VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 76811

Last change on this file since 76811 was 76751, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: Comment nit.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 580.4 KB
Line 
1/* $Id: HMVMXR0.cpp 76751 2019-01-10 08:03:57Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include <VBox/vmm/hmvmxinline.h>
43#include "HMVMXR0.h"
44#include "dtrace/VBoxVMM.h"
45
46#ifdef DEBUG_ramshankar
47# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
48# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/** @name HMVMX_READ_XXX
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82/** @} */
83
84/**
85 * States of the VMCS.
86 *
87 * This does not reflect all possible VMCS states but currently only those
88 * needed for maintaining the VMCS consistently even when thread-context hooks
89 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
90 */
91#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
92#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
93#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
94
95/**
96 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
97 * guest using hardware-assisted VMX.
98 *
99 * This excludes state like GPRs (other than RSP) which are always are
100 * swapped and restored across the world-switch and also registers like EFER,
101 * MSR which cannot be modified by the guest without causing a VM-exit.
102 */
103#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
104 | CPUMCTX_EXTRN_RFLAGS \
105 | CPUMCTX_EXTRN_RSP \
106 | CPUMCTX_EXTRN_SREG_MASK \
107 | CPUMCTX_EXTRN_TABLE_MASK \
108 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
109 | CPUMCTX_EXTRN_SYSCALL_MSRS \
110 | CPUMCTX_EXTRN_SYSENTER_MSRS \
111 | CPUMCTX_EXTRN_TSC_AUX \
112 | CPUMCTX_EXTRN_OTHER_MSRS \
113 | CPUMCTX_EXTRN_CR0 \
114 | CPUMCTX_EXTRN_CR3 \
115 | CPUMCTX_EXTRN_CR4 \
116 | CPUMCTX_EXTRN_DR7 \
117 | CPUMCTX_EXTRN_HM_VMX_MASK)
118
119/**
120 * Exception bitmap mask for real-mode guests (real-on-v86).
121 *
122 * We need to intercept all exceptions manually except:
123 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
124 * due to bugs in Intel CPUs.
125 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
126 * support.
127 */
128#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
129 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
130 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
131 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
132 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
133 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
134 | RT_BIT(X86_XCPT_XF))
135
136/** Maximum VM-instruction error number. */
137#define HMVMX_INSTR_ERROR_MAX 28
138
139/** Profiling macro. */
140#ifdef HM_PROFILE_EXIT_DISPATCH
141# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
142# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
143#else
144# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
145# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
146#endif
147
148/** Assert that preemption is disabled or covered by thread-context hooks. */
149#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
150 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
151
152/** Assert that we haven't migrated CPUs when thread-context hooks are not
153 * used. */
154#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
155 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
156 ("Illegal migration! Entered on CPU %u Current %u\n", \
157 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
158
159/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
160 * context. */
161#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
162 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
163 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
164
165/** Macro for importing guest state from the VMCS back into CPUMCTX (intended to be
166 * used only from VM-exit handlers). */
167#define HMVMX_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) (hmR0VmxImportGuestState((a_pVCpu), (a_fWhat)))
168
169/** Helper macro for VM-exit handlers called unexpectedly. */
170#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
171 do { \
172 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
173 return VERR_VMX_UNEXPECTED_EXIT; \
174 } while (0)
175
176/** Macro for importing segment registers to the VMCS from the guest-CPU context. */
177#ifdef VMX_USE_CACHED_VMCS_ACCESSES
178# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
179 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
180 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
181#else
182# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
183 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
184 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
185#endif
186
187/** Macro for exporting segment registers to the VMCS from the guest-CPU context. */
188#define HMVMX_EXPORT_SREG(Sel, a_pCtxSelReg) \
189 hmR0VmxExportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
190 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
191
192#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
193/** Macro that does the necessary privilege checks and intercepted VM-exits for
194 * guests that attempted to execute a VMX instruction. */
195# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
196 do \
197 { \
198 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
199 if (rcStrictTmp == VINF_SUCCESS) \
200 { /* likely */ } \
201 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
202 { \
203 Assert((a_pVCpu)->hm.s.Event.fPending); \
204 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
205 return VINF_SUCCESS; \
206 } \
207 else \
208 { \
209 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
210 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
211 } \
212 } while (0)
213
214/** Macro that decodes a memory operand for an instruction VM-exit. */
215# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
216 do \
217 { \
218 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
219 (a_pGCPtrEffAddr)); \
220 if (rcStrictTmp == VINF_SUCCESS) \
221 { /* likely */ } \
222 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
223 { \
224 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
225 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
226 NOREF(uXcptTmp); \
227 return VINF_SUCCESS; \
228 } \
229 else \
230 { \
231 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
232 return rcStrictTmp; \
233 } \
234 } while (0)
235
236#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
237
238
239/*********************************************************************************************************************************
240* Structures and Typedefs *
241*********************************************************************************************************************************/
242/**
243 * VMX transient state.
244 *
245 * A state structure for holding miscellaneous information across
246 * VMX non-root operation and restored after the transition.
247 */
248typedef struct VMXTRANSIENT
249{
250 /** The host's rflags/eflags. */
251 RTCCUINTREG fEFlags;
252#if HC_ARCH_BITS == 32
253 uint32_t u32Alignment0;
254#endif
255 /** The guest's TPR value used for TPR shadowing. */
256 uint8_t u8GuestTpr;
257 /** Alignment. */
258 uint8_t abAlignment0[7];
259
260 /** The basic VM-exit reason. */
261 uint16_t uExitReason;
262 /** Alignment. */
263 uint16_t u16Alignment0;
264 /** The VM-exit interruption error code. */
265 uint32_t uExitIntErrorCode;
266 /** The VM-exit exit code qualification. */
267 uint64_t uExitQual;
268 /** The Guest-linear address. */
269 uint64_t uGuestLinearAddr;
270
271 /** The VM-exit interruption-information field. */
272 uint32_t uExitIntInfo;
273 /** The VM-exit instruction-length field. */
274 uint32_t cbInstr;
275 /** The VM-exit instruction-information field. */
276 VMXEXITINSTRINFO ExitInstrInfo;
277 /** Whether the VM-entry failed or not. */
278 bool fVMEntryFailed;
279 /** Alignment. */
280 uint8_t abAlignment1[3];
281
282 /** The VM-entry interruption-information field. */
283 uint32_t uEntryIntInfo;
284 /** The VM-entry exception error code field. */
285 uint32_t uEntryXcptErrorCode;
286 /** The VM-entry instruction length field. */
287 uint32_t cbEntryInstr;
288
289 /** IDT-vectoring information field. */
290 uint32_t uIdtVectoringInfo;
291 /** IDT-vectoring error code. */
292 uint32_t uIdtVectoringErrorCode;
293
294 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
295 uint32_t fVmcsFieldsRead;
296
297 /** Whether the guest debug state was active at the time of VM-exit. */
298 bool fWasGuestDebugStateActive;
299 /** Whether the hyper debug state was active at the time of VM-exit. */
300 bool fWasHyperDebugStateActive;
301 /** Whether TSC-offsetting should be setup before VM-entry. */
302 bool fUpdateTscOffsettingAndPreemptTimer;
303 /** Whether the VM-exit was caused by a page-fault during delivery of a
304 * contributory exception or a page-fault. */
305 bool fVectoringDoublePF;
306 /** Whether the VM-exit was caused by a page-fault during delivery of an
307 * external interrupt or NMI. */
308 bool fVectoringPF;
309} VMXTRANSIENT;
310AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
311AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
312AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
313AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
314AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
315/** Pointer to VMX transient state. */
316typedef VMXTRANSIENT *PVMXTRANSIENT;
317
318/**
319 * Memory operand read or write access.
320 */
321typedef enum VMXMEMACCESS
322{
323 VMXMEMACCESS_READ = 0,
324 VMXMEMACCESS_WRITE = 1
325} VMXMEMACCESS;
326
327/**
328 * VMX VM-exit handler.
329 *
330 * @returns Strict VBox status code (i.e. informational status codes too).
331 * @param pVCpu The cross context virtual CPU structure.
332 * @param pVmxTransient Pointer to the VMX-transient structure.
333 */
334#ifndef HMVMX_USE_FUNCTION_TABLE
335typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
336#else
337typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
338/** Pointer to VM-exit handler. */
339typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
340#endif
341
342/**
343 * VMX VM-exit handler, non-strict status code.
344 *
345 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
346 *
347 * @returns VBox status code, no informational status code returned.
348 * @param pVCpu The cross context virtual CPU structure.
349 * @param pVmxTransient Pointer to the VMX-transient structure.
350 *
351 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
352 * use of that status code will be replaced with VINF_EM_SOMETHING
353 * later when switching over to IEM.
354 */
355#ifndef HMVMX_USE_FUNCTION_TABLE
356typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
357#else
358typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
359#endif
360
361
362/*********************************************************************************************************************************
363* Internal Functions *
364*********************************************************************************************************************************/
365static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush);
366static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr);
367static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
368static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat);
369static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
370 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState);
371#if HC_ARCH_BITS == 32
372static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
373#endif
374#ifndef HMVMX_USE_FUNCTION_TABLE
375DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
376# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
377# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
378#else
379# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
380# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
381#endif
382
383/** @name VM-exit handlers.
384 * @{
385 */
386static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
387static FNVMXEXITHANDLER hmR0VmxExitExtInt;
388static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
393static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
394static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
395static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
396static FNVMXEXITHANDLER hmR0VmxExitCpuid;
397static FNVMXEXITHANDLER hmR0VmxExitGetsec;
398static FNVMXEXITHANDLER hmR0VmxExitHlt;
399static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
400static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
401static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
402static FNVMXEXITHANDLER hmR0VmxExitVmcall;
403#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
404static FNVMXEXITHANDLER hmR0VmxExitVmclear;
405static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
406static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
407static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
408static FNVMXEXITHANDLER hmR0VmxExitVmread;
409static FNVMXEXITHANDLER hmR0VmxExitVmresume;
410static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
411static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
412static FNVMXEXITHANDLER hmR0VmxExitVmxon;
413#endif
414static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
415static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
416static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
417static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
418static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
419static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
420static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
421static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
422static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
423static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
424static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
425static FNVMXEXITHANDLER hmR0VmxExitMwait;
426static FNVMXEXITHANDLER hmR0VmxExitMtf;
427static FNVMXEXITHANDLER hmR0VmxExitMonitor;
428static FNVMXEXITHANDLER hmR0VmxExitPause;
429static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
430static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
431static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
432static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
433static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
434static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
435static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
436static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
437static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
438static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
439static FNVMXEXITHANDLER hmR0VmxExitRdrand;
440static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
441/** @} */
442
443static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
444static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
445static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
446static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
447static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
448static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
449static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
450static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu);
451
452
453/*********************************************************************************************************************************
454* Global Variables *
455*********************************************************************************************************************************/
456#ifdef HMVMX_USE_FUNCTION_TABLE
457
458/**
459 * VMX_EXIT dispatch table.
460 */
461static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
462{
463 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
464 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
465 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
466 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
467 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
468 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
469 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
470 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
471 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
472 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
473 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
474 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
475 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
476 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
477 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
478 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
479 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
480 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
481 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
482#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
483 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
484 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
485 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
486 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
487 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
488 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
489 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
490 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
491 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
492#else
493 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
494 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
495 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
496 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
497 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
498 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
499 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
500 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
501 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
502#endif
503 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
504 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
505 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
506 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
507 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
508 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
509 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
510 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
511 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
512 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
513 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
514 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
515 /* 40 UNDEFINED */ hmR0VmxExitPause,
516 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
517 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
518 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
519 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
520 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
521 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
522 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
523 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
524 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
525 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
526 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
527 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
528 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
529 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
530 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
531 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
532 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
533 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
534 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
535 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
536 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
537 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
538 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
539 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
540};
541#endif /* HMVMX_USE_FUNCTION_TABLE */
542
543#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
544static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
545{
546 /* 0 */ "(Not Used)",
547 /* 1 */ "VMCALL executed in VMX root operation.",
548 /* 2 */ "VMCLEAR with invalid physical address.",
549 /* 3 */ "VMCLEAR with VMXON pointer.",
550 /* 4 */ "VMLAUNCH with non-clear VMCS.",
551 /* 5 */ "VMRESUME with non-launched VMCS.",
552 /* 6 */ "VMRESUME after VMXOFF",
553 /* 7 */ "VM-entry with invalid control fields.",
554 /* 8 */ "VM-entry with invalid host state fields.",
555 /* 9 */ "VMPTRLD with invalid physical address.",
556 /* 10 */ "VMPTRLD with VMXON pointer.",
557 /* 11 */ "VMPTRLD with incorrect revision identifier.",
558 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
559 /* 13 */ "VMWRITE to read-only VMCS component.",
560 /* 14 */ "(Not Used)",
561 /* 15 */ "VMXON executed in VMX root operation.",
562 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
563 /* 17 */ "VM-entry with non-launched executing VMCS.",
564 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
565 /* 19 */ "VMCALL with non-clear VMCS.",
566 /* 20 */ "VMCALL with invalid VM-exit control fields.",
567 /* 21 */ "(Not Used)",
568 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
569 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
570 /* 24 */ "VMCALL with invalid SMM-monitor features.",
571 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
572 /* 26 */ "VM-entry with events blocked by MOV SS.",
573 /* 27 */ "(Not Used)",
574 /* 28 */ "Invalid operand to INVEPT/INVVPID."
575};
576#endif /* VBOX_STRICT */
577
578
579/**
580 * Updates the VM's last error record.
581 *
582 * If there was a VMX instruction error, reads the error data from the VMCS and
583 * updates VCPU's last error record as well.
584 *
585 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
586 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
587 * VERR_VMX_INVALID_VMCS_FIELD.
588 * @param rc The error code.
589 */
590static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
591{
592 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
593 || rc == VERR_VMX_UNABLE_TO_START_VM)
594 {
595 AssertPtrReturnVoid(pVCpu);
596 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
597 }
598 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
599}
600
601
602/**
603 * Reads the VM-entry interruption-information field from the VMCS into the VMX
604 * transient structure.
605 *
606 * @returns VBox status code.
607 * @param pVmxTransient Pointer to the VMX transient structure.
608 *
609 * @remarks No-long-jump zone!!!
610 */
611DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
612{
613 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
614 AssertRCReturn(rc, rc);
615 return VINF_SUCCESS;
616}
617
618#ifdef VBOX_STRICT
619/**
620 * Reads the VM-entry exception error code field from the VMCS into
621 * the VMX transient structure.
622 *
623 * @returns VBox status code.
624 * @param pVmxTransient Pointer to the VMX transient structure.
625 *
626 * @remarks No-long-jump zone!!!
627 */
628DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
629{
630 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
631 AssertRCReturn(rc, rc);
632 return VINF_SUCCESS;
633}
634
635
636/**
637 * Reads the VM-entry exception error code field from the VMCS into
638 * the VMX transient structure.
639 *
640 * @returns VBox status code.
641 * @param pVmxTransient Pointer to the VMX transient structure.
642 *
643 * @remarks No-long-jump zone!!!
644 */
645DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
646{
647 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
648 AssertRCReturn(rc, rc);
649 return VINF_SUCCESS;
650}
651#endif /* VBOX_STRICT */
652
653
654/**
655 * Reads the VM-exit interruption-information field from the VMCS into the VMX
656 * transient structure.
657 *
658 * @returns VBox status code.
659 * @param pVmxTransient Pointer to the VMX transient structure.
660 */
661DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
662{
663 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
664 {
665 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
666 AssertRCReturn(rc,rc);
667 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
668 }
669 return VINF_SUCCESS;
670}
671
672
673/**
674 * Reads the VM-exit interruption error code from the VMCS into the VMX
675 * transient structure.
676 *
677 * @returns VBox status code.
678 * @param pVmxTransient Pointer to the VMX transient structure.
679 */
680DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
681{
682 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
683 {
684 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
685 AssertRCReturn(rc, rc);
686 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
687 }
688 return VINF_SUCCESS;
689}
690
691
692/**
693 * Reads the VM-exit instruction length field from the VMCS into the VMX
694 * transient structure.
695 *
696 * @returns VBox status code.
697 * @param pVmxTransient Pointer to the VMX transient structure.
698 */
699DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
700{
701 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
702 {
703 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
704 AssertRCReturn(rc, rc);
705 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
706 }
707 return VINF_SUCCESS;
708}
709
710
711/**
712 * Reads the VM-exit instruction-information field from the VMCS into
713 * the VMX transient structure.
714 *
715 * @returns VBox status code.
716 * @param pVmxTransient Pointer to the VMX transient structure.
717 */
718DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
719{
720 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
721 {
722 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
723 AssertRCReturn(rc, rc);
724 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
725 }
726 return VINF_SUCCESS;
727}
728
729
730/**
731 * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
732 *
733 * @returns VBox status code.
734 * @param pVCpu The cross context virtual CPU structure of the
735 * calling EMT. (Required for the VMCS cache case.)
736 * @param pVmxTransient Pointer to the VMX transient structure.
737 */
738DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
739{
740 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
741 {
742 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
743 AssertRCReturn(rc, rc);
744 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
745 }
746 return VINF_SUCCESS;
747}
748
749
750/**
751 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
752 *
753 * @returns VBox status code.
754 * @param pVCpu The cross context virtual CPU structure of the
755 * calling EMT. (Required for the VMCS cache case.)
756 * @param pVmxTransient Pointer to the VMX transient structure.
757 */
758DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
759{
760 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
761 {
762 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
763 AssertRCReturn(rc, rc);
764 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
765 }
766 return VINF_SUCCESS;
767}
768
769
770/**
771 * Reads the IDT-vectoring information field from the VMCS into the VMX
772 * transient structure.
773 *
774 * @returns VBox status code.
775 * @param pVmxTransient Pointer to the VMX transient structure.
776 *
777 * @remarks No-long-jump zone!!!
778 */
779DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
780{
781 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
782 {
783 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
784 AssertRCReturn(rc, rc);
785 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
786 }
787 return VINF_SUCCESS;
788}
789
790
791/**
792 * Reads the IDT-vectoring error code from the VMCS into the VMX
793 * transient structure.
794 *
795 * @returns VBox status code.
796 * @param pVmxTransient Pointer to the VMX transient structure.
797 */
798DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
799{
800 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
801 {
802 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
803 AssertRCReturn(rc, rc);
804 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
805 }
806 return VINF_SUCCESS;
807}
808
809
810/**
811 * Enters VMX root mode operation on the current CPU.
812 *
813 * @returns VBox status code.
814 * @param pVM The cross context VM structure. Can be
815 * NULL, after a resume.
816 * @param HCPhysCpuPage Physical address of the VMXON region.
817 * @param pvCpuPage Pointer to the VMXON region.
818 */
819static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
820{
821 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
822 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
823 Assert(pvCpuPage);
824 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
825
826 if (pVM)
827 {
828 /* Write the VMCS revision dword to the VMXON region. */
829 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
830 }
831
832 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
833 RTCCUINTREG fEFlags = ASMIntDisableFlags();
834
835 /* Enable the VMX bit in CR4 if necessary. */
836 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
837
838 /* Enter VMX root mode. */
839 int rc = VMXEnable(HCPhysCpuPage);
840 if (RT_FAILURE(rc))
841 {
842 if (!(uOldCr4 & X86_CR4_VMXE))
843 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
844
845 if (pVM)
846 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
847 }
848
849 /* Restore interrupts. */
850 ASMSetFlags(fEFlags);
851 return rc;
852}
853
854
855/**
856 * Exits VMX root mode operation on the current CPU.
857 *
858 * @returns VBox status code.
859 */
860static int hmR0VmxLeaveRootMode(void)
861{
862 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
863
864 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
865 RTCCUINTREG fEFlags = ASMIntDisableFlags();
866
867 /* If we're for some reason not in VMX root mode, then don't leave it. */
868 RTCCUINTREG uHostCR4 = ASMGetCR4();
869
870 int rc;
871 if (uHostCR4 & X86_CR4_VMXE)
872 {
873 /* Exit VMX root mode and clear the VMX bit in CR4. */
874 VMXDisable();
875 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
876 rc = VINF_SUCCESS;
877 }
878 else
879 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
880
881 /* Restore interrupts. */
882 ASMSetFlags(fEFlags);
883 return rc;
884}
885
886
887/**
888 * Allocates and maps one physically contiguous page. The allocated page is
889 * zero'd out. (Used by various VT-x structures).
890 *
891 * @returns IPRT status code.
892 * @param pMemObj Pointer to the ring-0 memory object.
893 * @param ppVirt Where to store the virtual address of the
894 * allocation.
895 * @param pHCPhys Where to store the physical address of the
896 * allocation.
897 */
898static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
899{
900 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
901 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
902 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
903
904 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
905 if (RT_FAILURE(rc))
906 return rc;
907 *ppVirt = RTR0MemObjAddress(*pMemObj);
908 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
909 ASMMemZero32(*ppVirt, PAGE_SIZE);
910 return VINF_SUCCESS;
911}
912
913
914/**
915 * Frees and unmaps an allocated physical page.
916 *
917 * @param pMemObj Pointer to the ring-0 memory object.
918 * @param ppVirt Where to re-initialize the virtual address of
919 * allocation as 0.
920 * @param pHCPhys Where to re-initialize the physical address of the
921 * allocation as 0.
922 */
923static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
924{
925 AssertPtr(pMemObj);
926 AssertPtr(ppVirt);
927 AssertPtr(pHCPhys);
928 if (*pMemObj != NIL_RTR0MEMOBJ)
929 {
930 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
931 AssertRC(rc);
932 *pMemObj = NIL_RTR0MEMOBJ;
933 *ppVirt = 0;
934 *pHCPhys = 0;
935 }
936}
937
938
939/**
940 * Worker function to free VT-x related structures.
941 *
942 * @returns IPRT status code.
943 * @param pVM The cross context VM structure.
944 */
945static void hmR0VmxStructsFree(PVM pVM)
946{
947 for (VMCPUID i = 0; i < pVM->cCpus; i++)
948 {
949 PVMCPU pVCpu = &pVM->aCpus[i];
950 AssertPtr(pVCpu);
951
952 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
953 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
954
955 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
956 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
957
958 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
959 }
960
961 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
962#ifdef VBOX_WITH_CRASHDUMP_MAGIC
963 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
964#endif
965}
966
967
968/**
969 * Worker function to allocate VT-x related VM structures.
970 *
971 * @returns IPRT status code.
972 * @param pVM The cross context VM structure.
973 */
974static int hmR0VmxStructsAlloc(PVM pVM)
975{
976 /*
977 * Initialize members up-front so we can cleanup properly on allocation failure.
978 */
979#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
980 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
981 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
982 pVM->hm.s.vmx.HCPhys##a_Name = 0;
983
984#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
985 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
986 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
987 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
988
989#ifdef VBOX_WITH_CRASHDUMP_MAGIC
990 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
991#endif
992 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
993
994 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
995 for (VMCPUID i = 0; i < pVM->cCpus; i++)
996 {
997 PVMCPU pVCpu = &pVM->aCpus[i];
998 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
999 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
1000 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
1001 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
1002 }
1003#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
1004#undef VMXLOCAL_INIT_VM_MEMOBJ
1005
1006 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
1007 AssertReturnStmt(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE) <= PAGE_SIZE,
1008 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
1009 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
1010
1011 /*
1012 * Allocate all the VT-x structures.
1013 */
1014 int rc = VINF_SUCCESS;
1015#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1016 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1017 if (RT_FAILURE(rc))
1018 goto cleanup;
1019 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
1020 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
1021#endif
1022
1023 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
1024 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
1025 {
1026 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
1027 &pVM->hm.s.vmx.HCPhysApicAccess);
1028 if (RT_FAILURE(rc))
1029 goto cleanup;
1030 }
1031
1032 /*
1033 * Initialize per-VCPU VT-x structures.
1034 */
1035 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1036 {
1037 PVMCPU pVCpu = &pVM->aCpus[i];
1038 AssertPtr(pVCpu);
1039
1040 /* Allocate the VM control structure (VMCS). */
1041 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1042 if (RT_FAILURE(rc))
1043 goto cleanup;
1044
1045 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
1046 if ( PDMHasApic(pVM)
1047 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
1048 {
1049 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1050 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1051 if (RT_FAILURE(rc))
1052 goto cleanup;
1053 }
1054
1055 /*
1056 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1057 * transparent accesses of specific MSRs.
1058 *
1059 * If the condition for enabling MSR bitmaps changes here, don't forget to
1060 * update HMAreMsrBitmapsAvailable().
1061 */
1062 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1063 {
1064 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1065 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1066 if (RT_FAILURE(rc))
1067 goto cleanup;
1068 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1069 }
1070
1071 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1072 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1073 if (RT_FAILURE(rc))
1074 goto cleanup;
1075
1076 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1077 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1078 if (RT_FAILURE(rc))
1079 goto cleanup;
1080 }
1081
1082 return VINF_SUCCESS;
1083
1084cleanup:
1085 hmR0VmxStructsFree(pVM);
1086 return rc;
1087}
1088
1089
1090/**
1091 * Does global VT-x initialization (called during module initialization).
1092 *
1093 * @returns VBox status code.
1094 */
1095VMMR0DECL(int) VMXR0GlobalInit(void)
1096{
1097#ifdef HMVMX_USE_FUNCTION_TABLE
1098 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1099# ifdef VBOX_STRICT
1100 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1101 Assert(g_apfnVMExitHandlers[i]);
1102# endif
1103#endif
1104 return VINF_SUCCESS;
1105}
1106
1107
1108/**
1109 * Does global VT-x termination (called during module termination).
1110 */
1111VMMR0DECL(void) VMXR0GlobalTerm()
1112{
1113 /* Nothing to do currently. */
1114}
1115
1116
1117/**
1118 * Sets up and activates VT-x on the current CPU.
1119 *
1120 * @returns VBox status code.
1121 * @param pHostCpu The HM physical-CPU structure.
1122 * @param pVM The cross context VM structure. Can be
1123 * NULL after a host resume operation.
1124 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1125 * fEnabledByHost is @c true).
1126 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1127 * @a fEnabledByHost is @c true).
1128 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1129 * enable VT-x on the host.
1130 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
1131 */
1132VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1133 PCSUPHWVIRTMSRS pHwvirtMsrs)
1134{
1135 Assert(pHostCpu);
1136 Assert(pHwvirtMsrs);
1137 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1138
1139 /* Enable VT-x if it's not already enabled by the host. */
1140 if (!fEnabledByHost)
1141 {
1142 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1143 if (RT_FAILURE(rc))
1144 return rc;
1145 }
1146
1147 /*
1148 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
1149 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
1150 * invalidated when flushing by VPID.
1151 */
1152 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1153 {
1154 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
1155 pHostCpu->fFlushAsidBeforeUse = false;
1156 }
1157 else
1158 pHostCpu->fFlushAsidBeforeUse = true;
1159
1160 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1161 ++pHostCpu->cTlbFlushes;
1162
1163 return VINF_SUCCESS;
1164}
1165
1166
1167/**
1168 * Deactivates VT-x on the current CPU.
1169 *
1170 * @returns VBox status code.
1171 * @param pvCpuPage Pointer to the VMXON region.
1172 * @param HCPhysCpuPage Physical address of the VMXON region.
1173 *
1174 * @remarks This function should never be called when SUPR0EnableVTx() or
1175 * similar was used to enable VT-x on the host.
1176 */
1177VMMR0DECL(int) VMXR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1178{
1179 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
1180
1181 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1182 return hmR0VmxLeaveRootMode();
1183}
1184
1185
1186/**
1187 * Sets the permission bits for the specified MSR in the MSR bitmap.
1188 *
1189 * @param pVCpu The cross context virtual CPU structure.
1190 * @param uMsr The MSR value.
1191 * @param enmRead Whether reading this MSR causes a VM-exit.
1192 * @param enmWrite Whether writing this MSR causes a VM-exit.
1193 */
1194static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1195{
1196 int32_t iBit;
1197 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1198
1199 /*
1200 * MSR Layout:
1201 * Byte index MSR range Interpreted as
1202 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
1203 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
1204 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
1205 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
1206 *
1207 * A bit corresponding to an MSR within the above range causes a VM-exit
1208 * if the bit is 1 on executions of RDMSR/WRMSR.
1209 *
1210 * If an MSR falls out of the MSR range, it always cause a VM-exit.
1211 *
1212 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
1213 */
1214 if (uMsr <= 0x00001fff)
1215 iBit = uMsr;
1216 else if (uMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1217 {
1218 iBit = uMsr - UINT32_C(0xc0000000);
1219 pbMsrBitmap += 0x400;
1220 }
1221 else
1222 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1223
1224 Assert(iBit <= 0x1fff);
1225 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1226 ASMBitSet(pbMsrBitmap, iBit);
1227 else
1228 ASMBitClear(pbMsrBitmap, iBit);
1229
1230 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1231 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1232 else
1233 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1234}
1235
1236
1237/**
1238 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1239 * area.
1240 *
1241 * @returns VBox status code.
1242 * @param pVCpu The cross context virtual CPU structure.
1243 * @param cMsrs The number of MSRs.
1244 */
1245static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1246{
1247 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1248 uint64_t const uVmxMiscMsr = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc;
1249 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(uVmxMiscMsr);
1250 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1251 {
1252 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1253 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1254 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1255 }
1256
1257 /* Update number of guest MSRs to load/store across the world-switch. */
1258 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1259 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1260
1261 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1262 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1263 AssertRCReturn(rc, rc);
1264
1265 /* Update the VCPU's copy of the MSR count. */
1266 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1267
1268 return VINF_SUCCESS;
1269}
1270
1271
1272/**
1273 * Adds a new (or updates the value of an existing) guest/host MSR
1274 * pair to be swapped during the world-switch as part of the
1275 * auto-load/store MSR area in the VMCS.
1276 *
1277 * @returns VBox status code.
1278 * @param pVCpu The cross context virtual CPU structure.
1279 * @param uMsr The MSR.
1280 * @param uGuestMsrValue Value of the guest MSR.
1281 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1282 * necessary.
1283 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1284 * its value was updated. Optional, can be NULL.
1285 */
1286static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1287 bool *pfAddedAndUpdated)
1288{
1289 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1290 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1291 uint32_t i;
1292 for (i = 0; i < cMsrs; i++)
1293 {
1294 if (pGuestMsr->u32Msr == uMsr)
1295 break;
1296 pGuestMsr++;
1297 }
1298
1299 bool fAdded = false;
1300 if (i == cMsrs)
1301 {
1302 ++cMsrs;
1303 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1304 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1305
1306 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1307 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1308 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1309
1310 fAdded = true;
1311 }
1312
1313 /* Update the MSR values in the auto-load/store MSR area. */
1314 pGuestMsr->u32Msr = uMsr;
1315 pGuestMsr->u64Value = uGuestMsrValue;
1316
1317 /* Create/update the MSR slot in the host MSR area. */
1318 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1319 pHostMsr += i;
1320 pHostMsr->u32Msr = uMsr;
1321
1322 /*
1323 * Update the host MSR only when requested by the caller AND when we're
1324 * adding it to the auto-load/store area. Otherwise, it would have been
1325 * updated by hmR0VmxExportHostMsrs(). We do this for performance reasons.
1326 */
1327 bool fUpdatedMsrValue = false;
1328 if ( fAdded
1329 && fUpdateHostMsr)
1330 {
1331 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1332 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1333 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1334 fUpdatedMsrValue = true;
1335 }
1336
1337 if (pfAddedAndUpdated)
1338 *pfAddedAndUpdated = fUpdatedMsrValue;
1339 return VINF_SUCCESS;
1340}
1341
1342
1343/**
1344 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1345 * auto-load/store MSR area in the VMCS.
1346 *
1347 * @returns VBox status code.
1348 * @param pVCpu The cross context virtual CPU structure.
1349 * @param uMsr The MSR.
1350 */
1351static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1352{
1353 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1354 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1355 for (uint32_t i = 0; i < cMsrs; i++)
1356 {
1357 /* Find the MSR. */
1358 if (pGuestMsr->u32Msr == uMsr)
1359 {
1360 /* If it's the last MSR, simply reduce the count. */
1361 if (i == cMsrs - 1)
1362 {
1363 --cMsrs;
1364 break;
1365 }
1366
1367 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1368 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1369 pLastGuestMsr += cMsrs - 1;
1370 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1371 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1372
1373 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1374 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1375 pLastHostMsr += cMsrs - 1;
1376 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1377 pHostMsr->u64Value = pLastHostMsr->u64Value;
1378 --cMsrs;
1379 break;
1380 }
1381 pGuestMsr++;
1382 }
1383
1384 /* Update the VMCS if the count changed (meaning the MSR was found). */
1385 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1386 {
1387 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1388 AssertRCReturn(rc, rc);
1389
1390 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1391 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1392 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1393
1394 Log4Func(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1395 return VINF_SUCCESS;
1396 }
1397
1398 return VERR_NOT_FOUND;
1399}
1400
1401
1402/**
1403 * Checks if the specified guest MSR is part of the auto-load/store area in
1404 * the VMCS.
1405 *
1406 * @returns true if found, false otherwise.
1407 * @param pVCpu The cross context virtual CPU structure.
1408 * @param uMsr The MSR to find.
1409 */
1410static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1411{
1412 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1413 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
1414
1415 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1416 {
1417 if (pGuestMsr->u32Msr == uMsr)
1418 return true;
1419 }
1420 return false;
1421}
1422
1423
1424/**
1425 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1426 *
1427 * @param pVCpu The cross context virtual CPU structure.
1428 *
1429 * @remarks No-long-jump zone!!!
1430 */
1431static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1432{
1433 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1434 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1435 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1436 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
1437
1438 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1439 {
1440 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1441
1442 /*
1443 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1444 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1445 */
1446 if (pHostMsr->u32Msr == MSR_K6_EFER)
1447 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1448 else
1449 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1450 }
1451
1452 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1453}
1454
1455
1456/**
1457 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1458 * perform lazy restoration of the host MSRs while leaving VT-x.
1459 *
1460 * @param pVCpu The cross context virtual CPU structure.
1461 *
1462 * @remarks No-long-jump zone!!!
1463 */
1464static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1465{
1466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1467
1468 /*
1469 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1470 */
1471 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1472 {
1473 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1474#if HC_ARCH_BITS == 64
1475 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1476 {
1477 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1478 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1479 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1480 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1481 }
1482#endif
1483 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1484 }
1485}
1486
1487
1488/**
1489 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1490 * lazily while leaving VT-x.
1491 *
1492 * @returns true if it does, false otherwise.
1493 * @param pVCpu The cross context virtual CPU structure.
1494 * @param uMsr The MSR to check.
1495 */
1496static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1497{
1498 NOREF(pVCpu);
1499#if HC_ARCH_BITS == 64
1500 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1501 {
1502 switch (uMsr)
1503 {
1504 case MSR_K8_LSTAR:
1505 case MSR_K6_STAR:
1506 case MSR_K8_SF_MASK:
1507 case MSR_K8_KERNEL_GS_BASE:
1508 return true;
1509 }
1510 }
1511#else
1512 RT_NOREF(pVCpu, uMsr);
1513#endif
1514 return false;
1515}
1516
1517
1518/**
1519 * Loads a set of guests MSRs to allow read/passthru to the guest.
1520 *
1521 * The name of this function is slightly confusing. This function does NOT
1522 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1523 * common prefix for functions dealing with "lazy restoration" of the shared
1524 * MSRs.
1525 *
1526 * @param pVCpu The cross context virtual CPU structure.
1527 *
1528 * @remarks No-long-jump zone!!!
1529 */
1530static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1531{
1532 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1533 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1534
1535 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1536#if HC_ARCH_BITS == 64
1537 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1538 {
1539 /*
1540 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1541 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1542 * we can skip a few MSR writes.
1543 *
1544 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1545 * guest MSR values in the guest-CPU context might be different to what's currently
1546 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1547 * CPU, see @bugref{8728}.
1548 */
1549 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1550 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1551 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1552 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1553 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1554 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1555 {
1556#ifdef VBOX_STRICT
1557 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1558 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1559 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1560 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1561#endif
1562 }
1563 else
1564 {
1565 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1566 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
1567 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
1568 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1569 }
1570 }
1571#endif
1572 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1573}
1574
1575
1576/**
1577 * Performs lazy restoration of the set of host MSRs if they were previously
1578 * loaded with guest MSR values.
1579 *
1580 * @param pVCpu The cross context virtual CPU structure.
1581 *
1582 * @remarks No-long-jump zone!!!
1583 * @remarks The guest MSRs should have been saved back into the guest-CPU
1584 * context by hmR0VmxImportGuestState()!!!
1585 */
1586static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1587{
1588 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1589 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1590
1591 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1592 {
1593 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1594#if HC_ARCH_BITS == 64
1595 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1596 {
1597 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1598 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1599 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1600 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1601 }
1602#endif
1603 }
1604 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1605}
1606
1607
1608/**
1609 * Verifies that our cached values of the VMCS fields are all consistent with
1610 * what's actually present in the VMCS.
1611 *
1612 * @returns VBox status code.
1613 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
1614 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
1615 * VMCS content. HMCPU error-field is
1616 * updated, see VMX_VCI_XXX.
1617 * @param pVCpu The cross context virtual CPU structure.
1618 */
1619static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1620{
1621 uint32_t u32Val;
1622 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1623 AssertRCReturn(rc, rc);
1624 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32EntryCtls == u32Val,
1625 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1626 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
1627 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1628
1629 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1630 AssertRCReturn(rc, rc);
1631 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ExitCtls == u32Val,
1632 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1633 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
1634 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1635
1636 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1637 AssertRCReturn(rc, rc);
1638 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32PinCtls == u32Val,
1639 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1640 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
1641 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1642
1643 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1644 AssertRCReturn(rc, rc);
1645 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls == u32Val,
1646 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1647 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
1648 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1649
1650 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1651 {
1652 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1653 AssertRCReturn(rc, rc);
1654 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1655 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1656 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
1657 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1658 }
1659
1660 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
1661 AssertRCReturn(rc, rc);
1662 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32XcptBitmap == u32Val,
1663 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap, u32Val),
1664 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
1665 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1666
1667 uint64_t u64Val;
1668 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
1669 AssertRCReturn(rc, rc);
1670 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u64TscOffset == u64Val,
1671 ("Cache=%#RX64 VMCS=%#RX64\n", pVCpu->hm.s.vmx.u64TscOffset, u64Val),
1672 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
1673 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1674
1675 return VINF_SUCCESS;
1676}
1677
1678
1679#ifdef VBOX_STRICT
1680/**
1681 * Verifies that our cached host EFER value has not changed
1682 * since we cached it.
1683 *
1684 * @param pVCpu The cross context virtual CPU structure.
1685 */
1686static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1687{
1688 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1689
1690 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1691 {
1692 uint64_t u64Val;
1693 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1694 AssertRC(rc);
1695
1696 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1697 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1698 }
1699}
1700
1701
1702/**
1703 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1704 * VMCS are correct.
1705 *
1706 * @param pVCpu The cross context virtual CPU structure.
1707 */
1708static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1709{
1710 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1711
1712 /* Verify MSR counts in the VMCS are what we think it should be. */
1713 uint32_t cMsrs;
1714 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1715 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1716
1717 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1718 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1719
1720 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1721 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1722
1723 PCVMXAUTOMSR pHostMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1724 PCVMXAUTOMSR pGuestMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1725 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1726 {
1727 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1728 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1729 pGuestMsr->u32Msr, cMsrs));
1730
1731 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1732 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1733 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1734
1735 /* Verify that the permissions are as expected in the MSR bitmap. */
1736 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1737 {
1738 VMXMSREXITREAD enmRead;
1739 VMXMSREXITWRITE enmWrite;
1740 rc = HMVmxGetMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1741 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("HMVmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1742 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1743 {
1744 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1745 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1746 }
1747 else
1748 {
1749 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1750 pGuestMsr->u32Msr, cMsrs));
1751 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1752 pGuestMsr->u32Msr, cMsrs));
1753 }
1754 }
1755 }
1756}
1757#endif /* VBOX_STRICT */
1758
1759
1760/**
1761 * Flushes the TLB using EPT.
1762 *
1763 * @returns VBox status code.
1764 * @param pVCpu The cross context virtual CPU structure of the calling
1765 * EMT. Can be NULL depending on @a enmTlbFlush.
1766 * @param enmTlbFlush Type of flush.
1767 *
1768 * @remarks Caller is responsible for making sure this function is called only
1769 * when NestedPaging is supported and providing @a enmTlbFlush that is
1770 * supported by the CPU.
1771 * @remarks Can be called with interrupts disabled.
1772 */
1773static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush)
1774{
1775 uint64_t au64Descriptor[2];
1776 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1777 au64Descriptor[0] = 0;
1778 else
1779 {
1780 Assert(pVCpu);
1781 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1782 }
1783 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1784
1785 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
1786 AssertMsg(rc == VINF_SUCCESS,
1787 ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0, rc));
1788
1789 if ( RT_SUCCESS(rc)
1790 && pVCpu)
1791 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1792}
1793
1794
1795/**
1796 * Flushes the TLB using VPID.
1797 *
1798 * @returns VBox status code.
1799 * @param pVCpu The cross context virtual CPU structure of the calling
1800 * EMT. Can be NULL depending on @a enmTlbFlush.
1801 * @param enmTlbFlush Type of flush.
1802 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1803 * on @a enmTlbFlush).
1804 *
1805 * @remarks Can be called with interrupts disabled.
1806 */
1807static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
1808{
1809 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
1810
1811 uint64_t au64Descriptor[2];
1812 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1813 {
1814 au64Descriptor[0] = 0;
1815 au64Descriptor[1] = 0;
1816 }
1817 else
1818 {
1819 AssertPtr(pVCpu);
1820 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1821 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1822 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1823 au64Descriptor[1] = GCPtr;
1824 }
1825
1826 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
1827 AssertMsg(rc == VINF_SUCCESS,
1828 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1829
1830 if ( RT_SUCCESS(rc)
1831 && pVCpu)
1832 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1833 NOREF(rc);
1834}
1835
1836
1837/**
1838 * Invalidates a guest page by guest virtual address. Only relevant for
1839 * EPT/VPID, otherwise there is nothing really to invalidate.
1840 *
1841 * @returns VBox status code.
1842 * @param pVCpu The cross context virtual CPU structure.
1843 * @param GCVirt Guest virtual address of the page to invalidate.
1844 */
1845VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1846{
1847 AssertPtr(pVCpu);
1848 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
1849
1850 bool fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1851 if (!fFlushPending)
1852 {
1853 /*
1854 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
1855 * the EPT case. See @bugref{6043} and @bugref{6177}.
1856 *
1857 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
1858 * as this function maybe called in a loop with individual addresses.
1859 */
1860 PVM pVM = pVCpu->CTX_SUFF(pVM);
1861 if (pVM->hm.s.vmx.fVpid)
1862 {
1863 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1864
1865#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1866 /*
1867 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
1868 * where executing INVVPID outside 64-bit mode does not flush translations of
1869 * 64-bit linear addresses, see @bugref{6208#c72}.
1870 */
1871 if (RT_HI_U32(GCVirt))
1872 fVpidFlush = false;
1873#endif
1874
1875 if (fVpidFlush)
1876 {
1877 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
1878 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1879 }
1880 else
1881 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1882 }
1883 else if (pVM->hm.s.fNestedPaging)
1884 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1885 }
1886
1887 return VINF_SUCCESS;
1888}
1889
1890
1891/**
1892 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1893 * case where neither EPT nor VPID is supported by the CPU.
1894 *
1895 * @param pHostCpu The HM physical-CPU structure.
1896 * @param pVCpu The cross context virtual CPU structure.
1897 *
1898 * @remarks Called with interrupts disabled.
1899 */
1900static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
1901{
1902 AssertPtr(pVCpu);
1903 AssertPtr(pHostCpu);
1904
1905 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1906
1907 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1908 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1909 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1910 pVCpu->hm.s.fForceTLBFlush = false;
1911 return;
1912}
1913
1914
1915/**
1916 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1917 *
1918 * @param pHostCpu The HM physical-CPU structure.
1919 * @param pVCpu The cross context virtual CPU structure.
1920 *
1921 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
1922 * nomenclature. The reason is, to avoid confusion in compare statements
1923 * since the host-CPU copies are named "ASID".
1924 *
1925 * @remarks Called with interrupts disabled.
1926 */
1927static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
1928{
1929#ifdef VBOX_WITH_STATISTICS
1930 bool fTlbFlushed = false;
1931# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1932# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1933 if (!fTlbFlushed) \
1934 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1935 } while (0)
1936#else
1937# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1938# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1939#endif
1940
1941 AssertPtr(pVCpu);
1942 AssertPtr(pHostCpu);
1943 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1944
1945 PVM pVM = pVCpu->CTX_SUFF(pVM);
1946 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1947 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1948 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1949
1950 /*
1951 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
1952 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
1953 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
1954 * cannot reuse the current ASID anymore.
1955 */
1956 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
1957 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
1958 {
1959 ++pHostCpu->uCurrentAsid;
1960 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1961 {
1962 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1963 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1964 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1965 }
1966
1967 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1968 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1969 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1970
1971 /*
1972 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1973 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1974 */
1975 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1976 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1977 HMVMX_SET_TAGGED_TLB_FLUSHED();
1978 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1979 }
1980 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
1981 {
1982 /*
1983 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
1984 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
1985 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
1986 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
1987 * mappings, see @bugref{6568}.
1988 *
1989 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
1990 */
1991 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1992 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1993 HMVMX_SET_TAGGED_TLB_FLUSHED();
1994 }
1995
1996 pVCpu->hm.s.fForceTLBFlush = false;
1997 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1998
1999 Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
2000 Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
2001 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2002 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2003 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2004 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2005 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2006 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2007 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2008
2009 /* Update VMCS with the VPID. */
2010 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2011 AssertRC(rc);
2012
2013#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2014}
2015
2016
2017/**
2018 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2019 *
2020 * @param pHostCpu The HM physical-CPU structure.
2021 * @param pVCpu The cross context virtual CPU structure.
2022 *
2023 * @remarks Called with interrupts disabled.
2024 */
2025static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2026{
2027 AssertPtr(pVCpu);
2028 AssertPtr(pHostCpu);
2029 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2030 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2031 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2032
2033 /*
2034 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2035 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2036 */
2037 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2038 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2039 {
2040 pVCpu->hm.s.fForceTLBFlush = true;
2041 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2042 }
2043
2044 /* Check for explicit TLB flushes. */
2045 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2046 {
2047 pVCpu->hm.s.fForceTLBFlush = true;
2048 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2049 }
2050
2051 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2052 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2053
2054 if (pVCpu->hm.s.fForceTLBFlush)
2055 {
2056 hmR0VmxFlushEpt(pVCpu, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2057 pVCpu->hm.s.fForceTLBFlush = false;
2058 }
2059}
2060
2061
2062/**
2063 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2064 *
2065 * @param pHostCpu The HM physical-CPU structure.
2066 * @param pVCpu The cross context virtual CPU structure.
2067 *
2068 * @remarks Called with interrupts disabled.
2069 */
2070static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2071{
2072 AssertPtr(pVCpu);
2073 AssertPtr(pHostCpu);
2074 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2075 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2076 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2077
2078 /*
2079 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2080 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2081 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2082 * cannot reuse the current ASID anymore.
2083 */
2084 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2085 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2086 {
2087 pVCpu->hm.s.fForceTLBFlush = true;
2088 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2089 }
2090
2091 /* Check for explicit TLB flushes. */
2092 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2093 {
2094 /*
2095 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2096 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2097 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
2098 * include fExplicitFlush's too) - an obscure corner case.
2099 */
2100 pVCpu->hm.s.fForceTLBFlush = true;
2101 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2102 }
2103
2104 PVM pVM = pVCpu->CTX_SUFF(pVM);
2105 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2106 if (pVCpu->hm.s.fForceTLBFlush)
2107 {
2108 ++pHostCpu->uCurrentAsid;
2109 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2110 {
2111 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2112 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2113 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2114 }
2115
2116 pVCpu->hm.s.fForceTLBFlush = false;
2117 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2118 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2119 if (pHostCpu->fFlushAsidBeforeUse)
2120 {
2121 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2122 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2123 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2124 {
2125 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2126 pHostCpu->fFlushAsidBeforeUse = false;
2127 }
2128 else
2129 {
2130 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2131 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2132 }
2133 }
2134 }
2135
2136 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2137 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2138 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2139 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2140 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2141 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2142 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2143
2144 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2145 AssertRC(rc);
2146}
2147
2148
2149/**
2150 * Flushes the guest TLB entry based on CPU capabilities.
2151 *
2152 * @param pHostCpu The HM physical-CPU structure.
2153 * @param pVCpu The cross context virtual CPU structure.
2154 *
2155 * @remarks Called with interrupts disabled.
2156 */
2157DECLINLINE(void) hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2158{
2159#ifdef HMVMX_ALWAYS_FLUSH_TLB
2160 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2161#endif
2162 PVM pVM = pVCpu->CTX_SUFF(pVM);
2163 switch (pVM->hm.s.vmx.enmTlbFlushType)
2164 {
2165 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu); break;
2166 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu); break;
2167 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
2168 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
2169 default:
2170 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2171 break;
2172 }
2173 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2174}
2175
2176
2177/**
2178 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2179 * TLB entries from the host TLB before VM-entry.
2180 *
2181 * @returns VBox status code.
2182 * @param pVM The cross context VM structure.
2183 */
2184static int hmR0VmxSetupTaggedTlb(PVM pVM)
2185{
2186 /*
2187 * Determine optimal flush type for Nested Paging.
2188 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2189 * guest execution (see hmR3InitFinalizeR0()).
2190 */
2191 if (pVM->hm.s.fNestedPaging)
2192 {
2193 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2194 {
2195 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2196 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2197 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2198 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2199 else
2200 {
2201 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2202 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2203 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2204 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2205 }
2206
2207 /* Make sure the write-back cacheable memory type for EPT is supported. */
2208 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2209 {
2210 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2211 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2212 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2213 }
2214
2215 /* EPT requires a page-walk length of 4. */
2216 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2217 {
2218 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2219 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2220 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2221 }
2222 }
2223 else
2224 {
2225 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2226 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2227 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2228 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2229 }
2230 }
2231
2232 /*
2233 * Determine optimal flush type for VPID.
2234 */
2235 if (pVM->hm.s.vmx.fVpid)
2236 {
2237 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2238 {
2239 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2240 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2241 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2242 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2243 else
2244 {
2245 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2246 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2247 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2248 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2249 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2250 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2251 pVM->hm.s.vmx.fVpid = false;
2252 }
2253 }
2254 else
2255 {
2256 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2257 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2258 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2259 pVM->hm.s.vmx.fVpid = false;
2260 }
2261 }
2262
2263 /*
2264 * Setup the handler for flushing tagged-TLBs.
2265 */
2266 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2267 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2268 else if (pVM->hm.s.fNestedPaging)
2269 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2270 else if (pVM->hm.s.vmx.fVpid)
2271 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2272 else
2273 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2274 return VINF_SUCCESS;
2275}
2276
2277
2278/**
2279 * Sets up pin-based VM-execution controls in the VMCS.
2280 *
2281 * @returns VBox status code.
2282 * @param pVCpu The cross context virtual CPU structure.
2283 *
2284 * @remarks We don't really care about optimizing vmwrites here as it's done only
2285 * once per VM and hence we don't care about VMCS-field cache comparisons.
2286 */
2287static int hmR0VmxSetupPinCtls(PVMCPU pVCpu)
2288{
2289 PVM pVM = pVCpu->CTX_SUFF(pVM);
2290 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
2291 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2292
2293 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2294 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2295
2296 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2297 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2298
2299 /* Enable the VMX preemption timer. */
2300 if (pVM->hm.s.vmx.fUsePreemptTimer)
2301 {
2302 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2303 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2304 }
2305
2306#if 0
2307 /* Enable posted-interrupt processing. */
2308 if (pVM->hm.s.fPostedIntrs)
2309 {
2310 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2311 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2312 fVal |= VMX_PIN_CTL_POSTED_INT;
2313 }
2314#endif
2315
2316 if ((fVal & fZap) != fVal)
2317 {
2318 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2319 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
2320 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2321 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2322 }
2323
2324 /* Commit it to the VMCS and update our cache. */
2325 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2326 AssertRCReturn(rc, rc);
2327 pVCpu->hm.s.vmx.u32PinCtls = fVal;
2328
2329 return VINF_SUCCESS;
2330}
2331
2332
2333/**
2334 * Sets up secondary processor-based VM-execution controls in the VMCS.
2335 *
2336 * @returns VBox status code.
2337 * @param pVCpu The cross context virtual CPU structure.
2338 *
2339 * @remarks We don't really care about optimizing vmwrites here as it's done only
2340 * once per VM and hence we don't care about VMCS-field cache comparisons.
2341 */
2342static int hmR0VmxSetupProcCtls2(PVMCPU pVCpu)
2343{
2344 PVM pVM = pVCpu->CTX_SUFF(pVM);
2345 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2346 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2347
2348 /* WBINVD causes a VM-exit. */
2349 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2350 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2351
2352 /* Enable EPT (aka nested-paging). */
2353 if (pVM->hm.s.fNestedPaging)
2354 fVal |= VMX_PROC_CTLS2_EPT;
2355
2356 /*
2357 * Enable the INVPCID instruction if supported by the hardware and we expose
2358 * it to the guest. Without this, guest executing INVPCID would cause a #UD.
2359 */
2360 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2361 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2362 fVal |= VMX_PROC_CTLS2_INVPCID;
2363
2364 /* Enable VPID. */
2365 if (pVM->hm.s.vmx.fVpid)
2366 fVal |= VMX_PROC_CTLS2_VPID;
2367
2368 /* Enable Unrestricted guest execution. */
2369 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2370 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2371
2372#if 0
2373 if (pVM->hm.s.fVirtApicRegs)
2374 {
2375 /* Enable APIC-register virtualization. */
2376 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2377 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2378
2379 /* Enable virtual-interrupt delivery. */
2380 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2381 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2382 }
2383#endif
2384
2385 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
2386 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2387 * done dynamically. */
2388 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2389 {
2390 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2391 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2392 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS; /* Virtualize APIC accesses. */
2393 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2394 AssertRCReturn(rc, rc);
2395 }
2396
2397 /* Enable RDTSCP. */
2398 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
2399 fVal |= VMX_PROC_CTLS2_RDTSCP;
2400
2401 /* Enable Pause-Loop exiting. */
2402 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
2403 && pVM->hm.s.vmx.cPleGapTicks
2404 && pVM->hm.s.vmx.cPleWindowTicks)
2405 {
2406 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2407
2408 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2409 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2410 AssertRCReturn(rc, rc);
2411 }
2412
2413 if ((fVal & fZap) != fVal)
2414 {
2415 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2416 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
2417 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2418 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2419 }
2420
2421 /* Commit it to the VMCS and update our cache. */
2422 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2423 AssertRCReturn(rc, rc);
2424 pVCpu->hm.s.vmx.u32ProcCtls2 = fVal;
2425
2426 return VINF_SUCCESS;
2427}
2428
2429
2430/**
2431 * Sets up processor-based VM-execution controls in the VMCS.
2432 *
2433 * @returns VBox status code.
2434 * @param pVCpu The cross context virtual CPU structure.
2435 *
2436 * @remarks We don't really care about optimizing vmwrites here as it's done only
2437 * once per VM and hence we don't care about VMCS-field cache comparisons.
2438 */
2439static int hmR0VmxSetupProcCtls(PVMCPU pVCpu)
2440{
2441 PVM pVM = pVCpu->CTX_SUFF(pVM);
2442 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2443 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2444
2445 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2446 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2447 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2448 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2449 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2450 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2451 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2452
2453 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2454 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2455 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2456 {
2457 LogRelFunc(("Unsupported VMX_PROC_CTLS_MOV_DR_EXIT combo!"));
2458 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2459 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2460 }
2461
2462 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2463 if (!pVM->hm.s.fNestedPaging)
2464 {
2465 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2466 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
2467 | VMX_PROC_CTLS_CR3_LOAD_EXIT
2468 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2469 }
2470
2471 /* Use TPR shadowing if supported by the CPU. */
2472 if ( PDMHasApic(pVM)
2473 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
2474 {
2475 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2476 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2477 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2478 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2479 AssertRCReturn(rc, rc);
2480
2481 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2482 /* CR8 writes cause a VM-exit based on TPR threshold. */
2483 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2484 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2485 }
2486 else
2487 {
2488 /*
2489 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2490 * Set this control only for 64-bit guests.
2491 */
2492 if (pVM->hm.s.fAllow64BitGuests)
2493 {
2494 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2495 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2496 }
2497 }
2498
2499 /* Use MSR-bitmaps if supported by the CPU. */
2500 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2501 {
2502 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
2503
2504 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2505 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2506 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2507 AssertRCReturn(rc, rc);
2508
2509 /*
2510 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2511 * automatically using dedicated fields in the VMCS.
2512 */
2513 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2514 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2515 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2516 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2517 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2518#if HC_ARCH_BITS == 64
2519 /*
2520 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2521 */
2522 if (pVM->hm.s.fAllow64BitGuests)
2523 {
2524 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2525 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2526 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2527 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2528 }
2529#endif
2530 /*
2531 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2532 * associated with then. We never need to intercept access (writes need to
2533 * be executed without exiting, reads will #GP-fault anyway).
2534 */
2535 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2536 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2537 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2538 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_FLUSH_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2539
2540 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2541 }
2542
2543 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2544 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2545 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2546
2547 if ((fVal & fZap) != fVal)
2548 {
2549 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2550 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
2551 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2552 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2553 }
2554
2555 /* Commit it to the VMCS and update our cache. */
2556 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2557 AssertRCReturn(rc, rc);
2558 pVCpu->hm.s.vmx.u32ProcCtls = fVal;
2559
2560 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
2561 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2562 return hmR0VmxSetupProcCtls2(pVCpu);
2563
2564 /* Sanity check, should not really happen. */
2565 if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2566 {
2567 LogRelFunc(("Unrestricted Guest enabled when secondary processor-based VM-execution controls not available\n"));
2568 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2569 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2570 }
2571
2572 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
2573 return VINF_SUCCESS;
2574}
2575
2576
2577/**
2578 * Sets up miscellaneous (everything other than Pin & Processor-based
2579 * VM-execution) control fields in the VMCS.
2580 *
2581 * @returns VBox status code.
2582 * @param pVCpu The cross context virtual CPU structure.
2583 */
2584static int hmR0VmxSetupMiscCtls(PVMCPU pVCpu)
2585{
2586 AssertPtr(pVCpu);
2587
2588 int rc = VERR_GENERAL_FAILURE;
2589
2590 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2591#if 0
2592 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxExportGuestCR3AndCR4())*/
2593 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2594 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2595
2596 /*
2597 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2598 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2599 * We thus use the exception bitmap to control it rather than use both.
2600 */
2601 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2602 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2603
2604 /* All IO & IOIO instructions cause VM-exits. */
2605 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2606 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2607
2608 /* Initialize the MSR-bitmap area. */
2609 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2610 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2611 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2612 AssertRCReturn(rc, rc);
2613#endif
2614
2615 /* Setup MSR auto-load/store area. */
2616 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2617 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2618 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2619 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2620 AssertRCReturn(rc, rc);
2621
2622 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2623 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2624 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2625 AssertRCReturn(rc, rc);
2626
2627 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2628 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2629 AssertRCReturn(rc, rc);
2630
2631 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2632#if 0
2633 /* Setup debug controls */
2634 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
2635 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);
2636 AssertRCReturn(rc, rc);
2637#endif
2638
2639 return rc;
2640}
2641
2642
2643/**
2644 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2645 *
2646 * We shall setup those exception intercepts that don't change during the
2647 * lifetime of the VM here. The rest are done dynamically while loading the
2648 * guest state.
2649 *
2650 * @returns VBox status code.
2651 * @param pVCpu The cross context virtual CPU structure.
2652 */
2653static int hmR0VmxInitXcptBitmap(PVMCPU pVCpu)
2654{
2655 AssertPtr(pVCpu);
2656
2657 uint32_t uXcptBitmap;
2658
2659 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2660 uXcptBitmap = RT_BIT_32(X86_XCPT_AC);
2661
2662 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2663 and writes, and because recursive #DBs can cause the CPU hang, we must always
2664 intercept #DB. */
2665 uXcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2666
2667 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2668 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
2669 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
2670
2671 /* Commit it to the VMCS. */
2672 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2673 AssertRCReturn(rc, rc);
2674
2675 /* Update our cache of the exception bitmap. */
2676 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
2677 return VINF_SUCCESS;
2678}
2679
2680
2681/**
2682 * Does per-VM VT-x initialization.
2683 *
2684 * @returns VBox status code.
2685 * @param pVM The cross context VM structure.
2686 */
2687VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2688{
2689 LogFlowFunc(("pVM=%p\n", pVM));
2690
2691 int rc = hmR0VmxStructsAlloc(pVM);
2692 if (RT_FAILURE(rc))
2693 {
2694 LogRelFunc(("hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2695 return rc;
2696 }
2697
2698 return VINF_SUCCESS;
2699}
2700
2701
2702/**
2703 * Does per-VM VT-x termination.
2704 *
2705 * @returns VBox status code.
2706 * @param pVM The cross context VM structure.
2707 */
2708VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2709{
2710 LogFlowFunc(("pVM=%p\n", pVM));
2711
2712#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2713 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2714 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2715#endif
2716 hmR0VmxStructsFree(pVM);
2717 return VINF_SUCCESS;
2718}
2719
2720
2721/**
2722 * Sets up the VM for execution under VT-x.
2723 * This function is only called once per-VM during initialization.
2724 *
2725 * @returns VBox status code.
2726 * @param pVM The cross context VM structure.
2727 */
2728VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2729{
2730 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2731 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2732
2733 LogFlowFunc(("pVM=%p\n", pVM));
2734
2735 /*
2736 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be
2737 * allocated. We no longer support the highly unlikely case of UnrestrictedGuest without
2738 * pRealModeTSS, see hmR3InitFinalizeR0Intel().
2739 */
2740 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2741 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2742 || !pVM->hm.s.vmx.pRealModeTSS))
2743 {
2744 LogRelFunc(("Invalid real-on-v86 state.\n"));
2745 return VERR_INTERNAL_ERROR;
2746 }
2747
2748 /* Initialize these always, see hmR3InitFinalizeR0().*/
2749 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
2750 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
2751
2752 /* Setup the tagged-TLB flush handlers. */
2753 int rc = hmR0VmxSetupTaggedTlb(pVM);
2754 if (RT_FAILURE(rc))
2755 {
2756 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2757 return rc;
2758 }
2759
2760 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2761 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2762#if HC_ARCH_BITS == 64
2763 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2764 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2765 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
2766 {
2767 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2768 }
2769#endif
2770
2771 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2772 RTCCUINTREG const uHostCR4 = ASMGetCR4();
2773 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2774 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2775
2776 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2777 {
2778 PVMCPU pVCpu = &pVM->aCpus[i];
2779 AssertPtr(pVCpu);
2780 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2781
2782 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2783 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2784
2785 /* Set revision dword at the beginning of the VMCS structure. */
2786 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
2787
2788 /* Set the VMCS launch state to "clear", see Intel spec. 31.6 "Preparation and launch a virtual machine". */
2789 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2790 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc\n", rc),
2791 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2792
2793 /* Load this VMCS as the current VMCS. */
2794 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2795 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc\n", rc),
2796 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2797
2798 rc = hmR0VmxSetupPinCtls(pVCpu);
2799 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc\n", rc),
2800 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2801
2802 rc = hmR0VmxSetupProcCtls(pVCpu);
2803 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc\n", rc),
2804 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2805
2806 rc = hmR0VmxSetupMiscCtls(pVCpu);
2807 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc\n", rc),
2808 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2809
2810 rc = hmR0VmxInitXcptBitmap(pVCpu);
2811 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc\n", rc),
2812 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2813
2814#if HC_ARCH_BITS == 32
2815 rc = hmR0VmxInitVmcsReadCache(pVCpu);
2816 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc\n", rc),
2817 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2818#endif
2819
2820 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
2821 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2822 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc\n", rc),
2823 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2824
2825 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
2826
2827 hmR0VmxUpdateErrorRecord(pVCpu, rc);
2828 }
2829
2830 return VINF_SUCCESS;
2831}
2832
2833
2834/**
2835 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2836 * the VMCS.
2837 *
2838 * @returns VBox status code.
2839 */
2840static int hmR0VmxExportHostControlRegs(void)
2841{
2842 RTCCUINTREG uReg = ASMGetCR0();
2843 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2844 AssertRCReturn(rc, rc);
2845
2846 uReg = ASMGetCR3();
2847 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2848 AssertRCReturn(rc, rc);
2849
2850 uReg = ASMGetCR4();
2851 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2852 AssertRCReturn(rc, rc);
2853 return rc;
2854}
2855
2856
2857/**
2858 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2859 * the host-state area in the VMCS.
2860 *
2861 * @returns VBox status code.
2862 * @param pVCpu The cross context virtual CPU structure.
2863 */
2864static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
2865{
2866#if HC_ARCH_BITS == 64
2867/**
2868 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2869 * requirements. See hmR0VmxExportHostSegmentRegs().
2870 */
2871# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2872 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2873 { \
2874 bool fValidSelector = true; \
2875 if ((selValue) & X86_SEL_LDT) \
2876 { \
2877 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2878 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2879 } \
2880 if (fValidSelector) \
2881 { \
2882 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2883 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2884 } \
2885 (selValue) = 0; \
2886 }
2887
2888 /*
2889 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2890 * should -not- save the messed up state without restoring the original host-state,
2891 * see @bugref{7240}.
2892 *
2893 * This apparently can happen (most likely the FPU changes), deal with it rather than
2894 * asserting. Was observed booting Solaris 10u10 32-bit guest.
2895 */
2896 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2897 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2898 {
2899 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2900 pVCpu->idCpu));
2901 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2902 }
2903 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2904#else
2905 RT_NOREF(pVCpu);
2906#endif
2907
2908 /*
2909 * Host DS, ES, FS and GS segment registers.
2910 */
2911#if HC_ARCH_BITS == 64
2912 RTSEL uSelDS = ASMGetDS();
2913 RTSEL uSelES = ASMGetES();
2914 RTSEL uSelFS = ASMGetFS();
2915 RTSEL uSelGS = ASMGetGS();
2916#else
2917 RTSEL uSelDS = 0;
2918 RTSEL uSelES = 0;
2919 RTSEL uSelFS = 0;
2920 RTSEL uSelGS = 0;
2921#endif
2922
2923 /*
2924 * Host CS and SS segment registers.
2925 */
2926 RTSEL uSelCS = ASMGetCS();
2927 RTSEL uSelSS = ASMGetSS();
2928
2929 /*
2930 * Host TR segment register.
2931 */
2932 RTSEL uSelTR = ASMGetTR();
2933
2934#if HC_ARCH_BITS == 64
2935 /*
2936 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
2937 * gain VM-entry and restore them before we get preempted.
2938 *
2939 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2940 */
2941 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2942 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2943 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2944 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2945# undef VMXLOCAL_ADJUST_HOST_SEG
2946#endif
2947
2948 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2949 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2950 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2951 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2952 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2953 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2954 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2955 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2956 Assert(uSelCS);
2957 Assert(uSelTR);
2958
2959 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2960#if 0
2961 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE))
2962 Assert(uSelSS != 0);
2963#endif
2964
2965 /* Write these host selector fields into the host-state area in the VMCS. */
2966 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2967 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2968#if HC_ARCH_BITS == 64
2969 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2970 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2971 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2972 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2973#else
2974 NOREF(uSelDS);
2975 NOREF(uSelES);
2976 NOREF(uSelFS);
2977 NOREF(uSelGS);
2978#endif
2979 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2980 AssertRCReturn(rc, rc);
2981
2982 /*
2983 * Host GDTR and IDTR.
2984 */
2985 RTGDTR Gdtr;
2986 RTIDTR Idtr;
2987 RT_ZERO(Gdtr);
2988 RT_ZERO(Idtr);
2989 ASMGetGDTR(&Gdtr);
2990 ASMGetIDTR(&Idtr);
2991 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
2992 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
2993 AssertRCReturn(rc, rc);
2994
2995#if HC_ARCH_BITS == 64
2996 /*
2997 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
2998 * them to the maximum limit (0xffff) on every VM-exit.
2999 */
3000 if (Gdtr.cbGdt != 0xffff)
3001 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3002
3003 /*
3004 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
3005 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
3006 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
3007 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
3008 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
3009 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
3010 * at 0xffff on hosts where we are sure it won't cause trouble.
3011 */
3012# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3013 if (Idtr.cbIdt < 0x0fff)
3014# else
3015 if (Idtr.cbIdt != 0xffff)
3016# endif
3017 {
3018 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3019 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3020 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3021 }
3022#endif
3023
3024 /*
3025 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
3026 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
3027 * RPL should be too in most cases.
3028 */
3029 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3030 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
3031
3032 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3033#if HC_ARCH_BITS == 64
3034 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3035
3036 /*
3037 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
3038 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
3039 * restoration if the host has something else. Task switching is not supported in 64-bit
3040 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
3041 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3042 *
3043 * [1] See Intel spec. 3.5 "System Descriptor Types".
3044 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3045 */
3046 PVM pVM = pVCpu->CTX_SUFF(pVM);
3047 Assert(pDesc->System.u4Type == 11);
3048 if ( pDesc->System.u16LimitLow != 0x67
3049 || pDesc->System.u4LimitHigh)
3050 {
3051 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3052 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3053 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3054 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3055 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3056 }
3057
3058 /*
3059 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
3060 */
3061 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
3062 {
3063 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3064 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3065 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
3066 {
3067 /* The GDT is read-only but the writable GDT is available. */
3068 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
3069 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
3070 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
3071 AssertRCReturn(rc, rc);
3072 }
3073 }
3074#else
3075 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3076#endif
3077 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3078 AssertRCReturn(rc, rc);
3079
3080 /*
3081 * Host FS base and GS base.
3082 */
3083#if HC_ARCH_BITS == 64
3084 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3085 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3086 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3087 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3088 AssertRCReturn(rc, rc);
3089
3090 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3091 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3092 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3093 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3094 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3095#endif
3096 return VINF_SUCCESS;
3097}
3098
3099
3100/**
3101 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
3102 * host-state area of the VMCS.
3103 *
3104 * Theses MSRs will be automatically restored on the host after every successful
3105 * VM-exit.
3106 *
3107 * @returns VBox status code.
3108 * @param pVCpu The cross context virtual CPU structure.
3109 *
3110 * @remarks No-long-jump zone!!!
3111 */
3112static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
3113{
3114 AssertPtr(pVCpu);
3115 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3116
3117 /*
3118 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3119 * rather than swapping them on every VM-entry.
3120 */
3121 hmR0VmxLazySaveHostMsrs(pVCpu);
3122
3123 /*
3124 * Host Sysenter MSRs.
3125 */
3126 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3127#if HC_ARCH_BITS == 32
3128 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3129 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3130#else
3131 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3132 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3133#endif
3134 AssertRCReturn(rc, rc);
3135
3136 /*
3137 * Host EFER MSR.
3138 *
3139 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
3140 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
3141 */
3142 PVM pVM = pVCpu->CTX_SUFF(pVM);
3143 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3144 {
3145 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3146 AssertRCReturn(rc, rc);
3147 }
3148
3149 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see hmR0VmxExportGuestExitCtls(). */
3150
3151 return VINF_SUCCESS;
3152}
3153
3154
3155/**
3156 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3157 *
3158 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3159 * these two bits are handled by VM-entry, see hmR0VmxExportGuestExitCtls() and
3160 * hmR0VMxExportGuestEntryCtls().
3161 *
3162 * @returns true if we need to load guest EFER, false otherwise.
3163 * @param pVCpu The cross context virtual CPU structure.
3164 *
3165 * @remarks Requires EFER, CR4.
3166 * @remarks No-long-jump zone!!!
3167 */
3168static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
3169{
3170#ifdef HMVMX_ALWAYS_SWAP_EFER
3171 RT_NOREF(pVCpu);
3172 return true;
3173#else
3174
3175 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3176#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3177 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3178 if (CPUMIsGuestInLongModeEx(pCtx))
3179 return false;
3180#endif
3181
3182 PVM pVM = pVCpu->CTX_SUFF(pVM);
3183 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3184 uint64_t const u64GuestEfer = pCtx->msrEFER;
3185
3186 /*
3187 * For 64-bit guests, if EFER.SCE bit differs, we need to swap EFER to ensure that the
3188 * guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
3189 */
3190 if ( CPUMIsGuestInLongModeEx(pCtx)
3191 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3192 {
3193 return true;
3194 }
3195
3196 /*
3197 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3198 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3199 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3200 */
3201 if ( (pCtx->cr4 & X86_CR4_PAE)
3202 && (pCtx->cr0 & X86_CR0_PG)
3203 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3204 {
3205 /* Assert that host is NX capable. */
3206 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
3207 return true;
3208 }
3209
3210 return false;
3211#endif
3212}
3213
3214
3215/**
3216 * Exports the guest state with appropriate VM-entry controls in the VMCS.
3217 *
3218 * These controls can affect things done on VM-exit; e.g. "load debug controls",
3219 * see Intel spec. 24.8.1 "VM-entry controls".
3220 *
3221 * @returns VBox status code.
3222 * @param pVCpu The cross context virtual CPU structure.
3223 *
3224 * @remarks Requires EFER.
3225 * @remarks No-long-jump zone!!!
3226 */
3227static int hmR0VmxExportGuestEntryCtls(PVMCPU pVCpu)
3228{
3229 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_CTLS)
3230 {
3231 PVM pVM = pVCpu->CTX_SUFF(pVM);
3232 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3233 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3234
3235 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3236 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
3237
3238 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3239 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
3240 {
3241 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
3242 Log4Func(("VMX_ENTRY_CTLS_IA32E_MODE_GUEST\n"));
3243 }
3244 else
3245 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
3246
3247 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3248 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3249 && hmR0VmxShouldSwapEferMsr(pVCpu))
3250 {
3251 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
3252 Log4Func(("VMX_ENTRY_CTLS_LOAD_EFER_MSR\n"));
3253 }
3254
3255 /*
3256 * The following should -not- be set (since we're not in SMM mode):
3257 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
3258 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
3259 */
3260
3261 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
3262 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
3263
3264 if ((fVal & fZap) != fVal)
3265 {
3266 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3267 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
3268 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3269 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3270 }
3271
3272 /* Commit it to the VMCS and update our cache. */
3273 if (pVCpu->hm.s.vmx.u32EntryCtls != fVal)
3274 {
3275 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
3276 AssertRCReturn(rc, rc);
3277 pVCpu->hm.s.vmx.u32EntryCtls = fVal;
3278 }
3279
3280 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_CTLS);
3281 }
3282 return VINF_SUCCESS;
3283}
3284
3285
3286/**
3287 * Exports the guest state with appropriate VM-exit controls in the VMCS.
3288 *
3289 * @returns VBox status code.
3290 * @param pVCpu The cross context virtual CPU structure.
3291 *
3292 * @remarks Requires EFER.
3293 */
3294static int hmR0VmxExportGuestExitCtls(PVMCPU pVCpu)
3295{
3296 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_EXIT_CTLS)
3297 {
3298 PVM pVM = pVCpu->CTX_SUFF(pVM);
3299 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3300 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3301
3302 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3303 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
3304
3305 /*
3306 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3307 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in
3308 * hmR0VmxExportHostMsrs().
3309 */
3310#if HC_ARCH_BITS == 64
3311 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3312 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3313#else
3314 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3315 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3316 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3317 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3318 {
3319 /* The switcher returns to long mode, EFER is managed by the switcher. */
3320 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3321 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3322 }
3323 else
3324 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
3325#endif
3326
3327 /* If the newer VMCS fields for managing EFER exists, use it. */
3328 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3329 && hmR0VmxShouldSwapEferMsr(pVCpu))
3330 {
3331 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
3332 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
3333 Log4Func(("VMX_EXIT_CTLS_SAVE_EFER_MSR and VMX_EXIT_CTLS_LOAD_EFER_MSR\n"));
3334 }
3335
3336 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3337 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
3338
3339 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
3340 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
3341 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
3342
3343 /* Enable saving of the VMX preemption timer value on VM-exit. */
3344 if ( pVM->hm.s.vmx.fUsePreemptTimer
3345 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
3346 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
3347
3348 if ((fVal & fZap) != fVal)
3349 {
3350 LogRelFunc(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
3351 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
3352 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3353 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3354 }
3355
3356 /* Commit it to the VMCS and update our cache. */
3357 if (pVCpu->hm.s.vmx.u32ExitCtls != fVal)
3358 {
3359 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
3360 AssertRCReturn(rc, rc);
3361 pVCpu->hm.s.vmx.u32ExitCtls = fVal;
3362 }
3363
3364 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_EXIT_CTLS);
3365 }
3366 return VINF_SUCCESS;
3367}
3368
3369
3370/**
3371 * Sets the TPR threshold in the VMCS.
3372 *
3373 * @returns VBox status code.
3374 * @param pVCpu The cross context virtual CPU structure.
3375 * @param u32TprThreshold The TPR threshold (task-priority class only).
3376 */
3377DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3378{
3379 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
3380 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3381 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3382}
3383
3384
3385/**
3386 * Exports the guest APIC TPR state into the VMCS.
3387 *
3388 * @returns VBox status code.
3389 * @param pVCpu The cross context virtual CPU structure.
3390 *
3391 * @remarks No-long-jump zone!!!
3392 */
3393static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu)
3394{
3395 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
3396 {
3397 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
3398
3399 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3400 && APICIsEnabled(pVCpu))
3401 {
3402 /*
3403 * Setup TPR shadowing.
3404 */
3405 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3406 {
3407 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3408
3409 bool fPendingIntr = false;
3410 uint8_t u8Tpr = 0;
3411 uint8_t u8PendingIntr = 0;
3412 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3413 AssertRCReturn(rc, rc);
3414
3415 /*
3416 * If there are interrupts pending but masked by the TPR, instruct VT-x to
3417 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
3418 * priority of the pending interrupt so we can deliver the interrupt. If there
3419 * are no interrupts pending, set threshold to 0 to not cause any
3420 * TPR-below-threshold VM-exits.
3421 */
3422 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3423 uint32_t u32TprThreshold = 0;
3424 if (fPendingIntr)
3425 {
3426 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3427 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3428 const uint8_t u8TprPriority = u8Tpr >> 4;
3429 if (u8PendingPriority <= u8TprPriority)
3430 u32TprThreshold = u8PendingPriority;
3431 }
3432
3433 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3434 AssertRCReturn(rc, rc);
3435 }
3436 }
3437 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
3438 }
3439 return VINF_SUCCESS;
3440}
3441
3442
3443/**
3444 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3445 *
3446 * @returns Guest's interruptibility-state.
3447 * @param pVCpu The cross context virtual CPU structure.
3448 *
3449 * @remarks No-long-jump zone!!!
3450 */
3451static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu)
3452{
3453 /*
3454 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3455 */
3456 uint32_t fIntrState = 0;
3457 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3458 {
3459 /* If inhibition is active, RIP & RFLAGS should've been accessed
3460 (i.e. read previously from the VMCS or from ring-3). */
3461 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3462#ifdef VBOX_STRICT
3463 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
3464 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
3465#endif
3466 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3467 {
3468 if (pCtx->eflags.Bits.u1IF)
3469 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
3470 else
3471 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
3472 }
3473 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3474 {
3475 /*
3476 * We can clear the inhibit force flag as even if we go back to the recompiler
3477 * without executing guest code in VT-x, the flag's condition to be cleared is
3478 * met and thus the cleared state is correct.
3479 */
3480 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3481 }
3482 }
3483
3484 /*
3485 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3486 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3487 * setting this would block host-NMIs and IRET will not clear the blocking.
3488 *
3489 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3490 */
3491 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
3492 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3493 {
3494 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
3495 }
3496
3497 return fIntrState;
3498}
3499
3500
3501/**
3502 * Exports the exception intercepts required for guest execution in the VMCS.
3503 *
3504 * @returns VBox status code.
3505 * @param pVCpu The cross context virtual CPU structure.
3506 *
3507 * @remarks No-long-jump zone!!!
3508 */
3509static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu)
3510{
3511 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
3512 {
3513 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3514
3515 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxExportGuestCR0(). */
3516 if (pVCpu->hm.s.fGIMTrapXcptUD)
3517 uXcptBitmap |= RT_BIT(X86_XCPT_UD);
3518#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3519 else
3520 uXcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3521#endif
3522
3523 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_AC));
3524 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_DB));
3525
3526 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3527 {
3528 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3529 AssertRCReturn(rc, rc);
3530 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3531 }
3532
3533 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
3534 Log4Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64\n", uXcptBitmap));
3535 }
3536 return VINF_SUCCESS;
3537}
3538
3539
3540/**
3541 * Exports the guest's RIP into the guest-state area in the VMCS.
3542 *
3543 * @returns VBox status code.
3544 * @param pVCpu The cross context virtual CPU structure.
3545 *
3546 * @remarks No-long-jump zone!!!
3547 */
3548static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
3549{
3550 int rc = VINF_SUCCESS;
3551 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
3552 {
3553 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
3554
3555 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
3556 AssertRCReturn(rc, rc);
3557
3558 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
3559 Log4Func(("RIP=%#RX64\n", pVCpu->cpum.GstCtx.rip));
3560 }
3561 return rc;
3562}
3563
3564
3565/**
3566 * Exports the guest's RSP into the guest-state area in the VMCS.
3567 *
3568 * @returns VBox status code.
3569 * @param pVCpu The cross context virtual CPU structure.
3570 *
3571 * @remarks No-long-jump zone!!!
3572 */
3573static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
3574{
3575 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
3576 {
3577 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
3578
3579 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
3580 AssertRCReturn(rc, rc);
3581
3582 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
3583 }
3584 return VINF_SUCCESS;
3585}
3586
3587
3588/**
3589 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
3590 *
3591 * @returns VBox status code.
3592 * @param pVCpu The cross context virtual CPU structure.
3593 *
3594 * @remarks No-long-jump zone!!!
3595 */
3596static int hmR0VmxExportGuestRflags(PVMCPU pVCpu)
3597{
3598 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
3599 {
3600 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
3601
3602 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3603 Let us assert it as such and use 32-bit VMWRITE. */
3604 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
3605 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
3606 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
3607 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3608
3609 /*
3610 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
3611 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
3612 * can run the real-mode guest code under Virtual 8086 mode.
3613 */
3614 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3615 {
3616 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3617 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3618 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
3619 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3620 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3621 }
3622
3623 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
3624 AssertRCReturn(rc, rc);
3625
3626 /*
3627 * Setup pending debug exceptions if the guest is single-stepping using EFLAGS.TF.
3628 *
3629 * We must avoid setting any automatic debug exceptions delivery when single-stepping
3630 * through the hypervisor debugger using EFLAGS.TF.
3631 */
3632 if ( !pVCpu->hm.s.fSingleInstruction
3633 && fEFlags.Bits.u1TF)
3634 {
3635 /** @todo r=ramshankar: Warning! We ASSUME EFLAGS.TF will not cleared on
3636 * premature trips to ring-3 esp since IEM does not yet handle it. */
3637 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
3638 AssertRCReturn(rc, rc);
3639 }
3640
3641 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
3642 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
3643 }
3644 return VINF_SUCCESS;
3645}
3646
3647
3648/**
3649 * Exports the guest CR0 control register into the guest-state area in the VMCS.
3650 *
3651 * The guest FPU state is always pre-loaded hence we don't need to bother about
3652 * sharing FPU related CR0 bits between the guest and host.
3653 *
3654 * @returns VBox status code.
3655 * @param pVCpu The cross context virtual CPU structure.
3656 *
3657 * @remarks No-long-jump zone!!!
3658 */
3659static int hmR0VmxExportGuestCR0(PVMCPU pVCpu)
3660{
3661 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
3662 {
3663 PVM pVM = pVCpu->CTX_SUFF(pVM);
3664 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3665 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.cr0));
3666
3667 uint32_t const u32ShadowCr0 = pVCpu->cpum.GstCtx.cr0;
3668 uint32_t u32GuestCr0 = pVCpu->cpum.GstCtx.cr0;
3669
3670 /*
3671 * Setup VT-x's view of the guest CR0.
3672 * Minimize VM-exits due to CR3 changes when we have NestedPaging.
3673 */
3674 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
3675 if (pVM->hm.s.fNestedPaging)
3676 {
3677 if (CPUMIsGuestPagingEnabled(pVCpu))
3678 {
3679 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3680 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
3681 | VMX_PROC_CTLS_CR3_STORE_EXIT);
3682 }
3683 else
3684 {
3685 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3686 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
3687 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3688 }
3689
3690 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3691 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3692 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
3693 }
3694 else
3695 {
3696 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3697 u32GuestCr0 |= X86_CR0_WP;
3698 }
3699
3700 /*
3701 * Guest FPU bits.
3702 *
3703 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
3704 * using CR0.TS.
3705 *
3706 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
3707 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3708 */
3709 u32GuestCr0 |= X86_CR0_NE;
3710
3711 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
3712 bool const fInterceptMF = !(u32ShadowCr0 & X86_CR0_NE);
3713
3714 /*
3715 * Update exception intercepts.
3716 */
3717 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3718 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3719 {
3720 Assert(PDMVmmDevHeapIsEnabled(pVM));
3721 Assert(pVM->hm.s.vmx.pRealModeTSS);
3722 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3723 }
3724 else
3725 {
3726 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3727 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3728 if (fInterceptMF)
3729 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
3730 }
3731
3732 /* Additional intercepts for debugging, define these yourself explicitly. */
3733#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3734 uXcptBitmap |= 0
3735 | RT_BIT(X86_XCPT_BP)
3736 | RT_BIT(X86_XCPT_DE)
3737 | RT_BIT(X86_XCPT_NM)
3738 | RT_BIT(X86_XCPT_TS)
3739 | RT_BIT(X86_XCPT_UD)
3740 | RT_BIT(X86_XCPT_NP)
3741 | RT_BIT(X86_XCPT_SS)
3742 | RT_BIT(X86_XCPT_GP)
3743 | RT_BIT(X86_XCPT_PF)
3744 | RT_BIT(X86_XCPT_MF)
3745 ;
3746#elif defined(HMVMX_ALWAYS_TRAP_PF)
3747 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
3748#endif
3749 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
3750 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
3751 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
3752
3753 /*
3754 * Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW).
3755 */
3756 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3757 uint32_t fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3758 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3759 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
3760 else
3761 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3762
3763 u32GuestCr0 |= fSetCr0;
3764 u32GuestCr0 &= fZapCr0;
3765 u32GuestCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3766
3767 /*
3768 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3769 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3770 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3771 */
3772 uint32_t u32Cr0Mask = X86_CR0_PE
3773 | X86_CR0_NE
3774 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
3775 | X86_CR0_PG
3776 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3777 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3778 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3779
3780 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3781 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3782 * and @bugref{6944}. */
3783#if 0
3784 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3785 u32Cr0Mask &= ~X86_CR0_PE;
3786#endif
3787 /*
3788 * Finally, update VMCS fields with the CR0 values and the exception bitmap.
3789 */
3790 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCr0);
3791 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32ShadowCr0);
3792 if (u32Cr0Mask != pVCpu->hm.s.vmx.u32Cr0Mask)
3793 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32Cr0Mask);
3794 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
3795 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
3796 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3797 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3798 AssertRCReturn(rc, rc);
3799
3800 /* Update our caches. */
3801 pVCpu->hm.s.vmx.u32Cr0Mask = u32Cr0Mask;
3802 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
3803 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3804
3805 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
3806
3807 Log4Func(("u32Cr0Mask=%#RX32 u32ShadowCr0=%#RX32 u32GuestCr0=%#RX32 (fSetCr0=%#RX32 fZapCr0=%#RX32\n", u32Cr0Mask,
3808 u32ShadowCr0, u32GuestCr0, fSetCr0, fZapCr0));
3809 }
3810
3811 return VINF_SUCCESS;
3812}
3813
3814
3815/**
3816 * Exports the guest control registers (CR3, CR4) into the guest-state area
3817 * in the VMCS.
3818 *
3819 * @returns VBox strict status code.
3820 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3821 * without unrestricted guest access and the VMMDev is not presently
3822 * mapped (e.g. EFI32).
3823 *
3824 * @param pVCpu The cross context virtual CPU structure.
3825 *
3826 * @remarks No-long-jump zone!!!
3827 */
3828static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu)
3829{
3830 int rc = VINF_SUCCESS;
3831 PVM pVM = pVCpu->CTX_SUFF(pVM);
3832
3833 /*
3834 * Guest CR2.
3835 * It's always loaded in the assembler code. Nothing to do here.
3836 */
3837
3838 /*
3839 * Guest CR3.
3840 */
3841 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
3842 {
3843 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3844
3845 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3846 if (pVM->hm.s.fNestedPaging)
3847 {
3848 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3849
3850 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3851 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3852 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3853 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3854
3855 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3856 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3857 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3858
3859 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3860 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3861 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3862 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3863 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3864 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3865 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3866
3867 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3868 AssertRCReturn(rc, rc);
3869
3870 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3871 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3872 || CPUMIsGuestPagingEnabledEx(pCtx))
3873 {
3874 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3875 if (CPUMIsGuestInPAEModeEx(pCtx))
3876 {
3877 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3878 AssertRCReturn(rc, rc);
3879 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3880 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3881 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3882 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3883 AssertRCReturn(rc, rc);
3884 }
3885
3886 /*
3887 * The guest's view of its CR3 is unblemished with Nested Paging when the
3888 * guest is using paging or we have unrestricted guest execution to handle
3889 * the guest when it's not using paging.
3890 */
3891 GCPhysGuestCR3 = pCtx->cr3;
3892 }
3893 else
3894 {
3895 /*
3896 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
3897 * thinks it accesses physical memory directly, we use our identity-mapped
3898 * page table to map guest-linear to guest-physical addresses. EPT takes care
3899 * of translating it to host-physical addresses.
3900 */
3901 RTGCPHYS GCPhys;
3902 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3903
3904 /* We obtain it here every time as the guest could have relocated this PCI region. */
3905 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3906 if (RT_SUCCESS(rc))
3907 { /* likely */ }
3908 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3909 {
3910 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
3911 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3912 }
3913 else
3914 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3915
3916 GCPhysGuestCR3 = GCPhys;
3917 }
3918
3919 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
3920 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3921 AssertRCReturn(rc, rc);
3922 }
3923 else
3924 {
3925 /* Non-nested paging case, just use the hypervisor's CR3. */
3926 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3927
3928 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
3929 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3930 AssertRCReturn(rc, rc);
3931 }
3932
3933 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
3934 }
3935
3936 /*
3937 * Guest CR4.
3938 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3939 */
3940 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
3941 {
3942 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3943 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3944 Assert(!RT_HI_U32(pCtx->cr4));
3945
3946 uint32_t u32GuestCr4 = pCtx->cr4;
3947 uint32_t const u32ShadowCr4 = pCtx->cr4;
3948
3949 /*
3950 * Setup VT-x's view of the guest CR4.
3951 *
3952 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
3953 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
3954 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3955 *
3956 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3957 */
3958 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3959 {
3960 Assert(pVM->hm.s.vmx.pRealModeTSS);
3961 Assert(PDMVmmDevHeapIsEnabled(pVM));
3962 u32GuestCr4 &= ~X86_CR4_VME;
3963 }
3964
3965 if (pVM->hm.s.fNestedPaging)
3966 {
3967 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
3968 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3969 {
3970 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3971 u32GuestCr4 |= X86_CR4_PSE;
3972 /* Our identity mapping is a 32-bit page directory. */
3973 u32GuestCr4 &= ~X86_CR4_PAE;
3974 }
3975 /* else use guest CR4.*/
3976 }
3977 else
3978 {
3979 /*
3980 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3981 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3982 */
3983 switch (pVCpu->hm.s.enmShadowMode)
3984 {
3985 case PGMMODE_REAL: /* Real-mode. */
3986 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3987 case PGMMODE_32_BIT: /* 32-bit paging. */
3988 {
3989 u32GuestCr4 &= ~X86_CR4_PAE;
3990 break;
3991 }
3992
3993 case PGMMODE_PAE: /* PAE paging. */
3994 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3995 {
3996 u32GuestCr4 |= X86_CR4_PAE;
3997 break;
3998 }
3999
4000 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4001 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4002#ifdef VBOX_ENABLE_64_BITS_GUESTS
4003 break;
4004#endif
4005 default:
4006 AssertFailed();
4007 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4008 }
4009 }
4010
4011 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4012 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4013 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4014 u32GuestCr4 |= fSetCr4;
4015 u32GuestCr4 &= fZapCr4;
4016
4017 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them,
4018 that would cause a VM-exit. */
4019 uint32_t u32Cr4Mask = X86_CR4_VME
4020 | X86_CR4_PAE
4021 | X86_CR4_PGE
4022 | X86_CR4_PSE
4023 | X86_CR4_VMXE;
4024 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4025 u32Cr4Mask |= X86_CR4_OSXSAVE;
4026 if (pVM->cpum.ro.GuestFeatures.fPcid)
4027 u32Cr4Mask |= X86_CR4_PCIDE;
4028
4029 /* Write VT-x's view of the guest CR4, the CR4 modify mask and the read-only CR4 shadow
4030 into the VMCS and update our cache. */
4031 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCr4);
4032 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32ShadowCr4);
4033 if (pVCpu->hm.s.vmx.u32Cr4Mask != u32Cr4Mask)
4034 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32Cr4Mask);
4035 AssertRCReturn(rc, rc);
4036 pVCpu->hm.s.vmx.u32Cr4Mask = u32Cr4Mask;
4037
4038 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4039 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4040
4041 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
4042
4043 Log4Func(("u32GuestCr4=%#RX32 u32ShadowCr4=%#RX32 (fSetCr4=%#RX32 fZapCr4=%#RX32)\n", u32GuestCr4, u32ShadowCr4, fSetCr4,
4044 fZapCr4));
4045 }
4046 return rc;
4047}
4048
4049
4050/**
4051 * Exports the guest debug registers into the guest-state area in the VMCS.
4052 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4053 *
4054 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4055 *
4056 * @returns VBox status code.
4057 * @param pVCpu The cross context virtual CPU structure.
4058 *
4059 * @remarks No-long-jump zone!!!
4060 */
4061static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu)
4062{
4063 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4064
4065#ifdef VBOX_STRICT
4066 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4067 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4068 {
4069 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4070 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
4071 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
4072 }
4073#endif
4074
4075 bool fSteppingDB = false;
4076 bool fInterceptMovDRx = false;
4077 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
4078 if (pVCpu->hm.s.fSingleInstruction)
4079 {
4080 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4081 PVM pVM = pVCpu->CTX_SUFF(pVM);
4082 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
4083 {
4084 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
4085 Assert(fSteppingDB == false);
4086 }
4087 else
4088 {
4089 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
4090 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
4091 pVCpu->hm.s.fClearTrapFlag = true;
4092 fSteppingDB = true;
4093 }
4094 }
4095
4096 uint32_t u32GuestDr7;
4097 if ( fSteppingDB
4098 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4099 {
4100 /*
4101 * Use the combined guest and host DRx values found in the hypervisor register set
4102 * because the debugger has breakpoints active or someone is single stepping on the
4103 * host side without a monitor trap flag.
4104 *
4105 * Note! DBGF expects a clean DR6 state before executing guest code.
4106 */
4107#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4108 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4109 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4110 {
4111 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4112 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4113 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4114 }
4115 else
4116#endif
4117 if (!CPUMIsHyperDebugStateActive(pVCpu))
4118 {
4119 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4120 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4121 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4122 }
4123
4124 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
4125 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
4126 pVCpu->hm.s.fUsingHyperDR7 = true;
4127 fInterceptMovDRx = true;
4128 }
4129 else
4130 {
4131 /*
4132 * If the guest has enabled debug registers, we need to load them prior to
4133 * executing guest code so they'll trigger at the right time.
4134 */
4135 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
4136 {
4137#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4138 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4139 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4140 {
4141 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4142 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4143 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4144 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4145 }
4146 else
4147#endif
4148 if (!CPUMIsGuestDebugStateActive(pVCpu))
4149 {
4150 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4151 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4152 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4153 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4154 }
4155 Assert(!fInterceptMovDRx);
4156 }
4157 /*
4158 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4159 * must intercept #DB in order to maintain a correct DR6 guest value, and
4160 * because we need to intercept it to prevent nested #DBs from hanging the
4161 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4162 */
4163#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4164 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4165 && !CPUMIsGuestDebugStateActive(pVCpu))
4166#else
4167 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4168#endif
4169 {
4170 fInterceptMovDRx = true;
4171 }
4172
4173 /* Update DR7 with the actual guest value. */
4174 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
4175 pVCpu->hm.s.fUsingHyperDR7 = false;
4176 }
4177
4178 if (fInterceptMovDRx)
4179 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
4180 else
4181 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
4182
4183 /*
4184 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
4185 * monitor-trap flag and update our cache.
4186 */
4187 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
4188 {
4189 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4190 AssertRCReturn(rc2, rc2);
4191 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
4192 }
4193
4194 /*
4195 * Update guest DR7.
4196 */
4197 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
4198 AssertRCReturn(rc, rc);
4199
4200 /*
4201 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
4202 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
4203 *
4204 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
4205 */
4206 if (fSteppingDB)
4207 {
4208 Assert(pVCpu->hm.s.fSingleInstruction);
4209 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
4210
4211 uint32_t fIntrState = 0;
4212 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
4213 AssertRCReturn(rc, rc);
4214
4215 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
4216 {
4217 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
4218 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
4219 AssertRCReturn(rc, rc);
4220 }
4221 }
4222
4223 return VINF_SUCCESS;
4224}
4225
4226
4227#ifdef VBOX_STRICT
4228/**
4229 * Strict function to validate segment registers.
4230 *
4231 * @param pVCpu The cross context virtual CPU structure.
4232 *
4233 * @remarks Will import guest CR0 on strict builds during validation of
4234 * segments.
4235 */
4236static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu)
4237{
4238 /*
4239 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4240 *
4241 * The reason we check for attribute value 0 in this function and not just the unusable bit is
4242 * because hmR0VmxExportGuestSegmentReg() only updates the VMCS' copy of the value with the unusable bit
4243 * and doesn't change the guest-context value.
4244 */
4245 PVM pVM = pVCpu->CTX_SUFF(pVM);
4246 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4247 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
4248 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4249 && ( !CPUMIsGuestInRealModeEx(pCtx)
4250 && !CPUMIsGuestInV86ModeEx(pCtx)))
4251 {
4252 /* Protected mode checks */
4253 /* CS */
4254 Assert(pCtx->cs.Attr.n.u1Present);
4255 Assert(!(pCtx->cs.Attr.u & 0xf00));
4256 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4257 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4258 || !(pCtx->cs.Attr.n.u1Granularity));
4259 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4260 || (pCtx->cs.Attr.n.u1Granularity));
4261 /* CS cannot be loaded with NULL in protected mode. */
4262 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4263 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4264 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4265 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4266 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4267 else
4268 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4269 /* SS */
4270 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4271 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4272 if ( !(pCtx->cr0 & X86_CR0_PE)
4273 || pCtx->cs.Attr.n.u4Type == 3)
4274 {
4275 Assert(!pCtx->ss.Attr.n.u2Dpl);
4276 }
4277 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4278 {
4279 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4280 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4281 Assert(pCtx->ss.Attr.n.u1Present);
4282 Assert(!(pCtx->ss.Attr.u & 0xf00));
4283 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4284 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4285 || !(pCtx->ss.Attr.n.u1Granularity));
4286 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4287 || (pCtx->ss.Attr.n.u1Granularity));
4288 }
4289 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmentReg(). */
4290 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4291 {
4292 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4293 Assert(pCtx->ds.Attr.n.u1Present);
4294 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4295 Assert(!(pCtx->ds.Attr.u & 0xf00));
4296 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4297 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4298 || !(pCtx->ds.Attr.n.u1Granularity));
4299 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4300 || (pCtx->ds.Attr.n.u1Granularity));
4301 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4302 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4303 }
4304 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4305 {
4306 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4307 Assert(pCtx->es.Attr.n.u1Present);
4308 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4309 Assert(!(pCtx->es.Attr.u & 0xf00));
4310 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4311 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4312 || !(pCtx->es.Attr.n.u1Granularity));
4313 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4314 || (pCtx->es.Attr.n.u1Granularity));
4315 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4316 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4317 }
4318 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4319 {
4320 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4321 Assert(pCtx->fs.Attr.n.u1Present);
4322 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4323 Assert(!(pCtx->fs.Attr.u & 0xf00));
4324 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4325 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4326 || !(pCtx->fs.Attr.n.u1Granularity));
4327 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4328 || (pCtx->fs.Attr.n.u1Granularity));
4329 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4330 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4331 }
4332 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4333 {
4334 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4335 Assert(pCtx->gs.Attr.n.u1Present);
4336 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4337 Assert(!(pCtx->gs.Attr.u & 0xf00));
4338 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4339 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4340 || !(pCtx->gs.Attr.n.u1Granularity));
4341 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4342 || (pCtx->gs.Attr.n.u1Granularity));
4343 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4344 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4345 }
4346 /* 64-bit capable CPUs. */
4347# if HC_ARCH_BITS == 64
4348 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4349 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
4350 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
4351 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
4352# endif
4353 }
4354 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4355 || ( CPUMIsGuestInRealModeEx(pCtx)
4356 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4357 {
4358 /* Real and v86 mode checks. */
4359 /* hmR0VmxExportGuestSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4360 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4361 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4362 {
4363 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4364 }
4365 else
4366 {
4367 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4368 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4369 }
4370
4371 /* CS */
4372 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4373 Assert(pCtx->cs.u32Limit == 0xffff);
4374 Assert(u32CSAttr == 0xf3);
4375 /* SS */
4376 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4377 Assert(pCtx->ss.u32Limit == 0xffff);
4378 Assert(u32SSAttr == 0xf3);
4379 /* DS */
4380 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4381 Assert(pCtx->ds.u32Limit == 0xffff);
4382 Assert(u32DSAttr == 0xf3);
4383 /* ES */
4384 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4385 Assert(pCtx->es.u32Limit == 0xffff);
4386 Assert(u32ESAttr == 0xf3);
4387 /* FS */
4388 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4389 Assert(pCtx->fs.u32Limit == 0xffff);
4390 Assert(u32FSAttr == 0xf3);
4391 /* GS */
4392 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4393 Assert(pCtx->gs.u32Limit == 0xffff);
4394 Assert(u32GSAttr == 0xf3);
4395 /* 64-bit capable CPUs. */
4396# if HC_ARCH_BITS == 64
4397 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4398 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
4399 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
4400 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
4401# endif
4402 }
4403}
4404#endif /* VBOX_STRICT */
4405
4406
4407/**
4408 * Exports a guest segment register into the guest-state area in the VMCS.
4409 *
4410 * @returns VBox status code.
4411 * @param pVCpu The cross context virtual CPU structure.
4412 * @param idxSel Index of the selector in the VMCS.
4413 * @param idxLimit Index of the segment limit in the VMCS.
4414 * @param idxBase Index of the segment base in the VMCS.
4415 * @param idxAccess Index of the access rights of the segment in the VMCS.
4416 * @param pSelReg Pointer to the segment selector.
4417 *
4418 * @remarks No-long-jump zone!!!
4419 */
4420static int hmR0VmxExportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
4421 PCCPUMSELREG pSelReg)
4422{
4423 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4424 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4425 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4426 AssertRCReturn(rc, rc);
4427
4428 uint32_t u32Access = pSelReg->Attr.u;
4429 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4430 {
4431 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4432 u32Access = 0xf3;
4433 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4434 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4435 }
4436 else
4437 {
4438 /*
4439 * The way to differentiate between whether this is really a null selector or was just
4440 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
4441 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
4442 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
4443 * NULL selectors loaded in protected-mode have their attribute as 0.
4444 */
4445 if (!u32Access)
4446 u32Access = X86DESCATTR_UNUSABLE;
4447 }
4448
4449 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4450 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4451 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4452
4453 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4454 AssertRCReturn(rc, rc);
4455 return rc;
4456}
4457
4458
4459/**
4460 * Exports the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4461 * into the guest-state area in the VMCS.
4462 *
4463 * @returns VBox status code.
4464 * @param pVCpu The cross context virtual CPU structure.
4465 *
4466 * @remarks Will import guest CR0 on strict builds during validation of
4467 * segments.
4468 * @remarks No-long-jump zone!!!
4469 */
4470static int hmR0VmxExportGuestSegmentRegs(PVMCPU pVCpu)
4471{
4472 int rc = VERR_INTERNAL_ERROR_5;
4473 PVM pVM = pVCpu->CTX_SUFF(pVM);
4474 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4475
4476 /*
4477 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4478 */
4479 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
4480 {
4481#ifdef VBOX_WITH_REM
4482 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4483 {
4484 Assert(pVM->hm.s.vmx.pRealModeTSS);
4485 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4486 if ( pVCpu->hm.s.vmx.fWasInRealMode
4487 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4488 {
4489 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4490 in real-mode (e.g. OpenBSD 4.0) */
4491 REMFlushTBs(pVM);
4492 Log4Func(("Switch to protected mode detected!\n"));
4493 pVCpu->hm.s.vmx.fWasInRealMode = false;
4494 }
4495 }
4496#endif
4497 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
4498 {
4499 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
4500 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4501 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pCtx->cs.Attr.u;
4502 rc = HMVMX_EXPORT_SREG(CS, &pCtx->cs);
4503 AssertRCReturn(rc, rc);
4504 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
4505 }
4506
4507 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
4508 {
4509 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
4510 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4511 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pCtx->ss.Attr.u;
4512 rc = HMVMX_EXPORT_SREG(SS, &pCtx->ss);
4513 AssertRCReturn(rc, rc);
4514 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
4515 }
4516
4517 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
4518 {
4519 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
4520 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4521 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pCtx->ds.Attr.u;
4522 rc = HMVMX_EXPORT_SREG(DS, &pCtx->ds);
4523 AssertRCReturn(rc, rc);
4524 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
4525 }
4526
4527 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
4528 {
4529 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
4530 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4531 pVCpu->hm.s.vmx.RealMode.AttrES.u = pCtx->es.Attr.u;
4532 rc = HMVMX_EXPORT_SREG(ES, &pCtx->es);
4533 AssertRCReturn(rc, rc);
4534 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
4535 }
4536
4537 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
4538 {
4539 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
4540 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4541 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pCtx->fs.Attr.u;
4542 rc = HMVMX_EXPORT_SREG(FS, &pCtx->fs);
4543 AssertRCReturn(rc, rc);
4544 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
4545 }
4546
4547 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
4548 {
4549 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
4550 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4551 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pCtx->gs.Attr.u;
4552 rc = HMVMX_EXPORT_SREG(GS, &pCtx->gs);
4553 AssertRCReturn(rc, rc);
4554 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
4555 }
4556
4557#ifdef VBOX_STRICT
4558 hmR0VmxValidateSegmentRegs(pVCpu);
4559#endif
4560
4561 Log4Func(("CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pCtx->cs.Sel, pCtx->cs.u64Base,
4562 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
4563 }
4564
4565 /*
4566 * Guest TR.
4567 */
4568 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
4569 {
4570 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
4571
4572 /*
4573 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
4574 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
4575 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4576 */
4577 uint16_t u16Sel = 0;
4578 uint32_t u32Limit = 0;
4579 uint64_t u64Base = 0;
4580 uint32_t u32AccessRights = 0;
4581
4582 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4583 {
4584 u16Sel = pCtx->tr.Sel;
4585 u32Limit = pCtx->tr.u32Limit;
4586 u64Base = pCtx->tr.u64Base;
4587 u32AccessRights = pCtx->tr.Attr.u;
4588 }
4589 else
4590 {
4591 Assert(pVM->hm.s.vmx.pRealModeTSS);
4592 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
4593
4594 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4595 RTGCPHYS GCPhys;
4596 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4597 AssertRCReturn(rc, rc);
4598
4599 X86DESCATTR DescAttr;
4600 DescAttr.u = 0;
4601 DescAttr.n.u1Present = 1;
4602 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4603
4604 u16Sel = 0;
4605 u32Limit = HM_VTX_TSS_SIZE;
4606 u64Base = GCPhys; /* in real-mode phys = virt. */
4607 u32AccessRights = DescAttr.u;
4608 }
4609
4610 /* Validate. */
4611 Assert(!(u16Sel & RT_BIT(2)));
4612 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4613 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4614 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4615 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4616 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4617 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4618 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4619 Assert( (u32Limit & 0xfff) == 0xfff
4620 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4621 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
4622 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4623
4624 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4625 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4626 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4627 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4628 AssertRCReturn(rc, rc);
4629
4630 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
4631 Log4Func(("TR base=%#RX64\n", pCtx->tr.u64Base));
4632 }
4633
4634 /*
4635 * Guest GDTR.
4636 */
4637 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
4638 {
4639 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
4640
4641 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
4642 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
4643 AssertRCReturn(rc, rc);
4644
4645 /* Validate. */
4646 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4647
4648 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
4649 Log4Func(("GDTR base=%#RX64\n", pCtx->gdtr.pGdt));
4650 }
4651
4652 /*
4653 * Guest LDTR.
4654 */
4655 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
4656 {
4657 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
4658
4659 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4660 uint32_t u32Access = 0;
4661 if (!pCtx->ldtr.Attr.u)
4662 u32Access = X86DESCATTR_UNUSABLE;
4663 else
4664 u32Access = pCtx->ldtr.Attr.u;
4665
4666 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
4667 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
4668 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4669 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
4670 AssertRCReturn(rc, rc);
4671
4672 /* Validate. */
4673 if (!(u32Access & X86DESCATTR_UNUSABLE))
4674 {
4675 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4676 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4677 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4678 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4679 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4680 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4681 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
4682 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4683 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
4684 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4685 }
4686
4687 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
4688 Log4Func(("LDTR base=%#RX64\n", pCtx->ldtr.u64Base));
4689 }
4690
4691 /*
4692 * Guest IDTR.
4693 */
4694 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
4695 {
4696 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
4697
4698 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
4699 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
4700 AssertRCReturn(rc, rc);
4701
4702 /* Validate. */
4703 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4704
4705 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
4706 Log4Func(("IDTR base=%#RX64\n", pCtx->idtr.pIdt));
4707 }
4708
4709 return VINF_SUCCESS;
4710}
4711
4712
4713/**
4714 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4715 * areas.
4716 *
4717 * These MSRs will automatically be loaded to the host CPU on every successful
4718 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4719 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4720 * -not- updated here for performance reasons. See hmR0VmxExportHostMsrs().
4721 *
4722 * Also exports the guest sysenter MSRs into the guest-state area in the VMCS.
4723 *
4724 * @returns VBox status code.
4725 * @param pVCpu The cross context virtual CPU structure.
4726 *
4727 * @remarks No-long-jump zone!!!
4728 */
4729static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu)
4730{
4731 AssertPtr(pVCpu);
4732 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4733
4734 /*
4735 * MSRs that we use the auto-load/store MSR area in the VMCS.
4736 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
4737 */
4738 PVM pVM = pVCpu->CTX_SUFF(pVM);
4739 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4740 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
4741 {
4742 if (pVM->hm.s.fAllow64BitGuests)
4743 {
4744#if HC_ARCH_BITS == 32
4745 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
4746
4747 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pCtx->msrLSTAR, false, NULL);
4748 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pCtx->msrSTAR, false, NULL);
4749 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pCtx->msrSFMASK, false, NULL);
4750 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, false, NULL);
4751 AssertRCReturn(rc, rc);
4752# ifdef LOG_ENABLED
4753 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4754 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4755 Log4Func(("MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4756# endif
4757#endif
4758 }
4759 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4760 }
4761
4762 /*
4763 * Guest Sysenter MSRs.
4764 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4765 * VM-exits on WRMSRs for these MSRs.
4766 */
4767 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
4768 {
4769 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4770
4771 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
4772 {
4773 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
4774 AssertRCReturn(rc, rc);
4775 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4776 }
4777
4778 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
4779 {
4780 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
4781 AssertRCReturn(rc, rc);
4782 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4783 }
4784
4785 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
4786 {
4787 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
4788 AssertRCReturn(rc, rc);
4789 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4790 }
4791 }
4792
4793 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
4794 {
4795 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
4796
4797 if (hmR0VmxShouldSwapEferMsr(pVCpu))
4798 {
4799 /*
4800 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4801 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4802 */
4803 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4804 {
4805 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
4806 AssertRCReturn(rc,rc);
4807 Log4Func(("EFER=%#RX64\n", pCtx->msrEFER));
4808 }
4809 else
4810 {
4811 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pCtx->msrEFER, false /* fUpdateHostMsr */,
4812 NULL /* pfAddedAndUpdated */);
4813 AssertRCReturn(rc, rc);
4814
4815 /* We need to intercept reads too, see @bugref{7386#c16}. */
4816 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4817 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4818 Log4Func(("MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", MSR_K6_EFER, pCtx->msrEFER,
4819 pVCpu->hm.s.vmx.cMsrs));
4820 }
4821 }
4822 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4823 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4824 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
4825 }
4826
4827 return VINF_SUCCESS;
4828}
4829
4830
4831#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4832/**
4833 * Check if guest state allows safe use of 32-bit switcher again.
4834 *
4835 * Segment bases and protected mode structures must be 32-bit addressable
4836 * because the 32-bit switcher will ignore high dword when writing these VMCS
4837 * fields. See @bugref{8432} for details.
4838 *
4839 * @returns true if safe, false if must continue to use the 64-bit switcher.
4840 * @param pCtx Pointer to the guest-CPU context.
4841 *
4842 * @remarks No-long-jump zone!!!
4843 */
4844static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
4845{
4846 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
4847 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
4848 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4849 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4850 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
4851 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4852 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
4853 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
4854 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4855 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4856
4857 /* All good, bases are 32-bit. */
4858 return true;
4859}
4860#endif
4861
4862
4863/**
4864 * Selects up the appropriate function to run guest code.
4865 *
4866 * @returns VBox status code.
4867 * @param pVCpu The cross context virtual CPU structure.
4868 *
4869 * @remarks No-long-jump zone!!!
4870 */
4871static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu)
4872{
4873 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4874 if (CPUMIsGuestInLongModeEx(pCtx))
4875 {
4876#ifndef VBOX_ENABLE_64_BITS_GUESTS
4877 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4878#endif
4879 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4880#if HC_ARCH_BITS == 32
4881 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4882 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4883 {
4884#ifdef VBOX_STRICT
4885 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4886 {
4887 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4888 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4889 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4890 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4891 | HM_CHANGED_VMX_ENTRY_CTLS
4892 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4893 }
4894#endif
4895 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4896
4897 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4898 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4899 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4900 Log4Func(("Selected 64-bit switcher\n"));
4901 }
4902#else
4903 /* 64-bit host. */
4904 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4905#endif
4906 }
4907 else
4908 {
4909 /* Guest is not in long mode, use the 32-bit handler. */
4910#if HC_ARCH_BITS == 32
4911 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4912 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4913 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4914 {
4915# ifdef VBOX_STRICT
4916 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4917 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4918 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4919 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4920 | HM_CHANGED_VMX_ENTRY_CTLS
4921 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4922# endif
4923 }
4924# ifdef VBOX_ENABLE_64_BITS_GUESTS
4925 /*
4926 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
4927 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
4928 * switcher flag because now we know the guest is in a sane state where it's safe
4929 * to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4930 * the much faster 32-bit switcher again.
4931 */
4932 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4933 {
4934 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4935 Log4Func(("Selected 32-bit switcher\n"));
4936 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4937 }
4938 else
4939 {
4940 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4941 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4942 || hmR0VmxIs32BitSwitcherSafe(pCtx))
4943 {
4944 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4945 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4946 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
4947 | HM_CHANGED_VMX_ENTRY_CTLS
4948 | HM_CHANGED_VMX_EXIT_CTLS
4949 | HM_CHANGED_HOST_CONTEXT);
4950 Log4Func(("Selected 32-bit switcher (safe)\n"));
4951 }
4952 }
4953# else
4954 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4955# endif
4956#else
4957 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4958#endif
4959 }
4960 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4961 return VINF_SUCCESS;
4962}
4963
4964
4965/**
4966 * Wrapper for running the guest code in VT-x.
4967 *
4968 * @returns VBox status code, no informational status codes.
4969 * @param pVCpu The cross context virtual CPU structure.
4970 *
4971 * @remarks No-long-jump zone!!!
4972 */
4973DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu)
4974{
4975 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4976 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4977 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4978
4979 /*
4980 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4981 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4982 * callee-saved and thus the need for this XMM wrapper.
4983 *
4984 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4985 */
4986 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4987 /** @todo Add stats for resume vs launch. */
4988 PVM pVM = pVCpu->CTX_SUFF(pVM);
4989#ifdef VBOX_WITH_KERNEL_USING_XMM
4990 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4991#else
4992 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4993#endif
4994 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4995 return rc;
4996}
4997
4998
4999/**
5000 * Reports world-switch error and dumps some useful debug info.
5001 *
5002 * @param pVCpu The cross context virtual CPU structure.
5003 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5004 * @param pVmxTransient Pointer to the VMX transient structure (only
5005 * exitReason updated).
5006 */
5007static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
5008{
5009 Assert(pVCpu);
5010 Assert(pVmxTransient);
5011 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
5012
5013 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
5014 switch (rcVMRun)
5015 {
5016 case VERR_VMX_INVALID_VMXON_PTR:
5017 AssertFailed();
5018 break;
5019 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5020 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5021 {
5022 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5023 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5024 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
5025 AssertRC(rc);
5026
5027 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5028 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5029 Cannot do it here as we may have been long preempted. */
5030
5031#ifdef VBOX_STRICT
5032 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5033 pVmxTransient->uExitReason));
5034 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
5035 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5036 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5037 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5038 else
5039 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5040 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5041 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5042
5043 /* VMX control bits. */
5044 uint32_t u32Val;
5045 uint64_t u64Val;
5046 RTHCUINTREG uHCReg;
5047 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5048 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5049 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5050 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5051 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
5052 {
5053 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5054 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5055 }
5056 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5057 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5058 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5059 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5060 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5061 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5062 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5063 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5064 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5065 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5066 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5067 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5068 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5069 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5070 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5071 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5072 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5073 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5074 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5075 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5076 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5077 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5078 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5079 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5080 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5081 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5082 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5083 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5084 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5085 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5086 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5087 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5088 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5089 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5090 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5091 {
5092 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5093 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5094 }
5095
5096 /* Guest bits. */
5097 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5098 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
5099 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5100 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
5101 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5102 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
5103 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
5104 {
5105 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5106 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5107 }
5108
5109 /* Host bits. */
5110 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5111 Log4(("Host CR0 %#RHr\n", uHCReg));
5112 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5113 Log4(("Host CR3 %#RHr\n", uHCReg));
5114 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5115 Log4(("Host CR4 %#RHr\n", uHCReg));
5116
5117 RTGDTR HostGdtr;
5118 PCX86DESCHC pDesc;
5119 ASMGetGDTR(&HostGdtr);
5120 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5121 Log4(("Host CS %#08x\n", u32Val));
5122 if (u32Val < HostGdtr.cbGdt)
5123 {
5124 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5125 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5126 }
5127
5128 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5129 Log4(("Host DS %#08x\n", u32Val));
5130 if (u32Val < HostGdtr.cbGdt)
5131 {
5132 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5133 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5134 }
5135
5136 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5137 Log4(("Host ES %#08x\n", u32Val));
5138 if (u32Val < HostGdtr.cbGdt)
5139 {
5140 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5141 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5142 }
5143
5144 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5145 Log4(("Host FS %#08x\n", u32Val));
5146 if (u32Val < HostGdtr.cbGdt)
5147 {
5148 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5149 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5150 }
5151
5152 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5153 Log4(("Host GS %#08x\n", u32Val));
5154 if (u32Val < HostGdtr.cbGdt)
5155 {
5156 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5157 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5158 }
5159
5160 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5161 Log4(("Host SS %#08x\n", u32Val));
5162 if (u32Val < HostGdtr.cbGdt)
5163 {
5164 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5165 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5166 }
5167
5168 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5169 Log4(("Host TR %#08x\n", u32Val));
5170 if (u32Val < HostGdtr.cbGdt)
5171 {
5172 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5173 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5174 }
5175
5176 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5177 Log4(("Host TR Base %#RHv\n", uHCReg));
5178 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5179 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5180 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5181 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5182 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5183 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5184 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5185 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5186 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5187 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5188 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5189 Log4(("Host RSP %#RHv\n", uHCReg));
5190 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5191 Log4(("Host RIP %#RHv\n", uHCReg));
5192# if HC_ARCH_BITS == 64
5193 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5194 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5195 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5196 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5197 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5198 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5199# endif
5200#endif /* VBOX_STRICT */
5201 break;
5202 }
5203
5204 default:
5205 /* Impossible */
5206 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5207 break;
5208 }
5209}
5210
5211
5212#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5213#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5214# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5215#endif
5216#ifdef VBOX_STRICT
5217static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5218{
5219 switch (idxField)
5220 {
5221 case VMX_VMCS_GUEST_RIP:
5222 case VMX_VMCS_GUEST_RSP:
5223 case VMX_VMCS_GUEST_SYSENTER_EIP:
5224 case VMX_VMCS_GUEST_SYSENTER_ESP:
5225 case VMX_VMCS_GUEST_GDTR_BASE:
5226 case VMX_VMCS_GUEST_IDTR_BASE:
5227 case VMX_VMCS_GUEST_CS_BASE:
5228 case VMX_VMCS_GUEST_DS_BASE:
5229 case VMX_VMCS_GUEST_ES_BASE:
5230 case VMX_VMCS_GUEST_FS_BASE:
5231 case VMX_VMCS_GUEST_GS_BASE:
5232 case VMX_VMCS_GUEST_SS_BASE:
5233 case VMX_VMCS_GUEST_LDTR_BASE:
5234 case VMX_VMCS_GUEST_TR_BASE:
5235 case VMX_VMCS_GUEST_CR3:
5236 return true;
5237 }
5238 return false;
5239}
5240
5241static bool hmR0VmxIsValidReadField(uint32_t idxField)
5242{
5243 switch (idxField)
5244 {
5245 /* Read-only fields. */
5246 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5247 return true;
5248 }
5249 /* Remaining readable fields should also be writable. */
5250 return hmR0VmxIsValidWriteField(idxField);
5251}
5252#endif /* VBOX_STRICT */
5253
5254
5255/**
5256 * Executes the specified handler in 64-bit mode.
5257 *
5258 * @returns VBox status code (no informational status codes).
5259 * @param pVCpu The cross context virtual CPU structure.
5260 * @param enmOp The operation to perform.
5261 * @param cParams Number of parameters.
5262 * @param paParam Array of 32-bit parameters.
5263 */
5264VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
5265{
5266 PVM pVM = pVCpu->CTX_SUFF(pVM);
5267 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5268 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5269 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5270 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5271
5272#ifdef VBOX_STRICT
5273 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5274 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5275
5276 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5277 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5278#endif
5279
5280 /* Disable interrupts. */
5281 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5282
5283#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5284 RTCPUID idHostCpu = RTMpCpuId();
5285 CPUMR0SetLApic(pVCpu, idHostCpu);
5286#endif
5287
5288 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
5289 RTHCPHYS HCPhysCpuPage = pHostCpu->HCPhysMemObj;
5290
5291 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5292 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5293 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
5294
5295 /* Leave VMX Root Mode. */
5296 VMXDisable();
5297
5298 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5299
5300 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5301 CPUMSetHyperEIP(pVCpu, enmOp);
5302 for (int i = (int)cParams - 1; i >= 0; i--)
5303 CPUMPushHyper(pVCpu, paParam[i]);
5304
5305 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5306
5307 /* Call the switcher. */
5308 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
5309 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5310
5311 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5312 /* Make sure the VMX instructions don't cause #UD faults. */
5313 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5314
5315 /* Re-enter VMX Root Mode */
5316 int rc2 = VMXEnable(HCPhysCpuPage);
5317 if (RT_FAILURE(rc2))
5318 {
5319 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5320 ASMSetFlags(fOldEFlags);
5321 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5322 return rc2;
5323 }
5324
5325 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5326 AssertRC(rc2);
5327 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5328 Assert(!(ASMGetFlags() & X86_EFL_IF));
5329 ASMSetFlags(fOldEFlags);
5330 return rc;
5331}
5332
5333
5334/**
5335 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5336 * supporting 64-bit guests.
5337 *
5338 * @returns VBox status code.
5339 * @param fResume Whether to VMLAUNCH or VMRESUME.
5340 * @param pCtx Pointer to the guest-CPU context.
5341 * @param pCache Pointer to the VMCS cache.
5342 * @param pVM The cross context VM structure.
5343 * @param pVCpu The cross context virtual CPU structure.
5344 */
5345DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5346{
5347 NOREF(fResume);
5348
5349 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
5350 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
5351
5352#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5353 pCache->uPos = 1;
5354 pCache->interPD = PGMGetInterPaeCR3(pVM);
5355 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5356#endif
5357
5358#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5359 pCache->TestIn.HCPhysCpuPage = 0;
5360 pCache->TestIn.HCPhysVmcs = 0;
5361 pCache->TestIn.pCache = 0;
5362 pCache->TestOut.HCPhysVmcs = 0;
5363 pCache->TestOut.pCache = 0;
5364 pCache->TestOut.pCtx = 0;
5365 pCache->TestOut.eflags = 0;
5366#else
5367 NOREF(pCache);
5368#endif
5369
5370 uint32_t aParam[10];
5371 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5372 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
5373 aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5374 aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
5375 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5376 aParam[5] = 0;
5377 aParam[6] = VM_RC_ADDR(pVM, pVM);
5378 aParam[7] = 0;
5379 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5380 aParam[9] = 0;
5381
5382#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5383 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5384 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5385#endif
5386 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5387
5388#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5389 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5390 Assert(pCtx->dr[4] == 10);
5391 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5392#endif
5393
5394#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5395 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5396 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5397 pVCpu->hm.s.vmx.HCPhysVmcs));
5398 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5399 pCache->TestOut.HCPhysVmcs));
5400 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5401 pCache->TestOut.pCache));
5402 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5403 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5404 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5405 pCache->TestOut.pCtx));
5406 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5407#endif
5408 NOREF(pCtx);
5409 return rc;
5410}
5411
5412
5413/**
5414 * Initialize the VMCS-Read cache.
5415 *
5416 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5417 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5418 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5419 * (those that have a 32-bit FULL & HIGH part).
5420 *
5421 * @returns VBox status code.
5422 * @param pVCpu The cross context virtual CPU structure.
5423 */
5424static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
5425{
5426#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5427 do { \
5428 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5429 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5430 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5431 ++cReadFields; \
5432 } while (0)
5433
5434 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5435 uint32_t cReadFields = 0;
5436
5437 /*
5438 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5439 * and serve to indicate exceptions to the rules.
5440 */
5441
5442 /* Guest-natural selector base fields. */
5443#if 0
5444 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5445 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5446 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5447#endif
5448 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5449 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5450 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5451 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5452 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5453 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5455 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5456 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5457 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5458 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5459 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5460#if 0
5461 /* Unused natural width guest-state fields. */
5462 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS);
5463 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5464#endif
5465 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5466 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5467
5468 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
5469 these 64-bit fields (using "FULL" and "HIGH" fields). */
5470#if 0
5471 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5472 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5473 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5474 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5475 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5476 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5477 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5478 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5479 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5480#endif
5481
5482 /* Natural width guest-state fields. */
5483 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5484 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_GUEST_LINEAR_ADDR);
5485
5486 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5487 {
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5489 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5490 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5491 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5492 }
5493 else
5494 {
5495 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5496 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5497 }
5498
5499#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5500 return VINF_SUCCESS;
5501}
5502
5503
5504/**
5505 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5506 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5507 * darwin, running 64-bit guests).
5508 *
5509 * @returns VBox status code.
5510 * @param pVCpu The cross context virtual CPU structure.
5511 * @param idxField The VMCS field encoding.
5512 * @param u64Val 16, 32 or 64-bit value.
5513 */
5514VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5515{
5516 int rc;
5517 switch (idxField)
5518 {
5519 /*
5520 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5521 */
5522 /* 64-bit Control fields. */
5523 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5524 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5525 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5526 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5527 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5528 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5529 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5530 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5531 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
5532 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5533 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5534 case VMX_VMCS64_CTRL_EPTP_FULL:
5535 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5536 /* 64-bit Guest-state fields. */
5537 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5538 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5539 case VMX_VMCS64_GUEST_PAT_FULL:
5540 case VMX_VMCS64_GUEST_EFER_FULL:
5541 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5542 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5543 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5544 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5545 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5546 /* 64-bit Host-state fields. */
5547 case VMX_VMCS64_HOST_PAT_FULL:
5548 case VMX_VMCS64_HOST_EFER_FULL:
5549 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5550 {
5551 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5552 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
5553 break;
5554 }
5555
5556 /*
5557 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5558 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5559 */
5560 /* Natural-width Guest-state fields. */
5561 case VMX_VMCS_GUEST_CR3:
5562 case VMX_VMCS_GUEST_ES_BASE:
5563 case VMX_VMCS_GUEST_CS_BASE:
5564 case VMX_VMCS_GUEST_SS_BASE:
5565 case VMX_VMCS_GUEST_DS_BASE:
5566 case VMX_VMCS_GUEST_FS_BASE:
5567 case VMX_VMCS_GUEST_GS_BASE:
5568 case VMX_VMCS_GUEST_LDTR_BASE:
5569 case VMX_VMCS_GUEST_TR_BASE:
5570 case VMX_VMCS_GUEST_GDTR_BASE:
5571 case VMX_VMCS_GUEST_IDTR_BASE:
5572 case VMX_VMCS_GUEST_RSP:
5573 case VMX_VMCS_GUEST_RIP:
5574 case VMX_VMCS_GUEST_SYSENTER_ESP:
5575 case VMX_VMCS_GUEST_SYSENTER_EIP:
5576 {
5577 if (!(RT_HI_U32(u64Val)))
5578 {
5579 /* If this field is 64-bit, VT-x will zero out the top bits. */
5580 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5581 }
5582 else
5583 {
5584 /* Assert that only the 32->64 switcher case should ever come here. */
5585 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5586 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5587 }
5588 break;
5589 }
5590
5591 default:
5592 {
5593 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5594 rc = VERR_INVALID_PARAMETER;
5595 break;
5596 }
5597 }
5598 AssertRCReturn(rc, rc);
5599 return rc;
5600}
5601
5602
5603/**
5604 * Queue up a VMWRITE by using the VMCS write cache.
5605 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5606 *
5607 * @param pVCpu The cross context virtual CPU structure.
5608 * @param idxField The VMCS field encoding.
5609 * @param u64Val 16, 32 or 64-bit value.
5610 */
5611VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5612{
5613 AssertPtr(pVCpu);
5614 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5615
5616 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5617 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5618
5619 /* Make sure there are no duplicates. */
5620 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5621 {
5622 if (pCache->Write.aField[i] == idxField)
5623 {
5624 pCache->Write.aFieldVal[i] = u64Val;
5625 return VINF_SUCCESS;
5626 }
5627 }
5628
5629 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5630 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5631 pCache->Write.cValidEntries++;
5632 return VINF_SUCCESS;
5633}
5634#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5635
5636
5637/**
5638 * Sets up the usage of TSC-offsetting and updates the VMCS.
5639 *
5640 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5641 * VMX preemption timer.
5642 *
5643 * @returns VBox status code.
5644 * @param pVCpu The cross context virtual CPU structure.
5645 *
5646 * @remarks No-long-jump zone!!!
5647 */
5648static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5649{
5650 bool fOffsettedTsc;
5651 bool fParavirtTsc;
5652 PVM pVM = pVCpu->CTX_SUFF(pVM);
5653 uint64_t uTscOffset;
5654 if (pVM->hm.s.vmx.fUsePreemptTimer)
5655 {
5656 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
5657
5658 /* Make sure the returned values have sane upper and lower boundaries. */
5659 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5660 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5661 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5662 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5663
5664 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5665 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
5666 AssertRC(rc);
5667 }
5668 else
5669 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
5670
5671 if (fParavirtTsc)
5672 {
5673 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5674 information before every VM-entry, hence disable it for performance sake. */
5675#if 0
5676 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5677 AssertRC(rc);
5678#endif
5679 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5680 }
5681
5682 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
5683 if ( fOffsettedTsc
5684 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5685 {
5686 if (pVCpu->hm.s.vmx.u64TscOffset != uTscOffset)
5687 {
5688 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
5689 AssertRC(rc);
5690 pVCpu->hm.s.vmx.u64TscOffset = uTscOffset;
5691 }
5692
5693 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
5694 {
5695 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
5696 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5697 AssertRC(rc);
5698 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5699 }
5700 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5701 }
5702 else
5703 {
5704 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5705 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
5706 {
5707 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
5708 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5709 AssertRC(rc);
5710 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5711 }
5712 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5713 }
5714}
5715
5716
5717/**
5718 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5719 * VM-exit interruption info type.
5720 *
5721 * @returns The IEM exception flags.
5722 * @param uVector The event vector.
5723 * @param uVmxVectorType The VMX event type.
5724 *
5725 * @remarks This function currently only constructs flags required for
5726 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5727 * and CR2 aspects of an exception are not included).
5728 */
5729static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5730{
5731 uint32_t fIemXcptFlags;
5732 switch (uVmxVectorType)
5733 {
5734 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5735 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5736 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5737 break;
5738
5739 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5740 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5741 break;
5742
5743 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5744 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5745 break;
5746
5747 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5748 {
5749 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5750 if (uVector == X86_XCPT_BP)
5751 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5752 else if (uVector == X86_XCPT_OF)
5753 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5754 else
5755 {
5756 fIemXcptFlags = 0;
5757 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5758 }
5759 break;
5760 }
5761
5762 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5763 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5764 break;
5765
5766 default:
5767 fIemXcptFlags = 0;
5768 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5769 break;
5770 }
5771 return fIemXcptFlags;
5772}
5773
5774
5775/**
5776 * Sets an event as a pending event to be injected into the guest.
5777 *
5778 * @param pVCpu The cross context virtual CPU structure.
5779 * @param u32IntInfo The VM-entry interruption-information field.
5780 * @param cbInstr The VM-entry instruction length in bytes (for software
5781 * interrupts, exceptions and privileged software
5782 * exceptions).
5783 * @param u32ErrCode The VM-entry exception error code.
5784 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5785 * page-fault.
5786 *
5787 * @remarks Statistics counter assumes this is a guest event being injected or
5788 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5789 * always incremented.
5790 */
5791DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5792 RTGCUINTPTR GCPtrFaultAddress)
5793{
5794 Assert(!pVCpu->hm.s.Event.fPending);
5795 pVCpu->hm.s.Event.fPending = true;
5796 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5797 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5798 pVCpu->hm.s.Event.cbInstr = cbInstr;
5799 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5800}
5801
5802
5803/**
5804 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5805 *
5806 * @param pVCpu The cross context virtual CPU structure.
5807 */
5808DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
5809{
5810 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
5811 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5812 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5813 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5814 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5815}
5816
5817
5818/**
5819 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
5820 *
5821 * @param pVCpu The cross context virtual CPU structure.
5822 */
5823DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
5824{
5825 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
5826 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5827 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5828 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5829 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5830}
5831
5832
5833/**
5834 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
5835 *
5836 * @param pVCpu The cross context virtual CPU structure.
5837 */
5838DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
5839{
5840 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
5841 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5842 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5843 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5844 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5845}
5846
5847
5848#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5849/**
5850 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
5851 *
5852 * @param pVCpu The cross context virtual CPU structure.
5853 * @param u32ErrCode The error code for the general-protection exception.
5854 */
5855DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
5856{
5857 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
5858 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5859 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5860 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5861 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5862}
5863
5864
5865/**
5866 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
5867 *
5868 * @param pVCpu The cross context virtual CPU structure.
5869 * @param u32ErrCode The error code for the stack exception.
5870 */
5871DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
5872{
5873 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
5874 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5875 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5876 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5877 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5878}
5879
5880
5881/**
5882 * Decodes the memory operand of an instruction that caused a VM-exit.
5883 *
5884 * The VM-exit qualification field provides the displacement field for memory
5885 * operand instructions, if any.
5886 *
5887 * @returns Strict VBox status code (i.e. informational status codes too).
5888 * @retval VINF_SUCCESS if the operand was successfully decoded.
5889 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
5890 * operand.
5891 * @param pVCpu The cross context virtual CPU structure.
5892 * @param uExitInstrInfo The VM-exit instruction information field.
5893 * @param enmMemAccess The memory operand's access type (read or write).
5894 * @param GCPtrDisp The instruction displacement field, if any. For
5895 * RIP-relative addressing pass RIP + displacement here.
5896 * @param pGCPtrMem Where to store the effective destination memory address.
5897 */
5898static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
5899 PRTGCPTR pGCPtrMem)
5900{
5901 Assert(pGCPtrMem);
5902 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
5903 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
5904 | CPUMCTX_EXTRN_CR0);
5905
5906 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
5907 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
5908 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
5909
5910 VMXEXITINSTRINFO ExitInstrInfo;
5911 ExitInstrInfo.u = uExitInstrInfo;
5912 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
5913 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
5914 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
5915 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
5916 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
5917 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
5918 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
5919 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
5920 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
5921
5922 /*
5923 * Validate instruction information.
5924 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
5925 */
5926 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
5927 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
5928 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
5929 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
5930 AssertLogRelMsgReturn(fIsMemOperand,
5931 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
5932
5933 /*
5934 * Compute the complete effective address.
5935 *
5936 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
5937 * See AMD spec. 4.5.2 "Segment Registers".
5938 */
5939 RTGCPTR GCPtrMem = GCPtrDisp;
5940 if (fBaseRegValid)
5941 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
5942 if (fIdxRegValid)
5943 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
5944
5945 RTGCPTR const GCPtrOff = GCPtrMem;
5946 if ( !fIsLongMode
5947 || iSegReg >= X86_SREG_FS)
5948 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
5949 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
5950
5951 /*
5952 * Validate effective address.
5953 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
5954 */
5955 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
5956 Assert(cbAccess > 0);
5957 if (fIsLongMode)
5958 {
5959 if (X86_IS_CANONICAL(GCPtrMem))
5960 {
5961 *pGCPtrMem = GCPtrMem;
5962 return VINF_SUCCESS;
5963 }
5964
5965 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
5966 * "Data Limit Checks in 64-bit Mode". */
5967 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
5968 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5969 return VINF_HM_PENDING_XCPT;
5970 }
5971
5972 /*
5973 * This is a watered down version of iemMemApplySegment().
5974 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
5975 * and segment CPL/DPL checks are skipped.
5976 */
5977 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
5978 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
5979 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
5980
5981 /* Check if the segment is present and usable. */
5982 if ( pSel->Attr.n.u1Present
5983 && !pSel->Attr.n.u1Unusable)
5984 {
5985 Assert(pSel->Attr.n.u1DescType);
5986 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
5987 {
5988 /* Check permissions for the data segment. */
5989 if ( enmMemAccess == VMXMEMACCESS_WRITE
5990 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
5991 {
5992 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
5993 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
5994 return VINF_HM_PENDING_XCPT;
5995 }
5996
5997 /* Check limits if it's a normal data segment. */
5998 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
5999 {
6000 if ( GCPtrFirst32 > pSel->u32Limit
6001 || GCPtrLast32 > pSel->u32Limit)
6002 {
6003 Log4Func(("Data segment limit exceeded."
6004 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6005 GCPtrLast32, pSel->u32Limit));
6006 if (iSegReg == X86_SREG_SS)
6007 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6008 else
6009 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6010 return VINF_HM_PENDING_XCPT;
6011 }
6012 }
6013 else
6014 {
6015 /* Check limits if it's an expand-down data segment.
6016 Note! The upper boundary is defined by the B bit, not the G bit! */
6017 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
6018 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
6019 {
6020 Log4Func(("Expand-down data segment limit exceeded."
6021 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6022 GCPtrLast32, pSel->u32Limit));
6023 if (iSegReg == X86_SREG_SS)
6024 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6025 else
6026 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6027 return VINF_HM_PENDING_XCPT;
6028 }
6029 }
6030 }
6031 else
6032 {
6033 /* Check permissions for the code segment. */
6034 if ( enmMemAccess == VMXMEMACCESS_WRITE
6035 || ( enmMemAccess == VMXMEMACCESS_READ
6036 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
6037 {
6038 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6039 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6040 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6041 return VINF_HM_PENDING_XCPT;
6042 }
6043
6044 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6045 if ( GCPtrFirst32 > pSel->u32Limit
6046 || GCPtrLast32 > pSel->u32Limit)
6047 {
6048 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6049 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6050 if (iSegReg == X86_SREG_SS)
6051 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6052 else
6053 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6054 return VINF_HM_PENDING_XCPT;
6055 }
6056 }
6057 }
6058 else
6059 {
6060 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6061 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6062 return VINF_HM_PENDING_XCPT;
6063 }
6064
6065 *pGCPtrMem = GCPtrMem;
6066 return VINF_SUCCESS;
6067}
6068
6069
6070/**
6071 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6072 * guest attempting to execute a VMX instruction.
6073 *
6074 * @returns Strict VBox status code (i.e. informational status codes too).
6075 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6076 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6077 *
6078 * @param pVCpu The cross context virtual CPU structure.
6079 * @param uExitReason The VM-exit reason.
6080 *
6081 * @todo NstVmx: Document other error codes when VM-exit is implemented.
6082 * @remarks No-long-jump zone!!!
6083 */
6084static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
6085{
6086 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6087 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
6088
6089 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6090 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6091 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6092 {
6093 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6094 hmR0VmxSetPendingXcptUD(pVCpu);
6095 return VINF_HM_PENDING_XCPT;
6096 }
6097
6098 if (uExitReason == VMX_EXIT_VMXON)
6099 {
6100 /*
6101 * We check CR4.VMXE because it is required to be always set while in VMX operation
6102 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6103 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6104 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6105 */
6106 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6107 {
6108 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6109 hmR0VmxSetPendingXcptUD(pVCpu);
6110 return VINF_HM_PENDING_XCPT;
6111 }
6112 }
6113 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6114 {
6115 /*
6116 * The guest has not entered VMX operation but attempted to execute a VMX instruction
6117 * (other than VMXON), we need to raise a #UD.
6118 */
6119 Log4Func(("Not in VMX root mode -> #UD\n"));
6120 hmR0VmxSetPendingXcptUD(pVCpu);
6121 return VINF_HM_PENDING_XCPT;
6122 }
6123
6124 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
6125 {
6126 /*
6127 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
6128 * the guest hypervisor deal with it.
6129 */
6130 /** @todo NSTVMX: Trigger a VM-exit */
6131 }
6132
6133 /*
6134 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
6135 * (above) takes preceedence over the CPL check.
6136 */
6137 if (CPUMGetGuestCPL(pVCpu) > 0)
6138 {
6139 Log4Func(("CPL > 0 -> #GP(0)\n"));
6140 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6141 return VINF_HM_PENDING_XCPT;
6142 }
6143
6144 return VINF_SUCCESS;
6145}
6146
6147#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
6148
6149
6150/**
6151 * Handle a condition that occurred while delivering an event through the guest
6152 * IDT.
6153 *
6154 * @returns Strict VBox status code (i.e. informational status codes too).
6155 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6156 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
6157 * to continue execution of the guest which will delivery the \#DF.
6158 * @retval VINF_EM_RESET if we detected a triple-fault condition.
6159 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
6160 *
6161 * @param pVCpu The cross context virtual CPU structure.
6162 * @param pVmxTransient Pointer to the VMX transient structure.
6163 *
6164 * @remarks No-long-jump zone!!!
6165 */
6166static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6167{
6168 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
6169
6170 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
6171 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
6172 AssertRCReturn(rc2, rc2);
6173
6174 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
6175 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6176 {
6177 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
6178 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
6179
6180 /*
6181 * If the event was a software interrupt (generated with INT n) or a software exception
6182 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
6183 * can handle the VM-exit and continue guest execution which will re-execute the
6184 * instruction rather than re-injecting the exception, as that can cause premature
6185 * trips to ring-3 before injection and involve TRPM which currently has no way of
6186 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
6187 * the problem).
6188 */
6189 IEMXCPTRAISE enmRaise;
6190 IEMXCPTRAISEINFO fRaiseInfo;
6191 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6192 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6193 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6194 {
6195 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
6196 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6197 }
6198 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6199 {
6200 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
6201 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
6202 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
6203 /** @todo Make AssertMsgReturn as just AssertMsg later. */
6204 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
6205 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
6206 uExitVectorType), VERR_VMX_IPE_5);
6207
6208 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
6209
6210 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
6211 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
6212 {
6213 pVmxTransient->fVectoringPF = true;
6214 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6215 }
6216 }
6217 else
6218 {
6219 /*
6220 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
6221 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
6222 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
6223 */
6224 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6225 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6226 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
6227 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6228 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6229 }
6230
6231 /*
6232 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
6233 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
6234 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
6235 * subsequent VM-entry would fail.
6236 *
6237 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6238 */
6239 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
6240 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6241 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
6242 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
6243 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6244 {
6245 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6246 }
6247
6248 switch (enmRaise)
6249 {
6250 case IEMXCPTRAISE_CURRENT_XCPT:
6251 {
6252 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
6253 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
6254 Assert(rcStrict == VINF_SUCCESS);
6255 break;
6256 }
6257
6258 case IEMXCPTRAISE_PREV_EVENT:
6259 {
6260 uint32_t u32ErrCode;
6261 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
6262 {
6263 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6264 AssertRCReturn(rc2, rc2);
6265 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6266 }
6267 else
6268 u32ErrCode = 0;
6269
6270 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
6271 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6272 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6273 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
6274
6275 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
6276 pVCpu->hm.s.Event.u32ErrCode));
6277 Assert(rcStrict == VINF_SUCCESS);
6278 break;
6279 }
6280
6281 case IEMXCPTRAISE_REEXEC_INSTR:
6282 Assert(rcStrict == VINF_SUCCESS);
6283 break;
6284
6285 case IEMXCPTRAISE_DOUBLE_FAULT:
6286 {
6287 /*
6288 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6289 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6290 */
6291 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6292 {
6293 pVmxTransient->fVectoringDoublePF = true;
6294 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
6295 pVCpu->cpum.GstCtx.cr2));
6296 rcStrict = VINF_SUCCESS;
6297 }
6298 else
6299 {
6300 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6301 hmR0VmxSetPendingXcptDF(pVCpu);
6302 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
6303 uIdtVector, uExitVector));
6304 rcStrict = VINF_HM_DOUBLE_FAULT;
6305 }
6306 break;
6307 }
6308
6309 case IEMXCPTRAISE_TRIPLE_FAULT:
6310 {
6311 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
6312 rcStrict = VINF_EM_RESET;
6313 break;
6314 }
6315
6316 case IEMXCPTRAISE_CPU_HANG:
6317 {
6318 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
6319 rcStrict = VERR_EM_GUEST_CPU_HANG;
6320 break;
6321 }
6322
6323 default:
6324 {
6325 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6326 rcStrict = VERR_VMX_IPE_2;
6327 break;
6328 }
6329 }
6330 }
6331 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6332 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6333 && uExitVector != X86_XCPT_DF
6334 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6335 {
6336 /*
6337 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6338 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6339 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6340 */
6341 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6342 {
6343 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
6344 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6345 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6346 }
6347 }
6348
6349 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6350 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6351 return rcStrict;
6352}
6353
6354
6355/**
6356 * Imports a guest segment register from the current VMCS into
6357 * the guest-CPU context.
6358 *
6359 * @returns VBox status code.
6360 * @param pVCpu The cross context virtual CPU structure.
6361 * @param idxSel Index of the selector in the VMCS.
6362 * @param idxLimit Index of the segment limit in the VMCS.
6363 * @param idxBase Index of the segment base in the VMCS.
6364 * @param idxAccess Index of the access rights of the segment in the VMCS.
6365 * @param pSelReg Pointer to the segment selector.
6366 *
6367 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6368 * do not log!
6369 *
6370 * @remarks Never call this function directly!!! Use the
6371 * HMVMX_IMPORT_SREG() macro as that takes care
6372 * of whether to read from the VMCS cache or not.
6373 */
6374static int hmR0VmxImportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6375 PCPUMSELREG pSelReg)
6376{
6377 NOREF(pVCpu);
6378
6379 uint32_t u32Sel;
6380 uint32_t u32Limit;
6381 uint32_t u32Attr;
6382 uint64_t u64Base;
6383 int rc = VMXReadVmcs32(idxSel, &u32Sel);
6384 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
6385 rc |= VMXReadVmcs32(idxAccess, &u32Attr);
6386 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
6387 AssertRCReturn(rc, rc);
6388
6389 pSelReg->Sel = (uint16_t)u32Sel;
6390 pSelReg->ValidSel = (uint16_t)u32Sel;
6391 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6392 pSelReg->u32Limit = u32Limit;
6393 pSelReg->u64Base = u64Base;
6394 pSelReg->Attr.u = u32Attr;
6395
6396 /*
6397 * If VT-x marks the segment as unusable, most other bits remain undefined:
6398 * - For CS the L, D and G bits have meaning.
6399 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6400 * - For the remaining data segments no bits are defined.
6401 *
6402 * The present bit and the unusable bit has been observed to be set at the
6403 * same time (the selector was supposed to be invalid as we started executing
6404 * a V8086 interrupt in ring-0).
6405 *
6406 * What should be important for the rest of the VBox code, is that the P bit is
6407 * cleared. Some of the other VBox code recognizes the unusable bit, but
6408 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6409 * safe side here, we'll strip off P and other bits we don't care about. If
6410 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6411 *
6412 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6413 */
6414 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6415 {
6416 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6417
6418 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6419 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6420 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6421#ifdef VBOX_STRICT
6422 VMMRZCallRing3Disable(pVCpu);
6423 Log4Func(("Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Sel, pSelReg->Attr.u));
6424# ifdef DEBUG_bird
6425 AssertMsg((u32Attr & ~X86DESCATTR_P) == pSelReg->Attr.u,
6426 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6427 idxSel, u32Sel, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6428# endif
6429 VMMRZCallRing3Enable(pVCpu);
6430#endif
6431 }
6432 return VINF_SUCCESS;
6433}
6434
6435
6436/**
6437 * Imports the guest RIP from the VMCS back into the guest-CPU context.
6438 *
6439 * @returns VBox status code.
6440 * @param pVCpu The cross context virtual CPU structure.
6441 *
6442 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6443 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6444 * instead!!!
6445 */
6446DECLINLINE(int) hmR0VmxImportGuestRip(PVMCPU pVCpu)
6447{
6448 uint64_t u64Val;
6449 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6450 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
6451 {
6452 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6453 if (RT_SUCCESS(rc))
6454 {
6455 pCtx->rip = u64Val;
6456 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
6457 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
6458 }
6459 return rc;
6460 }
6461 return VINF_SUCCESS;
6462}
6463
6464
6465/**
6466 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
6467 *
6468 * @returns VBox status code.
6469 * @param pVCpu The cross context virtual CPU structure.
6470 *
6471 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6472 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6473 * instead!!!
6474 */
6475DECLINLINE(int) hmR0VmxImportGuestRFlags(PVMCPU pVCpu)
6476{
6477 uint32_t u32Val;
6478 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6479 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
6480 {
6481 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
6482 if (RT_SUCCESS(rc))
6483 {
6484 pCtx->eflags.u32 = u32Val;
6485
6486 /* Restore eflags for real-on-v86-mode hack. */
6487 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6488 {
6489 pCtx->eflags.Bits.u1VM = 0;
6490 pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6491 }
6492 }
6493 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
6494 return rc;
6495 }
6496 return VINF_SUCCESS;
6497}
6498
6499
6500/**
6501 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
6502 * context.
6503 *
6504 * @returns VBox status code.
6505 * @param pVCpu The cross context virtual CPU structure.
6506 *
6507 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6508 * do not log!
6509 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6510 * instead!!!
6511 */
6512DECLINLINE(int) hmR0VmxImportGuestIntrState(PVMCPU pVCpu)
6513{
6514 uint32_t u32Val;
6515 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6516 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
6517 AssertRCReturn(rc, rc);
6518
6519 /*
6520 * We additionally have a requirement to import RIP, RFLAGS depending on whether we
6521 * might need them in hmR0VmxEvaluatePendingEvent().
6522 */
6523 if (!u32Val)
6524 {
6525 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6526 {
6527 rc = hmR0VmxImportGuestRip(pVCpu);
6528 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6529 AssertRCReturn(rc, rc);
6530 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6531 }
6532
6533 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6534 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6535 }
6536 else
6537 {
6538 rc = hmR0VmxImportGuestRip(pVCpu);
6539 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6540 AssertRCReturn(rc, rc);
6541
6542 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
6543 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
6544 {
6545 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
6546 }
6547 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6548 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6549
6550 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6551 {
6552 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6553 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6554 }
6555 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6556 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6557 }
6558
6559 return VINF_SUCCESS;
6560}
6561
6562
6563/**
6564 * Worker for VMXR0ImportStateOnDemand.
6565 *
6566 * @returns VBox status code.
6567 * @param pVCpu The cross context virtual CPU structure.
6568 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6569 */
6570static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
6571{
6572#define VMXLOCAL_BREAK_RC(a_rc) \
6573 if (RT_FAILURE(a_rc)) \
6574 break
6575
6576 int rc = VINF_SUCCESS;
6577 PVM pVM = pVCpu->CTX_SUFF(pVM);
6578 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6579 uint64_t u64Val;
6580 uint32_t u32Val;
6581
6582 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
6583 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
6584
6585 /*
6586 * We disable interrupts to make the updating of the state and in particular
6587 * the fExtrn modification atomic wrt to preemption hooks.
6588 */
6589 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
6590
6591 fWhat &= pCtx->fExtrn;
6592 if (fWhat)
6593 {
6594 do
6595 {
6596 if (fWhat & CPUMCTX_EXTRN_RIP)
6597 {
6598 rc = hmR0VmxImportGuestRip(pVCpu);
6599 VMXLOCAL_BREAK_RC(rc);
6600 }
6601
6602 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
6603 {
6604 rc = hmR0VmxImportGuestRFlags(pVCpu);
6605 VMXLOCAL_BREAK_RC(rc);
6606 }
6607
6608 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
6609 {
6610 rc = hmR0VmxImportGuestIntrState(pVCpu);
6611 VMXLOCAL_BREAK_RC(rc);
6612 }
6613
6614 if (fWhat & CPUMCTX_EXTRN_RSP)
6615 {
6616 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6617 VMXLOCAL_BREAK_RC(rc);
6618 pCtx->rsp = u64Val;
6619 }
6620
6621 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
6622 {
6623 if (fWhat & CPUMCTX_EXTRN_CS)
6624 {
6625 rc = HMVMX_IMPORT_SREG(CS, &pCtx->cs);
6626 rc |= hmR0VmxImportGuestRip(pVCpu);
6627 VMXLOCAL_BREAK_RC(rc);
6628 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6629 pCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6630 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true);
6631 }
6632 if (fWhat & CPUMCTX_EXTRN_SS)
6633 {
6634 rc = HMVMX_IMPORT_SREG(SS, &pCtx->ss);
6635 VMXLOCAL_BREAK_RC(rc);
6636 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6637 pCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6638 }
6639 if (fWhat & CPUMCTX_EXTRN_DS)
6640 {
6641 rc = HMVMX_IMPORT_SREG(DS, &pCtx->ds);
6642 VMXLOCAL_BREAK_RC(rc);
6643 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6644 pCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6645 }
6646 if (fWhat & CPUMCTX_EXTRN_ES)
6647 {
6648 rc = HMVMX_IMPORT_SREG(ES, &pCtx->es);
6649 VMXLOCAL_BREAK_RC(rc);
6650 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6651 pCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6652 }
6653 if (fWhat & CPUMCTX_EXTRN_FS)
6654 {
6655 rc = HMVMX_IMPORT_SREG(FS, &pCtx->fs);
6656 VMXLOCAL_BREAK_RC(rc);
6657 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6658 pCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6659 }
6660 if (fWhat & CPUMCTX_EXTRN_GS)
6661 {
6662 rc = HMVMX_IMPORT_SREG(GS, &pCtx->gs);
6663 VMXLOCAL_BREAK_RC(rc);
6664 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6665 pCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6666 }
6667 }
6668
6669 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
6670 {
6671 if (fWhat & CPUMCTX_EXTRN_LDTR)
6672 {
6673 rc = HMVMX_IMPORT_SREG(LDTR, &pCtx->ldtr);
6674 VMXLOCAL_BREAK_RC(rc);
6675 }
6676
6677 if (fWhat & CPUMCTX_EXTRN_GDTR)
6678 {
6679 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6680 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
6681 VMXLOCAL_BREAK_RC(rc);
6682 pCtx->gdtr.pGdt = u64Val;
6683 pCtx->gdtr.cbGdt = u32Val;
6684 }
6685
6686 /* Guest IDTR. */
6687 if (fWhat & CPUMCTX_EXTRN_IDTR)
6688 {
6689 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6690 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
6691 VMXLOCAL_BREAK_RC(rc);
6692 pCtx->idtr.pIdt = u64Val;
6693 pCtx->idtr.cbIdt = u32Val;
6694 }
6695
6696 /* Guest TR. */
6697 if (fWhat & CPUMCTX_EXTRN_TR)
6698 {
6699 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, don't save that one. */
6700 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6701 {
6702 rc = HMVMX_IMPORT_SREG(TR, &pCtx->tr);
6703 VMXLOCAL_BREAK_RC(rc);
6704 }
6705 }
6706 }
6707
6708 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
6709 {
6710 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
6711 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
6712 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
6713 pCtx->SysEnter.cs = u32Val;
6714 VMXLOCAL_BREAK_RC(rc);
6715 }
6716
6717#if HC_ARCH_BITS == 64
6718 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
6719 {
6720 if ( pVM->hm.s.fAllow64BitGuests
6721 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6722 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
6723 }
6724
6725 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
6726 {
6727 if ( pVM->hm.s.fAllow64BitGuests
6728 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6729 {
6730 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
6731 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
6732 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
6733 }
6734 }
6735#endif
6736
6737 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
6738#if HC_ARCH_BITS == 32
6739 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
6740#endif
6741 )
6742 {
6743 PCVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6744 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
6745 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6746 {
6747 switch (pMsr->u32Msr)
6748 {
6749#if HC_ARCH_BITS == 32
6750 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
6751 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
6752 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
6753 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6754#endif
6755 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
6756 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
6757 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit */ break;
6758 default:
6759 {
6760 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6761 ASMSetFlags(fEFlags);
6762 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
6763 cMsrs));
6764 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6765 }
6766 }
6767 }
6768 }
6769
6770 if (fWhat & CPUMCTX_EXTRN_DR7)
6771 {
6772 if (!pVCpu->hm.s.fUsingHyperDR7)
6773 {
6774 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6775 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
6776 VMXLOCAL_BREAK_RC(rc);
6777 pCtx->dr[7] = u32Val;
6778 }
6779 }
6780
6781 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
6782 {
6783 uint32_t u32Shadow;
6784 if (fWhat & CPUMCTX_EXTRN_CR0)
6785 {
6786 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
6787 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
6788 VMXLOCAL_BREAK_RC(rc);
6789 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr0Mask)
6790 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr0Mask);
6791 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
6792 CPUMSetGuestCR0(pVCpu, u32Val);
6793 VMMRZCallRing3Enable(pVCpu);
6794 }
6795
6796 if (fWhat & CPUMCTX_EXTRN_CR4)
6797 {
6798 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
6799 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
6800 VMXLOCAL_BREAK_RC(rc);
6801 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr4Mask)
6802 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr4Mask);
6803 CPUMSetGuestCR4(pVCpu, u32Val);
6804 }
6805
6806 if (fWhat & CPUMCTX_EXTRN_CR3)
6807 {
6808 /* CR0.PG bit changes are always intercepted, so it's up to date. */
6809 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6810 || ( pVM->hm.s.fNestedPaging
6811 && CPUMIsGuestPagingEnabledEx(pCtx)))
6812 {
6813 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6814 if (pCtx->cr3 != u64Val)
6815 {
6816 CPUMSetGuestCR3(pVCpu, u64Val);
6817 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6818 }
6819
6820 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
6821 Note: CR4.PAE, CR0.PG, EFER bit changes are always intercepted, so they're up to date. */
6822 if (CPUMIsGuestInPAEModeEx(pCtx))
6823 {
6824 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6825 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6826 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6827 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6828 VMXLOCAL_BREAK_RC(rc);
6829 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6830 }
6831 }
6832 }
6833 }
6834 } while (0);
6835
6836 if (RT_SUCCESS(rc))
6837 {
6838 /* Update fExtrn. */
6839 pCtx->fExtrn &= ~fWhat;
6840
6841 /* If everything has been imported, clear the HM keeper bit. */
6842 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
6843 {
6844 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
6845 Assert(!pCtx->fExtrn);
6846 }
6847 }
6848 }
6849 else
6850 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
6851
6852 ASMSetFlags(fEFlags);
6853
6854 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
6855
6856 /*
6857 * Honor any pending CR3 updates.
6858 *
6859 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6860 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6861 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
6862 *
6863 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6864 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6865 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6866 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
6867 *
6868 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6869 */
6870 if (VMMRZCallRing3IsEnabled(pVCpu))
6871 {
6872 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6873 {
6874 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
6875 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6876 }
6877
6878 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6879 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6880
6881 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6882 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6883 }
6884
6885 return VINF_SUCCESS;
6886#undef VMXLOCAL_BREAK_RC
6887}
6888
6889
6890/**
6891 * Saves the guest state from the VMCS into the guest-CPU context.
6892 *
6893 * @returns VBox status code.
6894 * @param pVCpu The cross context virtual CPU structure.
6895 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6896 */
6897VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
6898{
6899 return hmR0VmxImportGuestState(pVCpu, fWhat);
6900}
6901
6902
6903/**
6904 * Check per-VM and per-VCPU force flag actions that require us to go back to
6905 * ring-3 for one reason or another.
6906 *
6907 * @returns Strict VBox status code (i.e. informational status codes too)
6908 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6909 * ring-3.
6910 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6911 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6912 * interrupts)
6913 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6914 * all EMTs to be in ring-3.
6915 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6916 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6917 * to the EM loop.
6918 *
6919 * @param pVCpu The cross context virtual CPU structure.
6920 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6921 */
6922static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
6923{
6924 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6925
6926 /*
6927 * Anything pending? Should be more likely than not if we're doing a good job.
6928 */
6929 PVM pVM = pVCpu->CTX_SUFF(pVM);
6930 if ( !fStepping
6931 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6932 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6933 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6934 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6935 return VINF_SUCCESS;
6936
6937 /* Pending PGM C3 sync. */
6938 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6939 {
6940 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6941 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
6942 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
6943 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6944 if (rcStrict2 != VINF_SUCCESS)
6945 {
6946 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6947 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6948 return rcStrict2;
6949 }
6950 }
6951
6952 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6953 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
6954 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6955 {
6956 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6957 int rc2 = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
6958 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6959 return rc2;
6960 }
6961
6962 /* Pending VM request packets, such as hardware interrupts. */
6963 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
6964 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
6965 {
6966 Log4Func(("Pending VM request forcing us back to ring-3\n"));
6967 return VINF_EM_PENDING_REQUEST;
6968 }
6969
6970 /* Pending PGM pool flushes. */
6971 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6972 {
6973 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
6974 return VINF_PGM_POOL_FLUSH_PENDING;
6975 }
6976
6977 /* Pending DMA requests. */
6978 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
6979 {
6980 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
6981 return VINF_EM_RAW_TO_R3;
6982 }
6983
6984 return VINF_SUCCESS;
6985}
6986
6987
6988/**
6989 * Converts any TRPM trap into a pending HM event. This is typically used when
6990 * entering from ring-3 (not longjmp returns).
6991 *
6992 * @param pVCpu The cross context virtual CPU structure.
6993 */
6994static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6995{
6996 Assert(TRPMHasTrap(pVCpu));
6997 Assert(!pVCpu->hm.s.Event.fPending);
6998
6999 uint8_t uVector;
7000 TRPMEVENT enmTrpmEvent;
7001 RTGCUINT uErrCode;
7002 RTGCUINTPTR GCPtrFaultAddress;
7003 uint8_t cbInstr;
7004
7005 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7006 AssertRC(rc);
7007
7008 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7009 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
7010 if (enmTrpmEvent == TRPM_TRAP)
7011 {
7012 switch (uVector)
7013 {
7014 case X86_XCPT_NMI:
7015 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7016 break;
7017
7018 case X86_XCPT_BP:
7019 case X86_XCPT_OF:
7020 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7021 break;
7022
7023 case X86_XCPT_PF:
7024 case X86_XCPT_DF:
7025 case X86_XCPT_TS:
7026 case X86_XCPT_NP:
7027 case X86_XCPT_SS:
7028 case X86_XCPT_GP:
7029 case X86_XCPT_AC:
7030 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7031 RT_FALL_THRU();
7032 default:
7033 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7034 break;
7035 }
7036 }
7037 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7038 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7039 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7040 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7041 else
7042 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7043
7044 rc = TRPMResetTrap(pVCpu);
7045 AssertRC(rc);
7046 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7047 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7048
7049 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7050}
7051
7052
7053/**
7054 * Converts the pending HM event into a TRPM trap.
7055 *
7056 * @param pVCpu The cross context virtual CPU structure.
7057 */
7058static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7059{
7060 Assert(pVCpu->hm.s.Event.fPending);
7061
7062 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7063 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7064 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7065 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7066
7067 /* If a trap was already pending, we did something wrong! */
7068 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7069
7070 TRPMEVENT enmTrapType;
7071 switch (uVectorType)
7072 {
7073 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7074 enmTrapType = TRPM_HARDWARE_INT;
7075 break;
7076
7077 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7078 enmTrapType = TRPM_SOFTWARE_INT;
7079 break;
7080
7081 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7082 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7083 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7084 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7085 enmTrapType = TRPM_TRAP;
7086 break;
7087
7088 default:
7089 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7090 enmTrapType = TRPM_32BIT_HACK;
7091 break;
7092 }
7093
7094 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7095
7096 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7097 AssertRC(rc);
7098
7099 if (fErrorCodeValid)
7100 TRPMSetErrorCode(pVCpu, uErrorCode);
7101
7102 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7103 && uVector == X86_XCPT_PF)
7104 {
7105 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7106 }
7107 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7108 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7109 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7110 {
7111 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7112 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7113 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7114 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7115 }
7116
7117 /* Clear the events from the VMCS. */
7118 VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7119
7120 /* We're now done converting the pending event. */
7121 pVCpu->hm.s.Event.fPending = false;
7122}
7123
7124
7125/**
7126 * Does the necessary state syncing before returning to ring-3 for any reason
7127 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7128 *
7129 * @returns VBox status code.
7130 * @param pVCpu The cross context virtual CPU structure.
7131 * @param fImportState Whether to import the guest state from the VMCS back
7132 * to the guest-CPU context.
7133 *
7134 * @remarks No-long-jmp zone!!!
7135 */
7136static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7137{
7138 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7139 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7140
7141 RTCPUID idCpu = RTMpCpuId();
7142 Log4Func(("HostCpuId=%u\n", idCpu));
7143
7144 /*
7145 * !!! IMPORTANT !!!
7146 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7147 */
7148
7149 /* Save the guest state if necessary. */
7150 if (fImportState)
7151 {
7152 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7153 AssertRCReturn(rc, rc);
7154 }
7155
7156 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
7157 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7158 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7159
7160 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
7161#ifdef VBOX_STRICT
7162 if (CPUMIsHyperDebugStateActive(pVCpu))
7163 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
7164#endif
7165 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7166 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7167 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7168
7169#if HC_ARCH_BITS == 64
7170 /* Restore host-state bits that VT-x only restores partially. */
7171 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7172 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7173 {
7174 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7175 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7176 }
7177 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7178#endif
7179
7180 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7181 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7182 {
7183 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
7184 if (!fImportState)
7185 {
7186 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
7187 AssertRCReturn(rc, rc);
7188 }
7189 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7190 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7191 }
7192 else
7193 pVCpu->hm.s.vmx.fLazyMsrs = 0;
7194
7195 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7196 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7197
7198 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7199 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
7200 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
7201 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
7202 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
7203 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7204 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7205 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7206 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7207
7208 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7209
7210 /** @todo This partially defeats the purpose of having preemption hooks.
7211 * The problem is, deregistering the hooks should be moved to a place that
7212 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7213 * context.
7214 */
7215 if (pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7216 {
7217 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7218 AssertRCReturn(rc, rc);
7219
7220 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
7221 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7222 }
7223 Assert(!(pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7224 NOREF(idCpu);
7225
7226 return VINF_SUCCESS;
7227}
7228
7229
7230/**
7231 * Leaves the VT-x session.
7232 *
7233 * @returns VBox status code.
7234 * @param pVCpu The cross context virtual CPU structure.
7235 *
7236 * @remarks No-long-jmp zone!!!
7237 */
7238static int hmR0VmxLeaveSession(PVMCPU pVCpu)
7239{
7240 HM_DISABLE_PREEMPT(pVCpu);
7241 HMVMX_ASSERT_CPU_SAFE(pVCpu);
7242 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7243 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7244
7245 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7246 and done this from the VMXR0ThreadCtxCallback(). */
7247 if (!pVCpu->hm.s.fLeaveDone)
7248 {
7249 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
7250 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7251 pVCpu->hm.s.fLeaveDone = true;
7252 }
7253 Assert(!pVCpu->cpum.GstCtx.fExtrn);
7254
7255 /*
7256 * !!! IMPORTANT !!!
7257 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7258 */
7259
7260 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7261 /** @todo Deregistering here means we need to VMCLEAR always
7262 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
7263 * for calling VMMR0ThreadCtxHookDisable here! */
7264 VMMR0ThreadCtxHookDisable(pVCpu);
7265
7266 /* Leave HM context. This takes care of local init (term). */
7267 int rc = HMR0LeaveCpu(pVCpu);
7268
7269 HM_RESTORE_PREEMPT();
7270 return rc;
7271}
7272
7273
7274/**
7275 * Does the necessary state syncing before doing a longjmp to ring-3.
7276 *
7277 * @returns VBox status code.
7278 * @param pVCpu The cross context virtual CPU structure.
7279 *
7280 * @remarks No-long-jmp zone!!!
7281 */
7282DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
7283{
7284 return hmR0VmxLeaveSession(pVCpu);
7285}
7286
7287
7288/**
7289 * Take necessary actions before going back to ring-3.
7290 *
7291 * An action requires us to go back to ring-3. This function does the necessary
7292 * steps before we can safely return to ring-3. This is not the same as longjmps
7293 * to ring-3, this is voluntary and prepares the guest so it may continue
7294 * executing outside HM (recompiler/IEM).
7295 *
7296 * @returns VBox status code.
7297 * @param pVCpu The cross context virtual CPU structure.
7298 * @param rcExit The reason for exiting to ring-3. Can be
7299 * VINF_VMM_UNKNOWN_RING3_CALL.
7300 */
7301static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
7302{
7303 Assert(pVCpu);
7304 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7305
7306 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7307 {
7308 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VmcsPhys);
7309 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7310 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7311 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7312 }
7313
7314 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7315 VMMRZCallRing3Disable(pVCpu);
7316 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
7317
7318 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7319 if (pVCpu->hm.s.Event.fPending)
7320 {
7321 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7322 Assert(!pVCpu->hm.s.Event.fPending);
7323 }
7324
7325 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7326 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7327
7328 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7329 and if we're injecting an event we should have a TRPM trap pending. */
7330 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7331#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
7332 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7333#endif
7334
7335 /* Save guest state and restore host state bits. */
7336 int rc = hmR0VmxLeaveSession(pVCpu);
7337 AssertRCReturn(rc, rc);
7338 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7339 /* Thread-context hooks are unregistered at this point!!! */
7340
7341 /* Sync recompiler state. */
7342 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7343 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7344 | CPUM_CHANGED_LDTR
7345 | CPUM_CHANGED_GDTR
7346 | CPUM_CHANGED_IDTR
7347 | CPUM_CHANGED_TR
7348 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7349 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
7350 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
7351 {
7352 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7353 }
7354
7355 Assert(!pVCpu->hm.s.fClearTrapFlag);
7356
7357 /* Update the exit-to-ring 3 reason. */
7358 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
7359
7360 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7361 if (rcExit != VINF_EM_RAW_INTERRUPT)
7362 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7363
7364 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7365
7366 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7367 VMMRZCallRing3RemoveNotification(pVCpu);
7368 VMMRZCallRing3Enable(pVCpu);
7369
7370 return rc;
7371}
7372
7373
7374/**
7375 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7376 * longjump to ring-3 and possibly get preempted.
7377 *
7378 * @returns VBox status code.
7379 * @param pVCpu The cross context virtual CPU structure.
7380 * @param enmOperation The operation causing the ring-3 longjump.
7381 * @param pvUser User argument, currently unused, NULL.
7382 */
7383static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7384{
7385 RT_NOREF(pvUser);
7386 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7387 {
7388 /*
7389 * !!! IMPORTANT !!!
7390 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7391 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7392 */
7393 VMMRZCallRing3RemoveNotification(pVCpu);
7394 VMMRZCallRing3Disable(pVCpu);
7395 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7396 RTThreadPreemptDisable(&PreemptState);
7397
7398 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7399 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7400 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7401
7402#if HC_ARCH_BITS == 64
7403 /* Restore host-state bits that VT-x only restores partially. */
7404 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7405 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7406 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7407 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7408#endif
7409
7410 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7411 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7412 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7413
7414 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7415 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7416 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7417 if (pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7418 {
7419 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7420 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
7421 }
7422
7423 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7424 VMMR0ThreadCtxHookDisable(pVCpu);
7425 HMR0LeaveCpu(pVCpu);
7426 RTThreadPreemptRestore(&PreemptState);
7427 return VINF_SUCCESS;
7428 }
7429
7430 Assert(pVCpu);
7431 Assert(pvUser);
7432 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7433 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7434
7435 VMMRZCallRing3Disable(pVCpu);
7436 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7437
7438 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
7439
7440 int rc = hmR0VmxLongJmpToRing3(pVCpu);
7441 AssertRCReturn(rc, rc);
7442
7443 VMMRZCallRing3Enable(pVCpu);
7444 return VINF_SUCCESS;
7445}
7446
7447
7448/**
7449 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7450 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7451 *
7452 * @param pVCpu The cross context virtual CPU structure.
7453 */
7454DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7455{
7456 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7457 {
7458 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7459 {
7460 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7461 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7462 AssertRC(rc);
7463 Log4Func(("Setup interrupt-window exiting\n"));
7464 }
7465 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7466}
7467
7468
7469/**
7470 * Clears the interrupt-window exiting control in the VMCS.
7471 *
7472 * @param pVCpu The cross context virtual CPU structure.
7473 */
7474DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7475{
7476 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
7477 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7478 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7479 AssertRC(rc);
7480 Log4Func(("Cleared interrupt-window exiting\n"));
7481}
7482
7483
7484/**
7485 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7486 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7487 *
7488 * @param pVCpu The cross context virtual CPU structure.
7489 */
7490DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7491{
7492 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7493 {
7494 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7495 {
7496 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7497 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7498 AssertRC(rc);
7499 Log4Func(("Setup NMI-window exiting\n"));
7500 }
7501 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7502}
7503
7504
7505/**
7506 * Clears the NMI-window exiting control in the VMCS.
7507 *
7508 * @param pVCpu The cross context virtual CPU structure.
7509 */
7510DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7511{
7512 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
7513 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7514 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7515 AssertRC(rc);
7516 Log4Func(("Cleared NMI-window exiting\n"));
7517}
7518
7519
7520/**
7521 * Evaluates the event to be delivered to the guest and sets it as the pending
7522 * event.
7523 *
7524 * @returns The VT-x guest-interruptibility state.
7525 * @param pVCpu The cross context virtual CPU structure.
7526 */
7527static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu)
7528{
7529 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7530 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7531 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu);
7532 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7533 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7534 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7535
7536 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7537 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7538 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7539 Assert(!TRPMHasTrap(pVCpu));
7540
7541 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7542 APICUpdatePendingInterrupts(pVCpu);
7543
7544 /*
7545 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7546 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7547 */
7548 /** @todo SMI. SMIs take priority over NMIs. */
7549 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7550 {
7551 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7552 if ( !pVCpu->hm.s.Event.fPending
7553 && !fBlockNmi
7554 && !fBlockSti
7555 && !fBlockMovSS)
7556 {
7557 Log4Func(("Pending NMI\n"));
7558 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INT_INFO_VALID;
7559 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7560
7561 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7562 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7563 }
7564 else
7565 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7566 }
7567 /*
7568 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7569 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7570 */
7571 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
7572 && !pVCpu->hm.s.fSingleInstruction)
7573 {
7574 Assert(!DBGFIsStepping(pVCpu));
7575 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7576 AssertRCReturn(rc, 0);
7577 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7578 if ( !pVCpu->hm.s.Event.fPending
7579 && !fBlockInt
7580 && !fBlockSti
7581 && !fBlockMovSS)
7582 {
7583 uint8_t u8Interrupt;
7584 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7585 if (RT_SUCCESS(rc))
7586 {
7587 Log4Func(("Pending external interrupt u8Interrupt=%#x\n", u8Interrupt));
7588 uint32_t u32IntInfo = u8Interrupt
7589 | VMX_EXIT_INT_INFO_VALID
7590 | (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7591
7592 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7593 }
7594 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7595 {
7596 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7597 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7598 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7599
7600 /*
7601 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7602 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7603 * need to re-set this force-flag here.
7604 */
7605 }
7606 else
7607 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7608 }
7609 else
7610 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7611 }
7612
7613 return fIntrState;
7614}
7615
7616
7617/**
7618 * Injects any pending events into the guest if the guest is in a state to
7619 * receive them.
7620 *
7621 * @returns Strict VBox status code (i.e. informational status codes too).
7622 * @param pVCpu The cross context virtual CPU structure.
7623 * @param fIntrState The VT-x guest-interruptibility state.
7624 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7625 * return VINF_EM_DBG_STEPPED if the event was
7626 * dispatched directly.
7627 */
7628static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, uint32_t fIntrState, bool fStepping)
7629{
7630 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7631 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7632
7633 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7634 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7635
7636 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7637 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7638 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7639 Assert(!TRPMHasTrap(pVCpu));
7640
7641 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7642 if (pVCpu->hm.s.Event.fPending)
7643 {
7644 /*
7645 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7646 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7647 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7648 *
7649 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7650 */
7651 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7652#ifdef VBOX_STRICT
7653 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7654 {
7655 bool const fBlockInt = !(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
7656 Assert(!fBlockInt);
7657 Assert(!fBlockSti);
7658 Assert(!fBlockMovSS);
7659 }
7660 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
7661 {
7662 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7663 Assert(!fBlockSti);
7664 Assert(!fBlockMovSS);
7665 Assert(!fBlockNmi);
7666 }
7667#endif
7668 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7669 uIntType));
7670
7671 /*
7672 * Inject the event and get any changes to the guest-interruptibility state.
7673 *
7674 * The guest-interruptibility state may need to be updated if we inject the event
7675 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
7676 */
7677 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7678 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping,
7679 &fIntrState);
7680 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7681
7682 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7683 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7684 else
7685 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7686 }
7687
7688 /*
7689 * Update the guest-interruptibility state.
7690 *
7691 * This is required for the real-on-v86 software interrupt injection case above, as well as
7692 * updates to the guest state from ring-3 or IEM/REM.
7693 */
7694 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
7695 AssertRCReturn(rc, rc);
7696
7697 /*
7698 * There's no need to clear the VM-entry interruption-information field here if we're not
7699 * injecting anything. VT-x clears the valid bit on every VM-exit.
7700 *
7701 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7702 */
7703
7704 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7705 NOREF(fBlockMovSS); NOREF(fBlockSti);
7706 return rcStrict;
7707}
7708
7709
7710/**
7711 * Injects a double-fault (\#DF) exception into the VM.
7712 *
7713 * @returns Strict VBox status code (i.e. informational status codes too).
7714 * @param pVCpu The cross context virtual CPU structure.
7715 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7716 * and should return VINF_EM_DBG_STEPPED if the event
7717 * is injected directly (register modified by us, not
7718 * by hardware on VM-entry).
7719 * @param pfIntrState Pointer to the current guest interruptibility-state.
7720 * This interruptibility-state will be updated if
7721 * necessary. This cannot not be NULL.
7722 */
7723DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, bool fStepping, uint32_t *pfIntrState)
7724{
7725 uint32_t const u32IntInfo = X86_XCPT_DF | VMX_EXIT_INT_INFO_VALID
7726 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7727 | VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7728 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */, fStepping,
7729 pfIntrState);
7730}
7731
7732
7733/**
7734 * Injects a general-protection (\#GP) fault into the VM.
7735 *
7736 * @returns Strict VBox status code (i.e. informational status codes too).
7737 * @param pVCpu The cross context virtual CPU structure.
7738 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7739 * mode, i.e. in real-mode it's not valid).
7740 * @param u32ErrorCode The error code associated with the \#GP.
7741 * @param fStepping Whether we're running in
7742 * hmR0VmxRunGuestCodeStep() and should return
7743 * VINF_EM_DBG_STEPPED if the event is injected
7744 * directly (register modified by us, not by
7745 * hardware on VM-entry).
7746 * @param pfIntrState Pointer to the current guest interruptibility-state.
7747 * This interruptibility-state will be updated if
7748 * necessary. This cannot not be NULL.
7749 */
7750DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, bool fErrorCodeValid, uint32_t u32ErrorCode, bool fStepping,
7751 uint32_t *pfIntrState)
7752{
7753 uint32_t const u32IntInfo = X86_XCPT_GP | VMX_EXIT_INT_INFO_VALID
7754 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7755 | (fErrorCodeValid ? VMX_EXIT_INT_INFO_ERROR_CODE_VALID : 0);
7756 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */, fStepping,
7757 pfIntrState);
7758}
7759
7760
7761/**
7762 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7763 * stack.
7764 *
7765 * @returns Strict VBox status code (i.e. informational status codes too).
7766 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7767 * @param pVCpu The cross context virtual CPU structure.
7768 * @param uValue The value to push to the guest stack.
7769 */
7770static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
7771{
7772 /*
7773 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7774 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7775 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7776 */
7777 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7778 if (pCtx->sp == 1)
7779 return VINF_EM_RESET;
7780 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7781 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
7782 AssertRC(rc);
7783 return rc;
7784}
7785
7786
7787/**
7788 * Injects an event into the guest upon VM-entry by updating the relevant fields
7789 * in the VM-entry area in the VMCS.
7790 *
7791 * @returns Strict VBox status code (i.e. informational status codes too).
7792 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7793 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7794 *
7795 * @param pVCpu The cross context virtual CPU structure.
7796 * @param u64IntInfo The VM-entry interruption-information field.
7797 * @param cbInstr The VM-entry instruction length in bytes (for
7798 * software interrupts, exceptions and privileged
7799 * software exceptions).
7800 * @param u32ErrCode The VM-entry exception error code.
7801 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7802 * @param pfIntrState Pointer to the current guest interruptibility-state.
7803 * This interruptibility-state will be updated if
7804 * necessary. This cannot not be NULL.
7805 * @param fStepping Whether we're running in
7806 * hmR0VmxRunGuestCodeStep() and should return
7807 * VINF_EM_DBG_STEPPED if the event is injected
7808 * directly (register modified by us, not by
7809 * hardware on VM-entry).
7810 */
7811static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7812 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState)
7813{
7814 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7815 AssertMsg(!RT_HI_U32(u64IntInfo), ("%#RX64\n", u64IntInfo));
7816 Assert(pfIntrState);
7817
7818 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7819 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7820 uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
7821 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
7822
7823#ifdef VBOX_STRICT
7824 /*
7825 * Validate the error-code-valid bit for hardware exceptions.
7826 * No error codes for exceptions in real-mode.
7827 *
7828 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7829 */
7830 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7831 && !CPUMIsGuestInRealModeEx(pCtx))
7832 {
7833 switch (uVector)
7834 {
7835 case X86_XCPT_PF:
7836 case X86_XCPT_DF:
7837 case X86_XCPT_TS:
7838 case X86_XCPT_NP:
7839 case X86_XCPT_SS:
7840 case X86_XCPT_GP:
7841 case X86_XCPT_AC:
7842 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
7843 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7844 RT_FALL_THRU();
7845 default:
7846 break;
7847 }
7848 }
7849#endif
7850
7851 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7852 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7853 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
7854
7855 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7856
7857 /*
7858 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
7859 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
7860 * interrupt handler in the (real-mode) guest.
7861 *
7862 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
7863 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7864 */
7865 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
7866 {
7867 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
7868 {
7869 /*
7870 * For unrestricted execution enabled CPUs running real-mode guests, we must not
7871 * set the deliver-error-code bit.
7872 *
7873 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7874 */
7875 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
7876 }
7877 else
7878 {
7879 PVM pVM = pVCpu->CTX_SUFF(pVM);
7880 Assert(PDMVmmDevHeapIsEnabled(pVM));
7881 Assert(pVM->hm.s.vmx.pRealModeTSS);
7882
7883 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
7884 int rc2 = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_RIP
7885 | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
7886 AssertRCReturn(rc2, rc2);
7887
7888 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7889 size_t const cbIdtEntry = sizeof(X86IDTR16);
7890 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
7891 {
7892 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7893 if (uVector == X86_XCPT_DF)
7894 return VINF_EM_RESET;
7895
7896 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7897 if (uVector == X86_XCPT_GP)
7898 return hmR0VmxInjectXcptDF(pVCpu, fStepping, pfIntrState);
7899
7900 /*
7901 * If we're injecting an event with no valid IDT entry, inject a #GP.
7902 * No error codes for exceptions in real-mode.
7903 *
7904 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7905 */
7906 return hmR0VmxInjectXcptGP(pVCpu, false /* fErrCodeValid */, 0 /* u32ErrCode */, fStepping, pfIntrState);
7907 }
7908
7909 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7910 uint16_t uGuestIp = pCtx->ip;
7911 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
7912 {
7913 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7914 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7915 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7916 }
7917 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
7918 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7919
7920 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7921 X86IDTR16 IdtEntry;
7922 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
7923 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7924 AssertRCReturn(rc2, rc2);
7925
7926 /* Construct the stack frame for the interrupt/exception handler. */
7927 VBOXSTRICTRC rcStrict;
7928 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
7929 if (rcStrict == VINF_SUCCESS)
7930 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
7931 if (rcStrict == VINF_SUCCESS)
7932 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
7933
7934 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7935 if (rcStrict == VINF_SUCCESS)
7936 {
7937 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7938 pCtx->rip = IdtEntry.offSel;
7939 pCtx->cs.Sel = IdtEntry.uSel;
7940 pCtx->cs.ValidSel = IdtEntry.uSel;
7941 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7942 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
7943 && uVector == X86_XCPT_PF)
7944 pCtx->cr2 = GCPtrFaultAddress;
7945
7946 /* If any other guest-state bits are changed here, make sure to update
7947 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7948 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
7949 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
7950 | HM_CHANGED_GUEST_RSP);
7951
7952 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7953 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
7954 {
7955 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
7956 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
7957 Log4Func(("Clearing inhibition due to STI\n"));
7958 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
7959 }
7960 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
7961 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
7962
7963 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7964 it, if we are returning to ring-3 before executing guest code. */
7965 pVCpu->hm.s.Event.fPending = false;
7966
7967 /* Make hmR0VmxPreRunGuest() return if we're stepping since we've changed cs:rip. */
7968 if (fStepping)
7969 rcStrict = VINF_EM_DBG_STEPPED;
7970 }
7971 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
7972 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7973 return rcStrict;
7974 }
7975 }
7976
7977 /* Validate. */
7978 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
7979 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
7980
7981 /* Inject. */
7982 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
7983 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
7984 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
7985 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
7986 AssertRCReturn(rc, rc);
7987
7988 /* Update CR2. */
7989 if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7990 && uVector == X86_XCPT_PF)
7991 pCtx->cr2 = GCPtrFaultAddress;
7992
7993 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
7994
7995 return VINF_SUCCESS;
7996}
7997
7998
7999/**
8000 * Clears the interrupt-window exiting control in the VMCS and if necessary
8001 * clears the current event in the VMCS as well.
8002 *
8003 * @returns VBox status code.
8004 * @param pVCpu The cross context virtual CPU structure.
8005 *
8006 * @remarks Use this function only to clear events that have not yet been
8007 * delivered to the guest but are injected in the VMCS!
8008 * @remarks No-long-jump zone!!!
8009 */
8010static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8011{
8012 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8013 {
8014 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8015 Log4Func(("Cleared interrupt window\n"));
8016 }
8017
8018 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8019 {
8020 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8021 Log4Func(("Cleared NMI window\n"));
8022 }
8023}
8024
8025
8026/**
8027 * Enters the VT-x session.
8028 *
8029 * @returns VBox status code.
8030 * @param pVCpu The cross context virtual CPU structure.
8031 */
8032VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu)
8033{
8034 AssertPtr(pVCpu);
8035 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8036 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8037
8038 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8039 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8040 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8041
8042#ifdef VBOX_STRICT
8043 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8044 RTCCUINTREG uHostCR4 = ASMGetCR4();
8045 if (!(uHostCR4 & X86_CR4_VMXE))
8046 {
8047 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8048 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8049 }
8050#endif
8051
8052 /*
8053 * Load the VCPU's VMCS as the current (and active) one.
8054 */
8055 Assert(pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_CLEAR);
8056 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8057 if (RT_SUCCESS(rc))
8058 {
8059 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8060 pVCpu->hm.s.fLeaveDone = false;
8061 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8062
8063 /*
8064 * Do the EMT scheduled L1D flush here if needed.
8065 */
8066 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8067 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8068 }
8069 return rc;
8070}
8071
8072
8073/**
8074 * The thread-context callback (only on platforms which support it).
8075 *
8076 * @param enmEvent The thread-context event.
8077 * @param pVCpu The cross context virtual CPU structure.
8078 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8079 * @thread EMT(pVCpu)
8080 */
8081VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8082{
8083 NOREF(fGlobalInit);
8084
8085 switch (enmEvent)
8086 {
8087 case RTTHREADCTXEVENT_OUT:
8088 {
8089 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8090 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8091 VMCPU_ASSERT_EMT(pVCpu);
8092
8093 /* No longjmps (logger flushes, locks) in this fragile context. */
8094 VMMRZCallRing3Disable(pVCpu);
8095 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8096
8097 /*
8098 * Restore host-state (FPU, debug etc.)
8099 */
8100 if (!pVCpu->hm.s.fLeaveDone)
8101 {
8102 /*
8103 * Do -not- import the guest-state here as we might already be in the middle of importing
8104 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8105 */
8106 hmR0VmxLeave(pVCpu, false /* fImportState */);
8107 pVCpu->hm.s.fLeaveDone = true;
8108 }
8109
8110 /* Leave HM context, takes care of local init (term). */
8111 int rc = HMR0LeaveCpu(pVCpu);
8112 AssertRC(rc); NOREF(rc);
8113
8114 /* Restore longjmp state. */
8115 VMMRZCallRing3Enable(pVCpu);
8116 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8117 break;
8118 }
8119
8120 case RTTHREADCTXEVENT_IN:
8121 {
8122 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8123 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8124 VMCPU_ASSERT_EMT(pVCpu);
8125
8126 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8127 VMMRZCallRing3Disable(pVCpu);
8128 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8129
8130 /* Initialize the bare minimum state required for HM. This takes care of
8131 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8132 int rc = hmR0EnterCpu(pVCpu);
8133 AssertRC(rc);
8134 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8135 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8136
8137 /* Load the active VMCS as the current one. */
8138 if (pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_CLEAR)
8139 {
8140 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8141 AssertRC(rc); NOREF(rc);
8142 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8143 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8144 }
8145 pVCpu->hm.s.fLeaveDone = false;
8146
8147 /* Do the EMT scheduled L1D flush if needed. */
8148 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8149 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8150
8151 /* Restore longjmp state. */
8152 VMMRZCallRing3Enable(pVCpu);
8153 break;
8154 }
8155
8156 default:
8157 break;
8158 }
8159}
8160
8161
8162/**
8163 * Exports the host state into the VMCS host-state area.
8164 * Sets up the VM-exit MSR-load area.
8165 *
8166 * The CPU state will be loaded from these fields on every successful VM-exit.
8167 *
8168 * @returns VBox status code.
8169 * @param pVCpu The cross context virtual CPU structure.
8170 *
8171 * @remarks No-long-jump zone!!!
8172 */
8173static int hmR0VmxExportHostState(PVMCPU pVCpu)
8174{
8175 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8176
8177 int rc = VINF_SUCCESS;
8178 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8179 {
8180 rc = hmR0VmxExportHostControlRegs();
8181 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8182
8183 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8184 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8185
8186 rc = hmR0VmxExportHostMsrs(pVCpu);
8187 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8188
8189 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8190 }
8191 return rc;
8192}
8193
8194
8195/**
8196 * Saves the host state in the VMCS host-state.
8197 *
8198 * @returns VBox status code.
8199 * @param pVCpu The cross context virtual CPU structure.
8200 *
8201 * @remarks No-long-jump zone!!!
8202 */
8203VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8204{
8205 AssertPtr(pVCpu);
8206 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8207
8208 /*
8209 * Export the host state here while entering HM context.
8210 * When thread-context hooks are used, we might get preempted and have to re-save the host
8211 * state but most of the time we won't be, so do it here before we disable interrupts.
8212 */
8213 return hmR0VmxExportHostState(pVCpu);
8214}
8215
8216
8217/**
8218 * Exports the guest state into the VMCS guest-state area.
8219 *
8220 * The will typically be done before VM-entry when the guest-CPU state and the
8221 * VMCS state may potentially be out of sync.
8222 *
8223 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8224 * VM-entry controls.
8225 * Sets up the appropriate VMX non-root function to execute guest code based on
8226 * the guest CPU mode.
8227 *
8228 * @returns VBox strict status code.
8229 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8230 * without unrestricted guest access and the VMMDev is not presently
8231 * mapped (e.g. EFI32).
8232 *
8233 * @param pVCpu The cross context virtual CPU structure.
8234 *
8235 * @remarks No-long-jump zone!!!
8236 */
8237static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu)
8238{
8239 AssertPtr(pVCpu);
8240 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8241
8242 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8243
8244 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
8245
8246 /* Determine real-on-v86 mode. */
8247 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8248 if ( !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
8249 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
8250 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8251
8252 /*
8253 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8254 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8255 */
8256 int rc = hmR0VmxSelectVMRunHandler(pVCpu);
8257 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8258
8259 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8260 rc = hmR0VmxExportGuestEntryCtls(pVCpu);
8261 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8262
8263 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8264 rc = hmR0VmxExportGuestExitCtls(pVCpu);
8265 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8266
8267 rc = hmR0VmxExportGuestCR0(pVCpu);
8268 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8269
8270 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu);
8271 if (rcStrict == VINF_SUCCESS)
8272 { /* likely */ }
8273 else
8274 {
8275 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8276 return rcStrict;
8277 }
8278
8279 rc = hmR0VmxExportGuestSegmentRegs(pVCpu);
8280 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8281
8282 /* This needs to be done after hmR0VmxExportGuestEntryCtls() and hmR0VmxExportGuestExitCtls() as it
8283 may alter controls if we determine we don't have to swap EFER after all. */
8284 rc = hmR0VmxExportGuestMsrs(pVCpu);
8285 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8286
8287 rc = hmR0VmxExportGuestApicTpr(pVCpu);
8288 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8289
8290 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu);
8291 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8292
8293 rc = hmR0VmxExportGuestRip(pVCpu);
8294 rc |= hmR0VmxExportGuestRsp(pVCpu);
8295 rc |= hmR0VmxExportGuestRflags(pVCpu);
8296 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8297
8298 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
8299 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
8300 | HM_CHANGED_GUEST_CR2
8301 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
8302 | HM_CHANGED_GUEST_X87
8303 | HM_CHANGED_GUEST_SSE_AVX
8304 | HM_CHANGED_GUEST_OTHER_XSAVE
8305 | HM_CHANGED_GUEST_XCRx
8306 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
8307 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
8308 | HM_CHANGED_GUEST_TSC_AUX
8309 | HM_CHANGED_GUEST_OTHER_MSRS
8310 | HM_CHANGED_GUEST_HWVIRT
8311 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
8312
8313 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
8314 return rc;
8315}
8316
8317
8318/**
8319 * Exports the state shared between the host and guest into the VMCS.
8320 *
8321 * @param pVCpu The cross context virtual CPU structure.
8322 *
8323 * @remarks No-long-jump zone!!!
8324 */
8325static void hmR0VmxExportSharedState(PVMCPU pVCpu)
8326{
8327 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8328 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8329
8330 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
8331 {
8332 int rc = hmR0VmxExportSharedDebugState(pVCpu);
8333 AssertRC(rc);
8334 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
8335
8336 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8337 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
8338 {
8339 rc = hmR0VmxExportGuestRflags(pVCpu);
8340 AssertRC(rc);
8341 }
8342 }
8343
8344 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
8345 {
8346 hmR0VmxLazyLoadGuestMsrs(pVCpu);
8347 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
8348 }
8349
8350 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
8351 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8352}
8353
8354
8355/**
8356 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8357 *
8358 * @returns Strict VBox status code (i.e. informational status codes too).
8359 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8360 * without unrestricted guest access and the VMMDev is not presently
8361 * mapped (e.g. EFI32).
8362 *
8363 * @param pVCpu The cross context virtual CPU structure.
8364 *
8365 * @remarks No-long-jump zone!!!
8366 */
8367static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu)
8368{
8369 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8370 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8371 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8372
8373#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8374 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8375#endif
8376
8377 /*
8378 * For many exits it's only RIP that changes and hence try to export it first
8379 * without going through a lot of change flag checks.
8380 */
8381 VBOXSTRICTRC rcStrict;
8382 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8383 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8384 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
8385 {
8386 rcStrict = hmR0VmxExportGuestRip(pVCpu);
8387 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8388 { /* likely */}
8389 else
8390 AssertMsgFailedReturn(("hmR0VmxExportGuestRip failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8391 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
8392 }
8393 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8394 {
8395 rcStrict = hmR0VmxExportGuestState(pVCpu);
8396 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8397 { /* likely */}
8398 else
8399 {
8400 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("hmR0VmxExportGuestState failed! rc=%Rrc\n",
8401 VBOXSTRICTRC_VAL(rcStrict)));
8402 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8403 return rcStrict;
8404 }
8405 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
8406 }
8407 else
8408 rcStrict = VINF_SUCCESS;
8409
8410#ifdef VBOX_STRICT
8411 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8412 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8413 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8414 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
8415 ("fCtxChanged=%#RX64\n", fCtxChanged));
8416#endif
8417 return rcStrict;
8418}
8419
8420
8421/**
8422 * Does the preparations before executing guest code in VT-x.
8423 *
8424 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8425 * recompiler/IEM. We must be cautious what we do here regarding committing
8426 * guest-state information into the VMCS assuming we assuredly execute the
8427 * guest in VT-x mode.
8428 *
8429 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8430 * the common-state (TRPM/forceflags), we must undo those changes so that the
8431 * recompiler/IEM can (and should) use them when it resumes guest execution.
8432 * Otherwise such operations must be done when we can no longer exit to ring-3.
8433 *
8434 * @returns Strict VBox status code (i.e. informational status codes too).
8435 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8436 * have been disabled.
8437 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8438 * double-fault into the guest.
8439 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8440 * dispatched directly.
8441 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8442 *
8443 * @param pVCpu The cross context virtual CPU structure.
8444 * @param pVmxTransient Pointer to the VMX transient structure.
8445 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8446 * us ignore some of the reasons for returning to
8447 * ring-3, and return VINF_EM_DBG_STEPPED if event
8448 * dispatching took place.
8449 */
8450static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
8451{
8452 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8453
8454#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
8455 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8456 {
8457 Log2(("hmR0VmxPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
8458 RT_NOREF3(pVCpu, pVmxTransient, fStepping);
8459 return VINF_EM_RESCHEDULE_REM;
8460 }
8461#endif
8462
8463#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8464 PGMRZDynMapFlushAutoSet(pVCpu);
8465#endif
8466
8467 /* Check force flag actions that might require us to go back to ring-3. */
8468 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
8469 if (rcStrict == VINF_SUCCESS)
8470 { /* FFs doesn't get set all the time. */ }
8471 else
8472 return rcStrict;
8473
8474 /*
8475 * Setup the virtualized-APIC accesses.
8476 *
8477 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8478 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8479 *
8480 * This is the reason we do it here and not in hmR0VmxExportGuestState().
8481 */
8482 PVM pVM = pVCpu->CTX_SUFF(pVM);
8483 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8484 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
8485 && PDMHasApic(pVM))
8486 {
8487 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8488 Assert(u64MsrApicBase);
8489 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8490
8491 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8492
8493 /* Unalias any existing mapping. */
8494 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8495 AssertRCReturn(rc, rc);
8496
8497 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8498 Log4Func(("Mapped HC APIC-access page at %#RGp\n", GCPhysApicBase));
8499 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8500 AssertRCReturn(rc, rc);
8501
8502 /* Update the per-VCPU cache of the APIC base MSR. */
8503 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8504 }
8505
8506 if (TRPMHasTrap(pVCpu))
8507 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8508 uint32_t fIntrState = hmR0VmxEvaluatePendingEvent(pVCpu);
8509
8510 /*
8511 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
8512 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
8513 * also result in triple-faulting the VM.
8514 */
8515 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, fIntrState, fStepping);
8516 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8517 { /* likely */ }
8518 else
8519 {
8520 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8521 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8522 return rcStrict;
8523 }
8524
8525 /*
8526 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
8527 * import CR3 themselves. We will need to update them here, as even as late as the above
8528 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
8529 * the below force flags to be set.
8530 */
8531 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
8532 {
8533 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
8534 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
8535 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
8536 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
8537 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8538 }
8539 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
8540 {
8541 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
8542 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8543 }
8544
8545 /*
8546 * No longjmps to ring-3 from this point on!!!
8547 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8548 * This also disables flushing of the R0-logger instance (if any).
8549 */
8550 VMMRZCallRing3Disable(pVCpu);
8551
8552 /*
8553 * Export the guest state bits.
8554 *
8555 * We cannot perform longjmps while loading the guest state because we do not preserve the
8556 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8557 * CPU migration.
8558 *
8559 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8560 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8561 * Hence, loading of the guest state needs to be done -after- injection of events.
8562 */
8563 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu);
8564 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8565 { /* likely */ }
8566 else
8567 {
8568 VMMRZCallRing3Enable(pVCpu);
8569 return rcStrict;
8570 }
8571
8572 /*
8573 * We disable interrupts so that we don't miss any interrupts that would flag preemption
8574 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
8575 * preemption disabled for a while. Since this is purly to aid the
8576 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
8577 * disable interrupt on NT.
8578 *
8579 * We need to check for force-flags that could've possible been altered since we last
8580 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
8581 * see @bugref{6398}).
8582 *
8583 * We also check a couple of other force-flags as a last opportunity to get the EMT back
8584 * to ring-3 before executing guest code.
8585 */
8586 pVmxTransient->fEFlags = ASMIntDisableFlags();
8587
8588 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8589 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8590 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8591 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8592 {
8593 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8594 {
8595 pVCpu->hm.s.Event.fPending = false;
8596
8597 /*
8598 * We've injected any pending events. This is really the point of no return (to ring-3).
8599 *
8600 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8601 * returns from this function, so don't enable them here.
8602 */
8603 return VINF_SUCCESS;
8604 }
8605
8606 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
8607 rcStrict = VINF_EM_RAW_INTERRUPT;
8608 }
8609 else
8610 {
8611 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8612 rcStrict = VINF_EM_RAW_TO_R3;
8613 }
8614
8615 ASMSetFlags(pVmxTransient->fEFlags);
8616 VMMRZCallRing3Enable(pVCpu);
8617
8618 return rcStrict;
8619}
8620
8621
8622/**
8623 * Prepares to run guest code in VT-x and we've committed to doing so. This
8624 * means there is no backing out to ring-3 or anywhere else at this
8625 * point.
8626 *
8627 * @param pVCpu The cross context virtual CPU structure.
8628 * @param pVmxTransient Pointer to the VMX transient structure.
8629 *
8630 * @remarks Called with preemption disabled.
8631 * @remarks No-long-jump zone!!!
8632 */
8633static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
8634{
8635 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8636 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8637 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8638
8639 /*
8640 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8641 */
8642 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8643 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8644
8645 PVM pVM = pVCpu->CTX_SUFF(pVM);
8646 if (!CPUMIsGuestFPUStateActive(pVCpu))
8647 {
8648 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8649 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8650 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
8651 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8652 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
8653 }
8654
8655 /*
8656 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8657 */
8658 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8659 && pVCpu->hm.s.vmx.cMsrs > 0)
8660 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8661
8662 /*
8663 * Re-save the host state bits as we may've been preempted (only happens when
8664 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8665 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8666 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8667 * See @bugref{8432}.
8668 */
8669 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8670 {
8671 int rc = hmR0VmxExportHostState(pVCpu);
8672 AssertRC(rc);
8673 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
8674 }
8675 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
8676
8677 /*
8678 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
8679 */
8680 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
8681 hmR0VmxExportSharedState(pVCpu);
8682 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8683
8684 /* Store status of the shared guest-host state at the time of VM-entry. */
8685#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8686 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
8687 {
8688 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8689 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8690 }
8691 else
8692#endif
8693 {
8694 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8695 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8696 }
8697
8698 /*
8699 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8700 */
8701 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8702 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
8703
8704 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
8705 RTCPUID idCurrentCpu = pHostCpu->idCpu;
8706 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8707 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8708 {
8709 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8710 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8711 }
8712
8713 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8714 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu); /* Invalidate the appropriate guest entries from the TLB. */
8715 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8716 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8717
8718 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8719
8720 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8721 to start executing. */
8722
8723 /*
8724 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8725 */
8726 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
8727 {
8728 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8729 {
8730 bool fMsrUpdated;
8731 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
8732 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8733 &fMsrUpdated);
8734 AssertRC(rc2);
8735 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8736 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8737 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8738 }
8739 else
8740 {
8741 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8742 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8743 }
8744 }
8745
8746 if (pVM->cpum.ro.GuestFeatures.fIbrs)
8747 {
8748 bool fMsrUpdated;
8749 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
8750 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
8751 &fMsrUpdated);
8752 AssertRC(rc2);
8753 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8754 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8755 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8756 }
8757
8758#ifdef VBOX_STRICT
8759 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8760 hmR0VmxCheckHostEferMsr(pVCpu);
8761 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8762#endif
8763#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8764 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
8765 {
8766 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
8767 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8768 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8769 }
8770#endif
8771}
8772
8773
8774/**
8775 * Performs some essential restoration of state after running guest code in
8776 * VT-x.
8777 *
8778 * @param pVCpu The cross context virtual CPU structure.
8779 * @param pVmxTransient Pointer to the VMX transient structure.
8780 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8781 *
8782 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8783 *
8784 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8785 * unconditionally when it is safe to do so.
8786 */
8787static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8788{
8789 uint64_t const uHostTsc = ASMReadTSC();
8790 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8791
8792 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8793 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8794 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
8795 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8796 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8797 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8798
8799 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8800 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVCpu->hm.s.vmx.u64TscOffset);
8801
8802 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
8803 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8804 Assert(!ASMIntAreEnabled());
8805 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8806
8807#if HC_ARCH_BITS == 64
8808 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8809#endif
8810#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8811 /* The 64-on-32 switcher maintains fVmcsState on its own and we need to leave it alone here. */
8812 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8813 pVCpu->hm.s.vmx.fVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8814#else
8815 pVCpu->hm.s.vmx.fVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8816#endif
8817#ifdef VBOX_STRICT
8818 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8819#endif
8820 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8821
8822 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8823 uint32_t uExitReason;
8824 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8825 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8826 AssertRC(rc);
8827 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
8828 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
8829
8830 if (rcVMRun == VINF_SUCCESS)
8831 {
8832 /*
8833 * Update the VM-exit history array here even if the VM-entry failed due to:
8834 * - Invalid guest state.
8835 * - MSR loading.
8836 * - Machine-check event.
8837 *
8838 * In any of the above cases we will still have a "valid" VM-exit reason
8839 * despite @a fVMEntryFailed being false.
8840 *
8841 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
8842 *
8843 * Note! We don't have CS or RIP at this point. Will probably address that later
8844 * by amending the history entry added here.
8845 */
8846 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
8847 UINT64_MAX, uHostTsc);
8848
8849 if (!pVmxTransient->fVMEntryFailed)
8850 {
8851 VMMRZCallRing3Enable(pVCpu);
8852
8853 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8854 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8855
8856#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8857 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
8858 AssertRC(rc);
8859#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8860 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_RFLAGS);
8861 AssertRC(rc);
8862#else
8863 /*
8864 * Import the guest-interruptibility state always as we need it while evaluating
8865 * injecting events on re-entry.
8866 *
8867 * We don't import CR0 (when Unrestricted guest execution is unavailable) despite
8868 * checking for real-mode while exporting the state because all bits that cause
8869 * mode changes wrt CR0 are intercepted.
8870 */
8871 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
8872 AssertRC(rc);
8873#endif
8874
8875 /*
8876 * Sync the TPR shadow with our APIC state.
8877 */
8878 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8879 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
8880 {
8881 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
8882 AssertRC(rc);
8883 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
8884 }
8885
8886 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8887 return;
8888 }
8889 }
8890 else
8891 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
8892
8893 VMMRZCallRing3Enable(pVCpu);
8894}
8895
8896
8897/**
8898 * Runs the guest code using VT-x the normal way.
8899 *
8900 * @returns VBox status code.
8901 * @param pVCpu The cross context virtual CPU structure.
8902 *
8903 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8904 */
8905static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu)
8906{
8907 VMXTRANSIENT VmxTransient;
8908 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8909 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8910 uint32_t cLoops = 0;
8911
8912 for (;; cLoops++)
8913 {
8914 Assert(!HMR0SuspendPending());
8915 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8916
8917 /* Preparatory work for running guest code, this may force us to return
8918 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8919 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8920 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
8921 if (rcStrict != VINF_SUCCESS)
8922 break;
8923
8924 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
8925 int rcRun = hmR0VmxRunGuest(pVCpu);
8926
8927 /* Restore any residual host-state and save any bits shared between host
8928 and guest into the guest-CPU state. Re-enables interrupts! */
8929 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
8930
8931 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8932 if (RT_SUCCESS(rcRun))
8933 { /* very likely */ }
8934 else
8935 {
8936 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
8937 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
8938 return rcRun;
8939 }
8940
8941 /* Profile the VM-exit. */
8942 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8943 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8944 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8945 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
8946 HMVMX_START_EXIT_DISPATCH_PROF();
8947
8948 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
8949
8950 /* Handle the VM-exit. */
8951#ifdef HMVMX_USE_FUNCTION_TABLE
8952 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
8953#else
8954 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient, VmxTransient.uExitReason);
8955#endif
8956 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
8957 if (rcStrict == VINF_SUCCESS)
8958 {
8959 if (cLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
8960 continue; /* likely */
8961 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8962 rcStrict = VINF_EM_RAW_INTERRUPT;
8963 }
8964 break;
8965 }
8966
8967 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8968 return rcStrict;
8969}
8970
8971
8972
8973/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
8974 * probes.
8975 *
8976 * The following few functions and associated structure contains the bloat
8977 * necessary for providing detailed debug events and dtrace probes as well as
8978 * reliable host side single stepping. This works on the principle of
8979 * "subclassing" the normal execution loop and workers. We replace the loop
8980 * method completely and override selected helpers to add necessary adjustments
8981 * to their core operation.
8982 *
8983 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
8984 * any performance for debug and analysis features.
8985 *
8986 * @{
8987 */
8988
8989/**
8990 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
8991 * the debug run loop.
8992 */
8993typedef struct VMXRUNDBGSTATE
8994{
8995 /** The RIP we started executing at. This is for detecting that we stepped. */
8996 uint64_t uRipStart;
8997 /** The CS we started executing with. */
8998 uint16_t uCsStart;
8999
9000 /** Whether we've actually modified the 1st execution control field. */
9001 bool fModifiedProcCtls : 1;
9002 /** Whether we've actually modified the 2nd execution control field. */
9003 bool fModifiedProcCtls2 : 1;
9004 /** Whether we've actually modified the exception bitmap. */
9005 bool fModifiedXcptBitmap : 1;
9006
9007 /** We desire the modified the CR0 mask to be cleared. */
9008 bool fClearCr0Mask : 1;
9009 /** We desire the modified the CR4 mask to be cleared. */
9010 bool fClearCr4Mask : 1;
9011 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9012 uint32_t fCpe1Extra;
9013 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9014 uint32_t fCpe1Unwanted;
9015 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9016 uint32_t fCpe2Extra;
9017 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9018 uint32_t bmXcptExtra;
9019 /** The sequence number of the Dtrace provider settings the state was
9020 * configured against. */
9021 uint32_t uDtraceSettingsSeqNo;
9022 /** VM-exits to check (one bit per VM-exit). */
9023 uint32_t bmExitsToCheck[3];
9024
9025 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9026 uint32_t fProcCtlsInitial;
9027 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9028 uint32_t fProcCtls2Initial;
9029 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9030 uint32_t bmXcptInitial;
9031} VMXRUNDBGSTATE;
9032AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9033typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9034
9035
9036/**
9037 * Initializes the VMXRUNDBGSTATE structure.
9038 *
9039 * @param pVCpu The cross context virtual CPU structure of the
9040 * calling EMT.
9041 * @param pDbgState The structure to initialize.
9042 */
9043static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9044{
9045 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
9046 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
9047
9048 pDbgState->fModifiedProcCtls = false;
9049 pDbgState->fModifiedProcCtls2 = false;
9050 pDbgState->fModifiedXcptBitmap = false;
9051 pDbgState->fClearCr0Mask = false;
9052 pDbgState->fClearCr4Mask = false;
9053 pDbgState->fCpe1Extra = 0;
9054 pDbgState->fCpe1Unwanted = 0;
9055 pDbgState->fCpe2Extra = 0;
9056 pDbgState->bmXcptExtra = 0;
9057 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9058 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9059 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9060}
9061
9062
9063/**
9064 * Updates the VMSC fields with changes requested by @a pDbgState.
9065 *
9066 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9067 * immediately before executing guest code, i.e. when interrupts are disabled.
9068 * We don't check status codes here as we cannot easily assert or return in the
9069 * latter case.
9070 *
9071 * @param pVCpu The cross context virtual CPU structure.
9072 * @param pDbgState The debug state.
9073 */
9074static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9075{
9076 /*
9077 * Ensure desired flags in VMCS control fields are set.
9078 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9079 *
9080 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9081 * there should be no stale data in pCtx at this point.
9082 */
9083 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9084 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9085 {
9086 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9087 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9088 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9089 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9090 pDbgState->fModifiedProcCtls = true;
9091 }
9092
9093 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9094 {
9095 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9096 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9097 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9098 pDbgState->fModifiedProcCtls2 = true;
9099 }
9100
9101 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9102 {
9103 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9104 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9105 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9106 pDbgState->fModifiedXcptBitmap = true;
9107 }
9108
9109 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32Cr0Mask != 0)
9110 {
9111 pVCpu->hm.s.vmx.u32Cr0Mask = 0;
9112 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9113 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9114 }
9115
9116 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32Cr4Mask != 0)
9117 {
9118 pVCpu->hm.s.vmx.u32Cr4Mask = 0;
9119 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9120 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9121 }
9122}
9123
9124
9125/**
9126 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
9127 * re-entry next time around.
9128 *
9129 * @returns Strict VBox status code (i.e. informational status codes too).
9130 * @param pVCpu The cross context virtual CPU structure.
9131 * @param pDbgState The debug state.
9132 * @param rcStrict The return code from executing the guest using single
9133 * stepping.
9134 */
9135static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9136{
9137 /*
9138 * Restore VM-exit control settings as we may not reenter this function the
9139 * next time around.
9140 */
9141 /* We reload the initial value, trigger what we can of recalculations the
9142 next time around. From the looks of things, that's all that's required atm. */
9143 if (pDbgState->fModifiedProcCtls)
9144 {
9145 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9146 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9147 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9148 AssertRCReturn(rc2, rc2);
9149 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9150 }
9151
9152 /* We're currently the only ones messing with this one, so just restore the
9153 cached value and reload the field. */
9154 if ( pDbgState->fModifiedProcCtls2
9155 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9156 {
9157 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9158 AssertRCReturn(rc2, rc2);
9159 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9160 }
9161
9162 /* If we've modified the exception bitmap, we restore it and trigger
9163 reloading and partial recalculation the next time around. */
9164 if (pDbgState->fModifiedXcptBitmap)
9165 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9166
9167 return rcStrict;
9168}
9169
9170
9171/**
9172 * Configures VM-exit controls for current DBGF and DTrace settings.
9173 *
9174 * This updates @a pDbgState and the VMCS execution control fields to reflect
9175 * the necessary VM-exits demanded by DBGF and DTrace.
9176 *
9177 * @param pVCpu The cross context virtual CPU structure.
9178 * @param pDbgState The debug state.
9179 * @param pVmxTransient Pointer to the VMX transient structure. May update
9180 * fUpdateTscOffsettingAndPreemptTimer.
9181 */
9182static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9183{
9184 /*
9185 * Take down the dtrace serial number so we can spot changes.
9186 */
9187 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9188 ASMCompilerBarrier();
9189
9190 /*
9191 * We'll rebuild most of the middle block of data members (holding the
9192 * current settings) as we go along here, so start by clearing it all.
9193 */
9194 pDbgState->bmXcptExtra = 0;
9195 pDbgState->fCpe1Extra = 0;
9196 pDbgState->fCpe1Unwanted = 0;
9197 pDbgState->fCpe2Extra = 0;
9198 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9199 pDbgState->bmExitsToCheck[i] = 0;
9200
9201 /*
9202 * Software interrupts (INT XXh) - no idea how to trigger these...
9203 */
9204 PVM pVM = pVCpu->CTX_SUFF(pVM);
9205 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9206 || VBOXVMM_INT_SOFTWARE_ENABLED())
9207 {
9208 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9209 }
9210
9211 /*
9212 * INT3 breakpoints - triggered by #BP exceptions.
9213 */
9214 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9215 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9216
9217 /*
9218 * Exception bitmap and XCPT events+probes.
9219 */
9220 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9221 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9222 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9223
9224 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9225 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9226 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9227 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9228 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9229 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9230 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9231 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9232 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9233 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9234 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9235 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9236 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9237 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9238 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9239 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9240 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9241 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9242
9243 if (pDbgState->bmXcptExtra)
9244 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9245
9246 /*
9247 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9248 *
9249 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
9250 * So, when adding/changing/removing please don't forget to update it.
9251 *
9252 * Some of the macros are picking up local variables to save horizontal space,
9253 * (being able to see it in a table is the lesser evil here).
9254 */
9255#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9256 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9257 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9258#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9259 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9260 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9261 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9262 } else do { } while (0)
9263#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9264 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9265 { \
9266 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9267 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9268 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9269 } else do { } while (0)
9270#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9271 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9272 { \
9273 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9274 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9275 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9276 } else do { } while (0)
9277#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9278 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9279 { \
9280 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9281 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9282 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9283 } else do { } while (0)
9284
9285 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9286 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9287 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9288 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9289 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9290
9291 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9292 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9293 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9294 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9295 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
9296 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9297 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9298 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9299 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
9300 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9301 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
9302 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9303 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
9304 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9305 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9306 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9307 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9308 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9309 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9310 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9311 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9312 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9313 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9314 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9315 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9316 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9317 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9318 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9319 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9320 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9321 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9322 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9323 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9324 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9325 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9326 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9327
9328 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9329 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9330 {
9331 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
9332 AssertRC(rc);
9333
9334#if 0 /** @todo fix me */
9335 pDbgState->fClearCr0Mask = true;
9336 pDbgState->fClearCr4Mask = true;
9337#endif
9338 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9339 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
9340 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9341 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
9342 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
9343 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9344 require clearing here and in the loop if we start using it. */
9345 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9346 }
9347 else
9348 {
9349 if (pDbgState->fClearCr0Mask)
9350 {
9351 pDbgState->fClearCr0Mask = false;
9352 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
9353 }
9354 if (pDbgState->fClearCr4Mask)
9355 {
9356 pDbgState->fClearCr4Mask = false;
9357 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
9358 }
9359 }
9360 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9361 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9362
9363 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9364 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9365 {
9366 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9367 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9368 }
9369 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9370 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9371
9372 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
9373 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9374 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
9375 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9376 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
9377 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9378 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
9379 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9380#if 0 /** @todo too slow, fix handler. */
9381 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
9382#endif
9383 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9384
9385 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9386 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9387 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9388 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9389 {
9390 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9391 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
9392 }
9393 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9394 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9395 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9396 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9397
9398 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9399 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9400 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9401 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9402 {
9403 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9404 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
9405 }
9406 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
9407 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
9408 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
9409 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
9410
9411 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9412 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9413 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
9414 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9415 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9416 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9417 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
9418 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9419 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9420 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9421 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
9422 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9423 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
9424 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9425 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9426 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9427 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
9428 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9429 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9430 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9431 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9432 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9433
9434#undef IS_EITHER_ENABLED
9435#undef SET_ONLY_XBM_IF_EITHER_EN
9436#undef SET_CPE1_XBM_IF_EITHER_EN
9437#undef SET_CPEU_XBM_IF_EITHER_EN
9438#undef SET_CPE2_XBM_IF_EITHER_EN
9439
9440 /*
9441 * Sanitize the control stuff.
9442 */
9443 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
9444 if (pDbgState->fCpe2Extra)
9445 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
9446 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
9447 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
9448 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
9449 {
9450 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9451 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9452 }
9453
9454 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9455 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9456 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9457 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9458}
9459
9460
9461/**
9462 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9463 * appropriate.
9464 *
9465 * The caller has checked the VM-exit against the
9466 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9467 * already, so we don't have to do that either.
9468 *
9469 * @returns Strict VBox status code (i.e. informational status codes too).
9470 * @param pVCpu The cross context virtual CPU structure.
9471 * @param pVmxTransient Pointer to the VMX-transient structure.
9472 * @param uExitReason The VM-exit reason.
9473 *
9474 * @remarks The name of this function is displayed by dtrace, so keep it short
9475 * and to the point. No longer than 33 chars long, please.
9476 */
9477static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9478{
9479 /*
9480 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9481 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9482 *
9483 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9484 * does. Must add/change/remove both places. Same ordering, please.
9485 *
9486 * Added/removed events must also be reflected in the next section
9487 * where we dispatch dtrace events.
9488 */
9489 bool fDtrace1 = false;
9490 bool fDtrace2 = false;
9491 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9492 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9493 uint32_t uEventArg = 0;
9494#define SET_EXIT(a_EventSubName) \
9495 do { \
9496 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9497 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9498 } while (0)
9499#define SET_BOTH(a_EventSubName) \
9500 do { \
9501 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9502 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9503 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9504 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9505 } while (0)
9506 switch (uExitReason)
9507 {
9508 case VMX_EXIT_MTF:
9509 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9510
9511 case VMX_EXIT_XCPT_OR_NMI:
9512 {
9513 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9514 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
9515 {
9516 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
9517 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
9518 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
9519 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9520 {
9521 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
9522 {
9523 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9524 uEventArg = pVmxTransient->uExitIntErrorCode;
9525 }
9526 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9527 switch (enmEvent1)
9528 {
9529 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9530 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9531 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9532 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9533 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9534 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9535 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9536 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9537 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9538 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9539 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9540 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9541 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9542 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9543 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9544 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9545 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9546 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9547 default: break;
9548 }
9549 }
9550 else
9551 AssertFailed();
9552 break;
9553
9554 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
9555 uEventArg = idxVector;
9556 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9557 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9558 break;
9559 }
9560 break;
9561 }
9562
9563 case VMX_EXIT_TRIPLE_FAULT:
9564 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9565 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9566 break;
9567 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9568 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9569 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9570 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9571 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9572
9573 /* Instruction specific VM-exits: */
9574 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9575 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9576 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9577 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9578 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9579 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9580 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9581 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9582 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9583 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9584 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9585 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9586 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9587 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9588 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9589 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9590 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9591 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9592 case VMX_EXIT_MOV_CRX:
9593 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9594 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
9595 SET_BOTH(CRX_READ);
9596 else
9597 SET_BOTH(CRX_WRITE);
9598 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
9599 break;
9600 case VMX_EXIT_MOV_DRX:
9601 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9602 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
9603 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
9604 SET_BOTH(DRX_READ);
9605 else
9606 SET_BOTH(DRX_WRITE);
9607 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
9608 break;
9609 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9610 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9611 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9612 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9613 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9614 case VMX_EXIT_GDTR_IDTR_ACCESS:
9615 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9616 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
9617 {
9618 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9619 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9620 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9621 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9622 }
9623 break;
9624
9625 case VMX_EXIT_LDTR_TR_ACCESS:
9626 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9627 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
9628 {
9629 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9630 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9631 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9632 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9633 }
9634 break;
9635
9636 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9637 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9638 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9639 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9640 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9641 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9642 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9643 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9644 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9645 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9646 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9647
9648 /* Events that aren't relevant at this point. */
9649 case VMX_EXIT_EXT_INT:
9650 case VMX_EXIT_INT_WINDOW:
9651 case VMX_EXIT_NMI_WINDOW:
9652 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9653 case VMX_EXIT_PREEMPT_TIMER:
9654 case VMX_EXIT_IO_INSTR:
9655 break;
9656
9657 /* Errors and unexpected events. */
9658 case VMX_EXIT_INIT_SIGNAL:
9659 case VMX_EXIT_SIPI:
9660 case VMX_EXIT_IO_SMI:
9661 case VMX_EXIT_SMI:
9662 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9663 case VMX_EXIT_ERR_MSR_LOAD:
9664 case VMX_EXIT_ERR_MACHINE_CHECK:
9665 break;
9666
9667 default:
9668 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9669 break;
9670 }
9671#undef SET_BOTH
9672#undef SET_EXIT
9673
9674 /*
9675 * Dtrace tracepoints go first. We do them here at once so we don't
9676 * have to copy the guest state saving and stuff a few dozen times.
9677 * Down side is that we've got to repeat the switch, though this time
9678 * we use enmEvent since the probes are a subset of what DBGF does.
9679 */
9680 if (fDtrace1 || fDtrace2)
9681 {
9682 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9683 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9684 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9685 switch (enmEvent1)
9686 {
9687 /** @todo consider which extra parameters would be helpful for each probe. */
9688 case DBGFEVENT_END: break;
9689 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
9690 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
9691 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
9692 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
9693 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
9694 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
9695 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
9696 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
9697 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
9698 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
9699 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
9700 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
9701 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
9702 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
9703 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
9704 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
9705 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
9706 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
9707 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9708 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9709 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
9710 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
9711 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
9712 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
9713 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
9714 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
9715 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
9716 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9717 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9718 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9719 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9720 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9721 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
9722 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9723 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
9724 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
9725 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
9726 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
9727 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
9728 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
9729 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
9730 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
9731 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
9732 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
9733 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
9734 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
9735 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
9736 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
9737 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
9738 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
9739 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
9740 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
9741 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
9742 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
9743 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
9744 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
9745 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
9746 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
9747 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
9748 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
9749 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
9750 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
9751 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
9752 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
9753 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
9754 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
9755 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9756 }
9757 switch (enmEvent2)
9758 {
9759 /** @todo consider which extra parameters would be helpful for each probe. */
9760 case DBGFEVENT_END: break;
9761 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
9762 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9763 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
9764 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
9765 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
9766 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
9767 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
9768 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
9769 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
9770 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9771 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9772 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9773 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9774 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9775 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
9776 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9777 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
9778 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
9779 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
9780 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
9781 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
9782 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
9783 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
9784 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
9785 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
9786 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
9787 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
9788 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
9789 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
9790 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
9791 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
9792 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
9793 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
9794 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
9795 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
9796 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
9797 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
9798 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
9799 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
9800 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
9801 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
9802 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
9803 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
9804 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
9805 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
9806 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
9807 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
9808 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
9809 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
9810 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
9811 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
9812 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
9813 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9814 }
9815 }
9816
9817 /*
9818 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9819 * the DBGF call will do a full check).
9820 *
9821 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9822 * Note! If we have to events, we prioritize the first, i.e. the instruction
9823 * one, in order to avoid event nesting.
9824 */
9825 PVM pVM = pVCpu->CTX_SUFF(pVM);
9826 if ( enmEvent1 != DBGFEVENT_END
9827 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9828 {
9829 HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9830 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
9831 if (rcStrict != VINF_SUCCESS)
9832 return rcStrict;
9833 }
9834 else if ( enmEvent2 != DBGFEVENT_END
9835 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9836 {
9837 HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9838 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
9839 if (rcStrict != VINF_SUCCESS)
9840 return rcStrict;
9841 }
9842
9843 return VINF_SUCCESS;
9844}
9845
9846
9847/**
9848 * Single-stepping VM-exit filtering.
9849 *
9850 * This is preprocessing the VM-exits and deciding whether we've gotten far
9851 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
9852 * handling is performed.
9853 *
9854 * @returns Strict VBox status code (i.e. informational status codes too).
9855 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9856 * @param pVmxTransient Pointer to the VMX-transient structure.
9857 * @param pDbgState The debug state.
9858 */
9859DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
9860{
9861 /*
9862 * Expensive (saves context) generic dtrace VM-exit probe.
9863 */
9864 uint32_t const uExitReason = pVmxTransient->uExitReason;
9865 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9866 { /* more likely */ }
9867 else
9868 {
9869 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9870 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9871 AssertRC(rc);
9872 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
9873 }
9874
9875 /*
9876 * Check for host NMI, just to get that out of the way.
9877 */
9878 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9879 { /* normally likely */ }
9880 else
9881 {
9882 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9883 AssertRCReturn(rc2, rc2);
9884 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
9885 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
9886 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
9887 }
9888
9889 /*
9890 * Check for single stepping event if we're stepping.
9891 */
9892 if (pVCpu->hm.s.fSingleInstruction)
9893 {
9894 switch (uExitReason)
9895 {
9896 case VMX_EXIT_MTF:
9897 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9898
9899 /* Various events: */
9900 case VMX_EXIT_XCPT_OR_NMI:
9901 case VMX_EXIT_EXT_INT:
9902 case VMX_EXIT_TRIPLE_FAULT:
9903 case VMX_EXIT_INT_WINDOW:
9904 case VMX_EXIT_NMI_WINDOW:
9905 case VMX_EXIT_TASK_SWITCH:
9906 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9907 case VMX_EXIT_APIC_ACCESS:
9908 case VMX_EXIT_EPT_VIOLATION:
9909 case VMX_EXIT_EPT_MISCONFIG:
9910 case VMX_EXIT_PREEMPT_TIMER:
9911
9912 /* Instruction specific VM-exits: */
9913 case VMX_EXIT_CPUID:
9914 case VMX_EXIT_GETSEC:
9915 case VMX_EXIT_HLT:
9916 case VMX_EXIT_INVD:
9917 case VMX_EXIT_INVLPG:
9918 case VMX_EXIT_RDPMC:
9919 case VMX_EXIT_RDTSC:
9920 case VMX_EXIT_RSM:
9921 case VMX_EXIT_VMCALL:
9922 case VMX_EXIT_VMCLEAR:
9923 case VMX_EXIT_VMLAUNCH:
9924 case VMX_EXIT_VMPTRLD:
9925 case VMX_EXIT_VMPTRST:
9926 case VMX_EXIT_VMREAD:
9927 case VMX_EXIT_VMRESUME:
9928 case VMX_EXIT_VMWRITE:
9929 case VMX_EXIT_VMXOFF:
9930 case VMX_EXIT_VMXON:
9931 case VMX_EXIT_MOV_CRX:
9932 case VMX_EXIT_MOV_DRX:
9933 case VMX_EXIT_IO_INSTR:
9934 case VMX_EXIT_RDMSR:
9935 case VMX_EXIT_WRMSR:
9936 case VMX_EXIT_MWAIT:
9937 case VMX_EXIT_MONITOR:
9938 case VMX_EXIT_PAUSE:
9939 case VMX_EXIT_GDTR_IDTR_ACCESS:
9940 case VMX_EXIT_LDTR_TR_ACCESS:
9941 case VMX_EXIT_INVEPT:
9942 case VMX_EXIT_RDTSCP:
9943 case VMX_EXIT_INVVPID:
9944 case VMX_EXIT_WBINVD:
9945 case VMX_EXIT_XSETBV:
9946 case VMX_EXIT_RDRAND:
9947 case VMX_EXIT_INVPCID:
9948 case VMX_EXIT_VMFUNC:
9949 case VMX_EXIT_RDSEED:
9950 case VMX_EXIT_XSAVES:
9951 case VMX_EXIT_XRSTORS:
9952 {
9953 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9954 AssertRCReturn(rc, rc);
9955 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
9956 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
9957 return VINF_EM_DBG_STEPPED;
9958 break;
9959 }
9960
9961 /* Errors and unexpected events: */
9962 case VMX_EXIT_INIT_SIGNAL:
9963 case VMX_EXIT_SIPI:
9964 case VMX_EXIT_IO_SMI:
9965 case VMX_EXIT_SMI:
9966 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9967 case VMX_EXIT_ERR_MSR_LOAD:
9968 case VMX_EXIT_ERR_MACHINE_CHECK:
9969 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
9970 break;
9971
9972 default:
9973 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9974 break;
9975 }
9976 }
9977
9978 /*
9979 * Check for debugger event breakpoints and dtrace probes.
9980 */
9981 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
9982 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
9983 {
9984 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
9985 if (rcStrict != VINF_SUCCESS)
9986 return rcStrict;
9987 }
9988
9989 /*
9990 * Normal processing.
9991 */
9992#ifdef HMVMX_USE_FUNCTION_TABLE
9993 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
9994#else
9995 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
9996#endif
9997}
9998
9999
10000/**
10001 * Single steps guest code using VT-x.
10002 *
10003 * @returns Strict VBox status code (i.e. informational status codes too).
10004 * @param pVCpu The cross context virtual CPU structure.
10005 *
10006 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10007 */
10008static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu)
10009{
10010 VMXTRANSIENT VmxTransient;
10011 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10012
10013 /* Set HMCPU indicators. */
10014 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10015 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10016 pVCpu->hm.s.fDebugWantRdTscExit = false;
10017 pVCpu->hm.s.fUsingDebugLoop = true;
10018
10019 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10020 VMXRUNDBGSTATE DbgState;
10021 hmR0VmxRunDebugStateInit(pVCpu, &DbgState);
10022 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10023
10024 /*
10025 * The loop.
10026 */
10027 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10028 for (uint32_t cLoops = 0; ; cLoops++)
10029 {
10030 Assert(!HMR0SuspendPending());
10031 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10032 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10033
10034 /*
10035 * Preparatory work for running guest code, this may force us to return
10036 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10037 */
10038 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10039 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10040 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
10041 if (rcStrict != VINF_SUCCESS)
10042 break;
10043
10044 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10045 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10046
10047 /*
10048 * Now we can run the guest code.
10049 */
10050 int rcRun = hmR0VmxRunGuest(pVCpu);
10051
10052 /*
10053 * Restore any residual host-state and save any bits shared between host
10054 * and guest into the guest-CPU state. Re-enables interrupts!
10055 */
10056 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10057
10058 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10059 if (RT_SUCCESS(rcRun))
10060 { /* very likely */ }
10061 else
10062 {
10063 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10064 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10065 return rcRun;
10066 }
10067
10068 /* Profile the VM-exit. */
10069 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10070 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10071 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10072 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10073 HMVMX_START_EXIT_DISPATCH_PROF();
10074
10075 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10076
10077 /*
10078 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10079 */
10080 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
10081 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10082 if (rcStrict != VINF_SUCCESS)
10083 break;
10084 if (cLoops > pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
10085 {
10086 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10087 rcStrict = VINF_EM_RAW_INTERRUPT;
10088 break;
10089 }
10090
10091 /*
10092 * Stepping: Did the RIP change, if so, consider it a single step.
10093 * Otherwise, make sure one of the TFs gets set.
10094 */
10095 if (fStepping)
10096 {
10097 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
10098 AssertRC(rc);
10099 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
10100 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
10101 {
10102 rcStrict = VINF_EM_DBG_STEPPED;
10103 break;
10104 }
10105 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
10106 }
10107
10108 /*
10109 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10110 */
10111 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10112 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10113 }
10114
10115 /*
10116 * Clear the X86_EFL_TF if necessary.
10117 */
10118 if (pVCpu->hm.s.fClearTrapFlag)
10119 {
10120 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
10121 AssertRC(rc);
10122 pVCpu->hm.s.fClearTrapFlag = false;
10123 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
10124 }
10125 /** @todo there seems to be issues with the resume flag when the monitor trap
10126 * flag is pending without being used. Seen early in bios init when
10127 * accessing APIC page in protected mode. */
10128
10129 /*
10130 * Restore VM-exit control settings as we may not reenter this function the
10131 * next time around.
10132 */
10133 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10134
10135 /* Restore HMCPU indicators. */
10136 pVCpu->hm.s.fUsingDebugLoop = false;
10137 pVCpu->hm.s.fDebugWantRdTscExit = false;
10138 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10139
10140 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10141 return rcStrict;
10142}
10143
10144
10145/** @} */
10146
10147
10148/**
10149 * Checks if any expensive dtrace probes are enabled and we should go to the
10150 * debug loop.
10151 *
10152 * @returns true if we should use debug loop, false if not.
10153 */
10154static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10155{
10156 /* It's probably faster to OR the raw 32-bit counter variables together.
10157 Since the variables are in an array and the probes are next to one
10158 another (more or less), we have good locality. So, better read
10159 eight-nine cache lines ever time and only have one conditional, than
10160 128+ conditionals, right? */
10161 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10162 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10163 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10164 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10165 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10166 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10167 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10168 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10169 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10170 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10171 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10172 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10173 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10174 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10175 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10176 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10177 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10178 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10179 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10180 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10181 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10182 ) != 0
10183 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10184 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10185 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10186 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10187 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10188 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10189 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10190 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10191 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10192 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10193 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10194 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10195 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10196 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10197 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10198 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10199 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10200 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10201 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10202 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10203 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10204 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10205 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10206 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10207 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10208 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10209 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10210 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10211 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10212 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10213 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10214 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10215 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10216 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10217 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10218 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10219 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10220 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10221 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10222 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10223 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10224 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10225 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10226 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10227 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10228 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10229 ) != 0
10230 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10231 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10232 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10233 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10234 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10235 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10236 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10237 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10238 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10239 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10240 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10241 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10242 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10243 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10244 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10245 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10246 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10247 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10248 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10249 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10250 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10251 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10252 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10253 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10254 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10255 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10256 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10257 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10258 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10259 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10260 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10261 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10262 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10263 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10264 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10265 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10266 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10267 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10268 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10269 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10270 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10271 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10272 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10273 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10274 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10275 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10276 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10277 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10278 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10279 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10280 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10281 ) != 0;
10282}
10283
10284
10285/**
10286 * Runs the guest code using VT-x.
10287 *
10288 * @returns Strict VBox status code (i.e. informational status codes too).
10289 * @param pVCpu The cross context virtual CPU structure.
10290 */
10291VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
10292{
10293 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10294 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10295 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10296 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
10297
10298 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10299
10300 VBOXSTRICTRC rcStrict;
10301 if ( !pVCpu->hm.s.fUseDebugLoop
10302 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10303 && !DBGFIsStepping(pVCpu)
10304 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
10305 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu);
10306 else
10307 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu);
10308
10309 if (rcStrict == VERR_EM_INTERPRETER)
10310 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10311 else if (rcStrict == VINF_EM_RESET)
10312 rcStrict = VINF_EM_TRIPLE_FAULT;
10313
10314 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
10315 if (RT_FAILURE(rc2))
10316 {
10317 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10318 rcStrict = rc2;
10319 }
10320 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10321 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10322 return rcStrict;
10323}
10324
10325
10326#ifndef HMVMX_USE_FUNCTION_TABLE
10327DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10328{
10329#ifdef DEBUG_ramshankar
10330#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
10331 do { \
10332 if (a_fSave != 0) \
10333 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
10334 VBOXSTRICTRC rcStrict = a_CallExpr; \
10335 if (a_fSave != 0) \
10336 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
10337 return rcStrict; \
10338 } while (0)
10339#else
10340# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
10341#endif
10342 switch (rcReason)
10343 {
10344 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
10345 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
10346 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
10347 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
10348 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
10349 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
10350 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
10351 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
10352 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
10353 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
10354 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
10355 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
10356 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
10357 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
10358 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
10359 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
10360 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
10361 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
10362 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
10363 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
10364 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
10365 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
10366 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
10367 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
10368 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
10369 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
10370 case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10371 case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10372 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
10373 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
10374 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
10375 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
10376 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
10377 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
10378#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10379 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
10380 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
10381 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
10382 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
10383 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
10384 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
10385 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
10386 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
10387 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
10388#else
10389 case VMX_EXIT_VMCLEAR:
10390 case VMX_EXIT_VMLAUNCH:
10391 case VMX_EXIT_VMPTRLD:
10392 case VMX_EXIT_VMPTRST:
10393 case VMX_EXIT_VMREAD:
10394 case VMX_EXIT_VMRESUME:
10395 case VMX_EXIT_VMWRITE:
10396 case VMX_EXIT_VMXOFF:
10397 case VMX_EXIT_VMXON:
10398 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10399#endif
10400
10401 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
10402 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
10403 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
10404 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
10405 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
10406 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
10407 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
10408 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
10409 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
10410
10411 case VMX_EXIT_INVEPT:
10412 case VMX_EXIT_INVVPID:
10413 case VMX_EXIT_VMFUNC:
10414 case VMX_EXIT_XSAVES:
10415 case VMX_EXIT_XRSTORS:
10416 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10417
10418 case VMX_EXIT_ENCLS:
10419 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10420 case VMX_EXIT_PML_FULL:
10421 default:
10422 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
10423 }
10424#undef VMEXIT_CALL_RET
10425}
10426#endif /* !HMVMX_USE_FUNCTION_TABLE */
10427
10428
10429#ifdef VBOX_STRICT
10430/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10431# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10432 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10433
10434# define HMVMX_ASSERT_PREEMPT_CPUID() \
10435 do { \
10436 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10437 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10438 } while (0)
10439
10440# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10441 do { \
10442 AssertPtr((a_pVCpu)); \
10443 AssertPtr((a_pVmxTransient)); \
10444 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
10445 Assert(ASMIntAreEnabled()); \
10446 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10447 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10448 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
10449 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10450 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
10451 HMVMX_ASSERT_PREEMPT_CPUID(); \
10452 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10453 } while (0)
10454
10455# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10456 do { \
10457 Log4Func(("\n")); \
10458 } while (0)
10459#else
10460# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10461 do { \
10462 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10463 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
10464 } while (0)
10465# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
10466#endif
10467
10468
10469/**
10470 * Advances the guest RIP by the specified number of bytes.
10471 *
10472 * @param pVCpu The cross context virtual CPU structure.
10473 * @param cbInstr Number of bytes to advance the RIP by.
10474 *
10475 * @remarks No-long-jump zone!!!
10476 */
10477DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
10478{
10479 /* Advance the RIP. */
10480 pVCpu->cpum.GstCtx.rip += cbInstr;
10481 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
10482
10483 /* Update interrupt inhibition. */
10484 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10485 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
10486 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10487}
10488
10489
10490/**
10491 * Advances the guest RIP after reading it from the VMCS.
10492 *
10493 * @returns VBox status code, no informational status codes.
10494 * @param pVCpu The cross context virtual CPU structure.
10495 * @param pVmxTransient Pointer to the VMX transient structure.
10496 *
10497 * @remarks No-long-jump zone!!!
10498 */
10499static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10500{
10501 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10502 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
10503 AssertRCReturn(rc, rc);
10504
10505 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
10506 return VINF_SUCCESS;
10507}
10508
10509
10510/**
10511 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10512 * and update error record fields accordingly.
10513 *
10514 * @return VMX_IGS_* return codes.
10515 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10516 * wrong with the guest state.
10517 *
10518 * @param pVCpu The cross context virtual CPU structure.
10519 *
10520 * @remarks This function assumes our cache of the VMCS controls
10521 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10522 */
10523static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu)
10524{
10525#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10526#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10527 uError = (err); \
10528 break; \
10529 } else do { } while (0)
10530
10531 int rc;
10532 PVM pVM = pVCpu->CTX_SUFF(pVM);
10533 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10534 uint32_t uError = VMX_IGS_ERROR;
10535 uint32_t u32Val;
10536 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10537
10538 do
10539 {
10540 /*
10541 * CR0.
10542 */
10543 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10544 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10545 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10546 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10547 if (fUnrestrictedGuest)
10548 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
10549
10550 uint32_t u32GuestCr0;
10551 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
10552 AssertRCBreak(rc);
10553 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
10554 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
10555 if ( !fUnrestrictedGuest
10556 && (u32GuestCr0 & X86_CR0_PG)
10557 && !(u32GuestCr0 & X86_CR0_PE))
10558 {
10559 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10560 }
10561
10562 /*
10563 * CR4.
10564 */
10565 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10566 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10567
10568 uint32_t u32GuestCr4;
10569 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
10570 AssertRCBreak(rc);
10571 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
10572 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
10573
10574 /*
10575 * IA32_DEBUGCTL MSR.
10576 */
10577 uint64_t u64Val;
10578 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10579 AssertRCBreak(rc);
10580 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10581 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10582 {
10583 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10584 }
10585 uint64_t u64DebugCtlMsr = u64Val;
10586
10587#ifdef VBOX_STRICT
10588 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10589 AssertRCBreak(rc);
10590 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10591#endif
10592 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
10593
10594 /*
10595 * RIP and RFLAGS.
10596 */
10597 uint32_t u32Eflags;
10598#if HC_ARCH_BITS == 64
10599 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10600 AssertRCBreak(rc);
10601 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10602 if ( !fLongModeGuest
10603 || !pCtx->cs.Attr.n.u1Long)
10604 {
10605 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10606 }
10607 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10608 * must be identical if the "IA-32e mode guest" VM-entry
10609 * control is 1 and CS.L is 1. No check applies if the
10610 * CPU supports 64 linear-address bits. */
10611
10612 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10613 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10614 AssertRCBreak(rc);
10615 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10616 VMX_IGS_RFLAGS_RESERVED);
10617 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10618 u32Eflags = u64Val;
10619#else
10620 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10621 AssertRCBreak(rc);
10622 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10623 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10624#endif
10625
10626 if ( fLongModeGuest
10627 || ( fUnrestrictedGuest
10628 && !(u32GuestCr0 & X86_CR0_PE)))
10629 {
10630 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10631 }
10632
10633 uint32_t u32EntryInfo;
10634 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10635 AssertRCBreak(rc);
10636 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
10637 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10638 {
10639 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10640 }
10641
10642 /*
10643 * 64-bit checks.
10644 */
10645#if HC_ARCH_BITS == 64
10646 if (fLongModeGuest)
10647 {
10648 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10649 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10650 }
10651
10652 if ( !fLongModeGuest
10653 && (u32GuestCr4 & X86_CR4_PCIDE))
10654 {
10655 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10656 }
10657
10658 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10659 * 51:32 beyond the processor's physical-address width are 0. */
10660
10661 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10662 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10663 {
10664 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10665 }
10666
10667 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10668 AssertRCBreak(rc);
10669 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10670
10671 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10672 AssertRCBreak(rc);
10673 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10674#endif
10675
10676 /*
10677 * PERF_GLOBAL MSR.
10678 */
10679 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
10680 {
10681 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10682 AssertRCBreak(rc);
10683 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10684 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10685 }
10686
10687 /*
10688 * PAT MSR.
10689 */
10690 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
10691 {
10692 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10693 AssertRCBreak(rc);
10694 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10695 for (unsigned i = 0; i < 8; i++)
10696 {
10697 uint8_t u8Val = (u64Val & 0xff);
10698 if ( u8Val != 0 /* UC */
10699 && u8Val != 1 /* WC */
10700 && u8Val != 4 /* WT */
10701 && u8Val != 5 /* WP */
10702 && u8Val != 6 /* WB */
10703 && u8Val != 7 /* UC- */)
10704 {
10705 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10706 }
10707 u64Val >>= 8;
10708 }
10709 }
10710
10711 /*
10712 * EFER MSR.
10713 */
10714 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
10715 {
10716 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10717 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10718 AssertRCBreak(rc);
10719 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10720 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10721 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10722 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
10723 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10724 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
10725 * iemVmxVmentryCheckGuestState(). */
10726 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10727 || !(u32GuestCr0 & X86_CR0_PG)
10728 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10729 VMX_IGS_EFER_LMA_LME_MISMATCH);
10730 }
10731
10732 /*
10733 * Segment registers.
10734 */
10735 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10736 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10737 if (!(u32Eflags & X86_EFL_VM))
10738 {
10739 /* CS */
10740 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10741 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10742 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10743 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10744 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10745 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10746 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10747 /* CS cannot be loaded with NULL in protected mode. */
10748 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10749 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10750 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10751 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10752 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10753 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10754 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10755 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10756 else
10757 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10758
10759 /* SS */
10760 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10761 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10762 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10763 if ( !(pCtx->cr0 & X86_CR0_PE)
10764 || pCtx->cs.Attr.n.u4Type == 3)
10765 {
10766 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10767 }
10768 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10769 {
10770 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10771 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10772 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10773 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10774 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10775 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10776 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10777 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10778 }
10779
10780 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmenReg(). */
10781 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10782 {
10783 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10784 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10785 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10786 || pCtx->ds.Attr.n.u4Type > 11
10787 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10788 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10789 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10790 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10791 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10792 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10793 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10794 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10795 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10796 }
10797 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10798 {
10799 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10800 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10801 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10802 || pCtx->es.Attr.n.u4Type > 11
10803 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10804 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10805 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10806 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10807 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10808 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10809 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10810 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10811 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10812 }
10813 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10814 {
10815 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10816 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10817 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10818 || pCtx->fs.Attr.n.u4Type > 11
10819 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10820 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10821 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10822 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10823 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10824 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10825 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10826 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10827 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10828 }
10829 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10830 {
10831 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10832 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10833 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10834 || pCtx->gs.Attr.n.u4Type > 11
10835 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10836 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10837 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10838 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10839 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10840 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10841 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10842 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10843 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10844 }
10845 /* 64-bit capable CPUs. */
10846#if HC_ARCH_BITS == 64
10847 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10848 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10849 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10850 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10851 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10852 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10853 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10854 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10855 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10856 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10857 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10858#endif
10859 }
10860 else
10861 {
10862 /* V86 mode checks. */
10863 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10864 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10865 {
10866 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10867 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10868 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10869 }
10870 else
10871 {
10872 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10873 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10874 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10875 }
10876
10877 /* CS */
10878 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10879 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10880 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10881 /* SS */
10882 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10883 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10884 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10885 /* DS */
10886 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10887 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10888 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10889 /* ES */
10890 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10891 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10892 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10893 /* FS */
10894 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10895 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10896 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10897 /* GS */
10898 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10899 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10900 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10901 /* 64-bit capable CPUs. */
10902#if HC_ARCH_BITS == 64
10903 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10904 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10905 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10906 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10907 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10908 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10909 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10910 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10911 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10912 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10913 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10914#endif
10915 }
10916
10917 /*
10918 * TR.
10919 */
10920 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
10921 /* 64-bit capable CPUs. */
10922#if HC_ARCH_BITS == 64
10923 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
10924#endif
10925 if (fLongModeGuest)
10926 {
10927 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
10928 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
10929 }
10930 else
10931 {
10932 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
10933 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
10934 VMX_IGS_TR_ATTR_TYPE_INVALID);
10935 }
10936 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
10937 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
10938 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
10939 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
10940 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10941 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
10942 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10943 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
10944
10945 /*
10946 * GDTR and IDTR.
10947 */
10948#if HC_ARCH_BITS == 64
10949 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
10950 AssertRCBreak(rc);
10951 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
10952
10953 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
10954 AssertRCBreak(rc);
10955 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
10956#endif
10957
10958 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
10959 AssertRCBreak(rc);
10960 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10961
10962 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
10963 AssertRCBreak(rc);
10964 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10965
10966 /*
10967 * Guest Non-Register State.
10968 */
10969 /* Activity State. */
10970 uint32_t u32ActivityState;
10971 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
10972 AssertRCBreak(rc);
10973 HMVMX_CHECK_BREAK( !u32ActivityState
10974 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
10975 VMX_IGS_ACTIVITY_STATE_INVALID);
10976 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
10977 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
10978 uint32_t u32IntrState;
10979 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
10980 AssertRCBreak(rc);
10981 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
10982 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10983 {
10984 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
10985 }
10986
10987 /** @todo Activity state and injecting interrupts. Left as a todo since we
10988 * currently don't use activity states but ACTIVE. */
10989
10990 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
10991 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
10992
10993 /* Guest interruptibility-state. */
10994 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
10995 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
10996 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10997 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
10998 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
10999 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
11000 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11001 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
11002 {
11003 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
11004 {
11005 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11006 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11007 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11008 }
11009 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11010 {
11011 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11012 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11013 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
11014 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11015 }
11016 }
11017 /** @todo Assumes the processor is not in SMM. */
11018 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11019 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11020 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
11021 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11022 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11023 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
11024 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
11025 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11026 {
11027 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
11028 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11029 }
11030
11031 /* Pending debug exceptions. */
11032#if HC_ARCH_BITS == 64
11033 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
11034 AssertRCBreak(rc);
11035 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11036 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11037 u32Val = u64Val; /* For pending debug exceptions checks below. */
11038#else
11039 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
11040 AssertRCBreak(rc);
11041 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11042 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11043#endif
11044
11045 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11046 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
11047 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11048 {
11049 if ( (u32Eflags & X86_EFL_TF)
11050 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11051 {
11052 /* Bit 14 is PendingDebug.BS. */
11053 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11054 }
11055 if ( !(u32Eflags & X86_EFL_TF)
11056 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11057 {
11058 /* Bit 14 is PendingDebug.BS. */
11059 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11060 }
11061 }
11062
11063 /* VMCS link pointer. */
11064 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11065 AssertRCBreak(rc);
11066 if (u64Val != UINT64_C(0xffffffffffffffff))
11067 {
11068 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11069 /** @todo Bits beyond the processor's physical-address width MBZ. */
11070 /** @todo 32-bit located in memory referenced by value of this field (as a
11071 * physical address) must contain the processor's VMCS revision ID. */
11072 /** @todo SMM checks. */
11073 }
11074
11075 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11076 * not using Nested Paging? */
11077 if ( pVM->hm.s.fNestedPaging
11078 && !fLongModeGuest
11079 && CPUMIsGuestInPAEModeEx(pCtx))
11080 {
11081 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11082 AssertRCBreak(rc);
11083 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11084
11085 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11086 AssertRCBreak(rc);
11087 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11088
11089 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11090 AssertRCBreak(rc);
11091 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11092
11093 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11094 AssertRCBreak(rc);
11095 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11096 }
11097
11098 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11099 if (uError == VMX_IGS_ERROR)
11100 uError = VMX_IGS_REASON_NOT_FOUND;
11101 } while (0);
11102
11103 pVCpu->hm.s.u32HMError = uError;
11104 return uError;
11105
11106#undef HMVMX_ERROR_BREAK
11107#undef HMVMX_CHECK_BREAK
11108}
11109
11110
11111/** @name VM-exit handlers.
11112 * @{
11113 */
11114/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11115/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11116/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11117
11118/**
11119 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11120 */
11121HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11122{
11123 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11124 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11125 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11126 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11127 return VINF_SUCCESS;
11128 return VINF_EM_RAW_INTERRUPT;
11129}
11130
11131
11132/**
11133 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11134 */
11135HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11136{
11137 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11138 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11139
11140 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11141 AssertRCReturn(rc, rc);
11142
11143 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11144 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
11145 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
11146 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11147
11148 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11149 {
11150 /*
11151 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
11152 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
11153 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
11154 *
11155 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11156 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
11157 */
11158 VMXDispatchHostNmi();
11159 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11160 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11161 return VINF_SUCCESS;
11162 }
11163
11164 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11165 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
11166 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11167 { /* likely */ }
11168 else
11169 {
11170 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11171 rcStrictRc1 = VINF_SUCCESS;
11172 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11173 return rcStrictRc1;
11174 }
11175
11176 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11177 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
11178 switch (uIntType)
11179 {
11180 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11181 Assert(uVector == X86_XCPT_DB);
11182 RT_FALL_THRU();
11183 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11184 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
11185 RT_FALL_THRU();
11186 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11187 {
11188 /*
11189 * If there's any exception caused as a result of event injection, the resulting
11190 * secondary/final execption will be pending, we shall continue guest execution
11191 * after injecting the event. The page-fault case is complicated and we manually
11192 * handle any currently pending event in hmR0VmxExitXcptPF.
11193 */
11194 if (!pVCpu->hm.s.Event.fPending)
11195 { /* likely */ }
11196 else if (uVector != X86_XCPT_PF)
11197 {
11198 rc = VINF_SUCCESS;
11199 break;
11200 }
11201
11202 switch (uVector)
11203 {
11204 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
11205 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
11206 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
11207 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
11208 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
11209 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
11210
11211 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11212 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11213 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11214 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11215 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11216 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11217 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11218 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11219 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11220 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11221 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11222 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11223 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11224 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11225 default:
11226 {
11227 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11228 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11229 {
11230 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11231 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11232 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
11233
11234 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
11235 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11236 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11237 AssertRCReturn(rc, rc);
11238 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11239 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11240 0 /* GCPtrFaultAddress */);
11241 }
11242 else
11243 {
11244 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11245 pVCpu->hm.s.u32HMError = uVector;
11246 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11247 }
11248 break;
11249 }
11250 }
11251 break;
11252 }
11253
11254 default:
11255 {
11256 pVCpu->hm.s.u32HMError = uExitIntInfo;
11257 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11258 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
11259 break;
11260 }
11261 }
11262 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11263 return rc;
11264}
11265
11266
11267/**
11268 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11269 */
11270HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11271{
11272 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11273
11274 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11275 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11276
11277 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11278 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11279 return VINF_SUCCESS;
11280}
11281
11282
11283/**
11284 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11285 */
11286HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11287{
11288 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11289 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)))
11290 {
11291 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11292 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11293 }
11294
11295 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS));
11296
11297 /*
11298 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11299 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11300 */
11301 uint32_t fIntrState = 0;
11302 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11303 AssertRCReturn(rc, rc);
11304 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
11305 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11306 {
11307 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11308 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11309
11310 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
11311 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
11312 AssertRCReturn(rc, rc);
11313 }
11314
11315 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11316 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11317
11318 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11319 return VINF_SUCCESS;
11320}
11321
11322
11323/**
11324 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11325 */
11326HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11327{
11328 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11329 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11330}
11331
11332
11333/**
11334 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11335 */
11336HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11337{
11338 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11339 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11340}
11341
11342
11343/**
11344 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11345 */
11346HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11347{
11348 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11349
11350 /*
11351 * Get the state we need and update the exit history entry.
11352 */
11353 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11354 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
11355 AssertRCReturn(rc, rc);
11356
11357 VBOXSTRICTRC rcStrict;
11358 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
11359 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
11360 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
11361 if (!pExitRec)
11362 {
11363 /*
11364 * Regular CPUID instruction execution.
11365 */
11366 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
11367 if (rcStrict == VINF_SUCCESS)
11368 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11369 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11370 {
11371 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11372 rcStrict = VINF_SUCCESS;
11373 }
11374 }
11375 else
11376 {
11377 /*
11378 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
11379 */
11380 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11381 AssertRCReturn(rc2, rc2);
11382
11383 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
11384 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
11385
11386 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
11387 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
11388
11389 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
11390 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
11391 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
11392 }
11393 return rcStrict;
11394}
11395
11396
11397/**
11398 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11399 */
11400HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11401{
11402 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11403 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4);
11404 AssertRCReturn(rc, rc);
11405
11406 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
11407 return VINF_EM_RAW_EMULATE_INSTR;
11408
11409 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11410 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11411}
11412
11413
11414/**
11415 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11416 */
11417HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11418{
11419 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11420 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
11421 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11422 AssertRCReturn(rc, rc);
11423
11424 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
11425 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11426 {
11427 /* If we get a spurious VM-exit when offsetting is enabled,
11428 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11429 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11430 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11431 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11432 }
11433 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11434 {
11435 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11436 rcStrict = VINF_SUCCESS;
11437 }
11438 return rcStrict;
11439}
11440
11441
11442/**
11443 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11444 */
11445HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11446{
11447 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11448 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
11449 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11450 AssertRCReturn(rc, rc);
11451
11452 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
11453 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11454 {
11455 /* If we get a spurious VM-exit when offsetting is enabled,
11456 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11457 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11458 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11459 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11460 }
11461 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11462 {
11463 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11464 rcStrict = VINF_SUCCESS;
11465 }
11466 return rcStrict;
11467}
11468
11469
11470/**
11471 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11472 */
11473HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11474{
11475 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11476 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11477 AssertRCReturn(rc, rc);
11478
11479 PVM pVM = pVCpu->CTX_SUFF(pVM);
11480 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11481 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11482 if (RT_LIKELY(rc == VINF_SUCCESS))
11483 {
11484 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11485 Assert(pVmxTransient->cbInstr == 2);
11486 }
11487 else
11488 {
11489 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11490 rc = VERR_EM_INTERPRETER;
11491 }
11492 return rc;
11493}
11494
11495
11496/**
11497 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11498 */
11499HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11500{
11501 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11502
11503 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11504 if (EMAreHypercallInstructionsEnabled(pVCpu))
11505 {
11506 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
11507 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
11508 AssertRCReturn(rc, rc);
11509
11510 /* Perform the hypercall. */
11511 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
11512 if (rcStrict == VINF_SUCCESS)
11513 {
11514 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11515 AssertRCReturn(rc, rc);
11516 }
11517 else
11518 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11519 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11520 || RT_FAILURE(rcStrict));
11521
11522 /* If the hypercall changes anything other than guest's general-purpose registers,
11523 we would need to reload the guest changed bits here before VM-entry. */
11524 }
11525 else
11526 Log4Func(("Hypercalls not enabled\n"));
11527
11528 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11529 if (RT_FAILURE(rcStrict))
11530 {
11531 hmR0VmxSetPendingXcptUD(pVCpu);
11532 rcStrict = VINF_SUCCESS;
11533 }
11534
11535 return rcStrict;
11536}
11537
11538
11539/**
11540 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11541 */
11542HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11543{
11544 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11545 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11546
11547 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11548 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11549 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
11550 AssertRCReturn(rc, rc);
11551
11552 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
11553
11554 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
11555 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11556 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11557 {
11558 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11559 rcStrict = VINF_SUCCESS;
11560 }
11561 else
11562 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
11563 VBOXSTRICTRC_VAL(rcStrict)));
11564 return rcStrict;
11565}
11566
11567
11568/**
11569 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11570 */
11571HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11572{
11573 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11574 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11575 AssertRCReturn(rc, rc);
11576
11577 PVM pVM = pVCpu->CTX_SUFF(pVM);
11578 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11579 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11580 if (RT_LIKELY(rc == VINF_SUCCESS))
11581 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11582 else
11583 {
11584 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11585 rc = VERR_EM_INTERPRETER;
11586 }
11587 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11588 return rc;
11589}
11590
11591
11592/**
11593 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11594 */
11595HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11596{
11597 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11598 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11599 AssertRCReturn(rc, rc);
11600
11601 PVM pVM = pVCpu->CTX_SUFF(pVM);
11602 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11603 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11604 rc = VBOXSTRICTRC_VAL(rc2);
11605 if (RT_LIKELY( rc == VINF_SUCCESS
11606 || rc == VINF_EM_HALT))
11607 {
11608 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11609 AssertRCReturn(rc3, rc3);
11610
11611 if ( rc == VINF_EM_HALT
11612 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
11613 rc = VINF_SUCCESS;
11614 }
11615 else
11616 {
11617 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11618 rc = VERR_EM_INTERPRETER;
11619 }
11620 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11621 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11622 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11623 return rc;
11624}
11625
11626
11627/**
11628 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11629 */
11630HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11631{
11632 /*
11633 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
11634 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
11635 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
11636 * VMX root operation. If we get here, something funny is going on.
11637 *
11638 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
11639 */
11640 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11641 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
11642 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11643}
11644
11645
11646/**
11647 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11648 */
11649HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11650{
11651 /*
11652 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
11653 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
11654 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
11655 * an SMI. If we get here, something funny is going on.
11656 *
11657 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
11658 * See Intel spec. 25.3 "Other Causes of VM-Exits"
11659 */
11660 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11661 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
11662 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11663}
11664
11665
11666/**
11667 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11668 */
11669HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11670{
11671 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11672 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11673 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
11674 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11675}
11676
11677
11678/**
11679 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11680 */
11681HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11682{
11683 /*
11684 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
11685 * We don't make use of it as our guests don't have direct access to the host LAPIC.
11686 * See Intel spec. 25.3 "Other Causes of VM-exits".
11687 */
11688 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11689 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
11690 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11691}
11692
11693
11694/**
11695 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11696 * VM-exit.
11697 */
11698HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11699{
11700 /*
11701 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11702 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11703 *
11704 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11705 * See Intel spec. "23.8 Restrictions on VMX operation".
11706 */
11707 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11708 return VINF_SUCCESS;
11709}
11710
11711
11712/**
11713 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11714 * VM-exit.
11715 */
11716HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11717{
11718 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11719 return VINF_EM_RESET;
11720}
11721
11722
11723/**
11724 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11725 */
11726HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11727{
11728 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11729 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_HLT_EXIT);
11730
11731 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11732 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RFLAGS);
11733 AssertRCReturn(rc, rc);
11734
11735 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
11736 rc = VINF_SUCCESS;
11737 else
11738 rc = VINF_EM_HALT;
11739
11740 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11741 if (rc != VINF_SUCCESS)
11742 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11743 return rc;
11744}
11745
11746
11747/**
11748 * VM-exit handler for instructions that result in a \#UD exception delivered to
11749 * the guest.
11750 */
11751HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11752{
11753 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11754 hmR0VmxSetPendingXcptUD(pVCpu);
11755 return VINF_SUCCESS;
11756}
11757
11758
11759/**
11760 * VM-exit handler for expiry of the VMX preemption timer.
11761 */
11762HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11763{
11764 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11765
11766 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11767 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11768
11769 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11770 PVM pVM = pVCpu->CTX_SUFF(pVM);
11771 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11772 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11773 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11774}
11775
11776
11777/**
11778 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11779 */
11780HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11781{
11782 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11783
11784 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11785 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
11786 AssertRCReturn(rc, rc);
11787
11788 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11789 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11790 : HM_CHANGED_RAISED_XCPT_MASK);
11791
11792 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11793 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
11794
11795 return rcStrict;
11796}
11797
11798
11799/**
11800 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11801 */
11802HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11803{
11804 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11805 /** @todo Use VM-exit instruction information. */
11806 return VERR_EM_INTERPRETER;
11807}
11808
11809
11810/**
11811 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11812 * Error VM-exit.
11813 */
11814HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11815{
11816 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11817 AssertRCReturn(rc, rc);
11818 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11819 if (RT_FAILURE(rc))
11820 return rc;
11821
11822 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
11823 NOREF(uInvalidReason);
11824
11825#ifdef VBOX_STRICT
11826 uint32_t fIntrState;
11827 RTHCUINTREG uHCReg;
11828 uint64_t u64Val;
11829 uint32_t u32Val;
11830
11831 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11832 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11833 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11834 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11835 AssertRCReturn(rc, rc);
11836
11837 Log4(("uInvalidReason %u\n", uInvalidReason));
11838 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11839 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11840 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11841 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
11842
11843 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11844 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11845 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11846 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11847 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11848 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11849 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11850 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11851 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11852 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11853 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11854 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11855
11856 hmR0DumpRegs(pVCpu);
11857#else
11858 NOREF(pVmxTransient);
11859#endif
11860
11861 return VERR_VMX_INVALID_GUEST_STATE;
11862}
11863
11864
11865/**
11866 * VM-exit handler for VM-entry failure due to an MSR-load
11867 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11868 */
11869HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11870{
11871 AssertMsgFailed(("Unexpected MSR-load exit\n"));
11872 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11873}
11874
11875
11876/**
11877 * VM-exit handler for VM-entry failure due to a machine-check event
11878 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11879 */
11880HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11881{
11882 AssertMsgFailed(("Unexpected machine-check event exit\n"));
11883 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11884}
11885
11886
11887/**
11888 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11889 * theory.
11890 */
11891HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11892{
11893 RT_NOREF2(pVCpu, pVmxTransient);
11894 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
11895 return VERR_VMX_UNDEFINED_EXIT_CODE;
11896}
11897
11898
11899/**
11900 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11901 * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11902 * Conditional VM-exit.
11903 */
11904HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11905{
11906 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11907
11908 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
11909 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11910 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
11911 return VERR_EM_INTERPRETER;
11912 AssertMsgFailed(("Unexpected XDTR access\n"));
11913 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11914}
11915
11916
11917/**
11918 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11919 */
11920HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11921{
11922 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11923
11924 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
11925 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
11926 return VERR_EM_INTERPRETER;
11927 AssertMsgFailed(("Unexpected RDRAND exit\n"));
11928 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11929}
11930
11931
11932/**
11933 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11934 */
11935HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11936{
11937 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11938
11939 /** @todo Optimize this: We currently drag in in the whole MSR state
11940 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11941 * MSRs required. That would require changes to IEM and possibly CPUM too.
11942 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11943 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
11944 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11945 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11946 switch (idMsr)
11947 {
11948 /* The FS and GS base MSRs are not part of the above all-MSRs mask. */
11949 case MSR_K8_FS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_FS); break;
11950 case MSR_K8_GS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_GS); break;
11951 }
11952 AssertRCReturn(rc, rc);
11953
11954 Log4Func(("ecx=%#RX32\n", idMsr));
11955
11956#ifdef VBOX_STRICT
11957 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
11958 {
11959 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr)
11960 && idMsr != MSR_K6_EFER)
11961 {
11962 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
11963 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11964 }
11965 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
11966 {
11967 VMXMSREXITREAD enmRead;
11968 VMXMSREXITWRITE enmWrite;
11969 int rc2 = HMVmxGetMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
11970 AssertRCReturn(rc2, rc2);
11971 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
11972 {
11973 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
11974 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11975 }
11976 }
11977 }
11978#endif
11979
11980 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
11981 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
11982 if (rcStrict == VINF_SUCCESS)
11983 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11984 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11985 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11986 {
11987 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11988 rcStrict = VINF_SUCCESS;
11989 }
11990 else
11991 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
11992
11993 return rcStrict;
11994}
11995
11996
11997/**
11998 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
11999 */
12000HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12001{
12002 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12003
12004 /** @todo Optimize this: We currently drag in in the whole MSR state
12005 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
12006 * MSRs required. That would require changes to IEM and possibly CPUM too.
12007 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
12008 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
12009 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12010 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK
12011 | CPUMCTX_EXTRN_ALL_MSRS);
12012 switch (idMsr)
12013 {
12014 /*
12015 * The FS and GS base MSRs are not part of the above all-MSRs mask.
12016 *
12017 * Although we don't need to fetch the base as it will be overwritten shortly, while
12018 * loading guest-state we would also load the entire segment register including limit
12019 * and attributes and thus we need to load them here.
12020 */
12021 case MSR_K8_FS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_FS); break;
12022 case MSR_K8_GS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_GS); break;
12023 }
12024 AssertRCReturn(rc, rc);
12025
12026 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
12027
12028 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
12029 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12030
12031 if (rcStrict == VINF_SUCCESS)
12032 {
12033 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12034
12035 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12036 if ( idMsr == MSR_IA32_APICBASE
12037 || ( idMsr >= MSR_IA32_X2APIC_START
12038 && idMsr <= MSR_IA32_X2APIC_END))
12039 {
12040 /*
12041 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12042 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before IEM changes it.
12043 */
12044 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
12045 }
12046 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12047 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12048 else if (idMsr == MSR_K6_EFER)
12049 {
12050 /*
12051 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12052 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12053 * the other bits as well, SCE and NXE. See @bugref{7368}.
12054 */
12055 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS
12056 | HM_CHANGED_VMX_EXIT_CTLS);
12057 }
12058
12059 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12060 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
12061 {
12062 switch (idMsr)
12063 {
12064 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12065 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12066 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12067 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
12068 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
12069 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
12070 default:
12071 {
12072 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12073 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12074 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12075 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
12076 break;
12077 }
12078 }
12079 }
12080#ifdef VBOX_STRICT
12081 else
12082 {
12083 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12084 switch (idMsr)
12085 {
12086 case MSR_IA32_SYSENTER_CS:
12087 case MSR_IA32_SYSENTER_EIP:
12088 case MSR_IA32_SYSENTER_ESP:
12089 case MSR_K8_FS_BASE:
12090 case MSR_K8_GS_BASE:
12091 {
12092 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
12093 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12094 }
12095
12096 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12097 default:
12098 {
12099 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12100 {
12101 /* EFER writes are always intercepted, see hmR0VmxExportGuestMsrs(). */
12102 if (idMsr != MSR_K6_EFER)
12103 {
12104 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12105 idMsr));
12106 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12107 }
12108 }
12109
12110 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12111 {
12112 VMXMSREXITREAD enmRead;
12113 VMXMSREXITWRITE enmWrite;
12114 int rc2 = HMVmxGetMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
12115 AssertRCReturn(rc2, rc2);
12116 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12117 {
12118 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
12119 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12120 }
12121 }
12122 break;
12123 }
12124 }
12125 }
12126#endif /* VBOX_STRICT */
12127 }
12128 else if (rcStrict == VINF_IEM_RAISED_XCPT)
12129 {
12130 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12131 rcStrict = VINF_SUCCESS;
12132 }
12133 else
12134 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
12135
12136 return rcStrict;
12137}
12138
12139
12140/**
12141 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12142 */
12143HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12144{
12145 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12146 /** @todo The guest has likely hit a contended spinlock. We might want to
12147 * poke a schedule different guest VCPU. */
12148 return VINF_EM_RAW_INTERRUPT;
12149}
12150
12151
12152/**
12153 * VM-exit handler for when the TPR value is lowered below the specified
12154 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12155 */
12156HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12157{
12158 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12159 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
12160
12161 /*
12162 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12163 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12164 */
12165 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12166 return VINF_SUCCESS;
12167}
12168
12169
12170/**
12171 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12172 * VM-exit.
12173 *
12174 * @retval VINF_SUCCESS when guest execution can continue.
12175 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12176 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12177 * interpreter.
12178 */
12179HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12180{
12181 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12182 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12183
12184 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12185 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12186 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12187 AssertRCReturn(rc, rc);
12188
12189 VBOXSTRICTRC rcStrict;
12190 PVM pVM = pVCpu->CTX_SUFF(pVM);
12191 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
12192 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
12193 switch (uAccessType)
12194 {
12195 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
12196 {
12197 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
12198 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12199 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
12200 AssertMsg( rcStrict == VINF_SUCCESS
12201 || rcStrict == VINF_IEM_RAISED_XCPT
12202 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12203
12204 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12205 {
12206 case 0:
12207 {
12208 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12209 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12210 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
12211 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
12212
12213 /*
12214 * This is a kludge for handling switches back to real mode when we try to use
12215 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
12216 * deal with special selector values, so we have to return to ring-3 and run
12217 * there till the selector values are V86 mode compatible.
12218 *
12219 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
12220 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
12221 * at the end of this function.
12222 */
12223 if ( rc == VINF_SUCCESS
12224 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
12225 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
12226 && (uOldCr0 & X86_CR0_PE)
12227 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
12228 {
12229 /** @todo check selectors rather than returning all the time. */
12230 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
12231 rcStrict = VINF_EM_RESCHEDULE_REM;
12232 }
12233 break;
12234 }
12235
12236 case 2:
12237 {
12238 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
12239 /* Nothing to do here, CR2 it's not part of the VMCS. */
12240 break;
12241 }
12242
12243 case 3:
12244 {
12245 Assert( !pVM->hm.s.fNestedPaging
12246 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12247 || pVCpu->hm.s.fUsingDebugLoop);
12248 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
12249 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12250 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
12251 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
12252 break;
12253 }
12254
12255 case 4:
12256 {
12257 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
12258 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12259 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
12260 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
12261 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12262 break;
12263 }
12264
12265 case 8:
12266 {
12267 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
12268 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12269 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12270 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
12271 break;
12272 }
12273 default:
12274 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
12275 break;
12276 }
12277 break;
12278 }
12279
12280 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
12281 {
12282 Assert( !pVM->hm.s.fNestedPaging
12283 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12284 || pVCpu->hm.s.fUsingDebugLoop
12285 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
12286 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12287 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
12288 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12289
12290 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
12291 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
12292 AssertMsg( rcStrict == VINF_SUCCESS
12293 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12294#ifdef VBOX_WITH_STATISTICS
12295 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12296 {
12297 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
12298 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
12299 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
12300 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
12301 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
12302 }
12303#endif
12304 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12305 VBOXSTRICTRC_VAL(rcStrict)));
12306 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
12307 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
12308 else
12309 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12310 break;
12311 }
12312
12313 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12314 {
12315 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12316 AssertMsg( rcStrict == VINF_SUCCESS
12317 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12318
12319 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12320 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12321 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12322 break;
12323 }
12324
12325 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12326 {
12327 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
12328 rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
12329 AssertRCReturn(rc, rc);
12330 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
12331 pVmxTransient->uGuestLinearAddr);
12332 AssertMsg( rcStrict == VINF_SUCCESS
12333 || rcStrict == VINF_IEM_RAISED_XCPT
12334 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12335
12336 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12337 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12338 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12339 break;
12340 }
12341
12342 default:
12343 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12344 VERR_VMX_UNEXPECTED_EXCEPTION);
12345 }
12346
12347 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
12348 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
12349 if (rcStrict == VINF_IEM_RAISED_XCPT)
12350 {
12351 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12352 rcStrict = VINF_SUCCESS;
12353 }
12354
12355 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12356 NOREF(pVM);
12357 return rcStrict;
12358}
12359
12360
12361/**
12362 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12363 * VM-exit.
12364 */
12365HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12366{
12367 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12368 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12369
12370 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12371 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12372 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12373 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER);
12374 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12375 AssertRCReturn(rc, rc);
12376
12377 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12378 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
12379 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
12380 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
12381 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
12382 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
12383 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12384 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12385
12386 /*
12387 * Update exit history to see if this exit can be optimized.
12388 */
12389 VBOXSTRICTRC rcStrict;
12390 PCEMEXITREC pExitRec = NULL;
12391 if ( !fGstStepping
12392 && !fDbgStepping)
12393 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12394 !fIOString
12395 ? !fIOWrite
12396 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
12397 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
12398 : !fIOWrite
12399 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
12400 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
12401 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12402 if (!pExitRec)
12403 {
12404 /* I/O operation lookup arrays. */
12405 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12406 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
12407 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12408 uint32_t const cbInstr = pVmxTransient->cbInstr;
12409 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12410 PVM pVM = pVCpu->CTX_SUFF(pVM);
12411 if (fIOString)
12412 {
12413 /*
12414 * INS/OUTS - I/O String instruction.
12415 *
12416 * Use instruction-information if available, otherwise fall back on
12417 * interpreting the instruction.
12418 */
12419 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12420 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
12421 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
12422 if (fInsOutsInfo)
12423 {
12424 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12425 AssertRCReturn(rc2, rc2);
12426 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12427 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12428 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12429 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
12430 if (fIOWrite)
12431 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12432 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12433 else
12434 {
12435 /*
12436 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12437 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12438 * See Intel Instruction spec. for "INS".
12439 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12440 */
12441 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12442 }
12443 }
12444 else
12445 rcStrict = IEMExecOne(pVCpu);
12446
12447 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12448 fUpdateRipAlready = true;
12449 }
12450 else
12451 {
12452 /*
12453 * IN/OUT - I/O instruction.
12454 */
12455 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12456 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12457 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
12458 if (fIOWrite)
12459 {
12460 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
12461 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12462 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12463 && !pCtx->eflags.Bits.u1TF)
12464 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
12465 }
12466 else
12467 {
12468 uint32_t u32Result = 0;
12469 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12470 if (IOM_SUCCESS(rcStrict))
12471 {
12472 /* Save result of I/O IN instr. in AL/AX/EAX. */
12473 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12474 }
12475 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12476 && !pCtx->eflags.Bits.u1TF)
12477 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
12478 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12479 }
12480 }
12481
12482 if (IOM_SUCCESS(rcStrict))
12483 {
12484 if (!fUpdateRipAlready)
12485 {
12486 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
12487 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12488 }
12489
12490 /*
12491 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
12492 * while booting Fedora 17 64-bit guest.
12493 *
12494 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12495 */
12496 if (fIOString)
12497 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
12498
12499 /*
12500 * If any I/O breakpoints are armed, we need to check if one triggered
12501 * and take appropriate action.
12502 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12503 */
12504 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
12505 AssertRCReturn(rc, rc);
12506
12507 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12508 * execution engines about whether hyper BPs and such are pending. */
12509 uint32_t const uDr7 = pCtx->dr[7];
12510 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12511 && X86_DR7_ANY_RW_IO(uDr7)
12512 && (pCtx->cr4 & X86_CR4_DE))
12513 || DBGFBpIsHwIoArmed(pVM)))
12514 {
12515 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12516
12517 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12518 VMMRZCallRing3Disable(pVCpu);
12519 HM_DISABLE_PREEMPT(pVCpu);
12520
12521 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12522
12523 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
12524 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12525 {
12526 /* Raise #DB. */
12527 if (fIsGuestDbgActive)
12528 ASMSetDR6(pCtx->dr[6]);
12529 if (pCtx->dr[7] != uDr7)
12530 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
12531
12532 hmR0VmxSetPendingXcptDB(pVCpu);
12533 }
12534 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12535 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12536 else if ( rcStrict2 != VINF_SUCCESS
12537 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12538 rcStrict = rcStrict2;
12539 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12540
12541 HM_RESTORE_PREEMPT();
12542 VMMRZCallRing3Enable(pVCpu);
12543 }
12544 }
12545
12546#ifdef VBOX_STRICT
12547 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12548 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
12549 Assert(!fIOWrite);
12550 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12551 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
12552 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
12553 Assert(fIOWrite);
12554 else
12555 {
12556# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12557 * statuses, that the VMM device and some others may return. See
12558 * IOM_SUCCESS() for guidance. */
12559 AssertMsg( RT_FAILURE(rcStrict)
12560 || rcStrict == VINF_SUCCESS
12561 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12562 || rcStrict == VINF_EM_DBG_BREAKPOINT
12563 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12564 || rcStrict == VINF_EM_RAW_TO_R3
12565 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12566# endif
12567 }
12568#endif
12569 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12570 }
12571 else
12572 {
12573 /*
12574 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12575 */
12576 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
12577 AssertRCReturn(rc2, rc2);
12578 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
12579 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
12580 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
12581 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12582 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
12583 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
12584
12585 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12586 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12587
12588 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12589 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12590 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12591 }
12592 return rcStrict;
12593}
12594
12595
12596/**
12597 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12598 * VM-exit.
12599 */
12600HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12601{
12602 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12603
12604 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12605 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12606 AssertRCReturn(rc, rc);
12607 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
12608 {
12609 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12610 AssertRCReturn(rc, rc);
12611 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12612 {
12613 uint32_t uErrCode;
12614 RTGCUINTPTR GCPtrFaultAddress;
12615 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12616 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12617 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
12618 if (fErrorCodeValid)
12619 {
12620 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12621 AssertRCReturn(rc, rc);
12622 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
12623 }
12624 else
12625 uErrCode = 0;
12626
12627 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12628 && uVector == X86_XCPT_PF)
12629 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
12630 else
12631 GCPtrFaultAddress = 0;
12632
12633 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12634 AssertRCReturn(rc, rc);
12635
12636 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12637 pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
12638
12639 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
12640 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12641 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12642 }
12643 }
12644
12645 /* Fall back to the interpreter to emulate the task-switch. */
12646 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12647 return VERR_EM_INTERPRETER;
12648}
12649
12650
12651/**
12652 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12653 */
12654HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12655{
12656 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12657 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
12658 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
12659 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12660 AssertRCReturn(rc, rc);
12661 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12662 return VINF_EM_DBG_STEPPED;
12663}
12664
12665
12666/**
12667 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12668 */
12669HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12670{
12671 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12672
12673 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12674
12675 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12676 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12677 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12678 {
12679 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12680 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12681 {
12682 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12683 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12684 }
12685 }
12686 else
12687 {
12688 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12689 rcStrict1 = VINF_SUCCESS;
12690 return rcStrict1;
12691 }
12692
12693 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
12694 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12695 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12696 AssertRCReturn(rc, rc);
12697
12698 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12699 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
12700 VBOXSTRICTRC rcStrict2;
12701 switch (uAccessType)
12702 {
12703 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12704 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12705 {
12706 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
12707 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
12708 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12709
12710 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12711 GCPhys &= PAGE_BASE_GC_MASK;
12712 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
12713 PVM pVM = pVCpu->CTX_SUFF(pVM);
12714 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12715 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
12716
12717 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12718 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12719 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12720 CPUMCTX2CORE(pCtx), GCPhys);
12721 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12722 if ( rcStrict2 == VINF_SUCCESS
12723 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12724 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12725 {
12726 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12727 | HM_CHANGED_GUEST_APIC_TPR);
12728 rcStrict2 = VINF_SUCCESS;
12729 }
12730 break;
12731 }
12732
12733 default:
12734 Log4Func(("uAccessType=%#x\n", uAccessType));
12735 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12736 break;
12737 }
12738
12739 if (rcStrict2 != VINF_SUCCESS)
12740 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12741 return rcStrict2;
12742}
12743
12744
12745/**
12746 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12747 * VM-exit.
12748 */
12749HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12750{
12751 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12752
12753 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12754 if (pVmxTransient->fWasGuestDebugStateActive)
12755 {
12756 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
12757 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12758 }
12759
12760 if ( !pVCpu->hm.s.fSingleInstruction
12761 && !pVmxTransient->fWasHyperDebugStateActive)
12762 {
12763 Assert(!DBGFIsStepping(pVCpu));
12764 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12765
12766 /* Don't intercept MOV DRx any more. */
12767 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
12768 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12769 AssertRCReturn(rc, rc);
12770
12771 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12772 VMMRZCallRing3Disable(pVCpu);
12773 HM_DISABLE_PREEMPT(pVCpu);
12774
12775 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12776 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12777 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12778
12779 HM_RESTORE_PREEMPT();
12780 VMMRZCallRing3Enable(pVCpu);
12781
12782#ifdef VBOX_WITH_STATISTICS
12783 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12784 AssertRCReturn(rc, rc);
12785 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12786 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12787 else
12788 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12789#endif
12790 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12791 return VINF_SUCCESS;
12792 }
12793
12794 /*
12795 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12796 * Update the segment registers and DR7 from the CPU.
12797 */
12798 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12799 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12800 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
12801 AssertRCReturn(rc, rc);
12802 Log4Func(("CS:RIP=%04x:%08RX64\n", pCtx->cs.Sel, pCtx->rip));
12803
12804 PVM pVM = pVCpu->CTX_SUFF(pVM);
12805 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12806 {
12807 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12808 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
12809 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
12810 if (RT_SUCCESS(rc))
12811 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12812 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12813 }
12814 else
12815 {
12816 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12817 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
12818 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
12819 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12820 }
12821
12822 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12823 if (RT_SUCCESS(rc))
12824 {
12825 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12826 AssertRCReturn(rc2, rc2);
12827 return VINF_SUCCESS;
12828 }
12829 return rc;
12830}
12831
12832
12833/**
12834 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12835 * Conditional VM-exit.
12836 */
12837HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12838{
12839 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12840 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12841
12842 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12843 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12844 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12845 {
12846 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12847 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12848 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12849 {
12850 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12851 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12852 }
12853 }
12854 else
12855 {
12856 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12857 rcStrict1 = VINF_SUCCESS;
12858 return rcStrict1;
12859 }
12860
12861 /*
12862 * Get sufficent state and update the exit history entry.
12863 */
12864 RTGCPHYS GCPhys;
12865 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12866 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12867 AssertRCReturn(rc, rc);
12868
12869 VBOXSTRICTRC rcStrict;
12870 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12871 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
12872 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12873 if (!pExitRec)
12874 {
12875 /*
12876 * If we succeed, resume guest execution.
12877 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12878 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12879 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12880 * weird case. See @bugref{6043}.
12881 */
12882 PVM pVM = pVCpu->CTX_SUFF(pVM);
12883 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12884 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
12885 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
12886 if ( rcStrict == VINF_SUCCESS
12887 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
12888 || rcStrict == VERR_PAGE_NOT_PRESENT)
12889 {
12890 /* Successfully handled MMIO operation. */
12891 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12892 | HM_CHANGED_GUEST_APIC_TPR);
12893 rcStrict = VINF_SUCCESS;
12894 }
12895 }
12896 else
12897 {
12898 /*
12899 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12900 */
12901 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12902 AssertRCReturn(rc2, rc2);
12903
12904 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
12905 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
12906
12907 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12908 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12909
12910 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12911 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12912 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12913 }
12914 return VBOXSTRICTRC_TODO(rcStrict);
12915}
12916
12917
12918/**
12919 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12920 * VM-exit.
12921 */
12922HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12923{
12924 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12925 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12926
12927 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12928 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12929 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12930 {
12931 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12932 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12933 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12934 }
12935 else
12936 {
12937 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12938 rcStrict1 = VINF_SUCCESS;
12939 return rcStrict1;
12940 }
12941
12942 RTGCPHYS GCPhys;
12943 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12944 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12945 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12946 AssertRCReturn(rc, rc);
12947
12948 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12949 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
12950
12951 RTGCUINT uErrorCode = 0;
12952 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
12953 uErrorCode |= X86_TRAP_PF_ID;
12954 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
12955 uErrorCode |= X86_TRAP_PF_RW;
12956 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
12957 uErrorCode |= X86_TRAP_PF_P;
12958
12959 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12960
12961
12962 /* Handle the pagefault trap for the nested shadow table. */
12963 PVM pVM = pVCpu->CTX_SUFF(pVM);
12964 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12965
12966 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
12967 pCtx->cs.Sel, pCtx->rip));
12968
12969 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
12970 TRPMResetTrap(pVCpu);
12971
12972 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12973 if ( rcStrict2 == VINF_SUCCESS
12974 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12975 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12976 {
12977 /* Successfully synced our nested page tables. */
12978 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12979 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
12980 return VINF_SUCCESS;
12981 }
12982
12983 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12984 return rcStrict2;
12985}
12986
12987/** @} */
12988
12989/** @name VM-exit exception handlers.
12990 * @{
12991 */
12992/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12993/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12994/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12995
12996/**
12997 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
12998 */
12999static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13000{
13001 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13002 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13003
13004 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
13005 AssertRCReturn(rc, rc);
13006
13007 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
13008 {
13009 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13010 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13011
13012 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13013 * provides VM-exit instruction length. If this causes problem later,
13014 * disassemble the instruction like it's done on AMD-V. */
13015 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13016 AssertRCReturn(rc2, rc2);
13017 return rc;
13018 }
13019
13020 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13021 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13022 return rc;
13023}
13024
13025
13026/**
13027 * VM-exit exception handler for \#BP (Breakpoint exception).
13028 */
13029static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13030{
13031 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13032 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13033
13034 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13035 AssertRCReturn(rc, rc);
13036
13037 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13038 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13039 if (rc == VINF_EM_RAW_GUEST_TRAP)
13040 {
13041 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13042 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13043 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13044 AssertRCReturn(rc, rc);
13045
13046 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13047 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13048 }
13049
13050 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13051 return rc;
13052}
13053
13054
13055/**
13056 * VM-exit exception handler for \#AC (alignment check exception).
13057 */
13058static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13059{
13060 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13061
13062 /*
13063 * Re-inject it. We'll detect any nesting before getting here.
13064 */
13065 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13066 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13067 AssertRCReturn(rc, rc);
13068 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13069
13070 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13071 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13072 return VINF_SUCCESS;
13073}
13074
13075
13076/**
13077 * VM-exit exception handler for \#DB (Debug exception).
13078 */
13079static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13080{
13081 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13082 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13083
13084 /*
13085 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13086 * for processing.
13087 */
13088 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13089
13090 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13091 uint64_t uDR6 = X86_DR6_INIT_VAL;
13092 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13093
13094 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13095 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13096 Log6Func(("rc=%Rrc\n", rc));
13097 if (rc == VINF_EM_RAW_GUEST_TRAP)
13098 {
13099 /*
13100 * The exception was for the guest. Update DR6, DR7.GD and
13101 * IA32_DEBUGCTL.LBR before forwarding it.
13102 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13103 */
13104 VMMRZCallRing3Disable(pVCpu);
13105 HM_DISABLE_PREEMPT(pVCpu);
13106
13107 pCtx->dr[6] &= ~X86_DR6_B_MASK;
13108 pCtx->dr[6] |= uDR6;
13109 if (CPUMIsGuestDebugStateActive(pVCpu))
13110 ASMSetDR6(pCtx->dr[6]);
13111
13112 HM_RESTORE_PREEMPT();
13113 VMMRZCallRing3Enable(pVCpu);
13114
13115 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
13116 AssertRCReturn(rc, rc);
13117
13118 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13119 pCtx->dr[7] &= ~X86_DR7_GD;
13120
13121 /* Paranoia. */
13122 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13123 pCtx->dr[7] |= X86_DR7_RA1_MASK;
13124
13125 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
13126 AssertRCReturn(rc, rc);
13127
13128 /*
13129 * Raise #DB in the guest.
13130 *
13131 * It is important to reflect exactly what the VM-exit gave us (preserving the
13132 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
13133 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
13134 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
13135 *
13136 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
13137 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
13138 */
13139 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13140 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13141 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13142 AssertRCReturn(rc, rc);
13143 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13144 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13145 return VINF_SUCCESS;
13146 }
13147
13148 /*
13149 * Not a guest trap, must be a hypervisor related debug event then.
13150 * Update DR6 in case someone is interested in it.
13151 */
13152 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13153 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13154 CPUMSetHyperDR6(pVCpu, uDR6);
13155
13156 return rc;
13157}
13158
13159
13160/**
13161 * Hacks its way around the lovely mesa driver's backdoor accesses.
13162 *
13163 * @sa hmR0SvmHandleMesaDrvGp
13164 */
13165static int hmR0VmxHandleMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
13166{
13167 Log(("hmR0VmxHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
13168 RT_NOREF(pCtx);
13169
13170 /* For now we'll just skip the instruction. */
13171 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13172}
13173
13174
13175/**
13176 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
13177 * backdoor logging w/o checking what it is running inside.
13178 *
13179 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
13180 * backdoor port and magic numbers loaded in registers.
13181 *
13182 * @returns true if it is, false if it isn't.
13183 * @sa hmR0SvmIsMesaDrvGp
13184 */
13185DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
13186{
13187 /* 0xed: IN eAX,dx */
13188 uint8_t abInstr[1];
13189 if (pVmxTransient->cbInstr != sizeof(abInstr))
13190 return false;
13191
13192 /* Check that it is #GP(0). */
13193 if (pVmxTransient->uExitIntErrorCode != 0)
13194 return false;
13195
13196 /* Check magic and port. */
13197 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
13198 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
13199 if (pCtx->rax != UINT32_C(0x564d5868))
13200 return false;
13201 if (pCtx->dx != UINT32_C(0x5658))
13202 return false;
13203
13204 /* Flat ring-3 CS. */
13205 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
13206 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
13207 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
13208 if (pCtx->cs.Attr.n.u2Dpl != 3)
13209 return false;
13210 if (pCtx->cs.u64Base != 0)
13211 return false;
13212
13213 /* Check opcode. */
13214 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
13215 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
13216 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
13217 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
13218 if (RT_FAILURE(rc))
13219 return false;
13220 if (abInstr[0] != 0xed)
13221 return false;
13222
13223 return true;
13224}
13225
13226
13227/**
13228 * VM-exit exception handler for \#GP (General-protection exception).
13229 *
13230 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13231 */
13232static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13233{
13234 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13235 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13236
13237 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13238 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13239 { /* likely */ }
13240 else
13241 {
13242#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13243 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv);
13244#endif
13245 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13246 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13247 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13248 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13249 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13250 AssertRCReturn(rc, rc);
13251 Log4Func(("Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pCtx->cs.Sel, pCtx->rip,
13252 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
13253
13254 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
13255 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
13256 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13257 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13258 else
13259 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
13260 return rc;
13261 }
13262
13263 Assert(CPUMIsGuestInRealModeEx(pCtx));
13264 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13265
13266 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13267 AssertRCReturn(rc, rc);
13268
13269 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
13270 if (rcStrict == VINF_SUCCESS)
13271 {
13272 if (!CPUMIsGuestInRealModeEx(pCtx))
13273 {
13274 /*
13275 * The guest is no longer in real-mode, check if we can continue executing the
13276 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
13277 */
13278 if (HMVmxCanExecuteGuest(pVCpu, pCtx))
13279 {
13280 Log4Func(("Mode changed but guest still suitable for executing using VT-x\n"));
13281 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
13282 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13283 }
13284 else
13285 {
13286 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
13287 rcStrict = VINF_EM_RESCHEDULE;
13288 }
13289 }
13290 else
13291 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13292 }
13293 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13294 {
13295 rcStrict = VINF_SUCCESS;
13296 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13297 }
13298 return VBOXSTRICTRC_VAL(rcStrict);
13299}
13300
13301
13302/**
13303 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13304 * the exception reported in the VMX transient structure back into the VM.
13305 *
13306 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13307 * up-to-date.
13308 */
13309static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13310{
13311 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13312#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13313 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13314 ("uVector=%#x u32XcptBitmap=%#X32\n",
13315 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13316#endif
13317
13318 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13319 hmR0VmxCheckExitDueToEventDelivery(). */
13320 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13321 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13322 AssertRCReturn(rc, rc);
13323 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13324
13325#ifdef DEBUG_ramshankar
13326 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
13327 uint8_t uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13328 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13329#endif
13330
13331 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13332 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13333 return VINF_SUCCESS;
13334}
13335
13336
13337/**
13338 * VM-exit exception handler for \#PF (Page-fault exception).
13339 */
13340static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13341{
13342 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13343 PVM pVM = pVCpu->CTX_SUFF(pVM);
13344 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13345 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13346 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13347 AssertRCReturn(rc, rc);
13348
13349 if (!pVM->hm.s.fNestedPaging)
13350 { /* likely */ }
13351 else
13352 {
13353#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13354 Assert(pVCpu->hm.s.fUsingDebugLoop);
13355#endif
13356 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13357 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13358 {
13359 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13360 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13361 }
13362 else
13363 {
13364 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13365 hmR0VmxSetPendingXcptDF(pVCpu);
13366 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13367 }
13368 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13369 return rc;
13370 }
13371
13372 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13373 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13374 if (pVmxTransient->fVectoringPF)
13375 {
13376 Assert(pVCpu->hm.s.Event.fPending);
13377 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13378 }
13379
13380 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13381 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13382 AssertRCReturn(rc, rc);
13383
13384 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
13385 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
13386
13387 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13388 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13389
13390 Log4Func(("#PF: rc=%Rrc\n", rc));
13391 if (rc == VINF_SUCCESS)
13392 {
13393 /*
13394 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13395 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13396 */
13397 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13398 TRPMResetTrap(pVCpu);
13399 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13400 return rc;
13401 }
13402
13403 if (rc == VINF_EM_RAW_GUEST_TRAP)
13404 {
13405 if (!pVmxTransient->fVectoringDoublePF)
13406 {
13407 /* It's a guest page fault and needs to be reflected to the guest. */
13408 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13409 TRPMResetTrap(pVCpu);
13410 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13411 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13412 uGstErrorCode, pVmxTransient->uExitQual);
13413 }
13414 else
13415 {
13416 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13417 TRPMResetTrap(pVCpu);
13418 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13419 hmR0VmxSetPendingXcptDF(pVCpu);
13420 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13421 }
13422
13423 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13424 return VINF_SUCCESS;
13425 }
13426
13427 TRPMResetTrap(pVCpu);
13428 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13429 return rc;
13430}
13431
13432/** @} */
13433
13434#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13435/** @name Nested-guest VM-exit handlers.
13436 * @{
13437 */
13438/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13439/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Nested-guest VM-exit handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13440/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13441
13442/**
13443 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
13444 */
13445HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13446{
13447 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13448#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
13449 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13450 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13451 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13452 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13453 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13454 AssertRCReturn(rc, rc);
13455
13456 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13457
13458 VMXVEXITINFO ExitInfo;
13459 RT_ZERO(ExitInfo);
13460 ExitInfo.uReason = pVmxTransient->uExitReason;
13461 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13462 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13463 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13464 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13465
13466 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
13467 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13468 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13469 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13470 {
13471 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13472 rcStrict = VINF_SUCCESS;
13473 }
13474 return rcStrict;
13475#else
13476 return VERR_EM_INTERPRETER;
13477#endif
13478}
13479
13480
13481/**
13482 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
13483 */
13484HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13485{
13486 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13487#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
13488 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13489 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
13490 AssertRCReturn(rc, rc);
13491
13492 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13493
13494 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMLAUNCH);
13495 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13496 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13497 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
13498 return rcStrict;
13499#else
13500 return VERR_EM_INTERPRETER;
13501#endif
13502}
13503
13504
13505/**
13506 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
13507 */
13508HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13509{
13510 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13511#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
13512 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13513 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13514 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13515 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13516 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13517 AssertRCReturn(rc, rc);
13518
13519 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13520
13521 VMXVEXITINFO ExitInfo;
13522 RT_ZERO(ExitInfo);
13523 ExitInfo.uReason = pVmxTransient->uExitReason;
13524 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13525 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13526 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13527 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13528
13529 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
13530 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13531 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13532 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13533 {
13534 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13535 rcStrict = VINF_SUCCESS;
13536 }
13537 return rcStrict;
13538#else
13539 return VERR_EM_INTERPRETER;
13540#endif
13541}
13542
13543
13544/**
13545 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
13546 */
13547HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13548{
13549 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13550#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
13551 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13552 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13553 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13554 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13555 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13556 AssertRCReturn(rc, rc);
13557
13558 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13559
13560 VMXVEXITINFO ExitInfo;
13561 RT_ZERO(ExitInfo);
13562 ExitInfo.uReason = pVmxTransient->uExitReason;
13563 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13564 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13565 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13566 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
13567
13568 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
13569 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13570 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13571 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13572 {
13573 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13574 rcStrict = VINF_SUCCESS;
13575 }
13576 return rcStrict;
13577#else
13578 return VERR_EM_INTERPRETER;
13579#endif
13580}
13581
13582
13583/**
13584 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
13585 */
13586HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13587{
13588 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13589#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
13590 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13591 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13592 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13593 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13594 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13595 AssertRCReturn(rc, rc);
13596
13597 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13598
13599 VMXVEXITINFO ExitInfo;
13600 RT_ZERO(ExitInfo);
13601 ExitInfo.uReason = pVmxTransient->uExitReason;
13602 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13603 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13604 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13605 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
13606 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
13607
13608 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
13609 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13610 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13611 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13612 {
13613 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13614 rcStrict = VINF_SUCCESS;
13615 }
13616 return rcStrict;
13617#else
13618 return VERR_EM_INTERPRETER;
13619#endif
13620}
13621
13622
13623/**
13624 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
13625 */
13626HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13627{
13628 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13629#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
13630 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13631 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
13632 AssertRCReturn(rc, rc);
13633
13634 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13635
13636 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMRESUME);
13637 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13638 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13639 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
13640 return rcStrict;
13641#else
13642 return VERR_EM_INTERPRETER;
13643#endif
13644}
13645
13646
13647/**
13648 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
13649 */
13650HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13651{
13652 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13653#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
13654 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13655 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13656 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13657 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13658 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13659 AssertRCReturn(rc, rc);
13660
13661 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13662
13663 VMXVEXITINFO ExitInfo;
13664 RT_ZERO(ExitInfo);
13665 ExitInfo.uReason = pVmxTransient->uExitReason;
13666 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13667 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13668 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13669 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
13670 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13671
13672 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
13673 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13674 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13675 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13676 {
13677 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13678 rcStrict = VINF_SUCCESS;
13679 }
13680 return rcStrict;
13681#else
13682 return VERR_EM_INTERPRETER;
13683#endif
13684}
13685
13686
13687/**
13688 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
13689 */
13690HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13691{
13692 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13693#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
13694 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13695 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
13696 AssertRCReturn(rc, rc);
13697
13698 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13699
13700 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
13701 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13702 {
13703 /* VMXOFF changes the internal hwvirt. state but not anything that's visible to the guest other than RIP. */
13704 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
13705 }
13706 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13707 {
13708 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13709 rcStrict = VINF_SUCCESS;
13710 }
13711 return rcStrict;
13712#else
13713 return VERR_EM_INTERPRETER;
13714#endif
13715}
13716
13717
13718/**
13719 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
13720 */
13721HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13722{
13723 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13724#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
13725 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13726 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13727 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13728 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13729 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13730 AssertRCReturn(rc, rc);
13731
13732 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13733
13734 VMXVEXITINFO ExitInfo;
13735 RT_ZERO(ExitInfo);
13736 ExitInfo.uReason = pVmxTransient->uExitReason;
13737 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13738 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13739 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13740 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13741
13742 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
13743 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13744 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13745 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13746 {
13747 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13748 rcStrict = VINF_SUCCESS;
13749 }
13750 return rcStrict;
13751#else
13752 return VERR_EM_INTERPRETER;
13753#endif
13754}
13755
13756/** @} */
13757#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13758
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette