185 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
6186 */
6187 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6188 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6189 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
6190 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6191 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6192 }
6193
6194 /*
6195 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
6196 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
6197 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
6198 * subsequent VM-entry would fail.
6199 *
6200 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6201 */
6202 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
6203 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6204 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
6205 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
6206 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6207 {
6208 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6209 }
6210
6211 switch (enmRaise)
6212 {
6213 case IEMXCPTRAISE_CURRENT_XCPT:
6214 {
6215 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
6216 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
6217 Assert(rcStrict == VINF_SUCCESS);
6218 break;
6219 }
6220
6221 case IEMXCPTRAISE_PREV_EVENT:
6222 {
6223 uint32_t u32ErrCode;
6224 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
6225 {
6226 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6227 AssertRCReturn(rc2, rc2);
6228 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6229 }
6230 else
6231 u32ErrCode = 0;
6232
6233 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
6234 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6235 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6236 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
6237
6238 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
6239 pVCpu->hm.s.Event.u32ErrCode));
6240 Assert(rcStrict == VINF_SUCCESS);
6241 break;
6242 }
6243
6244 case IEMXCPTRAISE_REEXEC_INSTR:
6245 Assert(rcStrict == VINF_SUCCESS);
6246 break;
6247
6248 case IEMXCPTRAISE_DOUBLE_FAULT:
6249 {
6250 /*
6251 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6252 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6253 */
6254 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6255 {
6256 pVmxTransient->fVectoringDoublePF = true;
6257 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
6258 pVCpu->cpum.GstCtx.cr2));
6259 rcStrict = VINF_SUCCESS;
6260 }
6261 else
6262 {
6263 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6264 hmR0VmxSetPendingXcptDF(pVCpu);
6265 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
6266 uIdtVector, uExitVector));
6267 rcStrict = VINF_HM_DOUBLE_FAULT;
6268 }
6269 break;
6270 }
6271
6272 case IEMXCPTRAISE_TRIPLE_FAULT:
6273 {
6274 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
6275 rcStrict = VINF_EM_RESET;
6276 break;
6277 }
6278
6279 case IEMXCPTRAISE_CPU_HANG:
6280 {
6281 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
6282 rcStrict = VERR_EM_GUEST_CPU_HANG;
6283 break;
6284 }
6285
6286 default:
6287 {
6288 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6289 rcStrict = VERR_VMX_IPE_2;
6290 break;
6291 }
6292 }
6293 }
6294 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6295 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6296 && uExitVector != X86_XCPT_DF
6297 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6298 {
6299 /*
6300 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6301 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6302 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6303 */
6304 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6305 {
6306 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
6307 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6308 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6309 }
6310 }
6311
6312 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6313 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6314 return rcStrict;
6315}
6316
6317
6318/**
6319 * Imports a guest segment register from the current VMCS into
6320 * the guest-CPU context.
6321 *
6322 * @returns VBox status code.
6323 * @param pVCpu The cross context virtual CPU structure.
6324 * @param idxSel Index of the selector in the VMCS.
6325 * @param idxLimit Index of the segment limit in the VMCS.
6326 * @param idxBase Index of the segment base in the VMCS.
6327 * @param idxAccess Index of the access rights of the segment in the VMCS.
6328 * @param pSelReg Pointer to the segment selector.
6329 *
6330 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6331 * do not log!
6332 *
6333 * @remarks Never call this function directly!!! Use the
6334 * HMVMX_IMPORT_SREG() macro as that takes care
6335 * of whether to read from the VMCS cache or not.
6336 */
6337static int hmR0VmxImportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6338 PCPUMSELREG pSelReg)
6339{
6340 NOREF(pVCpu);
6341
6342 uint32_t u32Sel;
6343 uint32_t u32Limit;
6344 uint32_t u32Attr;
6345 uint64_t u64Base;
6346 int rc = VMXReadVmcs32(idxSel, &u32Sel);
6347 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
6348 rc |= VMXReadVmcs32(idxAccess, &u32Attr);
6349 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
6350 AssertRCReturn(rc, rc);
6351
6352 pSelReg->Sel = (uint16_t)u32Sel;
6353 pSelReg->ValidSel = (uint16_t)u32Sel;
6354 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6355 pSelReg->u32Limit = u32Limit;
6356 pSelReg->u64Base = u64Base;
6357 pSelReg->Attr.u = u32Attr;
6358
6359 /*
6360 * If VT-x marks the segment as unusable, most other bits remain undefined:
6361 * - For CS the L, D and G bits have meaning.
6362 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6363 * - For the remaining data segments no bits are defined.
6364 *
6365 * The present bit and the unusable bit has been observed to be set at the
6366 * same time (the selector was supposed to be invalid as we started executing
6367 * a V8086 interrupt in ring-0).
6368 *
6369 * What should be important for the rest of the VBox code, is that the P bit is
6370 * cleared. Some of the other VBox code recognizes the unusable bit, but
6371 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6372 * safe side here, we'll strip off P and other bits we don't care about. If
6373 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6374 *
6375 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6376 */
6377 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6378 {
6379 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6380
6381 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6382 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6383 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6384#ifdef VBOX_STRICT
6385 VMMRZCallRing3Disable(pVCpu);
6386 Log4Func(("Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Sel, pSelReg->Attr.u));
6387# ifdef DEBUG_bird
6388 AssertMsg((u32Attr & ~X86DESCATTR_P) == pSelReg->Attr.u,
6389 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6390 idxSel, u32Sel, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6391# endif
6392 VMMRZCallRing3Enable(pVCpu);
6393#endif
6394 }
6395 return VINF_SUCCESS;
6396}
6397
6398
6399/**
6400 * Imports the guest RIP from the VMCS back into the guest-CPU context.
6401 *
6402 * @returns VBox status code.
6403 * @param pVCpu The cross context virtual CPU structure.
6404 *
6405 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6406 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6407 * instead!!!
6408 */
6409DECLINLINE(int) hmR0VmxImportGuestRip(PVMCPU pVCpu)
6410{
6411 uint64_t u64Val;
6412 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6413 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
6414 {
6415 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6416 if (RT_SUCCESS(rc))
6417 {
6418 pCtx->rip = u64Val;
6419 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
6420 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
6421 }
6422 return rc;
6423 }
6424 return VINF_SUCCESS;
6425}
6426
6427
6428/**
6429 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
6430 *
6431 * @returns VBox status code.
6432 * @param pVCpu The cross context virtual CPU structure.
6433 *
6434 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6435 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6436 * instead!!!
6437 */
6438DECLINLINE(int) hmR0VmxImportGuestRFlags(PVMCPU pVCpu)
6439{
6440 uint32_t u32Val;
6441 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6442 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
6443 {
6444 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
6445 if (RT_SUCCESS(rc))
6446 {
6447 pCtx->eflags.u32 = u32Val;
6448
6449 /* Restore eflags for real-on-v86-mode hack. */
6450 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6451 {
6452 pCtx->eflags.Bits.u1VM = 0;
6453 pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6454 }
6455 }
6456 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
6457 return rc;
6458 }
6459 return VINF_SUCCESS;
6460}
6461
6462
6463/**
6464 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
6465 * context.
6466 *
6467 * @returns VBox status code.
6468 * @param pVCpu The cross context virtual CPU structure.
6469 *
6470 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6471 * do not log!
6472 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6473 * instead!!!
6474 */
6475DECLINLINE(int) hmR0VmxImportGuestIntrState(PVMCPU pVCpu)
6476{
6477 uint32_t u32Val;
6478 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6479 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
6480 if (RT_SUCCESS(rc))
6481 {
6482 /*
6483 * We additionally have a requirement to import RIP, RFLAGS depending on whether we
6484 * might need them in hmR0VmxEvaluatePendingEvent().
6485 */
6486 if (!u32Val)
6487 {
6488 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6489 {
6490 rc = hmR0VmxImportGuestRip(pVCpu);
6491 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6492 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6493 }
6494
6495 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6496 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6497 }
6498 else
6499 {
6500 rc = hmR0VmxImportGuestRip(pVCpu);
6501 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6502
6503 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
6504 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
6505 {
6506 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
6507 }
6508 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6509 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6510
6511 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6512 {
6513 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6514 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6515 }
6516 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6517 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6518 }
6519 }
6520 return rc;
6521}
6522
6523
6524/**
6525 * Worker for VMXR0ImportStateOnDemand.
6526 *
6527 * @returns VBox status code.
6528 * @param pVCpu The cross context virtual CPU structure.
6529 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6530 */
6531static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
6532{
6533#define VMXLOCAL_BREAK_RC(a_rc) \
6534 if (RT_FAILURE(a_rc)) \
6535 break
6536
6537 int rc = VINF_SUCCESS;
6538 PVM pVM = pVCpu->CTX_SUFF(pVM);
6539 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6540 uint64_t u64Val;
6541 uint32_t u32Val;
6542
6543 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
6544 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
6545
6546 /*
6547 * We disable interrupts to make the updating of the state and in particular
6548 * the fExtrn modification atomic wrt to preemption hooks.
6549 */
6550 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
6551
6552 fWhat &= pCtx->fExtrn;
6553 if (fWhat)
6554 {
6555 do
6556 {
6557 if (fWhat & CPUMCTX_EXTRN_RIP)
6558 {
6559 rc = hmR0VmxImportGuestRip(pVCpu);
6560 VMXLOCAL_BREAK_RC(rc);
6561 }
6562
6563 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
6564 {
6565 rc = hmR0VmxImportGuestRFlags(pVCpu);
6566 VMXLOCAL_BREAK_RC(rc);
6567 }
6568
6569 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
6570 {
6571 rc = hmR0VmxImportGuestIntrState(pVCpu);
6572 VMXLOCAL_BREAK_RC(rc);
6573 }
6574
6575 if (fWhat & CPUMCTX_EXTRN_RSP)
6576 {
6577 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6578 VMXLOCAL_BREAK_RC(rc);
6579 pCtx->rsp = u64Val;
6580 }
6581
6582 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
6583 {
6584 if (fWhat & CPUMCTX_EXTRN_CS)
6585 {
6586 rc = HMVMX_IMPORT_SREG(CS, &pCtx->cs);
6587 rc |= hmR0VmxImportGuestRip(pVCpu);
6588 VMXLOCAL_BREAK_RC(rc);
6589 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6590 pCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6591 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true);
6592 }
6593 if (fWhat & CPUMCTX_EXTRN_SS)
6594 {
6595 rc = HMVMX_IMPORT_SREG(SS, &pCtx->ss);
6596 VMXLOCAL_BREAK_RC(rc);
6597 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6598 pCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6599 }
6600 if (fWhat & CPUMCTX_EXTRN_DS)
6601 {
6602 rc = HMVMX_IMPORT_SREG(DS, &pCtx->ds);
6603 VMXLOCAL_BREAK_RC(rc);
6604 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6605 pCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6606 }
6607 if (fWhat & CPUMCTX_EXTRN_ES)
6608 {
6609 rc = HMVMX_IMPORT_SREG(ES, &pCtx->es);
6610 VMXLOCAL_BREAK_RC(rc);
6611 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6612 pCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6613 }
6614 if (fWhat & CPUMCTX_EXTRN_FS)
6615 {
6616 rc = HMVMX_IMPORT_SREG(FS, &pCtx->fs);
6617 VMXLOCAL_BREAK_RC(rc);
6618 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6619 pCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6620 }
6621 if (fWhat & CPUMCTX_EXTRN_GS)
6622 {
6623 rc = HMVMX_IMPORT_SREG(GS, &pCtx->gs);
6624 VMXLOCAL_BREAK_RC(rc);
6625 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6626 pCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6627 }
6628 }
6629
6630 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
6631 {
6632 if (fWhat & CPUMCTX_EXTRN_LDTR)
6633 {
6634 rc = HMVMX_IMPORT_SREG(LDTR, &pCtx->ldtr);
6635 VMXLOCAL_BREAK_RC(rc);
6636 }
6637
6638 if (fWhat & CPUMCTX_EXTRN_GDTR)
6639 {
6640 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6641 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
6642 VMXLOCAL_BREAK_RC(rc);
6643 pCtx->gdtr.pGdt = u64Val;
6644 pCtx->gdtr.cbGdt = u32Val;
6645 }
6646
6647 /* Guest IDTR. */
6648 if (fWhat & CPUMCTX_EXTRN_IDTR)
6649 {
6650 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6651 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
6652 VMXLOCAL_BREAK_RC(rc);
6653 pCtx->idtr.pIdt = u64Val;
6654 pCtx->idtr.cbIdt = u32Val;
6655 }
6656
6657 /* Guest TR. */
6658 if (fWhat & CPUMCTX_EXTRN_TR)
6659 {
6660 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, don't save that one. */
6661 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6662 {
6663 rc = HMVMX_IMPORT_SREG(TR, &pCtx->tr);
6664 VMXLOCAL_BREAK_RC(rc);
6665 }
6666 }
6667 }
6668
6669 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
6670 {
6671 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
6672 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
6673 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
6674 pCtx->SysEnter.cs = u32Val;
6675 VMXLOCAL_BREAK_RC(rc);
6676 }
6677
6678#if HC_ARCH_BITS == 64
6679 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
6680 {
6681 if ( pVM->hm.s.fAllow64BitGuests
6682 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6683 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
6684 }
6685
6686 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
6687 {
6688 if ( pVM->hm.s.fAllow64BitGuests
6689 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6690 {
6691 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
6692 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
6693 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
6694 }
6695 }
6696#endif
6697
6698 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
6699#if HC_ARCH_BITS == 32
6700 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
6701#endif
6702 )
6703 {
6704 PCVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6705 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
6706 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6707 {
6708 switch (pMsr->u32Msr)
6709 {
6710#if HC_ARCH_BITS == 32
6711 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
6712 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
6713 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
6714 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6715#endif
6716 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
6717 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
6718 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit */ break;
6719 default:
6720 {
6721 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6722 ASMSetFlags(fEFlags);
6723 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
6724 cMsrs));
6725 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6726 }
6727 }
6728 }
6729 }
6730
6731 if (fWhat & CPUMCTX_EXTRN_DR7)
6732 {
6733 if (!pVCpu->hm.s.fUsingHyperDR7)
6734 {
6735 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6736 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
6737 VMXLOCAL_BREAK_RC(rc);
6738 pCtx->dr[7] = u32Val;
6739 }
6740 }
6741
6742 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
6743 {
6744 uint32_t u32Shadow;
6745 if (fWhat & CPUMCTX_EXTRN_CR0)
6746 {
6747 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
6748 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
6749 VMXLOCAL_BREAK_RC(rc);
6750 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr0Mask)
6751 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr0Mask);
6752 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
6753 CPUMSetGuestCR0(pVCpu, u32Val);
6754 VMMRZCallRing3Enable(pVCpu);
6755 }
6756
6757 if (fWhat & CPUMCTX_EXTRN_CR4)
6758 {
6759 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
6760 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
6761 VMXLOCAL_BREAK_RC(rc);
6762 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr4Mask)
6763 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr4Mask);
6764 CPUMSetGuestCR4(pVCpu, u32Val);
6765 }
6766
6767 if (fWhat & CPUMCTX_EXTRN_CR3)
6768 {
6769 /* CR0.PG bit changes are always intercepted, so it's up to date. */
6770 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6771 || ( pVM->hm.s.fNestedPaging
6772 && CPUMIsGuestPagingEnabledEx(pCtx)))
6773 {
6774 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6775 if (pCtx->cr3 != u64Val)
6776 {
6777 CPUMSetGuestCR3(pVCpu, u64Val);
6778 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6779 }
6780
6781 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
6782 Note: CR4.PAE, CR0.PG, EFER bit changes are always intercepted, so they're up to date. */
6783 if (CPUMIsGuestInPAEModeEx(pCtx))
6784 {
6785 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6786 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6787 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6788 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6789 VMXLOCAL_BREAK_RC(rc);
6790 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6791 }
6792 }
6793 }
6794 }
6795 } while (0);
6796
6797 if (RT_SUCCESS(rc))
6798 {
6799 /* Update fExtrn. */
6800 pCtx->fExtrn &= ~fWhat;
6801
6802 /* If everything has been imported, clear the HM keeper bit. */
6803 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
6804 {
6805 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
6806 Assert(!pCtx->fExtrn);
6807 }
6808 }
6809 }
6810 else
6811 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
6812
6813 ASMSetFlags(fEFlags);
6814
6815 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
6816
6817 /*
6818 * Honor any pending CR3 updates.
6819 *
6820 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6821 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6822 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
6823 *
6824 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6825 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6826 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6827 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
6828 *
6829 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6830 */
6831 if (VMMRZCallRing3IsEnabled(pVCpu))
6832 {
6833 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6834 {
6835 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
6836 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6837 }
6838
6839 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6840 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6841
6842 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6843 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6844 }
6845
6846 return VINF_SUCCESS;
6847#undef VMXLOCAL_BREAK_RC
6848}
6849
6850
6851/**
6852 * Saves the guest state from the VMCS into the guest-CPU context.
6853 *
6854 * @returns VBox status code.
6855 * @param pVCpu The cross context virtual CPU structure.
6856 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6857 */
6858VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
6859{
6860 return hmR0VmxImportGuestState(pVCpu, fWhat);
6861}
6862
6863
6864/**
6865 * Check per-VM and per-VCPU force flag actions that require us to go back to
6866 * ring-3 for one reason or another.
6867 *
6868 * @returns Strict VBox status code (i.e. informational status codes too)
6869 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6870 * ring-3.
6871 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6872 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6873 * interrupts)
6874 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6875 * all EMTs to be in ring-3.
6876 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6877 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6878 * to the EM loop.
6879 *
6880 * @param pVCpu The cross context virtual CPU structure.
6881 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6882 */
6883static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
6884{
6885 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6886
6887 /*
6888 * Anything pending? Should be more likely than not if we're doing a good job.
6889 */
6890 PVM pVM = pVCpu->CTX_SUFF(pVM);
6891 if ( !fStepping
6892 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6893 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6894 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6895 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6896 return VINF_SUCCESS;
6897
6898 /* Pending PGM C3 sync. */
6899 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6900 {
6901 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6902 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
6903 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
6904 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6905 if (rcStrict2 != VINF_SUCCESS)
6906 {
6907 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6908 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6909 return rcStrict2;
6910 }
6911 }
6912
6913 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6914 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6915 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6916 {
6917 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6918 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6919 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6920 return rc2;
6921 }
6922
6923 /* Pending VM request packets, such as hardware interrupts. */
6924 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6925 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6926 {
6927 Log4Func(("Pending VM request forcing us back to ring-3\n"));
6928 return VINF_EM_PENDING_REQUEST;
6929 }
6930
6931 /* Pending PGM pool flushes. */
6932 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6933 {
6934 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
6935 return VINF_PGM_POOL_FLUSH_PENDING;
6936 }
6937
6938 /* Pending DMA requests. */
6939 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6940 {
6941 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
6942 return VINF_EM_RAW_TO_R3;
6943 }
6944
6945 return VINF_SUCCESS;
6946}
6947
6948
6949/**
6950 * Converts any TRPM trap into a pending HM event. This is typically used when
6951 * entering from ring-3 (not longjmp returns).
6952 *
6953 * @param pVCpu The cross context virtual CPU structure.
6954 */
6955static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6956{
6957 Assert(TRPMHasTrap(pVCpu));
6958 Assert(!pVCpu->hm.s.Event.fPending);
6959
6960 uint8_t uVector;
6961 TRPMEVENT enmTrpmEvent;
6962 RTGCUINT uErrCode;
6963 RTGCUINTPTR GCPtrFaultAddress;
6964 uint8_t cbInstr;
6965
6966 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6967 AssertRC(rc);
6968
6969 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6970 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
6971 if (enmTrpmEvent == TRPM_TRAP)
6972 {
6973 switch (uVector)
6974 {
6975 case X86_XCPT_NMI:
6976 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6977 break;
6978
6979 case X86_XCPT_BP:
6980 case X86_XCPT_OF:
6981 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6982 break;
6983
6984 case X86_XCPT_PF:
6985 case X86_XCPT_DF:
6986 case X86_XCPT_TS:
6987 case X86_XCPT_NP:
6988 case X86_XCPT_SS:
6989 case X86_XCPT_GP:
6990 case X86_XCPT_AC:
6991 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
6992 RT_FALL_THRU();
6993 default:
6994 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6995 break;
6996 }
6997 }
6998 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
6999 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7000 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7001 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7002 else
7003 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7004
7005 rc = TRPMResetTrap(pVCpu);
7006 AssertRC(rc);
7007 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7008 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7009
7010 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7011}
7012
7013
7014/**
7015 * Converts the pending HM event into a TRPM trap.
7016 *
7017 * @param pVCpu The cross context virtual CPU structure.
7018 */
7019static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7020{
7021 Assert(pVCpu->hm.s.Event.fPending);
7022
7023 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7024 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7025 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7026 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7027
7028 /* If a trap was already pending, we did something wrong! */
7029 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7030
7031 TRPMEVENT enmTrapType;
7032 switch (uVectorType)
7033 {
7034 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7035 enmTrapType = TRPM_HARDWARE_INT;
7036 break;
7037
7038 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7039 enmTrapType = TRPM_SOFTWARE_INT;
7040 break;
7041
7042 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7043 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7044 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7045 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7046 enmTrapType = TRPM_TRAP;
7047 break;
7048
7049 default:
7050 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7051 enmTrapType = TRPM_32BIT_HACK;
7052 break;
7053 }
7054
7055 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7056
7057 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7058 AssertRC(rc);
7059
7060 if (fErrorCodeValid)
7061 TRPMSetErrorCode(pVCpu, uErrorCode);
7062
7063 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7064 && uVector == X86_XCPT_PF)
7065 {
7066 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7067 }
7068 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7069 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7070 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7071 {
7072 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7073 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7074 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7075 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7076 }
7077
7078 /* Clear any pending events from the VMCS. */
7079 VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7080 VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);
7081
7082 /* We're now done converting the pending event. */
7083 pVCpu->hm.s.Event.fPending = false;
7084}
7085
7086
7087/**
7088 * Does the necessary state syncing before returning to ring-3 for any reason
7089 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7090 *
7091 * @returns VBox status code.
7092 * @param pVCpu The cross context virtual CPU structure.
7093 * @param fImportState Whether to import the guest state from the VMCS back
7094 * to the guest-CPU context.
7095 *
7096 * @remarks No-long-jmp zone!!!
7097 */
7098static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7099{
7100 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7101 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7102
7103 RTCPUID idCpu = RTMpCpuId();
7104 Log4Func(("HostCpuId=%u\n", idCpu));
7105
7106 /*
7107 * !!! IMPORTANT !!!
7108 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7109 */
7110
7111 /* Save the guest state if necessary. */
7112 if (fImportState)
7113 {
7114 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7115 AssertRCReturn(rc, rc);
7116 }
7117
7118 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
7119 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7120 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7121
7122 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
7123#ifdef VBOX_STRICT
7124 if (CPUMIsHyperDebugStateActive(pVCpu))
7125 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
7126#endif
7127 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7128 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7129 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7130
7131#if HC_ARCH_BITS == 64
7132 /* Restore host-state bits that VT-x only restores partially. */
7133 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7134 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7135 {
7136 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7137 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7138 }
7139 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7140#endif
7141
7142 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7143 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7144 {
7145 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
7146 if (!fImportState)
7147 {
7148 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
7149 AssertRCReturn(rc, rc);
7150 }
7151 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7152 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7153 }
7154 else
7155 pVCpu->hm.s.vmx.fLazyMsrs = 0;
7156
7157 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7158 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7159
7160 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7161 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
7162 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
7163 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
7164 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
7165 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7166 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7167 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7168 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7169
7170 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7171
7172 /** @todo This partially defeats the purpose of having preemption hooks.
7173 * The problem is, deregistering the hooks should be moved to a place that
7174 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7175 * context.
7176 */
7177 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7178 {
7179 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7180 AssertRCReturn(rc, rc);
7181
7182 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7183 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7184 }
7185 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7186 NOREF(idCpu);
7187
7188 return VINF_SUCCESS;
7189}
7190
7191
7192/**
7193 * Leaves the VT-x session.
7194 *
7195 * @returns VBox status code.
7196 * @param pVCpu The cross context virtual CPU structure.
7197 *
7198 * @remarks No-long-jmp zone!!!
7199 */
7200static int hmR0VmxLeaveSession(PVMCPU pVCpu)
7201{
7202 HM_DISABLE_PREEMPT(pVCpu);
7203 HMVMX_ASSERT_CPU_SAFE(pVCpu);
7204 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7205 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7206
7207 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7208 and done this from the VMXR0ThreadCtxCallback(). */
7209 if (!pVCpu->hm.s.fLeaveDone)
7210 {
7211 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
7212 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7213 pVCpu->hm.s.fLeaveDone = true;
7214 }
7215 Assert(!pVCpu->cpum.GstCtx.fExtrn);
7216
7217 /*
7218 * !!! IMPORTANT !!!
7219 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7220 */
7221
7222 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7223 /** @todo Deregistering here means we need to VMCLEAR always
7224 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
7225 * for calling VMMR0ThreadCtxHookDisable here! */
7226 VMMR0ThreadCtxHookDisable(pVCpu);
7227
7228 /* Leave HM context. This takes care of local init (term). */
7229 int rc = HMR0LeaveCpu(pVCpu);
7230
7231 HM_RESTORE_PREEMPT();
7232 return rc;
7233}
7234
7235
7236/**
7237 * Does the necessary state syncing before doing a longjmp to ring-3.
7238 *
7239 * @returns VBox status code.
7240 * @param pVCpu The cross context virtual CPU structure.
7241 *
7242 * @remarks No-long-jmp zone!!!
7243 */
7244DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
7245{
7246 return hmR0VmxLeaveSession(pVCpu);
7247}
7248
7249
7250/**
7251 * Take necessary actions before going back to ring-3.
7252 *
7253 * An action requires us to go back to ring-3. This function does the necessary
7254 * steps before we can safely return to ring-3. This is not the same as longjmps
7255 * to ring-3, this is voluntary and prepares the guest so it may continue
7256 * executing outside HM (recompiler/IEM).
7257 *
7258 * @returns VBox status code.
7259 * @param pVCpu The cross context virtual CPU structure.
7260 * @param rcExit The reason for exiting to ring-3. Can be
7261 * VINF_VMM_UNKNOWN_RING3_CALL.
7262 */
7263static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
7264{
7265 Assert(pVCpu);
7266 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7267
7268 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7269 {
7270 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7271 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7272 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7273 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7274 }
7275
7276 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7277 VMMRZCallRing3Disable(pVCpu);
7278 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
7279
7280 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7281 if (pVCpu->hm.s.Event.fPending)
7282 {
7283 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7284 Assert(!pVCpu->hm.s.Event.fPending);
7285 }
7286
7287 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7288 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7289
7290 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7291 and if we're injecting an event we should have a TRPM trap pending. */
7292 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7293#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
7294 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7295#endif
7296
7297 /* Save guest state and restore host state bits. */
7298 int rc = hmR0VmxLeaveSession(pVCpu);
7299 AssertRCReturn(rc, rc);
7300 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7301 /* Thread-context hooks are unregistered at this point!!! */
7302
7303 /* Sync recompiler state. */
7304 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7305 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7306 | CPUM_CHANGED_LDTR
7307 | CPUM_CHANGED_GDTR
7308 | CPUM_CHANGED_IDTR
7309 | CPUM_CHANGED_TR
7310 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7311 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
7312 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
7313 {
7314 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7315 }
7316
7317 Assert(!pVCpu->hm.s.fClearTrapFlag);
7318
7319 /* Update the exit-to-ring 3 reason. */
7320 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
7321
7322 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7323 if (rcExit != VINF_EM_RAW_INTERRUPT)
7324 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7325
7326 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7327
7328 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7329 VMMRZCallRing3RemoveNotification(pVCpu);
7330 VMMRZCallRing3Enable(pVCpu);
7331
7332 return rc;
7333}
7334
7335
7336/**
7337 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7338 * longjump to ring-3 and possibly get preempted.
7339 *
7340 * @returns VBox status code.
7341 * @param pVCpu The cross context virtual CPU structure.
7342 * @param enmOperation The operation causing the ring-3 longjump.
7343 * @param pvUser User argument, currently unused, NULL.
7344 */
7345static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7346{
7347 RT_NOREF(pvUser);
7348 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7349 {
7350 /*
7351 * !!! IMPORTANT !!!
7352 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7353 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7354 */
7355 VMMRZCallRing3RemoveNotification(pVCpu);
7356 VMMRZCallRing3Disable(pVCpu);
7357 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7358 RTThreadPreemptDisable(&PreemptState);
7359
7360 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7361 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7362 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7363
7364#if HC_ARCH_BITS == 64
7365 /* Restore host-state bits that VT-x only restores partially. */
7366 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7367 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7368 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7369 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7370#endif
7371
7372 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7373 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7374 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7375
7376 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7377 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7378 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7379 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7380 {
7381 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7382 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7383 }
7384
7385 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7386 VMMR0ThreadCtxHookDisable(pVCpu);
7387 HMR0LeaveCpu(pVCpu);
7388 RTThreadPreemptRestore(&PreemptState);
7389 return VINF_SUCCESS;
7390 }
7391
7392 Assert(pVCpu);
7393 Assert(pvUser);
7394 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7395 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7396
7397 VMMRZCallRing3Disable(pVCpu);
7398 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7399
7400 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
7401
7402 int rc = hmR0VmxLongJmpToRing3(pVCpu);
7403 AssertRCReturn(rc, rc);
7404
7405 VMMRZCallRing3Enable(pVCpu);
7406 return VINF_SUCCESS;
7407}
7408
7409
7410/**
7411 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7412 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7413 *
7414 * @param pVCpu The cross context virtual CPU structure.
7415 */
7416DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7417{
7418 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7419 {
7420 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7421 {
7422 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7423 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7424 AssertRC(rc);
7425 Log4Func(("Setup interrupt-window exiting\n"));
7426 }
7427 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7428}
7429
7430
7431/**
7432 * Clears the interrupt-window exiting control in the VMCS.
7433 *
7434 * @param pVCpu The cross context virtual CPU structure.
7435 */
7436DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7437{
7438 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
7439 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7440 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7441 AssertRC(rc);
7442 Log4Func(("Cleared interrupt-window exiting\n"));
7443}
7444
7445
7446/**
7447 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7448 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7449 *
7450 * @param pVCpu The cross context virtual CPU structure.
7451 */
7452DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7453{
7454 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7455 {
7456 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7457 {
7458 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7459 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7460 AssertRC(rc);
7461 Log4Func(("Setup NMI-window exiting\n"));
7462 }
7463 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7464}
7465
7466
7467/**
7468 * Clears the NMI-window exiting control in the VMCS.
7469 *
7470 * @param pVCpu The cross context virtual CPU structure.
7471 */
7472DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7473{
7474 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
7475 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7476 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7477 AssertRC(rc);
7478 Log4Func(("Cleared NMI-window exiting\n"));
7479}
7480
7481
7482/**
7483 * Evaluates the event to be delivered to the guest and sets it as the pending
7484 * event.
7485 *
7486 * @returns The VT-x guest-interruptibility state.
7487 * @param pVCpu The cross context virtual CPU structure.
7488 */
7489static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu)
7490{
7491 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7492 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7493 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu);
7494 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7495 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7496 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7497
7498 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7499 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7500 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7501 Assert(!TRPMHasTrap(pVCpu));
7502
7503 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7504 APICUpdatePendingInterrupts(pVCpu);
7505
7506 /*
7507 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7508 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7509 */
7510 /** @todo SMI. SMIs take priority over NMIs. */
7511 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7512 {
7513 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7514 if ( !pVCpu->hm.s.Event.fPending
7515 && !fBlockNmi
7516 && !fBlockSti
7517 && !fBlockMovSS)
7518 {
7519 Log4Func(("Pending NMI\n"));
7520 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INT_INFO_VALID;
7521 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7522
7523 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7524 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7525 }
7526 else
7527 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7528 }
7529 /*
7530 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7531 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7532 */
7533 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7534 && !pVCpu->hm.s.fSingleInstruction)
7535 {
7536 Assert(!DBGFIsStepping(pVCpu));
7537 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7538 AssertRCReturn(rc, 0);
7539 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7540 if ( !pVCpu->hm.s.Event.fPending
7541 && !fBlockInt
7542 && !fBlockSti
7543 && !fBlockMovSS)
7544 {
7545 uint8_t u8Interrupt;
7546 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7547 if (RT_SUCCESS(rc))
7548 {
7549 Log4Func(("Pending external interrupt u8Interrupt=%#x\n", u8Interrupt));
7550 uint32_t u32IntInfo = u8Interrupt
7551 | VMX_EXIT_INT_INFO_VALID
7552 | (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7553
7554 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7555 }
7556 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7557 {
7558 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7559 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7560 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7561
7562 /*
7563 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7564 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7565 * need to re-set this force-flag here.
7566 */
7567 }
7568 else
7569 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7570 }
7571 else
7572 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7573 }
7574
7575 return fIntrState;
7576}
7577
7578
7579/**
7580 * Sets a pending-debug exception to be delivered to the guest if the guest is
7581 * single-stepping in the VMCS.
7582 *
7583 * @param pVCpu The cross context virtual CPU structure.
7584 */
7585DECLINLINE(int) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7586{
7587 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7588 RT_NOREF(pVCpu);
7589 return VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
7590}
7591
7592
7593/**
7594 * Injects any pending events into the guest if the guest is in a state to
7595 * receive them.
7596 *
7597 * @returns Strict VBox status code (i.e. informational status codes too).
7598 * @param pVCpu The cross context virtual CPU structure.
7599 * @param fIntrState The VT-x guest-interruptibility state.
7600 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7601 * return VINF_EM_DBG_STEPPED if the event was
7602 * dispatched directly.
7603 */
7604static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, uint32_t fIntrState, bool fStepping)
7605{
7606 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7607 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7608
7609 bool fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7610 bool fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7611
7612 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7613 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7614 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7615 Assert(!TRPMHasTrap(pVCpu));
7616
7617 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7618 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7619 if (pVCpu->hm.s.Event.fPending)
7620 {
7621 /*
7622 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7623 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7624 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7625 *
7626 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7627 */
7628 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7629#ifdef VBOX_STRICT
7630 if (uIntType == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
7631 {
7632 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7633 Assert(!fBlockInt);
7634 Assert(!fBlockSti);
7635 Assert(!fBlockMovSS);
7636 }
7637 else if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
7638 {
7639 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7640 Assert(!fBlockSti);
7641 Assert(!fBlockMovSS);
7642 Assert(!fBlockNmi);
7643 }
7644#endif
7645 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7646 uIntType));
7647 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7648 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping,
7649 &fIntrState);
7650 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7651
7652 /* Update the interruptibility-state as it could have been changed by
7653 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7654 fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7655 fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7656
7657 if (uIntType == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
7658 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7659 else
7660 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7661 }
7662
7663 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7664 if ( fBlockSti
7665 || fBlockMovSS)
7666 {
7667 if (!pVCpu->hm.s.fSingleInstruction)
7668 {
7669 /*
7670 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7671 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7672 * See Intel spec. 27.3.4 "Saving Non-Register State".
7673 */
7674 Assert(!DBGFIsStepping(pVCpu));
7675 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7676 AssertRCReturn(rc, rc);
7677 if (pCtx->eflags.Bits.u1TF)
7678 {
7679 int rc2 = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7680 AssertRCReturn(rc2, rc2);
7681 }
7682 }
7683 else if (pCtx->eflags.Bits.u1TF)
7684 {
7685 /*
7686 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7687 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7688 */
7689 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
7690 fIntrState = 0;
7691 }
7692 }
7693
7694 /*
7695 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7696 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7697 */
7698 int rc3 = hmR0VmxExportGuestIntrState(pVCpu, fIntrState);
7699 AssertRCReturn(rc3, rc3);
7700
7701 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7702 NOREF(fBlockMovSS); NOREF(fBlockSti);
7703 return rcStrict;
7704}
7705
7706
7707/**
7708 * Injects a double-fault (\#DF) exception into the VM.
7709 *
7710 * @returns Strict VBox status code (i.e. informational status codes too).
7711 * @param pVCpu The cross context virtual CPU structure.
7712 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7713 * and should return VINF_EM_DBG_STEPPED if the event
7714 * is injected directly (register modified by us, not
7715 * by hardware on VM-entry).
7716 * @param pfIntrState Pointer to the current guest interruptibility-state.
7717 * This interruptibility-state will be updated if
7718 * necessary. This cannot not be NULL.
7719 */
7720DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, bool fStepping, uint32_t *pfIntrState)
7721{
7722 uint32_t const u32IntInfo = X86_XCPT_DF | VMX_EXIT_INT_INFO_VALID
7723 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7724 | VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7725 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */, fStepping,
7726 pfIntrState);
7727}
7728
7729
7730/**
7731 * Injects a general-protection (\#GP) fault into the VM.
7732 *
7733 * @returns Strict VBox status code (i.e. informational status codes too).
7734 * @param pVCpu The cross context virtual CPU structure.
7735 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7736 * mode, i.e. in real-mode it's not valid).
7737 * @param u32ErrorCode The error code associated with the \#GP.
7738 * @param fStepping Whether we're running in
7739 * hmR0VmxRunGuestCodeStep() and should return
7740 * VINF_EM_DBG_STEPPED if the event is injected
7741 * directly (register modified by us, not by
7742 * hardware on VM-entry).
7743 * @param pfIntrState Pointer to the current guest interruptibility-state.
7744 * This interruptibility-state will be updated if
7745 * necessary. This cannot not be NULL.
7746 */
7747DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, bool fErrorCodeValid, uint32_t u32ErrorCode, bool fStepping,
7748 uint32_t *pfIntrState)
7749{
7750 uint32_t const u32IntInfo = X86_XCPT_GP | VMX_EXIT_INT_INFO_VALID
7751 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7752 | (fErrorCodeValid ? VMX_EXIT_INT_INFO_ERROR_CODE_VALID : 0);
7753 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */, fStepping,
7754 pfIntrState);
7755}
7756
7757
7758/**
7759 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7760 * stack.
7761 *
7762 * @returns Strict VBox status code (i.e. informational status codes too).
7763 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7764 * @param pVCpu The cross context virtual CPU structure.
7765 * @param uValue The value to push to the guest stack.
7766 */
7767static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
7768{
7769 /*
7770 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7771 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7772 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7773 */
7774 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7775 if (pCtx->sp == 1)
7776 return VINF_EM_RESET;
7777 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7778 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
7779 AssertRC(rc);
7780 return rc;
7781}
7782
7783
7784/**
7785 * Injects an event into the guest upon VM-entry by updating the relevant fields
7786 * in the VM-entry area in the VMCS.
7787 *
7788 * @returns Strict VBox status code (i.e. informational status codes too).
7789 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7790 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7791 *
7792 * @param pVCpu The cross context virtual CPU structure.
7793 * @param u64IntInfo The VM-entry interruption-information field.
7794 * @param cbInstr The VM-entry instruction length in bytes (for
7795 * software interrupts, exceptions and privileged
7796 * software exceptions).
7797 * @param u32ErrCode The VM-entry exception error code.
7798 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7799 * @param pfIntrState Pointer to the current guest interruptibility-state.
7800 * This interruptibility-state will be updated if
7801 * necessary. This cannot not be NULL.
7802 * @param fStepping Whether we're running in
7803 * hmR0VmxRunGuestCodeStep() and should return
7804 * VINF_EM_DBG_STEPPED if the event is injected
7805 * directly (register modified by us, not by
7806 * hardware on VM-entry).
7807 */
7808static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7809 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState)
7810{
7811 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7812 AssertMsg(!RT_HI_U32(u64IntInfo), ("%#RX64\n", u64IntInfo));
7813 Assert(pfIntrState);
7814
7815 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7816 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7817 uint32_t const uVector = VMX_EXIT_INT_INFO_VECTOR(u32IntInfo);
7818 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(u32IntInfo);
7819
7820#ifdef VBOX_STRICT
7821 /*
7822 * Validate the error-code-valid bit for hardware exceptions.
7823 * No error codes for exceptions in real-mode.
7824 *
7825 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7826 */
7827 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7828 && !CPUMIsGuestInRealModeEx(pCtx))
7829 {
7830 switch (uVector)
7831 {
7832 case X86_XCPT_PF:
7833 case X86_XCPT_DF:
7834 case X86_XCPT_TS:
7835 case X86_XCPT_NP:
7836 case X86_XCPT_SS:
7837 case X86_XCPT_GP:
7838 case X86_XCPT_AC:
7839 AssertMsg(VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
7840 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7841 RT_FALL_THRU();
7842 default:
7843 break;
7844 }
7845 }
7846#endif
7847
7848 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7849 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7850 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
7851
7852 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7853
7854 /*
7855 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
7856 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
7857 * interrupt handler in the (real-mode) guest.
7858 *
7859 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
7860 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7861 */
7862 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
7863 {
7864 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
7865 {
7866 /*
7867 * For unrestricted execution enabled CPUs running real-mode guests, we must not
7868 * set the deliver-error-code bit.
7869 *
7870 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7871 */
7872 u32IntInfo &= ~VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7873 }
7874 else
7875 {
7876 PVM pVM = pVCpu->CTX_SUFF(pVM);
7877 Assert(PDMVmmDevHeapIsEnabled(pVM));
7878 Assert(pVM->hm.s.vmx.pRealModeTSS);
7879
7880 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
7881 int rc2 = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_RIP
7882 | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
7883 AssertRCReturn(rc2, rc2);
7884
7885 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7886 size_t const cbIdtEntry = sizeof(X86IDTR16);
7887 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
7888 {
7889 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7890 if (uVector == X86_XCPT_DF)
7891 return VINF_EM_RESET;
7892
7893 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7894 if (uVector == X86_XCPT_GP)
7895 return hmR0VmxInjectXcptDF(pVCpu, fStepping, pfIntrState);
7896
7897 /*
7898 * If we're injecting an event with no valid IDT entry, inject a #GP.
7899 * No error codes for exceptions in real-mode.
7900 *
7901 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7902 */
7903 return hmR0VmxInjectXcptGP(pVCpu, false /* fErrCodeValid */, 0 /* u32ErrCode */, fStepping, pfIntrState);
7904 }
7905
7906 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7907 uint16_t uGuestIp = pCtx->ip;
7908 if (uIntType == VMX_EXIT_INT_INFO_TYPE_SW_XCPT)
7909 {
7910 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7911 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7912 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7913 }
7914 else if (uIntType == VMX_EXIT_INT_INFO_TYPE_SW_INT)
7915 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7916
7917 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7918 X86IDTR16 IdtEntry;
7919 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
7920 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7921 AssertRCReturn(rc2, rc2);
7922
7923 /* Construct the stack frame for the interrupt/exception handler. */
7924 VBOXSTRICTRC rcStrict;
7925 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
7926 if (rcStrict == VINF_SUCCESS)
7927 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
7928 if (rcStrict == VINF_SUCCESS)
7929 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
7930
7931 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7932 if (rcStrict == VINF_SUCCESS)
7933 {
7934 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7935 pCtx->rip = IdtEntry.offSel;
7936 pCtx->cs.Sel = IdtEntry.uSel;
7937 pCtx->cs.ValidSel = IdtEntry.uSel;
7938 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7939 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7940 && uVector == X86_XCPT_PF)
7941 pCtx->cr2 = GCPtrFaultAddress;
7942
7943 /* If any other guest-state bits are changed here, make sure to update
7944 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7945 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
7946 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
7947 | HM_CHANGED_GUEST_RSP);
7948
7949 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7950 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
7951 {
7952 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7953 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
7954 Log4Func(("Clearing inhibition due to STI\n"));
7955 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
7956 }
7957 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
7958 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
7959
7960 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7961 it, if we are returning to ring-3 before executing guest code. */
7962 pVCpu->hm.s.Event.fPending = false;
7963
7964 /* Make hmR0VmxPreRunGuest() return if we're stepping since we've changed cs:rip. */
7965 if (fStepping)
7966 rcStrict = VINF_EM_DBG_STEPPED;
7967 }
7968 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
7969 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7970 return rcStrict;
7971 }
7972 }
7973
7974 /* Validate. */
7975 Assert(VMX_EXIT_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
7976 Assert(!VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
7977 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
7978
7979 /* Inject. */
7980 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
7981 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
7982 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
7983 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
7984 AssertRCReturn(rc, rc);
7985
7986 /* Update CR2. */
7987 if ( VMX_EXIT_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7988 && uVector == X86_XCPT_PF)
7989 pCtx->cr2 = GCPtrFaultAddress;
7990
7991 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
7992
7993 return VINF_SUCCESS;
7994}
7995
7996
7997/**
7998 * Clears the interrupt-window exiting control in the VMCS and if necessary
7999 * clears the current event in the VMCS as well.
8000 *
8001 * @returns VBox status code.
8002 * @param pVCpu The cross context virtual CPU structure.
8003 *
8004 * @remarks Use this function only to clear events that have not yet been
8005 * delivered to the guest but are injected in the VMCS!
8006 * @remarks No-long-jump zone!!!
8007 */
8008static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8009{
8010 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8011 {
8012 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8013 Log4Func(("Cleared interrupt widow\n"));
8014 }
8015
8016 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8017 {
8018 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8019 Log4Func(("Cleared interrupt widow\n"));
8020 }
8021}
8022
8023
8024/**
8025 * Enters the VT-x session.
8026 *
8027 * @returns VBox status code.
8028 * @param pVCpu The cross context virtual CPU structure.
8029 * @param pHostCpu Pointer to the global CPU info struct.
8030 */
8031VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
8032{
8033 AssertPtr(pVCpu);
8034 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8035 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8036 RT_NOREF(pHostCpu);
8037
8038 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8039 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8040 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8041
8042#ifdef VBOX_STRICT
8043 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8044 RTCCUINTREG uHostCR4 = ASMGetCR4();
8045 if (!(uHostCR4 & X86_CR4_VMXE))
8046 {
8047 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8048 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8049 }
8050#endif
8051
8052 /*
8053 * Load the VCPU's VMCS as the current (and active) one.
8054 */
8055 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8056 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8057 if (RT_FAILURE(rc))
8058 return rc;
8059
8060 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8061 pVCpu->hm.s.fLeaveDone = false;
8062 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8063
8064 return VINF_SUCCESS;
8065}
8066
8067
8068/**
8069 * The thread-context callback (only on platforms which support it).
8070 *
8071 * @param enmEvent The thread-context event.
8072 * @param pVCpu The cross context virtual CPU structure.
8073 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8074 * @thread EMT(pVCpu)
8075 */
8076VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8077{
8078 NOREF(fGlobalInit);
8079
8080 switch (enmEvent)
8081 {
8082 case RTTHREADCTXEVENT_OUT:
8083 {
8084 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8085 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8086 VMCPU_ASSERT_EMT(pVCpu);
8087
8088 /* No longjmps (logger flushes, locks) in this fragile context. */
8089 VMMRZCallRing3Disable(pVCpu);
8090 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8091
8092 /*
8093 * Restore host-state (FPU, debug etc.)
8094 */
8095 if (!pVCpu->hm.s.fLeaveDone)
8096 {
8097 /*
8098 * Do -not- import the guest-state here as we might already be in the middle of importing
8099 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8100 */
8101 hmR0VmxLeave(pVCpu, false /* fImportState */);
8102 pVCpu->hm.s.fLeaveDone = true;
8103 }
8104
8105 /* Leave HM context, takes care of local init (term). */
8106 int rc = HMR0LeaveCpu(pVCpu);
8107 AssertRC(rc); NOREF(rc);
8108
8109 /* Restore longjmp state. */
8110 VMMRZCallRing3Enable(pVCpu);
8111 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8112 break;
8113 }
8114
8115 case RTTHREADCTXEVENT_IN:
8116 {
8117 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8118 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8119 VMCPU_ASSERT_EMT(pVCpu);
8120
8121 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8122 VMMRZCallRing3Disable(pVCpu);
8123 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8124
8125 /* Initialize the bare minimum state required for HM. This takes care of
8126 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8127 int rc = hmR0EnterCpu(pVCpu);
8128 AssertRC(rc);
8129 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8130 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8131
8132 /* Load the active VMCS as the current one. */
8133 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8134 {
8135 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8136 AssertRC(rc); NOREF(rc);
8137 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8138 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8139 }
8140 pVCpu->hm.s.fLeaveDone = false;
8141
8142 /* Restore longjmp state. */
8143 VMMRZCallRing3Enable(pVCpu);
8144 break;
8145 }
8146
8147 default:
8148 break;
8149 }
8150}
8151
8152
8153/**
8154 * Exports the host state into the VMCS host-state area.
8155 * Sets up the VM-exit MSR-load area.
8156 *
8157 * The CPU state will be loaded from these fields on every successful VM-exit.
8158 *
8159 * @returns VBox status code.
8160 * @param pVCpu The cross context virtual CPU structure.
8161 *
8162 * @remarks No-long-jump zone!!!
8163 */
8164static int hmR0VmxExportHostState(PVMCPU pVCpu)
8165{
8166 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8167
8168 int rc = VINF_SUCCESS;
8169 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8170 {
8171 rc = hmR0VmxExportHostControlRegs();
8172 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8173
8174 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8175 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8176
8177 rc = hmR0VmxExportHostMsrs(pVCpu);
8178 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8179
8180 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8181 }
8182 return rc;
8183}
8184
8185
8186/**
8187 * Saves the host state in the VMCS host-state.
8188 *
8189 * @returns VBox status code.
8190 * @param pVCpu The cross context virtual CPU structure.
8191 *
8192 * @remarks No-long-jump zone!!!
8193 */
8194VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8195{
8196 AssertPtr(pVCpu);
8197 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8198
8199 /*
8200 * Export the host state here while entering HM context.
8201 * When thread-context hooks are used, we might get preempted and have to re-save the host
8202 * state but most of the time we won't be, so do it here before we disable interrupts.
8203 */
8204 return hmR0VmxExportHostState(pVCpu);
8205}
8206
8207
8208/**
8209 * Exports the guest state into the VMCS guest-state area.
8210 *
8211 * The will typically be done before VM-entry when the guest-CPU state and the
8212 * VMCS state may potentially be out of sync.
8213 *
8214 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8215 * VM-entry controls.
8216 * Sets up the appropriate VMX non-root function to execute guest code based on
8217 * the guest CPU mode.
8218 *
8219 * @returns VBox strict status code.
8220 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8221 * without unrestricted guest access and the VMMDev is not presently
8222 * mapped (e.g. EFI32).
8223 *
8224 * @param pVCpu The cross context virtual CPU structure.
8225 *
8226 * @remarks No-long-jump zone!!!
8227 */
8228static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu)
8229{
8230 AssertPtr(pVCpu);
8231 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8232
8233 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8234
8235 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
8236
8237 /* Determine real-on-v86 mode. */
8238 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8239 if ( !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
8240 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
8241 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8242
8243 /*
8244 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8245 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8246 */
8247 int rc = hmR0VmxSelectVMRunHandler(pVCpu);
8248 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8249
8250 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8251 rc = hmR0VmxExportGuestEntryCtls(pVCpu);
8252 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8253
8254 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8255 rc = hmR0VmxExportGuestExitCtls(pVCpu);
8256 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8257
8258 rc = hmR0VmxExportGuestCR0(pVCpu);
8259 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8260
8261 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu);
8262 if (rcStrict == VINF_SUCCESS)
8263 { /* likely */ }
8264 else
8265 {
8266 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8267 return rcStrict;
8268 }
8269
8270 rc = hmR0VmxExportGuestSegmentRegs(pVCpu);
8271 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8272
8273 /* This needs to be done after hmR0VmxExportGuestEntryCtls() and hmR0VmxExportGuestExitCtls() as it
8274 may alter controls if we determine we don't have to swap EFER after all. */
8275 rc = hmR0VmxExportGuestMsrs(pVCpu);
8276 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8277
8278 rc = hmR0VmxExportGuestApicTpr(pVCpu);
8279 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8280
8281 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu);
8282 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8283
8284 /* Exporting RFLAGS here is fine, even though RFLAGS.TF might depend on guest debug state which is
8285 not exported here. It is re-evaluated and updated if necessary in hmR0VmxExportSharedState(). */
8286 rc = hmR0VmxExportGuestRip(pVCpu);
8287 rc |= hmR0VmxExportGuestRsp(pVCpu);
8288 rc |= hmR0VmxExportGuestRflags(pVCpu);
8289 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8290
8291 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
8292 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
8293 | HM_CHANGED_GUEST_CR2
8294 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
8295 | HM_CHANGED_GUEST_X87
8296 | HM_CHANGED_GUEST_SSE_AVX
8297 | HM_CHANGED_GUEST_OTHER_XSAVE
8298 | HM_CHANGED_GUEST_XCRx
8299 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
8300 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
8301 | HM_CHANGED_GUEST_TSC_AUX
8302 | HM_CHANGED_GUEST_OTHER_MSRS
8303 | HM_CHANGED_GUEST_HWVIRT
8304 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
8305
8306 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
8307 return rc;
8308}
8309
8310
8311/**
8312 * Exports the state shared between the host and guest into the VMCS.
8313 *
8314 * @param pVCpu The cross context virtual CPU structure.
8315 *
8316 * @remarks No-long-jump zone!!!
8317 */
8318static void hmR0VmxExportSharedState(PVMCPU pVCpu)
8319{
8320 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8321 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8322
8323 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
8324 {
8325 int rc = hmR0VmxExportSharedDebugState(pVCpu);
8326 AssertRC(rc);
8327 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
8328
8329 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8330 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
8331 {
8332 rc = hmR0VmxExportGuestRflags(pVCpu);
8333 AssertRC(rc);
8334 }
8335 }
8336
8337 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
8338 {
8339 hmR0VmxLazyLoadGuestMsrs(pVCpu);
8340 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
8341 }
8342
8343 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
8344 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8345}
8346
8347
8348/**
8349 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8350 *
8351 * @returns Strict VBox status code (i.e. informational status codes too).
8352 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8353 * without unrestricted guest access and the VMMDev is not presently
8354 * mapped (e.g. EFI32).
8355 *
8356 * @param pVCpu The cross context virtual CPU structure.
8357 *
8358 * @remarks No-long-jump zone!!!
8359 */
8360static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu)
8361{
8362 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8363 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8364 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8365
8366#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8367 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8368#endif
8369
8370 /*
8371 * For many exits it's only RIP that changes and hence try to export it first
8372 * without going through a lot of change flag checks.
8373 */
8374 VBOXSTRICTRC rcStrict;
8375 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8376 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8377 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
8378 {
8379 rcStrict = hmR0VmxExportGuestRip(pVCpu);
8380 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8381 { /* likely */}
8382 else
8383 AssertMsgFailedReturn(("hmR0VmxExportGuestRip failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8384 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
8385 }
8386 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8387 {
8388 rcStrict = hmR0VmxExportGuestState(pVCpu);
8389 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8390 { /* likely */}
8391 else
8392 {
8393 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("hmR0VmxExportGuestState failed! rc=%Rrc\n",
8394 VBOXSTRICTRC_VAL(rcStrict)));
8395 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8396 return rcStrict;
8397 }
8398 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
8399 }
8400 else
8401 rcStrict = VINF_SUCCESS;
8402
8403#ifdef VBOX_STRICT
8404 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8405 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8406 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8407 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
8408 ("fCtxChanged=%#RX64\n", fCtxChanged));
8409#endif
8410 return rcStrict;
8411}
8412
8413
8414/**
8415 * Does the preparations before executing guest code in VT-x.
8416 *
8417 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8418 * recompiler/IEM. We must be cautious what we do here regarding committing
8419 * guest-state information into the VMCS assuming we assuredly execute the
8420 * guest in VT-x mode.
8421 *
8422 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8423 * the common-state (TRPM/forceflags), we must undo those changes so that the
8424 * recompiler/IEM can (and should) use them when it resumes guest execution.
8425 * Otherwise such operations must be done when we can no longer exit to ring-3.
8426 *
8427 * @returns Strict VBox status code (i.e. informational status codes too).
8428 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8429 * have been disabled.
8430 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8431 * double-fault into the guest.
8432 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8433 * dispatched directly.
8434 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8435 *
8436 * @param pVCpu The cross context virtual CPU structure.
8437 * @param pVmxTransient Pointer to the VMX transient structure.
8438 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8439 * us ignore some of the reasons for returning to
8440 * ring-3, and return VINF_EM_DBG_STEPPED if event
8441 * dispatching took place.
8442 */
8443static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
8444{
8445 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8446
8447#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_ONLY_IN_IEM
8448 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
8449 return VINF_EM_RESCHEDULE_REM;
8450#endif
8451
8452#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8453 PGMRZDynMapFlushAutoSet(pVCpu);
8454#endif
8455
8456 /* Check force flag actions that might require us to go back to ring-3. */
8457 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
8458 if (rcStrict == VINF_SUCCESS)
8459 { /* FFs doesn't get set all the time. */ }
8460 else
8461 return rcStrict;
8462
8463 /*
8464 * Setup the virtualized-APIC accesses.
8465 *
8466 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8467 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8468 *
8469 * This is the reason we do it here and not in hmR0VmxExportGuestState().
8470 */
8471 PVM pVM = pVCpu->CTX_SUFF(pVM);
8472 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8473 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
8474 && PDMHasApic(pVM))
8475 {
8476 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8477 Assert(u64MsrApicBase);
8478 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8479
8480 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8481
8482 /* Unalias any existing mapping. */
8483 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8484 AssertRCReturn(rc, rc);
8485
8486 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8487 Log4Func(("Mapped HC APIC-access page at %#RGp\n", GCPhysApicBase));
8488 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8489 AssertRCReturn(rc, rc);
8490
8491 /* Update the per-VCPU cache of the APIC base MSR. */
8492 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8493 }
8494
8495 if (TRPMHasTrap(pVCpu))
8496 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8497 uint32_t fIntrState = hmR0VmxEvaluatePendingEvent(pVCpu);
8498
8499 /*
8500 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
8501 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
8502 * also result in triple-faulting the VM.
8503 */
8504 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, fIntrState, fStepping);
8505 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8506 { /* likely */ }
8507 else
8508 {
8509 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8510 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8511 return rcStrict;
8512 }
8513
8514 /*
8515 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
8516 * import CR3 themselves. We will need to update them here, as even as late as the above
8517 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
8518 * the below force flags to be set.
8519 */
8520 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
8521 {
8522 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
8523 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
8524 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
8525 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
8526 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8527 }
8528 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
8529 {
8530 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
8531 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8532 }
8533
8534 /*
8535 * No longjmps to ring-3 from this point on!!!
8536 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8537 * This also disables flushing of the R0-logger instance (if any).
8538 */
8539 VMMRZCallRing3Disable(pVCpu);
8540
8541 /*
8542 * Export the guest state bits.
8543 *
8544 * We cannot perform longjmps while loading the guest state because we do not preserve the
8545 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8546 * CPU migration.
8547 *
8548 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8549 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8550 * Hence, loading of the guest state needs to be done -after- injection of events.
8551 */
8552 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu);
8553 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8554 { /* likely */ }
8555 else
8556 {
8557 VMMRZCallRing3Enable(pVCpu);
8558 return rcStrict;
8559 }
8560
8561 /*
8562 * We disable interrupts so that we don't miss any interrupts that would flag preemption
8563 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
8564 * preemption disabled for a while. Since this is purly to aid the
8565 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
8566 * disable interrupt on NT.
8567 *
8568 * We need to check for force-flags that could've possible been altered since we last
8569 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
8570 * see @bugref{6398}).
8571 *
8572 * We also check a couple of other force-flags as a last opportunity to get the EMT back
8573 * to ring-3 before executing guest code.
8574 */
8575 pVmxTransient->fEFlags = ASMIntDisableFlags();
8576
8577 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8578 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8579 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8580 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8581 {
8582 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8583 {
8584 pVCpu->hm.s.Event.fPending = false;
8585
8586 /*
8587 * We've injected any pending events. This is really the point of no return (to ring-3).
8588 *
8589 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8590 * returns from this function, so don't enable them here.
8591 */
8592 return VINF_SUCCESS;
8593 }
8594
8595 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
8596 rcStrict = VINF_EM_RAW_INTERRUPT;
8597 }
8598 else
8599 {
8600 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8601 rcStrict = VINF_EM_RAW_TO_R3;
8602 }
8603
8604 ASMSetFlags(pVmxTransient->fEFlags);
8605 VMMRZCallRing3Enable(pVCpu);
8606
8607 return rcStrict;
8608}
8609
8610
8611/**
8612 * Prepares to run guest code in VT-x and we've committed to doing so. This
8613 * means there is no backing out to ring-3 or anywhere else at this
8614 * point.
8615 *
8616 * @param pVCpu The cross context virtual CPU structure.
8617 * @param pVmxTransient Pointer to the VMX transient structure.
8618 *
8619 * @remarks Called with preemption disabled.
8620 * @remarks No-long-jump zone!!!
8621 */
8622static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
8623{
8624 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8625 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8626 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8627
8628 /*
8629 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8630 */
8631 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8632 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8633
8634 PVM pVM = pVCpu->CTX_SUFF(pVM);
8635 if (!CPUMIsGuestFPUStateActive(pVCpu))
8636 {
8637 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8638 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8639 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
8640 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8641 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
8642 }
8643
8644 /*
8645 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8646 */
8647 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8648 && pVCpu->hm.s.vmx.cMsrs > 0)
8649 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8650
8651 /*
8652 * Re-save the host state bits as we may've been preempted (only happens when
8653 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8654 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8655 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8656 * See @bugref{8432}.
8657 */
8658 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8659 {
8660 int rc = hmR0VmxExportHostState(pVCpu);
8661 AssertRC(rc);
8662 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
8663 }
8664 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
8665
8666 /*
8667 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
8668 */
8669 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
8670 hmR0VmxExportSharedState(pVCpu);
8671 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8672
8673 /* Store status of the shared guest-host state at the time of VM-entry. */
8674#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8675 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
8676 {
8677 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8678 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8679 }
8680 else
8681#endif
8682 {
8683 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8684 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8685 }
8686
8687 /*
8688 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8689 */
8690 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8691 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
8692
8693 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
8694 RTCPUID idCurrentCpu = pCpu->idCpu;
8695 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8696 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8697 {
8698 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8699 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8700 }
8701
8702 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8703 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8704 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8705 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8706
8707 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8708
8709 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8710 to start executing. */
8711
8712 /*
8713 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8714 */
8715 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
8716 {
8717 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8718 {
8719 bool fMsrUpdated;
8720 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
8721 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8722 &fMsrUpdated);
8723 AssertRC(rc2);
8724 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8725 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8726 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8727 }
8728 else
8729 {
8730 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8731 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8732 }
8733 }
8734
8735 if (pVM->cpum.ro.GuestFeatures.fIbrs)
8736 {
8737 bool fMsrUpdated;
8738 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
8739 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
8740 &fMsrUpdated);
8741 AssertRC(rc2);
8742 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8743 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8744 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8745 }
8746
8747#ifdef VBOX_STRICT
8748 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8749 hmR0VmxCheckHostEferMsr(pVCpu);
8750 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8751#endif
8752#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8753 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
8754 {
8755 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
8756 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8757 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8758 }
8759#endif
8760}
8761
8762
8763/**
8764 * Performs some essential restoration of state after running guest code in
8765 * VT-x.
8766 *
8767 * @param pVCpu The cross context virtual CPU structure.
8768 * @param pVmxTransient Pointer to the VMX transient structure.
8769 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8770 *
8771 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8772 *
8773 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8774 * unconditionally when it is safe to do so.
8775 */
8776static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8777{
8778 uint64_t const uHostTsc = ASMReadTSC();
8779 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8780
8781 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8782 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8783 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
8784 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8785 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8786 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8787
8788 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8789 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVCpu->hm.s.vmx.u64TscOffset);
8790
8791 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
8792 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8793 Assert(!ASMIntAreEnabled());
8794 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8795
8796#if HC_ARCH_BITS == 64
8797 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8798#endif
8799#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8800 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8801 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8802 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8803#else
8804 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8805#endif
8806#ifdef VBOX_STRICT
8807 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8808#endif
8809 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8810
8811 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8812 uint32_t uExitReason;
8813 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8814 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8815 AssertRC(rc);
8816 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8817 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INT_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8818
8819 if (rcVMRun == VINF_SUCCESS)
8820 {
8821 /*
8822 * Update the VM-exit history array here even if the VM-entry failed due to:
8823 * - Invalid guest state.
8824 * - MSR loading.
8825 * - Machine-check event.
8826 *
8827 * In any of the above cases we will still have a "valid" VM-exit reason
8828 * despite @a fVMEntryFailed being false.
8829 *
8830 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
8831 *
8832 * Note! We don't have CS or RIP at this point. Will probably address that later
8833 * by amending the history entry added here.
8834 */
8835 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
8836 UINT64_MAX, uHostTsc);
8837
8838 if (!pVmxTransient->fVMEntryFailed)
8839 {
8840 VMMRZCallRing3Enable(pVCpu);
8841
8842 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8843 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8844
8845#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8846 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
8847 AssertRC(rc);
8848#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8849 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_RFLAGS);
8850 AssertRC(rc);
8851#else
8852 /*
8853 * Import the guest-interruptibility state always as we need it while evaluating
8854 * injecting events on re-entry.
8855 *
8856 * We don't import CR0 (when Unrestricted guest execution is unavailable) despite
8857 * checking for real-mode while exporting the state because all bits that cause
8858 * mode changes wrt CR0 are intercepted.
8859 */
8860 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
8861 AssertRC(rc);
8862#endif
8863
8864 /*
8865 * Sync the TPR shadow with our APIC state.
8866 */
8867 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8868 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
8869 {
8870 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
8871 AssertRC(rc);
8872 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
8873 }
8874
8875 return;
8876 }
8877 }
8878 else
8879 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
8880
8881 VMMRZCallRing3Enable(pVCpu);
8882}
8883
8884
8885/**
8886 * Runs the guest code using VT-x the normal way.
8887 *
8888 * @returns VBox status code.
8889 * @param pVCpu The cross context virtual CPU structure.
8890 *
8891 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8892 */
8893static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu)
8894{
8895 VMXTRANSIENT VmxTransient;
8896 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8897 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8898 uint32_t cLoops = 0;
8899
8900 for (;; cLoops++)
8901 {
8902 Assert(!HMR0SuspendPending());
8903 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8904
8905 /* Preparatory work for running guest code, this may force us to return
8906 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8907 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8908 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
8909 if (rcStrict != VINF_SUCCESS)
8910 break;
8911
8912 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
8913 int rcRun = hmR0VmxRunGuest(pVCpu);
8914
8915 /* Restore any residual host-state and save any bits shared between host
8916 and guest into the guest-CPU state. Re-enables interrupts! */
8917 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
8918
8919 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8920 if (RT_SUCCESS(rcRun))
8921 { /* very likely */ }
8922 else
8923 {
8924 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
8925 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
8926 return rcRun;
8927 }
8928
8929 /* Profile the VM-exit. */
8930 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8931 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8932 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8933 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
8934 HMVMX_START_EXIT_DISPATCH_PROF();
8935
8936 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
8937
8938 /* Handle the VM-exit. */
8939#ifdef HMVMX_USE_FUNCTION_TABLE
8940 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
8941#else
8942 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient, VmxTransient.uExitReason);
8943#endif
8944 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
8945 if (rcStrict == VINF_SUCCESS)
8946 {
8947 if (cLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
8948 continue; /* likely */
8949 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8950 rcStrict = VINF_EM_RAW_INTERRUPT;
8951 }
8952 break;
8953 }
8954
8955 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8956 return rcStrict;
8957}
8958
8959
8960
8961/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
8962 * probes.
8963 *
8964 * The following few functions and associated structure contains the bloat
8965 * necessary for providing detailed debug events and dtrace probes as well as
8966 * reliable host side single stepping. This works on the principle of
8967 * "subclassing" the normal execution loop and workers. We replace the loop
8968 * method completely and override selected helpers to add necessary adjustments
8969 * to their core operation.
8970 *
8971 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
8972 * any performance for debug and analysis features.
8973 *
8974 * @{
8975 */
8976
8977/**
8978 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
8979 * the debug run loop.
8980 */
8981typedef struct VMXRUNDBGSTATE
8982{
8983 /** The RIP we started executing at. This is for detecting that we stepped. */
8984 uint64_t uRipStart;
8985 /** The CS we started executing with. */
8986 uint16_t uCsStart;
8987
8988 /** Whether we've actually modified the 1st execution control field. */
8989 bool fModifiedProcCtls : 1;
8990 /** Whether we've actually modified the 2nd execution control field. */
8991 bool fModifiedProcCtls2 : 1;
8992 /** Whether we've actually modified the exception bitmap. */
8993 bool fModifiedXcptBitmap : 1;
8994
8995 /** We desire the modified the CR0 mask to be cleared. */
8996 bool fClearCr0Mask : 1;
8997 /** We desire the modified the CR4 mask to be cleared. */
8998 bool fClearCr4Mask : 1;
8999 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9000 uint32_t fCpe1Extra;
9001 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9002 uint32_t fCpe1Unwanted;
9003 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9004 uint32_t fCpe2Extra;
9005 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9006 uint32_t bmXcptExtra;
9007 /** The sequence number of the Dtrace provider settings the state was
9008 * configured against. */
9009 uint32_t uDtraceSettingsSeqNo;
9010 /** VM-exits to check (one bit per VM-exit). */
9011 uint32_t bmExitsToCheck[3];
9012
9013 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9014 uint32_t fProcCtlsInitial;
9015 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9016 uint32_t fProcCtls2Initial;
9017 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9018 uint32_t bmXcptInitial;
9019} VMXRUNDBGSTATE;
9020AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9021typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9022
9023
9024/**
9025 * Initializes the VMXRUNDBGSTATE structure.
9026 *
9027 * @param pVCpu The cross context virtual CPU structure of the
9028 * calling EMT.
9029 * @param pDbgState The structure to initialize.
9030 */
9031static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9032{
9033 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
9034 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
9035
9036 pDbgState->fModifiedProcCtls = false;
9037 pDbgState->fModifiedProcCtls2 = false;
9038 pDbgState->fModifiedXcptBitmap = false;
9039 pDbgState->fClearCr0Mask = false;
9040 pDbgState->fClearCr4Mask = false;
9041 pDbgState->fCpe1Extra = 0;
9042 pDbgState->fCpe1Unwanted = 0;
9043 pDbgState->fCpe2Extra = 0;
9044 pDbgState->bmXcptExtra = 0;
9045 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9046 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9047 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9048}
9049
9050
9051/**
9052 * Updates the VMSC fields with changes requested by @a pDbgState.
9053 *
9054 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9055 * immediately before executing guest code, i.e. when interrupts are disabled.
9056 * We don't check status codes here as we cannot easily assert or return in the
9057 * latter case.
9058 *
9059 * @param pVCpu The cross context virtual CPU structure.
9060 * @param pDbgState The debug state.
9061 */
9062static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9063{
9064 /*
9065 * Ensure desired flags in VMCS control fields are set.
9066 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9067 *
9068 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9069 * there should be no stale data in pCtx at this point.
9070 */
9071 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9072 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9073 {
9074 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9075 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9076 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9077 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9078 pDbgState->fModifiedProcCtls = true;
9079 }
9080
9081 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9082 {
9083 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9084 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9085 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9086 pDbgState->fModifiedProcCtls2 = true;
9087 }
9088
9089 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9090 {
9091 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9092 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9093 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9094 pDbgState->fModifiedXcptBitmap = true;
9095 }
9096
9097 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32Cr0Mask != 0)
9098 {
9099 pVCpu->hm.s.vmx.u32Cr0Mask = 0;
9100 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9101 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9102 }
9103
9104 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32Cr4Mask != 0)
9105 {
9106 pVCpu->hm.s.vmx.u32Cr4Mask = 0;
9107 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9108 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9109 }
9110}
9111
9112
9113/**
9114 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
9115 * re-entry next time around.
9116 *
9117 * @returns Strict VBox status code (i.e. informational status codes too).
9118 * @param pVCpu The cross context virtual CPU structure.
9119 * @param pDbgState The debug state.
9120 * @param rcStrict The return code from executing the guest using single
9121 * stepping.
9122 */
9123static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9124{
9125 /*
9126 * Restore VM-exit control settings as we may not reenter this function the
9127 * next time around.
9128 */
9129 /* We reload the initial value, trigger what we can of recalculations the
9130 next time around. From the looks of things, that's all that's required atm. */
9131 if (pDbgState->fModifiedProcCtls)
9132 {
9133 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9134 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9135 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9136 AssertRCReturn(rc2, rc2);
9137 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9138 }
9139
9140 /* We're currently the only ones messing with this one, so just restore the
9141 cached value and reload the field. */
9142 if ( pDbgState->fModifiedProcCtls2
9143 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9144 {
9145 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9146 AssertRCReturn(rc2, rc2);
9147 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9148 }
9149
9150 /* If we've modified the exception bitmap, we restore it and trigger
9151 reloading and partial recalculation the next time around. */
9152 if (pDbgState->fModifiedXcptBitmap)
9153 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9154
9155 return rcStrict;
9156}
9157
9158
9159/**
9160 * Configures VM-exit controls for current DBGF and DTrace settings.
9161 *
9162 * This updates @a pDbgState and the VMCS execution control fields to reflect
9163 * the necessary VM-exits demanded by DBGF and DTrace.
9164 *
9165 * @param pVCpu The cross context virtual CPU structure.
9166 * @param pDbgState The debug state.
9167 * @param pVmxTransient Pointer to the VMX transient structure. May update
9168 * fUpdateTscOffsettingAndPreemptTimer.
9169 */
9170static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9171{
9172 /*
9173 * Take down the dtrace serial number so we can spot changes.
9174 */
9175 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9176 ASMCompilerBarrier();
9177
9178 /*
9179 * We'll rebuild most of the middle block of data members (holding the
9180 * current settings) as we go along here, so start by clearing it all.
9181 */
9182 pDbgState->bmXcptExtra = 0;
9183 pDbgState->fCpe1Extra = 0;
9184 pDbgState->fCpe1Unwanted = 0;
9185 pDbgState->fCpe2Extra = 0;
9186 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9187 pDbgState->bmExitsToCheck[i] = 0;
9188
9189 /*
9190 * Software interrupts (INT XXh) - no idea how to trigger these...
9191 */
9192 PVM pVM = pVCpu->CTX_SUFF(pVM);
9193 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9194 || VBOXVMM_INT_SOFTWARE_ENABLED())
9195 {
9196 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9197 }
9198
9199 /*
9200 * INT3 breakpoints - triggered by #BP exceptions.
9201 */
9202 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9203 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9204
9205 /*
9206 * Exception bitmap and XCPT events+probes.
9207 */
9208 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9209 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9210 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9211
9212 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9213 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9214 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9215 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9216 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9217 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9218 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9219 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9220 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9221 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9222 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9223 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9224 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9225 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9226 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9227 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9228 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9229 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9230
9231 if (pDbgState->bmXcptExtra)
9232 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9233
9234 /*
9235 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9236 *
9237 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
9238 * So, when adding/changing/removing please don't forget to update it.
9239 *
9240 * Some of the macros are picking up local variables to save horizontal space,
9241 * (being able to see it in a table is the lesser evil here).
9242 */
9243#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9244 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9245 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9246#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9247 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9248 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9249 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9250 } else do { } while (0)
9251#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9252 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9253 { \
9254 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9255 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9256 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9257 } else do { } while (0)
9258#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9259 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9260 { \
9261 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9262 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9263 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9264 } else do { } while (0)
9265#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9266 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9267 { \
9268 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9269 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9270 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9271 } else do { } while (0)
9272
9273 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9274 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9275 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9276 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9277 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9278
9279 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9280 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9281 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9282 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9283 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
9284 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9285 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9286 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9287 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
9288 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9289 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
9290 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9291 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
9292 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9293 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9294 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9295 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9296 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9297 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9298 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9299 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9300 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9301 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9302 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9303 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9304 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9305 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9306 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9307 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9308 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9309 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9310 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9311 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9312 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9313 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9314 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9315
9316 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9317 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9318 {
9319 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
9320 AssertRC(rc);
9321
9322#if 0 /** @todo fix me */
9323 pDbgState->fClearCr0Mask = true;
9324 pDbgState->fClearCr4Mask = true;
9325#endif
9326 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9327 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
9328 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9329 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
9330 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
9331 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9332 require clearing here and in the loop if we start using it. */
9333 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9334 }
9335 else
9336 {
9337 if (pDbgState->fClearCr0Mask)
9338 {
9339 pDbgState->fClearCr0Mask = false;
9340 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
9341 }
9342 if (pDbgState->fClearCr4Mask)
9343 {
9344 pDbgState->fClearCr4Mask = false;
9345 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
9346 }
9347 }
9348 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9349 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9350
9351 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9352 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9353 {
9354 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9355 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9356 }
9357 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9358 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9359
9360 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
9361 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9362 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
9363 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9364 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
9365 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9366 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
9367 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9368#if 0 /** @todo too slow, fix handler. */
9369 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
9370#endif
9371 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9372
9373 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9374 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9375 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9376 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9377 {
9378 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9379 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9380 }
9381 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9382 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9383 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9384 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9385
9386 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9387 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9388 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9389 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9390 {
9391 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9392 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9393 }
9394 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9395 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9396 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9397 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9398
9399 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9400 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9401 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
9402 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9403 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9404 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9405 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
9406 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9407 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9408 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9409 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
9410 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9411 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
9412 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9413 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9414 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9415 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
9416 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9417 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9418 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9419 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9420 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9421
9422#undef IS_EITHER_ENABLED
9423#undef SET_ONLY_XBM_IF_EITHER_EN
9424#undef SET_CPE1_XBM_IF_EITHER_EN
9425#undef SET_CPEU_XBM_IF_EITHER_EN
9426#undef SET_CPE2_XBM_IF_EITHER_EN
9427
9428 /*
9429 * Sanitize the control stuff.
9430 */
9431 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
9432 if (pDbgState->fCpe2Extra)
9433 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
9434 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
9435 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0;
9436 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
9437 {
9438 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9439 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9440 }
9441
9442 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9443 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9444 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9445 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9446}
9447
9448
9449/**
9450 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9451 * appropriate.
9452 *
9453 * The caller has checked the VM-exit against the
9454 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9455 * already, so we don't have to do that either.
9456 *
9457 * @returns Strict VBox status code (i.e. informational status codes too).
9458 * @param pVCpu The cross context virtual CPU structure.
9459 * @param pVmxTransient Pointer to the VMX-transient structure.
9460 * @param uExitReason The VM-exit reason.
9461 *
9462 * @remarks The name of this function is displayed by dtrace, so keep it short
9463 * and to the point. No longer than 33 chars long, please.
9464 */
9465static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9466{
9467 /*
9468 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9469 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9470 *
9471 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9472 * does. Must add/change/remove both places. Same ordering, please.
9473 *
9474 * Added/removed events must also be reflected in the next section
9475 * where we dispatch dtrace events.
9476 */
9477 bool fDtrace1 = false;
9478 bool fDtrace2 = false;
9479 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9480 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9481 uint32_t uEventArg = 0;
9482#define SET_EXIT(a_EventSubName) \
9483 do { \
9484 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9485 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9486 } while (0)
9487#define SET_BOTH(a_EventSubName) \
9488 do { \
9489 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9490 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9491 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9492 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9493 } while (0)
9494 switch (uExitReason)
9495 {
9496 case VMX_EXIT_MTF:
9497 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9498
9499 case VMX_EXIT_XCPT_OR_NMI:
9500 {
9501 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9502 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
9503 {
9504 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
9505 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
9506 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
9507 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9508 {
9509 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
9510 {
9511 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9512 uEventArg = pVmxTransient->uExitIntErrorCode;
9513 }
9514 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9515 switch (enmEvent1)
9516 {
9517 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9518 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9519 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9520 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9521 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9522 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9523 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9524 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9525 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9526 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9527 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9528 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9529 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9530 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9531 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9532 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9533 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9534 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9535 default: break;
9536 }
9537 }
9538 else
9539 AssertFailed();
9540 break;
9541
9542 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
9543 uEventArg = idxVector;
9544 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9545 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9546 break;
9547 }
9548 break;
9549 }
9550
9551 case VMX_EXIT_TRIPLE_FAULT:
9552 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9553 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9554 break;
9555 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9556 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9557 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9558 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9559 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9560
9561 /* Instruction specific VM-exits: */
9562 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9563 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9564 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9565 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9566 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9567 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9568 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9569 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9570 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9571 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9572 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9573 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9574 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9575 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9576 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9577 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9578 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9579 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9580 case VMX_EXIT_MOV_CRX:
9581 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9582 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
9583 SET_BOTH(CRX_READ);
9584 else
9585 SET_BOTH(CRX_WRITE);
9586 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
9587 break;
9588 case VMX_EXIT_MOV_DRX:
9589 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9590 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
9591 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
9592 SET_BOTH(DRX_READ);
9593 else
9594 SET_BOTH(DRX_WRITE);
9595 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
9596 break;
9597 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9598 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9599 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9600 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9601 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9602 case VMX_EXIT_XDTR_ACCESS:
9603 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9604 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
9605 {
9606 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9607 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9608 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9609 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9610 }
9611 break;
9612
9613 case VMX_EXIT_TR_ACCESS:
9614 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9615 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
9616 {
9617 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9618 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9619 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9620 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9621 }
9622 break;
9623
9624 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9625 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9626 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9627 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9628 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9629 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9630 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9631 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9632 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9633 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9634 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9635
9636 /* Events that aren't relevant at this point. */
9637 case VMX_EXIT_EXT_INT:
9638 case VMX_EXIT_INT_WINDOW:
9639 case VMX_EXIT_NMI_WINDOW:
9640 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9641 case VMX_EXIT_PREEMPT_TIMER:
9642 case VMX_EXIT_IO_INSTR:
9643 break;
9644
9645 /* Errors and unexpected events. */
9646 case VMX_EXIT_INIT_SIGNAL:
9647 case VMX_EXIT_SIPI:
9648 case VMX_EXIT_IO_SMI:
9649 case VMX_EXIT_SMI:
9650 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9651 case VMX_EXIT_ERR_MSR_LOAD:
9652 case VMX_EXIT_ERR_MACHINE_CHECK:
9653 break;
9654
9655 default:
9656 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9657 break;
9658 }
9659#undef SET_BOTH
9660#undef SET_EXIT
9661
9662 /*
9663 * Dtrace tracepoints go first. We do them here at once so we don't
9664 * have to copy the guest state saving and stuff a few dozen times.
9665 * Down side is that we've got to repeat the switch, though this time
9666 * we use enmEvent since the probes are a subset of what DBGF does.
9667 */
9668 if (fDtrace1 || fDtrace2)
9669 {
9670 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9671 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9672 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9673 switch (enmEvent1)
9674 {
9675 /** @todo consider which extra parameters would be helpful for each probe. */
9676 case DBGFEVENT_END: break;
9677 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
9678 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
9679 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
9680 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
9681 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
9682 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
9683 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
9684 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
9685 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
9686 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
9687 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
9688 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
9689 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
9690 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
9691 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
9692 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
9693 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
9694 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
9695 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9696 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9697 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
9698 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
9699 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
9700 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
9701 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
9702 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
9703 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
9704 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9705 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9706 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9707 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9708 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9709 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
9710 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9711 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
9712 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
9713 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
9714 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
9715 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
9716 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
9717 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
9718 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
9719 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
9720 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
9721 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
9722 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
9723 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
9724 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
9725 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
9726 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
9727 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
9728 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
9729 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
9730 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
9731 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
9732 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
9733 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
9734 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
9735 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
9736 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
9737 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
9738 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
9739 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
9740 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
9741 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
9742 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
9743 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9744 }
9745 switch (enmEvent2)
9746 {
9747 /** @todo consider which extra parameters would be helpful for each probe. */
9748 case DBGFEVENT_END: break;
9749 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
9750 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9751 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
9752 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
9753 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
9754 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
9755 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
9756 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
9757 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
9758 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9759 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9760 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9761 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9762 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9763 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
9764 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9765 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
9766 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
9767 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
9768 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
9769 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
9770 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
9771 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
9772 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
9773 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
9774 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
9775 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
9776 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
9777 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
9778 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
9779 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
9780 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
9781 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
9782 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
9783 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
9784 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
9785 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
9786 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
9787 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
9788 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
9789 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
9790 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
9791 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
9792 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
9793 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
9794 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
9795 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
9796 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
9797 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
9798 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
9799 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
9800 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
9801 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9802 }
9803 }
9804
9805 /*
9806 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9807 * the DBGF call will do a full check).
9808 *
9809 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9810 * Note! If we have to events, we prioritize the first, i.e. the instruction
9811 * one, in order to avoid event nesting.
9812 */
9813 PVM pVM = pVCpu->CTX_SUFF(pVM);
9814 if ( enmEvent1 != DBGFEVENT_END
9815 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9816 {
9817 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
9818 if (rcStrict != VINF_SUCCESS)
9819 return rcStrict;
9820 }
9821 else if ( enmEvent2 != DBGFEVENT_END
9822 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9823 {
9824 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
9825 if (rcStrict != VINF_SUCCESS)
9826 return rcStrict;
9827 }
9828
9829 return VINF_SUCCESS;
9830}
9831
9832
9833/**
9834 * Single-stepping VM-exit filtering.
9835 *
9836 * This is preprocessing the VM-exits and deciding whether we've gotten far
9837 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
9838 * handling is performed.
9839 *
9840 * @returns Strict VBox status code (i.e. informational status codes too).
9841 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9842 * @param pVmxTransient Pointer to the VMX-transient structure.
9843 * @param pDbgState The debug state.
9844 */
9845DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
9846{
9847 /*
9848 * Expensive (saves context) generic dtrace VM-exit probe.
9849 */
9850 uint32_t const uExitReason = pVmxTransient->uExitReason;
9851 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9852 { /* more likely */ }
9853 else
9854 {
9855 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9856 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9857 AssertRC(rc);
9858 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
9859 }
9860
9861 /*
9862 * Check for host NMI, just to get that out of the way.
9863 */
9864 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9865 { /* normally likely */ }
9866 else
9867 {
9868 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9869 AssertRCReturn(rc2, rc2);
9870 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
9871 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
9872 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
9873 }
9874
9875 /*
9876 * Check for single stepping event if we're stepping.
9877 */
9878 if (pVCpu->hm.s.fSingleInstruction)
9879 {
9880 switch (uExitReason)
9881 {
9882 case VMX_EXIT_MTF:
9883 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9884
9885 /* Various events: */
9886 case VMX_EXIT_XCPT_OR_NMI:
9887 case VMX_EXIT_EXT_INT:
9888 case VMX_EXIT_TRIPLE_FAULT:
9889 case VMX_EXIT_INT_WINDOW:
9890 case VMX_EXIT_NMI_WINDOW:
9891 case VMX_EXIT_TASK_SWITCH:
9892 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9893 case VMX_EXIT_APIC_ACCESS:
9894 case VMX_EXIT_EPT_VIOLATION:
9895 case VMX_EXIT_EPT_MISCONFIG:
9896 case VMX_EXIT_PREEMPT_TIMER:
9897
9898 /* Instruction specific VM-exits: */
9899 case VMX_EXIT_CPUID:
9900 case VMX_EXIT_GETSEC:
9901 case VMX_EXIT_HLT:
9902 case VMX_EXIT_INVD:
9903 case VMX_EXIT_INVLPG:
9904 case VMX_EXIT_RDPMC:
9905 case VMX_EXIT_RDTSC:
9906 case VMX_EXIT_RSM:
9907 case VMX_EXIT_VMCALL:
9908 case VMX_EXIT_VMCLEAR:
9909 case VMX_EXIT_VMLAUNCH:
9910 case VMX_EXIT_VMPTRLD:
9911 case VMX_EXIT_VMPTRST:
9912 case VMX_EXIT_VMREAD:
9913 case VMX_EXIT_VMRESUME:
9914 case VMX_EXIT_VMWRITE:
9915 case VMX_EXIT_VMXOFF:
9916 case VMX_EXIT_VMXON:
9917 case VMX_EXIT_MOV_CRX:
9918 case VMX_EXIT_MOV_DRX:
9919 case VMX_EXIT_IO_INSTR:
9920 case VMX_EXIT_RDMSR:
9921 case VMX_EXIT_WRMSR:
9922 case VMX_EXIT_MWAIT:
9923 case VMX_EXIT_MONITOR:
9924 case VMX_EXIT_PAUSE:
9925 case VMX_EXIT_XDTR_ACCESS:
9926 case VMX_EXIT_TR_ACCESS:
9927 case VMX_EXIT_INVEPT:
9928 case VMX_EXIT_RDTSCP:
9929 case VMX_EXIT_INVVPID:
9930 case VMX_EXIT_WBINVD:
9931 case VMX_EXIT_XSETBV:
9932 case VMX_EXIT_RDRAND:
9933 case VMX_EXIT_INVPCID:
9934 case VMX_EXIT_VMFUNC:
9935 case VMX_EXIT_RDSEED:
9936 case VMX_EXIT_XSAVES:
9937 case VMX_EXIT_XRSTORS:
9938 {
9939 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9940 AssertRCReturn(rc, rc);
9941 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
9942 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
9943 return VINF_EM_DBG_STEPPED;
9944 break;
9945 }
9946
9947 /* Errors and unexpected events: */
9948 case VMX_EXIT_INIT_SIGNAL:
9949 case VMX_EXIT_SIPI:
9950 case VMX_EXIT_IO_SMI:
9951 case VMX_EXIT_SMI:
9952 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9953 case VMX_EXIT_ERR_MSR_LOAD:
9954 case VMX_EXIT_ERR_MACHINE_CHECK:
9955 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
9956 break;
9957
9958 default:
9959 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9960 break;
9961 }
9962 }
9963
9964 /*
9965 * Check for debugger event breakpoints and dtrace probes.
9966 */
9967 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
9968 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
9969 {
9970 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
9971 if (rcStrict != VINF_SUCCESS)
9972 return rcStrict;
9973 }
9974
9975 /*
9976 * Normal processing.
9977 */
9978#ifdef HMVMX_USE_FUNCTION_TABLE
9979 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
9980#else
9981 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
9982#endif
9983}
9984
9985
9986/**
9987 * Single steps guest code using VT-x.
9988 *
9989 * @returns Strict VBox status code (i.e. informational status codes too).
9990 * @param pVCpu The cross context virtual CPU structure.
9991 *
9992 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
9993 */
9994static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu)
9995{
9996 VMXTRANSIENT VmxTransient;
9997 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
9998
9999 /* Set HMCPU indicators. */
10000 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10001 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10002 pVCpu->hm.s.fDebugWantRdTscExit = false;
10003 pVCpu->hm.s.fUsingDebugLoop = true;
10004
10005 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10006 VMXRUNDBGSTATE DbgState;
10007 hmR0VmxRunDebugStateInit(pVCpu, &DbgState);
10008 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10009
10010 /*
10011 * The loop.
10012 */
10013 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10014 for (uint32_t cLoops = 0; ; cLoops++)
10015 {
10016 Assert(!HMR0SuspendPending());
10017 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10018 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10019
10020 /*
10021 * Preparatory work for running guest code, this may force us to return
10022 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10023 */
10024 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10025 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10026 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
10027 if (rcStrict != VINF_SUCCESS)
10028 break;
10029
10030 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10031 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10032
10033 /*
10034 * Now we can run the guest code.
10035 */
10036 int rcRun = hmR0VmxRunGuest(pVCpu);
10037
10038 /*
10039 * Restore any residual host-state and save any bits shared between host
10040 * and guest into the guest-CPU state. Re-enables interrupts!
10041 */
10042 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10043
10044 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10045 if (RT_SUCCESS(rcRun))
10046 { /* very likely */ }
10047 else
10048 {
10049 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10050 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10051 return rcRun;
10052 }
10053
10054 /* Profile the VM-exit. */
10055 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10056 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10057 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10058 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10059 HMVMX_START_EXIT_DISPATCH_PROF();
10060
10061 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10062
10063 /*
10064 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10065 */
10066 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
10067 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10068 if (rcStrict != VINF_SUCCESS)
10069 break;
10070 if (cLoops > pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
10071 {
10072 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10073 rcStrict = VINF_EM_RAW_INTERRUPT;
10074 break;
10075 }
10076
10077 /*
10078 * Stepping: Did the RIP change, if so, consider it a single step.
10079 * Otherwise, make sure one of the TFs gets set.
10080 */
10081 if (fStepping)
10082 {
10083 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
10084 AssertRC(rc);
10085 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
10086 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
10087 {
10088 rcStrict = VINF_EM_DBG_STEPPED;
10089 break;
10090 }
10091 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
10092 }
10093
10094 /*
10095 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10096 */
10097 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10098 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10099 }
10100
10101 /*
10102 * Clear the X86_EFL_TF if necessary.
10103 */
10104 if (pVCpu->hm.s.fClearTrapFlag)
10105 {
10106 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
10107 AssertRC(rc);
10108 pVCpu->hm.s.fClearTrapFlag = false;
10109 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
10110 }
10111 /** @todo there seems to be issues with the resume flag when the monitor trap
10112 * flag is pending without being used. Seen early in bios init when
10113 * accessing APIC page in protected mode. */
10114
10115 /*
10116 * Restore VM-exit control settings as we may not reenter this function the
10117 * next time around.
10118 */
10119 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10120
10121 /* Restore HMCPU indicators. */
10122 pVCpu->hm.s.fUsingDebugLoop = false;
10123 pVCpu->hm.s.fDebugWantRdTscExit = false;
10124 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10125
10126 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10127 return rcStrict;
10128}
10129
10130
10131/** @} */
10132
10133
10134/**
10135 * Checks if any expensive dtrace probes are enabled and we should go to the
10136 * debug loop.
10137 *
10138 * @returns true if we should use debug loop, false if not.
10139 */
10140static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10141{
10142 /* It's probably faster to OR the raw 32-bit counter variables together.
10143 Since the variables are in an array and the probes are next to one
10144 another (more or less), we have good locality. So, better read
10145 eight-nine cache lines ever time and only have one conditional, than
10146 128+ conditionals, right? */
10147 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10148 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10149 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10150 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10151 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10152 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10153 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10154 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10155 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10156 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10157 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10158 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10159 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10160 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10161 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10162 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10163 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10164 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10165 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10166 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10167 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10168 ) != 0
10169 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10170 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10171 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10172 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10173 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10174 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10175 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10176 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10177 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10178 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10179 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10180 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10181 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10182 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10183 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10184 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10185 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10186 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10187 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10188 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10189 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10190 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10191 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10192 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10193 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10194 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10195 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10196 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10197 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10198 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10199 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10200 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10201 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10202 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10203 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10204 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10205 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10206 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10207 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10208 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10209 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10210 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10211 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10212 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10213 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10214 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10215 ) != 0
10216 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10217 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10218 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10219 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10220 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10221 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10222 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10223 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10224 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10225 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10226 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10227 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10228 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10229 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10230 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10231 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10232 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10233 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10234 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10235 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10236 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10237 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10238 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10239 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10240 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10241 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10242 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10243 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10244 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10245 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10246 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10247 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10248 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10249 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10250 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10251 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10252 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10253 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10254 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10255 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10256 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10257 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10258 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10259 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10260 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10261 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10262 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10263 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10264 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10265 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10266 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10267 ) != 0;
10268}
10269
10270
10271/**
10272 * Runs the guest code using VT-x.
10273 *
10274 * @returns Strict VBox status code (i.e. informational status codes too).
10275 * @param pVCpu The cross context virtual CPU structure.
10276 */
10277VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
10278{
10279 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10280 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10281 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10282 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
10283
10284 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10285
10286 VBOXSTRICTRC rcStrict;
10287 if ( !pVCpu->hm.s.fUseDebugLoop
10288 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10289 && !DBGFIsStepping(pVCpu)
10290 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
10291 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu);
10292 else
10293 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu);
10294
10295 if (rcStrict == VERR_EM_INTERPRETER)
10296 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10297 else if (rcStrict == VINF_EM_RESET)
10298 rcStrict = VINF_EM_TRIPLE_FAULT;
10299
10300 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
10301 if (RT_FAILURE(rc2))
10302 {
10303 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10304 rcStrict = rc2;
10305 }
10306 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10307 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10308 return rcStrict;
10309}
10310
10311
10312#ifndef HMVMX_USE_FUNCTION_TABLE
10313DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10314{
10315#ifdef DEBUG_ramshankar
10316#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
10317 do { \
10318 if (a_fSave != 0) \
10319 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
10320 VBOXSTRICTRC rcStrict = a_CallExpr; \
10321 if (a_fSave != 0) \
10322 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
10323 return rcStrict; \
10324 } while (0)
10325#else
10326# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
10327#endif
10328 switch (rcReason)
10329 {
10330 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
10331 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
10332 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
10333 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
10334 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
10335 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
10336 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
10337 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
10338 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
10339 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
10340 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
10341 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
10342 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
10343 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
10344 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
10345 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
10346 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
10347 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
10348 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
10349 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
10350 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
10351 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
10352 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
10353 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
10354 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
10355 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
10356 case VMX_EXIT_XDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10357 case VMX_EXIT_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10358 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
10359 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
10360 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
10361 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
10362 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
10363 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
10364
10365 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
10366 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
10367 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
10368 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
10369 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
10370 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
10371 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
10372 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
10373 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
10374
10375 case VMX_EXIT_VMCLEAR:
10376 case VMX_EXIT_VMLAUNCH:
10377 case VMX_EXIT_VMPTRLD:
10378 case VMX_EXIT_VMPTRST:
10379 case VMX_EXIT_VMREAD:
10380 case VMX_EXIT_VMRESUME:
10381 case VMX_EXIT_VMWRITE:
10382 case VMX_EXIT_VMXOFF:
10383 case VMX_EXIT_VMXON:
10384 case VMX_EXIT_INVEPT:
10385 case VMX_EXIT_INVVPID:
10386 case VMX_EXIT_VMFUNC:
10387 case VMX_EXIT_XSAVES:
10388 case VMX_EXIT_XRSTORS:
10389 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10390
10391 case VMX_EXIT_ENCLS:
10392 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10393 case VMX_EXIT_PML_FULL:
10394 default:
10395 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
10396 }
10397#undef VMEXIT_CALL_RET
10398}
10399#endif /* !HMVMX_USE_FUNCTION_TABLE */
10400
10401
10402#ifdef VBOX_STRICT
10403/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10404# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10405 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10406
10407# define HMVMX_ASSERT_PREEMPT_CPUID() \
10408 do { \
10409 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10410 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10411 } while (0)
10412
10413# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10414 do { \
10415 AssertPtr((a_pVCpu)); \
10416 AssertPtr((a_pVmxTransient)); \
10417 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
10418 Assert(ASMIntAreEnabled()); \
10419 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10420 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10421 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
10422 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10423 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
10424 HMVMX_ASSERT_PREEMPT_CPUID(); \
10425 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10426 } while (0)
10427
10428# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10429 do { \
10430 Log4Func(("\n")); \
10431 } while (0)
10432#else
10433# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10434 do { \
10435 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10436 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
10437 } while (0)
10438# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
10439#endif
10440
10441
10442/**
10443 * Advances the guest RIP by the specified number of bytes.
10444 *
10445 * @param pVCpu The cross context virtual CPU structure.
10446 * @param cbInstr Number of bytes to advance the RIP by.
10447 *
10448 * @remarks No-long-jump zone!!!
10449 */
10450DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
10451{
10452 /* Advance the RIP. */
10453 pVCpu->cpum.GstCtx.rip += cbInstr;
10454 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
10455
10456 /* Update interrupt inhibition. */
10457 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10458 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
10459 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10460}
10461
10462
10463/**
10464 * Advances the guest RIP after reading it from the VMCS.
10465 *
10466 * @returns VBox status code, no informational status codes.
10467 * @param pVCpu The cross context virtual CPU structure.
10468 * @param pVmxTransient Pointer to the VMX transient structure.
10469 *
10470 * @remarks No-long-jump zone!!!
10471 */
10472static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10473{
10474 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10475 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
10476 AssertRCReturn(rc, rc);
10477
10478 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
10479
10480 /*
10481 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10482 * pending debug exception field as it takes care of priority of events.
10483 *
10484 * See Intel spec. 32.2.1 "Debug Exceptions".
10485 */
10486 if ( !pVCpu->hm.s.fSingleInstruction
10487 && pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
10488 {
10489 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10490 AssertRCReturn(rc, rc);
10491 }
10492
10493 return VINF_SUCCESS;
10494}
10495
10496
10497/**
10498 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10499 * and update error record fields accordingly.
10500 *
10501 * @return VMX_IGS_* return codes.
10502 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10503 * wrong with the guest state.
10504 *
10505 * @param pVCpu The cross context virtual CPU structure.
10506 *
10507 * @remarks This function assumes our cache of the VMCS controls
10508 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10509 */
10510static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu)
10511{
10512#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10513#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10514 uError = (err); \
10515 break; \
10516 } else do { } while (0)
10517
10518 int rc;
10519 PVM pVM = pVCpu->CTX_SUFF(pVM);
10520 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10521 uint32_t uError = VMX_IGS_ERROR;
10522 uint32_t u32Val;
10523 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10524
10525 do
10526 {
10527 /*
10528 * CR0.
10529 */
10530 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10531 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10532 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10533 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10534 if (fUnrestrictedGuest)
10535 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
10536
10537 uint32_t u32GuestCr0;
10538 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
10539 AssertRCBreak(rc);
10540 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
10541 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
10542 if ( !fUnrestrictedGuest
10543 && (u32GuestCr0 & X86_CR0_PG)
10544 && !(u32GuestCr0 & X86_CR0_PE))
10545 {
10546 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10547 }
10548
10549 /*
10550 * CR4.
10551 */
10552 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10553 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10554
10555 uint32_t u32GuestCr4;
10556 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
10557 AssertRCBreak(rc);
10558 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
10559 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
10560
10561 /*
10562 * IA32_DEBUGCTL MSR.
10563 */
10564 uint64_t u64Val;
10565 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10566 AssertRCBreak(rc);
10567 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10568 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10569 {
10570 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10571 }
10572 uint64_t u64DebugCtlMsr = u64Val;
10573
10574#ifdef VBOX_STRICT
10575 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10576 AssertRCBreak(rc);
10577 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10578#endif
10579 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
10580
10581 /*
10582 * RIP and RFLAGS.
10583 */
10584 uint32_t u32Eflags;
10585#if HC_ARCH_BITS == 64
10586 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10587 AssertRCBreak(rc);
10588 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10589 if ( !fLongModeGuest
10590 || !pCtx->cs.Attr.n.u1Long)
10591 {
10592 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10593 }
10594 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10595 * must be identical if the "IA-32e mode guest" VM-entry
10596 * control is 1 and CS.L is 1. No check applies if the
10597 * CPU supports 64 linear-address bits. */
10598
10599 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10600 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10601 AssertRCBreak(rc);
10602 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10603 VMX_IGS_RFLAGS_RESERVED);
10604 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10605 u32Eflags = u64Val;
10606#else
10607 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10608 AssertRCBreak(rc);
10609 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10610 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10611#endif
10612
10613 if ( fLongModeGuest
10614 || ( fUnrestrictedGuest
10615 && !(u32GuestCr0 & X86_CR0_PE)))
10616 {
10617 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10618 }
10619
10620 uint32_t u32EntryInfo;
10621 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10622 AssertRCBreak(rc);
10623 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
10624 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10625 {
10626 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10627 }
10628
10629 /*
10630 * 64-bit checks.
10631 */
10632#if HC_ARCH_BITS == 64
10633 if (fLongModeGuest)
10634 {
10635 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10636 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10637 }
10638
10639 if ( !fLongModeGuest
10640 && (u32GuestCr4 & X86_CR4_PCIDE))
10641 {
10642 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10643 }
10644
10645 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10646 * 51:32 beyond the processor's physical-address width are 0. */
10647
10648 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10649 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10650 {
10651 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10652 }
10653
10654 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10655 AssertRCBreak(rc);
10656 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10657
10658 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10659 AssertRCBreak(rc);
10660 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10661#endif
10662
10663 /*
10664 * PERF_GLOBAL MSR.
10665 */
10666 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
10667 {
10668 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10669 AssertRCBreak(rc);
10670 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10671 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10672 }
10673
10674 /*
10675 * PAT MSR.
10676 */
10677 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
10678 {
10679 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10680 AssertRCBreak(rc);
10681 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10682 for (unsigned i = 0; i < 8; i++)
10683 {
10684 uint8_t u8Val = (u64Val & 0xff);
10685 if ( u8Val != 0 /* UC */
10686 && u8Val != 1 /* WC */
10687 && u8Val != 4 /* WT */
10688 && u8Val != 5 /* WP */
10689 && u8Val != 6 /* WB */
10690 && u8Val != 7 /* UC- */)
10691 {
10692 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10693 }
10694 u64Val >>= 8;
10695 }
10696 }
10697
10698 /*
10699 * EFER MSR.
10700 */
10701 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
10702 {
10703 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10704 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10705 AssertRCBreak(rc);
10706 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10707 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10708 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10709 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
10710 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10711 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10712 || !(u32GuestCr0 & X86_CR0_PG)
10713 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10714 VMX_IGS_EFER_LMA_LME_MISMATCH);
10715 }
10716
10717 /*
10718 * Segment registers.
10719 */
10720 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10721 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10722 if (!(u32Eflags & X86_EFL_VM))
10723 {
10724 /* CS */
10725 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10726 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10727 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10728 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10729 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10730 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10731 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10732 /* CS cannot be loaded with NULL in protected mode. */
10733 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10734 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10735 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10736 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10737 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10738 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10739 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10740 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10741 else
10742 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10743
10744 /* SS */
10745 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10746 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10747 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10748 if ( !(pCtx->cr0 & X86_CR0_PE)
10749 || pCtx->cs.Attr.n.u4Type == 3)
10750 {
10751 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10752 }
10753 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10754 {
10755 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10756 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10757 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10758 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10759 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10760 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10761 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10762 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10763 }
10764
10765 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmenReg(). */
10766 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10767 {
10768 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10769 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10770 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10771 || pCtx->ds.Attr.n.u4Type > 11
10772 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10773 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10774 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10775 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10776 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10777 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10778 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10779 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10780 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10781 }
10782 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10783 {
10784 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10785 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10786 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10787 || pCtx->es.Attr.n.u4Type > 11
10788 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10789 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10790 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10791 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10792 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10793 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10794 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10795 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10796 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10797 }
10798 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10799 {
10800 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10801 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10802 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10803 || pCtx->fs.Attr.n.u4Type > 11
10804 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10805 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10806 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10807 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10808 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10809 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10810 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10811 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10812 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10813 }
10814 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10815 {
10816 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10817 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10818 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10819 || pCtx->gs.Attr.n.u4Type > 11
10820 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10821 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10822 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10823 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10824 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10825 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10826 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10827 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10828 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10829 }
10830 /* 64-bit capable CPUs. */
10831#if HC_ARCH_BITS == 64
10832 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10833 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10834 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10835 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10836 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10837 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10838 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10839 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10840 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10841 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10842 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10843#endif
10844 }
10845 else
10846 {
10847 /* V86 mode checks. */
10848 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10849 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10850 {
10851 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10852 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10853 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10854 }
10855 else
10856 {
10857 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10858 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10859 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10860 }
10861
10862 /* CS */
10863 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10864 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10865 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10866 /* SS */
10867 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10868 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10869 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10870 /* DS */
10871 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10872 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10873 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10874 /* ES */
10875 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10876 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10877 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10878 /* FS */
10879 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10880 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10881 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10882 /* GS */
10883 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10884 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10885 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10886 /* 64-bit capable CPUs. */
10887#if HC_ARCH_BITS == 64
10888 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10889 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10890 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10891 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10892 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10893 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10894 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10895 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10896 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10897 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10898 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10899#endif
10900 }
10901
10902 /*
10903 * TR.
10904 */
10905 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
10906 /* 64-bit capable CPUs. */
10907#if HC_ARCH_BITS == 64
10908 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
10909#endif
10910 if (fLongModeGuest)
10911 {
10912 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
10913 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
10914 }
10915 else
10916 {
10917 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
10918 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
10919 VMX_IGS_TR_ATTR_TYPE_INVALID);
10920 }
10921 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
10922 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
10923 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
10924 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
10925 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10926 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
10927 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10928 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
10929
10930 /*
10931 * GDTR and IDTR.
10932 */
10933#if HC_ARCH_BITS == 64
10934 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
10935 AssertRCBreak(rc);
10936 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
10937
10938 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
10939 AssertRCBreak(rc);
10940 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
10941#endif
10942
10943 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
10944 AssertRCBreak(rc);
10945 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10946
10947 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
10948 AssertRCBreak(rc);
10949 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10950
10951 /*
10952 * Guest Non-Register State.
10953 */
10954 /* Activity State. */
10955 uint32_t u32ActivityState;
10956 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
10957 AssertRCBreak(rc);
10958 HMVMX_CHECK_BREAK( !u32ActivityState
10959 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
10960 VMX_IGS_ACTIVITY_STATE_INVALID);
10961 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
10962 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
10963 uint32_t u32IntrState;
10964 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
10965 AssertRCBreak(rc);
10966 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
10967 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10968 {
10969 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
10970 }
10971
10972 /** @todo Activity state and injecting interrupts. Left as a todo since we
10973 * currently don't use activity states but ACTIVE. */
10974
10975 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
10976 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
10977
10978 /* Guest interruptibility-state. */
10979 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
10980 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
10981 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10982 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
10983 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
10984 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
10985 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
10986 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
10987 {
10988 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10989 {
10990 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10991 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10992 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
10993 }
10994 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
10995 {
10996 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10997 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
10998 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
10999 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11000 }
11001 }
11002 /** @todo Assumes the processor is not in SMM. */
11003 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11004 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11005 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
11006 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11007 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11008 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
11009 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
11010 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11011 {
11012 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
11013 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11014 }
11015
11016 /* Pending debug exceptions. */
11017#if HC_ARCH_BITS == 64
11018 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
11019 AssertRCBreak(rc);
11020 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11021 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11022 u32Val = u64Val; /* For pending debug exceptions checks below. */
11023#else
11024 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
11025 AssertRCBreak(rc);
11026 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11027 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11028#endif
11029
11030 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11031 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
11032 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11033 {
11034 if ( (u32Eflags & X86_EFL_TF)
11035 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11036 {
11037 /* Bit 14 is PendingDebug.BS. */
11038 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11039 }
11040 if ( !(u32Eflags & X86_EFL_TF)
11041 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11042 {
11043 /* Bit 14 is PendingDebug.BS. */
11044 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11045 }
11046 }
11047
11048 /* VMCS link pointer. */
11049 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11050 AssertRCBreak(rc);
11051 if (u64Val != UINT64_C(0xffffffffffffffff))
11052 {
11053 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11054 /** @todo Bits beyond the processor's physical-address width MBZ. */
11055 /** @todo 32-bit located in memory referenced by value of this field (as a
11056 * physical address) must contain the processor's VMCS revision ID. */
11057 /** @todo SMM checks. */
11058 }
11059
11060 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11061 * not using Nested Paging? */
11062 if ( pVM->hm.s.fNestedPaging
11063 && !fLongModeGuest
11064 && CPUMIsGuestInPAEModeEx(pCtx))
11065 {
11066 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11067 AssertRCBreak(rc);
11068 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11069
11070 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11071 AssertRCBreak(rc);
11072 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11073
11074 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11075 AssertRCBreak(rc);
11076 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11077
11078 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11079 AssertRCBreak(rc);
11080 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11081 }
11082
11083 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11084 if (uError == VMX_IGS_ERROR)
11085 uError = VMX_IGS_REASON_NOT_FOUND;
11086 } while (0);
11087
11088 pVCpu->hm.s.u32HMError = uError;
11089 return uError;
11090
11091#undef HMVMX_ERROR_BREAK
11092#undef HMVMX_CHECK_BREAK
11093}
11094
11095
11096/** @name VM-exit handlers.
11097 * @{
11098 */
11099/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11100/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11101/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11102
11103/**
11104 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11105 */
11106HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11107{
11108 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11109 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11110 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11111 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11112 return VINF_SUCCESS;
11113 return VINF_EM_RAW_INTERRUPT;
11114}
11115
11116
11117/**
11118 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11119 */
11120HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11121{
11122 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11123 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11124
11125 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11126 AssertRCReturn(rc, rc);
11127
11128 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11129 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
11130 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
11131 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11132
11133 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11134 {
11135 /*
11136 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
11137 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
11138 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
11139 *
11140 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11141 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
11142 */
11143 VMXDispatchHostNmi();
11144 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11145 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11146 return VINF_SUCCESS;
11147 }
11148
11149 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11150 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
11151 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11152 { /* likely */ }
11153 else
11154 {
11155 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11156 rcStrictRc1 = VINF_SUCCESS;
11157 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11158 return rcStrictRc1;
11159 }
11160
11161 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11162 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
11163 switch (uIntType)
11164 {
11165 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11166 Assert(uVector == X86_XCPT_DB);
11167 RT_FALL_THRU();
11168 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11169 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
11170 RT_FALL_THRU();
11171 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11172 {
11173 /*
11174 * If there's any exception caused as a result of event injection, the resulting
11175 * secondary/final execption will be pending, we shall continue guest execution
11176 * after injecting the event. The page-fault case is complicated and we manually
11177 * handle any currently pending event in hmR0VmxExitXcptPF.
11178 */
11179 if (!pVCpu->hm.s.Event.fPending)
11180 { /* likely */ }
11181 else if (uVector != X86_XCPT_PF)
11182 {
11183 rc = VINF_SUCCESS;
11184 break;
11185 }
11186
11187 switch (uVector)
11188 {
11189 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
11190 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
11191 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
11192 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
11193 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
11194 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
11195
11196 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11197 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11198 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11199 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11200 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11201 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11202 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11203 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11204 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11205 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11206 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11207 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11208 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11209 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11210 default:
11211 {
11212 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11213 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11214 {
11215 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11216 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11217 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
11218
11219 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
11220 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11221 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11222 AssertRCReturn(rc, rc);
11223 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11224 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11225 0 /* GCPtrFaultAddress */);
11226 }
11227 else
11228 {
11229 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11230 pVCpu->hm.s.u32HMError = uVector;
11231 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11232 }
11233 break;
11234 }
11235 }
11236 break;
11237 }
11238
11239 default:
11240 {
11241 pVCpu->hm.s.u32HMError = uExitIntInfo;
11242 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11243 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
11244 break;
11245 }
11246 }
11247 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11248 return rc;
11249}
11250
11251
11252/**
11253 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11254 */
11255HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11256{
11257 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11258
11259 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11260 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11261
11262 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11263 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11264 return VINF_SUCCESS;
11265}
11266
11267
11268/**
11269 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11270 */
11271HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11272{
11273 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11274 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)))
11275 {
11276 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11277 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11278 }
11279
11280 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11281
11282 /*
11283 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11284 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11285 */
11286 uint32_t fIntrState = 0;
11287 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11288 AssertRCReturn(rc, rc);
11289
11290 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
11291 if ( fBlockSti
11292 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11293 {
11294 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11295 }
11296
11297 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11298 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11299
11300 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11301 return VINF_SUCCESS;
11302}
11303
11304
11305/**
11306 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11307 */
11308HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11309{
11310 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11311 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11312}
11313
11314
11315/**
11316 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11317 */
11318HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11319{
11320 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11321 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11322}
11323
11324
11325/**
11326 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11327 */
11328HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11329{
11330 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11331
11332 /*
11333 * Get the state we need and update the exit history entry.
11334 */
11335 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11336 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
11337 AssertRCReturn(rc, rc);
11338
11339 VBOXSTRICTRC rcStrict;
11340 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
11341 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
11342 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
11343 if (!pExitRec)
11344 {
11345 /*
11346 * Regular CPUID instruction execution.
11347 */
11348 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
11349 if (rcStrict == VINF_SUCCESS)
11350 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RAX
11351 | HM_CHANGED_GUEST_RCX | HM_CHANGED_GUEST_RDX | HM_CHANGED_GUEST_RBX);
11352 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11353 {
11354 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11355 rcStrict = VINF_SUCCESS;
11356 }
11357 }
11358 else
11359 {
11360 /*
11361 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
11362 */
11363 int rc2 = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11364 AssertRCReturn(rc2, rc2);
11365
11366 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
11367 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
11368
11369 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
11370 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
11371
11372 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
11373 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
11374 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
11375 }
11376 return rcStrict;
11377}
11378
11379
11380/**
11381 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11382 */
11383HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11384{
11385 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11386 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR4);
11387 AssertRCReturn(rc, rc);
11388
11389 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
11390 return VINF_EM_RAW_EMULATE_INSTR;
11391
11392 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11393 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11394}
11395
11396
11397/**
11398 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11399 */
11400HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11401{
11402 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11403 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
11404 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11405 AssertRCReturn(rc, rc);
11406
11407 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
11408 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11409 {
11410 /* If we get a spurious VM-exit when offsetting is enabled,
11411 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11412 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11413 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11414 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11415 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11416 }
11417 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11418 {
11419 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11420 rcStrict = VINF_SUCCESS;
11421 }
11422 return rcStrict;
11423}
11424
11425
11426/**
11427 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11428 */
11429HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11430{
11431 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11432 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
11433 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11434 AssertRCReturn(rc, rc);
11435
11436 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
11437 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11438 {
11439 /* If we get a spurious VM-exit when offsetting is enabled,
11440 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11441 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11442 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11443 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11444 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX | HM_CHANGED_GUEST_RCX);
11445 }
11446 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11447 {
11448 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11449 rcStrict = VINF_SUCCESS;
11450 }
11451 return rcStrict;
11452}
11453
11454
11455/**
11456 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11457 */
11458HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11459{
11460 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11461 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11462 AssertRCReturn(rc, rc);
11463
11464 PVM pVM = pVCpu->CTX_SUFF(pVM);
11465 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11466 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11467 if (RT_LIKELY(rc == VINF_SUCCESS))
11468 {
11469 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11470 Assert(pVmxTransient->cbInstr == 2);
11471 }
11472 else
11473 {
11474 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11475 rc = VERR_EM_INTERPRETER;
11476 }
11477 return rc;
11478}
11479
11480
11481/**
11482 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11483 */
11484HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11485{
11486 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11487
11488 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11489 if (EMAreHypercallInstructionsEnabled(pVCpu))
11490 {
11491 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_SS
11492 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
11493 AssertRCReturn(rc, rc);
11494
11495 /* Perform the hypercall. */
11496 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
11497 if (rcStrict == VINF_SUCCESS)
11498 {
11499 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11500 AssertRCReturn(rc, rc);
11501 }
11502 else
11503 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11504 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11505 || RT_FAILURE(rcStrict));
11506
11507 /* If the hypercall changes anything other than guest's general-purpose registers,
11508 we would need to reload the guest changed bits here before VM-entry. */
11509 }
11510 else
11511 Log4Func(("Hypercalls not enabled\n"));
11512
11513 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11514 if (RT_FAILURE(rcStrict))
11515 {
11516 hmR0VmxSetPendingXcptUD(pVCpu);
11517 rcStrict = VINF_SUCCESS;
11518 }
11519
11520 return rcStrict;
11521}
11522
11523
11524/**
11525 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11526 */
11527HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11528{
11529 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11530 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11531
11532 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11533 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11534 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
11535 AssertRCReturn(rc, rc);
11536
11537 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
11538
11539 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
11540 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11541 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11542 {
11543 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11544 rcStrict = VINF_SUCCESS;
11545 }
11546 else
11547 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
11548 VBOXSTRICTRC_VAL(rcStrict)));
11549 return rcStrict;
11550}
11551
11552
11553/**
11554 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11555 */
11556HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11557{
11558 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11559 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11560 AssertRCReturn(rc, rc);
11561
11562 PVM pVM = pVCpu->CTX_SUFF(pVM);
11563 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11564 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11565 if (RT_LIKELY(rc == VINF_SUCCESS))
11566 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11567 else
11568 {
11569 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11570 rc = VERR_EM_INTERPRETER;
11571 }
11572 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11573 return rc;
11574}
11575
11576
11577/**
11578 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11579 */
11580HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11581{
11582 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11583 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11584 AssertRCReturn(rc, rc);
11585
11586 PVM pVM = pVCpu->CTX_SUFF(pVM);
11587 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11588 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11589 rc = VBOXSTRICTRC_VAL(rc2);
11590 if (RT_LIKELY( rc == VINF_SUCCESS
11591 || rc == VINF_EM_HALT))
11592 {
11593 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11594 AssertRCReturn(rc3, rc3);
11595
11596 if ( rc == VINF_EM_HALT
11597 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
11598 rc = VINF_SUCCESS;
11599 }
11600 else
11601 {
11602 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11603 rc = VERR_EM_INTERPRETER;
11604 }
11605 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11606 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11607 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11608 return rc;
11609}
11610
11611
11612/**
11613 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11614 */
11615HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11616{
11617 /*
11618 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
11619 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
11620 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
11621 * VMX root operation. If we get here, something funny is going on.
11622 *
11623 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
11624 */
11625 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11626 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
11627 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11628}
11629
11630
11631/**
11632 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11633 */
11634HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11635{
11636 /*
11637 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
11638 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
11639 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
11640 * an SMI. If we get here, something funny is going on.
11641 *
11642 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
11643 * See Intel spec. 25.3 "Other Causes of VM-Exits"
11644 */
11645 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11646 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
11647 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11648}
11649
11650
11651/**
11652 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11653 */
11654HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11655{
11656 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11657 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11658 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
11659 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11660}
11661
11662
11663/**
11664 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11665 */
11666HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11667{
11668 /*
11669 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
11670 * We don't make use of it as our guests don't have direct access to the host LAPIC.
11671 * See Intel spec. 25.3 "Other Causes of VM-exits".
11672 */
11673 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11674 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
11675 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11676}
11677
11678
11679/**
11680 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11681 * VM-exit.
11682 */
11683HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11684{
11685 /*
11686 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11687 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11688 *
11689 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11690 * See Intel spec. "23.8 Restrictions on VMX operation".
11691 */
11692 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11693 return VINF_SUCCESS;
11694}
11695
11696
11697/**
11698 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11699 * VM-exit.
11700 */
11701HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11702{
11703 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11704 return VINF_EM_RESET;
11705}
11706
11707
11708/**
11709 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11710 */
11711HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11712{
11713 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11714 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_HLT_EXIT);
11715
11716 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11717 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
11718 AssertRCReturn(rc, rc);
11719
11720 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
11721 rc = VINF_SUCCESS;
11722 else
11723 rc = VINF_EM_HALT;
11724
11725 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11726 if (rc != VINF_SUCCESS)
11727 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11728 return rc;
11729}
11730
11731
11732/**
11733 * VM-exit handler for instructions that result in a \#UD exception delivered to
11734 * the guest.
11735 */
11736HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11737{
11738 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11739 hmR0VmxSetPendingXcptUD(pVCpu);
11740 return VINF_SUCCESS;
11741}
11742
11743
11744/**
11745 * VM-exit handler for expiry of the VMX preemption timer.
11746 */
11747HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11748{
11749 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11750
11751 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11752 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11753
11754 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11755 PVM pVM = pVCpu->CTX_SUFF(pVM);
11756 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11757 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11758 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11759}
11760
11761
11762/**
11763 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11764 */
11765HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11766{
11767 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11768
11769 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11770 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
11771 AssertRCReturn(rc, rc);
11772
11773 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11774 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11775 : HM_CHANGED_RAISED_XCPT_MASK);
11776
11777 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11778 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
11779
11780 return rcStrict;
11781}
11782
11783
11784/**
11785 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11786 */
11787HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11788{
11789 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11790 /** @todo Use VM-exit instruction information. */
11791 return VERR_EM_INTERPRETER;
11792}
11793
11794
11795/**
11796 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11797 * Error VM-exit.
11798 */
11799HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11800{
11801 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11802 AssertRCReturn(rc, rc);
11803 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11804 if (RT_FAILURE(rc))
11805 return rc;
11806
11807 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
11808 NOREF(uInvalidReason);
11809
11810#ifdef VBOX_STRICT
11811 uint32_t fIntrState;
11812 RTHCUINTREG uHCReg;
11813 uint64_t u64Val;
11814 uint32_t u32Val;
11815
11816 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11817 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11818 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11819 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11820 AssertRCReturn(rc, rc);
11821
11822 Log4(("uInvalidReason %u\n", uInvalidReason));
11823 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11824 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11825 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11826 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
11827
11828 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11829 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11830 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11831 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11832 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11833 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11834 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11835 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11836 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11837 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11838 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11839 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11840
11841 hmR0DumpRegs(pVCpu);
11842#else
11843 NOREF(pVmxTransient);
11844#endif
11845
11846 return VERR_VMX_INVALID_GUEST_STATE;
11847}
11848
11849
11850/**
11851 * VM-exit handler for VM-entry failure due to an MSR-load
11852 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11853 */
11854HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11855{
11856 AssertMsgFailed(("Unexpected MSR-load exit\n"));
11857 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11858}
11859
11860
11861/**
11862 * VM-exit handler for VM-entry failure due to a machine-check event
11863 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11864 */
11865HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11866{
11867 AssertMsgFailed(("Unexpected machine-check event exit\n"));
11868 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11869}
11870
11871
11872/**
11873 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11874 * theory.
11875 */
11876HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11877{
11878 RT_NOREF2(pVCpu, pVmxTransient);
11879 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
11880 return VERR_VMX_UNDEFINED_EXIT_CODE;
11881}
11882
11883
11884/**
11885 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11886 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11887 * Conditional VM-exit.
11888 */
11889HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11890{
11891 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11892
11893 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
11894 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11895 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
11896 return VERR_EM_INTERPRETER;
11897 AssertMsgFailed(("Unexpected XDTR access\n"));
11898 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11899}
11900
11901
11902/**
11903 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11904 */
11905HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11906{
11907 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11908
11909 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
11910 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
11911 return VERR_EM_INTERPRETER;
11912 AssertMsgFailed(("Unexpected RDRAND exit\n"));
11913 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11914}
11915
11916
11917/**
11918 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11919 */
11920HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11921{
11922 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11923
11924 /** @todo Optimize this: We currently drag in in the whole MSR state
11925 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11926 * MSRs required. That would require changes to IEM and possibly CPUM too.
11927 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11928 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; NOREF(idMsr); /* Save it. */
11929 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11930 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11931 AssertRCReturn(rc, rc);
11932
11933 Log4Func(("ecx=%#RX32\n", idMsr));
11934
11935#ifdef VBOX_STRICT
11936 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
11937 {
11938 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr)
11939 && idMsr != MSR_K6_EFER)
11940 {
11941 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
11942 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11943 }
11944 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
11945 {
11946 VMXMSREXITREAD enmRead;
11947 VMXMSREXITWRITE enmWrite;
11948 int rc2 = hmR0VmxGetMsrPermission(pVCpu, idMsr, &enmRead, &enmWrite);
11949 AssertRCReturn(rc2, rc2);
11950 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
11951 {
11952 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
11953 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11954 }
11955 }
11956 }
11957#endif
11958
11959 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
11960 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
11961 if (rcStrict == VINF_SUCCESS)
11962 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11963 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11964 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11965 {
11966 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11967 rcStrict = VINF_SUCCESS;
11968 }
11969 else
11970 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11971
11972 return rcStrict;
11973}
11974
11975
11976/**
11977 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
11978 */
11979HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11980{
11981 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11982
11983 /** @todo Optimize this: We currently drag in in the whole MSR state
11984 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11985 * MSRs required. That would require changes to IEM and possibly CPUM too.
11986 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11987 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; /* Save it. */
11988 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11989 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11990 AssertRCReturn(rc, rc);
11991
11992 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
11993
11994 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
11995 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
11996
11997 if (rcStrict == VINF_SUCCESS)
11998 {
11999 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12000
12001 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12002 if ( idMsr == MSR_IA32_APICBASE
12003 || ( idMsr >= MSR_IA32_X2APIC_START
12004 && idMsr <= MSR_IA32_X2APIC_END))
12005 {
12006 /*
12007 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12008 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before IEM changes it.
12009 */
12010 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
12011 }
12012 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12013 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12014 else if (idMsr == MSR_K6_EFER)
12015 {
12016 /*
12017 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12018 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12019 * the other bits as well, SCE and NXE. See @bugref{7368}.
12020 */
12021 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS
12022 | HM_CHANGED_VMX_EXIT_CTLS);
12023 }
12024
12025 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12026 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
12027 {
12028 switch (idMsr)
12029 {
12030 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12031 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12032 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12033 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
12034 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
12035 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
12036 default:
12037 {
12038 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12039 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12040 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12041 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
12042 break;
12043 }
12044 }
12045 }
12046#ifdef VBOX_STRICT
12047 else
12048 {
12049 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12050 switch (idMsr)
12051 {
12052 case MSR_IA32_SYSENTER_CS:
12053 case MSR_IA32_SYSENTER_EIP:
12054 case MSR_IA32_SYSENTER_ESP:
12055 case MSR_K8_FS_BASE:
12056 case MSR_K8_GS_BASE:
12057 {
12058 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
12059 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12060 }
12061
12062 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12063 default:
12064 {
12065 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12066 {
12067 /* EFER writes are always intercepted, see hmR0VmxExportGuestMsrs(). */
12068 if (idMsr != MSR_K6_EFER)
12069 {
12070 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12071 idMsr));
12072 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12073 }
12074 }
12075
12076 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12077 {
12078 VMXMSREXITREAD enmRead;
12079 VMXMSREXITWRITE enmWrite;
12080 int rc2 = hmR0VmxGetMsrPermission(pVCpu, idMsr, &enmRead, &enmWrite);
12081 AssertRCReturn(rc2, rc2);
12082 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12083 {
12084 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
12085 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12086 }
12087 }
12088 break;
12089 }
12090 }
12091 }
12092#endif /* VBOX_STRICT */
12093 }
12094 else if (rcStrict == VINF_IEM_RAISED_XCPT)
12095 {
12096 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12097 rcStrict = VINF_SUCCESS;
12098 }
12099 else
12100 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12101
12102 return rcStrict;
12103}
12104
12105
12106/**
12107 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12108 */
12109HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12110{
12111 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12112 /** @todo The guest has likely hit a contended spinlock. We might want to
12113 * poke a schedule different guest VCPU. */
12114 return VINF_EM_RAW_INTERRUPT;
12115}
12116
12117
12118/**
12119 * VM-exit handler for when the TPR value is lowered below the specified
12120 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12121 */
12122HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12123{
12124 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12125 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
12126
12127 /*
12128 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12129 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12130 */
12131 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12132 return VINF_SUCCESS;
12133}
12134
12135
12136/**
12137 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12138 * VM-exit.
12139 *
12140 * @retval VINF_SUCCESS when guest execution can continue.
12141 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12142 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12143 * interpreter.
12144 */
12145HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12146{
12147 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12148 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12149
12150 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12151 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12152 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12153 AssertRCReturn(rc, rc);
12154
12155 VBOXSTRICTRC rcStrict;
12156 PVM pVM = pVCpu->CTX_SUFF(pVM);
12157 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
12158 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
12159 switch (uAccessType)
12160 {
12161 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
12162 {
12163 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
12164 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12165 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
12166 AssertMsg( rcStrict == VINF_SUCCESS
12167 || rcStrict == VINF_IEM_RAISED_XCPT
12168 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12169
12170 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12171 {
12172 case 0:
12173 {
12174 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12175 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12176 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
12177 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
12178
12179 /*
12180 * This is a kludge for handling switches back to real mode when we try to use
12181 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
12182 * deal with special selector values, so we have to return to ring-3 and run
12183 * there till the selector values are V86 mode compatible.
12184 *
12185 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
12186 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
12187 * at the end of this function.
12188 */
12189 if ( rc == VINF_SUCCESS
12190 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
12191 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
12192 && (uOldCr0 & X86_CR0_PE)
12193 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
12194 {
12195 /** @todo check selectors rather than returning all the time. */
12196 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
12197 rcStrict = VINF_EM_RESCHEDULE_REM;
12198 }
12199 break;
12200 }
12201
12202 case 2:
12203 {
12204 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
12205 /* Nothing to do here, CR2 it's not part of the VMCS. */
12206 break;
12207 }
12208
12209 case 3:
12210 {
12211 Assert( !pVM->hm.s.fNestedPaging
12212 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12213 || pVCpu->hm.s.fUsingDebugLoop);
12214 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
12215 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12216 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
12217 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
12218 break;
12219 }
12220
12221 case 4:
12222 {
12223 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
12224 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12225 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
12226 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
12227 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12228 break;
12229 }
12230
12231 case 8:
12232 {
12233 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
12234 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12235 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12236 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
12237 break;
12238 }
12239 default:
12240 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
12241 break;
12242 }
12243 break;
12244 }
12245
12246 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
12247 {
12248 Assert( !pVM->hm.s.fNestedPaging
12249 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12250 || pVCpu->hm.s.fUsingDebugLoop
12251 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
12252 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12253 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
12254 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12255
12256 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
12257 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
12258 AssertMsg( rcStrict == VINF_SUCCESS
12259 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12260#ifdef VBOX_WITH_STATISTICS
12261 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12262 {
12263 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
12264 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
12265 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
12266 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
12267 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
12268 }
12269#endif
12270 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12271 VBOXSTRICTRC_VAL(rcStrict)));
12272 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
12273 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
12274 else
12275 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12276 break;
12277 }
12278
12279 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12280 {
12281 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12282 AssertMsg( rcStrict == VINF_SUCCESS
12283 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12284
12285 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12286 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12287 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12288 break;
12289 }
12290
12291 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12292 {
12293 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
12294 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual));
12295 AssertMsg( rcStrict == VINF_SUCCESS
12296 || rcStrict == VINF_IEM_RAISED_XCPT
12297 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12298
12299 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12300 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12301 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12302 break;
12303 }
12304
12305 default:
12306 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12307 VERR_VMX_UNEXPECTED_EXCEPTION);
12308 }
12309
12310 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
12311 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
12312 if (rcStrict == VINF_IEM_RAISED_XCPT)
12313 {
12314 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12315 rcStrict = VINF_SUCCESS;
12316 }
12317
12318 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12319 NOREF(pVM);
12320 return rcStrict;
12321}
12322
12323
12324/**
12325 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12326 * VM-exit.
12327 */
12328HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12329{
12330 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12331 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12332
12333 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12334 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12335 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12336 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER);
12337 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12338 AssertRCReturn(rc, rc);
12339
12340 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12341 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
12342 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
12343 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
12344 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
12345 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
12346 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12347 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12348
12349 /*
12350 * Update exit history to see if this exit can be optimized.
12351 */
12352 VBOXSTRICTRC rcStrict;
12353 PCEMEXITREC pExitRec = NULL;
12354 if ( !fGstStepping
12355 && !fDbgStepping)
12356 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12357 !fIOString
12358 ? !fIOWrite
12359 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
12360 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
12361 : !fIOWrite
12362 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
12363 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
12364 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12365 if (!pExitRec)
12366 {
12367 /* I/O operation lookup arrays. */
12368 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12369 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
12370 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12371 uint32_t const cbInstr = pVmxTransient->cbInstr;
12372 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12373 PVM pVM = pVCpu->CTX_SUFF(pVM);
12374 if (fIOString)
12375 {
12376 /*
12377 * INS/OUTS - I/O String instruction.
12378 *
12379 * Use instruction-information if available, otherwise fall back on
12380 * interpreting the instruction.
12381 */
12382 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12383 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
12384 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
12385 if (fInsOutsInfo)
12386 {
12387 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12388 AssertRCReturn(rc2, rc2);
12389 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12390 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12391 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12392 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
12393 if (fIOWrite)
12394 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12395 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12396 else
12397 {
12398 /*
12399 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12400 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12401 * See Intel Instruction spec. for "INS".
12402 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12403 */
12404 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12405 }
12406 }
12407 else
12408 rcStrict = IEMExecOne(pVCpu);
12409
12410 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12411 fUpdateRipAlready = true;
12412 }
12413 else
12414 {
12415 /*
12416 * IN/OUT - I/O instruction.
12417 */
12418 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12419 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12420 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
12421 if (fIOWrite)
12422 {
12423 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
12424 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12425 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12426 && !pCtx->eflags.Bits.u1TF)
12427 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
12428 }
12429 else
12430 {
12431 uint32_t u32Result = 0;
12432 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12433 if (IOM_SUCCESS(rcStrict))
12434 {
12435 /* Save result of I/O IN instr. in AL/AX/EAX. */
12436 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12437 }
12438 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12439 && !pCtx->eflags.Bits.u1TF)
12440 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
12441 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12442 }
12443 }
12444
12445 if (IOM_SUCCESS(rcStrict))
12446 {
12447 if (!fUpdateRipAlready)
12448 {
12449 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
12450 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12451 }
12452
12453 /*
12454 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
12455 * while booting Fedora 17 64-bit guest.
12456 *
12457 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12458 */
12459 if (fIOString)
12460 {
12461 /** @todo Single-step for INS/OUTS with REP prefix? */
12462 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
12463 }
12464 else if ( !fDbgStepping
12465 && fGstStepping)
12466 {
12467 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12468 AssertRCReturn(rc, rc);
12469 }
12470
12471 /*
12472 * If any I/O breakpoints are armed, we need to check if one triggered
12473 * and take appropriate action.
12474 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12475 */
12476 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_DR7);
12477 AssertRCReturn(rc, rc);
12478
12479 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12480 * execution engines about whether hyper BPs and such are pending. */
12481 uint32_t const uDr7 = pCtx->dr[7];
12482 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12483 && X86_DR7_ANY_RW_IO(uDr7)
12484 && (pCtx->cr4 & X86_CR4_DE))
12485 || DBGFBpIsHwIoArmed(pVM)))
12486 {
12487 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12488
12489 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12490 VMMRZCallRing3Disable(pVCpu);
12491 HM_DISABLE_PREEMPT(pVCpu);
12492
12493 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12494
12495 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
12496 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12497 {
12498 /* Raise #DB. */
12499 if (fIsGuestDbgActive)
12500 ASMSetDR6(pCtx->dr[6]);
12501 if (pCtx->dr[7] != uDr7)
12502 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
12503
12504 hmR0VmxSetPendingXcptDB(pVCpu);
12505 }
12506 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12507 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12508 else if ( rcStrict2 != VINF_SUCCESS
12509 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12510 rcStrict = rcStrict2;
12511 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12512
12513 HM_RESTORE_PREEMPT();
12514 VMMRZCallRing3Enable(pVCpu);
12515 }
12516 }
12517
12518#ifdef VBOX_STRICT
12519 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12520 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
12521 Assert(!fIOWrite);
12522 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12523 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
12524 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
12525 Assert(fIOWrite);
12526 else
12527 {
12528# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12529 * statuses, that the VMM device and some others may return. See
12530 * IOM_SUCCESS() for guidance. */
12531 AssertMsg( RT_FAILURE(rcStrict)
12532 || rcStrict == VINF_SUCCESS
12533 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12534 || rcStrict == VINF_EM_DBG_BREAKPOINT
12535 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12536 || rcStrict == VINF_EM_RAW_TO_R3
12537 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12538# endif
12539 }
12540#endif
12541 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12542 }
12543 else
12544 {
12545 /*
12546 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12547 */
12548 int rc2 = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
12549 AssertRCReturn(rc2, rc2);
12550 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
12551 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
12552 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
12553 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12554 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
12555 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
12556
12557 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12558 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12559
12560 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12561 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12562 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12563 }
12564 return rcStrict;
12565}
12566
12567
12568/**
12569 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12570 * VM-exit.
12571 */
12572HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12573{
12574 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12575
12576 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12577 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12578 AssertRCReturn(rc, rc);
12579 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
12580 {
12581 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12582 AssertRCReturn(rc, rc);
12583 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12584 {
12585 uint32_t uErrCode;
12586 RTGCUINTPTR GCPtrFaultAddress;
12587 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12588 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12589 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
12590 if (fErrorCodeValid)
12591 {
12592 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12593 AssertRCReturn(rc, rc);
12594 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
12595 }
12596 else
12597 uErrCode = 0;
12598
12599 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12600 && uVector == X86_XCPT_PF)
12601 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
12602 else
12603 GCPtrFaultAddress = 0;
12604
12605 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12606 0 /* cbInstr */, uErrCode, GCPtrFaultAddress);
12607
12608 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
12609 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12610 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12611 }
12612 }
12613
12614 /* Fall back to the interpreter to emulate the task-switch. */
12615 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12616 return VERR_EM_INTERPRETER;
12617}
12618
12619
12620/**
12621 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12622 */
12623HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12624{
12625 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12626 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
12627 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
12628 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12629 AssertRCReturn(rc, rc);
12630 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12631 return VINF_EM_DBG_STEPPED;
12632}
12633
12634
12635/**
12636 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12637 */
12638HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12639{
12640 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12641
12642 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12643
12644 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12645 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12646 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12647 {
12648 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12649 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12650 {
12651 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12652 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12653 }
12654 }
12655 else
12656 {
12657 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12658 rcStrict1 = VINF_SUCCESS;
12659 return rcStrict1;
12660 }
12661
12662 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
12663 int rc = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12664 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12665 AssertRCReturn(rc, rc);
12666
12667 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12668 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
12669 VBOXSTRICTRC rcStrict2;
12670 switch (uAccessType)
12671 {
12672 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12673 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12674 {
12675 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
12676 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
12677 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12678
12679 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12680 GCPhys &= PAGE_BASE_GC_MASK;
12681 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
12682 PVM pVM = pVCpu->CTX_SUFF(pVM);
12683 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12684 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
12685
12686 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12687 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12688 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12689 CPUMCTX2CORE(pCtx), GCPhys);
12690 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12691 if ( rcStrict2 == VINF_SUCCESS
12692 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12693 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12694 {
12695 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12696 | HM_CHANGED_GUEST_APIC_TPR);
12697 rcStrict2 = VINF_SUCCESS;
12698 }
12699 break;
12700 }
12701
12702 default:
12703 Log4Func(("uAccessType=%#x\n", uAccessType));
12704 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12705 break;
12706 }
12707
12708 if (rcStrict2 != VINF_SUCCESS)
12709 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12710 return rcStrict2;
12711}
12712
12713
12714/**
12715 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12716 * VM-exit.
12717 */
12718HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12719{
12720 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12721
12722 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12723 if (pVmxTransient->fWasGuestDebugStateActive)
12724 {
12725 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
12726 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12727 }
12728
12729 if ( !pVCpu->hm.s.fSingleInstruction
12730 && !pVmxTransient->fWasHyperDebugStateActive)
12731 {
12732 Assert(!DBGFIsStepping(pVCpu));
12733 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12734
12735 /* Don't intercept MOV DRx any more. */
12736 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
12737 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12738 AssertRCReturn(rc, rc);
12739
12740 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12741 VMMRZCallRing3Disable(pVCpu);
12742 HM_DISABLE_PREEMPT(pVCpu);
12743
12744 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12745 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12746 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12747
12748 HM_RESTORE_PREEMPT();
12749 VMMRZCallRing3Enable(pVCpu);
12750
12751#ifdef VBOX_WITH_STATISTICS
12752 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12753 AssertRCReturn(rc, rc);
12754 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12755 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12756 else
12757 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12758#endif
12759 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12760 return VINF_SUCCESS;
12761 }
12762
12763 /*
12764 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12765 * Update the segment registers and DR7 from the CPU.
12766 */
12767 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12768 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12769 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
12770 AssertRCReturn(rc, rc);
12771 Log4Func(("CS:RIP=%04x:%08RX64\n", pCtx->cs.Sel, pCtx->rip));
12772
12773 PVM pVM = pVCpu->CTX_SUFF(pVM);
12774 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12775 {
12776 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12777 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
12778 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
12779 if (RT_SUCCESS(rc))
12780 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12781 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12782 }
12783 else
12784 {
12785 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12786 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
12787 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
12788 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12789 }
12790
12791 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12792 if (RT_SUCCESS(rc))
12793 {
12794 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12795 AssertRCReturn(rc2, rc2);
12796 return VINF_SUCCESS;
12797 }
12798 return rc;
12799}
12800
12801
12802/**
12803 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12804 * Conditional VM-exit.
12805 */
12806HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12807{
12808 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12809 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12810
12811 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12812 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12813 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12814 {
12815 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12816 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12817 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12818 {
12819 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12820 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12821 }
12822 }
12823 else
12824 {
12825 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12826 rcStrict1 = VINF_SUCCESS;
12827 return rcStrict1;
12828 }
12829
12830 /*
12831 * Get sufficent state and update the exit history entry.
12832 */
12833 RTGCPHYS GCPhys;
12834 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12835 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12836 AssertRCReturn(rc, rc);
12837
12838 VBOXSTRICTRC rcStrict;
12839 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12840 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
12841 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12842 if (!pExitRec)
12843 {
12844 /*
12845 * If we succeed, resume guest execution.
12846 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12847 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12848 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12849 * weird case. See @bugref{6043}.
12850 */
12851 PVM pVM = pVCpu->CTX_SUFF(pVM);
12852 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12853 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
12854 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
12855 if ( rcStrict == VINF_SUCCESS
12856 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
12857 || rcStrict == VERR_PAGE_NOT_PRESENT)
12858 {
12859 /* Successfully handled MMIO operation. */
12860 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12861 | HM_CHANGED_GUEST_APIC_TPR);
12862 rcStrict = VINF_SUCCESS;
12863 }
12864 }
12865 else
12866 {
12867 /*
12868 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12869 */
12870 int rc2 = hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12871 AssertRCReturn(rc2, rc2);
12872
12873 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
12874 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
12875
12876 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12877 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12878
12879 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12880 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12881 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12882 }
12883 return VBOXSTRICTRC_TODO(rcStrict);
12884}
12885
12886
12887/**
12888 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12889 * VM-exit.
12890 */
12891HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12892{
12893 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12894 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12895
12896 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12897 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12898 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12899 {
12900 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12901 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12902 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12903 }
12904 else
12905 {
12906 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12907 rcStrict1 = VINF_SUCCESS;
12908 return rcStrict1;
12909 }
12910
12911 RTGCPHYS GCPhys;
12912 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12913 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12914 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12915 AssertRCReturn(rc, rc);
12916
12917 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12918 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
12919
12920 RTGCUINT uErrorCode = 0;
12921 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
12922 uErrorCode |= X86_TRAP_PF_ID;
12923 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
12924 uErrorCode |= X86_TRAP_PF_RW;
12925 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
12926 uErrorCode |= X86_TRAP_PF_P;
12927
12928 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12929
12930
12931 /* Handle the pagefault trap for the nested shadow table. */
12932 PVM pVM = pVCpu->CTX_SUFF(pVM);
12933 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12934
12935 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
12936 pCtx->cs.Sel, pCtx->rip));
12937
12938 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
12939 TRPMResetTrap(pVCpu);
12940
12941 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12942 if ( rcStrict2 == VINF_SUCCESS
12943 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12944 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12945 {
12946 /* Successfully synced our nested page tables. */
12947 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12948 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
12949 return VINF_SUCCESS;
12950 }
12951
12952 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12953 return rcStrict2;
12954}
12955
12956/** @} */
12957
12958/** @name VM-exit exception handlers.
12959 * @{
12960 */
12961/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12962/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12963/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12964
12965/**
12966 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
12967 */
12968static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12969{
12970 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12971 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
12972
12973 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
12974 AssertRCReturn(rc, rc);
12975
12976 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
12977 {
12978 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
12979 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
12980
12981 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
12982 * provides VM-exit instruction length. If this causes problem later,
12983 * disassemble the instruction like it's done on AMD-V. */
12984 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12985 AssertRCReturn(rc2, rc2);
12986 return rc;
12987 }
12988
12989 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
12990 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
12991 return rc;
12992}
12993
12994
12995/**
12996 * VM-exit exception handler for \#BP (Breakpoint exception).
12997 */
12998static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12999{
13000 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13001 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13002
13003 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13004 AssertRCReturn(rc, rc);
13005
13006 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13007 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13008 if (rc == VINF_EM_RAW_GUEST_TRAP)
13009 {
13010 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13011 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13012 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13013 AssertRCReturn(rc, rc);
13014
13015 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13016 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13017 }
13018
13019 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13020 return rc;
13021}
13022
13023
13024/**
13025 * VM-exit exception handler for \#AC (alignment check exception).
13026 */
13027static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13028{
13029 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13030
13031 /*
13032 * Re-inject it. We'll detect any nesting before getting here.
13033 */
13034 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13035 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13036 AssertRCReturn(rc, rc);
13037 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13038
13039 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13040 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13041 return VINF_SUCCESS;
13042}
13043
13044
13045/**
13046 * VM-exit exception handler for \#DB (Debug exception).
13047 */
13048static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13049{
13050 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13051 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13052
13053 /*
13054 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13055 * for processing.
13056 */
13057 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13058
13059 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13060 uint64_t uDR6 = X86_DR6_INIT_VAL;
13061 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13062
13063 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13064 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13065 Log6Func(("rc=%Rrc\n", rc));
13066 if (rc == VINF_EM_RAW_GUEST_TRAP)
13067 {
13068 /*
13069 * The exception was for the guest. Update DR6, DR7.GD and
13070 * IA32_DEBUGCTL.LBR before forwarding it.
13071 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13072 */
13073 VMMRZCallRing3Disable(pVCpu);
13074 HM_DISABLE_PREEMPT(pVCpu);
13075
13076 pCtx->dr[6] &= ~X86_DR6_B_MASK;
13077 pCtx->dr[6] |= uDR6;
13078 if (CPUMIsGuestDebugStateActive(pVCpu))
13079 ASMSetDR6(pCtx->dr[6]);
13080
13081 HM_RESTORE_PREEMPT();
13082 VMMRZCallRing3Enable(pVCpu);
13083
13084 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_DR7);
13085 AssertRCReturn(rc, rc);
13086
13087 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13088 pCtx->dr[7] &= ~X86_DR7_GD;
13089
13090 /* Paranoia. */
13091 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13092 pCtx->dr[7] |= X86_DR7_RA1_MASK;
13093
13094 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
13095 AssertRCReturn(rc, rc);
13096
13097 /*
13098 * Raise #DB in the guest.
13099 *
13100 * It is important to reflect exactly what the VM-exit gave us (preserving the
13101 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
13102 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
13103 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
13104 *
13105 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
13106 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
13107 */
13108 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13109 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13110 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13111 AssertRCReturn(rc, rc);
13112 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13113 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13114 return VINF_SUCCESS;
13115 }
13116
13117 /*
13118 * Not a guest trap, must be a hypervisor related debug event then.
13119 * Update DR6 in case someone is interested in it.
13120 */
13121 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13122 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13123 CPUMSetHyperDR6(pVCpu, uDR6);
13124
13125 return rc;
13126}
13127
13128/**
13129 * VM-exit exception handler for \#GP (General-protection exception).
13130 *
13131 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13132 */
13133static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13134{
13135 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13136 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13137
13138 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13139 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13140 { /* likely */ }
13141 else
13142 {
13143#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13144 Assert(pVCpu->hm.s.fUsingDebugLoop);
13145#endif
13146 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13147 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13148 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13149 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13150 rc |= hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13151 AssertRCReturn(rc, rc);
13152 Log4Func(("Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pCtx->cs.Sel, pCtx->rip,
13153 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
13154 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13155 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13156 return rc;
13157 }
13158
13159 Assert(CPUMIsGuestInRealModeEx(pCtx));
13160 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13161
13162 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13163 AssertRCReturn(rc, rc);
13164
13165 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
13166 if (rcStrict == VINF_SUCCESS)
13167 {
13168 if (!CPUMIsGuestInRealModeEx(pCtx))
13169 {
13170 /*
13171 * The guest is no longer in real-mode, check if we can continue executing the
13172 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
13173 */
13174 if (HMVmxCanExecuteGuest(pVCpu, pCtx))
13175 {
13176 Log4Func(("Mode changed but guest still suitable for executing using VT-x\n"));
13177 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
13178 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13179 }
13180 else
13181 {
13182 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
13183 rcStrict = VINF_EM_RESCHEDULE;
13184 }
13185 }
13186 else
13187 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13188 }
13189 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13190 {
13191 rcStrict = VINF_SUCCESS;
13192 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13193 }
13194 return VBOXSTRICTRC_VAL(rcStrict);
13195}
13196
13197
13198/**
13199 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13200 * the exception reported in the VMX transient structure back into the VM.
13201 *
13202 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13203 * up-to-date.
13204 */
13205static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13206{
13207 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13208#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13209 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13210 ("uVector=%#x u32XcptBitmap=%#X32\n",
13211 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13212#endif
13213
13214 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13215 hmR0VmxCheckExitDueToEventDelivery(). */
13216 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13217 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13218 AssertRCReturn(rc, rc);
13219 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13220
13221#ifdef DEBUG_ramshankar
13222 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
13223 uint8_t uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13224 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13225#endif
13226
13227 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13228 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13229 return VINF_SUCCESS;
13230}
13231
13232
13233/**
13234 * VM-exit exception handler for \#PF (Page-fault exception).
13235 */
13236static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13237{
13238 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13239 PVM pVM = pVCpu->CTX_SUFF(pVM);
13240 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13241 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13242 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13243 AssertRCReturn(rc, rc);
13244
13245 if (!pVM->hm.s.fNestedPaging)
13246 { /* likely */ }
13247 else
13248 {
13249#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13250 Assert(pVCpu->hm.s.fUsingDebugLoop);
13251#endif
13252 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13253 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13254 {
13255 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13256 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13257 }
13258 else
13259 {
13260 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13261 hmR0VmxSetPendingXcptDF(pVCpu);
13262 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13263 }
13264 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13265 return rc;
13266 }
13267
13268 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13269 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13270 if (pVmxTransient->fVectoringPF)
13271 {
13272 Assert(pVCpu->hm.s.Event.fPending);
13273 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13274 }
13275
13276 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13277 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13278 AssertRCReturn(rc, rc);
13279
13280 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
13281 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
13282
13283 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13284 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13285
13286 Log4Func(("#PF: rc=%Rrc\n", rc));
13287 if (rc == VINF_SUCCESS)
13288 {
13289 /*
13290 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13291 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13292 */
13293 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13294 TRPMResetTrap(pVCpu);
13295 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13296 return rc;
13297 }
13298
13299 if (rc == VINF_EM_RAW_GUEST_TRAP)
13300 {
13301 if (!pVmxTransient->fVectoringDoublePF)
13302 {
13303 /* It's a guest page fault and needs to be reflected to the guest. */
13304 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13305 TRPMResetTrap(pVCpu);
13306 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13307 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13308 uGstErrorCode, pVmxTransient->uExitQual);
13309 }
13310 else
13311 {
13312 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13313 TRPMResetTrap(pVCpu);
13314 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13315 hmR0VmxSetPendingXcptDF(pVCpu);
13316 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13317 }
13318
13319 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13320 return VINF_SUCCESS;
13321 }
13322
13323 TRPMResetTrap(pVCpu);
13324 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13325 return rc;
13326}
13327
13328/** @} */
13329
13330#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13331
13332/** @name Nested-guest VM-exit handlers.
13333 * @{
13334 */
13335/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13336/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Nested-guest VM-exit handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13337/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13338
13339/**
13340 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
13341 */
13342HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13343{
13344 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13345
13346 /** @todo NSTVMX: Vmclear. */
13347 hmR0VmxSetPendingXcptUD(pVCpu);
13348 return VINF_SUCCESS;
13349}
13350
13351
13352/**
13353 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
13354 */
13355HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13356{
13357 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13358
13359 /** @todo NSTVMX: Vmlaunch. */
13360 hmR0VmxSetPendingXcptUD(pVCpu);
13361 return VINF_SUCCESS;
13362}
13363
13364
13365/**
13366 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
13367 */
13368HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13369{
13370 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13371
13372 /** @todo NSTVMX: Vmptrld. */
13373 hmR0VmxSetPendingXcptUD(pVCpu);
13374 return VINF_SUCCESS;
13375}
13376
13377
13378/**
13379 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
13380 */
13381HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13382{
13383 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13384
13385 /** @todo NSTVMX: Vmptrst. */
13386 hmR0VmxSetPendingXcptUD(pVCpu);
13387 return VINF_SUCCESS;
13388}
13389
13390
13391/**
13392 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
13393 */
13394HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13395{
13396 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13397
13398 /** @todo NSTVMX: Vmread. */
13399 hmR0VmxSetPendingXcptUD(pVCpu);
13400 return VINF_SUCCESS;
13401}
13402
13403
13404/**
13405 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
13406 */
13407HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13408{
13409 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13410
13411 /** @todo NSTVMX: Vmresume. */
13412 hmR0VmxSetPendingXcptUD(pVCpu);
13413 return VINF_SUCCESS;
13414}
13415
13416
13417/**
13418 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
13419 */
13420HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13421{
13422 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13423
13424 /** @todo NSTVMX: Vmwrite. */
13425 hmR0VmxSetPendingXcptUD(pVCpu);
13426 return VINF_SUCCESS;
13427}
13428
13429
13430/**
13431 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
13432 */
13433HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13434{
13435 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13436
13437 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13438 rc |= hmR0VmxImportGuestState(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13439 AssertRCReturn(rc, rc);
13440
13441 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
13442 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13443 {
13444 /* VMXOFF on success changes the internal hwvirt state but not anything that's visible to the guest. */
13445 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
13446 }
13447 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13448 {
13449 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13450 rcStrict = VINF_SUCCESS;
13451 }
13452 return rcStrict;
13453}
13454
13455
13456/**
13457 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
13458 */
13459HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13460{
13461 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13462
13463 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13464 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13465 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13466 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13467 AssertRCReturn(rc, rc);
13468
13469 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToVmxInstr(pVCpu, pVmxTransient);
13470 if (rcStrict == VINF_SUCCESS)
13471 { /* likely */ }
13472 else if (rcStrict == VINF_HM_PENDING_XCPT)
13473 {
13474 Log4Func(("Privilege checks failed, raising xcpt %#x!\n", VMX_ENTRY_INT_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo)));
13475 return VINF_SUCCESS;
13476 }
13477 else
13478 {
13479 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13480 return rcStrict;
13481 }
13482
13483 RTGCPTR GCPtrVmxon;
13484 PCVMXEXITINSTRINFO pExitInstrInfo = &pVmxTransient->ExitInstrInfo;
13485 RTGCPTR const GCPtrDisp = pVmxTransient->uExitQual;
13486 rcStrict = hmR0VmxDecodeMemOperand(pVCpu, pExitInstrInfo, GCPtrDisp, false /*fIsWrite*/, &GCPtrVmxon);
13487 if (rcStrict == VINF_SUCCESS)
13488 { /* likely */ }
13489 else if (rcStrict == VINF_HM_PENDING_XCPT)
13490 {
13491 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", VMX_ENTRY_INT_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo)));
13492 return VINF_SUCCESS;
13493 }
13494 else
13495 {
13496 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13497 return rcStrict;
13498 }
13499
13500 rcStrict = IEMExecDecodedVmxon(pVCpu, pVmxTransient->cbInstr, GCPtrVmxon, pExitInstrInfo->u, GCPtrDisp);
13501 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13502 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13503 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13504 {
13505 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13506 rcStrict = VINF_SUCCESS;
13507 }
13508 return rcStrict;
13509}
13510
13511/** @} */
13512#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13513
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette