VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 76267

Last change on this file since 76267 was 76198, checked in by vboxsync, 6 years ago

VMM: Nested VMX: bugref:9180 Use Intel terminology of 'allowed-0' and 'allowed-1'.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 578.0 KB
Line 
1/* $Id: HMVMXR0.cpp 76198 2018-12-13 07:17:44Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include "HMVMXR0.h"
43#include "dtrace/VBoxVMM.h"
44
45#ifdef DEBUG_ramshankar
46# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CHECK_GUEST_STATE
50# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
51# define HMVMX_ALWAYS_TRAP_PF
52# define HMVMX_ALWAYS_FLUSH_TLB
53# define HMVMX_ALWAYS_SWAP_EFER
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name HMVMX_READ_XXX
70 * Flags to skip redundant reads of some common VMCS fields that are not part of
71 * the guest-CPU or VCPU state but are needed while handling VM-exits.
72 */
73#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
74#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
75#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
76#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
77#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
78#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
79#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
80#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
81/** @} */
82
83/**
84 * States of the VMCS.
85 *
86 * This does not reflect all possible VMCS states but currently only those
87 * needed for maintaining the VMCS consistently even when thread-context hooks
88 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
89 */
90#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
91#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
92#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
93
94/**
95 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
96 * guest using hardware-assisted VMX.
97 *
98 * This excludes state like GPRs (other than RSP) which are always are
99 * swapped and restored across the world-switch and also registers like EFER,
100 * MSR which cannot be modified by the guest without causing a VM-exit.
101 */
102#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
103 | CPUMCTX_EXTRN_RFLAGS \
104 | CPUMCTX_EXTRN_RSP \
105 | CPUMCTX_EXTRN_SREG_MASK \
106 | CPUMCTX_EXTRN_TABLE_MASK \
107 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
108 | CPUMCTX_EXTRN_SYSCALL_MSRS \
109 | CPUMCTX_EXTRN_SYSENTER_MSRS \
110 | CPUMCTX_EXTRN_TSC_AUX \
111 | CPUMCTX_EXTRN_OTHER_MSRS \
112 | CPUMCTX_EXTRN_CR0 \
113 | CPUMCTX_EXTRN_CR3 \
114 | CPUMCTX_EXTRN_CR4 \
115 | CPUMCTX_EXTRN_DR7 \
116 | CPUMCTX_EXTRN_HM_VMX_MASK)
117
118/**
119 * Exception bitmap mask for real-mode guests (real-on-v86).
120 *
121 * We need to intercept all exceptions manually except:
122 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
123 * due to bugs in Intel CPUs.
124 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
125 * support.
126 */
127#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
128 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
129 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
130 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
131 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
132 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
133 | RT_BIT(X86_XCPT_XF))
134
135/** Maximum VM-instruction error number. */
136#define HMVMX_INSTR_ERROR_MAX 28
137
138/** Profiling macro. */
139#ifdef HM_PROFILE_EXIT_DISPATCH
140# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
141# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
142#else
143# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
144# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
145#endif
146
147/** Assert that preemption is disabled or covered by thread-context hooks. */
148#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
149 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
150
151/** Assert that we haven't migrated CPUs when thread-context hooks are not
152 * used. */
153#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
154 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
155 ("Illegal migration! Entered on CPU %u Current %u\n", \
156 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
157
158/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
159 * context. */
160#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
161 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
162 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
163
164/** Macro for importing guest state from the VMCS back into CPUMCTX (intended to be
165 * used only from VM-exit handlers). */
166#define HMVMX_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) (hmR0VmxImportGuestState((a_pVCpu), (a_fWhat)))
167
168/** Helper macro for VM-exit handlers called unexpectedly. */
169#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
170 do { \
171 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
172 return VERR_VMX_UNEXPECTED_EXIT; \
173 } while (0)
174
175/** Macro for importing segment registers to the VMCS from the guest-CPU context. */
176#ifdef VMX_USE_CACHED_VMCS_ACCESSES
177# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
178 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
179 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
180#else
181# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
182 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
183 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
184#endif
185
186/** Macro for exporting segment registers to the VMCS from the guest-CPU context. */
187#define HMVMX_EXPORT_SREG(Sel, a_pCtxSelReg) \
188 hmR0VmxExportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
189 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
190
191#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
192/** Macro that does the necessary privilege checks and intercepted VM-exits for
193 * guests that attempted to execute a VMX instruction. */
194# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
195 do \
196 { \
197 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
198 if (rcStrictTmp == VINF_SUCCESS) \
199 { /* likely */ } \
200 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
201 { \
202 Assert((a_pVCpu)->hm.s.Event.fPending); \
203 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
204 return VINF_SUCCESS; \
205 } \
206 else \
207 { \
208 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
209 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
210 } \
211 } while (0)
212
213/** Macro that decodes a memory operand for an instruction VM-exit. */
214# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
215 do \
216 { \
217 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
218 (a_pGCPtrEffAddr)); \
219 if (rcStrictTmp == VINF_SUCCESS) \
220 { /* likely */ } \
221 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
222 { \
223 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
224 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
225 return VINF_SUCCESS; \
226 } \
227 else \
228 { \
229 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
230 return rcStrictTmp; \
231 } \
232 } while (0)
233
234#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
235
236
237/*********************************************************************************************************************************
238* Structures and Typedefs *
239*********************************************************************************************************************************/
240/**
241 * VMX transient state.
242 *
243 * A state structure for holding miscellaneous information across
244 * VMX non-root operation and restored after the transition.
245 */
246typedef struct VMXTRANSIENT
247{
248 /** The host's rflags/eflags. */
249 RTCCUINTREG fEFlags;
250#if HC_ARCH_BITS == 32
251 uint32_t u32Alignment0;
252#endif
253 /** The guest's TPR value used for TPR shadowing. */
254 uint8_t u8GuestTpr;
255 /** Alignment. */
256 uint8_t abAlignment0[7];
257
258 /** The basic VM-exit reason. */
259 uint16_t uExitReason;
260 /** Alignment. */
261 uint16_t u16Alignment0;
262 /** The VM-exit interruption error code. */
263 uint32_t uExitIntErrorCode;
264 /** The VM-exit exit code qualification. */
265 uint64_t uExitQual;
266 /** The Guest-linear address. */
267 uint64_t uGuestLinearAddr;
268
269 /** The VM-exit interruption-information field. */
270 uint32_t uExitIntInfo;
271 /** The VM-exit instruction-length field. */
272 uint32_t cbInstr;
273 /** The VM-exit instruction-information field. */
274 VMXEXITINSTRINFO ExitInstrInfo;
275 /** Whether the VM-entry failed or not. */
276 bool fVMEntryFailed;
277 /** Alignment. */
278 uint8_t abAlignment1[3];
279
280 /** The VM-entry interruption-information field. */
281 uint32_t uEntryIntInfo;
282 /** The VM-entry exception error code field. */
283 uint32_t uEntryXcptErrorCode;
284 /** The VM-entry instruction length field. */
285 uint32_t cbEntryInstr;
286
287 /** IDT-vectoring information field. */
288 uint32_t uIdtVectoringInfo;
289 /** IDT-vectoring error code. */
290 uint32_t uIdtVectoringErrorCode;
291
292 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
293 uint32_t fVmcsFieldsRead;
294
295 /** Whether the guest debug state was active at the time of VM-exit. */
296 bool fWasGuestDebugStateActive;
297 /** Whether the hyper debug state was active at the time of VM-exit. */
298 bool fWasHyperDebugStateActive;
299 /** Whether TSC-offsetting should be setup before VM-entry. */
300 bool fUpdateTscOffsettingAndPreemptTimer;
301 /** Whether the VM-exit was caused by a page-fault during delivery of a
302 * contributory exception or a page-fault. */
303 bool fVectoringDoublePF;
304 /** Whether the VM-exit was caused by a page-fault during delivery of an
305 * external interrupt or NMI. */
306 bool fVectoringPF;
307} VMXTRANSIENT;
308AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
309AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
310AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
311AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
312AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
313/** Pointer to VMX transient state. */
314typedef VMXTRANSIENT *PVMXTRANSIENT;
315
316/**
317 * Memory operand read or write access.
318 */
319typedef enum VMXMEMACCESS
320{
321 VMXMEMACCESS_READ = 0,
322 VMXMEMACCESS_WRITE = 1
323} VMXMEMACCESS;
324
325/**
326 * VMX VM-exit handler.
327 *
328 * @returns Strict VBox status code (i.e. informational status codes too).
329 * @param pVCpu The cross context virtual CPU structure.
330 * @param pVmxTransient Pointer to the VMX-transient structure.
331 */
332#ifndef HMVMX_USE_FUNCTION_TABLE
333typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
334#else
335typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
336/** Pointer to VM-exit handler. */
337typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
338#endif
339
340/**
341 * VMX VM-exit handler, non-strict status code.
342 *
343 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
344 *
345 * @returns VBox status code, no informational status code returned.
346 * @param pVCpu The cross context virtual CPU structure.
347 * @param pVmxTransient Pointer to the VMX-transient structure.
348 *
349 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
350 * use of that status code will be replaced with VINF_EM_SOMETHING
351 * later when switching over to IEM.
352 */
353#ifndef HMVMX_USE_FUNCTION_TABLE
354typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
355#else
356typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
357#endif
358
359
360/*********************************************************************************************************************************
361* Internal Functions *
362*********************************************************************************************************************************/
363static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush);
364static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr);
365static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
366static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat);
367static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
368 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState);
369#if HC_ARCH_BITS == 32
370static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
371#endif
372#ifndef HMVMX_USE_FUNCTION_TABLE
373DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
374# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
375# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
376#else
377# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
378# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
379#endif
380
381/** @name VM-exit handlers.
382 * @{
383 */
384static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
385static FNVMXEXITHANDLER hmR0VmxExitExtInt;
386static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
387static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
393static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
394static FNVMXEXITHANDLER hmR0VmxExitCpuid;
395static FNVMXEXITHANDLER hmR0VmxExitGetsec;
396static FNVMXEXITHANDLER hmR0VmxExitHlt;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
398static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
399static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
400static FNVMXEXITHANDLER hmR0VmxExitVmcall;
401#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
402static FNVMXEXITHANDLER hmR0VmxExitVmclear;
403static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
404static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
405static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
406static FNVMXEXITHANDLER hmR0VmxExitVmread;
407static FNVMXEXITHANDLER hmR0VmxExitVmresume;
408static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
409static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
410static FNVMXEXITHANDLER hmR0VmxExitVmxon;
411#endif
412static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
413static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
414static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
415static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
416static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
417static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
418static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
419static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
420static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
421static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
422static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
423static FNVMXEXITHANDLER hmR0VmxExitMwait;
424static FNVMXEXITHANDLER hmR0VmxExitMtf;
425static FNVMXEXITHANDLER hmR0VmxExitMonitor;
426static FNVMXEXITHANDLER hmR0VmxExitPause;
427static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
428static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
429static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
430static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
431static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
432static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
433static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
434static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
435static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
436static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
437static FNVMXEXITHANDLER hmR0VmxExitRdrand;
438static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
439/** @} */
440
441static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
442static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
443static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
444static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
445static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
446static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
447static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
448static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu);
449
450
451/*********************************************************************************************************************************
452* Global Variables *
453*********************************************************************************************************************************/
454#ifdef HMVMX_USE_FUNCTION_TABLE
455
456/**
457 * VMX_EXIT dispatch table.
458 */
459static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
460{
461 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
462 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
463 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
464 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
465 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
466 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
467 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
468 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
469 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
470 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
471 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
472 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
473 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
474 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
475 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
476 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
477 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
478 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
479 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
480#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
481 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
482 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
483 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
484 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
485 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
486 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
487 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
488 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
489 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
490#else
491 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
492 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
493 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
494 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
495 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
496 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
497 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
498 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
499 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
500#endif
501 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
502 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
503 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
504 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
505 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
506 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
507 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
508 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
509 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
510 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
511 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
512 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
513 /* 40 UNDEFINED */ hmR0VmxExitPause,
514 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
515 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
516 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
517 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
518 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
519 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
520 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
521 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
522 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
523 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
524 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
525 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
526 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
527 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
528 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
529 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
530 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
531 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
532 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
533 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
534 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
535 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
536 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
537 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
538};
539#endif /* HMVMX_USE_FUNCTION_TABLE */
540
541#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
542static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
543{
544 /* 0 */ "(Not Used)",
545 /* 1 */ "VMCALL executed in VMX root operation.",
546 /* 2 */ "VMCLEAR with invalid physical address.",
547 /* 3 */ "VMCLEAR with VMXON pointer.",
548 /* 4 */ "VMLAUNCH with non-clear VMCS.",
549 /* 5 */ "VMRESUME with non-launched VMCS.",
550 /* 6 */ "VMRESUME after VMXOFF",
551 /* 7 */ "VM-entry with invalid control fields.",
552 /* 8 */ "VM-entry with invalid host state fields.",
553 /* 9 */ "VMPTRLD with invalid physical address.",
554 /* 10 */ "VMPTRLD with VMXON pointer.",
555 /* 11 */ "VMPTRLD with incorrect revision identifier.",
556 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
557 /* 13 */ "VMWRITE to read-only VMCS component.",
558 /* 14 */ "(Not Used)",
559 /* 15 */ "VMXON executed in VMX root operation.",
560 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
561 /* 17 */ "VM-entry with non-launched executing VMCS.",
562 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
563 /* 19 */ "VMCALL with non-clear VMCS.",
564 /* 20 */ "VMCALL with invalid VM-exit control fields.",
565 /* 21 */ "(Not Used)",
566 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
567 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
568 /* 24 */ "VMCALL with invalid SMM-monitor features.",
569 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
570 /* 26 */ "VM-entry with events blocked by MOV SS.",
571 /* 27 */ "(Not Used)",
572 /* 28 */ "Invalid operand to INVEPT/INVVPID."
573};
574#endif /* VBOX_STRICT */
575
576
577/**
578 * Updates the VM's last error record.
579 *
580 * If there was a VMX instruction error, reads the error data from the VMCS and
581 * updates VCPU's last error record as well.
582 *
583 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
584 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
585 * VERR_VMX_INVALID_VMCS_FIELD.
586 * @param rc The error code.
587 */
588static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
589{
590 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
591 || rc == VERR_VMX_UNABLE_TO_START_VM)
592 {
593 AssertPtrReturnVoid(pVCpu);
594 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
595 }
596 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
597}
598
599
600/**
601 * Reads the VM-entry interruption-information field from the VMCS into the VMX
602 * transient structure.
603 *
604 * @returns VBox status code.
605 * @param pVmxTransient Pointer to the VMX transient structure.
606 *
607 * @remarks No-long-jump zone!!!
608 */
609DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
610{
611 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
612 AssertRCReturn(rc, rc);
613 return VINF_SUCCESS;
614}
615
616#ifdef VBOX_STRICT
617/**
618 * Reads the VM-entry exception error code field from the VMCS into
619 * the VMX transient structure.
620 *
621 * @returns VBox status code.
622 * @param pVmxTransient Pointer to the VMX transient structure.
623 *
624 * @remarks No-long-jump zone!!!
625 */
626DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
627{
628 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
629 AssertRCReturn(rc, rc);
630 return VINF_SUCCESS;
631}
632
633
634/**
635 * Reads the VM-entry exception error code field from the VMCS into
636 * the VMX transient structure.
637 *
638 * @returns VBox status code.
639 * @param pVmxTransient Pointer to the VMX transient structure.
640 *
641 * @remarks No-long-jump zone!!!
642 */
643DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
644{
645 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
646 AssertRCReturn(rc, rc);
647 return VINF_SUCCESS;
648}
649#endif /* VBOX_STRICT */
650
651
652/**
653 * Reads the VM-exit interruption-information field from the VMCS into the VMX
654 * transient structure.
655 *
656 * @returns VBox status code.
657 * @param pVmxTransient Pointer to the VMX transient structure.
658 */
659DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
660{
661 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
662 {
663 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
664 AssertRCReturn(rc,rc);
665 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
666 }
667 return VINF_SUCCESS;
668}
669
670
671/**
672 * Reads the VM-exit interruption error code from the VMCS into the VMX
673 * transient structure.
674 *
675 * @returns VBox status code.
676 * @param pVmxTransient Pointer to the VMX transient structure.
677 */
678DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
679{
680 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
681 {
682 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
683 AssertRCReturn(rc, rc);
684 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
685 }
686 return VINF_SUCCESS;
687}
688
689
690/**
691 * Reads the VM-exit instruction length field from the VMCS into the VMX
692 * transient structure.
693 *
694 * @returns VBox status code.
695 * @param pVmxTransient Pointer to the VMX transient structure.
696 */
697DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
698{
699 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
700 {
701 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
702 AssertRCReturn(rc, rc);
703 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
704 }
705 return VINF_SUCCESS;
706}
707
708
709/**
710 * Reads the VM-exit instruction-information field from the VMCS into
711 * the VMX transient structure.
712 *
713 * @returns VBox status code.
714 * @param pVmxTransient Pointer to the VMX transient structure.
715 */
716DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
717{
718 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
719 {
720 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
721 AssertRCReturn(rc, rc);
722 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
723 }
724 return VINF_SUCCESS;
725}
726
727
728/**
729 * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
730 *
731 * @returns VBox status code.
732 * @param pVCpu The cross context virtual CPU structure of the
733 * calling EMT. (Required for the VMCS cache case.)
734 * @param pVmxTransient Pointer to the VMX transient structure.
735 */
736DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
737{
738 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
739 {
740 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
741 AssertRCReturn(rc, rc);
742 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
743 }
744 return VINF_SUCCESS;
745}
746
747
748/**
749 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
750 *
751 * @returns VBox status code.
752 * @param pVCpu The cross context virtual CPU structure of the
753 * calling EMT. (Required for the VMCS cache case.)
754 * @param pVmxTransient Pointer to the VMX transient structure.
755 */
756DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
757{
758 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
759 {
760 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
761 AssertRCReturn(rc, rc);
762 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
763 }
764 return VINF_SUCCESS;
765}
766
767
768/**
769 * Reads the IDT-vectoring information field from the VMCS into the VMX
770 * transient structure.
771 *
772 * @returns VBox status code.
773 * @param pVmxTransient Pointer to the VMX transient structure.
774 *
775 * @remarks No-long-jump zone!!!
776 */
777DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
778{
779 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
780 {
781 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
782 AssertRCReturn(rc, rc);
783 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
784 }
785 return VINF_SUCCESS;
786}
787
788
789/**
790 * Reads the IDT-vectoring error code from the VMCS into the VMX
791 * transient structure.
792 *
793 * @returns VBox status code.
794 * @param pVmxTransient Pointer to the VMX transient structure.
795 */
796DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
797{
798 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
799 {
800 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
801 AssertRCReturn(rc, rc);
802 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
803 }
804 return VINF_SUCCESS;
805}
806
807
808/**
809 * Enters VMX root mode operation on the current CPU.
810 *
811 * @returns VBox status code.
812 * @param pVM The cross context VM structure. Can be
813 * NULL, after a resume.
814 * @param HCPhysCpuPage Physical address of the VMXON region.
815 * @param pvCpuPage Pointer to the VMXON region.
816 */
817static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
818{
819 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
820 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
821 Assert(pvCpuPage);
822 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
823
824 if (pVM)
825 {
826 /* Write the VMCS revision dword to the VMXON region. */
827 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
828 }
829
830 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
831 RTCCUINTREG fEFlags = ASMIntDisableFlags();
832
833 /* Enable the VMX bit in CR4 if necessary. */
834 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
835
836 /* Enter VMX root mode. */
837 int rc = VMXEnable(HCPhysCpuPage);
838 if (RT_FAILURE(rc))
839 {
840 if (!(uOldCr4 & X86_CR4_VMXE))
841 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
842
843 if (pVM)
844 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
845 }
846
847 /* Restore interrupts. */
848 ASMSetFlags(fEFlags);
849 return rc;
850}
851
852
853/**
854 * Exits VMX root mode operation on the current CPU.
855 *
856 * @returns VBox status code.
857 */
858static int hmR0VmxLeaveRootMode(void)
859{
860 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
861
862 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
863 RTCCUINTREG fEFlags = ASMIntDisableFlags();
864
865 /* If we're for some reason not in VMX root mode, then don't leave it. */
866 RTCCUINTREG uHostCR4 = ASMGetCR4();
867
868 int rc;
869 if (uHostCR4 & X86_CR4_VMXE)
870 {
871 /* Exit VMX root mode and clear the VMX bit in CR4. */
872 VMXDisable();
873 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
874 rc = VINF_SUCCESS;
875 }
876 else
877 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
878
879 /* Restore interrupts. */
880 ASMSetFlags(fEFlags);
881 return rc;
882}
883
884
885/**
886 * Allocates and maps one physically contiguous page. The allocated page is
887 * zero'd out. (Used by various VT-x structures).
888 *
889 * @returns IPRT status code.
890 * @param pMemObj Pointer to the ring-0 memory object.
891 * @param ppVirt Where to store the virtual address of the
892 * allocation.
893 * @param pHCPhys Where to store the physical address of the
894 * allocation.
895 */
896static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
897{
898 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
899 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
900 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
901
902 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
903 if (RT_FAILURE(rc))
904 return rc;
905 *ppVirt = RTR0MemObjAddress(*pMemObj);
906 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
907 ASMMemZero32(*ppVirt, PAGE_SIZE);
908 return VINF_SUCCESS;
909}
910
911
912/**
913 * Frees and unmaps an allocated physical page.
914 *
915 * @param pMemObj Pointer to the ring-0 memory object.
916 * @param ppVirt Where to re-initialize the virtual address of
917 * allocation as 0.
918 * @param pHCPhys Where to re-initialize the physical address of the
919 * allocation as 0.
920 */
921static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
922{
923 AssertPtr(pMemObj);
924 AssertPtr(ppVirt);
925 AssertPtr(pHCPhys);
926 if (*pMemObj != NIL_RTR0MEMOBJ)
927 {
928 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
929 AssertRC(rc);
930 *pMemObj = NIL_RTR0MEMOBJ;
931 *ppVirt = 0;
932 *pHCPhys = 0;
933 }
934}
935
936
937/**
938 * Worker function to free VT-x related structures.
939 *
940 * @returns IPRT status code.
941 * @param pVM The cross context VM structure.
942 */
943static void hmR0VmxStructsFree(PVM pVM)
944{
945 for (VMCPUID i = 0; i < pVM->cCpus; i++)
946 {
947 PVMCPU pVCpu = &pVM->aCpus[i];
948 AssertPtr(pVCpu);
949
950 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
951 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
952
953 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
954 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
955
956 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
957 }
958
959 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
960#ifdef VBOX_WITH_CRASHDUMP_MAGIC
961 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
962#endif
963}
964
965
966/**
967 * Worker function to allocate VT-x related VM structures.
968 *
969 * @returns IPRT status code.
970 * @param pVM The cross context VM structure.
971 */
972static int hmR0VmxStructsAlloc(PVM pVM)
973{
974 /*
975 * Initialize members up-front so we can cleanup properly on allocation failure.
976 */
977#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
978 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
979 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
980 pVM->hm.s.vmx.HCPhys##a_Name = 0;
981
982#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
983 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
984 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
985 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
986
987#ifdef VBOX_WITH_CRASHDUMP_MAGIC
988 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
989#endif
990 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
991
992 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
993 for (VMCPUID i = 0; i < pVM->cCpus; i++)
994 {
995 PVMCPU pVCpu = &pVM->aCpus[i];
996 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
997 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
998 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
999 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
1000 }
1001#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
1002#undef VMXLOCAL_INIT_VM_MEMOBJ
1003
1004 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
1005 AssertReturnStmt(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE) <= PAGE_SIZE,
1006 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
1007 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
1008
1009 /*
1010 * Allocate all the VT-x structures.
1011 */
1012 int rc = VINF_SUCCESS;
1013#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1014 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1015 if (RT_FAILURE(rc))
1016 goto cleanup;
1017 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
1018 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
1019#endif
1020
1021 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
1022 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
1023 {
1024 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
1025 &pVM->hm.s.vmx.HCPhysApicAccess);
1026 if (RT_FAILURE(rc))
1027 goto cleanup;
1028 }
1029
1030 /*
1031 * Initialize per-VCPU VT-x structures.
1032 */
1033 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1034 {
1035 PVMCPU pVCpu = &pVM->aCpus[i];
1036 AssertPtr(pVCpu);
1037
1038 /* Allocate the VM control structure (VMCS). */
1039 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1040 if (RT_FAILURE(rc))
1041 goto cleanup;
1042
1043 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
1044 if ( PDMHasApic(pVM)
1045 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
1046 {
1047 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1048 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1049 if (RT_FAILURE(rc))
1050 goto cleanup;
1051 }
1052
1053 /*
1054 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1055 * transparent accesses of specific MSRs.
1056 *
1057 * If the condition for enabling MSR bitmaps changes here, don't forget to
1058 * update HMAreMsrBitmapsAvailable().
1059 */
1060 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1061 {
1062 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1063 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1064 if (RT_FAILURE(rc))
1065 goto cleanup;
1066 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1067 }
1068
1069 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1070 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1071 if (RT_FAILURE(rc))
1072 goto cleanup;
1073
1074 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1075 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1076 if (RT_FAILURE(rc))
1077 goto cleanup;
1078 }
1079
1080 return VINF_SUCCESS;
1081
1082cleanup:
1083 hmR0VmxStructsFree(pVM);
1084 return rc;
1085}
1086
1087
1088/**
1089 * Does global VT-x initialization (called during module initialization).
1090 *
1091 * @returns VBox status code.
1092 */
1093VMMR0DECL(int) VMXR0GlobalInit(void)
1094{
1095#ifdef HMVMX_USE_FUNCTION_TABLE
1096 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1097# ifdef VBOX_STRICT
1098 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1099 Assert(g_apfnVMExitHandlers[i]);
1100# endif
1101#endif
1102 return VINF_SUCCESS;
1103}
1104
1105
1106/**
1107 * Does global VT-x termination (called during module termination).
1108 */
1109VMMR0DECL(void) VMXR0GlobalTerm()
1110{
1111 /* Nothing to do currently. */
1112}
1113
1114
1115/**
1116 * Sets up and activates VT-x on the current CPU.
1117 *
1118 * @returns VBox status code.
1119 * @param pHostCpu Pointer to the global CPU info struct.
1120 * @param pVM The cross context VM structure. Can be
1121 * NULL after a host resume operation.
1122 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1123 * fEnabledByHost is @c true).
1124 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1125 * @a fEnabledByHost is @c true).
1126 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1127 * enable VT-x on the host.
1128 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1129 */
1130VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1131 void *pvMsrs)
1132{
1133 Assert(pHostCpu);
1134 Assert(pvMsrs);
1135 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1136
1137 /* Enable VT-x if it's not already enabled by the host. */
1138 if (!fEnabledByHost)
1139 {
1140 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1141 if (RT_FAILURE(rc))
1142 return rc;
1143 }
1144
1145 /*
1146 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
1147 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
1148 * invalidated when flushing by VPID.
1149 */
1150 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1151 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1152 {
1153 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
1154 pHostCpu->fFlushAsidBeforeUse = false;
1155 }
1156 else
1157 pHostCpu->fFlushAsidBeforeUse = true;
1158
1159 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1160 ++pHostCpu->cTlbFlushes;
1161
1162 return VINF_SUCCESS;
1163}
1164
1165
1166/**
1167 * Deactivates VT-x on the current CPU.
1168 *
1169 * @returns VBox status code.
1170 * @param pHostCpu Pointer to the global CPU info struct.
1171 * @param pvCpuPage Pointer to the VMXON region.
1172 * @param HCPhysCpuPage Physical address of the VMXON region.
1173 *
1174 * @remarks This function should never be called when SUPR0EnableVTx() or
1175 * similar was used to enable VT-x on the host.
1176 */
1177VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1178{
1179 RT_NOREF3(pHostCpu, pvCpuPage, HCPhysCpuPage);
1180
1181 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1182 return hmR0VmxLeaveRootMode();
1183}
1184
1185
1186/**
1187 * Sets the permission bits for the specified MSR in the MSR bitmap.
1188 *
1189 * @param pVCpu The cross context virtual CPU structure.
1190 * @param uMsr The MSR value.
1191 * @param enmRead Whether reading this MSR causes a VM-exit.
1192 * @param enmWrite Whether writing this MSR causes a VM-exit.
1193 */
1194static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1195{
1196 int32_t iBit;
1197 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1198
1199 /*
1200 * MSR Layout:
1201 * Byte index MSR range Interpreted as
1202 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
1203 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
1204 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
1205 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
1206 *
1207 * A bit corresponding to an MSR within the above range causes a VM-exit
1208 * if the bit is 1 on executions of RDMSR/WRMSR.
1209 *
1210 * If an MSR falls out of the MSR range, it always cause a VM-exit.
1211 *
1212 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
1213 */
1214 if (uMsr <= 0x00001fff)
1215 iBit = uMsr;
1216 else if (uMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1217 {
1218 iBit = uMsr - UINT32_C(0xc0000000);
1219 pbMsrBitmap += 0x400;
1220 }
1221 else
1222 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1223
1224 Assert(iBit <= 0x1fff);
1225 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1226 ASMBitSet(pbMsrBitmap, iBit);
1227 else
1228 ASMBitClear(pbMsrBitmap, iBit);
1229
1230 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1231 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1232 else
1233 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1234}
1235
1236
1237/**
1238 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1239 * area.
1240 *
1241 * @returns VBox status code.
1242 * @param pVCpu The cross context virtual CPU structure.
1243 * @param cMsrs The number of MSRs.
1244 */
1245static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1246{
1247 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1248 uint64_t const uVmxMiscMsr = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc;
1249 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(uVmxMiscMsr);
1250 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1251 {
1252 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1253 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1254 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1255 }
1256
1257 /* Update number of guest MSRs to load/store across the world-switch. */
1258 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1259 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1260
1261 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1262 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1263 AssertRCReturn(rc, rc);
1264
1265 /* Update the VCPU's copy of the MSR count. */
1266 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1267
1268 return VINF_SUCCESS;
1269}
1270
1271
1272/**
1273 * Adds a new (or updates the value of an existing) guest/host MSR
1274 * pair to be swapped during the world-switch as part of the
1275 * auto-load/store MSR area in the VMCS.
1276 *
1277 * @returns VBox status code.
1278 * @param pVCpu The cross context virtual CPU structure.
1279 * @param uMsr The MSR.
1280 * @param uGuestMsrValue Value of the guest MSR.
1281 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1282 * necessary.
1283 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1284 * its value was updated. Optional, can be NULL.
1285 */
1286static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1287 bool *pfAddedAndUpdated)
1288{
1289 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1290 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1291 uint32_t i;
1292 for (i = 0; i < cMsrs; i++)
1293 {
1294 if (pGuestMsr->u32Msr == uMsr)
1295 break;
1296 pGuestMsr++;
1297 }
1298
1299 bool fAdded = false;
1300 if (i == cMsrs)
1301 {
1302 ++cMsrs;
1303 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1304 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1305
1306 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1307 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1308 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1309
1310 fAdded = true;
1311 }
1312
1313 /* Update the MSR values in the auto-load/store MSR area. */
1314 pGuestMsr->u32Msr = uMsr;
1315 pGuestMsr->u64Value = uGuestMsrValue;
1316
1317 /* Create/update the MSR slot in the host MSR area. */
1318 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1319 pHostMsr += i;
1320 pHostMsr->u32Msr = uMsr;
1321
1322 /*
1323 * Update the host MSR only when requested by the caller AND when we're
1324 * adding it to the auto-load/store area. Otherwise, it would have been
1325 * updated by hmR0VmxExportHostMsrs(). We do this for performance reasons.
1326 */
1327 bool fUpdatedMsrValue = false;
1328 if ( fAdded
1329 && fUpdateHostMsr)
1330 {
1331 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1332 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1333 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1334 fUpdatedMsrValue = true;
1335 }
1336
1337 if (pfAddedAndUpdated)
1338 *pfAddedAndUpdated = fUpdatedMsrValue;
1339 return VINF_SUCCESS;
1340}
1341
1342
1343/**
1344 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1345 * auto-load/store MSR area in the VMCS.
1346 *
1347 * @returns VBox status code.
1348 * @param pVCpu The cross context virtual CPU structure.
1349 * @param uMsr The MSR.
1350 */
1351static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1352{
1353 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1354 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1355 for (uint32_t i = 0; i < cMsrs; i++)
1356 {
1357 /* Find the MSR. */
1358 if (pGuestMsr->u32Msr == uMsr)
1359 {
1360 /* If it's the last MSR, simply reduce the count. */
1361 if (i == cMsrs - 1)
1362 {
1363 --cMsrs;
1364 break;
1365 }
1366
1367 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1368 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1369 pLastGuestMsr += cMsrs - 1;
1370 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1371 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1372
1373 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1374 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1375 pLastHostMsr += cMsrs - 1;
1376 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1377 pHostMsr->u64Value = pLastHostMsr->u64Value;
1378 --cMsrs;
1379 break;
1380 }
1381 pGuestMsr++;
1382 }
1383
1384 /* Update the VMCS if the count changed (meaning the MSR was found). */
1385 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1386 {
1387 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1388 AssertRCReturn(rc, rc);
1389
1390 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1391 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1392 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1393
1394 Log4Func(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1395 return VINF_SUCCESS;
1396 }
1397
1398 return VERR_NOT_FOUND;
1399}
1400
1401
1402/**
1403 * Checks if the specified guest MSR is part of the auto-load/store area in
1404 * the VMCS.
1405 *
1406 * @returns true if found, false otherwise.
1407 * @param pVCpu The cross context virtual CPU structure.
1408 * @param uMsr The MSR to find.
1409 */
1410static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1411{
1412 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1413 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1414
1415 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1416 {
1417 if (pGuestMsr->u32Msr == uMsr)
1418 return true;
1419 }
1420 return false;
1421}
1422
1423
1424/**
1425 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1426 *
1427 * @param pVCpu The cross context virtual CPU structure.
1428 *
1429 * @remarks No-long-jump zone!!!
1430 */
1431static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1432{
1433 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1434 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1435 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1436 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1437
1438 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1439 {
1440 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1441
1442 /*
1443 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1444 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1445 */
1446 if (pHostMsr->u32Msr == MSR_K6_EFER)
1447 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1448 else
1449 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1450 }
1451
1452 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1453}
1454
1455
1456/**
1457 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1458 * perform lazy restoration of the host MSRs while leaving VT-x.
1459 *
1460 * @param pVCpu The cross context virtual CPU structure.
1461 *
1462 * @remarks No-long-jump zone!!!
1463 */
1464static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1465{
1466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1467
1468 /*
1469 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1470 */
1471 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1472 {
1473 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1474#if HC_ARCH_BITS == 64
1475 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1476 {
1477 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1478 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1479 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1480 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1481 }
1482#endif
1483 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1484 }
1485}
1486
1487
1488/**
1489 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1490 * lazily while leaving VT-x.
1491 *
1492 * @returns true if it does, false otherwise.
1493 * @param pVCpu The cross context virtual CPU structure.
1494 * @param uMsr The MSR to check.
1495 */
1496static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1497{
1498 NOREF(pVCpu);
1499#if HC_ARCH_BITS == 64
1500 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1501 {
1502 switch (uMsr)
1503 {
1504 case MSR_K8_LSTAR:
1505 case MSR_K6_STAR:
1506 case MSR_K8_SF_MASK:
1507 case MSR_K8_KERNEL_GS_BASE:
1508 return true;
1509 }
1510 }
1511#else
1512 RT_NOREF(pVCpu, uMsr);
1513#endif
1514 return false;
1515}
1516
1517
1518/**
1519 * Loads a set of guests MSRs to allow read/passthru to the guest.
1520 *
1521 * The name of this function is slightly confusing. This function does NOT
1522 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1523 * common prefix for functions dealing with "lazy restoration" of the shared
1524 * MSRs.
1525 *
1526 * @param pVCpu The cross context virtual CPU structure.
1527 *
1528 * @remarks No-long-jump zone!!!
1529 */
1530static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1531{
1532 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1533 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1534
1535 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1536#if HC_ARCH_BITS == 64
1537 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1538 {
1539 /*
1540 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1541 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1542 * we can skip a few MSR writes.
1543 *
1544 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1545 * guest MSR values in the guest-CPU context might be different to what's currently
1546 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1547 * CPU, see @bugref{8728}.
1548 */
1549 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1550 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1551 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1552 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1553 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1554 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1555 {
1556#ifdef VBOX_STRICT
1557 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1558 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1559 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1560 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1561#endif
1562 }
1563 else
1564 {
1565 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1566 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
1567 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
1568 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1569 }
1570 }
1571#endif
1572 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1573}
1574
1575
1576/**
1577 * Performs lazy restoration of the set of host MSRs if they were previously
1578 * loaded with guest MSR values.
1579 *
1580 * @param pVCpu The cross context virtual CPU structure.
1581 *
1582 * @remarks No-long-jump zone!!!
1583 * @remarks The guest MSRs should have been saved back into the guest-CPU
1584 * context by hmR0VmxImportGuestState()!!!
1585 */
1586static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1587{
1588 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1589 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1590
1591 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1592 {
1593 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1594#if HC_ARCH_BITS == 64
1595 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1596 {
1597 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1598 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1599 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1600 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1601 }
1602#endif
1603 }
1604 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1605}
1606
1607
1608/**
1609 * Verifies that our cached values of the VMCS fields are all consistent with
1610 * what's actually present in the VMCS.
1611 *
1612 * @returns VBox status code.
1613 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
1614 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
1615 * VMCS content. HMCPU error-field is
1616 * updated, see VMX_VCI_XXX.
1617 * @param pVCpu The cross context virtual CPU structure.
1618 */
1619static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1620{
1621 uint32_t u32Val;
1622 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1623 AssertRCReturn(rc, rc);
1624 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32EntryCtls == u32Val,
1625 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1626 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
1627 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1628
1629 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1630 AssertRCReturn(rc, rc);
1631 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ExitCtls == u32Val,
1632 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1633 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
1634 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1635
1636 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1637 AssertRCReturn(rc, rc);
1638 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32PinCtls == u32Val,
1639 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1640 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
1641 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1642
1643 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1644 AssertRCReturn(rc, rc);
1645 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls == u32Val,
1646 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1647 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
1648 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1649
1650 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1651 {
1652 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1653 AssertRCReturn(rc, rc);
1654 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1655 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1656 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
1657 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1658 }
1659
1660 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
1661 AssertRCReturn(rc, rc);
1662 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32XcptBitmap == u32Val,
1663 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap, u32Val),
1664 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
1665 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1666
1667 uint64_t u64Val;
1668 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
1669 AssertRCReturn(rc, rc);
1670 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u64TscOffset == u64Val,
1671 ("Cache=%#RX64 VMCS=%#RX64\n", pVCpu->hm.s.vmx.u64TscOffset, u64Val),
1672 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
1673 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1674
1675 return VINF_SUCCESS;
1676}
1677
1678
1679#ifdef VBOX_STRICT
1680/**
1681 * Verifies that our cached host EFER value has not changed
1682 * since we cached it.
1683 *
1684 * @param pVCpu The cross context virtual CPU structure.
1685 */
1686static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1687{
1688 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1689
1690 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1691 {
1692 uint64_t u64Val;
1693 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1694 AssertRC(rc);
1695
1696 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1697 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1698 }
1699}
1700
1701
1702/**
1703 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1704 * VMCS are correct.
1705 *
1706 * @param pVCpu The cross context virtual CPU structure.
1707 */
1708static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1709{
1710 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1711
1712 /* Verify MSR counts in the VMCS are what we think it should be. */
1713 uint32_t cMsrs;
1714 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1715 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1716
1717 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1718 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1719
1720 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1721 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1722
1723 PCVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1724 PCVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1725 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1726 {
1727 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1728 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1729 pGuestMsr->u32Msr, cMsrs));
1730
1731 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1732 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1733 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1734
1735 /* Verify that the permissions are as expected in the MSR bitmap. */
1736 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1737 {
1738 VMXMSREXITREAD enmRead;
1739 VMXMSREXITWRITE enmWrite;
1740 rc = HMVmxGetMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1741 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("HMVmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1742 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1743 {
1744 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1745 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1746 }
1747 else
1748 {
1749 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1750 pGuestMsr->u32Msr, cMsrs));
1751 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1752 pGuestMsr->u32Msr, cMsrs));
1753 }
1754 }
1755 }
1756}
1757#endif /* VBOX_STRICT */
1758
1759
1760/**
1761 * Flushes the TLB using EPT.
1762 *
1763 * @returns VBox status code.
1764 * @param pVCpu The cross context virtual CPU structure of the calling
1765 * EMT. Can be NULL depending on @a enmTlbFlush.
1766 * @param enmTlbFlush Type of flush.
1767 *
1768 * @remarks Caller is responsible for making sure this function is called only
1769 * when NestedPaging is supported and providing @a enmTlbFlush that is
1770 * supported by the CPU.
1771 * @remarks Can be called with interrupts disabled.
1772 */
1773static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush)
1774{
1775 uint64_t au64Descriptor[2];
1776 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1777 au64Descriptor[0] = 0;
1778 else
1779 {
1780 Assert(pVCpu);
1781 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1782 }
1783 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1784
1785 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
1786 AssertMsg(rc == VINF_SUCCESS,
1787 ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0, rc));
1788
1789 if ( RT_SUCCESS(rc)
1790 && pVCpu)
1791 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1792}
1793
1794
1795/**
1796 * Flushes the TLB using VPID.
1797 *
1798 * @returns VBox status code.
1799 * @param pVCpu The cross context virtual CPU structure of the calling
1800 * EMT. Can be NULL depending on @a enmTlbFlush.
1801 * @param enmTlbFlush Type of flush.
1802 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1803 * on @a enmTlbFlush).
1804 *
1805 * @remarks Can be called with interrupts disabled.
1806 */
1807static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
1808{
1809 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
1810
1811 uint64_t au64Descriptor[2];
1812 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1813 {
1814 au64Descriptor[0] = 0;
1815 au64Descriptor[1] = 0;
1816 }
1817 else
1818 {
1819 AssertPtr(pVCpu);
1820 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1821 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1822 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1823 au64Descriptor[1] = GCPtr;
1824 }
1825
1826 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
1827 AssertMsg(rc == VINF_SUCCESS,
1828 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1829
1830 if ( RT_SUCCESS(rc)
1831 && pVCpu)
1832 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1833 NOREF(rc);
1834}
1835
1836
1837/**
1838 * Invalidates a guest page by guest virtual address. Only relevant for
1839 * EPT/VPID, otherwise there is nothing really to invalidate.
1840 *
1841 * @returns VBox status code.
1842 * @param pVCpu The cross context virtual CPU structure.
1843 * @param GCVirt Guest virtual address of the page to invalidate.
1844 */
1845VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1846{
1847 AssertPtr(pVCpu);
1848 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
1849
1850 bool fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1851 if (!fFlushPending)
1852 {
1853 /*
1854 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
1855 * the EPT case. See @bugref{6043} and @bugref{6177}.
1856 *
1857 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
1858 * as this function maybe called in a loop with individual addresses.
1859 */
1860 PVM pVM = pVCpu->CTX_SUFF(pVM);
1861 if (pVM->hm.s.vmx.fVpid)
1862 {
1863 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1864
1865#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1866 /*
1867 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
1868 * where executing INVVPID outside 64-bit mode does not flush translations of
1869 * 64-bit linear addresses, see @bugref{6208#c72}.
1870 */
1871 if (RT_HI_U32(GCVirt))
1872 fVpidFlush = false;
1873#endif
1874
1875 if (fVpidFlush)
1876 {
1877 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
1878 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1879 }
1880 else
1881 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1882 }
1883 else if (pVM->hm.s.fNestedPaging)
1884 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1885 }
1886
1887 return VINF_SUCCESS;
1888}
1889
1890
1891/**
1892 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1893 * case where neither EPT nor VPID is supported by the CPU.
1894 *
1895 * @param pVCpu The cross context virtual CPU structure.
1896 * @param pCpu Pointer to the global HM struct.
1897 *
1898 * @remarks Called with interrupts disabled.
1899 */
1900static void hmR0VmxFlushTaggedTlbNone(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1901{
1902 AssertPtr(pVCpu);
1903 AssertPtr(pCpu);
1904
1905 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1906
1907 Assert(pCpu->idCpu != NIL_RTCPUID);
1908 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1909 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1910 pVCpu->hm.s.fForceTLBFlush = false;
1911 return;
1912}
1913
1914
1915/**
1916 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1917 *
1918 * @param pVCpu The cross context virtual CPU structure.
1919 * @param pCpu Pointer to the global HM CPU struct.
1920 *
1921 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
1922 * nomenclature. The reason is, to avoid confusion in compare statements
1923 * since the host-CPU copies are named "ASID".
1924 *
1925 * @remarks Called with interrupts disabled.
1926 */
1927static void hmR0VmxFlushTaggedTlbBoth(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1928{
1929#ifdef VBOX_WITH_STATISTICS
1930 bool fTlbFlushed = false;
1931# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1932# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1933 if (!fTlbFlushed) \
1934 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1935 } while (0)
1936#else
1937# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1938# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1939#endif
1940
1941 AssertPtr(pCpu);
1942 AssertPtr(pVCpu);
1943 Assert(pCpu->idCpu != NIL_RTCPUID);
1944
1945 PVM pVM = pVCpu->CTX_SUFF(pVM);
1946 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1947 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1948 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1949
1950 /*
1951 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
1952 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
1953 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
1954 * cannot reuse the current ASID anymore.
1955 */
1956 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1957 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1958 {
1959 ++pCpu->uCurrentAsid;
1960 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1961 {
1962 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1963 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1964 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1965 }
1966
1967 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1968 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1969 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1970
1971 /*
1972 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1973 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1974 */
1975 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1976 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1977 HMVMX_SET_TAGGED_TLB_FLUSHED();
1978 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1979 }
1980 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
1981 {
1982 /*
1983 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
1984 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
1985 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
1986 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
1987 * mappings, see @bugref{6568}.
1988 *
1989 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
1990 */
1991 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1992 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1993 HMVMX_SET_TAGGED_TLB_FLUSHED();
1994 }
1995
1996 pVCpu->hm.s.fForceTLBFlush = false;
1997 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1998
1999 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2000 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2001 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2002 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2003 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2004 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2005 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2006 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2007 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2008
2009 /* Update VMCS with the VPID. */
2010 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2011 AssertRC(rc);
2012
2013#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2014}
2015
2016
2017/**
2018 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2019 *
2020 * @returns VBox status code.
2021 * @param pVCpu The cross context virtual CPU structure.
2022 * @param pCpu Pointer to the global HM CPU struct.
2023 *
2024 * @remarks Called with interrupts disabled.
2025 */
2026static void hmR0VmxFlushTaggedTlbEpt(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2027{
2028 AssertPtr(pVCpu);
2029 AssertPtr(pCpu);
2030 Assert(pCpu->idCpu != NIL_RTCPUID);
2031 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2032 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2033
2034 /*
2035 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2036 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2037 */
2038 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2039 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2040 {
2041 pVCpu->hm.s.fForceTLBFlush = true;
2042 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2043 }
2044
2045 /* Check for explicit TLB flushes. */
2046 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2047 {
2048 pVCpu->hm.s.fForceTLBFlush = true;
2049 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2050 }
2051
2052 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2053 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2054
2055 if (pVCpu->hm.s.fForceTLBFlush)
2056 {
2057 hmR0VmxFlushEpt(pVCpu, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2058 pVCpu->hm.s.fForceTLBFlush = false;
2059 }
2060}
2061
2062
2063/**
2064 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2065 *
2066 * @returns VBox status code.
2067 * @param pVCpu The cross context virtual CPU structure.
2068 * @param pCpu Pointer to the global HM CPU struct.
2069 *
2070 * @remarks Called with interrupts disabled.
2071 */
2072static void hmR0VmxFlushTaggedTlbVpid(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2073{
2074 AssertPtr(pVCpu);
2075 AssertPtr(pCpu);
2076 Assert(pCpu->idCpu != NIL_RTCPUID);
2077 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2078 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2079
2080 /*
2081 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2082 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2083 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2084 * cannot reuse the current ASID anymore.
2085 */
2086 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2087 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2088 {
2089 pVCpu->hm.s.fForceTLBFlush = true;
2090 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2091 }
2092
2093 /* Check for explicit TLB flushes. */
2094 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2095 {
2096 /*
2097 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2098 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2099 * fExplicitFlush = true here and change the pCpu->fFlushAsidBeforeUse check below to
2100 * include fExplicitFlush's too) - an obscure corner case.
2101 */
2102 pVCpu->hm.s.fForceTLBFlush = true;
2103 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2104 }
2105
2106 PVM pVM = pVCpu->CTX_SUFF(pVM);
2107 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2108 if (pVCpu->hm.s.fForceTLBFlush)
2109 {
2110 ++pCpu->uCurrentAsid;
2111 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2112 {
2113 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2114 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2115 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2116 }
2117
2118 pVCpu->hm.s.fForceTLBFlush = false;
2119 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2120 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2121 if (pCpu->fFlushAsidBeforeUse)
2122 {
2123 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2124 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2125 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2126 {
2127 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2128 pCpu->fFlushAsidBeforeUse = false;
2129 }
2130 else
2131 {
2132 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2133 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2134 }
2135 }
2136 }
2137
2138 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2139 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2140 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2141 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2142 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2143 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2144 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2145
2146 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2147 AssertRC(rc);
2148}
2149
2150
2151/**
2152 * Flushes the guest TLB entry based on CPU capabilities.
2153 *
2154 * @param pVCpu The cross context virtual CPU structure.
2155 * @param pCpu Pointer to the global HM CPU struct.
2156 */
2157DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2158{
2159#ifdef HMVMX_ALWAYS_FLUSH_TLB
2160 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2161#endif
2162 PVM pVM = pVCpu->CTX_SUFF(pVM);
2163 switch (pVM->hm.s.vmx.enmTlbFlushType)
2164 {
2165 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVCpu, pCpu); break;
2166 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pVCpu, pCpu); break;
2167 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pVCpu, pCpu); break;
2168 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pVCpu, pCpu); break;
2169 default:
2170 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2171 break;
2172 }
2173 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2174}
2175
2176
2177/**
2178 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2179 * TLB entries from the host TLB before VM-entry.
2180 *
2181 * @returns VBox status code.
2182 * @param pVM The cross context VM structure.
2183 */
2184static int hmR0VmxSetupTaggedTlb(PVM pVM)
2185{
2186 /*
2187 * Determine optimal flush type for Nested Paging.
2188 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2189 * guest execution (see hmR3InitFinalizeR0()).
2190 */
2191 if (pVM->hm.s.fNestedPaging)
2192 {
2193 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2194 {
2195 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2196 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2197 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2198 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2199 else
2200 {
2201 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2202 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2203 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2204 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2205 }
2206
2207 /* Make sure the write-back cacheable memory type for EPT is supported. */
2208 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2209 {
2210 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2211 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2212 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2213 }
2214
2215 /* EPT requires a page-walk length of 4. */
2216 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2217 {
2218 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2219 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2220 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2221 }
2222 }
2223 else
2224 {
2225 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2226 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2227 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2228 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2229 }
2230 }
2231
2232 /*
2233 * Determine optimal flush type for VPID.
2234 */
2235 if (pVM->hm.s.vmx.fVpid)
2236 {
2237 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2238 {
2239 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2240 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2241 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2242 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2243 else
2244 {
2245 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2246 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2247 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2248 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2249 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2250 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2251 pVM->hm.s.vmx.fVpid = false;
2252 }
2253 }
2254 else
2255 {
2256 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2257 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2258 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2259 pVM->hm.s.vmx.fVpid = false;
2260 }
2261 }
2262
2263 /*
2264 * Setup the handler for flushing tagged-TLBs.
2265 */
2266 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2267 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2268 else if (pVM->hm.s.fNestedPaging)
2269 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2270 else if (pVM->hm.s.vmx.fVpid)
2271 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2272 else
2273 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2274 return VINF_SUCCESS;
2275}
2276
2277
2278/**
2279 * Sets up pin-based VM-execution controls in the VMCS.
2280 *
2281 * @returns VBox status code.
2282 * @param pVCpu The cross context virtual CPU structure.
2283 *
2284 * @remarks We don't really care about optimizing vmwrites here as it's done only
2285 * once per VM and hence we don't care about VMCS-field cache comparisons.
2286 */
2287static int hmR0VmxSetupPinCtls(PVMCPU pVCpu)
2288{
2289 PVM pVM = pVCpu->CTX_SUFF(pVM);
2290 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
2291 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2292
2293 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2294 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2295
2296 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2297 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2298
2299 /* Enable the VMX preemption timer. */
2300 if (pVM->hm.s.vmx.fUsePreemptTimer)
2301 {
2302 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2303 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2304 }
2305
2306#if 0
2307 /* Enable posted-interrupt processing. */
2308 if (pVM->hm.s.fPostedIntrs)
2309 {
2310 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2311 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2312 fVal |= VMX_PIN_CTL_POSTED_INT;
2313 }
2314#endif
2315
2316 if ((fVal & fZap) != fVal)
2317 {
2318 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2319 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
2320 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2321 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2322 }
2323
2324 /* Commit it to the VMCS and update our cache. */
2325 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2326 AssertRCReturn(rc, rc);
2327 pVCpu->hm.s.vmx.u32PinCtls = fVal;
2328
2329 return VINF_SUCCESS;
2330}
2331
2332
2333/**
2334 * Sets up secondary processor-based VM-execution controls in the VMCS.
2335 *
2336 * @returns VBox status code.
2337 * @param pVCpu The cross context virtual CPU structure.
2338 *
2339 * @remarks We don't really care about optimizing vmwrites here as it's done only
2340 * once per VM and hence we don't care about VMCS-field cache comparisons.
2341 */
2342static int hmR0VmxSetupProcCtls2(PVMCPU pVCpu)
2343{
2344 PVM pVM = pVCpu->CTX_SUFF(pVM);
2345 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2346 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2347
2348 /* WBINVD causes a VM-exit. */
2349 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2350 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2351
2352 /* Enable EPT (aka nested-paging). */
2353 if (pVM->hm.s.fNestedPaging)
2354 fVal |= VMX_PROC_CTLS2_EPT;
2355
2356 /*
2357 * Enable the INVPCID instruction if supported by the hardware and we expose
2358 * it to the guest. Without this, guest executing INVPCID would cause a #UD.
2359 */
2360 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2361 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2362 fVal |= VMX_PROC_CTLS2_INVPCID;
2363
2364 /* Enable VPID. */
2365 if (pVM->hm.s.vmx.fVpid)
2366 fVal |= VMX_PROC_CTLS2_VPID;
2367
2368 /* Enable Unrestricted guest execution. */
2369 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2370 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2371
2372#if 0
2373 if (pVM->hm.s.fVirtApicRegs)
2374 {
2375 /* Enable APIC-register virtualization. */
2376 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2377 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2378
2379 /* Enable virtual-interrupt delivery. */
2380 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2381 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2382 }
2383#endif
2384
2385 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
2386 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2387 * done dynamically. */
2388 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2389 {
2390 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2391 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2392 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS; /* Virtualize APIC accesses. */
2393 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2394 AssertRCReturn(rc, rc);
2395 }
2396
2397 /* Enable RDTSCP. */
2398 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
2399 fVal |= VMX_PROC_CTLS2_RDTSCP;
2400
2401 /* Enable Pause-Loop exiting. */
2402 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
2403 && pVM->hm.s.vmx.cPleGapTicks
2404 && pVM->hm.s.vmx.cPleWindowTicks)
2405 {
2406 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2407
2408 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2409 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2410 AssertRCReturn(rc, rc);
2411 }
2412
2413 if ((fVal & fZap) != fVal)
2414 {
2415 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2416 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
2417 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2418 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2419 }
2420
2421 /* Commit it to the VMCS and update our cache. */
2422 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2423 AssertRCReturn(rc, rc);
2424 pVCpu->hm.s.vmx.u32ProcCtls2 = fVal;
2425
2426 return VINF_SUCCESS;
2427}
2428
2429
2430/**
2431 * Sets up processor-based VM-execution controls in the VMCS.
2432 *
2433 * @returns VBox status code.
2434 * @param pVCpu The cross context virtual CPU structure.
2435 *
2436 * @remarks We don't really care about optimizing vmwrites here as it's done only
2437 * once per VM and hence we don't care about VMCS-field cache comparisons.
2438 */
2439static int hmR0VmxSetupProcCtls(PVMCPU pVCpu)
2440{
2441 PVM pVM = pVCpu->CTX_SUFF(pVM);
2442 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2443 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2444
2445 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2446 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2447 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2448 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2449 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2450 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2451 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2452
2453 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2454 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2455 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2456 {
2457 LogRelFunc(("Unsupported VMX_PROC_CTLS_MOV_DR_EXIT combo!"));
2458 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2459 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2460 }
2461
2462 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2463 if (!pVM->hm.s.fNestedPaging)
2464 {
2465 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2466 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
2467 | VMX_PROC_CTLS_CR3_LOAD_EXIT
2468 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2469 }
2470
2471 /* Use TPR shadowing if supported by the CPU. */
2472 if ( PDMHasApic(pVM)
2473 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
2474 {
2475 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2476 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2477 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2478 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2479 AssertRCReturn(rc, rc);
2480
2481 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2482 /* CR8 writes cause a VM-exit based on TPR threshold. */
2483 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2484 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2485 }
2486 else
2487 {
2488 /*
2489 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2490 * Set this control only for 64-bit guests.
2491 */
2492 if (pVM->hm.s.fAllow64BitGuests)
2493 {
2494 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2495 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2496 }
2497 }
2498
2499 /* Use MSR-bitmaps if supported by the CPU. */
2500 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2501 {
2502 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
2503
2504 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2505 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2506 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2507 AssertRCReturn(rc, rc);
2508
2509 /*
2510 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2511 * automatically using dedicated fields in the VMCS.
2512 */
2513 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2514 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2515 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2516 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2517 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2518#if HC_ARCH_BITS == 64
2519 /*
2520 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2521 */
2522 if (pVM->hm.s.fAllow64BitGuests)
2523 {
2524 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2525 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2526 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2527 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2528 }
2529#endif
2530 /*
2531 * The IA32_PRED_CMD MSR is write-only and has no state associated with it. We never need to intercept
2532 * access (writes need to be executed without exiting, reds will #GP-fault anyway).
2533 */
2534 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2535 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2536
2537 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2538 }
2539
2540 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2541 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2542 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2543
2544 if ((fVal & fZap) != fVal)
2545 {
2546 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2547 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
2548 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2549 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2550 }
2551
2552 /* Commit it to the VMCS and update our cache. */
2553 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2554 AssertRCReturn(rc, rc);
2555 pVCpu->hm.s.vmx.u32ProcCtls = fVal;
2556
2557 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
2558 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2559 return hmR0VmxSetupProcCtls2(pVCpu);
2560
2561 /* Sanity check, should not really happen. */
2562 if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2563 {
2564 LogRelFunc(("Unrestricted Guest enabled when secondary processor-based VM-execution controls not available\n"));
2565 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2566 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2567 }
2568
2569 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
2570 return VINF_SUCCESS;
2571}
2572
2573
2574/**
2575 * Sets up miscellaneous (everything other than Pin & Processor-based
2576 * VM-execution) control fields in the VMCS.
2577 *
2578 * @returns VBox status code.
2579 * @param pVCpu The cross context virtual CPU structure.
2580 */
2581static int hmR0VmxSetupMiscCtls(PVMCPU pVCpu)
2582{
2583 AssertPtr(pVCpu);
2584
2585 int rc = VERR_GENERAL_FAILURE;
2586
2587 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2588#if 0
2589 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxExportGuestCR3AndCR4())*/
2590 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2591 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2592
2593 /*
2594 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2595 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2596 * We thus use the exception bitmap to control it rather than use both.
2597 */
2598 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2599 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2600
2601 /* All IO & IOIO instructions cause VM-exits. */
2602 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2603 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2604
2605 /* Initialize the MSR-bitmap area. */
2606 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2607 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2608 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2609 AssertRCReturn(rc, rc);
2610#endif
2611
2612 /* Setup MSR auto-load/store area. */
2613 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2614 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2615 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2616 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2617 AssertRCReturn(rc, rc);
2618
2619 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2620 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2621 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2622 AssertRCReturn(rc, rc);
2623
2624 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2625 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2626 AssertRCReturn(rc, rc);
2627
2628 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2629#if 0
2630 /* Setup debug controls */
2631 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
2632 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);
2633 AssertRCReturn(rc, rc);
2634#endif
2635
2636 return rc;
2637}
2638
2639
2640/**
2641 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2642 *
2643 * We shall setup those exception intercepts that don't change during the
2644 * lifetime of the VM here. The rest are done dynamically while loading the
2645 * guest state.
2646 *
2647 * @returns VBox status code.
2648 * @param pVCpu The cross context virtual CPU structure.
2649 */
2650static int hmR0VmxInitXcptBitmap(PVMCPU pVCpu)
2651{
2652 AssertPtr(pVCpu);
2653
2654 uint32_t uXcptBitmap;
2655
2656 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2657 uXcptBitmap = RT_BIT_32(X86_XCPT_AC);
2658
2659 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2660 and writes, and because recursive #DBs can cause the CPU hang, we must always
2661 intercept #DB. */
2662 uXcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2663
2664 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2665 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
2666 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
2667
2668 /* Commit it to the VMCS. */
2669 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2670 AssertRCReturn(rc, rc);
2671
2672 /* Update our cache of the exception bitmap. */
2673 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
2674 return VINF_SUCCESS;
2675}
2676
2677
2678/**
2679 * Does per-VM VT-x initialization.
2680 *
2681 * @returns VBox status code.
2682 * @param pVM The cross context VM structure.
2683 */
2684VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2685{
2686 LogFlowFunc(("pVM=%p\n", pVM));
2687
2688 int rc = hmR0VmxStructsAlloc(pVM);
2689 if (RT_FAILURE(rc))
2690 {
2691 LogRelFunc(("hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2692 return rc;
2693 }
2694
2695 return VINF_SUCCESS;
2696}
2697
2698
2699/**
2700 * Does per-VM VT-x termination.
2701 *
2702 * @returns VBox status code.
2703 * @param pVM The cross context VM structure.
2704 */
2705VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2706{
2707 LogFlowFunc(("pVM=%p\n", pVM));
2708
2709#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2710 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2711 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2712#endif
2713 hmR0VmxStructsFree(pVM);
2714 return VINF_SUCCESS;
2715}
2716
2717
2718/**
2719 * Sets up the VM for execution under VT-x.
2720 * This function is only called once per-VM during initialization.
2721 *
2722 * @returns VBox status code.
2723 * @param pVM The cross context VM structure.
2724 */
2725VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2726{
2727 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2728 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2729
2730 LogFlowFunc(("pVM=%p\n", pVM));
2731
2732 /*
2733 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be
2734 * allocated. We no longer support the highly unlikely case of UnrestrictedGuest without
2735 * pRealModeTSS, see hmR3InitFinalizeR0Intel().
2736 */
2737 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2738 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2739 || !pVM->hm.s.vmx.pRealModeTSS))
2740 {
2741 LogRelFunc(("Invalid real-on-v86 state.\n"));
2742 return VERR_INTERNAL_ERROR;
2743 }
2744
2745 /* Initialize these always, see hmR3InitFinalizeR0().*/
2746 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
2747 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
2748
2749 /* Setup the tagged-TLB flush handlers. */
2750 int rc = hmR0VmxSetupTaggedTlb(pVM);
2751 if (RT_FAILURE(rc))
2752 {
2753 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2754 return rc;
2755 }
2756
2757 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2758 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2759#if HC_ARCH_BITS == 64
2760 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2761 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2762 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
2763 {
2764 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2765 }
2766#endif
2767
2768 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2769 RTCCUINTREG const uHostCR4 = ASMGetCR4();
2770 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2771 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2772
2773 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2774 {
2775 PVMCPU pVCpu = &pVM->aCpus[i];
2776 AssertPtr(pVCpu);
2777 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2778
2779 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2780 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2781
2782 /* Set revision dword at the beginning of the VMCS structure. */
2783 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
2784
2785 /* Set the VMCS launch state to "clear", see Intel spec. 31.6 "Preparation and launch a virtual machine". */
2786 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2787 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc\n", rc),
2788 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2789
2790 /* Load this VMCS as the current VMCS. */
2791 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2792 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc\n", rc),
2793 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2794
2795 rc = hmR0VmxSetupPinCtls(pVCpu);
2796 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc\n", rc),
2797 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2798
2799 rc = hmR0VmxSetupProcCtls(pVCpu);
2800 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc\n", rc),
2801 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2802
2803 rc = hmR0VmxSetupMiscCtls(pVCpu);
2804 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc\n", rc),
2805 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2806
2807 rc = hmR0VmxInitXcptBitmap(pVCpu);
2808 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc\n", rc),
2809 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2810
2811#if HC_ARCH_BITS == 32
2812 rc = hmR0VmxInitVmcsReadCache(pVCpu);
2813 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc\n", rc),
2814 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2815#endif
2816
2817 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
2818 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2819 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc\n", rc),
2820 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2821
2822 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2823
2824 hmR0VmxUpdateErrorRecord(pVCpu, rc);
2825 }
2826
2827 return VINF_SUCCESS;
2828}
2829
2830
2831/**
2832 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2833 * the VMCS.
2834 *
2835 * @returns VBox status code.
2836 */
2837static int hmR0VmxExportHostControlRegs(void)
2838{
2839 RTCCUINTREG uReg = ASMGetCR0();
2840 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2841 AssertRCReturn(rc, rc);
2842
2843 uReg = ASMGetCR3();
2844 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2845 AssertRCReturn(rc, rc);
2846
2847 uReg = ASMGetCR4();
2848 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2849 AssertRCReturn(rc, rc);
2850 return rc;
2851}
2852
2853
2854/**
2855 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2856 * the host-state area in the VMCS.
2857 *
2858 * @returns VBox status code.
2859 * @param pVCpu The cross context virtual CPU structure.
2860 */
2861static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
2862{
2863#if HC_ARCH_BITS == 64
2864/**
2865 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2866 * requirements. See hmR0VmxExportHostSegmentRegs().
2867 */
2868# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2869 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2870 { \
2871 bool fValidSelector = true; \
2872 if ((selValue) & X86_SEL_LDT) \
2873 { \
2874 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2875 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2876 } \
2877 if (fValidSelector) \
2878 { \
2879 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2880 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2881 } \
2882 (selValue) = 0; \
2883 }
2884
2885 /*
2886 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2887 * should -not- save the messed up state without restoring the original host-state,
2888 * see @bugref{7240}.
2889 *
2890 * This apparently can happen (most likely the FPU changes), deal with it rather than
2891 * asserting. Was observed booting Solaris 10u10 32-bit guest.
2892 */
2893 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2894 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2895 {
2896 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2897 pVCpu->idCpu));
2898 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2899 }
2900 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2901#else
2902 RT_NOREF(pVCpu);
2903#endif
2904
2905 /*
2906 * Host DS, ES, FS and GS segment registers.
2907 */
2908#if HC_ARCH_BITS == 64
2909 RTSEL uSelDS = ASMGetDS();
2910 RTSEL uSelES = ASMGetES();
2911 RTSEL uSelFS = ASMGetFS();
2912 RTSEL uSelGS = ASMGetGS();
2913#else
2914 RTSEL uSelDS = 0;
2915 RTSEL uSelES = 0;
2916 RTSEL uSelFS = 0;
2917 RTSEL uSelGS = 0;
2918#endif
2919
2920 /*
2921 * Host CS and SS segment registers.
2922 */
2923 RTSEL uSelCS = ASMGetCS();
2924 RTSEL uSelSS = ASMGetSS();
2925
2926 /*
2927 * Host TR segment register.
2928 */
2929 RTSEL uSelTR = ASMGetTR();
2930
2931#if HC_ARCH_BITS == 64
2932 /*
2933 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
2934 * gain VM-entry and restore them before we get preempted.
2935 *
2936 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2937 */
2938 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2939 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2940 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2941 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2942# undef VMXLOCAL_ADJUST_HOST_SEG
2943#endif
2944
2945 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2946 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2947 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2948 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2949 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2950 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2951 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2952 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2953 Assert(uSelCS);
2954 Assert(uSelTR);
2955
2956 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2957#if 0
2958 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE))
2959 Assert(uSelSS != 0);
2960#endif
2961
2962 /* Write these host selector fields into the host-state area in the VMCS. */
2963 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2964 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2965#if HC_ARCH_BITS == 64
2966 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2967 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2968 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2969 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2970#else
2971 NOREF(uSelDS);
2972 NOREF(uSelES);
2973 NOREF(uSelFS);
2974 NOREF(uSelGS);
2975#endif
2976 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2977 AssertRCReturn(rc, rc);
2978
2979 /*
2980 * Host GDTR and IDTR.
2981 */
2982 RTGDTR Gdtr;
2983 RTIDTR Idtr;
2984 RT_ZERO(Gdtr);
2985 RT_ZERO(Idtr);
2986 ASMGetGDTR(&Gdtr);
2987 ASMGetIDTR(&Idtr);
2988 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
2989 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
2990 AssertRCReturn(rc, rc);
2991
2992#if HC_ARCH_BITS == 64
2993 /*
2994 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
2995 * them to the maximum limit (0xffff) on every VM-exit.
2996 */
2997 if (Gdtr.cbGdt != 0xffff)
2998 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
2999
3000 /*
3001 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
3002 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
3003 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
3004 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
3005 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
3006 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
3007 * at 0xffff on hosts where we are sure it won't cause trouble.
3008 */
3009# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3010 if (Idtr.cbIdt < 0x0fff)
3011# else
3012 if (Idtr.cbIdt != 0xffff)
3013# endif
3014 {
3015 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3016 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3017 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3018 }
3019#endif
3020
3021 /*
3022 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
3023 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
3024 * RPL should be too in most cases.
3025 */
3026 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3027 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
3028
3029 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3030#if HC_ARCH_BITS == 64
3031 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3032
3033 /*
3034 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
3035 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
3036 * restoration if the host has something else. Task switching is not supported in 64-bit
3037 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
3038 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3039 *
3040 * [1] See Intel spec. 3.5 "System Descriptor Types".
3041 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3042 */
3043 PVM pVM = pVCpu->CTX_SUFF(pVM);
3044 Assert(pDesc->System.u4Type == 11);
3045 if ( pDesc->System.u16LimitLow != 0x67
3046 || pDesc->System.u4LimitHigh)
3047 {
3048 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3049 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3050 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3051 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3052 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3053 }
3054
3055 /*
3056 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
3057 */
3058 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
3059 {
3060 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3061 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3062 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
3063 {
3064 /* The GDT is read-only but the writable GDT is available. */
3065 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
3066 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
3067 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
3068 AssertRCReturn(rc, rc);
3069 }
3070 }
3071#else
3072 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3073#endif
3074 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3075 AssertRCReturn(rc, rc);
3076
3077 /*
3078 * Host FS base and GS base.
3079 */
3080#if HC_ARCH_BITS == 64
3081 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3082 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3083 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3084 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3085 AssertRCReturn(rc, rc);
3086
3087 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3088 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3089 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3090 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3091 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3092#endif
3093 return VINF_SUCCESS;
3094}
3095
3096
3097/**
3098 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
3099 * host-state area of the VMCS.
3100 *
3101 * Theses MSRs will be automatically restored on the host after every successful
3102 * VM-exit.
3103 *
3104 * @returns VBox status code.
3105 * @param pVCpu The cross context virtual CPU structure.
3106 *
3107 * @remarks No-long-jump zone!!!
3108 */
3109static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
3110{
3111 AssertPtr(pVCpu);
3112 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3113
3114 /*
3115 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3116 * rather than swapping them on every VM-entry.
3117 */
3118 hmR0VmxLazySaveHostMsrs(pVCpu);
3119
3120 /*
3121 * Host Sysenter MSRs.
3122 */
3123 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3124#if HC_ARCH_BITS == 32
3125 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3126 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3127#else
3128 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3129 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3130#endif
3131 AssertRCReturn(rc, rc);
3132
3133 /*
3134 * Host EFER MSR.
3135 *
3136 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
3137 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
3138 */
3139 PVM pVM = pVCpu->CTX_SUFF(pVM);
3140 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3141 {
3142 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3143 AssertRCReturn(rc, rc);
3144 }
3145
3146 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see hmR0VmxExportGuestExitCtls(). */
3147
3148 return VINF_SUCCESS;
3149}
3150
3151
3152/**
3153 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3154 *
3155 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3156 * these two bits are handled by VM-entry, see hmR0VmxExportGuestExitCtls() and
3157 * hmR0VMxExportGuestEntryCtls().
3158 *
3159 * @returns true if we need to load guest EFER, false otherwise.
3160 * @param pVCpu The cross context virtual CPU structure.
3161 *
3162 * @remarks Requires EFER, CR4.
3163 * @remarks No-long-jump zone!!!
3164 */
3165static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
3166{
3167#ifdef HMVMX_ALWAYS_SWAP_EFER
3168 RT_NOREF(pVCpu);
3169 return true;
3170#else
3171
3172 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3173#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3174 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3175 if (CPUMIsGuestInLongModeEx(pCtx))
3176 return false;
3177#endif
3178
3179 PVM pVM = pVCpu->CTX_SUFF(pVM);
3180 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3181 uint64_t const u64GuestEfer = pCtx->msrEFER;
3182
3183 /*
3184 * For 64-bit guests, if EFER.SCE bit differs, we need to swap EFER to ensure that the
3185 * guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
3186 */
3187 if ( CPUMIsGuestInLongModeEx(pCtx)
3188 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3189 {
3190 return true;
3191 }
3192
3193 /*
3194 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3195 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3196 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3197 */
3198 if ( (pCtx->cr4 & X86_CR4_PAE)
3199 && (pCtx->cr0 & X86_CR0_PG)
3200 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3201 {
3202 /* Assert that host is NX capable. */
3203 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
3204 return true;
3205 }
3206
3207 return false;
3208#endif
3209}
3210
3211
3212/**
3213 * Exports the guest state with appropriate VM-entry controls in the VMCS.
3214 *
3215 * These controls can affect things done on VM-exit; e.g. "load debug controls",
3216 * see Intel spec. 24.8.1 "VM-entry controls".
3217 *
3218 * @returns VBox status code.
3219 * @param pVCpu The cross context virtual CPU structure.
3220 *
3221 * @remarks Requires EFER.
3222 * @remarks No-long-jump zone!!!
3223 */
3224static int hmR0VmxExportGuestEntryCtls(PVMCPU pVCpu)
3225{
3226 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_CTLS)
3227 {
3228 PVM pVM = pVCpu->CTX_SUFF(pVM);
3229 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3230 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3231
3232 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3233 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
3234
3235 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3236 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
3237 {
3238 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
3239 Log4Func(("VMX_ENTRY_CTLS_IA32E_MODE_GUEST\n"));
3240 }
3241 else
3242 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
3243
3244 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3245 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3246 && hmR0VmxShouldSwapEferMsr(pVCpu))
3247 {
3248 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
3249 Log4Func(("VMX_ENTRY_CTLS_LOAD_EFER_MSR\n"));
3250 }
3251
3252 /*
3253 * The following should -not- be set (since we're not in SMM mode):
3254 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
3255 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
3256 */
3257
3258 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
3259 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
3260
3261 if ((fVal & fZap) != fVal)
3262 {
3263 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3264 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
3265 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3266 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3267 }
3268
3269 /* Commit it to the VMCS and update our cache. */
3270 if (pVCpu->hm.s.vmx.u32EntryCtls != fVal)
3271 {
3272 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
3273 AssertRCReturn(rc, rc);
3274 pVCpu->hm.s.vmx.u32EntryCtls = fVal;
3275 }
3276
3277 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_CTLS);
3278 }
3279 return VINF_SUCCESS;
3280}
3281
3282
3283/**
3284 * Exports the guest state with appropriate VM-exit controls in the VMCS.
3285 *
3286 * @returns VBox status code.
3287 * @param pVCpu The cross context virtual CPU structure.
3288 *
3289 * @remarks Requires EFER.
3290 */
3291static int hmR0VmxExportGuestExitCtls(PVMCPU pVCpu)
3292{
3293 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_EXIT_CTLS)
3294 {
3295 PVM pVM = pVCpu->CTX_SUFF(pVM);
3296 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3297 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3298
3299 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3300 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
3301
3302 /*
3303 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3304 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in
3305 * hmR0VmxExportHostMsrs().
3306 */
3307#if HC_ARCH_BITS == 64
3308 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3309 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3310#else
3311 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3312 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3313 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3314 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3315 {
3316 /* The switcher returns to long mode, EFER is managed by the switcher. */
3317 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3318 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3319 }
3320 else
3321 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
3322#endif
3323
3324 /* If the newer VMCS fields for managing EFER exists, use it. */
3325 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3326 && hmR0VmxShouldSwapEferMsr(pVCpu))
3327 {
3328 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
3329 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
3330 Log4Func(("VMX_EXIT_CTLS_SAVE_EFER_MSR and VMX_EXIT_CTLS_LOAD_EFER_MSR\n"));
3331 }
3332
3333 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3334 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
3335
3336 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
3337 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
3338 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
3339
3340 /* Enable saving of the VMX preemption timer value on VM-exit. */
3341 if ( pVM->hm.s.vmx.fUsePreemptTimer
3342 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
3343 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
3344
3345 if ((fVal & fZap) != fVal)
3346 {
3347 LogRelFunc(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
3348 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
3349 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3350 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3351 }
3352
3353 /* Commit it to the VMCS and update our cache. */
3354 if (pVCpu->hm.s.vmx.u32ExitCtls != fVal)
3355 {
3356 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
3357 AssertRCReturn(rc, rc);
3358 pVCpu->hm.s.vmx.u32ExitCtls = fVal;
3359 }
3360
3361 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_EXIT_CTLS);
3362 }
3363 return VINF_SUCCESS;
3364}
3365
3366
3367/**
3368 * Sets the TPR threshold in the VMCS.
3369 *
3370 * @returns VBox status code.
3371 * @param pVCpu The cross context virtual CPU structure.
3372 * @param u32TprThreshold The TPR threshold (task-priority class only).
3373 */
3374DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3375{
3376 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
3377 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3378 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3379}
3380
3381
3382/**
3383 * Exports the guest APIC TPR state into the VMCS.
3384 *
3385 * @returns VBox status code.
3386 * @param pVCpu The cross context virtual CPU structure.
3387 *
3388 * @remarks No-long-jump zone!!!
3389 */
3390static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu)
3391{
3392 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
3393 {
3394 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
3395
3396 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3397 && APICIsEnabled(pVCpu))
3398 {
3399 /*
3400 * Setup TPR shadowing.
3401 */
3402 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3403 {
3404 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3405
3406 bool fPendingIntr = false;
3407 uint8_t u8Tpr = 0;
3408 uint8_t u8PendingIntr = 0;
3409 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3410 AssertRCReturn(rc, rc);
3411
3412 /*
3413 * If there are interrupts pending but masked by the TPR, instruct VT-x to
3414 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
3415 * priority of the pending interrupt so we can deliver the interrupt. If there
3416 * are no interrupts pending, set threshold to 0 to not cause any
3417 * TPR-below-threshold VM-exits.
3418 */
3419 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3420 uint32_t u32TprThreshold = 0;
3421 if (fPendingIntr)
3422 {
3423 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3424 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3425 const uint8_t u8TprPriority = u8Tpr >> 4;
3426 if (u8PendingPriority <= u8TprPriority)
3427 u32TprThreshold = u8PendingPriority;
3428 }
3429
3430 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3431 AssertRCReturn(rc, rc);
3432 }
3433 }
3434 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
3435 }
3436 return VINF_SUCCESS;
3437}
3438
3439
3440/**
3441 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3442 *
3443 * @returns Guest's interruptibility-state.
3444 * @param pVCpu The cross context virtual CPU structure.
3445 *
3446 * @remarks No-long-jump zone!!!
3447 */
3448static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu)
3449{
3450 /*
3451 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3452 */
3453 uint32_t fIntrState = 0;
3454 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3455 {
3456 /* If inhibition is active, RIP & RFLAGS should've been accessed
3457 (i.e. read previously from the VMCS or from ring-3). */
3458 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3459#ifdef VBOX_STRICT
3460 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
3461 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
3462#endif
3463 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3464 {
3465 if (pCtx->eflags.Bits.u1IF)
3466 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
3467 else
3468 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
3469 }
3470 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3471 {
3472 /*
3473 * We can clear the inhibit force flag as even if we go back to the recompiler
3474 * without executing guest code in VT-x, the flag's condition to be cleared is
3475 * met and thus the cleared state is correct.
3476 */
3477 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3478 }
3479 }
3480
3481 /*
3482 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3483 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3484 * setting this would block host-NMIs and IRET will not clear the blocking.
3485 *
3486 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3487 */
3488 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
3489 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3490 {
3491 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
3492 }
3493
3494 return fIntrState;
3495}
3496
3497
3498/**
3499 * Exports the exception intercepts required for guest execution in the VMCS.
3500 *
3501 * @returns VBox status code.
3502 * @param pVCpu The cross context virtual CPU structure.
3503 *
3504 * @remarks No-long-jump zone!!!
3505 */
3506static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu)
3507{
3508 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
3509 {
3510 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3511
3512 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxExportSharedCR0(). */
3513 if (pVCpu->hm.s.fGIMTrapXcptUD)
3514 uXcptBitmap |= RT_BIT(X86_XCPT_UD);
3515#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3516 else
3517 uXcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3518#endif
3519
3520 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_AC));
3521 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_DB));
3522
3523 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3524 {
3525 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3526 AssertRCReturn(rc, rc);
3527 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3528 }
3529
3530 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
3531 Log4Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64\n", uXcptBitmap));
3532 }
3533 return VINF_SUCCESS;
3534}
3535
3536
3537/**
3538 * Exports the guest's RIP into the guest-state area in the VMCS.
3539 *
3540 * @returns VBox status code.
3541 * @param pVCpu The cross context virtual CPU structure.
3542 *
3543 * @remarks No-long-jump zone!!!
3544 */
3545static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
3546{
3547 int rc = VINF_SUCCESS;
3548 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
3549 {
3550 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
3551
3552 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
3553 AssertRCReturn(rc, rc);
3554
3555 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
3556 Log4Func(("RIP=%#RX64\n", pVCpu->cpum.GstCtx.rip));
3557 }
3558 return rc;
3559}
3560
3561
3562/**
3563 * Exports the guest's RSP into the guest-state area in the VMCS.
3564 *
3565 * @returns VBox status code.
3566 * @param pVCpu The cross context virtual CPU structure.
3567 *
3568 * @remarks No-long-jump zone!!!
3569 */
3570static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
3571{
3572 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
3573 {
3574 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
3575
3576 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
3577 AssertRCReturn(rc, rc);
3578
3579 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
3580 }
3581 return VINF_SUCCESS;
3582}
3583
3584
3585/**
3586 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
3587 *
3588 * @returns VBox status code.
3589 * @param pVCpu The cross context virtual CPU structure.
3590 *
3591 * @remarks No-long-jump zone!!!
3592 */
3593static int hmR0VmxExportGuestRflags(PVMCPU pVCpu)
3594{
3595 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
3596 {
3597 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
3598
3599 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3600 Let us assert it as such and use 32-bit VMWRITE. */
3601 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
3602 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
3603 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
3604 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3605
3606 /*
3607 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
3608 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
3609 * can run the real-mode guest code under Virtual 8086 mode.
3610 */
3611 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3612 {
3613 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3614 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3615 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
3616 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3617 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3618 }
3619
3620 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
3621 AssertRCReturn(rc, rc);
3622
3623 /*
3624 * Setup pending debug exceptions if the guest is single-stepping using EFLAGS.TF.
3625 *
3626 * We must avoid setting any automatic debug exceptions delivery when single-stepping
3627 * through the hypervisor debugger using EFLAGS.TF.
3628 */
3629 if ( !pVCpu->hm.s.fSingleInstruction
3630 && fEFlags.Bits.u1TF)
3631 {
3632 /** @todo r=ramshankar: Warning! We ASSUME EFLAGS.TF will not cleared on
3633 * premature trips to ring-3 esp since IEM does not yet handle it. */
3634 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
3635 AssertRCReturn(rc, rc);
3636 }
3637
3638 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
3639 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
3640 }
3641 return VINF_SUCCESS;
3642}
3643
3644
3645/**
3646 * Exports the guest CR0 control register into the guest-state area in the VMCS.
3647 *
3648 * The guest FPU state is always pre-loaded hence we don't need to bother about
3649 * sharing FPU related CR0 bits between the guest and host.
3650 *
3651 * @returns VBox status code.
3652 * @param pVCpu The cross context virtual CPU structure.
3653 *
3654 * @remarks No-long-jump zone!!!
3655 */
3656static int hmR0VmxExportGuestCR0(PVMCPU pVCpu)
3657{
3658 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
3659 {
3660 PVM pVM = pVCpu->CTX_SUFF(pVM);
3661 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3662 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.cr0));
3663
3664 uint32_t const u32ShadowCr0 = pVCpu->cpum.GstCtx.cr0;
3665 uint32_t u32GuestCr0 = pVCpu->cpum.GstCtx.cr0;
3666
3667 /*
3668 * Setup VT-x's view of the guest CR0.
3669 * Minimize VM-exits due to CR3 changes when we have NestedPaging.
3670 */
3671 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
3672 if (pVM->hm.s.fNestedPaging)
3673 {
3674 if (CPUMIsGuestPagingEnabled(pVCpu))
3675 {
3676 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3677 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
3678 | VMX_PROC_CTLS_CR3_STORE_EXIT);
3679 }
3680 else
3681 {
3682 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3683 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
3684 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3685 }
3686
3687 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3688 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3689 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
3690 }
3691 else
3692 {
3693 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3694 u32GuestCr0 |= X86_CR0_WP;
3695 }
3696
3697 /*
3698 * Guest FPU bits.
3699 *
3700 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
3701 * using CR0.TS.
3702 *
3703 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
3704 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3705 */
3706 u32GuestCr0 |= X86_CR0_NE;
3707
3708 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
3709 bool const fInterceptMF = !(u32ShadowCr0 & X86_CR0_NE);
3710
3711 /*
3712 * Update exception intercepts.
3713 */
3714 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3715 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3716 {
3717 Assert(PDMVmmDevHeapIsEnabled(pVM));
3718 Assert(pVM->hm.s.vmx.pRealModeTSS);
3719 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3720 }
3721 else
3722 {
3723 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3724 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3725 if (fInterceptMF)
3726 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
3727 }
3728
3729 /* Additional intercepts for debugging, define these yourself explicitly. */
3730#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3731 uXcptBitmap |= 0
3732 | RT_BIT(X86_XCPT_BP)
3733 | RT_BIT(X86_XCPT_DE)
3734 | RT_BIT(X86_XCPT_NM)
3735 | RT_BIT(X86_XCPT_TS)
3736 | RT_BIT(X86_XCPT_UD)
3737 | RT_BIT(X86_XCPT_NP)
3738 | RT_BIT(X86_XCPT_SS)
3739 | RT_BIT(X86_XCPT_GP)
3740 | RT_BIT(X86_XCPT_PF)
3741 | RT_BIT(X86_XCPT_MF)
3742 ;
3743#elif defined(HMVMX_ALWAYS_TRAP_PF)
3744 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
3745#endif
3746 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
3747 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
3748 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
3749
3750 /*
3751 * Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW).
3752 */
3753 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3754 uint32_t fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3755 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3756 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
3757 else
3758 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3759
3760 u32GuestCr0 |= fSetCr0;
3761 u32GuestCr0 &= fZapCr0;
3762 u32GuestCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3763
3764 /*
3765 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3766 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3767 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3768 */
3769 uint32_t u32Cr0Mask = X86_CR0_PE
3770 | X86_CR0_NE
3771 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
3772 | X86_CR0_PG
3773 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3774 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3775 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3776
3777 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3778 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3779 * and @bugref{6944}. */
3780#if 0
3781 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3782 u32Cr0Mask &= ~X86_CR0_PE;
3783#endif
3784 /*
3785 * Finally, update VMCS fields with the CR0 values and the exception bitmap.
3786 */
3787 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCr0);
3788 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32ShadowCr0);
3789 if (u32Cr0Mask != pVCpu->hm.s.vmx.u32Cr0Mask)
3790 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32Cr0Mask);
3791 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
3792 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
3793 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3794 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3795 AssertRCReturn(rc, rc);
3796
3797 /* Update our caches. */
3798 pVCpu->hm.s.vmx.u32Cr0Mask = u32Cr0Mask;
3799 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
3800 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3801
3802 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
3803
3804 Log4Func(("u32Cr0Mask=%#RX32 u32ShadowCr0=%#RX32 u32GuestCr0=%#RX32 (fSetCr0=%#RX32 fZapCr0=%#RX32\n", u32Cr0Mask,
3805 u32ShadowCr0, u32GuestCr0, fSetCr0, fZapCr0));
3806 }
3807
3808 return VINF_SUCCESS;
3809}
3810
3811
3812/**
3813 * Exports the guest control registers (CR3, CR4) into the guest-state area
3814 * in the VMCS.
3815 *
3816 * @returns VBox strict status code.
3817 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3818 * without unrestricted guest access and the VMMDev is not presently
3819 * mapped (e.g. EFI32).
3820 *
3821 * @param pVCpu The cross context virtual CPU structure.
3822 *
3823 * @remarks No-long-jump zone!!!
3824 */
3825static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu)
3826{
3827 int rc = VINF_SUCCESS;
3828 PVM pVM = pVCpu->CTX_SUFF(pVM);
3829
3830 /*
3831 * Guest CR2.
3832 * It's always loaded in the assembler code. Nothing to do here.
3833 */
3834
3835 /*
3836 * Guest CR3.
3837 */
3838 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
3839 {
3840 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3841
3842 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3843 if (pVM->hm.s.fNestedPaging)
3844 {
3845 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3846
3847 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3848 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3849 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3850 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3851
3852 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3853 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3854 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3855
3856 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3857 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3858 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3859 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3860 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3861 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3862 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3863
3864 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3865 AssertRCReturn(rc, rc);
3866
3867 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3868 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3869 || CPUMIsGuestPagingEnabledEx(pCtx))
3870 {
3871 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3872 if (CPUMIsGuestInPAEModeEx(pCtx))
3873 {
3874 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3875 AssertRCReturn(rc, rc);
3876 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3877 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3878 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3879 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3880 AssertRCReturn(rc, rc);
3881 }
3882
3883 /*
3884 * The guest's view of its CR3 is unblemished with Nested Paging when the
3885 * guest is using paging or we have unrestricted guest execution to handle
3886 * the guest when it's not using paging.
3887 */
3888 GCPhysGuestCR3 = pCtx->cr3;
3889 }
3890 else
3891 {
3892 /*
3893 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
3894 * thinks it accesses physical memory directly, we use our identity-mapped
3895 * page table to map guest-linear to guest-physical addresses. EPT takes care
3896 * of translating it to host-physical addresses.
3897 */
3898 RTGCPHYS GCPhys;
3899 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3900
3901 /* We obtain it here every time as the guest could have relocated this PCI region. */
3902 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3903 if (RT_SUCCESS(rc))
3904 { /* likely */ }
3905 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3906 {
3907 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
3908 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3909 }
3910 else
3911 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3912
3913 GCPhysGuestCR3 = GCPhys;
3914 }
3915
3916 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
3917 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3918 AssertRCReturn(rc, rc);
3919 }
3920 else
3921 {
3922 /* Non-nested paging case, just use the hypervisor's CR3. */
3923 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3924
3925 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
3926 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3927 AssertRCReturn(rc, rc);
3928 }
3929
3930 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
3931 }
3932
3933 /*
3934 * Guest CR4.
3935 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3936 */
3937 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
3938 {
3939 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3940 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3941 Assert(!RT_HI_U32(pCtx->cr4));
3942
3943 uint32_t u32GuestCr4 = pCtx->cr4;
3944 uint32_t const u32ShadowCr4 = pCtx->cr4;
3945
3946 /*
3947 * Setup VT-x's view of the guest CR4.
3948 *
3949 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
3950 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
3951 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3952 *
3953 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3954 */
3955 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3956 {
3957 Assert(pVM->hm.s.vmx.pRealModeTSS);
3958 Assert(PDMVmmDevHeapIsEnabled(pVM));
3959 u32GuestCr4 &= ~X86_CR4_VME;
3960 }
3961
3962 if (pVM->hm.s.fNestedPaging)
3963 {
3964 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
3965 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3966 {
3967 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3968 u32GuestCr4 |= X86_CR4_PSE;
3969 /* Our identity mapping is a 32-bit page directory. */
3970 u32GuestCr4 &= ~X86_CR4_PAE;
3971 }
3972 /* else use guest CR4.*/
3973 }
3974 else
3975 {
3976 /*
3977 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3978 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3979 */
3980 switch (pVCpu->hm.s.enmShadowMode)
3981 {
3982 case PGMMODE_REAL: /* Real-mode. */
3983 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3984 case PGMMODE_32_BIT: /* 32-bit paging. */
3985 {
3986 u32GuestCr4 &= ~X86_CR4_PAE;
3987 break;
3988 }
3989
3990 case PGMMODE_PAE: /* PAE paging. */
3991 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3992 {
3993 u32GuestCr4 |= X86_CR4_PAE;
3994 break;
3995 }
3996
3997 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
3998 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
3999#ifdef VBOX_ENABLE_64_BITS_GUESTS
4000 break;
4001#endif
4002 default:
4003 AssertFailed();
4004 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4005 }
4006 }
4007
4008 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4009 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4010 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4011 u32GuestCr4 |= fSetCr4;
4012 u32GuestCr4 &= fZapCr4;
4013
4014 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them,
4015 that would cause a VM-exit. */
4016 uint32_t u32Cr4Mask = X86_CR4_VME
4017 | X86_CR4_PAE
4018 | X86_CR4_PGE
4019 | X86_CR4_PSE
4020 | X86_CR4_VMXE;
4021 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4022 u32Cr4Mask |= X86_CR4_OSXSAVE;
4023 if (pVM->cpum.ro.GuestFeatures.fPcid)
4024 u32Cr4Mask |= X86_CR4_PCIDE;
4025
4026 /* Write VT-x's view of the guest CR4, the CR4 modify mask and the read-only CR4 shadow
4027 into the VMCS and update our cache. */
4028 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCr4);
4029 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32ShadowCr4);
4030 if (pVCpu->hm.s.vmx.u32Cr4Mask != u32Cr4Mask)
4031 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32Cr4Mask);
4032 AssertRCReturn(rc, rc);
4033 pVCpu->hm.s.vmx.u32Cr4Mask = u32Cr4Mask;
4034
4035 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4036 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4037
4038 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
4039
4040 Log4Func(("u32GuestCr4=%#RX32 u32ShadowCr4=%#RX32 (fSetCr4=%#RX32 fZapCr4=%#RX32)\n", u32GuestCr4, u32ShadowCr4, fSetCr4,
4041 fZapCr4));
4042 }
4043 return rc;
4044}
4045
4046
4047/**
4048 * Exports the guest debug registers into the guest-state area in the VMCS.
4049 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4050 *
4051 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4052 *
4053 * @returns VBox status code.
4054 * @param pVCpu The cross context virtual CPU structure.
4055 *
4056 * @remarks No-long-jump zone!!!
4057 */
4058static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu)
4059{
4060 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4061
4062#ifdef VBOX_STRICT
4063 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4064 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4065 {
4066 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4067 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
4068 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
4069 }
4070#endif
4071
4072 bool fSteppingDB = false;
4073 bool fInterceptMovDRx = false;
4074 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
4075 if (pVCpu->hm.s.fSingleInstruction)
4076 {
4077 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4078 PVM pVM = pVCpu->CTX_SUFF(pVM);
4079 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
4080 {
4081 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
4082 Assert(fSteppingDB == false);
4083 }
4084 else
4085 {
4086 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
4087 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
4088 pVCpu->hm.s.fClearTrapFlag = true;
4089 fSteppingDB = true;
4090 }
4091 }
4092
4093 uint32_t u32GuestDr7;
4094 if ( fSteppingDB
4095 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4096 {
4097 /*
4098 * Use the combined guest and host DRx values found in the hypervisor register set
4099 * because the debugger has breakpoints active or someone is single stepping on the
4100 * host side without a monitor trap flag.
4101 *
4102 * Note! DBGF expects a clean DR6 state before executing guest code.
4103 */
4104#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4105 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4106 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4107 {
4108 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4109 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4110 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4111 }
4112 else
4113#endif
4114 if (!CPUMIsHyperDebugStateActive(pVCpu))
4115 {
4116 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4117 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4118 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4119 }
4120
4121 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
4122 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
4123 pVCpu->hm.s.fUsingHyperDR7 = true;
4124 fInterceptMovDRx = true;
4125 }
4126 else
4127 {
4128 /*
4129 * If the guest has enabled debug registers, we need to load them prior to
4130 * executing guest code so they'll trigger at the right time.
4131 */
4132 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
4133 {
4134#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4135 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4136 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4137 {
4138 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4139 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4140 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4141 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4142 }
4143 else
4144#endif
4145 if (!CPUMIsGuestDebugStateActive(pVCpu))
4146 {
4147 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4148 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4149 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4150 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4151 }
4152 Assert(!fInterceptMovDRx);
4153 }
4154 /*
4155 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4156 * must intercept #DB in order to maintain a correct DR6 guest value, and
4157 * because we need to intercept it to prevent nested #DBs from hanging the
4158 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4159 */
4160#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4161 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4162 && !CPUMIsGuestDebugStateActive(pVCpu))
4163#else
4164 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4165#endif
4166 {
4167 fInterceptMovDRx = true;
4168 }
4169
4170 /* Update DR7 with the actual guest value. */
4171 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
4172 pVCpu->hm.s.fUsingHyperDR7 = false;
4173 }
4174
4175 if (fInterceptMovDRx)
4176 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
4177 else
4178 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
4179
4180 /*
4181 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
4182 * monitor-trap flag and update our cache.
4183 */
4184 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
4185 {
4186 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4187 AssertRCReturn(rc2, rc2);
4188 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
4189 }
4190
4191 /*
4192 * Update guest DR7.
4193 */
4194 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
4195 AssertRCReturn(rc, rc);
4196
4197 /*
4198 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
4199 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
4200 *
4201 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
4202 */
4203 if (fSteppingDB)
4204 {
4205 Assert(pVCpu->hm.s.fSingleInstruction);
4206 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
4207
4208 uint32_t fIntrState = 0;
4209 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
4210 AssertRCReturn(rc, rc);
4211
4212 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
4213 {
4214 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
4215 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
4216 AssertRCReturn(rc, rc);
4217 }
4218 }
4219
4220 return VINF_SUCCESS;
4221}
4222
4223
4224#ifdef VBOX_STRICT
4225/**
4226 * Strict function to validate segment registers.
4227 *
4228 * @param pVCpu The cross context virtual CPU structure.
4229 *
4230 * @remarks Will import guest CR0 on strict builds during validation of
4231 * segments.
4232 */
4233static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu)
4234{
4235 /*
4236 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4237 *
4238 * The reason we check for attribute value 0 in this function and not just the unusable bit is
4239 * because hmR0VmxExportGuestSegmentReg() only updates the VMCS' copy of the value with the unusable bit
4240 * and doesn't change the guest-context value.
4241 */
4242 PVM pVM = pVCpu->CTX_SUFF(pVM);
4243 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4244 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
4245 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4246 && ( !CPUMIsGuestInRealModeEx(pCtx)
4247 && !CPUMIsGuestInV86ModeEx(pCtx)))
4248 {
4249 /* Protected mode checks */
4250 /* CS */
4251 Assert(pCtx->cs.Attr.n.u1Present);
4252 Assert(!(pCtx->cs.Attr.u & 0xf00));
4253 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4254 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4255 || !(pCtx->cs.Attr.n.u1Granularity));
4256 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4257 || (pCtx->cs.Attr.n.u1Granularity));
4258 /* CS cannot be loaded with NULL in protected mode. */
4259 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4260 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4261 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4262 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4263 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4264 else
4265 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4266 /* SS */
4267 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4268 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4269 if ( !(pCtx->cr0 & X86_CR0_PE)
4270 || pCtx->cs.Attr.n.u4Type == 3)
4271 {
4272 Assert(!pCtx->ss.Attr.n.u2Dpl);
4273 }
4274 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4275 {
4276 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4277 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4278 Assert(pCtx->ss.Attr.n.u1Present);
4279 Assert(!(pCtx->ss.Attr.u & 0xf00));
4280 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4281 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4282 || !(pCtx->ss.Attr.n.u1Granularity));
4283 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4284 || (pCtx->ss.Attr.n.u1Granularity));
4285 }
4286 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmentReg(). */
4287 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4288 {
4289 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4290 Assert(pCtx->ds.Attr.n.u1Present);
4291 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4292 Assert(!(pCtx->ds.Attr.u & 0xf00));
4293 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4294 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4295 || !(pCtx->ds.Attr.n.u1Granularity));
4296 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4297 || (pCtx->ds.Attr.n.u1Granularity));
4298 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4299 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4300 }
4301 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4302 {
4303 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4304 Assert(pCtx->es.Attr.n.u1Present);
4305 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4306 Assert(!(pCtx->es.Attr.u & 0xf00));
4307 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4308 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4309 || !(pCtx->es.Attr.n.u1Granularity));
4310 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4311 || (pCtx->es.Attr.n.u1Granularity));
4312 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4313 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4314 }
4315 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4316 {
4317 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4318 Assert(pCtx->fs.Attr.n.u1Present);
4319 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4320 Assert(!(pCtx->fs.Attr.u & 0xf00));
4321 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4322 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4323 || !(pCtx->fs.Attr.n.u1Granularity));
4324 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4325 || (pCtx->fs.Attr.n.u1Granularity));
4326 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4327 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4328 }
4329 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4330 {
4331 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4332 Assert(pCtx->gs.Attr.n.u1Present);
4333 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4334 Assert(!(pCtx->gs.Attr.u & 0xf00));
4335 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4336 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4337 || !(pCtx->gs.Attr.n.u1Granularity));
4338 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4339 || (pCtx->gs.Attr.n.u1Granularity));
4340 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4341 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4342 }
4343 /* 64-bit capable CPUs. */
4344# if HC_ARCH_BITS == 64
4345 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4346 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
4347 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
4348 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
4349# endif
4350 }
4351 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4352 || ( CPUMIsGuestInRealModeEx(pCtx)
4353 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4354 {
4355 /* Real and v86 mode checks. */
4356 /* hmR0VmxExportGuestSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4357 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4358 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4359 {
4360 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4361 }
4362 else
4363 {
4364 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4365 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4366 }
4367
4368 /* CS */
4369 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4370 Assert(pCtx->cs.u32Limit == 0xffff);
4371 Assert(u32CSAttr == 0xf3);
4372 /* SS */
4373 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4374 Assert(pCtx->ss.u32Limit == 0xffff);
4375 Assert(u32SSAttr == 0xf3);
4376 /* DS */
4377 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4378 Assert(pCtx->ds.u32Limit == 0xffff);
4379 Assert(u32DSAttr == 0xf3);
4380 /* ES */
4381 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4382 Assert(pCtx->es.u32Limit == 0xffff);
4383 Assert(u32ESAttr == 0xf3);
4384 /* FS */
4385 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4386 Assert(pCtx->fs.u32Limit == 0xffff);
4387 Assert(u32FSAttr == 0xf3);
4388 /* GS */
4389 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4390 Assert(pCtx->gs.u32Limit == 0xffff);
4391 Assert(u32GSAttr == 0xf3);
4392 /* 64-bit capable CPUs. */
4393# if HC_ARCH_BITS == 64
4394 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4395 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
4396 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
4397 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
4398# endif
4399 }
4400}
4401#endif /* VBOX_STRICT */
4402
4403
4404/**
4405 * Exports a guest segment register into the guest-state area in the VMCS.
4406 *
4407 * @returns VBox status code.
4408 * @param pVCpu The cross context virtual CPU structure.
4409 * @param idxSel Index of the selector in the VMCS.
4410 * @param idxLimit Index of the segment limit in the VMCS.
4411 * @param idxBase Index of the segment base in the VMCS.
4412 * @param idxAccess Index of the access rights of the segment in the VMCS.
4413 * @param pSelReg Pointer to the segment selector.
4414 *
4415 * @remarks No-long-jump zone!!!
4416 */
4417static int hmR0VmxExportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
4418 PCCPUMSELREG pSelReg)
4419{
4420 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4421 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4422 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4423 AssertRCReturn(rc, rc);
4424
4425 uint32_t u32Access = pSelReg->Attr.u;
4426 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4427 {
4428 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4429 u32Access = 0xf3;
4430 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4431 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4432 }
4433 else
4434 {
4435 /*
4436 * The way to differentiate between whether this is really a null selector or was just
4437 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
4438 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
4439 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
4440 * NULL selectors loaded in protected-mode have their attribute as 0.
4441 */
4442 if (!u32Access)
4443 u32Access = X86DESCATTR_UNUSABLE;
4444 }
4445
4446 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4447 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4448 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4449
4450 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4451 AssertRCReturn(rc, rc);
4452 return rc;
4453}
4454
4455
4456/**
4457 * Exports the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4458 * into the guest-state area in the VMCS.
4459 *
4460 * @returns VBox status code.
4461 * @param pVCpu The cross context virtual CPU structure.
4462 *
4463 * @remarks Will import guest CR0 on strict builds during validation of
4464 * segments.
4465 * @remarks No-long-jump zone!!!
4466 */
4467static int hmR0VmxExportGuestSegmentRegs(PVMCPU pVCpu)
4468{
4469 int rc = VERR_INTERNAL_ERROR_5;
4470 PVM pVM = pVCpu->CTX_SUFF(pVM);
4471 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4472
4473 /*
4474 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4475 */
4476 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
4477 {
4478#ifdef VBOX_WITH_REM
4479 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4480 {
4481 Assert(pVM->hm.s.vmx.pRealModeTSS);
4482 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4483 if ( pVCpu->hm.s.vmx.fWasInRealMode
4484 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4485 {
4486 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4487 in real-mode (e.g. OpenBSD 4.0) */
4488 REMFlushTBs(pVM);
4489 Log4Func(("Switch to protected mode detected!\n"));
4490 pVCpu->hm.s.vmx.fWasInRealMode = false;
4491 }
4492 }
4493#endif
4494 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
4495 {
4496 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
4497 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4498 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pCtx->cs.Attr.u;
4499 rc = HMVMX_EXPORT_SREG(CS, &pCtx->cs);
4500 AssertRCReturn(rc, rc);
4501 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
4502 }
4503
4504 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
4505 {
4506 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
4507 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4508 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pCtx->ss.Attr.u;
4509 rc = HMVMX_EXPORT_SREG(SS, &pCtx->ss);
4510 AssertRCReturn(rc, rc);
4511 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
4512 }
4513
4514 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
4515 {
4516 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
4517 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4518 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pCtx->ds.Attr.u;
4519 rc = HMVMX_EXPORT_SREG(DS, &pCtx->ds);
4520 AssertRCReturn(rc, rc);
4521 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
4522 }
4523
4524 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
4525 {
4526 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
4527 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4528 pVCpu->hm.s.vmx.RealMode.AttrES.u = pCtx->es.Attr.u;
4529 rc = HMVMX_EXPORT_SREG(ES, &pCtx->es);
4530 AssertRCReturn(rc, rc);
4531 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
4532 }
4533
4534 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
4535 {
4536 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
4537 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4538 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pCtx->fs.Attr.u;
4539 rc = HMVMX_EXPORT_SREG(FS, &pCtx->fs);
4540 AssertRCReturn(rc, rc);
4541 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
4542 }
4543
4544 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
4545 {
4546 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
4547 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4548 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pCtx->gs.Attr.u;
4549 rc = HMVMX_EXPORT_SREG(GS, &pCtx->gs);
4550 AssertRCReturn(rc, rc);
4551 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
4552 }
4553
4554#ifdef VBOX_STRICT
4555 hmR0VmxValidateSegmentRegs(pVCpu);
4556#endif
4557
4558 Log4Func(("CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pCtx->cs.Sel, pCtx->cs.u64Base,
4559 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
4560 }
4561
4562 /*
4563 * Guest TR.
4564 */
4565 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
4566 {
4567 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
4568
4569 /*
4570 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
4571 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
4572 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4573 */
4574 uint16_t u16Sel = 0;
4575 uint32_t u32Limit = 0;
4576 uint64_t u64Base = 0;
4577 uint32_t u32AccessRights = 0;
4578
4579 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4580 {
4581 u16Sel = pCtx->tr.Sel;
4582 u32Limit = pCtx->tr.u32Limit;
4583 u64Base = pCtx->tr.u64Base;
4584 u32AccessRights = pCtx->tr.Attr.u;
4585 }
4586 else
4587 {
4588 Assert(pVM->hm.s.vmx.pRealModeTSS);
4589 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
4590
4591 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4592 RTGCPHYS GCPhys;
4593 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4594 AssertRCReturn(rc, rc);
4595
4596 X86DESCATTR DescAttr;
4597 DescAttr.u = 0;
4598 DescAttr.n.u1Present = 1;
4599 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4600
4601 u16Sel = 0;
4602 u32Limit = HM_VTX_TSS_SIZE;
4603 u64Base = GCPhys; /* in real-mode phys = virt. */
4604 u32AccessRights = DescAttr.u;
4605 }
4606
4607 /* Validate. */
4608 Assert(!(u16Sel & RT_BIT(2)));
4609 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4610 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4611 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4612 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4613 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4614 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4615 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4616 Assert( (u32Limit & 0xfff) == 0xfff
4617 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4618 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
4619 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4620
4621 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4622 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4623 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4624 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4625 AssertRCReturn(rc, rc);
4626
4627 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
4628 Log4Func(("TR base=%#RX64\n", pCtx->tr.u64Base));
4629 }
4630
4631 /*
4632 * Guest GDTR.
4633 */
4634 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
4635 {
4636 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
4637
4638 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
4639 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
4640 AssertRCReturn(rc, rc);
4641
4642 /* Validate. */
4643 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4644
4645 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
4646 Log4Func(("GDTR base=%#RX64\n", pCtx->gdtr.pGdt));
4647 }
4648
4649 /*
4650 * Guest LDTR.
4651 */
4652 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
4653 {
4654 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
4655
4656 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4657 uint32_t u32Access = 0;
4658 if (!pCtx->ldtr.Attr.u)
4659 u32Access = X86DESCATTR_UNUSABLE;
4660 else
4661 u32Access = pCtx->ldtr.Attr.u;
4662
4663 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
4664 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
4665 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4666 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
4667 AssertRCReturn(rc, rc);
4668
4669 /* Validate. */
4670 if (!(u32Access & X86DESCATTR_UNUSABLE))
4671 {
4672 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4673 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4674 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4675 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4676 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4677 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4678 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
4679 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4680 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
4681 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4682 }
4683
4684 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
4685 Log4Func(("LDTR base=%#RX64\n", pCtx->ldtr.u64Base));
4686 }
4687
4688 /*
4689 * Guest IDTR.
4690 */
4691 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
4692 {
4693 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
4694
4695 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
4696 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
4697 AssertRCReturn(rc, rc);
4698
4699 /* Validate. */
4700 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4701
4702 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
4703 Log4Func(("IDTR base=%#RX64\n", pCtx->idtr.pIdt));
4704 }
4705
4706 return VINF_SUCCESS;
4707}
4708
4709
4710/**
4711 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4712 * areas.
4713 *
4714 * These MSRs will automatically be loaded to the host CPU on every successful
4715 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4716 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4717 * -not- updated here for performance reasons. See hmR0VmxExportHostMsrs().
4718 *
4719 * Also exports the guest sysenter MSRs into the guest-state area in the VMCS.
4720 *
4721 * @returns VBox status code.
4722 * @param pVCpu The cross context virtual CPU structure.
4723 *
4724 * @remarks No-long-jump zone!!!
4725 */
4726static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu)
4727{
4728 AssertPtr(pVCpu);
4729 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4730
4731 /*
4732 * MSRs that we use the auto-load/store MSR area in the VMCS.
4733 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
4734 */
4735 PVM pVM = pVCpu->CTX_SUFF(pVM);
4736 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4737 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
4738 {
4739 if (pVM->hm.s.fAllow64BitGuests)
4740 {
4741#if HC_ARCH_BITS == 32
4742 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
4743
4744 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pCtx->msrLSTAR, false, NULL);
4745 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pCtx->msrSTAR, false, NULL);
4746 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pCtx->msrSFMASK, false, NULL);
4747 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, false, NULL);
4748 AssertRCReturn(rc, rc);
4749# ifdef LOG_ENABLED
4750 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4751 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4752 Log4Func(("MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4753# endif
4754#endif
4755 }
4756 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4757 }
4758
4759 /*
4760 * Guest Sysenter MSRs.
4761 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4762 * VM-exits on WRMSRs for these MSRs.
4763 */
4764 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
4765 {
4766 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4767
4768 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
4769 {
4770 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
4771 AssertRCReturn(rc, rc);
4772 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4773 }
4774
4775 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
4776 {
4777 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
4778 AssertRCReturn(rc, rc);
4779 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4780 }
4781
4782 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
4783 {
4784 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
4785 AssertRCReturn(rc, rc);
4786 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4787 }
4788 }
4789
4790 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
4791 {
4792 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
4793
4794 if (hmR0VmxShouldSwapEferMsr(pVCpu))
4795 {
4796 /*
4797 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4798 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4799 */
4800 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4801 {
4802 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
4803 AssertRCReturn(rc,rc);
4804 Log4Func(("EFER=%#RX64\n", pCtx->msrEFER));
4805 }
4806 else
4807 {
4808 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pCtx->msrEFER, false /* fUpdateHostMsr */,
4809 NULL /* pfAddedAndUpdated */);
4810 AssertRCReturn(rc, rc);
4811
4812 /* We need to intercept reads too, see @bugref{7386#c16}. */
4813 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4814 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4815 Log4Func(("MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", MSR_K6_EFER, pCtx->msrEFER,
4816 pVCpu->hm.s.vmx.cMsrs));
4817 }
4818 }
4819 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4820 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4821 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
4822 }
4823
4824 return VINF_SUCCESS;
4825}
4826
4827
4828#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4829/**
4830 * Check if guest state allows safe use of 32-bit switcher again.
4831 *
4832 * Segment bases and protected mode structures must be 32-bit addressable
4833 * because the 32-bit switcher will ignore high dword when writing these VMCS
4834 * fields. See @bugref{8432} for details.
4835 *
4836 * @returns true if safe, false if must continue to use the 64-bit switcher.
4837 * @param pCtx Pointer to the guest-CPU context.
4838 *
4839 * @remarks No-long-jump zone!!!
4840 */
4841static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
4842{
4843 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
4844 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
4845 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4846 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4847 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
4848 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4849 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
4850 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
4851 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4852 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4853
4854 /* All good, bases are 32-bit. */
4855 return true;
4856}
4857#endif
4858
4859
4860/**
4861 * Selects up the appropriate function to run guest code.
4862 *
4863 * @returns VBox status code.
4864 * @param pVCpu The cross context virtual CPU structure.
4865 *
4866 * @remarks No-long-jump zone!!!
4867 */
4868static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu)
4869{
4870 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4871 if (CPUMIsGuestInLongModeEx(pCtx))
4872 {
4873#ifndef VBOX_ENABLE_64_BITS_GUESTS
4874 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4875#endif
4876 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4877#if HC_ARCH_BITS == 32
4878 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4879 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4880 {
4881#ifdef VBOX_STRICT
4882 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4883 {
4884 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4885 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4886 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4887 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4888 | HM_CHANGED_VMX_ENTRY_CTLS
4889 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4890 }
4891#endif
4892 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4893
4894 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4895 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4896 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4897 Log4Func(("Selected 64-bit switcher\n"));
4898 }
4899#else
4900 /* 64-bit host. */
4901 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4902#endif
4903 }
4904 else
4905 {
4906 /* Guest is not in long mode, use the 32-bit handler. */
4907#if HC_ARCH_BITS == 32
4908 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4909 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4910 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4911 {
4912# ifdef VBOX_STRICT
4913 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4914 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4915 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4916 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4917 | HM_CHANGED_VMX_ENTRY_CTLS
4918 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4919# endif
4920 }
4921# ifdef VBOX_ENABLE_64_BITS_GUESTS
4922 /*
4923 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
4924 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
4925 * switcher flag because now we know the guest is in a sane state where it's safe
4926 * to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4927 * the much faster 32-bit switcher again.
4928 */
4929 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4930 {
4931 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4932 Log4Func(("Selected 32-bit switcher\n"));
4933 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4934 }
4935 else
4936 {
4937 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4938 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4939 || hmR0VmxIs32BitSwitcherSafe(pCtx))
4940 {
4941 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4942 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4943 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
4944 | HM_CHANGED_VMX_ENTRY_CTLS
4945 | HM_CHANGED_VMX_EXIT_CTLS
4946 | HM_CHANGED_HOST_CONTEXT);
4947 Log4Func(("Selected 32-bit switcher (safe)\n"));
4948 }
4949 }
4950# else
4951 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4952# endif
4953#else
4954 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4955#endif
4956 }
4957 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4958 return VINF_SUCCESS;
4959}
4960
4961
4962/**
4963 * Wrapper for running the guest code in VT-x.
4964 *
4965 * @returns VBox status code, no informational status codes.
4966 * @param pVCpu The cross context virtual CPU structure.
4967 *
4968 * @remarks No-long-jump zone!!!
4969 */
4970DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu)
4971{
4972 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4973 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4974 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4975
4976 /*
4977 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4978 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4979 * callee-saved and thus the need for this XMM wrapper.
4980 *
4981 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4982 */
4983 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4984 /** @todo Add stats for resume vs launch. */
4985 PVM pVM = pVCpu->CTX_SUFF(pVM);
4986#ifdef VBOX_WITH_KERNEL_USING_XMM
4987 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4988#else
4989 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4990#endif
4991 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4992 return rc;
4993}
4994
4995
4996/**
4997 * Reports world-switch error and dumps some useful debug info.
4998 *
4999 * @param pVCpu The cross context virtual CPU structure.
5000 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5001 * @param pVmxTransient Pointer to the VMX transient structure (only
5002 * exitReason updated).
5003 */
5004static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
5005{
5006 Assert(pVCpu);
5007 Assert(pVmxTransient);
5008 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
5009
5010 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
5011 switch (rcVMRun)
5012 {
5013 case VERR_VMX_INVALID_VMXON_PTR:
5014 AssertFailed();
5015 break;
5016 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5017 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5018 {
5019 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5020 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5021 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
5022 AssertRC(rc);
5023
5024 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5025 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5026 Cannot do it here as we may have been long preempted. */
5027
5028#ifdef VBOX_STRICT
5029 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5030 pVmxTransient->uExitReason));
5031 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
5032 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5033 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5034 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5035 else
5036 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5037 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5038 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5039
5040 /* VMX control bits. */
5041 uint32_t u32Val;
5042 uint64_t u64Val;
5043 RTHCUINTREG uHCReg;
5044 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5045 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5046 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5047 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5048 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
5049 {
5050 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5051 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5052 }
5053 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5054 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5055 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5056 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5057 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5058 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5059 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5060 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5061 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5062 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5063 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5064 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5065 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5066 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5067 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5068 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5069 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5070 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5071 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5072 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5073 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5074 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5075 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5076 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5077 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5078 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5079 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5080 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5081 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5082 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5083 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5084 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5085 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5086 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5087 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5088 {
5089 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5090 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5091 }
5092
5093 /* Guest bits. */
5094 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5095 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
5096 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5097 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
5098 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5099 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
5100 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
5101 {
5102 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5103 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5104 }
5105
5106 /* Host bits. */
5107 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5108 Log4(("Host CR0 %#RHr\n", uHCReg));
5109 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5110 Log4(("Host CR3 %#RHr\n", uHCReg));
5111 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5112 Log4(("Host CR4 %#RHr\n", uHCReg));
5113
5114 RTGDTR HostGdtr;
5115 PCX86DESCHC pDesc;
5116 ASMGetGDTR(&HostGdtr);
5117 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5118 Log4(("Host CS %#08x\n", u32Val));
5119 if (u32Val < HostGdtr.cbGdt)
5120 {
5121 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5122 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5123 }
5124
5125 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5126 Log4(("Host DS %#08x\n", u32Val));
5127 if (u32Val < HostGdtr.cbGdt)
5128 {
5129 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5130 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5131 }
5132
5133 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5134 Log4(("Host ES %#08x\n", u32Val));
5135 if (u32Val < HostGdtr.cbGdt)
5136 {
5137 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5138 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5139 }
5140
5141 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5142 Log4(("Host FS %#08x\n", u32Val));
5143 if (u32Val < HostGdtr.cbGdt)
5144 {
5145 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5146 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5147 }
5148
5149 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5150 Log4(("Host GS %#08x\n", u32Val));
5151 if (u32Val < HostGdtr.cbGdt)
5152 {
5153 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5154 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5155 }
5156
5157 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5158 Log4(("Host SS %#08x\n", u32Val));
5159 if (u32Val < HostGdtr.cbGdt)
5160 {
5161 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5162 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5163 }
5164
5165 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5166 Log4(("Host TR %#08x\n", u32Val));
5167 if (u32Val < HostGdtr.cbGdt)
5168 {
5169 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5170 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5171 }
5172
5173 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5174 Log4(("Host TR Base %#RHv\n", uHCReg));
5175 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5176 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5177 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5178 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5179 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5180 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5181 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5182 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5183 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5184 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5185 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5186 Log4(("Host RSP %#RHv\n", uHCReg));
5187 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5188 Log4(("Host RIP %#RHv\n", uHCReg));
5189# if HC_ARCH_BITS == 64
5190 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5191 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5192 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5193 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5194 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5195 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5196# endif
5197#endif /* VBOX_STRICT */
5198 break;
5199 }
5200
5201 default:
5202 /* Impossible */
5203 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5204 break;
5205 }
5206}
5207
5208
5209#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5210#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5211# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5212#endif
5213#ifdef VBOX_STRICT
5214static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5215{
5216 switch (idxField)
5217 {
5218 case VMX_VMCS_GUEST_RIP:
5219 case VMX_VMCS_GUEST_RSP:
5220 case VMX_VMCS_GUEST_SYSENTER_EIP:
5221 case VMX_VMCS_GUEST_SYSENTER_ESP:
5222 case VMX_VMCS_GUEST_GDTR_BASE:
5223 case VMX_VMCS_GUEST_IDTR_BASE:
5224 case VMX_VMCS_GUEST_CS_BASE:
5225 case VMX_VMCS_GUEST_DS_BASE:
5226 case VMX_VMCS_GUEST_ES_BASE:
5227 case VMX_VMCS_GUEST_FS_BASE:
5228 case VMX_VMCS_GUEST_GS_BASE:
5229 case VMX_VMCS_GUEST_SS_BASE:
5230 case VMX_VMCS_GUEST_LDTR_BASE:
5231 case VMX_VMCS_GUEST_TR_BASE:
5232 case VMX_VMCS_GUEST_CR3:
5233 return true;
5234 }
5235 return false;
5236}
5237
5238static bool hmR0VmxIsValidReadField(uint32_t idxField)
5239{
5240 switch (idxField)
5241 {
5242 /* Read-only fields. */
5243 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5244 return true;
5245 }
5246 /* Remaining readable fields should also be writable. */
5247 return hmR0VmxIsValidWriteField(idxField);
5248}
5249#endif /* VBOX_STRICT */
5250
5251
5252/**
5253 * Executes the specified handler in 64-bit mode.
5254 *
5255 * @returns VBox status code (no informational status codes).
5256 * @param pVCpu The cross context virtual CPU structure.
5257 * @param enmOp The operation to perform.
5258 * @param cParams Number of parameters.
5259 * @param paParam Array of 32-bit parameters.
5260 */
5261VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
5262{
5263 PVM pVM = pVCpu->CTX_SUFF(pVM);
5264 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5265 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5266 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5267 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5268
5269#ifdef VBOX_STRICT
5270 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5271 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5272
5273 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5274 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5275#endif
5276
5277 /* Disable interrupts. */
5278 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5279
5280#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5281 RTCPUID idHostCpu = RTMpCpuId();
5282 CPUMR0SetLApic(pVCpu, idHostCpu);
5283#endif
5284
5285 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5286 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5287
5288 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5289 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5290 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5291
5292 /* Leave VMX Root Mode. */
5293 VMXDisable();
5294
5295 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5296
5297 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5298 CPUMSetHyperEIP(pVCpu, enmOp);
5299 for (int i = (int)cParams - 1; i >= 0; i--)
5300 CPUMPushHyper(pVCpu, paParam[i]);
5301
5302 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5303
5304 /* Call the switcher. */
5305 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
5306 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5307
5308 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5309 /* Make sure the VMX instructions don't cause #UD faults. */
5310 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5311
5312 /* Re-enter VMX Root Mode */
5313 int rc2 = VMXEnable(HCPhysCpuPage);
5314 if (RT_FAILURE(rc2))
5315 {
5316 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5317 ASMSetFlags(fOldEFlags);
5318 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5319 return rc2;
5320 }
5321
5322 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5323 AssertRC(rc2);
5324 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5325 Assert(!(ASMGetFlags() & X86_EFL_IF));
5326 ASMSetFlags(fOldEFlags);
5327 return rc;
5328}
5329
5330
5331/**
5332 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5333 * supporting 64-bit guests.
5334 *
5335 * @returns VBox status code.
5336 * @param fResume Whether to VMLAUNCH or VMRESUME.
5337 * @param pCtx Pointer to the guest-CPU context.
5338 * @param pCache Pointer to the VMCS cache.
5339 * @param pVM The cross context VM structure.
5340 * @param pVCpu The cross context virtual CPU structure.
5341 */
5342DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5343{
5344 NOREF(fResume);
5345
5346 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5347 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5348
5349#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5350 pCache->uPos = 1;
5351 pCache->interPD = PGMGetInterPaeCR3(pVM);
5352 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5353#endif
5354
5355#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5356 pCache->TestIn.HCPhysCpuPage = 0;
5357 pCache->TestIn.HCPhysVmcs = 0;
5358 pCache->TestIn.pCache = 0;
5359 pCache->TestOut.HCPhysVmcs = 0;
5360 pCache->TestOut.pCache = 0;
5361 pCache->TestOut.pCtx = 0;
5362 pCache->TestOut.eflags = 0;
5363#else
5364 NOREF(pCache);
5365#endif
5366
5367 uint32_t aParam[10];
5368 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5369 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
5370 aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5371 aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
5372 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5373 aParam[5] = 0;
5374 aParam[6] = VM_RC_ADDR(pVM, pVM);
5375 aParam[7] = 0;
5376 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5377 aParam[9] = 0;
5378
5379#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5380 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5381 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5382#endif
5383 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5384
5385#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5386 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5387 Assert(pCtx->dr[4] == 10);
5388 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5389#endif
5390
5391#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5392 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5393 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5394 pVCpu->hm.s.vmx.HCPhysVmcs));
5395 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5396 pCache->TestOut.HCPhysVmcs));
5397 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5398 pCache->TestOut.pCache));
5399 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5400 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5401 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5402 pCache->TestOut.pCtx));
5403 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5404#endif
5405 NOREF(pCtx);
5406 return rc;
5407}
5408
5409
5410/**
5411 * Initialize the VMCS-Read cache.
5412 *
5413 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5414 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5415 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5416 * (those that have a 32-bit FULL & HIGH part).
5417 *
5418 * @returns VBox status code.
5419 * @param pVCpu The cross context virtual CPU structure.
5420 */
5421static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
5422{
5423#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5424 do { \
5425 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5426 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5427 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5428 ++cReadFields; \
5429 } while (0)
5430
5431 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5432 uint32_t cReadFields = 0;
5433
5434 /*
5435 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5436 * and serve to indicate exceptions to the rules.
5437 */
5438
5439 /* Guest-natural selector base fields. */
5440#if 0
5441 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5442 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5443 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5444#endif
5445 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5446 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5447 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5448 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5449 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5450 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5451 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5452 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5453 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5455 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5456 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5457#if 0
5458 /* Unused natural width guest-state fields. */
5459 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS);
5460 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5461#endif
5462 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5463 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5464
5465 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
5466 these 64-bit fields (using "FULL" and "HIGH" fields). */
5467#if 0
5468 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5469 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5470 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5471 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5472 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5473 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5474 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5475 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5476 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5477#endif
5478
5479 /* Natural width guest-state fields. */
5480 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5481 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_GUEST_LINEAR_ADDR);
5482
5483 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5484 {
5485 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5486 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5487 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5488 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5489 }
5490 else
5491 {
5492 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5493 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5494 }
5495
5496#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5497 return VINF_SUCCESS;
5498}
5499
5500
5501/**
5502 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5503 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5504 * darwin, running 64-bit guests).
5505 *
5506 * @returns VBox status code.
5507 * @param pVCpu The cross context virtual CPU structure.
5508 * @param idxField The VMCS field encoding.
5509 * @param u64Val 16, 32 or 64-bit value.
5510 */
5511VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5512{
5513 int rc;
5514 switch (idxField)
5515 {
5516 /*
5517 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5518 */
5519 /* 64-bit Control fields. */
5520 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5521 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5522 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5523 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5524 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5525 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5526 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5527 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5528 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
5529 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5530 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5531 case VMX_VMCS64_CTRL_EPTP_FULL:
5532 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5533 /* 64-bit Guest-state fields. */
5534 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5535 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5536 case VMX_VMCS64_GUEST_PAT_FULL:
5537 case VMX_VMCS64_GUEST_EFER_FULL:
5538 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5539 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5540 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5541 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5542 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5543 /* 64-bit Host-state fields. */
5544 case VMX_VMCS64_HOST_PAT_FULL:
5545 case VMX_VMCS64_HOST_EFER_FULL:
5546 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5547 {
5548 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5549 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
5550 break;
5551 }
5552
5553 /*
5554 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5555 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5556 */
5557 /* Natural-width Guest-state fields. */
5558 case VMX_VMCS_GUEST_CR3:
5559 case VMX_VMCS_GUEST_ES_BASE:
5560 case VMX_VMCS_GUEST_CS_BASE:
5561 case VMX_VMCS_GUEST_SS_BASE:
5562 case VMX_VMCS_GUEST_DS_BASE:
5563 case VMX_VMCS_GUEST_FS_BASE:
5564 case VMX_VMCS_GUEST_GS_BASE:
5565 case VMX_VMCS_GUEST_LDTR_BASE:
5566 case VMX_VMCS_GUEST_TR_BASE:
5567 case VMX_VMCS_GUEST_GDTR_BASE:
5568 case VMX_VMCS_GUEST_IDTR_BASE:
5569 case VMX_VMCS_GUEST_RSP:
5570 case VMX_VMCS_GUEST_RIP:
5571 case VMX_VMCS_GUEST_SYSENTER_ESP:
5572 case VMX_VMCS_GUEST_SYSENTER_EIP:
5573 {
5574 if (!(RT_HI_U32(u64Val)))
5575 {
5576 /* If this field is 64-bit, VT-x will zero out the top bits. */
5577 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5578 }
5579 else
5580 {
5581 /* Assert that only the 32->64 switcher case should ever come here. */
5582 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5583 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5584 }
5585 break;
5586 }
5587
5588 default:
5589 {
5590 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5591 rc = VERR_INVALID_PARAMETER;
5592 break;
5593 }
5594 }
5595 AssertRCReturn(rc, rc);
5596 return rc;
5597}
5598
5599
5600/**
5601 * Queue up a VMWRITE by using the VMCS write cache.
5602 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5603 *
5604 * @param pVCpu The cross context virtual CPU structure.
5605 * @param idxField The VMCS field encoding.
5606 * @param u64Val 16, 32 or 64-bit value.
5607 */
5608VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5609{
5610 AssertPtr(pVCpu);
5611 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5612
5613 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5614 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5615
5616 /* Make sure there are no duplicates. */
5617 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5618 {
5619 if (pCache->Write.aField[i] == idxField)
5620 {
5621 pCache->Write.aFieldVal[i] = u64Val;
5622 return VINF_SUCCESS;
5623 }
5624 }
5625
5626 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5627 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5628 pCache->Write.cValidEntries++;
5629 return VINF_SUCCESS;
5630}
5631#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5632
5633
5634/**
5635 * Sets up the usage of TSC-offsetting and updates the VMCS.
5636 *
5637 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5638 * VMX preemption timer.
5639 *
5640 * @returns VBox status code.
5641 * @param pVCpu The cross context virtual CPU structure.
5642 *
5643 * @remarks No-long-jump zone!!!
5644 */
5645static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5646{
5647 bool fOffsettedTsc;
5648 bool fParavirtTsc;
5649 PVM pVM = pVCpu->CTX_SUFF(pVM);
5650 uint64_t uTscOffset;
5651 if (pVM->hm.s.vmx.fUsePreemptTimer)
5652 {
5653 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
5654
5655 /* Make sure the returned values have sane upper and lower boundaries. */
5656 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5657 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5658 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5659 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5660
5661 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5662 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
5663 AssertRC(rc);
5664 }
5665 else
5666 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
5667
5668 if (fParavirtTsc)
5669 {
5670 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5671 information before every VM-entry, hence disable it for performance sake. */
5672#if 0
5673 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5674 AssertRC(rc);
5675#endif
5676 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5677 }
5678
5679 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
5680 if ( fOffsettedTsc
5681 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5682 {
5683 if (pVCpu->hm.s.vmx.u64TscOffset != uTscOffset)
5684 {
5685 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
5686 AssertRC(rc);
5687 pVCpu->hm.s.vmx.u64TscOffset = uTscOffset;
5688 }
5689
5690 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
5691 {
5692 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
5693 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5694 AssertRC(rc);
5695 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5696 }
5697 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5698 }
5699 else
5700 {
5701 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5702 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
5703 {
5704 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
5705 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5706 AssertRC(rc);
5707 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5708 }
5709 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5710 }
5711}
5712
5713
5714/**
5715 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5716 * VM-exit interruption info type.
5717 *
5718 * @returns The IEM exception flags.
5719 * @param uVector The event vector.
5720 * @param uVmxVectorType The VMX event type.
5721 *
5722 * @remarks This function currently only constructs flags required for
5723 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5724 * and CR2 aspects of an exception are not included).
5725 */
5726static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5727{
5728 uint32_t fIemXcptFlags;
5729 switch (uVmxVectorType)
5730 {
5731 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5732 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5733 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5734 break;
5735
5736 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5737 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5738 break;
5739
5740 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5741 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5742 break;
5743
5744 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5745 {
5746 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5747 if (uVector == X86_XCPT_BP)
5748 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5749 else if (uVector == X86_XCPT_OF)
5750 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5751 else
5752 {
5753 fIemXcptFlags = 0;
5754 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5755 }
5756 break;
5757 }
5758
5759 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5760 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5761 break;
5762
5763 default:
5764 fIemXcptFlags = 0;
5765 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5766 break;
5767 }
5768 return fIemXcptFlags;
5769}
5770
5771
5772/**
5773 * Sets an event as a pending event to be injected into the guest.
5774 *
5775 * @param pVCpu The cross context virtual CPU structure.
5776 * @param u32IntInfo The VM-entry interruption-information field.
5777 * @param cbInstr The VM-entry instruction length in bytes (for software
5778 * interrupts, exceptions and privileged software
5779 * exceptions).
5780 * @param u32ErrCode The VM-entry exception error code.
5781 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5782 * page-fault.
5783 *
5784 * @remarks Statistics counter assumes this is a guest event being injected or
5785 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5786 * always incremented.
5787 */
5788DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5789 RTGCUINTPTR GCPtrFaultAddress)
5790{
5791 Assert(!pVCpu->hm.s.Event.fPending);
5792 pVCpu->hm.s.Event.fPending = true;
5793 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5794 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5795 pVCpu->hm.s.Event.cbInstr = cbInstr;
5796 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5797}
5798
5799
5800/**
5801 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5802 *
5803 * @param pVCpu The cross context virtual CPU structure.
5804 */
5805DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
5806{
5807 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
5808 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5809 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5810 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5811 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5812}
5813
5814
5815/**
5816 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
5817 *
5818 * @param pVCpu The cross context virtual CPU structure.
5819 */
5820DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
5821{
5822 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
5823 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5824 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5825 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5826 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5827}
5828
5829
5830/**
5831 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
5832 *
5833 * @param pVCpu The cross context virtual CPU structure.
5834 */
5835DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
5836{
5837 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
5838 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5839 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5840 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5841 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5842}
5843
5844
5845#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5846/**
5847 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
5848 *
5849 * @param pVCpu The cross context virtual CPU structure.
5850 * @param u32ErrCode The error code for the general-protection exception.
5851 */
5852DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
5853{
5854 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
5855 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5856 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5857 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5858 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5859}
5860
5861
5862/**
5863 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
5864 *
5865 * @param pVCpu The cross context virtual CPU structure.
5866 * @param u32ErrCode The error code for the stack exception.
5867 */
5868DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
5869{
5870 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
5871 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5872 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5873 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5874 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5875}
5876
5877
5878/**
5879 * Decodes the memory operand of an instruction that caused a VM-exit.
5880 *
5881 * The VM-exit qualification field provides the displacement field for memory
5882 * operand instructions, if any.
5883 *
5884 * @returns Strict VBox status code (i.e. informational status codes too).
5885 * @retval VINF_SUCCESS if the operand was successfully decoded.
5886 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
5887 * operand.
5888 * @param pVCpu The cross context virtual CPU structure.
5889 * @param uExitInstrInfo The VM-exit instruction information field.
5890 * @param enmMemAccess The memory operand's access type (read or write).
5891 * @param GCPtrDisp The instruction displacement field, if any. For
5892 * RIP-relative addressing pass RIP + displacement here.
5893 * @param pGCPtrMem Where to store the effective destination memory address.
5894 */
5895static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
5896 PRTGCPTR pGCPtrMem)
5897{
5898 Assert(pGCPtrMem);
5899 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
5900 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
5901 | CPUMCTX_EXTRN_CR0);
5902
5903 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
5904 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
5905 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
5906
5907 VMXEXITINSTRINFO ExitInstrInfo;
5908 ExitInstrInfo.u = uExitInstrInfo;
5909 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
5910 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
5911 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
5912 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
5913 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
5914 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
5915 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
5916 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
5917 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
5918
5919 /*
5920 * Validate instruction information.
5921 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
5922 */
5923 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
5924 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
5925 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
5926 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
5927 AssertLogRelMsgReturn(fIsMemOperand,
5928 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
5929
5930 /*
5931 * Compute the complete effective address.
5932 *
5933 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
5934 * See AMD spec. 4.5.2 "Segment Registers".
5935 */
5936 RTGCPTR GCPtrMem = GCPtrDisp;
5937 if (fBaseRegValid)
5938 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
5939 if (fIdxRegValid)
5940 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
5941
5942 RTGCPTR const GCPtrOff = GCPtrMem;
5943 if ( !fIsLongMode
5944 || iSegReg >= X86_SREG_FS)
5945 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
5946 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
5947
5948 /*
5949 * Validate effective address.
5950 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
5951 */
5952 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
5953 Assert(cbAccess > 0);
5954 if (fIsLongMode)
5955 {
5956 if (X86_IS_CANONICAL(GCPtrMem))
5957 {
5958 *pGCPtrMem = GCPtrMem;
5959 return VINF_SUCCESS;
5960 }
5961
5962 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
5963 * "Data Limit Checks in 64-bit Mode". */
5964 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
5965 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5966 return VINF_HM_PENDING_XCPT;
5967 }
5968
5969 /*
5970 * This is a watered down version of iemMemApplySegment().
5971 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
5972 * and segment CPL/DPL checks are skipped.
5973 */
5974 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
5975 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
5976 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
5977
5978 /* Check if the segment is present and usable. */
5979 if ( pSel->Attr.n.u1Present
5980 && !pSel->Attr.n.u1Unusable)
5981 {
5982 Assert(pSel->Attr.n.u1DescType);
5983 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
5984 {
5985 /* Check permissions for the data segment. */
5986 if ( enmMemAccess == VMXMEMACCESS_WRITE
5987 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
5988 {
5989 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
5990 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
5991 return VINF_HM_PENDING_XCPT;
5992 }
5993
5994 /* Check limits if it's a normal data segment. */
5995 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
5996 {
5997 if ( GCPtrFirst32 > pSel->u32Limit
5998 || GCPtrLast32 > pSel->u32Limit)
5999 {
6000 Log4Func(("Data segment limit exceeded."
6001 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6002 GCPtrLast32, pSel->u32Limit));
6003 if (iSegReg == X86_SREG_SS)
6004 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6005 else
6006 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6007 return VINF_HM_PENDING_XCPT;
6008 }
6009 }
6010 else
6011 {
6012 /* Check limits if it's an expand-down data segment.
6013 Note! The upper boundary is defined by the B bit, not the G bit! */
6014 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
6015 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
6016 {
6017 Log4Func(("Expand-down data segment limit exceeded."
6018 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6019 GCPtrLast32, pSel->u32Limit));
6020 if (iSegReg == X86_SREG_SS)
6021 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6022 else
6023 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6024 return VINF_HM_PENDING_XCPT;
6025 }
6026 }
6027 }
6028 else
6029 {
6030 /* Check permissions for the code segment. */
6031 if ( enmMemAccess == VMXMEMACCESS_WRITE
6032 || ( enmMemAccess == VMXMEMACCESS_READ
6033 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
6034 {
6035 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6036 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6037 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6038 return VINF_HM_PENDING_XCPT;
6039 }
6040
6041 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6042 if ( GCPtrFirst32 > pSel->u32Limit
6043 || GCPtrLast32 > pSel->u32Limit)
6044 {
6045 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6046 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6047 if (iSegReg == X86_SREG_SS)
6048 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6049 else
6050 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6051 return VINF_HM_PENDING_XCPT;
6052 }
6053 }
6054 }
6055 else
6056 {
6057 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6058 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6059 return VINF_HM_PENDING_XCPT;
6060 }
6061
6062 *pGCPtrMem = GCPtrMem;
6063 return VINF_SUCCESS;
6064}
6065
6066
6067/**
6068 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6069 * guest attempting to execute a VMX instruction.
6070 *
6071 * @returns Strict VBox status code (i.e. informational status codes too).
6072 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6073 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6074 *
6075 * @param pVCpu The cross context virtual CPU structure.
6076 * @param uExitReason The VM-exit reason.
6077 *
6078 * @todo NstVmx: Document other error codes when VM-exit is implemented.
6079 * @remarks No-long-jump zone!!!
6080 */
6081static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
6082{
6083 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6084 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
6085
6086 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6087 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6088 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6089 {
6090 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6091 hmR0VmxSetPendingXcptUD(pVCpu);
6092 return VINF_HM_PENDING_XCPT;
6093 }
6094
6095 if (uExitReason == VMX_EXIT_VMXON)
6096 {
6097 /*
6098 * We check CR4.VMXE because it is required to be always set while in VMX operation
6099 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6100 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6101 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6102 */
6103 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6104 {
6105 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6106 hmR0VmxSetPendingXcptUD(pVCpu);
6107 return VINF_HM_PENDING_XCPT;
6108 }
6109 }
6110 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6111 {
6112 /*
6113 * The guest has not entered VMX operation but attempted to execute a VMX instruction
6114 * (other than VMXON), we need to raise a #UD.
6115 */
6116 Log4Func(("Not in VMX root mode -> #UD\n"));
6117 hmR0VmxSetPendingXcptUD(pVCpu);
6118 return VINF_HM_PENDING_XCPT;
6119 }
6120
6121 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
6122 {
6123 /*
6124 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
6125 * the guest hypervisor deal with it.
6126 */
6127 /** @todo NSTVMX: Trigger a VM-exit */
6128 }
6129
6130 /*
6131 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
6132 * (above) takes preceedence over the CPL check.
6133 */
6134 if (CPUMGetGuestCPL(pVCpu) > 0)
6135 {
6136 Log4Func(("CPL > 0 -> #GP(0)\n"));
6137 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6138 return VINF_HM_PENDING_XCPT;
6139 }
6140
6141 return VINF_SUCCESS;
6142}
6143
6144#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
6145
6146
6147/**
6148 * Handle a condition that occurred while delivering an event through the guest
6149 * IDT.
6150 *
6151 * @returns Strict VBox status code (i.e. informational status codes too).
6152 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6153 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
6154 * to continue execution of the guest which will delivery the \#DF.
6155 * @retval VINF_EM_RESET if we detected a triple-fault condition.
6156 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
6157 *
6158 * @param pVCpu The cross context virtual CPU structure.
6159 * @param pVmxTransient Pointer to the VMX transient structure.
6160 *
6161 * @remarks No-long-jump zone!!!
6162 */
6163static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6164{
6165 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
6166
6167 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
6168 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
6169 AssertRCReturn(rc2, rc2);
6170
6171 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
6172 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6173 {
6174 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
6175 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
6176
6177 /*
6178 * If the event was a software interrupt (generated with INT n) or a software exception
6179 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
6180 * can handle the VM-exit and continue guest execution which will re-execute the
6181 * instruction rather than re-injecting the exception, as that can cause premature
6182 * trips to ring-3 before injection and involve TRPM which currently has no way of
6183 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
6184 * the problem).
6185 */
6186 IEMXCPTRAISE enmRaise;
6187 IEMXCPTRAISEINFO fRaiseInfo;
6188 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6189 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6190 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6191 {
6192 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
6193 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6194 }
6195 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6196 {
6197 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
6198 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
6199 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
6200 /** @todo Make AssertMsgReturn as just AssertMsg later. */
6201 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
6202 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
6203 uExitVectorType), VERR_VMX_IPE_5);
6204
6205 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
6206
6207 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
6208 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
6209 {
6210 pVmxTransient->fVectoringPF = true;
6211 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6212 }
6213 }
6214 else
6215 {
6216 /*
6217 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
6218 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
6219 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
6220 */
6221 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6222 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6223 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
6224 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6225 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6226 }
6227
6228 /*
6229 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
6230 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
6231 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
6232 * subsequent VM-entry would fail.
6233 *
6234 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6235 */
6236 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
6237 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6238 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
6239 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
6240 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6241 {
6242 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6243 }
6244
6245 switch (enmRaise)
6246 {
6247 case IEMXCPTRAISE_CURRENT_XCPT:
6248 {
6249 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
6250 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
6251 Assert(rcStrict == VINF_SUCCESS);
6252 break;
6253 }
6254
6255 case IEMXCPTRAISE_PREV_EVENT:
6256 {
6257 uint32_t u32ErrCode;
6258 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
6259 {
6260 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6261 AssertRCReturn(rc2, rc2);
6262 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6263 }
6264 else
6265 u32ErrCode = 0;
6266
6267 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
6268 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6269 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6270 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
6271
6272 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
6273 pVCpu->hm.s.Event.u32ErrCode));
6274 Assert(rcStrict == VINF_SUCCESS);
6275 break;
6276 }
6277
6278 case IEMXCPTRAISE_REEXEC_INSTR:
6279 Assert(rcStrict == VINF_SUCCESS);
6280 break;
6281
6282 case IEMXCPTRAISE_DOUBLE_FAULT:
6283 {
6284 /*
6285 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6286 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6287 */
6288 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6289 {
6290 pVmxTransient->fVectoringDoublePF = true;
6291 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
6292 pVCpu->cpum.GstCtx.cr2));
6293 rcStrict = VINF_SUCCESS;
6294 }
6295 else
6296 {
6297 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6298 hmR0VmxSetPendingXcptDF(pVCpu);
6299 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
6300 uIdtVector, uExitVector));
6301 rcStrict = VINF_HM_DOUBLE_FAULT;
6302 }
6303 break;
6304 }
6305
6306 case IEMXCPTRAISE_TRIPLE_FAULT:
6307 {
6308 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
6309 rcStrict = VINF_EM_RESET;
6310 break;
6311 }
6312
6313 case IEMXCPTRAISE_CPU_HANG:
6314 {
6315 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
6316 rcStrict = VERR_EM_GUEST_CPU_HANG;
6317 break;
6318 }
6319
6320 default:
6321 {
6322 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6323 rcStrict = VERR_VMX_IPE_2;
6324 break;
6325 }
6326 }
6327 }
6328 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6329 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6330 && uExitVector != X86_XCPT_DF
6331 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6332 {
6333 /*
6334 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6335 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6336 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6337 */
6338 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6339 {
6340 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
6341 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6342 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6343 }
6344 }
6345
6346 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6347 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6348 return rcStrict;
6349}
6350
6351
6352/**
6353 * Imports a guest segment register from the current VMCS into
6354 * the guest-CPU context.
6355 *
6356 * @returns VBox status code.
6357 * @param pVCpu The cross context virtual CPU structure.
6358 * @param idxSel Index of the selector in the VMCS.
6359 * @param idxLimit Index of the segment limit in the VMCS.
6360 * @param idxBase Index of the segment base in the VMCS.
6361 * @param idxAccess Index of the access rights of the segment in the VMCS.
6362 * @param pSelReg Pointer to the segment selector.
6363 *
6364 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6365 * do not log!
6366 *
6367 * @remarks Never call this function directly!!! Use the
6368 * HMVMX_IMPORT_SREG() macro as that takes care
6369 * of whether to read from the VMCS cache or not.
6370 */
6371static int hmR0VmxImportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6372 PCPUMSELREG pSelReg)
6373{
6374 NOREF(pVCpu);
6375
6376 uint32_t u32Sel;
6377 uint32_t u32Limit;
6378 uint32_t u32Attr;
6379 uint64_t u64Base;
6380 int rc = VMXReadVmcs32(idxSel, &u32Sel);
6381 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
6382 rc |= VMXReadVmcs32(idxAccess, &u32Attr);
6383 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
6384 AssertRCReturn(rc, rc);
6385
6386 pSelReg->Sel = (uint16_t)u32Sel;
6387 pSelReg->ValidSel = (uint16_t)u32Sel;
6388 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6389 pSelReg->u32Limit = u32Limit;
6390 pSelReg->u64Base = u64Base;
6391 pSelReg->Attr.u = u32Attr;
6392
6393 /*
6394 * If VT-x marks the segment as unusable, most other bits remain undefined:
6395 * - For CS the L, D and G bits have meaning.
6396 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6397 * - For the remaining data segments no bits are defined.
6398 *
6399 * The present bit and the unusable bit has been observed to be set at the
6400 * same time (the selector was supposed to be invalid as we started executing
6401 * a V8086 interrupt in ring-0).
6402 *
6403 * What should be important for the rest of the VBox code, is that the P bit is
6404 * cleared. Some of the other VBox code recognizes the unusable bit, but
6405 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6406 * safe side here, we'll strip off P and other bits we don't care about. If
6407 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6408 *
6409 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6410 */
6411 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6412 {
6413 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6414
6415 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6416 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6417 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6418#ifdef VBOX_STRICT
6419 VMMRZCallRing3Disable(pVCpu);
6420 Log4Func(("Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Sel, pSelReg->Attr.u));
6421# ifdef DEBUG_bird
6422 AssertMsg((u32Attr & ~X86DESCATTR_P) == pSelReg->Attr.u,
6423 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6424 idxSel, u32Sel, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6425# endif
6426 VMMRZCallRing3Enable(pVCpu);
6427#endif
6428 }
6429 return VINF_SUCCESS;
6430}
6431
6432
6433/**
6434 * Imports the guest RIP from the VMCS back into the guest-CPU context.
6435 *
6436 * @returns VBox status code.
6437 * @param pVCpu The cross context virtual CPU structure.
6438 *
6439 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6440 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6441 * instead!!!
6442 */
6443DECLINLINE(int) hmR0VmxImportGuestRip(PVMCPU pVCpu)
6444{
6445 uint64_t u64Val;
6446 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6447 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
6448 {
6449 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6450 if (RT_SUCCESS(rc))
6451 {
6452 pCtx->rip = u64Val;
6453 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
6454 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
6455 }
6456 return rc;
6457 }
6458 return VINF_SUCCESS;
6459}
6460
6461
6462/**
6463 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
6464 *
6465 * @returns VBox status code.
6466 * @param pVCpu The cross context virtual CPU structure.
6467 *
6468 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6469 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6470 * instead!!!
6471 */
6472DECLINLINE(int) hmR0VmxImportGuestRFlags(PVMCPU pVCpu)
6473{
6474 uint32_t u32Val;
6475 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6476 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
6477 {
6478 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
6479 if (RT_SUCCESS(rc))
6480 {
6481 pCtx->eflags.u32 = u32Val;
6482
6483 /* Restore eflags for real-on-v86-mode hack. */
6484 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6485 {
6486 pCtx->eflags.Bits.u1VM = 0;
6487 pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6488 }
6489 }
6490 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
6491 return rc;
6492 }
6493 return VINF_SUCCESS;
6494}
6495
6496
6497/**
6498 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
6499 * context.
6500 *
6501 * @returns VBox status code.
6502 * @param pVCpu The cross context virtual CPU structure.
6503 *
6504 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6505 * do not log!
6506 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6507 * instead!!!
6508 */
6509DECLINLINE(int) hmR0VmxImportGuestIntrState(PVMCPU pVCpu)
6510{
6511 uint32_t u32Val;
6512 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6513 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
6514 AssertRCReturn(rc, rc);
6515
6516 /*
6517 * We additionally have a requirement to import RIP, RFLAGS depending on whether we
6518 * might need them in hmR0VmxEvaluatePendingEvent().
6519 */
6520 if (!u32Val)
6521 {
6522 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6523 {
6524 rc = hmR0VmxImportGuestRip(pVCpu);
6525 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6526 AssertRCReturn(rc, rc);
6527 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6528 }
6529
6530 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6531 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6532 }
6533 else
6534 {
6535 rc = hmR0VmxImportGuestRip(pVCpu);
6536 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6537 AssertRCReturn(rc, rc);
6538
6539 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
6540 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
6541 {
6542 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
6543 }
6544 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6545 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6546
6547 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6548 {
6549 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6550 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6551 }
6552 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6553 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6554 }
6555
6556 return VINF_SUCCESS;
6557}
6558
6559
6560/**
6561 * Worker for VMXR0ImportStateOnDemand.
6562 *
6563 * @returns VBox status code.
6564 * @param pVCpu The cross context virtual CPU structure.
6565 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6566 */
6567static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
6568{
6569#define VMXLOCAL_BREAK_RC(a_rc) \
6570 if (RT_FAILURE(a_rc)) \
6571 break
6572
6573 int rc = VINF_SUCCESS;
6574 PVM pVM = pVCpu->CTX_SUFF(pVM);
6575 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6576 uint64_t u64Val;
6577 uint32_t u32Val;
6578
6579 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
6580 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
6581
6582 /*
6583 * We disable interrupts to make the updating of the state and in particular
6584 * the fExtrn modification atomic wrt to preemption hooks.
6585 */
6586 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
6587
6588 fWhat &= pCtx->fExtrn;
6589 if (fWhat)
6590 {
6591 do
6592 {
6593 if (fWhat & CPUMCTX_EXTRN_RIP)
6594 {
6595 rc = hmR0VmxImportGuestRip(pVCpu);
6596 VMXLOCAL_BREAK_RC(rc);
6597 }
6598
6599 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
6600 {
6601 rc = hmR0VmxImportGuestRFlags(pVCpu);
6602 VMXLOCAL_BREAK_RC(rc);
6603 }
6604
6605 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
6606 {
6607 rc = hmR0VmxImportGuestIntrState(pVCpu);
6608 VMXLOCAL_BREAK_RC(rc);
6609 }
6610
6611 if (fWhat & CPUMCTX_EXTRN_RSP)
6612 {
6613 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6614 VMXLOCAL_BREAK_RC(rc);
6615 pCtx->rsp = u64Val;
6616 }
6617
6618 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
6619 {
6620 if (fWhat & CPUMCTX_EXTRN_CS)
6621 {
6622 rc = HMVMX_IMPORT_SREG(CS, &pCtx->cs);
6623 rc |= hmR0VmxImportGuestRip(pVCpu);
6624 VMXLOCAL_BREAK_RC(rc);
6625 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6626 pCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6627 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true);
6628 }
6629 if (fWhat & CPUMCTX_EXTRN_SS)
6630 {
6631 rc = HMVMX_IMPORT_SREG(SS, &pCtx->ss);
6632 VMXLOCAL_BREAK_RC(rc);
6633 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6634 pCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6635 }
6636 if (fWhat & CPUMCTX_EXTRN_DS)
6637 {
6638 rc = HMVMX_IMPORT_SREG(DS, &pCtx->ds);
6639 VMXLOCAL_BREAK_RC(rc);
6640 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6641 pCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6642 }
6643 if (fWhat & CPUMCTX_EXTRN_ES)
6644 {
6645 rc = HMVMX_IMPORT_SREG(ES, &pCtx->es);
6646 VMXLOCAL_BREAK_RC(rc);
6647 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6648 pCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6649 }
6650 if (fWhat & CPUMCTX_EXTRN_FS)
6651 {
6652 rc = HMVMX_IMPORT_SREG(FS, &pCtx->fs);
6653 VMXLOCAL_BREAK_RC(rc);
6654 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6655 pCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6656 }
6657 if (fWhat & CPUMCTX_EXTRN_GS)
6658 {
6659 rc = HMVMX_IMPORT_SREG(GS, &pCtx->gs);
6660 VMXLOCAL_BREAK_RC(rc);
6661 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6662 pCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6663 }
6664 }
6665
6666 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
6667 {
6668 if (fWhat & CPUMCTX_EXTRN_LDTR)
6669 {
6670 rc = HMVMX_IMPORT_SREG(LDTR, &pCtx->ldtr);
6671 VMXLOCAL_BREAK_RC(rc);
6672 }
6673
6674 if (fWhat & CPUMCTX_EXTRN_GDTR)
6675 {
6676 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6677 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
6678 VMXLOCAL_BREAK_RC(rc);
6679 pCtx->gdtr.pGdt = u64Val;
6680 pCtx->gdtr.cbGdt = u32Val;
6681 }
6682
6683 /* Guest IDTR. */
6684 if (fWhat & CPUMCTX_EXTRN_IDTR)
6685 {
6686 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6687 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
6688 VMXLOCAL_BREAK_RC(rc);
6689 pCtx->idtr.pIdt = u64Val;
6690 pCtx->idtr.cbIdt = u32Val;
6691 }
6692
6693 /* Guest TR. */
6694 if (fWhat & CPUMCTX_EXTRN_TR)
6695 {
6696 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, don't save that one. */
6697 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6698 {
6699 rc = HMVMX_IMPORT_SREG(TR, &pCtx->tr);
6700 VMXLOCAL_BREAK_RC(rc);
6701 }
6702 }
6703 }
6704
6705 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
6706 {
6707 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
6708 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
6709 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
6710 pCtx->SysEnter.cs = u32Val;
6711 VMXLOCAL_BREAK_RC(rc);
6712 }
6713
6714#if HC_ARCH_BITS == 64
6715 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
6716 {
6717 if ( pVM->hm.s.fAllow64BitGuests
6718 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6719 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
6720 }
6721
6722 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
6723 {
6724 if ( pVM->hm.s.fAllow64BitGuests
6725 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6726 {
6727 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
6728 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
6729 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
6730 }
6731 }
6732#endif
6733
6734 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
6735#if HC_ARCH_BITS == 32
6736 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
6737#endif
6738 )
6739 {
6740 PCVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6741 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
6742 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6743 {
6744 switch (pMsr->u32Msr)
6745 {
6746#if HC_ARCH_BITS == 32
6747 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
6748 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
6749 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
6750 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6751#endif
6752 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
6753 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
6754 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit */ break;
6755 default:
6756 {
6757 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6758 ASMSetFlags(fEFlags);
6759 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
6760 cMsrs));
6761 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6762 }
6763 }
6764 }
6765 }
6766
6767 if (fWhat & CPUMCTX_EXTRN_DR7)
6768 {
6769 if (!pVCpu->hm.s.fUsingHyperDR7)
6770 {
6771 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6772 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
6773 VMXLOCAL_BREAK_RC(rc);
6774 pCtx->dr[7] = u32Val;
6775 }
6776 }
6777
6778 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
6779 {
6780 uint32_t u32Shadow;
6781 if (fWhat & CPUMCTX_EXTRN_CR0)
6782 {
6783 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
6784 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
6785 VMXLOCAL_BREAK_RC(rc);
6786 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr0Mask)
6787 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr0Mask);
6788 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
6789 CPUMSetGuestCR0(pVCpu, u32Val);
6790 VMMRZCallRing3Enable(pVCpu);
6791 }
6792
6793 if (fWhat & CPUMCTX_EXTRN_CR4)
6794 {
6795 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
6796 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
6797 VMXLOCAL_BREAK_RC(rc);
6798 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr4Mask)
6799 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr4Mask);
6800 CPUMSetGuestCR4(pVCpu, u32Val);
6801 }
6802
6803 if (fWhat & CPUMCTX_EXTRN_CR3)
6804 {
6805 /* CR0.PG bit changes are always intercepted, so it's up to date. */
6806 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6807 || ( pVM->hm.s.fNestedPaging
6808 && CPUMIsGuestPagingEnabledEx(pCtx)))
6809 {
6810 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6811 if (pCtx->cr3 != u64Val)
6812 {
6813 CPUMSetGuestCR3(pVCpu, u64Val);
6814 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6815 }
6816
6817 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
6818 Note: CR4.PAE, CR0.PG, EFER bit changes are always intercepted, so they're up to date. */
6819 if (CPUMIsGuestInPAEModeEx(pCtx))
6820 {
6821 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6822 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6823 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6824 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6825 VMXLOCAL_BREAK_RC(rc);
6826 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6827 }
6828 }
6829 }
6830 }
6831 } while (0);
6832
6833 if (RT_SUCCESS(rc))
6834 {
6835 /* Update fExtrn. */
6836 pCtx->fExtrn &= ~fWhat;
6837
6838 /* If everything has been imported, clear the HM keeper bit. */
6839 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
6840 {
6841 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
6842 Assert(!pCtx->fExtrn);
6843 }
6844 }
6845 }
6846 else
6847 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
6848
6849 ASMSetFlags(fEFlags);
6850
6851 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
6852
6853 /*
6854 * Honor any pending CR3 updates.
6855 *
6856 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6857 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6858 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
6859 *
6860 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6861 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6862 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6863 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
6864 *
6865 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6866 */
6867 if (VMMRZCallRing3IsEnabled(pVCpu))
6868 {
6869 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6870 {
6871 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
6872 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6873 }
6874
6875 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6876 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6877
6878 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6879 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6880 }
6881
6882 return VINF_SUCCESS;
6883#undef VMXLOCAL_BREAK_RC
6884}
6885
6886
6887/**
6888 * Saves the guest state from the VMCS into the guest-CPU context.
6889 *
6890 * @returns VBox status code.
6891 * @param pVCpu The cross context virtual CPU structure.
6892 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6893 */
6894VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
6895{
6896 return hmR0VmxImportGuestState(pVCpu, fWhat);
6897}
6898
6899
6900/**
6901 * Check per-VM and per-VCPU force flag actions that require us to go back to
6902 * ring-3 for one reason or another.
6903 *
6904 * @returns Strict VBox status code (i.e. informational status codes too)
6905 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6906 * ring-3.
6907 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6908 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6909 * interrupts)
6910 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6911 * all EMTs to be in ring-3.
6912 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6913 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6914 * to the EM loop.
6915 *
6916 * @param pVCpu The cross context virtual CPU structure.
6917 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6918 */
6919static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
6920{
6921 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6922
6923 /*
6924 * Anything pending? Should be more likely than not if we're doing a good job.
6925 */
6926 PVM pVM = pVCpu->CTX_SUFF(pVM);
6927 if ( !fStepping
6928 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6929 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6930 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6931 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6932 return VINF_SUCCESS;
6933
6934 /* Pending PGM C3 sync. */
6935 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6936 {
6937 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6938 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
6939 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
6940 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6941 if (rcStrict2 != VINF_SUCCESS)
6942 {
6943 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6944 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6945 return rcStrict2;
6946 }
6947 }
6948
6949 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6950 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
6951 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6952 {
6953 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6954 int rc2 = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
6955 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6956 return rc2;
6957 }
6958
6959 /* Pending VM request packets, such as hardware interrupts. */
6960 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
6961 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
6962 {
6963 Log4Func(("Pending VM request forcing us back to ring-3\n"));
6964 return VINF_EM_PENDING_REQUEST;
6965 }
6966
6967 /* Pending PGM pool flushes. */
6968 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6969 {
6970 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
6971 return VINF_PGM_POOL_FLUSH_PENDING;
6972 }
6973
6974 /* Pending DMA requests. */
6975 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
6976 {
6977 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
6978 return VINF_EM_RAW_TO_R3;
6979 }
6980
6981 return VINF_SUCCESS;
6982}
6983
6984
6985/**
6986 * Converts any TRPM trap into a pending HM event. This is typically used when
6987 * entering from ring-3 (not longjmp returns).
6988 *
6989 * @param pVCpu The cross context virtual CPU structure.
6990 */
6991static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6992{
6993 Assert(TRPMHasTrap(pVCpu));
6994 Assert(!pVCpu->hm.s.Event.fPending);
6995
6996 uint8_t uVector;
6997 TRPMEVENT enmTrpmEvent;
6998 RTGCUINT uErrCode;
6999 RTGCUINTPTR GCPtrFaultAddress;
7000 uint8_t cbInstr;
7001
7002 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7003 AssertRC(rc);
7004
7005 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7006 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
7007 if (enmTrpmEvent == TRPM_TRAP)
7008 {
7009 switch (uVector)
7010 {
7011 case X86_XCPT_NMI:
7012 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7013 break;
7014
7015 case X86_XCPT_BP:
7016 case X86_XCPT_OF:
7017 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7018 break;
7019
7020 case X86_XCPT_PF:
7021 case X86_XCPT_DF:
7022 case X86_XCPT_TS:
7023 case X86_XCPT_NP:
7024 case X86_XCPT_SS:
7025 case X86_XCPT_GP:
7026 case X86_XCPT_AC:
7027 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7028 RT_FALL_THRU();
7029 default:
7030 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7031 break;
7032 }
7033 }
7034 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7035 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7036 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7037 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7038 else
7039 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7040
7041 rc = TRPMResetTrap(pVCpu);
7042 AssertRC(rc);
7043 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7044 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7045
7046 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7047}
7048
7049
7050/**
7051 * Converts the pending HM event into a TRPM trap.
7052 *
7053 * @param pVCpu The cross context virtual CPU structure.
7054 */
7055static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7056{
7057 Assert(pVCpu->hm.s.Event.fPending);
7058
7059 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7060 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7061 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7062 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7063
7064 /* If a trap was already pending, we did something wrong! */
7065 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7066
7067 TRPMEVENT enmTrapType;
7068 switch (uVectorType)
7069 {
7070 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7071 enmTrapType = TRPM_HARDWARE_INT;
7072 break;
7073
7074 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7075 enmTrapType = TRPM_SOFTWARE_INT;
7076 break;
7077
7078 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7079 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7080 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7081 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7082 enmTrapType = TRPM_TRAP;
7083 break;
7084
7085 default:
7086 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7087 enmTrapType = TRPM_32BIT_HACK;
7088 break;
7089 }
7090
7091 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7092
7093 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7094 AssertRC(rc);
7095
7096 if (fErrorCodeValid)
7097 TRPMSetErrorCode(pVCpu, uErrorCode);
7098
7099 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7100 && uVector == X86_XCPT_PF)
7101 {
7102 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7103 }
7104 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7105 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7106 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7107 {
7108 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7109 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7110 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7111 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7112 }
7113
7114 /* Clear the events from the VMCS. */
7115 VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7116
7117 /* We're now done converting the pending event. */
7118 pVCpu->hm.s.Event.fPending = false;
7119}
7120
7121
7122/**
7123 * Does the necessary state syncing before returning to ring-3 for any reason
7124 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7125 *
7126 * @returns VBox status code.
7127 * @param pVCpu The cross context virtual CPU structure.
7128 * @param fImportState Whether to import the guest state from the VMCS back
7129 * to the guest-CPU context.
7130 *
7131 * @remarks No-long-jmp zone!!!
7132 */
7133static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7134{
7135 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7136 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7137
7138 RTCPUID idCpu = RTMpCpuId();
7139 Log4Func(("HostCpuId=%u\n", idCpu));
7140
7141 /*
7142 * !!! IMPORTANT !!!
7143 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7144 */
7145
7146 /* Save the guest state if necessary. */
7147 if (fImportState)
7148 {
7149 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7150 AssertRCReturn(rc, rc);
7151 }
7152
7153 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
7154 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7155 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7156
7157 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
7158#ifdef VBOX_STRICT
7159 if (CPUMIsHyperDebugStateActive(pVCpu))
7160 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
7161#endif
7162 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7163 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7164 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7165
7166#if HC_ARCH_BITS == 64
7167 /* Restore host-state bits that VT-x only restores partially. */
7168 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7169 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7170 {
7171 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7172 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7173 }
7174 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7175#endif
7176
7177 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7178 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7179 {
7180 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
7181 if (!fImportState)
7182 {
7183 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
7184 AssertRCReturn(rc, rc);
7185 }
7186 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7187 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7188 }
7189 else
7190 pVCpu->hm.s.vmx.fLazyMsrs = 0;
7191
7192 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7193 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7194
7195 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7196 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
7197 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
7198 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
7199 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
7200 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7201 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7202 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7203 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7204
7205 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7206
7207 /** @todo This partially defeats the purpose of having preemption hooks.
7208 * The problem is, deregistering the hooks should be moved to a place that
7209 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7210 * context.
7211 */
7212 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7213 {
7214 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7215 AssertRCReturn(rc, rc);
7216
7217 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7218 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7219 }
7220 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7221 NOREF(idCpu);
7222
7223 return VINF_SUCCESS;
7224}
7225
7226
7227/**
7228 * Leaves the VT-x session.
7229 *
7230 * @returns VBox status code.
7231 * @param pVCpu The cross context virtual CPU structure.
7232 *
7233 * @remarks No-long-jmp zone!!!
7234 */
7235static int hmR0VmxLeaveSession(PVMCPU pVCpu)
7236{
7237 HM_DISABLE_PREEMPT(pVCpu);
7238 HMVMX_ASSERT_CPU_SAFE(pVCpu);
7239 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7240 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7241
7242 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7243 and done this from the VMXR0ThreadCtxCallback(). */
7244 if (!pVCpu->hm.s.fLeaveDone)
7245 {
7246 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
7247 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7248 pVCpu->hm.s.fLeaveDone = true;
7249 }
7250 Assert(!pVCpu->cpum.GstCtx.fExtrn);
7251
7252 /*
7253 * !!! IMPORTANT !!!
7254 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7255 */
7256
7257 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7258 /** @todo Deregistering here means we need to VMCLEAR always
7259 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
7260 * for calling VMMR0ThreadCtxHookDisable here! */
7261 VMMR0ThreadCtxHookDisable(pVCpu);
7262
7263 /* Leave HM context. This takes care of local init (term). */
7264 int rc = HMR0LeaveCpu(pVCpu);
7265
7266 HM_RESTORE_PREEMPT();
7267 return rc;
7268}
7269
7270
7271/**
7272 * Does the necessary state syncing before doing a longjmp to ring-3.
7273 *
7274 * @returns VBox status code.
7275 * @param pVCpu The cross context virtual CPU structure.
7276 *
7277 * @remarks No-long-jmp zone!!!
7278 */
7279DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
7280{
7281 return hmR0VmxLeaveSession(pVCpu);
7282}
7283
7284
7285/**
7286 * Take necessary actions before going back to ring-3.
7287 *
7288 * An action requires us to go back to ring-3. This function does the necessary
7289 * steps before we can safely return to ring-3. This is not the same as longjmps
7290 * to ring-3, this is voluntary and prepares the guest so it may continue
7291 * executing outside HM (recompiler/IEM).
7292 *
7293 * @returns VBox status code.
7294 * @param pVCpu The cross context virtual CPU structure.
7295 * @param rcExit The reason for exiting to ring-3. Can be
7296 * VINF_VMM_UNKNOWN_RING3_CALL.
7297 */
7298static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
7299{
7300 Assert(pVCpu);
7301 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7302
7303 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7304 {
7305 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7306 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7307 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7308 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7309 }
7310
7311 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7312 VMMRZCallRing3Disable(pVCpu);
7313 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
7314
7315 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7316 if (pVCpu->hm.s.Event.fPending)
7317 {
7318 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7319 Assert(!pVCpu->hm.s.Event.fPending);
7320 }
7321
7322 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7323 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7324
7325 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7326 and if we're injecting an event we should have a TRPM trap pending. */
7327 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7328#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
7329 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7330#endif
7331
7332 /* Save guest state and restore host state bits. */
7333 int rc = hmR0VmxLeaveSession(pVCpu);
7334 AssertRCReturn(rc, rc);
7335 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7336 /* Thread-context hooks are unregistered at this point!!! */
7337
7338 /* Sync recompiler state. */
7339 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7340 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7341 | CPUM_CHANGED_LDTR
7342 | CPUM_CHANGED_GDTR
7343 | CPUM_CHANGED_IDTR
7344 | CPUM_CHANGED_TR
7345 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7346 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
7347 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
7348 {
7349 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7350 }
7351
7352 Assert(!pVCpu->hm.s.fClearTrapFlag);
7353
7354 /* Update the exit-to-ring 3 reason. */
7355 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
7356
7357 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7358 if (rcExit != VINF_EM_RAW_INTERRUPT)
7359 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7360
7361 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7362
7363 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7364 VMMRZCallRing3RemoveNotification(pVCpu);
7365 VMMRZCallRing3Enable(pVCpu);
7366
7367 return rc;
7368}
7369
7370
7371/**
7372 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7373 * longjump to ring-3 and possibly get preempted.
7374 *
7375 * @returns VBox status code.
7376 * @param pVCpu The cross context virtual CPU structure.
7377 * @param enmOperation The operation causing the ring-3 longjump.
7378 * @param pvUser User argument, currently unused, NULL.
7379 */
7380static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7381{
7382 RT_NOREF(pvUser);
7383 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7384 {
7385 /*
7386 * !!! IMPORTANT !!!
7387 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7388 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7389 */
7390 VMMRZCallRing3RemoveNotification(pVCpu);
7391 VMMRZCallRing3Disable(pVCpu);
7392 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7393 RTThreadPreemptDisable(&PreemptState);
7394
7395 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7396 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7397 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7398
7399#if HC_ARCH_BITS == 64
7400 /* Restore host-state bits that VT-x only restores partially. */
7401 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7402 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7403 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7404 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7405#endif
7406
7407 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7408 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7409 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7410
7411 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7412 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7413 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7414 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7415 {
7416 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7417 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7418 }
7419
7420 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7421 VMMR0ThreadCtxHookDisable(pVCpu);
7422 HMR0LeaveCpu(pVCpu);
7423 RTThreadPreemptRestore(&PreemptState);
7424 return VINF_SUCCESS;
7425 }
7426
7427 Assert(pVCpu);
7428 Assert(pvUser);
7429 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7430 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7431
7432 VMMRZCallRing3Disable(pVCpu);
7433 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7434
7435 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
7436
7437 int rc = hmR0VmxLongJmpToRing3(pVCpu);
7438 AssertRCReturn(rc, rc);
7439
7440 VMMRZCallRing3Enable(pVCpu);
7441 return VINF_SUCCESS;
7442}
7443
7444
7445/**
7446 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7447 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7448 *
7449 * @param pVCpu The cross context virtual CPU structure.
7450 */
7451DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7452{
7453 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7454 {
7455 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7456 {
7457 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7458 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7459 AssertRC(rc);
7460 Log4Func(("Setup interrupt-window exiting\n"));
7461 }
7462 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7463}
7464
7465
7466/**
7467 * Clears the interrupt-window exiting control in the VMCS.
7468 *
7469 * @param pVCpu The cross context virtual CPU structure.
7470 */
7471DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7472{
7473 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
7474 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7475 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7476 AssertRC(rc);
7477 Log4Func(("Cleared interrupt-window exiting\n"));
7478}
7479
7480
7481/**
7482 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7483 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7484 *
7485 * @param pVCpu The cross context virtual CPU structure.
7486 */
7487DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7488{
7489 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7490 {
7491 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7492 {
7493 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7494 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7495 AssertRC(rc);
7496 Log4Func(("Setup NMI-window exiting\n"));
7497 }
7498 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7499}
7500
7501
7502/**
7503 * Clears the NMI-window exiting control in the VMCS.
7504 *
7505 * @param pVCpu The cross context virtual CPU structure.
7506 */
7507DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7508{
7509 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
7510 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7511 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7512 AssertRC(rc);
7513 Log4Func(("Cleared NMI-window exiting\n"));
7514}
7515
7516
7517/**
7518 * Evaluates the event to be delivered to the guest and sets it as the pending
7519 * event.
7520 *
7521 * @returns The VT-x guest-interruptibility state.
7522 * @param pVCpu The cross context virtual CPU structure.
7523 */
7524static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu)
7525{
7526 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7527 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7528 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu);
7529 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7530 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7531 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7532
7533 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7534 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7535 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7536 Assert(!TRPMHasTrap(pVCpu));
7537
7538 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7539 APICUpdatePendingInterrupts(pVCpu);
7540
7541 /*
7542 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7543 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7544 */
7545 /** @todo SMI. SMIs take priority over NMIs. */
7546 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7547 {
7548 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7549 if ( !pVCpu->hm.s.Event.fPending
7550 && !fBlockNmi
7551 && !fBlockSti
7552 && !fBlockMovSS)
7553 {
7554 Log4Func(("Pending NMI\n"));
7555 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INT_INFO_VALID;
7556 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7557
7558 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7559 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7560 }
7561 else
7562 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7563 }
7564 /*
7565 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7566 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7567 */
7568 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
7569 && !pVCpu->hm.s.fSingleInstruction)
7570 {
7571 Assert(!DBGFIsStepping(pVCpu));
7572 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7573 AssertRCReturn(rc, 0);
7574 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7575 if ( !pVCpu->hm.s.Event.fPending
7576 && !fBlockInt
7577 && !fBlockSti
7578 && !fBlockMovSS)
7579 {
7580 uint8_t u8Interrupt;
7581 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7582 if (RT_SUCCESS(rc))
7583 {
7584 Log4Func(("Pending external interrupt u8Interrupt=%#x\n", u8Interrupt));
7585 uint32_t u32IntInfo = u8Interrupt
7586 | VMX_EXIT_INT_INFO_VALID
7587 | (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7588
7589 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7590 }
7591 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7592 {
7593 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7594 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7595 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7596
7597 /*
7598 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7599 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7600 * need to re-set this force-flag here.
7601 */
7602 }
7603 else
7604 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7605 }
7606 else
7607 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7608 }
7609
7610 return fIntrState;
7611}
7612
7613
7614/**
7615 * Injects any pending events into the guest if the guest is in a state to
7616 * receive them.
7617 *
7618 * @returns Strict VBox status code (i.e. informational status codes too).
7619 * @param pVCpu The cross context virtual CPU structure.
7620 * @param fIntrState The VT-x guest-interruptibility state.
7621 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7622 * return VINF_EM_DBG_STEPPED if the event was
7623 * dispatched directly.
7624 */
7625static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, uint32_t fIntrState, bool fStepping)
7626{
7627 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7628 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7629
7630 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7631 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7632
7633 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7634 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7635 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7636 Assert(!TRPMHasTrap(pVCpu));
7637
7638 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7639 if (pVCpu->hm.s.Event.fPending)
7640 {
7641 /*
7642 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7643 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7644 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7645 *
7646 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7647 */
7648 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7649#ifdef VBOX_STRICT
7650 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7651 {
7652 bool const fBlockInt = !(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
7653 Assert(!fBlockInt);
7654 Assert(!fBlockSti);
7655 Assert(!fBlockMovSS);
7656 }
7657 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
7658 {
7659 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7660 Assert(!fBlockSti);
7661 Assert(!fBlockMovSS);
7662 Assert(!fBlockNmi);
7663 }
7664#endif
7665 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7666 uIntType));
7667
7668 /*
7669 * Inject the event and get any changes to the guest-interruptibility state.
7670 *
7671 * The guest-interruptibility state may need to be updated if we inject the event
7672 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
7673 */
7674 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7675 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping,
7676 &fIntrState);
7677 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7678
7679 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7680 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7681 else
7682 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7683 }
7684
7685 /*
7686 * Update the guest-interruptibility state.
7687 *
7688 * This is required for the real-on-v86 software interrupt injection case above, as well as
7689 * updates to the guest state from ring-3 or IEM/REM.
7690 */
7691 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
7692 AssertRCReturn(rc, rc);
7693
7694 /*
7695 * There's no need to clear the VM-entry interruption-information field here if we're not
7696 * injecting anything. VT-x clears the valid bit on every VM-exit.
7697 *
7698 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7699 */
7700
7701 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7702 NOREF(fBlockMovSS); NOREF(fBlockSti);
7703 return rcStrict;
7704}
7705
7706
7707/**
7708 * Injects a double-fault (\#DF) exception into the VM.
7709 *
7710 * @returns Strict VBox status code (i.e. informational status codes too).
7711 * @param pVCpu The cross context virtual CPU structure.
7712 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7713 * and should return VINF_EM_DBG_STEPPED if the event
7714 * is injected directly (register modified by us, not
7715 * by hardware on VM-entry).
7716 * @param pfIntrState Pointer to the current guest interruptibility-state.
7717 * This interruptibility-state will be updated if
7718 * necessary. This cannot not be NULL.
7719 */
7720DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, bool fStepping, uint32_t *pfIntrState)
7721{
7722 uint32_t const u32IntInfo = X86_XCPT_DF | VMX_EXIT_INT_INFO_VALID
7723 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7724 | VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7725 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */, fStepping,
7726 pfIntrState);
7727}
7728
7729
7730/**
7731 * Injects a general-protection (\#GP) fault into the VM.
7732 *
7733 * @returns Strict VBox status code (i.e. informational status codes too).
7734 * @param pVCpu The cross context virtual CPU structure.
7735 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7736 * mode, i.e. in real-mode it's not valid).
7737 * @param u32ErrorCode The error code associated with the \#GP.
7738 * @param fStepping Whether we're running in
7739 * hmR0VmxRunGuestCodeStep() and should return
7740 * VINF_EM_DBG_STEPPED if the event is injected
7741 * directly (register modified by us, not by
7742 * hardware on VM-entry).
7743 * @param pfIntrState Pointer to the current guest interruptibility-state.
7744 * This interruptibility-state will be updated if
7745 * necessary. This cannot not be NULL.
7746 */
7747DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, bool fErrorCodeValid, uint32_t u32ErrorCode, bool fStepping,
7748 uint32_t *pfIntrState)
7749{
7750 uint32_t const u32IntInfo = X86_XCPT_GP | VMX_EXIT_INT_INFO_VALID
7751 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7752 | (fErrorCodeValid ? VMX_EXIT_INT_INFO_ERROR_CODE_VALID : 0);
7753 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */, fStepping,
7754 pfIntrState);
7755}
7756
7757
7758/**
7759 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7760 * stack.
7761 *
7762 * @returns Strict VBox status code (i.e. informational status codes too).
7763 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7764 * @param pVCpu The cross context virtual CPU structure.
7765 * @param uValue The value to push to the guest stack.
7766 */
7767static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
7768{
7769 /*
7770 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7771 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7772 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7773 */
7774 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7775 if (pCtx->sp == 1)
7776 return VINF_EM_RESET;
7777 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7778 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
7779 AssertRC(rc);
7780 return rc;
7781}
7782
7783
7784/**
7785 * Injects an event into the guest upon VM-entry by updating the relevant fields
7786 * in the VM-entry area in the VMCS.
7787 *
7788 * @returns Strict VBox status code (i.e. informational status codes too).
7789 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7790 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7791 *
7792 * @param pVCpu The cross context virtual CPU structure.
7793 * @param u64IntInfo The VM-entry interruption-information field.
7794 * @param cbInstr The VM-entry instruction length in bytes (for
7795 * software interrupts, exceptions and privileged
7796 * software exceptions).
7797 * @param u32ErrCode The VM-entry exception error code.
7798 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7799 * @param pfIntrState Pointer to the current guest interruptibility-state.
7800 * This interruptibility-state will be updated if
7801 * necessary. This cannot not be NULL.
7802 * @param fStepping Whether we're running in
7803 * hmR0VmxRunGuestCodeStep() and should return
7804 * VINF_EM_DBG_STEPPED if the event is injected
7805 * directly (register modified by us, not by
7806 * hardware on VM-entry).
7807 */
7808static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7809 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState)
7810{
7811 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7812 AssertMsg(!RT_HI_U32(u64IntInfo), ("%#RX64\n", u64IntInfo));
7813 Assert(pfIntrState);
7814
7815 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7816 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7817 uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
7818 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
7819
7820#ifdef VBOX_STRICT
7821 /*
7822 * Validate the error-code-valid bit for hardware exceptions.
7823 * No error codes for exceptions in real-mode.
7824 *
7825 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7826 */
7827 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7828 && !CPUMIsGuestInRealModeEx(pCtx))
7829 {
7830 switch (uVector)
7831 {
7832 case X86_XCPT_PF:
7833 case X86_XCPT_DF:
7834 case X86_XCPT_TS:
7835 case X86_XCPT_NP:
7836 case X86_XCPT_SS:
7837 case X86_XCPT_GP:
7838 case X86_XCPT_AC:
7839 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
7840 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7841 RT_FALL_THRU();
7842 default:
7843 break;
7844 }
7845 }
7846#endif
7847
7848 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7849 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7850 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
7851
7852 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7853
7854 /*
7855 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
7856 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
7857 * interrupt handler in the (real-mode) guest.
7858 *
7859 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
7860 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7861 */
7862 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
7863 {
7864 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
7865 {
7866 /*
7867 * For unrestricted execution enabled CPUs running real-mode guests, we must not
7868 * set the deliver-error-code bit.
7869 *
7870 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7871 */
7872 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
7873 }
7874 else
7875 {
7876 PVM pVM = pVCpu->CTX_SUFF(pVM);
7877 Assert(PDMVmmDevHeapIsEnabled(pVM));
7878 Assert(pVM->hm.s.vmx.pRealModeTSS);
7879
7880 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
7881 int rc2 = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_RIP
7882 | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
7883 AssertRCReturn(rc2, rc2);
7884
7885 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7886 size_t const cbIdtEntry = sizeof(X86IDTR16);
7887 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
7888 {
7889 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7890 if (uVector == X86_XCPT_DF)
7891 return VINF_EM_RESET;
7892
7893 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7894 if (uVector == X86_XCPT_GP)
7895 return hmR0VmxInjectXcptDF(pVCpu, fStepping, pfIntrState);
7896
7897 /*
7898 * If we're injecting an event with no valid IDT entry, inject a #GP.
7899 * No error codes for exceptions in real-mode.
7900 *
7901 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7902 */
7903 return hmR0VmxInjectXcptGP(pVCpu, false /* fErrCodeValid */, 0 /* u32ErrCode */, fStepping, pfIntrState);
7904 }
7905
7906 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7907 uint16_t uGuestIp = pCtx->ip;
7908 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
7909 {
7910 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7911 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7912 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7913 }
7914 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
7915 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7916
7917 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7918 X86IDTR16 IdtEntry;
7919 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
7920 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7921 AssertRCReturn(rc2, rc2);
7922
7923 /* Construct the stack frame for the interrupt/exception handler. */
7924 VBOXSTRICTRC rcStrict;
7925 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
7926 if (rcStrict == VINF_SUCCESS)
7927 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
7928 if (rcStrict == VINF_SUCCESS)
7929 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
7930
7931 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7932 if (rcStrict == VINF_SUCCESS)
7933 {
7934 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7935 pCtx->rip = IdtEntry.offSel;
7936 pCtx->cs.Sel = IdtEntry.uSel;
7937 pCtx->cs.ValidSel = IdtEntry.uSel;
7938 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7939 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
7940 && uVector == X86_XCPT_PF)
7941 pCtx->cr2 = GCPtrFaultAddress;
7942
7943 /* If any other guest-state bits are changed here, make sure to update
7944 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7945 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
7946 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
7947 | HM_CHANGED_GUEST_RSP);
7948
7949 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7950 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
7951 {
7952 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
7953 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
7954 Log4Func(("Clearing inhibition due to STI\n"));
7955 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
7956 }
7957 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
7958 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
7959
7960 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7961 it, if we are returning to ring-3 before executing guest code. */
7962 pVCpu->hm.s.Event.fPending = false;
7963
7964 /* Make hmR0VmxPreRunGuest() return if we're stepping since we've changed cs:rip. */
7965 if (fStepping)
7966 rcStrict = VINF_EM_DBG_STEPPED;
7967 }
7968 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
7969 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7970 return rcStrict;
7971 }
7972 }
7973
7974 /* Validate. */
7975 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
7976 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
7977
7978 /* Inject. */
7979 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
7980 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
7981 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
7982 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
7983 AssertRCReturn(rc, rc);
7984
7985 /* Update CR2. */
7986 if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7987 && uVector == X86_XCPT_PF)
7988 pCtx->cr2 = GCPtrFaultAddress;
7989
7990 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
7991
7992 return VINF_SUCCESS;
7993}
7994
7995
7996/**
7997 * Clears the interrupt-window exiting control in the VMCS and if necessary
7998 * clears the current event in the VMCS as well.
7999 *
8000 * @returns VBox status code.
8001 * @param pVCpu The cross context virtual CPU structure.
8002 *
8003 * @remarks Use this function only to clear events that have not yet been
8004 * delivered to the guest but are injected in the VMCS!
8005 * @remarks No-long-jump zone!!!
8006 */
8007static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8008{
8009 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8010 {
8011 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8012 Log4Func(("Cleared interrupt window\n"));
8013 }
8014
8015 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8016 {
8017 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8018 Log4Func(("Cleared NMI window\n"));
8019 }
8020}
8021
8022
8023/**
8024 * Enters the VT-x session.
8025 *
8026 * @returns VBox status code.
8027 * @param pVCpu The cross context virtual CPU structure.
8028 * @param pHostCpu Pointer to the global CPU info struct.
8029 */
8030VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
8031{
8032 AssertPtr(pVCpu);
8033 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8034 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8035 RT_NOREF(pHostCpu);
8036
8037 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8038 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8039 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8040
8041#ifdef VBOX_STRICT
8042 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8043 RTCCUINTREG uHostCR4 = ASMGetCR4();
8044 if (!(uHostCR4 & X86_CR4_VMXE))
8045 {
8046 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8047 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8048 }
8049#endif
8050
8051 /*
8052 * Load the VCPU's VMCS as the current (and active) one.
8053 */
8054 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8055 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8056 if (RT_FAILURE(rc))
8057 return rc;
8058
8059 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8060 pVCpu->hm.s.fLeaveDone = false;
8061 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8062
8063 return VINF_SUCCESS;
8064}
8065
8066
8067/**
8068 * The thread-context callback (only on platforms which support it).
8069 *
8070 * @param enmEvent The thread-context event.
8071 * @param pVCpu The cross context virtual CPU structure.
8072 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8073 * @thread EMT(pVCpu)
8074 */
8075VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8076{
8077 NOREF(fGlobalInit);
8078
8079 switch (enmEvent)
8080 {
8081 case RTTHREADCTXEVENT_OUT:
8082 {
8083 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8084 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8085 VMCPU_ASSERT_EMT(pVCpu);
8086
8087 /* No longjmps (logger flushes, locks) in this fragile context. */
8088 VMMRZCallRing3Disable(pVCpu);
8089 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8090
8091 /*
8092 * Restore host-state (FPU, debug etc.)
8093 */
8094 if (!pVCpu->hm.s.fLeaveDone)
8095 {
8096 /*
8097 * Do -not- import the guest-state here as we might already be in the middle of importing
8098 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8099 */
8100 hmR0VmxLeave(pVCpu, false /* fImportState */);
8101 pVCpu->hm.s.fLeaveDone = true;
8102 }
8103
8104 /* Leave HM context, takes care of local init (term). */
8105 int rc = HMR0LeaveCpu(pVCpu);
8106 AssertRC(rc); NOREF(rc);
8107
8108 /* Restore longjmp state. */
8109 VMMRZCallRing3Enable(pVCpu);
8110 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8111 break;
8112 }
8113
8114 case RTTHREADCTXEVENT_IN:
8115 {
8116 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8117 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8118 VMCPU_ASSERT_EMT(pVCpu);
8119
8120 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8121 VMMRZCallRing3Disable(pVCpu);
8122 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8123
8124 /* Initialize the bare minimum state required for HM. This takes care of
8125 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8126 int rc = hmR0EnterCpu(pVCpu);
8127 AssertRC(rc);
8128 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8129 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8130
8131 /* Load the active VMCS as the current one. */
8132 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8133 {
8134 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8135 AssertRC(rc); NOREF(rc);
8136 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8137 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8138 }
8139 pVCpu->hm.s.fLeaveDone = false;
8140
8141 /* Restore longjmp state. */
8142 VMMRZCallRing3Enable(pVCpu);
8143 break;
8144 }
8145
8146 default:
8147 break;
8148 }
8149}
8150
8151
8152/**
8153 * Exports the host state into the VMCS host-state area.
8154 * Sets up the VM-exit MSR-load area.
8155 *
8156 * The CPU state will be loaded from these fields on every successful VM-exit.
8157 *
8158 * @returns VBox status code.
8159 * @param pVCpu The cross context virtual CPU structure.
8160 *
8161 * @remarks No-long-jump zone!!!
8162 */
8163static int hmR0VmxExportHostState(PVMCPU pVCpu)
8164{
8165 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8166
8167 int rc = VINF_SUCCESS;
8168 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8169 {
8170 rc = hmR0VmxExportHostControlRegs();
8171 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8172
8173 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8174 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8175
8176 rc = hmR0VmxExportHostMsrs(pVCpu);
8177 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8178
8179 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8180 }
8181 return rc;
8182}
8183
8184
8185/**
8186 * Saves the host state in the VMCS host-state.
8187 *
8188 * @returns VBox status code.
8189 * @param pVCpu The cross context virtual CPU structure.
8190 *
8191 * @remarks No-long-jump zone!!!
8192 */
8193VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8194{
8195 AssertPtr(pVCpu);
8196 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8197
8198 /*
8199 * Export the host state here while entering HM context.
8200 * When thread-context hooks are used, we might get preempted and have to re-save the host
8201 * state but most of the time we won't be, so do it here before we disable interrupts.
8202 */
8203 return hmR0VmxExportHostState(pVCpu);
8204}
8205
8206
8207/**
8208 * Exports the guest state into the VMCS guest-state area.
8209 *
8210 * The will typically be done before VM-entry when the guest-CPU state and the
8211 * VMCS state may potentially be out of sync.
8212 *
8213 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8214 * VM-entry controls.
8215 * Sets up the appropriate VMX non-root function to execute guest code based on
8216 * the guest CPU mode.
8217 *
8218 * @returns VBox strict status code.
8219 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8220 * without unrestricted guest access and the VMMDev is not presently
8221 * mapped (e.g. EFI32).
8222 *
8223 * @param pVCpu The cross context virtual CPU structure.
8224 *
8225 * @remarks No-long-jump zone!!!
8226 */
8227static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu)
8228{
8229 AssertPtr(pVCpu);
8230 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8231
8232 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8233
8234 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
8235
8236 /* Determine real-on-v86 mode. */
8237 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8238 if ( !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
8239 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
8240 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8241
8242 /*
8243 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8244 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8245 */
8246 int rc = hmR0VmxSelectVMRunHandler(pVCpu);
8247 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8248
8249 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8250 rc = hmR0VmxExportGuestEntryCtls(pVCpu);
8251 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8252
8253 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8254 rc = hmR0VmxExportGuestExitCtls(pVCpu);
8255 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8256
8257 rc = hmR0VmxExportGuestCR0(pVCpu);
8258 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8259
8260 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu);
8261 if (rcStrict == VINF_SUCCESS)
8262 { /* likely */ }
8263 else
8264 {
8265 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8266 return rcStrict;
8267 }
8268
8269 rc = hmR0VmxExportGuestSegmentRegs(pVCpu);
8270 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8271
8272 /* This needs to be done after hmR0VmxExportGuestEntryCtls() and hmR0VmxExportGuestExitCtls() as it
8273 may alter controls if we determine we don't have to swap EFER after all. */
8274 rc = hmR0VmxExportGuestMsrs(pVCpu);
8275 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8276
8277 rc = hmR0VmxExportGuestApicTpr(pVCpu);
8278 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8279
8280 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu);
8281 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8282
8283 rc = hmR0VmxExportGuestRip(pVCpu);
8284 rc |= hmR0VmxExportGuestRsp(pVCpu);
8285 rc |= hmR0VmxExportGuestRflags(pVCpu);
8286 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8287
8288 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
8289 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
8290 | HM_CHANGED_GUEST_CR2
8291 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
8292 | HM_CHANGED_GUEST_X87
8293 | HM_CHANGED_GUEST_SSE_AVX
8294 | HM_CHANGED_GUEST_OTHER_XSAVE
8295 | HM_CHANGED_GUEST_XCRx
8296 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
8297 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
8298 | HM_CHANGED_GUEST_TSC_AUX
8299 | HM_CHANGED_GUEST_OTHER_MSRS
8300 | HM_CHANGED_GUEST_HWVIRT
8301 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
8302
8303 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
8304 return rc;
8305}
8306
8307
8308/**
8309 * Exports the state shared between the host and guest into the VMCS.
8310 *
8311 * @param pVCpu The cross context virtual CPU structure.
8312 *
8313 * @remarks No-long-jump zone!!!
8314 */
8315static void hmR0VmxExportSharedState(PVMCPU pVCpu)
8316{
8317 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8318 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8319
8320 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
8321 {
8322 int rc = hmR0VmxExportSharedDebugState(pVCpu);
8323 AssertRC(rc);
8324 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
8325
8326 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8327 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
8328 {
8329 rc = hmR0VmxExportGuestRflags(pVCpu);
8330 AssertRC(rc);
8331 }
8332 }
8333
8334 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
8335 {
8336 hmR0VmxLazyLoadGuestMsrs(pVCpu);
8337 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
8338 }
8339
8340 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
8341 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8342}
8343
8344
8345/**
8346 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8347 *
8348 * @returns Strict VBox status code (i.e. informational status codes too).
8349 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8350 * without unrestricted guest access and the VMMDev is not presently
8351 * mapped (e.g. EFI32).
8352 *
8353 * @param pVCpu The cross context virtual CPU structure.
8354 *
8355 * @remarks No-long-jump zone!!!
8356 */
8357static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu)
8358{
8359 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8360 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8361 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8362
8363#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8364 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8365#endif
8366
8367 /*
8368 * For many exits it's only RIP that changes and hence try to export it first
8369 * without going through a lot of change flag checks.
8370 */
8371 VBOXSTRICTRC rcStrict;
8372 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8373 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8374 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
8375 {
8376 rcStrict = hmR0VmxExportGuestRip(pVCpu);
8377 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8378 { /* likely */}
8379 else
8380 AssertMsgFailedReturn(("hmR0VmxExportGuestRip failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8381 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
8382 }
8383 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8384 {
8385 rcStrict = hmR0VmxExportGuestState(pVCpu);
8386 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8387 { /* likely */}
8388 else
8389 {
8390 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("hmR0VmxExportGuestState failed! rc=%Rrc\n",
8391 VBOXSTRICTRC_VAL(rcStrict)));
8392 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8393 return rcStrict;
8394 }
8395 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
8396 }
8397 else
8398 rcStrict = VINF_SUCCESS;
8399
8400#ifdef VBOX_STRICT
8401 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8402 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8403 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8404 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
8405 ("fCtxChanged=%#RX64\n", fCtxChanged));
8406#endif
8407 return rcStrict;
8408}
8409
8410
8411/**
8412 * Does the preparations before executing guest code in VT-x.
8413 *
8414 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8415 * recompiler/IEM. We must be cautious what we do here regarding committing
8416 * guest-state information into the VMCS assuming we assuredly execute the
8417 * guest in VT-x mode.
8418 *
8419 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8420 * the common-state (TRPM/forceflags), we must undo those changes so that the
8421 * recompiler/IEM can (and should) use them when it resumes guest execution.
8422 * Otherwise such operations must be done when we can no longer exit to ring-3.
8423 *
8424 * @returns Strict VBox status code (i.e. informational status codes too).
8425 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8426 * have been disabled.
8427 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8428 * double-fault into the guest.
8429 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8430 * dispatched directly.
8431 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8432 *
8433 * @param pVCpu The cross context virtual CPU structure.
8434 * @param pVmxTransient Pointer to the VMX transient structure.
8435 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8436 * us ignore some of the reasons for returning to
8437 * ring-3, and return VINF_EM_DBG_STEPPED if event
8438 * dispatching took place.
8439 */
8440static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
8441{
8442 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8443
8444#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
8445 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8446 {
8447 Log2(("hmR0VmxPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
8448 RT_NOREF3(pVCpu, pVmxTransient, fStepping);
8449 return VINF_EM_RESCHEDULE_REM;
8450 }
8451#endif
8452
8453#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8454 PGMRZDynMapFlushAutoSet(pVCpu);
8455#endif
8456
8457 /* Check force flag actions that might require us to go back to ring-3. */
8458 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
8459 if (rcStrict == VINF_SUCCESS)
8460 { /* FFs doesn't get set all the time. */ }
8461 else
8462 return rcStrict;
8463
8464 /*
8465 * Setup the virtualized-APIC accesses.
8466 *
8467 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8468 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8469 *
8470 * This is the reason we do it here and not in hmR0VmxExportGuestState().
8471 */
8472 PVM pVM = pVCpu->CTX_SUFF(pVM);
8473 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8474 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
8475 && PDMHasApic(pVM))
8476 {
8477 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8478 Assert(u64MsrApicBase);
8479 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8480
8481 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8482
8483 /* Unalias any existing mapping. */
8484 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8485 AssertRCReturn(rc, rc);
8486
8487 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8488 Log4Func(("Mapped HC APIC-access page at %#RGp\n", GCPhysApicBase));
8489 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8490 AssertRCReturn(rc, rc);
8491
8492 /* Update the per-VCPU cache of the APIC base MSR. */
8493 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8494 }
8495
8496 if (TRPMHasTrap(pVCpu))
8497 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8498 uint32_t fIntrState = hmR0VmxEvaluatePendingEvent(pVCpu);
8499
8500 /*
8501 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
8502 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
8503 * also result in triple-faulting the VM.
8504 */
8505 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, fIntrState, fStepping);
8506 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8507 { /* likely */ }
8508 else
8509 {
8510 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8511 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8512 return rcStrict;
8513 }
8514
8515 /*
8516 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
8517 * import CR3 themselves. We will need to update them here, as even as late as the above
8518 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
8519 * the below force flags to be set.
8520 */
8521 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
8522 {
8523 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
8524 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
8525 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
8526 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
8527 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8528 }
8529 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
8530 {
8531 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
8532 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8533 }
8534
8535 /*
8536 * No longjmps to ring-3 from this point on!!!
8537 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8538 * This also disables flushing of the R0-logger instance (if any).
8539 */
8540 VMMRZCallRing3Disable(pVCpu);
8541
8542 /*
8543 * Export the guest state bits.
8544 *
8545 * We cannot perform longjmps while loading the guest state because we do not preserve the
8546 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8547 * CPU migration.
8548 *
8549 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8550 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8551 * Hence, loading of the guest state needs to be done -after- injection of events.
8552 */
8553 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu);
8554 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8555 { /* likely */ }
8556 else
8557 {
8558 VMMRZCallRing3Enable(pVCpu);
8559 return rcStrict;
8560 }
8561
8562 /*
8563 * We disable interrupts so that we don't miss any interrupts that would flag preemption
8564 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
8565 * preemption disabled for a while. Since this is purly to aid the
8566 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
8567 * disable interrupt on NT.
8568 *
8569 * We need to check for force-flags that could've possible been altered since we last
8570 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
8571 * see @bugref{6398}).
8572 *
8573 * We also check a couple of other force-flags as a last opportunity to get the EMT back
8574 * to ring-3 before executing guest code.
8575 */
8576 pVmxTransient->fEFlags = ASMIntDisableFlags();
8577
8578 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8579 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8580 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8581 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8582 {
8583 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8584 {
8585 pVCpu->hm.s.Event.fPending = false;
8586
8587 /*
8588 * We've injected any pending events. This is really the point of no return (to ring-3).
8589 *
8590 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8591 * returns from this function, so don't enable them here.
8592 */
8593 return VINF_SUCCESS;
8594 }
8595
8596 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
8597 rcStrict = VINF_EM_RAW_INTERRUPT;
8598 }
8599 else
8600 {
8601 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8602 rcStrict = VINF_EM_RAW_TO_R3;
8603 }
8604
8605 ASMSetFlags(pVmxTransient->fEFlags);
8606 VMMRZCallRing3Enable(pVCpu);
8607
8608 return rcStrict;
8609}
8610
8611
8612/**
8613 * Prepares to run guest code in VT-x and we've committed to doing so. This
8614 * means there is no backing out to ring-3 or anywhere else at this
8615 * point.
8616 *
8617 * @param pVCpu The cross context virtual CPU structure.
8618 * @param pVmxTransient Pointer to the VMX transient structure.
8619 *
8620 * @remarks Called with preemption disabled.
8621 * @remarks No-long-jump zone!!!
8622 */
8623static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
8624{
8625 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8626 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8627 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8628
8629 /*
8630 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8631 */
8632 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8633 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8634
8635 PVM pVM = pVCpu->CTX_SUFF(pVM);
8636 if (!CPUMIsGuestFPUStateActive(pVCpu))
8637 {
8638 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8639 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8640 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
8641 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8642 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
8643 }
8644
8645 /*
8646 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8647 */
8648 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8649 && pVCpu->hm.s.vmx.cMsrs > 0)
8650 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8651
8652 /*
8653 * Re-save the host state bits as we may've been preempted (only happens when
8654 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8655 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8656 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8657 * See @bugref{8432}.
8658 */
8659 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8660 {
8661 int rc = hmR0VmxExportHostState(pVCpu);
8662 AssertRC(rc);
8663 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
8664 }
8665 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
8666
8667 /*
8668 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
8669 */
8670 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
8671 hmR0VmxExportSharedState(pVCpu);
8672 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8673
8674 /* Store status of the shared guest-host state at the time of VM-entry. */
8675#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8676 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
8677 {
8678 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8679 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8680 }
8681 else
8682#endif
8683 {
8684 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8685 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8686 }
8687
8688 /*
8689 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8690 */
8691 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8692 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
8693
8694 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
8695 RTCPUID idCurrentCpu = pCpu->idCpu;
8696 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8697 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8698 {
8699 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8700 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8701 }
8702
8703 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8704 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8705 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8706 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8707
8708 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8709
8710 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8711 to start executing. */
8712
8713 /*
8714 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8715 */
8716 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
8717 {
8718 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8719 {
8720 bool fMsrUpdated;
8721 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
8722 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8723 &fMsrUpdated);
8724 AssertRC(rc2);
8725 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8726 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8727 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8728 }
8729 else
8730 {
8731 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8732 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8733 }
8734 }
8735
8736 if (pVM->cpum.ro.GuestFeatures.fIbrs)
8737 {
8738 bool fMsrUpdated;
8739 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
8740 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
8741 &fMsrUpdated);
8742 AssertRC(rc2);
8743 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8744 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8745 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8746 }
8747
8748#ifdef VBOX_STRICT
8749 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8750 hmR0VmxCheckHostEferMsr(pVCpu);
8751 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8752#endif
8753#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8754 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
8755 {
8756 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
8757 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8758 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8759 }
8760#endif
8761}
8762
8763
8764/**
8765 * Performs some essential restoration of state after running guest code in
8766 * VT-x.
8767 *
8768 * @param pVCpu The cross context virtual CPU structure.
8769 * @param pVmxTransient Pointer to the VMX transient structure.
8770 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8771 *
8772 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8773 *
8774 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8775 * unconditionally when it is safe to do so.
8776 */
8777static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8778{
8779 uint64_t const uHostTsc = ASMReadTSC();
8780 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8781
8782 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8783 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8784 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
8785 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8786 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8787 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8788
8789 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8790 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVCpu->hm.s.vmx.u64TscOffset);
8791
8792 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
8793 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8794 Assert(!ASMIntAreEnabled());
8795 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8796
8797#if HC_ARCH_BITS == 64
8798 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8799#endif
8800#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8801 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8802 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8803 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8804#else
8805 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8806#endif
8807#ifdef VBOX_STRICT
8808 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8809#endif
8810 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8811
8812 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8813 uint32_t uExitReason;
8814 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8815 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8816 AssertRC(rc);
8817 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
8818 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
8819
8820 if (rcVMRun == VINF_SUCCESS)
8821 {
8822 /*
8823 * Update the VM-exit history array here even if the VM-entry failed due to:
8824 * - Invalid guest state.
8825 * - MSR loading.
8826 * - Machine-check event.
8827 *
8828 * In any of the above cases we will still have a "valid" VM-exit reason
8829 * despite @a fVMEntryFailed being false.
8830 *
8831 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
8832 *
8833 * Note! We don't have CS or RIP at this point. Will probably address that later
8834 * by amending the history entry added here.
8835 */
8836 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
8837 UINT64_MAX, uHostTsc);
8838
8839 if (!pVmxTransient->fVMEntryFailed)
8840 {
8841 VMMRZCallRing3Enable(pVCpu);
8842
8843 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8844 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8845
8846#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8847 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
8848 AssertRC(rc);
8849#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8850 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_RFLAGS);
8851 AssertRC(rc);
8852#else
8853 /*
8854 * Import the guest-interruptibility state always as we need it while evaluating
8855 * injecting events on re-entry.
8856 *
8857 * We don't import CR0 (when Unrestricted guest execution is unavailable) despite
8858 * checking for real-mode while exporting the state because all bits that cause
8859 * mode changes wrt CR0 are intercepted.
8860 */
8861 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
8862 AssertRC(rc);
8863#endif
8864
8865 /*
8866 * Sync the TPR shadow with our APIC state.
8867 */
8868 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8869 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
8870 {
8871 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
8872 AssertRC(rc);
8873 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
8874 }
8875
8876 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8877 return;
8878 }
8879 }
8880 else
8881 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
8882
8883 VMMRZCallRing3Enable(pVCpu);
8884}
8885
8886
8887/**
8888 * Runs the guest code using VT-x the normal way.
8889 *
8890 * @returns VBox status code.
8891 * @param pVCpu The cross context virtual CPU structure.
8892 *
8893 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8894 */
8895static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu)
8896{
8897 VMXTRANSIENT VmxTransient;
8898 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8899 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8900 uint32_t cLoops = 0;
8901
8902 for (;; cLoops++)
8903 {
8904 Assert(!HMR0SuspendPending());
8905 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8906
8907 /* Preparatory work for running guest code, this may force us to return
8908 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8909 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8910 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
8911 if (rcStrict != VINF_SUCCESS)
8912 break;
8913
8914 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
8915 int rcRun = hmR0VmxRunGuest(pVCpu);
8916
8917 /* Restore any residual host-state and save any bits shared between host
8918 and guest into the guest-CPU state. Re-enables interrupts! */
8919 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
8920
8921 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8922 if (RT_SUCCESS(rcRun))
8923 { /* very likely */ }
8924 else
8925 {
8926 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
8927 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
8928 return rcRun;
8929 }
8930
8931 /* Profile the VM-exit. */
8932 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8933 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8934 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8935 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
8936 HMVMX_START_EXIT_DISPATCH_PROF();
8937
8938 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
8939
8940 /* Handle the VM-exit. */
8941#ifdef HMVMX_USE_FUNCTION_TABLE
8942 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
8943#else
8944 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient, VmxTransient.uExitReason);
8945#endif
8946 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
8947 if (rcStrict == VINF_SUCCESS)
8948 {
8949 if (cLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
8950 continue; /* likely */
8951 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8952 rcStrict = VINF_EM_RAW_INTERRUPT;
8953 }
8954 break;
8955 }
8956
8957 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8958 return rcStrict;
8959}
8960
8961
8962
8963/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
8964 * probes.
8965 *
8966 * The following few functions and associated structure contains the bloat
8967 * necessary for providing detailed debug events and dtrace probes as well as
8968 * reliable host side single stepping. This works on the principle of
8969 * "subclassing" the normal execution loop and workers. We replace the loop
8970 * method completely and override selected helpers to add necessary adjustments
8971 * to their core operation.
8972 *
8973 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
8974 * any performance for debug and analysis features.
8975 *
8976 * @{
8977 */
8978
8979/**
8980 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
8981 * the debug run loop.
8982 */
8983typedef struct VMXRUNDBGSTATE
8984{
8985 /** The RIP we started executing at. This is for detecting that we stepped. */
8986 uint64_t uRipStart;
8987 /** The CS we started executing with. */
8988 uint16_t uCsStart;
8989
8990 /** Whether we've actually modified the 1st execution control field. */
8991 bool fModifiedProcCtls : 1;
8992 /** Whether we've actually modified the 2nd execution control field. */
8993 bool fModifiedProcCtls2 : 1;
8994 /** Whether we've actually modified the exception bitmap. */
8995 bool fModifiedXcptBitmap : 1;
8996
8997 /** We desire the modified the CR0 mask to be cleared. */
8998 bool fClearCr0Mask : 1;
8999 /** We desire the modified the CR4 mask to be cleared. */
9000 bool fClearCr4Mask : 1;
9001 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9002 uint32_t fCpe1Extra;
9003 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9004 uint32_t fCpe1Unwanted;
9005 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9006 uint32_t fCpe2Extra;
9007 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9008 uint32_t bmXcptExtra;
9009 /** The sequence number of the Dtrace provider settings the state was
9010 * configured against. */
9011 uint32_t uDtraceSettingsSeqNo;
9012 /** VM-exits to check (one bit per VM-exit). */
9013 uint32_t bmExitsToCheck[3];
9014
9015 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9016 uint32_t fProcCtlsInitial;
9017 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9018 uint32_t fProcCtls2Initial;
9019 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9020 uint32_t bmXcptInitial;
9021} VMXRUNDBGSTATE;
9022AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9023typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9024
9025
9026/**
9027 * Initializes the VMXRUNDBGSTATE structure.
9028 *
9029 * @param pVCpu The cross context virtual CPU structure of the
9030 * calling EMT.
9031 * @param pDbgState The structure to initialize.
9032 */
9033static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9034{
9035 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
9036 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
9037
9038 pDbgState->fModifiedProcCtls = false;
9039 pDbgState->fModifiedProcCtls2 = false;
9040 pDbgState->fModifiedXcptBitmap = false;
9041 pDbgState->fClearCr0Mask = false;
9042 pDbgState->fClearCr4Mask = false;
9043 pDbgState->fCpe1Extra = 0;
9044 pDbgState->fCpe1Unwanted = 0;
9045 pDbgState->fCpe2Extra = 0;
9046 pDbgState->bmXcptExtra = 0;
9047 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9048 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9049 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9050}
9051
9052
9053/**
9054 * Updates the VMSC fields with changes requested by @a pDbgState.
9055 *
9056 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9057 * immediately before executing guest code, i.e. when interrupts are disabled.
9058 * We don't check status codes here as we cannot easily assert or return in the
9059 * latter case.
9060 *
9061 * @param pVCpu The cross context virtual CPU structure.
9062 * @param pDbgState The debug state.
9063 */
9064static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9065{
9066 /*
9067 * Ensure desired flags in VMCS control fields are set.
9068 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9069 *
9070 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9071 * there should be no stale data in pCtx at this point.
9072 */
9073 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9074 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9075 {
9076 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9077 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9078 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9079 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9080 pDbgState->fModifiedProcCtls = true;
9081 }
9082
9083 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9084 {
9085 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9086 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9087 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9088 pDbgState->fModifiedProcCtls2 = true;
9089 }
9090
9091 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9092 {
9093 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9094 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9095 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9096 pDbgState->fModifiedXcptBitmap = true;
9097 }
9098
9099 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32Cr0Mask != 0)
9100 {
9101 pVCpu->hm.s.vmx.u32Cr0Mask = 0;
9102 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9103 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9104 }
9105
9106 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32Cr4Mask != 0)
9107 {
9108 pVCpu->hm.s.vmx.u32Cr4Mask = 0;
9109 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9110 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9111 }
9112}
9113
9114
9115/**
9116 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
9117 * re-entry next time around.
9118 *
9119 * @returns Strict VBox status code (i.e. informational status codes too).
9120 * @param pVCpu The cross context virtual CPU structure.
9121 * @param pDbgState The debug state.
9122 * @param rcStrict The return code from executing the guest using single
9123 * stepping.
9124 */
9125static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9126{
9127 /*
9128 * Restore VM-exit control settings as we may not reenter this function the
9129 * next time around.
9130 */
9131 /* We reload the initial value, trigger what we can of recalculations the
9132 next time around. From the looks of things, that's all that's required atm. */
9133 if (pDbgState->fModifiedProcCtls)
9134 {
9135 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9136 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9137 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9138 AssertRCReturn(rc2, rc2);
9139 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9140 }
9141
9142 /* We're currently the only ones messing with this one, so just restore the
9143 cached value and reload the field. */
9144 if ( pDbgState->fModifiedProcCtls2
9145 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9146 {
9147 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9148 AssertRCReturn(rc2, rc2);
9149 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9150 }
9151
9152 /* If we've modified the exception bitmap, we restore it and trigger
9153 reloading and partial recalculation the next time around. */
9154 if (pDbgState->fModifiedXcptBitmap)
9155 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9156
9157 return rcStrict;
9158}
9159
9160
9161/**
9162 * Configures VM-exit controls for current DBGF and DTrace settings.
9163 *
9164 * This updates @a pDbgState and the VMCS execution control fields to reflect
9165 * the necessary VM-exits demanded by DBGF and DTrace.
9166 *
9167 * @param pVCpu The cross context virtual CPU structure.
9168 * @param pDbgState The debug state.
9169 * @param pVmxTransient Pointer to the VMX transient structure. May update
9170 * fUpdateTscOffsettingAndPreemptTimer.
9171 */
9172static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9173{
9174 /*
9175 * Take down the dtrace serial number so we can spot changes.
9176 */
9177 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9178 ASMCompilerBarrier();
9179
9180 /*
9181 * We'll rebuild most of the middle block of data members (holding the
9182 * current settings) as we go along here, so start by clearing it all.
9183 */
9184 pDbgState->bmXcptExtra = 0;
9185 pDbgState->fCpe1Extra = 0;
9186 pDbgState->fCpe1Unwanted = 0;
9187 pDbgState->fCpe2Extra = 0;
9188 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9189 pDbgState->bmExitsToCheck[i] = 0;
9190
9191 /*
9192 * Software interrupts (INT XXh) - no idea how to trigger these...
9193 */
9194 PVM pVM = pVCpu->CTX_SUFF(pVM);
9195 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9196 || VBOXVMM_INT_SOFTWARE_ENABLED())
9197 {
9198 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9199 }
9200
9201 /*
9202 * INT3 breakpoints - triggered by #BP exceptions.
9203 */
9204 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9205 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9206
9207 /*
9208 * Exception bitmap and XCPT events+probes.
9209 */
9210 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9211 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9212 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9213
9214 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9215 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9216 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9217 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9218 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9219 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9220 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9221 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9222 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9223 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9224 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9225 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9226 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9227 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9228 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9229 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9230 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9231 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9232
9233 if (pDbgState->bmXcptExtra)
9234 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9235
9236 /*
9237 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9238 *
9239 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
9240 * So, when adding/changing/removing please don't forget to update it.
9241 *
9242 * Some of the macros are picking up local variables to save horizontal space,
9243 * (being able to see it in a table is the lesser evil here).
9244 */
9245#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9246 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9247 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9248#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9249 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9250 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9251 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9252 } else do { } while (0)
9253#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9254 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9255 { \
9256 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9257 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9258 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9259 } else do { } while (0)
9260#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9261 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9262 { \
9263 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9264 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9265 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9266 } else do { } while (0)
9267#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9268 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9269 { \
9270 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9271 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9272 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9273 } else do { } while (0)
9274
9275 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9276 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9277 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9278 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9279 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9280
9281 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9282 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9283 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9284 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9285 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
9286 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9287 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9288 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9289 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
9290 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9291 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
9292 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9293 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
9294 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9295 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9296 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9297 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9298 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9299 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9300 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9301 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9302 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9303 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9304 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9305 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9306 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9307 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9308 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9309 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9310 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9311 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9312 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9313 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9314 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9315 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9316 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9317
9318 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9319 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9320 {
9321 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
9322 AssertRC(rc);
9323
9324#if 0 /** @todo fix me */
9325 pDbgState->fClearCr0Mask = true;
9326 pDbgState->fClearCr4Mask = true;
9327#endif
9328 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9329 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
9330 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9331 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
9332 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
9333 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9334 require clearing here and in the loop if we start using it. */
9335 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9336 }
9337 else
9338 {
9339 if (pDbgState->fClearCr0Mask)
9340 {
9341 pDbgState->fClearCr0Mask = false;
9342 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
9343 }
9344 if (pDbgState->fClearCr4Mask)
9345 {
9346 pDbgState->fClearCr4Mask = false;
9347 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
9348 }
9349 }
9350 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9351 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9352
9353 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9354 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9355 {
9356 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9357 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9358 }
9359 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9360 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9361
9362 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
9363 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9364 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
9365 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9366 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
9367 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9368 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
9369 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9370#if 0 /** @todo too slow, fix handler. */
9371 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
9372#endif
9373 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9374
9375 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9376 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9377 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9378 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9379 {
9380 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9381 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
9382 }
9383 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9384 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9385 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9386 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9387
9388 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9389 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9390 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9391 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9392 {
9393 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9394 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
9395 }
9396 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
9397 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
9398 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
9399 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
9400
9401 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9402 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9403 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
9404 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9405 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9406 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9407 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
9408 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9409 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9410 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9411 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
9412 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9413 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
9414 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9415 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9416 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9417 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
9418 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9419 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9420 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9421 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9422 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9423
9424#undef IS_EITHER_ENABLED
9425#undef SET_ONLY_XBM_IF_EITHER_EN
9426#undef SET_CPE1_XBM_IF_EITHER_EN
9427#undef SET_CPEU_XBM_IF_EITHER_EN
9428#undef SET_CPE2_XBM_IF_EITHER_EN
9429
9430 /*
9431 * Sanitize the control stuff.
9432 */
9433 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
9434 if (pDbgState->fCpe2Extra)
9435 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
9436 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
9437 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
9438 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
9439 {
9440 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9441 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9442 }
9443
9444 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9445 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9446 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9447 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9448}
9449
9450
9451/**
9452 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9453 * appropriate.
9454 *
9455 * The caller has checked the VM-exit against the
9456 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9457 * already, so we don't have to do that either.
9458 *
9459 * @returns Strict VBox status code (i.e. informational status codes too).
9460 * @param pVCpu The cross context virtual CPU structure.
9461 * @param pVmxTransient Pointer to the VMX-transient structure.
9462 * @param uExitReason The VM-exit reason.
9463 *
9464 * @remarks The name of this function is displayed by dtrace, so keep it short
9465 * and to the point. No longer than 33 chars long, please.
9466 */
9467static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9468{
9469 /*
9470 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9471 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9472 *
9473 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9474 * does. Must add/change/remove both places. Same ordering, please.
9475 *
9476 * Added/removed events must also be reflected in the next section
9477 * where we dispatch dtrace events.
9478 */
9479 bool fDtrace1 = false;
9480 bool fDtrace2 = false;
9481 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9482 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9483 uint32_t uEventArg = 0;
9484#define SET_EXIT(a_EventSubName) \
9485 do { \
9486 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9487 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9488 } while (0)
9489#define SET_BOTH(a_EventSubName) \
9490 do { \
9491 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9492 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9493 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9494 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9495 } while (0)
9496 switch (uExitReason)
9497 {
9498 case VMX_EXIT_MTF:
9499 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9500
9501 case VMX_EXIT_XCPT_OR_NMI:
9502 {
9503 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9504 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
9505 {
9506 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
9507 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
9508 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
9509 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9510 {
9511 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
9512 {
9513 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9514 uEventArg = pVmxTransient->uExitIntErrorCode;
9515 }
9516 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9517 switch (enmEvent1)
9518 {
9519 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9520 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9521 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9522 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9523 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9524 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9525 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9526 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9527 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9528 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9529 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9530 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9531 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9532 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9533 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9534 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9535 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9536 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9537 default: break;
9538 }
9539 }
9540 else
9541 AssertFailed();
9542 break;
9543
9544 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
9545 uEventArg = idxVector;
9546 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9547 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9548 break;
9549 }
9550 break;
9551 }
9552
9553 case VMX_EXIT_TRIPLE_FAULT:
9554 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9555 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9556 break;
9557 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9558 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9559 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9560 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9561 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9562
9563 /* Instruction specific VM-exits: */
9564 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9565 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9566 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9567 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9568 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9569 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9570 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9571 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9572 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9573 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9574 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9575 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9576 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9577 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9578 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9579 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9580 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9581 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9582 case VMX_EXIT_MOV_CRX:
9583 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9584 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
9585 SET_BOTH(CRX_READ);
9586 else
9587 SET_BOTH(CRX_WRITE);
9588 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
9589 break;
9590 case VMX_EXIT_MOV_DRX:
9591 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9592 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
9593 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
9594 SET_BOTH(DRX_READ);
9595 else
9596 SET_BOTH(DRX_WRITE);
9597 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
9598 break;
9599 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9600 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9601 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9602 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9603 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9604 case VMX_EXIT_GDTR_IDTR_ACCESS:
9605 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9606 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
9607 {
9608 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9609 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9610 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9611 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9612 }
9613 break;
9614
9615 case VMX_EXIT_LDTR_TR_ACCESS:
9616 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9617 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
9618 {
9619 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9620 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9621 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9622 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9623 }
9624 break;
9625
9626 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9627 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9628 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9629 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9630 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9631 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9632 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9633 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9634 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9635 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9636 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9637
9638 /* Events that aren't relevant at this point. */
9639 case VMX_EXIT_EXT_INT:
9640 case VMX_EXIT_INT_WINDOW:
9641 case VMX_EXIT_NMI_WINDOW:
9642 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9643 case VMX_EXIT_PREEMPT_TIMER:
9644 case VMX_EXIT_IO_INSTR:
9645 break;
9646
9647 /* Errors and unexpected events. */
9648 case VMX_EXIT_INIT_SIGNAL:
9649 case VMX_EXIT_SIPI:
9650 case VMX_EXIT_IO_SMI:
9651 case VMX_EXIT_SMI:
9652 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9653 case VMX_EXIT_ERR_MSR_LOAD:
9654 case VMX_EXIT_ERR_MACHINE_CHECK:
9655 break;
9656
9657 default:
9658 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9659 break;
9660 }
9661#undef SET_BOTH
9662#undef SET_EXIT
9663
9664 /*
9665 * Dtrace tracepoints go first. We do them here at once so we don't
9666 * have to copy the guest state saving and stuff a few dozen times.
9667 * Down side is that we've got to repeat the switch, though this time
9668 * we use enmEvent since the probes are a subset of what DBGF does.
9669 */
9670 if (fDtrace1 || fDtrace2)
9671 {
9672 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9673 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9674 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9675 switch (enmEvent1)
9676 {
9677 /** @todo consider which extra parameters would be helpful for each probe. */
9678 case DBGFEVENT_END: break;
9679 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
9680 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
9681 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
9682 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
9683 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
9684 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
9685 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
9686 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
9687 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
9688 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
9689 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
9690 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
9691 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
9692 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
9693 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
9694 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
9695 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
9696 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
9697 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9698 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9699 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
9700 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
9701 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
9702 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
9703 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
9704 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
9705 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
9706 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9707 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9708 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9709 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9710 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9711 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
9712 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9713 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
9714 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
9715 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
9716 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
9717 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
9718 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
9719 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
9720 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
9721 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
9722 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
9723 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
9724 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
9725 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
9726 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
9727 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
9728 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
9729 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
9730 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
9731 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
9732 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
9733 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
9734 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
9735 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
9736 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
9737 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
9738 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
9739 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
9740 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
9741 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
9742 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
9743 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
9744 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
9745 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9746 }
9747 switch (enmEvent2)
9748 {
9749 /** @todo consider which extra parameters would be helpful for each probe. */
9750 case DBGFEVENT_END: break;
9751 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
9752 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9753 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
9754 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
9755 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
9756 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
9757 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
9758 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
9759 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
9760 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9761 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9762 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9763 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9764 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9765 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
9766 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9767 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
9768 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
9769 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
9770 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
9771 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
9772 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
9773 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
9774 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
9775 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
9776 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
9777 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
9778 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
9779 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
9780 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
9781 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
9782 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
9783 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
9784 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
9785 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
9786 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
9787 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
9788 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
9789 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
9790 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
9791 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
9792 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
9793 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
9794 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
9795 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
9796 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
9797 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
9798 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
9799 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
9800 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
9801 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
9802 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
9803 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9804 }
9805 }
9806
9807 /*
9808 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9809 * the DBGF call will do a full check).
9810 *
9811 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9812 * Note! If we have to events, we prioritize the first, i.e. the instruction
9813 * one, in order to avoid event nesting.
9814 */
9815 PVM pVM = pVCpu->CTX_SUFF(pVM);
9816 if ( enmEvent1 != DBGFEVENT_END
9817 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9818 {
9819 HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9820 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
9821 if (rcStrict != VINF_SUCCESS)
9822 return rcStrict;
9823 }
9824 else if ( enmEvent2 != DBGFEVENT_END
9825 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9826 {
9827 HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9828 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
9829 if (rcStrict != VINF_SUCCESS)
9830 return rcStrict;
9831 }
9832
9833 return VINF_SUCCESS;
9834}
9835
9836
9837/**
9838 * Single-stepping VM-exit filtering.
9839 *
9840 * This is preprocessing the VM-exits and deciding whether we've gotten far
9841 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
9842 * handling is performed.
9843 *
9844 * @returns Strict VBox status code (i.e. informational status codes too).
9845 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9846 * @param pVmxTransient Pointer to the VMX-transient structure.
9847 * @param pDbgState The debug state.
9848 */
9849DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
9850{
9851 /*
9852 * Expensive (saves context) generic dtrace VM-exit probe.
9853 */
9854 uint32_t const uExitReason = pVmxTransient->uExitReason;
9855 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9856 { /* more likely */ }
9857 else
9858 {
9859 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9860 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9861 AssertRC(rc);
9862 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
9863 }
9864
9865 /*
9866 * Check for host NMI, just to get that out of the way.
9867 */
9868 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9869 { /* normally likely */ }
9870 else
9871 {
9872 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9873 AssertRCReturn(rc2, rc2);
9874 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
9875 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
9876 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
9877 }
9878
9879 /*
9880 * Check for single stepping event if we're stepping.
9881 */
9882 if (pVCpu->hm.s.fSingleInstruction)
9883 {
9884 switch (uExitReason)
9885 {
9886 case VMX_EXIT_MTF:
9887 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9888
9889 /* Various events: */
9890 case VMX_EXIT_XCPT_OR_NMI:
9891 case VMX_EXIT_EXT_INT:
9892 case VMX_EXIT_TRIPLE_FAULT:
9893 case VMX_EXIT_INT_WINDOW:
9894 case VMX_EXIT_NMI_WINDOW:
9895 case VMX_EXIT_TASK_SWITCH:
9896 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9897 case VMX_EXIT_APIC_ACCESS:
9898 case VMX_EXIT_EPT_VIOLATION:
9899 case VMX_EXIT_EPT_MISCONFIG:
9900 case VMX_EXIT_PREEMPT_TIMER:
9901
9902 /* Instruction specific VM-exits: */
9903 case VMX_EXIT_CPUID:
9904 case VMX_EXIT_GETSEC:
9905 case VMX_EXIT_HLT:
9906 case VMX_EXIT_INVD:
9907 case VMX_EXIT_INVLPG:
9908 case VMX_EXIT_RDPMC:
9909 case VMX_EXIT_RDTSC:
9910 case VMX_EXIT_RSM:
9911 case VMX_EXIT_VMCALL:
9912 case VMX_EXIT_VMCLEAR:
9913 case VMX_EXIT_VMLAUNCH:
9914 case VMX_EXIT_VMPTRLD:
9915 case VMX_EXIT_VMPTRST:
9916 case VMX_EXIT_VMREAD:
9917 case VMX_EXIT_VMRESUME:
9918 case VMX_EXIT_VMWRITE:
9919 case VMX_EXIT_VMXOFF:
9920 case VMX_EXIT_VMXON:
9921 case VMX_EXIT_MOV_CRX:
9922 case VMX_EXIT_MOV_DRX:
9923 case VMX_EXIT_IO_INSTR:
9924 case VMX_EXIT_RDMSR:
9925 case VMX_EXIT_WRMSR:
9926 case VMX_EXIT_MWAIT:
9927 case VMX_EXIT_MONITOR:
9928 case VMX_EXIT_PAUSE:
9929 case VMX_EXIT_GDTR_IDTR_ACCESS:
9930 case VMX_EXIT_LDTR_TR_ACCESS:
9931 case VMX_EXIT_INVEPT:
9932 case VMX_EXIT_RDTSCP:
9933 case VMX_EXIT_INVVPID:
9934 case VMX_EXIT_WBINVD:
9935 case VMX_EXIT_XSETBV:
9936 case VMX_EXIT_RDRAND:
9937 case VMX_EXIT_INVPCID:
9938 case VMX_EXIT_VMFUNC:
9939 case VMX_EXIT_RDSEED:
9940 case VMX_EXIT_XSAVES:
9941 case VMX_EXIT_XRSTORS:
9942 {
9943 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9944 AssertRCReturn(rc, rc);
9945 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
9946 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
9947 return VINF_EM_DBG_STEPPED;
9948 break;
9949 }
9950
9951 /* Errors and unexpected events: */
9952 case VMX_EXIT_INIT_SIGNAL:
9953 case VMX_EXIT_SIPI:
9954 case VMX_EXIT_IO_SMI:
9955 case VMX_EXIT_SMI:
9956 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9957 case VMX_EXIT_ERR_MSR_LOAD:
9958 case VMX_EXIT_ERR_MACHINE_CHECK:
9959 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
9960 break;
9961
9962 default:
9963 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9964 break;
9965 }
9966 }
9967
9968 /*
9969 * Check for debugger event breakpoints and dtrace probes.
9970 */
9971 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
9972 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
9973 {
9974 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
9975 if (rcStrict != VINF_SUCCESS)
9976 return rcStrict;
9977 }
9978
9979 /*
9980 * Normal processing.
9981 */
9982#ifdef HMVMX_USE_FUNCTION_TABLE
9983 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
9984#else
9985 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
9986#endif
9987}
9988
9989
9990/**
9991 * Single steps guest code using VT-x.
9992 *
9993 * @returns Strict VBox status code (i.e. informational status codes too).
9994 * @param pVCpu The cross context virtual CPU structure.
9995 *
9996 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
9997 */
9998static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu)
9999{
10000 VMXTRANSIENT VmxTransient;
10001 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10002
10003 /* Set HMCPU indicators. */
10004 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10005 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10006 pVCpu->hm.s.fDebugWantRdTscExit = false;
10007 pVCpu->hm.s.fUsingDebugLoop = true;
10008
10009 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10010 VMXRUNDBGSTATE DbgState;
10011 hmR0VmxRunDebugStateInit(pVCpu, &DbgState);
10012 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10013
10014 /*
10015 * The loop.
10016 */
10017 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10018 for (uint32_t cLoops = 0; ; cLoops++)
10019 {
10020 Assert(!HMR0SuspendPending());
10021 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10022 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10023
10024 /*
10025 * Preparatory work for running guest code, this may force us to return
10026 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10027 */
10028 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10029 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10030 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
10031 if (rcStrict != VINF_SUCCESS)
10032 break;
10033
10034 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10035 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10036
10037 /*
10038 * Now we can run the guest code.
10039 */
10040 int rcRun = hmR0VmxRunGuest(pVCpu);
10041
10042 /*
10043 * Restore any residual host-state and save any bits shared between host
10044 * and guest into the guest-CPU state. Re-enables interrupts!
10045 */
10046 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10047
10048 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10049 if (RT_SUCCESS(rcRun))
10050 { /* very likely */ }
10051 else
10052 {
10053 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10054 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10055 return rcRun;
10056 }
10057
10058 /* Profile the VM-exit. */
10059 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10060 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10061 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10062 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10063 HMVMX_START_EXIT_DISPATCH_PROF();
10064
10065 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10066
10067 /*
10068 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10069 */
10070 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
10071 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10072 if (rcStrict != VINF_SUCCESS)
10073 break;
10074 if (cLoops > pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
10075 {
10076 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10077 rcStrict = VINF_EM_RAW_INTERRUPT;
10078 break;
10079 }
10080
10081 /*
10082 * Stepping: Did the RIP change, if so, consider it a single step.
10083 * Otherwise, make sure one of the TFs gets set.
10084 */
10085 if (fStepping)
10086 {
10087 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
10088 AssertRC(rc);
10089 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
10090 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
10091 {
10092 rcStrict = VINF_EM_DBG_STEPPED;
10093 break;
10094 }
10095 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
10096 }
10097
10098 /*
10099 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10100 */
10101 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10102 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10103 }
10104
10105 /*
10106 * Clear the X86_EFL_TF if necessary.
10107 */
10108 if (pVCpu->hm.s.fClearTrapFlag)
10109 {
10110 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
10111 AssertRC(rc);
10112 pVCpu->hm.s.fClearTrapFlag = false;
10113 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
10114 }
10115 /** @todo there seems to be issues with the resume flag when the monitor trap
10116 * flag is pending without being used. Seen early in bios init when
10117 * accessing APIC page in protected mode. */
10118
10119 /*
10120 * Restore VM-exit control settings as we may not reenter this function the
10121 * next time around.
10122 */
10123 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10124
10125 /* Restore HMCPU indicators. */
10126 pVCpu->hm.s.fUsingDebugLoop = false;
10127 pVCpu->hm.s.fDebugWantRdTscExit = false;
10128 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10129
10130 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10131 return rcStrict;
10132}
10133
10134
10135/** @} */
10136
10137
10138/**
10139 * Checks if any expensive dtrace probes are enabled and we should go to the
10140 * debug loop.
10141 *
10142 * @returns true if we should use debug loop, false if not.
10143 */
10144static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10145{
10146 /* It's probably faster to OR the raw 32-bit counter variables together.
10147 Since the variables are in an array and the probes are next to one
10148 another (more or less), we have good locality. So, better read
10149 eight-nine cache lines ever time and only have one conditional, than
10150 128+ conditionals, right? */
10151 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10152 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10153 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10154 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10155 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10156 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10157 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10158 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10159 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10160 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10161 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10162 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10163 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10164 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10165 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10166 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10167 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10168 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10169 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10170 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10171 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10172 ) != 0
10173 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10174 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10175 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10176 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10177 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10178 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10179 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10180 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10181 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10182 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10183 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10184 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10185 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10186 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10187 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10188 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10189 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10190 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10191 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10192 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10193 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10194 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10195 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10196 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10197 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10198 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10199 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10200 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10201 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10202 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10203 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10204 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10205 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10206 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10207 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10208 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10209 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10210 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10211 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10212 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10213 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10214 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10215 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10216 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10217 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10218 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10219 ) != 0
10220 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10221 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10222 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10223 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10224 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10225 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10226 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10227 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10228 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10229 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10230 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10231 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10232 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10233 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10234 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10235 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10236 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10237 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10238 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10239 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10240 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10241 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10242 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10243 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10244 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10245 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10246 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10247 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10248 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10249 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10250 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10251 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10252 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10253 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10254 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10255 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10256 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10257 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10258 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10259 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10260 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10261 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10262 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10263 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10264 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10265 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10266 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10267 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10268 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10269 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10270 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10271 ) != 0;
10272}
10273
10274
10275/**
10276 * Runs the guest code using VT-x.
10277 *
10278 * @returns Strict VBox status code (i.e. informational status codes too).
10279 * @param pVCpu The cross context virtual CPU structure.
10280 */
10281VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
10282{
10283 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10284 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10285 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10286 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
10287
10288 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10289
10290 VBOXSTRICTRC rcStrict;
10291 if ( !pVCpu->hm.s.fUseDebugLoop
10292 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10293 && !DBGFIsStepping(pVCpu)
10294 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
10295 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu);
10296 else
10297 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu);
10298
10299 if (rcStrict == VERR_EM_INTERPRETER)
10300 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10301 else if (rcStrict == VINF_EM_RESET)
10302 rcStrict = VINF_EM_TRIPLE_FAULT;
10303
10304 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
10305 if (RT_FAILURE(rc2))
10306 {
10307 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10308 rcStrict = rc2;
10309 }
10310 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10311 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10312 return rcStrict;
10313}
10314
10315
10316#ifndef HMVMX_USE_FUNCTION_TABLE
10317DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10318{
10319#ifdef DEBUG_ramshankar
10320#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
10321 do { \
10322 if (a_fSave != 0) \
10323 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
10324 VBOXSTRICTRC rcStrict = a_CallExpr; \
10325 if (a_fSave != 0) \
10326 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
10327 return rcStrict; \
10328 } while (0)
10329#else
10330# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
10331#endif
10332 switch (rcReason)
10333 {
10334 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
10335 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
10336 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
10337 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
10338 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
10339 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
10340 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
10341 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
10342 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
10343 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
10344 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
10345 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
10346 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
10347 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
10348 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
10349 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
10350 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
10351 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
10352 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
10353 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
10354 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
10355 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
10356 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
10357 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
10358 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
10359 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
10360 case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10361 case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10362 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
10363 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
10364 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
10365 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
10366 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
10367 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
10368
10369 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
10370 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
10371 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
10372 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
10373 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
10374 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
10375 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
10376 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
10377 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
10378
10379 case VMX_EXIT_VMCLEAR:
10380 case VMX_EXIT_VMLAUNCH:
10381 case VMX_EXIT_VMPTRLD:
10382 case VMX_EXIT_VMPTRST:
10383 case VMX_EXIT_VMREAD:
10384 case VMX_EXIT_VMRESUME:
10385 case VMX_EXIT_VMWRITE:
10386 case VMX_EXIT_VMXOFF:
10387 case VMX_EXIT_VMXON:
10388 case VMX_EXIT_INVEPT:
10389 case VMX_EXIT_INVVPID:
10390 case VMX_EXIT_VMFUNC:
10391 case VMX_EXIT_XSAVES:
10392 case VMX_EXIT_XRSTORS:
10393 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10394
10395 case VMX_EXIT_ENCLS:
10396 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10397 case VMX_EXIT_PML_FULL:
10398 default:
10399 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
10400 }
10401#undef VMEXIT_CALL_RET
10402}
10403#endif /* !HMVMX_USE_FUNCTION_TABLE */
10404
10405
10406#ifdef VBOX_STRICT
10407/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10408# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10409 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10410
10411# define HMVMX_ASSERT_PREEMPT_CPUID() \
10412 do { \
10413 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10414 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10415 } while (0)
10416
10417# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10418 do { \
10419 AssertPtr((a_pVCpu)); \
10420 AssertPtr((a_pVmxTransient)); \
10421 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
10422 Assert(ASMIntAreEnabled()); \
10423 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10424 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10425 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
10426 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10427 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
10428 HMVMX_ASSERT_PREEMPT_CPUID(); \
10429 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10430 } while (0)
10431
10432# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10433 do { \
10434 Log4Func(("\n")); \
10435 } while (0)
10436#else
10437# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10438 do { \
10439 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10440 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
10441 } while (0)
10442# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
10443#endif
10444
10445
10446/**
10447 * Advances the guest RIP by the specified number of bytes.
10448 *
10449 * @param pVCpu The cross context virtual CPU structure.
10450 * @param cbInstr Number of bytes to advance the RIP by.
10451 *
10452 * @remarks No-long-jump zone!!!
10453 */
10454DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
10455{
10456 /* Advance the RIP. */
10457 pVCpu->cpum.GstCtx.rip += cbInstr;
10458 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
10459
10460 /* Update interrupt inhibition. */
10461 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10462 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
10463 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10464}
10465
10466
10467/**
10468 * Advances the guest RIP after reading it from the VMCS.
10469 *
10470 * @returns VBox status code, no informational status codes.
10471 * @param pVCpu The cross context virtual CPU structure.
10472 * @param pVmxTransient Pointer to the VMX transient structure.
10473 *
10474 * @remarks No-long-jump zone!!!
10475 */
10476static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10477{
10478 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10479 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
10480 AssertRCReturn(rc, rc);
10481
10482 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
10483 return VINF_SUCCESS;
10484}
10485
10486
10487/**
10488 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10489 * and update error record fields accordingly.
10490 *
10491 * @return VMX_IGS_* return codes.
10492 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10493 * wrong with the guest state.
10494 *
10495 * @param pVCpu The cross context virtual CPU structure.
10496 *
10497 * @remarks This function assumes our cache of the VMCS controls
10498 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10499 */
10500static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu)
10501{
10502#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10503#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10504 uError = (err); \
10505 break; \
10506 } else do { } while (0)
10507
10508 int rc;
10509 PVM pVM = pVCpu->CTX_SUFF(pVM);
10510 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10511 uint32_t uError = VMX_IGS_ERROR;
10512 uint32_t u32Val;
10513 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10514
10515 do
10516 {
10517 /*
10518 * CR0.
10519 */
10520 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10521 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10522 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10523 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10524 if (fUnrestrictedGuest)
10525 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
10526
10527 uint32_t u32GuestCr0;
10528 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
10529 AssertRCBreak(rc);
10530 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
10531 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
10532 if ( !fUnrestrictedGuest
10533 && (u32GuestCr0 & X86_CR0_PG)
10534 && !(u32GuestCr0 & X86_CR0_PE))
10535 {
10536 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10537 }
10538
10539 /*
10540 * CR4.
10541 */
10542 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10543 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10544
10545 uint32_t u32GuestCr4;
10546 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
10547 AssertRCBreak(rc);
10548 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
10549 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
10550
10551 /*
10552 * IA32_DEBUGCTL MSR.
10553 */
10554 uint64_t u64Val;
10555 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10556 AssertRCBreak(rc);
10557 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10558 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10559 {
10560 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10561 }
10562 uint64_t u64DebugCtlMsr = u64Val;
10563
10564#ifdef VBOX_STRICT
10565 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10566 AssertRCBreak(rc);
10567 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10568#endif
10569 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
10570
10571 /*
10572 * RIP and RFLAGS.
10573 */
10574 uint32_t u32Eflags;
10575#if HC_ARCH_BITS == 64
10576 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10577 AssertRCBreak(rc);
10578 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10579 if ( !fLongModeGuest
10580 || !pCtx->cs.Attr.n.u1Long)
10581 {
10582 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10583 }
10584 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10585 * must be identical if the "IA-32e mode guest" VM-entry
10586 * control is 1 and CS.L is 1. No check applies if the
10587 * CPU supports 64 linear-address bits. */
10588
10589 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10590 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10591 AssertRCBreak(rc);
10592 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10593 VMX_IGS_RFLAGS_RESERVED);
10594 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10595 u32Eflags = u64Val;
10596#else
10597 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10598 AssertRCBreak(rc);
10599 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10600 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10601#endif
10602
10603 if ( fLongModeGuest
10604 || ( fUnrestrictedGuest
10605 && !(u32GuestCr0 & X86_CR0_PE)))
10606 {
10607 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10608 }
10609
10610 uint32_t u32EntryInfo;
10611 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10612 AssertRCBreak(rc);
10613 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
10614 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10615 {
10616 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10617 }
10618
10619 /*
10620 * 64-bit checks.
10621 */
10622#if HC_ARCH_BITS == 64
10623 if (fLongModeGuest)
10624 {
10625 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10626 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10627 }
10628
10629 if ( !fLongModeGuest
10630 && (u32GuestCr4 & X86_CR4_PCIDE))
10631 {
10632 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10633 }
10634
10635 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10636 * 51:32 beyond the processor's physical-address width are 0. */
10637
10638 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10639 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10640 {
10641 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10642 }
10643
10644 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10645 AssertRCBreak(rc);
10646 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10647
10648 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10649 AssertRCBreak(rc);
10650 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10651#endif
10652
10653 /*
10654 * PERF_GLOBAL MSR.
10655 */
10656 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
10657 {
10658 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10659 AssertRCBreak(rc);
10660 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10661 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10662 }
10663
10664 /*
10665 * PAT MSR.
10666 */
10667 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
10668 {
10669 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10670 AssertRCBreak(rc);
10671 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10672 for (unsigned i = 0; i < 8; i++)
10673 {
10674 uint8_t u8Val = (u64Val & 0xff);
10675 if ( u8Val != 0 /* UC */
10676 && u8Val != 1 /* WC */
10677 && u8Val != 4 /* WT */
10678 && u8Val != 5 /* WP */
10679 && u8Val != 6 /* WB */
10680 && u8Val != 7 /* UC- */)
10681 {
10682 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10683 }
10684 u64Val >>= 8;
10685 }
10686 }
10687
10688 /*
10689 * EFER MSR.
10690 */
10691 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
10692 {
10693 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10694 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10695 AssertRCBreak(rc);
10696 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10697 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10698 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10699 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
10700 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10701 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
10702 * iemVmxVmentryCheckGuestState(). */
10703 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10704 || !(u32GuestCr0 & X86_CR0_PG)
10705 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10706 VMX_IGS_EFER_LMA_LME_MISMATCH);
10707 }
10708
10709 /*
10710 * Segment registers.
10711 */
10712 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10713 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10714 if (!(u32Eflags & X86_EFL_VM))
10715 {
10716 /* CS */
10717 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10718 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10719 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10720 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10721 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10722 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10723 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10724 /* CS cannot be loaded with NULL in protected mode. */
10725 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10726 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10727 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10728 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10729 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10730 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10731 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10732 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10733 else
10734 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10735
10736 /* SS */
10737 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10738 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10739 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10740 if ( !(pCtx->cr0 & X86_CR0_PE)
10741 || pCtx->cs.Attr.n.u4Type == 3)
10742 {
10743 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10744 }
10745 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10746 {
10747 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10748 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10749 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10750 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10751 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10752 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10753 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10754 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10755 }
10756
10757 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmenReg(). */
10758 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10759 {
10760 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10761 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10762 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10763 || pCtx->ds.Attr.n.u4Type > 11
10764 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10765 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10766 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10767 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10768 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10769 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10770 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10771 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10772 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10773 }
10774 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10775 {
10776 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10777 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10778 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10779 || pCtx->es.Attr.n.u4Type > 11
10780 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10781 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10782 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10783 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10784 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10785 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10786 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10787 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10788 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10789 }
10790 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10791 {
10792 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10793 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10794 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10795 || pCtx->fs.Attr.n.u4Type > 11
10796 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10797 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10798 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10799 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10800 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10801 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10802 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10803 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10804 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10805 }
10806 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10807 {
10808 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10809 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10810 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10811 || pCtx->gs.Attr.n.u4Type > 11
10812 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10813 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10814 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10815 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10816 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10817 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10818 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10819 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10820 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10821 }
10822 /* 64-bit capable CPUs. */
10823#if HC_ARCH_BITS == 64
10824 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10825 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10826 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10827 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10828 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10829 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10830 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10831 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10832 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10833 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10834 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10835#endif
10836 }
10837 else
10838 {
10839 /* V86 mode checks. */
10840 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10841 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10842 {
10843 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10844 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10845 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10846 }
10847 else
10848 {
10849 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10850 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10851 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10852 }
10853
10854 /* CS */
10855 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10856 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10857 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10858 /* SS */
10859 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10860 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10861 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10862 /* DS */
10863 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10864 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10865 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10866 /* ES */
10867 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10868 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10869 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10870 /* FS */
10871 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10872 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10873 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10874 /* GS */
10875 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10876 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10877 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10878 /* 64-bit capable CPUs. */
10879#if HC_ARCH_BITS == 64
10880 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10881 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10882 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10883 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10884 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10885 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10886 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10887 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10888 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10889 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10890 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10891#endif
10892 }
10893
10894 /*
10895 * TR.
10896 */
10897 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
10898 /* 64-bit capable CPUs. */
10899#if HC_ARCH_BITS == 64
10900 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
10901#endif
10902 if (fLongModeGuest)
10903 {
10904 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
10905 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
10906 }
10907 else
10908 {
10909 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
10910 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
10911 VMX_IGS_TR_ATTR_TYPE_INVALID);
10912 }
10913 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
10914 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
10915 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
10916 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
10917 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10918 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
10919 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10920 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
10921
10922 /*
10923 * GDTR and IDTR.
10924 */
10925#if HC_ARCH_BITS == 64
10926 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
10927 AssertRCBreak(rc);
10928 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
10929
10930 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
10931 AssertRCBreak(rc);
10932 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
10933#endif
10934
10935 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
10936 AssertRCBreak(rc);
10937 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10938
10939 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
10940 AssertRCBreak(rc);
10941 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10942
10943 /*
10944 * Guest Non-Register State.
10945 */
10946 /* Activity State. */
10947 uint32_t u32ActivityState;
10948 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
10949 AssertRCBreak(rc);
10950 HMVMX_CHECK_BREAK( !u32ActivityState
10951 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
10952 VMX_IGS_ACTIVITY_STATE_INVALID);
10953 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
10954 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
10955 uint32_t u32IntrState;
10956 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
10957 AssertRCBreak(rc);
10958 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
10959 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10960 {
10961 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
10962 }
10963
10964 /** @todo Activity state and injecting interrupts. Left as a todo since we
10965 * currently don't use activity states but ACTIVE. */
10966
10967 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
10968 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
10969
10970 /* Guest interruptibility-state. */
10971 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
10972 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
10973 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10974 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
10975 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
10976 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
10977 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
10978 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
10979 {
10980 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10981 {
10982 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10983 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10984 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
10985 }
10986 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
10987 {
10988 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10989 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
10990 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
10991 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
10992 }
10993 }
10994 /** @todo Assumes the processor is not in SMM. */
10995 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
10996 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
10997 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
10998 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
10999 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11000 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
11001 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
11002 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11003 {
11004 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
11005 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11006 }
11007
11008 /* Pending debug exceptions. */
11009#if HC_ARCH_BITS == 64
11010 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
11011 AssertRCBreak(rc);
11012 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11013 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11014 u32Val = u64Val; /* For pending debug exceptions checks below. */
11015#else
11016 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
11017 AssertRCBreak(rc);
11018 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11019 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11020#endif
11021
11022 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11023 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
11024 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11025 {
11026 if ( (u32Eflags & X86_EFL_TF)
11027 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11028 {
11029 /* Bit 14 is PendingDebug.BS. */
11030 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11031 }
11032 if ( !(u32Eflags & X86_EFL_TF)
11033 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11034 {
11035 /* Bit 14 is PendingDebug.BS. */
11036 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11037 }
11038 }
11039
11040 /* VMCS link pointer. */
11041 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11042 AssertRCBreak(rc);
11043 if (u64Val != UINT64_C(0xffffffffffffffff))
11044 {
11045 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11046 /** @todo Bits beyond the processor's physical-address width MBZ. */
11047 /** @todo 32-bit located in memory referenced by value of this field (as a
11048 * physical address) must contain the processor's VMCS revision ID. */
11049 /** @todo SMM checks. */
11050 }
11051
11052 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11053 * not using Nested Paging? */
11054 if ( pVM->hm.s.fNestedPaging
11055 && !fLongModeGuest
11056 && CPUMIsGuestInPAEModeEx(pCtx))
11057 {
11058 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11059 AssertRCBreak(rc);
11060 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11061
11062 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11063 AssertRCBreak(rc);
11064 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11065
11066 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11067 AssertRCBreak(rc);
11068 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11069
11070 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11071 AssertRCBreak(rc);
11072 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11073 }
11074
11075 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11076 if (uError == VMX_IGS_ERROR)
11077 uError = VMX_IGS_REASON_NOT_FOUND;
11078 } while (0);
11079
11080 pVCpu->hm.s.u32HMError = uError;
11081 return uError;
11082
11083#undef HMVMX_ERROR_BREAK
11084#undef HMVMX_CHECK_BREAK
11085}
11086
11087
11088/** @name VM-exit handlers.
11089 * @{
11090 */
11091/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11092/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11093/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11094
11095/**
11096 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11097 */
11098HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11099{
11100 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11101 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11102 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11103 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11104 return VINF_SUCCESS;
11105 return VINF_EM_RAW_INTERRUPT;
11106}
11107
11108
11109/**
11110 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11111 */
11112HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11113{
11114 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11115 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11116
11117 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11118 AssertRCReturn(rc, rc);
11119
11120 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11121 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
11122 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
11123 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11124
11125 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11126 {
11127 /*
11128 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
11129 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
11130 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
11131 *
11132 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11133 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
11134 */
11135 VMXDispatchHostNmi();
11136 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11137 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11138 return VINF_SUCCESS;
11139 }
11140
11141 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11142 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
11143 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11144 { /* likely */ }
11145 else
11146 {
11147 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11148 rcStrictRc1 = VINF_SUCCESS;
11149 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11150 return rcStrictRc1;
11151 }
11152
11153 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11154 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
11155 switch (uIntType)
11156 {
11157 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11158 Assert(uVector == X86_XCPT_DB);
11159 RT_FALL_THRU();
11160 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11161 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
11162 RT_FALL_THRU();
11163 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11164 {
11165 /*
11166 * If there's any exception caused as a result of event injection, the resulting
11167 * secondary/final execption will be pending, we shall continue guest execution
11168 * after injecting the event. The page-fault case is complicated and we manually
11169 * handle any currently pending event in hmR0VmxExitXcptPF.
11170 */
11171 if (!pVCpu->hm.s.Event.fPending)
11172 { /* likely */ }
11173 else if (uVector != X86_XCPT_PF)
11174 {
11175 rc = VINF_SUCCESS;
11176 break;
11177 }
11178
11179 switch (uVector)
11180 {
11181 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
11182 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
11183 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
11184 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
11185 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
11186 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
11187
11188 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11189 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11190 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11191 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11192 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11193 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11194 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11195 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11196 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11197 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11198 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11199 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11200 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11201 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11202 default:
11203 {
11204 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11205 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11206 {
11207 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11208 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11209 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
11210
11211 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
11212 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11213 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11214 AssertRCReturn(rc, rc);
11215 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11216 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11217 0 /* GCPtrFaultAddress */);
11218 }
11219 else
11220 {
11221 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11222 pVCpu->hm.s.u32HMError = uVector;
11223 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11224 }
11225 break;
11226 }
11227 }
11228 break;
11229 }
11230
11231 default:
11232 {
11233 pVCpu->hm.s.u32HMError = uExitIntInfo;
11234 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11235 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
11236 break;
11237 }
11238 }
11239 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11240 return rc;
11241}
11242
11243
11244/**
11245 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11246 */
11247HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11248{
11249 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11250
11251 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11252 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11253
11254 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11255 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11256 return VINF_SUCCESS;
11257}
11258
11259
11260/**
11261 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11262 */
11263HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11264{
11265 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11266 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)))
11267 {
11268 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11269 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11270 }
11271
11272 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS));
11273
11274 /*
11275 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11276 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11277 */
11278 uint32_t fIntrState = 0;
11279 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11280 AssertRCReturn(rc, rc);
11281 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
11282 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11283 {
11284 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11285 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11286
11287 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
11288 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
11289 AssertRCReturn(rc, rc);
11290 }
11291
11292 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11293 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11294
11295 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11296 return VINF_SUCCESS;
11297}
11298
11299
11300/**
11301 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11302 */
11303HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11304{
11305 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11306 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11307}
11308
11309
11310/**
11311 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11312 */
11313HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11314{
11315 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11316 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11317}
11318
11319
11320/**
11321 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11322 */
11323HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11324{
11325 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11326
11327 /*
11328 * Get the state we need and update the exit history entry.
11329 */
11330 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11331 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
11332 AssertRCReturn(rc, rc);
11333
11334 VBOXSTRICTRC rcStrict;
11335 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
11336 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
11337 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
11338 if (!pExitRec)
11339 {
11340 /*
11341 * Regular CPUID instruction execution.
11342 */
11343 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
11344 if (rcStrict == VINF_SUCCESS)
11345 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11346 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11347 {
11348 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11349 rcStrict = VINF_SUCCESS;
11350 }
11351 }
11352 else
11353 {
11354 /*
11355 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
11356 */
11357 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11358 AssertRCReturn(rc2, rc2);
11359
11360 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
11361 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
11362
11363 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
11364 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
11365
11366 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
11367 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
11368 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
11369 }
11370 return rcStrict;
11371}
11372
11373
11374/**
11375 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11376 */
11377HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11378{
11379 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11380 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4);
11381 AssertRCReturn(rc, rc);
11382
11383 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
11384 return VINF_EM_RAW_EMULATE_INSTR;
11385
11386 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11387 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11388}
11389
11390
11391/**
11392 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11393 */
11394HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11395{
11396 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11397 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
11398 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11399 AssertRCReturn(rc, rc);
11400
11401 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
11402 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11403 {
11404 /* If we get a spurious VM-exit when offsetting is enabled,
11405 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11406 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11407 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11408 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11409 }
11410 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11411 {
11412 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11413 rcStrict = VINF_SUCCESS;
11414 }
11415 return rcStrict;
11416}
11417
11418
11419/**
11420 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11421 */
11422HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11423{
11424 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11425 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
11426 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11427 AssertRCReturn(rc, rc);
11428
11429 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
11430 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11431 {
11432 /* If we get a spurious VM-exit when offsetting is enabled,
11433 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11434 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11435 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11436 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11437 }
11438 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11439 {
11440 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11441 rcStrict = VINF_SUCCESS;
11442 }
11443 return rcStrict;
11444}
11445
11446
11447/**
11448 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11449 */
11450HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11451{
11452 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11453 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11454 AssertRCReturn(rc, rc);
11455
11456 PVM pVM = pVCpu->CTX_SUFF(pVM);
11457 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11458 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11459 if (RT_LIKELY(rc == VINF_SUCCESS))
11460 {
11461 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11462 Assert(pVmxTransient->cbInstr == 2);
11463 }
11464 else
11465 {
11466 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11467 rc = VERR_EM_INTERPRETER;
11468 }
11469 return rc;
11470}
11471
11472
11473/**
11474 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11475 */
11476HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11477{
11478 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11479
11480 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11481 if (EMAreHypercallInstructionsEnabled(pVCpu))
11482 {
11483 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
11484 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
11485 AssertRCReturn(rc, rc);
11486
11487 /* Perform the hypercall. */
11488 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
11489 if (rcStrict == VINF_SUCCESS)
11490 {
11491 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11492 AssertRCReturn(rc, rc);
11493 }
11494 else
11495 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11496 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11497 || RT_FAILURE(rcStrict));
11498
11499 /* If the hypercall changes anything other than guest's general-purpose registers,
11500 we would need to reload the guest changed bits here before VM-entry. */
11501 }
11502 else
11503 Log4Func(("Hypercalls not enabled\n"));
11504
11505 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11506 if (RT_FAILURE(rcStrict))
11507 {
11508 hmR0VmxSetPendingXcptUD(pVCpu);
11509 rcStrict = VINF_SUCCESS;
11510 }
11511
11512 return rcStrict;
11513}
11514
11515
11516/**
11517 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11518 */
11519HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11520{
11521 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11522 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11523
11524 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11525 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11526 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
11527 AssertRCReturn(rc, rc);
11528
11529 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
11530
11531 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
11532 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11533 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11534 {
11535 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11536 rcStrict = VINF_SUCCESS;
11537 }
11538 else
11539 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
11540 VBOXSTRICTRC_VAL(rcStrict)));
11541 return rcStrict;
11542}
11543
11544
11545/**
11546 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11547 */
11548HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11549{
11550 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11551 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11552 AssertRCReturn(rc, rc);
11553
11554 PVM pVM = pVCpu->CTX_SUFF(pVM);
11555 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11556 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11557 if (RT_LIKELY(rc == VINF_SUCCESS))
11558 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11559 else
11560 {
11561 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11562 rc = VERR_EM_INTERPRETER;
11563 }
11564 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11565 return rc;
11566}
11567
11568
11569/**
11570 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11571 */
11572HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11573{
11574 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11575 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11576 AssertRCReturn(rc, rc);
11577
11578 PVM pVM = pVCpu->CTX_SUFF(pVM);
11579 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11580 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11581 rc = VBOXSTRICTRC_VAL(rc2);
11582 if (RT_LIKELY( rc == VINF_SUCCESS
11583 || rc == VINF_EM_HALT))
11584 {
11585 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11586 AssertRCReturn(rc3, rc3);
11587
11588 if ( rc == VINF_EM_HALT
11589 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
11590 rc = VINF_SUCCESS;
11591 }
11592 else
11593 {
11594 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11595 rc = VERR_EM_INTERPRETER;
11596 }
11597 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11598 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11599 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11600 return rc;
11601}
11602
11603
11604/**
11605 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11606 */
11607HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11608{
11609 /*
11610 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
11611 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
11612 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
11613 * VMX root operation. If we get here, something funny is going on.
11614 *
11615 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
11616 */
11617 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11618 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
11619 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11620}
11621
11622
11623/**
11624 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11625 */
11626HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11627{
11628 /*
11629 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
11630 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
11631 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
11632 * an SMI. If we get here, something funny is going on.
11633 *
11634 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
11635 * See Intel spec. 25.3 "Other Causes of VM-Exits"
11636 */
11637 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11638 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
11639 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11640}
11641
11642
11643/**
11644 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11645 */
11646HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11647{
11648 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11649 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11650 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
11651 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11652}
11653
11654
11655/**
11656 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11657 */
11658HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11659{
11660 /*
11661 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
11662 * We don't make use of it as our guests don't have direct access to the host LAPIC.
11663 * See Intel spec. 25.3 "Other Causes of VM-exits".
11664 */
11665 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11666 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
11667 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11668}
11669
11670
11671/**
11672 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11673 * VM-exit.
11674 */
11675HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11676{
11677 /*
11678 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11679 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11680 *
11681 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11682 * See Intel spec. "23.8 Restrictions on VMX operation".
11683 */
11684 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11685 return VINF_SUCCESS;
11686}
11687
11688
11689/**
11690 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11691 * VM-exit.
11692 */
11693HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11694{
11695 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11696 return VINF_EM_RESET;
11697}
11698
11699
11700/**
11701 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11702 */
11703HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11704{
11705 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11706 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_HLT_EXIT);
11707
11708 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11709 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RFLAGS);
11710 AssertRCReturn(rc, rc);
11711
11712 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
11713 rc = VINF_SUCCESS;
11714 else
11715 rc = VINF_EM_HALT;
11716
11717 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11718 if (rc != VINF_SUCCESS)
11719 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11720 return rc;
11721}
11722
11723
11724/**
11725 * VM-exit handler for instructions that result in a \#UD exception delivered to
11726 * the guest.
11727 */
11728HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11729{
11730 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11731 hmR0VmxSetPendingXcptUD(pVCpu);
11732 return VINF_SUCCESS;
11733}
11734
11735
11736/**
11737 * VM-exit handler for expiry of the VMX preemption timer.
11738 */
11739HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11740{
11741 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11742
11743 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11744 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11745
11746 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11747 PVM pVM = pVCpu->CTX_SUFF(pVM);
11748 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11749 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11750 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11751}
11752
11753
11754/**
11755 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11756 */
11757HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11758{
11759 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11760
11761 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11762 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
11763 AssertRCReturn(rc, rc);
11764
11765 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11766 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11767 : HM_CHANGED_RAISED_XCPT_MASK);
11768
11769 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11770 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
11771
11772 return rcStrict;
11773}
11774
11775
11776/**
11777 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11778 */
11779HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11780{
11781 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11782 /** @todo Use VM-exit instruction information. */
11783 return VERR_EM_INTERPRETER;
11784}
11785
11786
11787/**
11788 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11789 * Error VM-exit.
11790 */
11791HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11792{
11793 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11794 AssertRCReturn(rc, rc);
11795 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11796 if (RT_FAILURE(rc))
11797 return rc;
11798
11799 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
11800 NOREF(uInvalidReason);
11801
11802#ifdef VBOX_STRICT
11803 uint32_t fIntrState;
11804 RTHCUINTREG uHCReg;
11805 uint64_t u64Val;
11806 uint32_t u32Val;
11807
11808 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11809 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11810 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11811 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11812 AssertRCReturn(rc, rc);
11813
11814 Log4(("uInvalidReason %u\n", uInvalidReason));
11815 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11816 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11817 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11818 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
11819
11820 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11821 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11822 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11823 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11824 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11825 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11826 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11827 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11828 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11829 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11830 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11831 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11832
11833 hmR0DumpRegs(pVCpu);
11834#else
11835 NOREF(pVmxTransient);
11836#endif
11837
11838 return VERR_VMX_INVALID_GUEST_STATE;
11839}
11840
11841
11842/**
11843 * VM-exit handler for VM-entry failure due to an MSR-load
11844 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11845 */
11846HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11847{
11848 AssertMsgFailed(("Unexpected MSR-load exit\n"));
11849 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11850}
11851
11852
11853/**
11854 * VM-exit handler for VM-entry failure due to a machine-check event
11855 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11856 */
11857HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11858{
11859 AssertMsgFailed(("Unexpected machine-check event exit\n"));
11860 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11861}
11862
11863
11864/**
11865 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11866 * theory.
11867 */
11868HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11869{
11870 RT_NOREF2(pVCpu, pVmxTransient);
11871 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
11872 return VERR_VMX_UNDEFINED_EXIT_CODE;
11873}
11874
11875
11876/**
11877 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11878 * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11879 * Conditional VM-exit.
11880 */
11881HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11882{
11883 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11884
11885 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
11886 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11887 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
11888 return VERR_EM_INTERPRETER;
11889 AssertMsgFailed(("Unexpected XDTR access\n"));
11890 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11891}
11892
11893
11894/**
11895 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11896 */
11897HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11898{
11899 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11900
11901 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
11902 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
11903 return VERR_EM_INTERPRETER;
11904 AssertMsgFailed(("Unexpected RDRAND exit\n"));
11905 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11906}
11907
11908
11909/**
11910 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11911 */
11912HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11913{
11914 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11915
11916 /** @todo Optimize this: We currently drag in in the whole MSR state
11917 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11918 * MSRs required. That would require changes to IEM and possibly CPUM too.
11919 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11920 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
11921 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11922 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11923 switch (idMsr)
11924 {
11925 /* The FS and GS base MSRs are not part of the above all-MSRs mask. */
11926 case MSR_K8_FS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_FS); break;
11927 case MSR_K8_GS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_GS); break;
11928 }
11929 AssertRCReturn(rc, rc);
11930
11931 Log4Func(("ecx=%#RX32\n", idMsr));
11932
11933#ifdef VBOX_STRICT
11934 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
11935 {
11936 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr)
11937 && idMsr != MSR_K6_EFER)
11938 {
11939 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
11940 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11941 }
11942 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
11943 {
11944 VMXMSREXITREAD enmRead;
11945 VMXMSREXITWRITE enmWrite;
11946 int rc2 = HMVmxGetMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
11947 AssertRCReturn(rc2, rc2);
11948 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
11949 {
11950 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
11951 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11952 }
11953 }
11954 }
11955#endif
11956
11957 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
11958 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
11959 if (rcStrict == VINF_SUCCESS)
11960 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11961 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11962 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11963 {
11964 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11965 rcStrict = VINF_SUCCESS;
11966 }
11967 else
11968 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11969
11970 return rcStrict;
11971}
11972
11973
11974/**
11975 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
11976 */
11977HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11978{
11979 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11980
11981 /** @todo Optimize this: We currently drag in in the whole MSR state
11982 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11983 * MSRs required. That would require changes to IEM and possibly CPUM too.
11984 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11985 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
11986 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11987 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK
11988 | CPUMCTX_EXTRN_ALL_MSRS);
11989 switch (idMsr)
11990 {
11991 /*
11992 * The FS and GS base MSRs are not part of the above all-MSRs mask.
11993 *
11994 * Although we don't need to fetch the base as it will be overwritten shortly, while
11995 * loading guest-state we would also load the entire segment register including limit
11996 * and attributes and thus we need to load them here.
11997 */
11998 case MSR_K8_FS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_FS); break;
11999 case MSR_K8_GS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_GS); break;
12000 }
12001 AssertRCReturn(rc, rc);
12002
12003 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
12004
12005 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
12006 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12007
12008 if (rcStrict == VINF_SUCCESS)
12009 {
12010 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12011
12012 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12013 if ( idMsr == MSR_IA32_APICBASE
12014 || ( idMsr >= MSR_IA32_X2APIC_START
12015 && idMsr <= MSR_IA32_X2APIC_END))
12016 {
12017 /*
12018 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12019 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before IEM changes it.
12020 */
12021 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
12022 }
12023 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12024 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12025 else if (idMsr == MSR_K6_EFER)
12026 {
12027 /*
12028 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12029 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12030 * the other bits as well, SCE and NXE. See @bugref{7368}.
12031 */
12032 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS
12033 | HM_CHANGED_VMX_EXIT_CTLS);
12034 }
12035
12036 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12037 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
12038 {
12039 switch (idMsr)
12040 {
12041 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12042 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12043 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12044 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
12045 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
12046 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
12047 default:
12048 {
12049 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12050 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12051 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12052 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
12053 break;
12054 }
12055 }
12056 }
12057#ifdef VBOX_STRICT
12058 else
12059 {
12060 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12061 switch (idMsr)
12062 {
12063 case MSR_IA32_SYSENTER_CS:
12064 case MSR_IA32_SYSENTER_EIP:
12065 case MSR_IA32_SYSENTER_ESP:
12066 case MSR_K8_FS_BASE:
12067 case MSR_K8_GS_BASE:
12068 {
12069 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
12070 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12071 }
12072
12073 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12074 default:
12075 {
12076 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12077 {
12078 /* EFER writes are always intercepted, see hmR0VmxExportGuestMsrs(). */
12079 if (idMsr != MSR_K6_EFER)
12080 {
12081 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12082 idMsr));
12083 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12084 }
12085 }
12086
12087 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12088 {
12089 VMXMSREXITREAD enmRead;
12090 VMXMSREXITWRITE enmWrite;
12091 int rc2 = HMVmxGetMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
12092 AssertRCReturn(rc2, rc2);
12093 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12094 {
12095 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
12096 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12097 }
12098 }
12099 break;
12100 }
12101 }
12102 }
12103#endif /* VBOX_STRICT */
12104 }
12105 else if (rcStrict == VINF_IEM_RAISED_XCPT)
12106 {
12107 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12108 rcStrict = VINF_SUCCESS;
12109 }
12110 else
12111 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12112
12113 return rcStrict;
12114}
12115
12116
12117/**
12118 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12119 */
12120HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12121{
12122 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12123 /** @todo The guest has likely hit a contended spinlock. We might want to
12124 * poke a schedule different guest VCPU. */
12125 return VINF_EM_RAW_INTERRUPT;
12126}
12127
12128
12129/**
12130 * VM-exit handler for when the TPR value is lowered below the specified
12131 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12132 */
12133HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12134{
12135 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12136 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
12137
12138 /*
12139 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12140 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12141 */
12142 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12143 return VINF_SUCCESS;
12144}
12145
12146
12147/**
12148 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12149 * VM-exit.
12150 *
12151 * @retval VINF_SUCCESS when guest execution can continue.
12152 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12153 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12154 * interpreter.
12155 */
12156HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12157{
12158 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12159 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12160
12161 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12162 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12163 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12164 AssertRCReturn(rc, rc);
12165
12166 VBOXSTRICTRC rcStrict;
12167 PVM pVM = pVCpu->CTX_SUFF(pVM);
12168 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
12169 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
12170 switch (uAccessType)
12171 {
12172 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
12173 {
12174 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
12175 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12176 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
12177 AssertMsg( rcStrict == VINF_SUCCESS
12178 || rcStrict == VINF_IEM_RAISED_XCPT
12179 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12180
12181 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12182 {
12183 case 0:
12184 {
12185 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12186 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12187 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
12188 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
12189
12190 /*
12191 * This is a kludge for handling switches back to real mode when we try to use
12192 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
12193 * deal with special selector values, so we have to return to ring-3 and run
12194 * there till the selector values are V86 mode compatible.
12195 *
12196 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
12197 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
12198 * at the end of this function.
12199 */
12200 if ( rc == VINF_SUCCESS
12201 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
12202 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
12203 && (uOldCr0 & X86_CR0_PE)
12204 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
12205 {
12206 /** @todo check selectors rather than returning all the time. */
12207 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
12208 rcStrict = VINF_EM_RESCHEDULE_REM;
12209 }
12210 break;
12211 }
12212
12213 case 2:
12214 {
12215 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
12216 /* Nothing to do here, CR2 it's not part of the VMCS. */
12217 break;
12218 }
12219
12220 case 3:
12221 {
12222 Assert( !pVM->hm.s.fNestedPaging
12223 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12224 || pVCpu->hm.s.fUsingDebugLoop);
12225 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
12226 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12227 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
12228 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
12229 break;
12230 }
12231
12232 case 4:
12233 {
12234 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
12235 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12236 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
12237 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
12238 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12239 break;
12240 }
12241
12242 case 8:
12243 {
12244 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
12245 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12246 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12247 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
12248 break;
12249 }
12250 default:
12251 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
12252 break;
12253 }
12254 break;
12255 }
12256
12257 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
12258 {
12259 Assert( !pVM->hm.s.fNestedPaging
12260 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12261 || pVCpu->hm.s.fUsingDebugLoop
12262 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
12263 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12264 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
12265 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12266
12267 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
12268 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
12269 AssertMsg( rcStrict == VINF_SUCCESS
12270 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12271#ifdef VBOX_WITH_STATISTICS
12272 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12273 {
12274 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
12275 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
12276 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
12277 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
12278 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
12279 }
12280#endif
12281 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12282 VBOXSTRICTRC_VAL(rcStrict)));
12283 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
12284 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
12285 else
12286 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12287 break;
12288 }
12289
12290 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12291 {
12292 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12293 AssertMsg( rcStrict == VINF_SUCCESS
12294 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12295
12296 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12297 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12298 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12299 break;
12300 }
12301
12302 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12303 {
12304 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
12305 rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
12306 AssertRCReturn(rc, rc);
12307 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
12308 pVmxTransient->uGuestLinearAddr);
12309 AssertMsg( rcStrict == VINF_SUCCESS
12310 || rcStrict == VINF_IEM_RAISED_XCPT
12311 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12312
12313 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12314 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12315 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12316 break;
12317 }
12318
12319 default:
12320 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12321 VERR_VMX_UNEXPECTED_EXCEPTION);
12322 }
12323
12324 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
12325 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
12326 if (rcStrict == VINF_IEM_RAISED_XCPT)
12327 {
12328 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12329 rcStrict = VINF_SUCCESS;
12330 }
12331
12332 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12333 NOREF(pVM);
12334 return rcStrict;
12335}
12336
12337
12338/**
12339 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12340 * VM-exit.
12341 */
12342HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12343{
12344 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12345 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12346
12347 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12348 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12349 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12350 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER);
12351 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12352 AssertRCReturn(rc, rc);
12353
12354 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12355 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
12356 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
12357 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
12358 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
12359 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
12360 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12361 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12362
12363 /*
12364 * Update exit history to see if this exit can be optimized.
12365 */
12366 VBOXSTRICTRC rcStrict;
12367 PCEMEXITREC pExitRec = NULL;
12368 if ( !fGstStepping
12369 && !fDbgStepping)
12370 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12371 !fIOString
12372 ? !fIOWrite
12373 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
12374 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
12375 : !fIOWrite
12376 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
12377 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
12378 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12379 if (!pExitRec)
12380 {
12381 /* I/O operation lookup arrays. */
12382 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12383 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
12384 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12385 uint32_t const cbInstr = pVmxTransient->cbInstr;
12386 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12387 PVM pVM = pVCpu->CTX_SUFF(pVM);
12388 if (fIOString)
12389 {
12390 /*
12391 * INS/OUTS - I/O String instruction.
12392 *
12393 * Use instruction-information if available, otherwise fall back on
12394 * interpreting the instruction.
12395 */
12396 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12397 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
12398 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
12399 if (fInsOutsInfo)
12400 {
12401 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12402 AssertRCReturn(rc2, rc2);
12403 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12404 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12405 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12406 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
12407 if (fIOWrite)
12408 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12409 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12410 else
12411 {
12412 /*
12413 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12414 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12415 * See Intel Instruction spec. for "INS".
12416 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12417 */
12418 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12419 }
12420 }
12421 else
12422 rcStrict = IEMExecOne(pVCpu);
12423
12424 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12425 fUpdateRipAlready = true;
12426 }
12427 else
12428 {
12429 /*
12430 * IN/OUT - I/O instruction.
12431 */
12432 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12433 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12434 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
12435 if (fIOWrite)
12436 {
12437 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
12438 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12439 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12440 && !pCtx->eflags.Bits.u1TF)
12441 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
12442 }
12443 else
12444 {
12445 uint32_t u32Result = 0;
12446 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12447 if (IOM_SUCCESS(rcStrict))
12448 {
12449 /* Save result of I/O IN instr. in AL/AX/EAX. */
12450 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12451 }
12452 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12453 && !pCtx->eflags.Bits.u1TF)
12454 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
12455 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12456 }
12457 }
12458
12459 if (IOM_SUCCESS(rcStrict))
12460 {
12461 if (!fUpdateRipAlready)
12462 {
12463 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
12464 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12465 }
12466
12467 /*
12468 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
12469 * while booting Fedora 17 64-bit guest.
12470 *
12471 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12472 */
12473 if (fIOString)
12474 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
12475
12476 /*
12477 * If any I/O breakpoints are armed, we need to check if one triggered
12478 * and take appropriate action.
12479 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12480 */
12481 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
12482 AssertRCReturn(rc, rc);
12483
12484 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12485 * execution engines about whether hyper BPs and such are pending. */
12486 uint32_t const uDr7 = pCtx->dr[7];
12487 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12488 && X86_DR7_ANY_RW_IO(uDr7)
12489 && (pCtx->cr4 & X86_CR4_DE))
12490 || DBGFBpIsHwIoArmed(pVM)))
12491 {
12492 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12493
12494 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12495 VMMRZCallRing3Disable(pVCpu);
12496 HM_DISABLE_PREEMPT(pVCpu);
12497
12498 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12499
12500 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
12501 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12502 {
12503 /* Raise #DB. */
12504 if (fIsGuestDbgActive)
12505 ASMSetDR6(pCtx->dr[6]);
12506 if (pCtx->dr[7] != uDr7)
12507 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
12508
12509 hmR0VmxSetPendingXcptDB(pVCpu);
12510 }
12511 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12512 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12513 else if ( rcStrict2 != VINF_SUCCESS
12514 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12515 rcStrict = rcStrict2;
12516 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12517
12518 HM_RESTORE_PREEMPT();
12519 VMMRZCallRing3Enable(pVCpu);
12520 }
12521 }
12522
12523#ifdef VBOX_STRICT
12524 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12525 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
12526 Assert(!fIOWrite);
12527 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12528 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
12529 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
12530 Assert(fIOWrite);
12531 else
12532 {
12533# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12534 * statuses, that the VMM device and some others may return. See
12535 * IOM_SUCCESS() for guidance. */
12536 AssertMsg( RT_FAILURE(rcStrict)
12537 || rcStrict == VINF_SUCCESS
12538 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12539 || rcStrict == VINF_EM_DBG_BREAKPOINT
12540 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12541 || rcStrict == VINF_EM_RAW_TO_R3
12542 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12543# endif
12544 }
12545#endif
12546 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12547 }
12548 else
12549 {
12550 /*
12551 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12552 */
12553 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
12554 AssertRCReturn(rc2, rc2);
12555 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
12556 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
12557 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
12558 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12559 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
12560 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
12561
12562 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12563 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12564
12565 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12566 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12567 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12568 }
12569 return rcStrict;
12570}
12571
12572
12573/**
12574 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12575 * VM-exit.
12576 */
12577HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12578{
12579 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12580
12581 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12582 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12583 AssertRCReturn(rc, rc);
12584 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
12585 {
12586 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12587 AssertRCReturn(rc, rc);
12588 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12589 {
12590 uint32_t uErrCode;
12591 RTGCUINTPTR GCPtrFaultAddress;
12592 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12593 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12594 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
12595 if (fErrorCodeValid)
12596 {
12597 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12598 AssertRCReturn(rc, rc);
12599 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
12600 }
12601 else
12602 uErrCode = 0;
12603
12604 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12605 && uVector == X86_XCPT_PF)
12606 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
12607 else
12608 GCPtrFaultAddress = 0;
12609
12610 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12611 AssertRCReturn(rc, rc);
12612
12613 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12614 pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
12615
12616 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
12617 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12618 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12619 }
12620 }
12621
12622 /* Fall back to the interpreter to emulate the task-switch. */
12623 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12624 return VERR_EM_INTERPRETER;
12625}
12626
12627
12628/**
12629 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12630 */
12631HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12632{
12633 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12634 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
12635 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
12636 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12637 AssertRCReturn(rc, rc);
12638 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12639 return VINF_EM_DBG_STEPPED;
12640}
12641
12642
12643/**
12644 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12645 */
12646HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12647{
12648 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12649
12650 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12651
12652 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12653 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12654 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12655 {
12656 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12657 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12658 {
12659 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12660 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12661 }
12662 }
12663 else
12664 {
12665 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12666 rcStrict1 = VINF_SUCCESS;
12667 return rcStrict1;
12668 }
12669
12670 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
12671 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12672 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12673 AssertRCReturn(rc, rc);
12674
12675 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12676 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
12677 VBOXSTRICTRC rcStrict2;
12678 switch (uAccessType)
12679 {
12680 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12681 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12682 {
12683 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
12684 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
12685 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12686
12687 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12688 GCPhys &= PAGE_BASE_GC_MASK;
12689 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
12690 PVM pVM = pVCpu->CTX_SUFF(pVM);
12691 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12692 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
12693
12694 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12695 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12696 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12697 CPUMCTX2CORE(pCtx), GCPhys);
12698 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12699 if ( rcStrict2 == VINF_SUCCESS
12700 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12701 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12702 {
12703 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12704 | HM_CHANGED_GUEST_APIC_TPR);
12705 rcStrict2 = VINF_SUCCESS;
12706 }
12707 break;
12708 }
12709
12710 default:
12711 Log4Func(("uAccessType=%#x\n", uAccessType));
12712 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12713 break;
12714 }
12715
12716 if (rcStrict2 != VINF_SUCCESS)
12717 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12718 return rcStrict2;
12719}
12720
12721
12722/**
12723 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12724 * VM-exit.
12725 */
12726HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12727{
12728 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12729
12730 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12731 if (pVmxTransient->fWasGuestDebugStateActive)
12732 {
12733 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
12734 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12735 }
12736
12737 if ( !pVCpu->hm.s.fSingleInstruction
12738 && !pVmxTransient->fWasHyperDebugStateActive)
12739 {
12740 Assert(!DBGFIsStepping(pVCpu));
12741 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12742
12743 /* Don't intercept MOV DRx any more. */
12744 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
12745 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12746 AssertRCReturn(rc, rc);
12747
12748 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12749 VMMRZCallRing3Disable(pVCpu);
12750 HM_DISABLE_PREEMPT(pVCpu);
12751
12752 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12753 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12754 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12755
12756 HM_RESTORE_PREEMPT();
12757 VMMRZCallRing3Enable(pVCpu);
12758
12759#ifdef VBOX_WITH_STATISTICS
12760 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12761 AssertRCReturn(rc, rc);
12762 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12763 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12764 else
12765 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12766#endif
12767 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12768 return VINF_SUCCESS;
12769 }
12770
12771 /*
12772 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12773 * Update the segment registers and DR7 from the CPU.
12774 */
12775 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12776 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12777 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
12778 AssertRCReturn(rc, rc);
12779 Log4Func(("CS:RIP=%04x:%08RX64\n", pCtx->cs.Sel, pCtx->rip));
12780
12781 PVM pVM = pVCpu->CTX_SUFF(pVM);
12782 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12783 {
12784 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12785 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
12786 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
12787 if (RT_SUCCESS(rc))
12788 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12789 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12790 }
12791 else
12792 {
12793 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12794 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
12795 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
12796 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12797 }
12798
12799 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12800 if (RT_SUCCESS(rc))
12801 {
12802 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12803 AssertRCReturn(rc2, rc2);
12804 return VINF_SUCCESS;
12805 }
12806 return rc;
12807}
12808
12809
12810/**
12811 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12812 * Conditional VM-exit.
12813 */
12814HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12815{
12816 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12817 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12818
12819 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12820 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12821 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12822 {
12823 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12824 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12825 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12826 {
12827 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12828 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12829 }
12830 }
12831 else
12832 {
12833 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12834 rcStrict1 = VINF_SUCCESS;
12835 return rcStrict1;
12836 }
12837
12838 /*
12839 * Get sufficent state and update the exit history entry.
12840 */
12841 RTGCPHYS GCPhys;
12842 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12843 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12844 AssertRCReturn(rc, rc);
12845
12846 VBOXSTRICTRC rcStrict;
12847 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12848 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
12849 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12850 if (!pExitRec)
12851 {
12852 /*
12853 * If we succeed, resume guest execution.
12854 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12855 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12856 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12857 * weird case. See @bugref{6043}.
12858 */
12859 PVM pVM = pVCpu->CTX_SUFF(pVM);
12860 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12861 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
12862 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
12863 if ( rcStrict == VINF_SUCCESS
12864 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
12865 || rcStrict == VERR_PAGE_NOT_PRESENT)
12866 {
12867 /* Successfully handled MMIO operation. */
12868 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12869 | HM_CHANGED_GUEST_APIC_TPR);
12870 rcStrict = VINF_SUCCESS;
12871 }
12872 }
12873 else
12874 {
12875 /*
12876 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12877 */
12878 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12879 AssertRCReturn(rc2, rc2);
12880
12881 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
12882 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
12883
12884 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12885 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12886
12887 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12888 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12889 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12890 }
12891 return VBOXSTRICTRC_TODO(rcStrict);
12892}
12893
12894
12895/**
12896 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12897 * VM-exit.
12898 */
12899HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12900{
12901 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12902 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12903
12904 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12905 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12906 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12907 {
12908 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12909 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12910 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12911 }
12912 else
12913 {
12914 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12915 rcStrict1 = VINF_SUCCESS;
12916 return rcStrict1;
12917 }
12918
12919 RTGCPHYS GCPhys;
12920 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12921 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12922 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12923 AssertRCReturn(rc, rc);
12924
12925 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12926 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
12927
12928 RTGCUINT uErrorCode = 0;
12929 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
12930 uErrorCode |= X86_TRAP_PF_ID;
12931 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
12932 uErrorCode |= X86_TRAP_PF_RW;
12933 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
12934 uErrorCode |= X86_TRAP_PF_P;
12935
12936 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12937
12938
12939 /* Handle the pagefault trap for the nested shadow table. */
12940 PVM pVM = pVCpu->CTX_SUFF(pVM);
12941 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12942
12943 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
12944 pCtx->cs.Sel, pCtx->rip));
12945
12946 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
12947 TRPMResetTrap(pVCpu);
12948
12949 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12950 if ( rcStrict2 == VINF_SUCCESS
12951 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12952 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12953 {
12954 /* Successfully synced our nested page tables. */
12955 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12956 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
12957 return VINF_SUCCESS;
12958 }
12959
12960 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12961 return rcStrict2;
12962}
12963
12964/** @} */
12965
12966/** @name VM-exit exception handlers.
12967 * @{
12968 */
12969/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12970/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12971/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12972
12973/**
12974 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
12975 */
12976static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12977{
12978 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12979 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
12980
12981 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
12982 AssertRCReturn(rc, rc);
12983
12984 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
12985 {
12986 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
12987 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
12988
12989 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
12990 * provides VM-exit instruction length. If this causes problem later,
12991 * disassemble the instruction like it's done on AMD-V. */
12992 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12993 AssertRCReturn(rc2, rc2);
12994 return rc;
12995 }
12996
12997 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
12998 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
12999 return rc;
13000}
13001
13002
13003/**
13004 * VM-exit exception handler for \#BP (Breakpoint exception).
13005 */
13006static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13007{
13008 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13009 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13010
13011 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13012 AssertRCReturn(rc, rc);
13013
13014 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13015 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13016 if (rc == VINF_EM_RAW_GUEST_TRAP)
13017 {
13018 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13019 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13020 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13021 AssertRCReturn(rc, rc);
13022
13023 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13024 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13025 }
13026
13027 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13028 return rc;
13029}
13030
13031
13032/**
13033 * VM-exit exception handler for \#AC (alignment check exception).
13034 */
13035static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13036{
13037 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13038
13039 /*
13040 * Re-inject it. We'll detect any nesting before getting here.
13041 */
13042 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13043 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13044 AssertRCReturn(rc, rc);
13045 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13046
13047 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13048 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13049 return VINF_SUCCESS;
13050}
13051
13052
13053/**
13054 * VM-exit exception handler for \#DB (Debug exception).
13055 */
13056static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13057{
13058 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13059 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13060
13061 /*
13062 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13063 * for processing.
13064 */
13065 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13066
13067 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13068 uint64_t uDR6 = X86_DR6_INIT_VAL;
13069 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13070
13071 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13072 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13073 Log6Func(("rc=%Rrc\n", rc));
13074 if (rc == VINF_EM_RAW_GUEST_TRAP)
13075 {
13076 /*
13077 * The exception was for the guest. Update DR6, DR7.GD and
13078 * IA32_DEBUGCTL.LBR before forwarding it.
13079 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13080 */
13081 VMMRZCallRing3Disable(pVCpu);
13082 HM_DISABLE_PREEMPT(pVCpu);
13083
13084 pCtx->dr[6] &= ~X86_DR6_B_MASK;
13085 pCtx->dr[6] |= uDR6;
13086 if (CPUMIsGuestDebugStateActive(pVCpu))
13087 ASMSetDR6(pCtx->dr[6]);
13088
13089 HM_RESTORE_PREEMPT();
13090 VMMRZCallRing3Enable(pVCpu);
13091
13092 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
13093 AssertRCReturn(rc, rc);
13094
13095 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13096 pCtx->dr[7] &= ~X86_DR7_GD;
13097
13098 /* Paranoia. */
13099 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13100 pCtx->dr[7] |= X86_DR7_RA1_MASK;
13101
13102 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
13103 AssertRCReturn(rc, rc);
13104
13105 /*
13106 * Raise #DB in the guest.
13107 *
13108 * It is important to reflect exactly what the VM-exit gave us (preserving the
13109 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
13110 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
13111 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
13112 *
13113 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
13114 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
13115 */
13116 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13117 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13118 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13119 AssertRCReturn(rc, rc);
13120 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13121 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13122 return VINF_SUCCESS;
13123 }
13124
13125 /*
13126 * Not a guest trap, must be a hypervisor related debug event then.
13127 * Update DR6 in case someone is interested in it.
13128 */
13129 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13130 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13131 CPUMSetHyperDR6(pVCpu, uDR6);
13132
13133 return rc;
13134}
13135
13136
13137/**
13138 * Hacks its way around the lovely mesa driver's backdoor accesses.
13139 *
13140 * @sa hmR0SvmHandleMesaDrvGp
13141 */
13142static int hmR0VmxHandleMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
13143{
13144 Log(("hmR0VmxHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
13145 RT_NOREF(pCtx);
13146
13147 /* For now we'll just skip the instruction. */
13148 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13149}
13150
13151
13152/**
13153 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
13154 * backdoor logging w/o checking what it is running inside.
13155 *
13156 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
13157 * backdoor port and magic numbers loaded in registers.
13158 *
13159 * @returns true if it is, false if it isn't.
13160 * @sa hmR0SvmIsMesaDrvGp
13161 */
13162DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
13163{
13164 /* 0xed: IN eAX,dx */
13165 uint8_t abInstr[1];
13166 if (pVmxTransient->cbInstr != sizeof(abInstr))
13167 return false;
13168
13169 /* Check that it is #GP(0). */
13170 if (pVmxTransient->uExitIntErrorCode != 0)
13171 return false;
13172
13173 /* Check magic and port. */
13174 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
13175 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
13176 if (pCtx->rax != UINT32_C(0x564d5868))
13177 return false;
13178 if (pCtx->dx != UINT32_C(0x5658))
13179 return false;
13180
13181 /* Flat ring-3 CS. */
13182 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
13183 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
13184 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
13185 if (pCtx->cs.Attr.n.u2Dpl != 3)
13186 return false;
13187 if (pCtx->cs.u64Base != 0)
13188 return false;
13189
13190 /* Check opcode. */
13191 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
13192 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
13193 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
13194 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
13195 if (RT_FAILURE(rc))
13196 return false;
13197 if (abInstr[0] != 0xed)
13198 return false;
13199
13200 return true;
13201}
13202
13203
13204/**
13205 * VM-exit exception handler for \#GP (General-protection exception).
13206 *
13207 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13208 */
13209static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13210{
13211 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13212 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13213
13214 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13215 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13216 { /* likely */ }
13217 else
13218 {
13219#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13220 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv);
13221#endif
13222 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13223 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13224 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13225 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13226 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13227 AssertRCReturn(rc, rc);
13228 Log4Func(("Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pCtx->cs.Sel, pCtx->rip,
13229 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
13230
13231 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
13232 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
13233 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13234 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13235 else
13236 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
13237 return rc;
13238 }
13239
13240 Assert(CPUMIsGuestInRealModeEx(pCtx));
13241 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13242
13243 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13244 AssertRCReturn(rc, rc);
13245
13246 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
13247 if (rcStrict == VINF_SUCCESS)
13248 {
13249 if (!CPUMIsGuestInRealModeEx(pCtx))
13250 {
13251 /*
13252 * The guest is no longer in real-mode, check if we can continue executing the
13253 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
13254 */
13255 if (HMVmxCanExecuteGuest(pVCpu, pCtx))
13256 {
13257 Log4Func(("Mode changed but guest still suitable for executing using VT-x\n"));
13258 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
13259 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13260 }
13261 else
13262 {
13263 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
13264 rcStrict = VINF_EM_RESCHEDULE;
13265 }
13266 }
13267 else
13268 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13269 }
13270 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13271 {
13272 rcStrict = VINF_SUCCESS;
13273 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13274 }
13275 return VBOXSTRICTRC_VAL(rcStrict);
13276}
13277
13278
13279/**
13280 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13281 * the exception reported in the VMX transient structure back into the VM.
13282 *
13283 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13284 * up-to-date.
13285 */
13286static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13287{
13288 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13289#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13290 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13291 ("uVector=%#x u32XcptBitmap=%#X32\n",
13292 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13293#endif
13294
13295 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13296 hmR0VmxCheckExitDueToEventDelivery(). */
13297 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13298 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13299 AssertRCReturn(rc, rc);
13300 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13301
13302#ifdef DEBUG_ramshankar
13303 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
13304 uint8_t uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13305 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13306#endif
13307
13308 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13309 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13310 return VINF_SUCCESS;
13311}
13312
13313
13314/**
13315 * VM-exit exception handler for \#PF (Page-fault exception).
13316 */
13317static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13318{
13319 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13320 PVM pVM = pVCpu->CTX_SUFF(pVM);
13321 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13322 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13323 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13324 AssertRCReturn(rc, rc);
13325
13326 if (!pVM->hm.s.fNestedPaging)
13327 { /* likely */ }
13328 else
13329 {
13330#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13331 Assert(pVCpu->hm.s.fUsingDebugLoop);
13332#endif
13333 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13334 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13335 {
13336 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13337 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13338 }
13339 else
13340 {
13341 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13342 hmR0VmxSetPendingXcptDF(pVCpu);
13343 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13344 }
13345 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13346 return rc;
13347 }
13348
13349 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13350 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13351 if (pVmxTransient->fVectoringPF)
13352 {
13353 Assert(pVCpu->hm.s.Event.fPending);
13354 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13355 }
13356
13357 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13358 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13359 AssertRCReturn(rc, rc);
13360
13361 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
13362 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
13363
13364 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13365 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13366
13367 Log4Func(("#PF: rc=%Rrc\n", rc));
13368 if (rc == VINF_SUCCESS)
13369 {
13370 /*
13371 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13372 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13373 */
13374 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13375 TRPMResetTrap(pVCpu);
13376 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13377 return rc;
13378 }
13379
13380 if (rc == VINF_EM_RAW_GUEST_TRAP)
13381 {
13382 if (!pVmxTransient->fVectoringDoublePF)
13383 {
13384 /* It's a guest page fault and needs to be reflected to the guest. */
13385 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13386 TRPMResetTrap(pVCpu);
13387 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13388 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13389 uGstErrorCode, pVmxTransient->uExitQual);
13390 }
13391 else
13392 {
13393 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13394 TRPMResetTrap(pVCpu);
13395 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13396 hmR0VmxSetPendingXcptDF(pVCpu);
13397 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13398 }
13399
13400 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13401 return VINF_SUCCESS;
13402 }
13403
13404 TRPMResetTrap(pVCpu);
13405 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13406 return rc;
13407}
13408
13409/** @} */
13410
13411#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13412/** @name Nested-guest VM-exit handlers.
13413 * @{
13414 */
13415/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13416/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Nested-guest VM-exit handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13417/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13418
13419/**
13420 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
13421 */
13422HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13423{
13424 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13425
13426 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13427 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13428 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13429 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13430 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13431 AssertRCReturn(rc, rc);
13432
13433 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13434
13435 VMXVEXITINFO ExitInfo;
13436 RT_ZERO(ExitInfo);
13437 ExitInfo.uReason = pVmxTransient->uExitReason;
13438 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13439 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13440 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13441 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13442
13443 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
13444 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13445 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13446 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13447 {
13448 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13449 rcStrict = VINF_SUCCESS;
13450 }
13451 return rcStrict;
13452}
13453
13454
13455/**
13456 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
13457 */
13458HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13459{
13460 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13461
13462 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13463 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
13464 AssertRCReturn(rc, rc);
13465
13466 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13467
13468 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMLAUNCH);
13469 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13470 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13471 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
13472 return rcStrict;
13473}
13474
13475
13476/**
13477 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
13478 */
13479HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13480{
13481 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13482
13483 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13484 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13485 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13486 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13487 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13488 AssertRCReturn(rc, rc);
13489
13490 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13491
13492 VMXVEXITINFO ExitInfo;
13493 RT_ZERO(ExitInfo);
13494 ExitInfo.uReason = pVmxTransient->uExitReason;
13495 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13496 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13497 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13498 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13499
13500 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
13501 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13502 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13503 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13504 {
13505 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13506 rcStrict = VINF_SUCCESS;
13507 }
13508 return rcStrict;
13509}
13510
13511
13512/**
13513 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
13514 */
13515HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13516{
13517 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13518
13519 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13520 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13521 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13522 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13523 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13524 AssertRCReturn(rc, rc);
13525
13526 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13527
13528 VMXVEXITINFO ExitInfo;
13529 RT_ZERO(ExitInfo);
13530 ExitInfo.uReason = pVmxTransient->uExitReason;
13531 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13532 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13533 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13534 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
13535
13536 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
13537 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13538 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13539 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13540 {
13541 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13542 rcStrict = VINF_SUCCESS;
13543 }
13544 return rcStrict;
13545}
13546
13547
13548/**
13549 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
13550 */
13551HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13552{
13553 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13554
13555 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13556 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13557 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13558 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13559 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13560 AssertRCReturn(rc, rc);
13561
13562 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13563
13564 VMXVEXITINFO ExitInfo;
13565 RT_ZERO(ExitInfo);
13566 ExitInfo.uReason = pVmxTransient->uExitReason;
13567 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13568 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13569 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13570 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
13571 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
13572
13573 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
13574 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13575 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13576 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13577 {
13578 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13579 rcStrict = VINF_SUCCESS;
13580 }
13581 return rcStrict;
13582}
13583
13584
13585/**
13586 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
13587 */
13588HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13589{
13590 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13591
13592 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13593 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
13594 AssertRCReturn(rc, rc);
13595
13596 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13597
13598 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMRESUME);
13599 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13600 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13601 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
13602 return rcStrict;
13603}
13604
13605
13606/**
13607 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
13608 */
13609HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13610{
13611 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13612
13613 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13614 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13615 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13616 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13617 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13618 AssertRCReturn(rc, rc);
13619
13620 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13621
13622 VMXVEXITINFO ExitInfo;
13623 RT_ZERO(ExitInfo);
13624 ExitInfo.uReason = pVmxTransient->uExitReason;
13625 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13626 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13627 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13628 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
13629 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13630
13631 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
13632 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13633 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13634 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13635 {
13636 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13637 rcStrict = VINF_SUCCESS;
13638 }
13639 return rcStrict;
13640}
13641
13642
13643/**
13644 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
13645 */
13646HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13647{
13648 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13649
13650 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13651 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
13652 AssertRCReturn(rc, rc);
13653
13654 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13655
13656 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
13657 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13658 {
13659 /* VMXOFF changes the internal hwvirt. state but not anything that's visible to the guest other than RIP. */
13660 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
13661 }
13662 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13663 {
13664 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13665 rcStrict = VINF_SUCCESS;
13666 }
13667 return rcStrict;
13668}
13669
13670
13671/**
13672 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
13673 */
13674HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13675{
13676 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13677
13678 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13679 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13680 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13681 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13682 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13683 AssertRCReturn(rc, rc);
13684
13685 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13686
13687 VMXVEXITINFO ExitInfo;
13688 RT_ZERO(ExitInfo);
13689 ExitInfo.uReason = pVmxTransient->uExitReason;
13690 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13691 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13692 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13693 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13694
13695 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
13696 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13697 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13698 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13699 {
13700 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13701 rcStrict = VINF_SUCCESS;
13702 }
13703 return rcStrict;
13704}
13705
13706/** @} */
13707#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13708
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette