VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 78230

Last change on this file since 78230 was 78230, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: Nested VMX: bugref:9180 Build fix.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 642.1 KB
Line 
1/* $Id: HMVMXR0.cpp 78230 2019-04-20 05:50:24Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include <VBox/vmm/hmvmxinline.h>
43#include "HMVMXR0.h"
44#include "dtrace/VBoxVMM.h"
45
46# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
47#ifdef DEBUG_ramshankar
48# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
49# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/** @name HMVMX_READ_XXX
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82/** @} */
83
84/**
85 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
86 * guest using hardware-assisted VMX.
87 *
88 * This excludes state like GPRs (other than RSP) which are always are
89 * swapped and restored across the world-switch and also registers like EFER,
90 * MSR which cannot be modified by the guest without causing a VM-exit.
91 */
92#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
93 | CPUMCTX_EXTRN_RFLAGS \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_TABLE_MASK \
97 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
98 | CPUMCTX_EXTRN_SYSCALL_MSRS \
99 | CPUMCTX_EXTRN_SYSENTER_MSRS \
100 | CPUMCTX_EXTRN_TSC_AUX \
101 | CPUMCTX_EXTRN_OTHER_MSRS \
102 | CPUMCTX_EXTRN_CR0 \
103 | CPUMCTX_EXTRN_CR3 \
104 | CPUMCTX_EXTRN_CR4 \
105 | CPUMCTX_EXTRN_DR7 \
106 | CPUMCTX_EXTRN_HM_VMX_MASK)
107
108/**
109 * Exception bitmap mask for real-mode guests (real-on-v86).
110 *
111 * We need to intercept all exceptions manually except:
112 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
113 * due to bugs in Intel CPUs.
114 * - \#PF need not be intercepted even in real-mode if we have nested paging
115 * support.
116 */
117#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
118 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
119 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
120 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
121 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
122 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
123 | RT_BIT(X86_XCPT_XF))
124
125/** Maximum VM-instruction error number. */
126#define HMVMX_INSTR_ERROR_MAX 28
127
128/** Profiling macro. */
129#ifdef HM_PROFILE_EXIT_DISPATCH
130# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
131# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
132#else
133# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
134# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
135#endif
136
137/** Assert that preemption is disabled or covered by thread-context hooks. */
138#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
139 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
140
141/** Assert that we haven't migrated CPUs when thread-context hooks are not
142 * used. */
143#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
144 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
145 ("Illegal migration! Entered on CPU %u Current %u\n", \
146 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
147
148/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
149 * context. */
150#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
151 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
152 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
153
154/** Helper macro for VM-exit handlers called unexpectedly. */
155#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
156 do { \
157 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
158 return VERR_VMX_UNEXPECTED_EXIT; \
159 } while (0)
160
161#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
162/** Macro that does the necessary privilege checks and intercepted VM-exits for
163 * guests that attempted to execute a VMX instruction. */
164# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
165 do \
166 { \
167 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
168 if (rcStrictTmp == VINF_SUCCESS) \
169 { /* likely */ } \
170 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
171 { \
172 Assert((a_pVCpu)->hm.s.Event.fPending); \
173 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
174 return VINF_SUCCESS; \
175 } \
176 else \
177 { \
178 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
179 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
180 } \
181 } while (0)
182
183/** Macro that decodes a memory operand for an instruction VM-exit. */
184# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
185 do \
186 { \
187 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
188 (a_pGCPtrEffAddr)); \
189 if (rcStrictTmp == VINF_SUCCESS) \
190 { /* likely */ } \
191 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
192 { \
193 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
194 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
195 NOREF(uXcptTmp); \
196 return VINF_SUCCESS; \
197 } \
198 else \
199 { \
200 Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
201 return rcStrictTmp; \
202 } \
203 } while (0)
204
205#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
206
207
208/*********************************************************************************************************************************
209* Structures and Typedefs *
210*********************************************************************************************************************************/
211/**
212 * VMX transient state.
213 *
214 * A state structure for holding miscellaneous information across
215 * VMX non-root operation and restored after the transition.
216 */
217typedef struct VMXTRANSIENT
218{
219 /** The host's rflags/eflags. */
220 RTCCUINTREG fEFlags;
221#if HC_ARCH_BITS == 32
222 uint32_t u32Alignment0;
223#endif
224 /** The guest's TPR value used for TPR shadowing. */
225 uint8_t u8GuestTpr;
226 /** Alignment. */
227 uint8_t abAlignment0[7];
228
229 /** The basic VM-exit reason. */
230 uint16_t uExitReason;
231 /** Alignment. */
232 uint16_t u16Alignment0;
233 /** The VM-exit interruption error code. */
234 uint32_t uExitIntErrorCode;
235 /** The VM-exit exit code qualification. */
236 uint64_t uExitQual;
237 /** The Guest-linear address. */
238 uint64_t uGuestLinearAddr;
239
240 /** The VM-exit interruption-information field. */
241 uint32_t uExitIntInfo;
242 /** The VM-exit instruction-length field. */
243 uint32_t cbInstr;
244 /** The VM-exit instruction-information field. */
245 VMXEXITINSTRINFO ExitInstrInfo;
246 /** Whether the VM-entry failed or not. */
247 bool fVMEntryFailed;
248 /** Whether we are currently executing a nested-guest. */
249 bool fIsNestedGuest;
250 /** Alignment. */
251 uint8_t abAlignment1[2];
252
253 /** The VM-entry interruption-information field. */
254 uint32_t uEntryIntInfo;
255 /** The VM-entry exception error code field. */
256 uint32_t uEntryXcptErrorCode;
257 /** The VM-entry instruction length field. */
258 uint32_t cbEntryInstr;
259
260 /** IDT-vectoring information field. */
261 uint32_t uIdtVectoringInfo;
262 /** IDT-vectoring error code. */
263 uint32_t uIdtVectoringErrorCode;
264
265 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
266 uint32_t fVmcsFieldsRead;
267
268 /** Whether the guest debug state was active at the time of VM-exit. */
269 bool fWasGuestDebugStateActive;
270 /** Whether the hyper debug state was active at the time of VM-exit. */
271 bool fWasHyperDebugStateActive;
272 /** Whether TSC-offsetting and VMX-preemption timer was updated before VM-entry. */
273 bool fUpdatedTscOffsettingAndPreemptTimer;
274 /** Whether the VM-exit was caused by a page-fault during delivery of a
275 * contributory exception or a page-fault. */
276 bool fVectoringDoublePF;
277 /** Whether the VM-exit was caused by a page-fault during delivery of an
278 * external interrupt or NMI. */
279 bool fVectoringPF;
280 bool afAlignment0[3];
281
282 /** The VMCS info. object. */
283 PVMXVMCSINFO pVmcsInfo;
284} VMXTRANSIENT;
285AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
286AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
287AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
288AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
289AssertCompileMemberAlignment(VMXTRANSIENT, pVmcsInfo, sizeof(uint64_t));
290AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
291/** Pointer to VMX transient state. */
292typedef VMXTRANSIENT *PVMXTRANSIENT;
293
294/**
295 * Memory operand read or write access.
296 */
297typedef enum VMXMEMACCESS
298{
299 VMXMEMACCESS_READ = 0,
300 VMXMEMACCESS_WRITE = 1
301} VMXMEMACCESS;
302
303/**
304 * VMX VM-exit handler.
305 *
306 * @returns Strict VBox status code (i.e. informational status codes too).
307 * @param pVCpu The cross context virtual CPU structure.
308 * @param pVmxTransient The VMX-transient structure.
309 */
310#ifndef HMVMX_USE_FUNCTION_TABLE
311typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
312#else
313typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
314/** Pointer to VM-exit handler. */
315typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
316#endif
317
318/**
319 * VMX VM-exit handler, non-strict status code.
320 *
321 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
322 *
323 * @returns VBox status code, no informational status code returned.
324 * @param pVCpu The cross context virtual CPU structure.
325 * @param pVmxTransient The VMX-transient structure.
326 *
327 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
328 * use of that status code will be replaced with VINF_EM_SOMETHING
329 * later when switching over to IEM.
330 */
331#ifndef HMVMX_USE_FUNCTION_TABLE
332typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
333#else
334typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
335#endif
336
337
338/*********************************************************************************************************************************
339* Internal Functions *
340*********************************************************************************************************************************/
341#ifndef HMVMX_USE_FUNCTION_TABLE
342DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
343# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
344# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
345#else
346# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
347# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
348#endif
349#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
350DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
351#endif
352
353static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
354#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
355static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
356#endif
357
358/** @name VM-exit handlers.
359 * @{
360 */
361static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
362static FNVMXEXITHANDLER hmR0VmxExitExtInt;
363static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
364static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
365static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
366static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
367static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
368static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
369static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
370static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
371static FNVMXEXITHANDLER hmR0VmxExitCpuid;
372static FNVMXEXITHANDLER hmR0VmxExitGetsec;
373static FNVMXEXITHANDLER hmR0VmxExitHlt;
374static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
375static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
376static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
377static FNVMXEXITHANDLER hmR0VmxExitVmcall;
378#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
379static FNVMXEXITHANDLER hmR0VmxExitVmclear;
380static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
381static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
382static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
383static FNVMXEXITHANDLER hmR0VmxExitVmread;
384static FNVMXEXITHANDLER hmR0VmxExitVmresume;
385static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
386static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
387static FNVMXEXITHANDLER hmR0VmxExitVmxon;
388#endif
389static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
392static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
393static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
394static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
395static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
396static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
398static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
399static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
400static FNVMXEXITHANDLER hmR0VmxExitMwait;
401static FNVMXEXITHANDLER hmR0VmxExitMtf;
402static FNVMXEXITHANDLER hmR0VmxExitMonitor;
403static FNVMXEXITHANDLER hmR0VmxExitPause;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
405static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
406static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
407static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
408static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
409static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
410static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
411static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
413static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
414static FNVMXEXITHANDLER hmR0VmxExitRdrand;
415static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
416/** @} */
417
418/** @name Helpers for hardware exceptions VM-exit handlers.
419 * @{
420 */
421static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
422static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
423static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
424static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
425static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
426static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
427static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
428/** @} */
429
430
431/*********************************************************************************************************************************
432* Global Variables *
433*********************************************************************************************************************************/
434#ifdef VMX_USE_CACHED_VMCS_ACCESSES
435static const uint32_t g_aVmcsCacheSegBase[] =
436{
437 VMX_VMCS_GUEST_ES_BASE_CACHE_IDX,
438 VMX_VMCS_GUEST_CS_BASE_CACHE_IDX,
439 VMX_VMCS_GUEST_SS_BASE_CACHE_IDX,
440 VMX_VMCS_GUEST_DS_BASE_CACHE_IDX,
441 VMX_VMCS_GUEST_FS_BASE_CACHE_IDX,
442 VMX_VMCS_GUEST_GS_BASE_CACHE_IDX
443};
444AssertCompile(RT_ELEMENTS(g_aVmcsCacheSegBase) == X86_SREG_COUNT);
445#endif
446static const uint32_t g_aVmcsSegBase[] =
447{
448 VMX_VMCS_GUEST_ES_BASE,
449 VMX_VMCS_GUEST_CS_BASE,
450 VMX_VMCS_GUEST_SS_BASE,
451 VMX_VMCS_GUEST_DS_BASE,
452 VMX_VMCS_GUEST_FS_BASE,
453 VMX_VMCS_GUEST_GS_BASE
454};
455static const uint32_t g_aVmcsSegSel[] =
456{
457 VMX_VMCS16_GUEST_ES_SEL,
458 VMX_VMCS16_GUEST_CS_SEL,
459 VMX_VMCS16_GUEST_SS_SEL,
460 VMX_VMCS16_GUEST_DS_SEL,
461 VMX_VMCS16_GUEST_FS_SEL,
462 VMX_VMCS16_GUEST_GS_SEL
463};
464static const uint32_t g_aVmcsSegLimit[] =
465{
466 VMX_VMCS32_GUEST_ES_LIMIT,
467 VMX_VMCS32_GUEST_CS_LIMIT,
468 VMX_VMCS32_GUEST_SS_LIMIT,
469 VMX_VMCS32_GUEST_DS_LIMIT,
470 VMX_VMCS32_GUEST_FS_LIMIT,
471 VMX_VMCS32_GUEST_GS_LIMIT
472};
473static const uint32_t g_aVmcsSegAttr[] =
474{
475 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
476 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
477 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
478 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
479 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
480 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
481};
482AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
483AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
484AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
485AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
486
487#ifdef HMVMX_USE_FUNCTION_TABLE
488/**
489 * VMX_EXIT dispatch table.
490 */
491static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
492{
493 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
494 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
495 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
496 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
497 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
498 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
499 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
500 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
501 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
502 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
503 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
504 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
505 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
506 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
507 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
508 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
509 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
510 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
511 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
512#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
513 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
514 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
515 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
516 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
517 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
518 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
519 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
520 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
521 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
522#else
523 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
524 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
525 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
526 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
527 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
528 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
529 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
530 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
531 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
532#endif
533 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
534 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
535 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
536 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
537 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
538 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
539 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
540 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
541 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
542 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
543 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
544 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
545 /* 40 UNDEFINED */ hmR0VmxExitPause,
546 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
547 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
548 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
549 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
550 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
551 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
552 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
553 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
554 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
555 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
556 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
557 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
558 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
559 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
560 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
561 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
562 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
563 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
564 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
565 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
566 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
567 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
568 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
569 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
570};
571#endif /* HMVMX_USE_FUNCTION_TABLE */
572
573#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
574static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
575{
576 /* 0 */ "(Not Used)",
577 /* 1 */ "VMCALL executed in VMX root operation.",
578 /* 2 */ "VMCLEAR with invalid physical address.",
579 /* 3 */ "VMCLEAR with VMXON pointer.",
580 /* 4 */ "VMLAUNCH with non-clear VMCS.",
581 /* 5 */ "VMRESUME with non-launched VMCS.",
582 /* 6 */ "VMRESUME after VMXOFF",
583 /* 7 */ "VM-entry with invalid control fields.",
584 /* 8 */ "VM-entry with invalid host state fields.",
585 /* 9 */ "VMPTRLD with invalid physical address.",
586 /* 10 */ "VMPTRLD with VMXON pointer.",
587 /* 11 */ "VMPTRLD with incorrect revision identifier.",
588 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
589 /* 13 */ "VMWRITE to read-only VMCS component.",
590 /* 14 */ "(Not Used)",
591 /* 15 */ "VMXON executed in VMX root operation.",
592 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
593 /* 17 */ "VM-entry with non-launched executing VMCS.",
594 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
595 /* 19 */ "VMCALL with non-clear VMCS.",
596 /* 20 */ "VMCALL with invalid VM-exit control fields.",
597 /* 21 */ "(Not Used)",
598 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
599 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
600 /* 24 */ "VMCALL with invalid SMM-monitor features.",
601 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
602 /* 26 */ "VM-entry with events blocked by MOV SS.",
603 /* 27 */ "(Not Used)",
604 /* 28 */ "Invalid operand to INVEPT/INVVPID."
605};
606#endif /* VBOX_STRICT */
607
608
609/**
610 * Get the CR0 guest/host mask that does not change through the lifetime of a VM.
611 *
612 * Any bit set in this mask is owned by the host/hypervisor and would cause a
613 * VM-exit when modified by the guest.
614 *
615 * @returns The static CR0 guest/host mask.
616 * @param pVCpu The cross context virtual CPU structure.
617 */
618DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr0Mask(PVMCPU pVCpu)
619{
620 /*
621 * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
622 * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
623 */
624 /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
625 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
626 * and @bugref{6944}. */
627 PVM pVM = pVCpu->CTX_SUFF(pVM);
628 return ( X86_CR0_PE
629 | X86_CR0_NE
630 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
631 | X86_CR0_PG
632 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
633 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
634 | X86_CR0_NW); /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
635}
636
637
638/**
639 * Gets the CR4 guest/host mask that does not change through the lifetime of a VM.
640 *
641 * Any bit set in this mask is owned by the host/hypervisor and would cause a
642 * VM-exit when modified by the guest.
643 *
644 * @returns The static CR4 guest/host mask.
645 * @param pVCpu The cross context virtual CPU structure.
646 */
647DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr4Mask(PVMCPU pVCpu)
648{
649 /*
650 * We need to look at the host features here (for e.g. OSXSAVE, PCID) because
651 * these bits are reserved on hardware that does not support them. Since the
652 * CPU cannot refer to our virtual CPUID, we need to intercept CR4 changes to
653 * these bits and handle it depending on whether we expose them to the guest.
654 */
655 PVM pVM = pVCpu->CTX_SUFF(pVM);
656 bool const fXSaveRstor = pVM->cpum.ro.HostFeatures.fXSaveRstor;
657 bool const fPcid = pVM->cpum.ro.HostFeatures.fPcid;
658 return ( X86_CR4_VMXE
659 | X86_CR4_VME
660 | X86_CR4_PAE
661 | X86_CR4_PGE
662 | X86_CR4_PSE
663 | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
664 | (fPcid ? X86_CR4_PCIDE : 0));
665}
666
667
668/**
669 * Returns whether the the VM-exit MSR-store area differs from the VM-exit MSR-load
670 * area.
671 *
672 * @returns @c true if it's different, @c false otherwise.
673 * @param pVmcsInfo The VMCS info. object.
674 */
675DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
676{
677 return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
678 && pVmcsInfo->pvGuestMsrStore);
679}
680
681
682/**
683 * Adds one or more exceptions to the exception bitmap and commits it to the current
684 * VMCS.
685 *
686 * @returns VBox status code.
687 * @param pVmxTransient The VMX-transient structure.
688 * @param uXcptMask The exception(s) to add.
689 */
690static int hmR0VmxAddXcptInterceptMask(PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
691{
692 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
693 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
694 if ((uXcptBitmap & uXcptMask) != uXcptMask)
695 {
696 uXcptBitmap |= uXcptMask;
697 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
698 AssertRCReturn(rc, rc);
699 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
700 }
701 return VINF_SUCCESS;
702}
703
704
705/**
706 * Adds an exception to the exception bitmap and commits it to the current VMCS.
707 *
708 * @returns VBox status code.
709 * @param pVmxTransient The VMX-transient structure.
710 * @param uXcpt The exception to add.
711 */
712static int hmR0VmxAddXcptIntercept(PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
713{
714 Assert(uXcpt <= X86_XCPT_LAST);
715 return hmR0VmxAddXcptInterceptMask(pVmxTransient, RT_BIT_32(uXcpt));
716}
717
718
719/**
720 * Remove one or more exceptions from the exception bitmap and commits it to the
721 * current VMCS.
722 *
723 * This takes care of not removing the exception intercept if a nested-guest
724 * requires the exception to be intercepted.
725 *
726 * @returns VBox status code.
727 * @param pVCpu The cross context virtual CPU structure.
728 * @param pVmxTransient The VMX-transient structure.
729 * @param uXcptMask The exception(s) to remove.
730 */
731static int hmR0VmxRemoveXcptInterceptMask(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
732{
733 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
734 uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
735 if (u32XcptBitmap & uXcptMask)
736 {
737#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
738 if (!pVmxTransient->fIsNestedGuest)
739 { /* likely */ }
740 else
741 {
742 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
743 uXcptMask &= ~pVmcsNstGst->u32XcptBitmap;
744 }
745#endif
746#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
747 uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
748 | RT_BIT(X86_XCPT_DE)
749 | RT_BIT(X86_XCPT_NM)
750 | RT_BIT(X86_XCPT_TS)
751 | RT_BIT(X86_XCPT_UD)
752 | RT_BIT(X86_XCPT_NP)
753 | RT_BIT(X86_XCPT_SS)
754 | RT_BIT(X86_XCPT_GP)
755 | RT_BIT(X86_XCPT_PF)
756 | RT_BIT(X86_XCPT_MF));
757#elif defined(HMVMX_ALWAYS_TRAP_PF)
758 uXcptMask &= ~RT_BIT(X86_XCPT_PF);
759#endif
760 if (uXcptMask)
761 {
762 /* Validate we are not removing any essential exception intercepts. */
763 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF))); RT_NOREF(pVCpu);
764 Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
765 Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
766
767 /* Remove it from the exception bitmap. */
768 u32XcptBitmap &= ~uXcptMask;
769
770 /* Commit and update the cache if necessary. */
771 if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
772 {
773 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
774 AssertRCReturn(rc, rc);
775 pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
776 }
777 }
778 }
779 return VINF_SUCCESS;
780}
781
782
783/**
784 * Remove an exceptions from the exception bitmap and commits it to the current
785 * VMCS.
786 *
787 * @returns VBox status code.
788 * @param pVCpu The cross context virtual CPU structure.
789 * @param pVmxTransient The VMX-transient structure.
790 * @param uXcpt The exception to remove.
791 */
792static int hmR0VmxRemoveXcptIntercept(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
793{
794 return hmR0VmxRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
795}
796
797
798/**
799 * Loads the VMCS specified by the VMCS info. object.
800 *
801 * @returns VBox status code.
802 * @param pVmcsInfo The VMCS info. object.
803 */
804static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
805{
806 Assert(pVmcsInfo);
807 Assert(pVmcsInfo->HCPhysVmcs);
808 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
809
810 if (pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_CLEAR)
811 {
812 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
813 if (RT_SUCCESS(rc))
814 {
815 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
816 return VINF_SUCCESS;
817 }
818 return rc;
819 }
820 return VERR_VMX_INVALID_VMCS_LAUNCH_STATE;
821}
822
823
824/**
825 * Clears the VMCS specified by the VMCS info. object.
826 *
827 * @returns VBox status code.
828 * @param pVmcsInfo The VMCS info. object.
829 */
830static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
831{
832 Assert(pVmcsInfo);
833 Assert(pVmcsInfo->HCPhysVmcs);
834 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
835
836 int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
837 if (RT_SUCCESS(rc))
838 pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
839 return rc;
840}
841
842
843#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
844/**
845 * Switches the current VMCS to the one specified.
846 *
847 * @returns VBox status code.
848 * @param pVmcsInfoFrom The VMCS info. object we are switching from.
849 * @param pVmcsInfoTo The VMCS info. object we are switching to.
850 *
851 * @remarks Called with interrupts disabled.
852 */
853static int hmR0VmxSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
854{
855 Assert(pVmcsInfoFrom);
856 Assert(pVmcsInfoTo);
857
858 /*
859 * Clear the VMCS we are switching out if it has not already been cleared.
860 * This will sync any CPU internal data back to the VMCS.
861 */
862 if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
863 {
864 int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
865 if (RT_SUCCESS(rc))
866 { /* likely */ }
867 else
868 return rc;
869 }
870
871 /*
872 * Clear the VMCS we are switching to if it has not already been cleared.
873 * This will initialize the VMCS launch state to "clear" required for loading it.
874 *
875 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
876 */
877 if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
878 {
879 int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
880 if (RT_SUCCESS(rc))
881 { /* likely */ }
882 else
883 return rc;
884 }
885
886 /*
887 * Finally, load the VMCS we are switching to.
888 */
889 return hmR0VmxLoadVmcs(pVmcsInfoTo);
890}
891#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
892
893
894/**
895 * Updates the VM's last error record.
896 *
897 * If there was a VMX instruction error, reads the error data from the VMCS and
898 * updates VCPU's last error record as well.
899 *
900 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
901 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
902 * VERR_VMX_INVALID_VMCS_FIELD.
903 * @param rc The error code.
904 */
905static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
906{
907 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
908 || rc == VERR_VMX_UNABLE_TO_START_VM)
909 {
910 AssertPtrReturnVoid(pVCpu);
911 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
912 }
913 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
914}
915
916
917#ifdef VBOX_STRICT
918/**
919 * Reads the VM-entry interruption-information field from the VMCS into the VMX
920 * transient structure.
921 *
922 * @returns VBox status code.
923 * @param pVmxTransient The VMX-transient structure.
924 *
925 * @remarks No-long-jump zone!!!
926 */
927DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
928{
929 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
930 AssertRCReturn(rc, rc);
931 return VINF_SUCCESS;
932}
933
934
935/**
936 * Reads the VM-entry exception error code field from the VMCS into
937 * the VMX transient structure.
938 *
939 * @returns VBox status code.
940 * @param pVmxTransient The VMX-transient structure.
941 *
942 * @remarks No-long-jump zone!!!
943 */
944DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
945{
946 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
947 AssertRCReturn(rc, rc);
948 return VINF_SUCCESS;
949}
950
951
952/**
953 * Reads the VM-entry exception error code field from the VMCS into
954 * the VMX transient structure.
955 *
956 * @returns VBox status code.
957 * @param pVmxTransient The VMX-transient structure.
958 *
959 * @remarks No-long-jump zone!!!
960 */
961DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
962{
963 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
964 AssertRCReturn(rc, rc);
965 return VINF_SUCCESS;
966}
967#endif /* VBOX_STRICT */
968
969
970/**
971 * Reads the VM-exit interruption-information field from the VMCS into the VMX
972 * transient structure.
973 *
974 * @returns VBox status code.
975 * @param pVmxTransient The VMX-transient structure.
976 */
977DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
978{
979 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
980 {
981 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
982 AssertRCReturn(rc,rc);
983 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
984 }
985 return VINF_SUCCESS;
986}
987
988
989/**
990 * Reads the VM-exit interruption error code from the VMCS into the VMX
991 * transient structure.
992 *
993 * @returns VBox status code.
994 * @param pVmxTransient The VMX-transient structure.
995 */
996DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
997{
998 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
999 {
1000 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1001 AssertRCReturn(rc, rc);
1002 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
1003 }
1004 return VINF_SUCCESS;
1005}
1006
1007
1008/**
1009 * Reads the VM-exit instruction length field from the VMCS into the VMX
1010 * transient structure.
1011 *
1012 * @returns VBox status code.
1013 * @param pVmxTransient The VMX-transient structure.
1014 */
1015DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1016{
1017 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
1018 {
1019 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
1020 AssertRCReturn(rc, rc);
1021 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
1022 }
1023 return VINF_SUCCESS;
1024}
1025
1026
1027/**
1028 * Reads the VM-exit instruction-information field from the VMCS into
1029 * the VMX transient structure.
1030 *
1031 * @returns VBox status code.
1032 * @param pVmxTransient The VMX-transient structure.
1033 */
1034DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
1035{
1036 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
1037 {
1038 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1039 AssertRCReturn(rc, rc);
1040 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
1041 }
1042 return VINF_SUCCESS;
1043}
1044
1045
1046/**
1047 * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
1048 *
1049 * @returns VBox status code.
1050 * @param pVCpu The cross context virtual CPU structure of the
1051 * calling EMT. (Required for the VMCS cache case.)
1052 * @param pVmxTransient The VMX-transient structure.
1053 */
1054DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1055{
1056 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
1057 {
1058 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
1059 AssertRCReturn(rc, rc);
1060 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
1061 }
1062 return VINF_SUCCESS;
1063}
1064
1065
1066/**
1067 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
1068 *
1069 * @returns VBox status code.
1070 * @param pVCpu The cross context virtual CPU structure of the
1071 * calling EMT. (Required for the VMCS cache case.)
1072 * @param pVmxTransient The VMX-transient structure.
1073 */
1074DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1075{
1076 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
1077 {
1078 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
1079 AssertRCReturn(rc, rc);
1080 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
1081 }
1082 return VINF_SUCCESS;
1083}
1084
1085
1086/**
1087 * Reads the IDT-vectoring information field from the VMCS into the VMX
1088 * transient structure.
1089 *
1090 * @returns VBox status code.
1091 * @param pVmxTransient The VMX-transient structure.
1092 *
1093 * @remarks No-long-jump zone!!!
1094 */
1095DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
1096{
1097 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
1098 {
1099 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1100 AssertRCReturn(rc, rc);
1101 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
1102 }
1103 return VINF_SUCCESS;
1104}
1105
1106
1107/**
1108 * Reads the IDT-vectoring error code from the VMCS into the VMX
1109 * transient structure.
1110 *
1111 * @returns VBox status code.
1112 * @param pVmxTransient The VMX-transient structure.
1113 */
1114DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1115{
1116 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
1117 {
1118 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1119 AssertRCReturn(rc, rc);
1120 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
1121 }
1122 return VINF_SUCCESS;
1123}
1124
1125
1126/**
1127 * Enters VMX root mode operation on the current CPU.
1128 *
1129 * @returns VBox status code.
1130 * @param pVM The cross context VM structure. Can be
1131 * NULL, after a resume.
1132 * @param HCPhysCpuPage Physical address of the VMXON region.
1133 * @param pvCpuPage Pointer to the VMXON region.
1134 */
1135static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
1136{
1137 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
1138 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
1139 Assert(pvCpuPage);
1140 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1141
1142 if (pVM)
1143 {
1144 /* Write the VMCS revision identifier to the VMXON region. */
1145 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
1146 }
1147
1148 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
1149 RTCCUINTREG fEFlags = ASMIntDisableFlags();
1150
1151 /* Enable the VMX bit in CR4 if necessary. */
1152 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
1153
1154 /* Enter VMX root mode. */
1155 int rc = VMXEnable(HCPhysCpuPage);
1156 if (RT_FAILURE(rc))
1157 {
1158 if (!(uOldCr4 & X86_CR4_VMXE))
1159 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
1160
1161 if (pVM)
1162 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
1163 }
1164
1165 /* Restore interrupts. */
1166 ASMSetFlags(fEFlags);
1167 return rc;
1168}
1169
1170
1171/**
1172 * Exits VMX root mode operation on the current CPU.
1173 *
1174 * @returns VBox status code.
1175 */
1176static int hmR0VmxLeaveRootMode(void)
1177{
1178 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1179
1180 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
1181 RTCCUINTREG fEFlags = ASMIntDisableFlags();
1182
1183 /* If we're for some reason not in VMX root mode, then don't leave it. */
1184 RTCCUINTREG uHostCR4 = ASMGetCR4();
1185
1186 int rc;
1187 if (uHostCR4 & X86_CR4_VMXE)
1188 {
1189 /* Exit VMX root mode and clear the VMX bit in CR4. */
1190 VMXDisable();
1191 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
1192 rc = VINF_SUCCESS;
1193 }
1194 else
1195 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
1196
1197 /* Restore interrupts. */
1198 ASMSetFlags(fEFlags);
1199 return rc;
1200}
1201
1202
1203/**
1204 * Allocates and maps a physically contiguous page. The allocated page is
1205 * zero'd out (used by various VT-x structures).
1206 *
1207 * @returns IPRT status code.
1208 * @param pMemObj Pointer to the ring-0 memory object.
1209 * @param ppVirt Where to store the virtual address of the
1210 * allocation.
1211 * @param pHCPhys Where to store the physical address of the
1212 * allocation.
1213 */
1214static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
1215{
1216 AssertPtr(pMemObj);
1217 AssertPtr(ppVirt);
1218 AssertPtr(pHCPhys);
1219 int rc = RTR0MemObjAllocCont(pMemObj, X86_PAGE_4K_SIZE, false /* fExecutable */);
1220 if (RT_FAILURE(rc))
1221 return rc;
1222 *ppVirt = RTR0MemObjAddress(*pMemObj);
1223 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
1224 ASMMemZero32(*ppVirt, X86_PAGE_4K_SIZE);
1225 return VINF_SUCCESS;
1226}
1227
1228
1229/**
1230 * Frees and unmaps an allocated, physical page.
1231 *
1232 * @param pMemObj Pointer to the ring-0 memory object.
1233 * @param ppVirt Where to re-initialize the virtual address of
1234 * allocation as 0.
1235 * @param pHCPhys Where to re-initialize the physical address of the
1236 * allocation as 0.
1237 */
1238static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
1239{
1240 AssertPtr(pMemObj);
1241 AssertPtr(ppVirt);
1242 AssertPtr(pHCPhys);
1243 /* NULL is valid, accepted and ignored by the free function below. */
1244 RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
1245 *pMemObj = NIL_RTR0MEMOBJ;
1246 *ppVirt = NULL;
1247 *pHCPhys = NIL_RTHCPHYS;
1248}
1249
1250
1251/**
1252 * Initializes a VMCS info. object.
1253 *
1254 * @param pVmcsInfo The VMCS info. object.
1255 */
1256static void hmR0VmxInitVmcsInfo(PVMXVMCSINFO pVmcsInfo)
1257{
1258 RT_ZERO(*pVmcsInfo);
1259
1260 Assert(pVmcsInfo->hMemObjVmcs == NIL_RTR0MEMOBJ);
1261 Assert(pVmcsInfo->hMemObjMsrBitmap == NIL_RTR0MEMOBJ);
1262 Assert(pVmcsInfo->hMemObjGuestMsrLoad == NIL_RTR0MEMOBJ);
1263 Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
1264 Assert(pVmcsInfo->hMemObjHostMsrLoad == NIL_RTR0MEMOBJ);
1265 pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
1266 pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
1267 pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
1268 pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
1269 pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
1270 pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
1271 pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
1272 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
1273}
1274
1275
1276/**
1277 * Frees the VT-x structures for a VMCS info. object.
1278 *
1279 * @param pVM The cross context VM structure.
1280 * @param pVmcsInfo The VMCS info. object.
1281 */
1282static void hmR0VmxFreeVmcsInfo(PVM pVM, PVMXVMCSINFO pVmcsInfo)
1283{
1284 hmR0VmxPageFree(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
1285
1286 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1287 hmR0VmxPageFree(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
1288
1289 hmR0VmxPageFree(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad, &pVmcsInfo->HCPhysHostMsrLoad);
1290 hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad, &pVmcsInfo->HCPhysGuestMsrLoad);
1291 hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrStore, &pVmcsInfo->pvGuestMsrStore, &pVmcsInfo->HCPhysGuestMsrStore);
1292
1293 hmR0VmxInitVmcsInfo(pVmcsInfo);
1294}
1295
1296
1297/**
1298 * Allocates the VT-x structures for a VMCS info. object.
1299 *
1300 * @returns VBox status code.
1301 * @param pVCpu The cross context virtual CPU structure.
1302 * @param pVmcsInfo The VMCS info. object.
1303 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1304 */
1305static int hmR0VmxAllocVmcsInfo(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
1306{
1307 PVM pVM = pVCpu->CTX_SUFF(pVM);
1308
1309 /* Allocate the guest VM control structure (VMCS). */
1310 int rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
1311 if (RT_SUCCESS(rc))
1312 {
1313 if (!fIsNstGstVmcs)
1314 {
1315 /* Get the allocated virtual-APIC page from the virtual APIC device. */
1316 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
1317 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
1318 {
1319 rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic,
1320 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1321 }
1322 }
1323 else
1324 {
1325 Assert(pVmcsInfo->HCPhysVirtApic == NIL_RTHCPHYS);
1326 Assert(!pVmcsInfo->pbVirtApic);
1327 }
1328
1329 if (RT_SUCCESS(rc))
1330 {
1331 /*
1332 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1333 * transparent accesses of specific MSRs.
1334 *
1335 * If the condition for enabling MSR bitmaps changes here, don't forget to
1336 * update HMIsMsrBitmapActive().
1337 *
1338 * We don't share MSR bitmaps between the guest and nested-guest as we then
1339 * don't need to care about carefully restoring the guest MSR bitmap.
1340 * The guest visible nested-guest MSR bitmap needs to remain unchanged.
1341 * Hence, allocate a separate MSR bitmap for the guest and nested-guest.
1342 */
1343 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1344 {
1345 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
1346 if (RT_SUCCESS(rc))
1347 ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
1348 }
1349
1350 if (RT_SUCCESS(rc))
1351 {
1352 /*
1353 * Allocate the VM-entry MSR-load area for the guest MSRs.
1354 *
1355 * Similar to MSR-bitmaps, we do not share the auto MSR-load/store are between
1356 * the guest and nested-guest.
1357 */
1358 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad,
1359 &pVmcsInfo->HCPhysGuestMsrLoad);
1360 if (RT_SUCCESS(rc))
1361 {
1362 /*
1363 * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
1364 * These contain the guest MSRs to load on VM-entry and store on VM-exit.
1365 */
1366 Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
1367 pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
1368 pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
1369
1370 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1371 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad,
1372 &pVmcsInfo->HCPhysHostMsrLoad);
1373 }
1374 }
1375 }
1376 }
1377
1378 return rc;
1379}
1380
1381
1382/**
1383 * Free all VT-x structures for the VM.
1384 *
1385 * @returns IPRT status code.
1386 * @param pVM The cross context VM structure.
1387 */
1388static void hmR0VmxStructsFree(PVM pVM)
1389{
1390#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1391 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1392#endif
1393 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
1394
1395 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1396 {
1397 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1398 PVMXVMCSINFO pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
1399 hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
1400#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1401 if (pVM->cpum.ro.GuestFeatures.fVmx)
1402 {
1403 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1404 hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
1405 }
1406#endif
1407 }
1408}
1409
1410
1411/**
1412 * Allocate all VT-x structures for the VM.
1413 *
1414 * @returns IPRT status code.
1415 * @param pVM The cross context VM structure.
1416 */
1417static int hmR0VmxStructsAlloc(PVM pVM)
1418{
1419 /*
1420 * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
1421 * The VMCS size cannot be more than 4096 bytes.
1422 *
1423 * See Intel spec. Appendix A.1 "Basic VMX Information".
1424 */
1425 uint32_t const cbVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
1426 if (cbVmcs <= X86_PAGE_4K_SIZE)
1427 { /* likely */ }
1428 else
1429 {
1430 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
1431 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1432 }
1433
1434 /*
1435 * Initialize/check members up-front so we can cleanup en masse on allocation failures.
1436 */
1437#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1438 Assert(pVM->hm.s.vmx.hMemObjScratch == NIL_RTR0MEMOBJ);
1439 Assert(pVM->hm.s.vmx.pbScratch == NULL);
1440 pVM->hm.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
1441#endif
1442
1443 Assert(pVM->hm.s.vmx.hMemObjApicAccess == NIL_RTR0MEMOBJ);
1444 Assert(pVM->hm.s.vmx.pbApicAccess == NULL);
1445 pVM->hm.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
1446
1447 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1448 {
1449 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1450 hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfo);
1451 hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
1452 }
1453
1454 /*
1455 * Allocate per-VM VT-x structures.
1456 */
1457 int rc = VINF_SUCCESS;
1458#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1459 /* Allocate crash-dump magic scratch page. */
1460 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1461 if (RT_FAILURE(rc))
1462 {
1463 hmR0VmxStructsFree(pVM);
1464 return rc;
1465 }
1466 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
1467 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
1468#endif
1469
1470 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
1471 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
1472 {
1473 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
1474 &pVM->hm.s.vmx.HCPhysApicAccess);
1475 if (RT_FAILURE(rc))
1476 {
1477 hmR0VmxStructsFree(pVM);
1478 return rc;
1479 }
1480 }
1481
1482 /*
1483 * Initialize per-VCPU VT-x structures.
1484 */
1485 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1486 {
1487 /* Allocate the guest VMCS structures. */
1488 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1489 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
1490 if (RT_SUCCESS(rc))
1491 {
1492#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1493 /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
1494 if (pVM->cpum.ro.GuestFeatures.fVmx)
1495 {
1496 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
1497 if (RT_SUCCESS(rc))
1498 { /* likely */ }
1499 else
1500 break;
1501 }
1502#endif
1503 }
1504 else
1505 break;
1506 }
1507
1508 if (RT_FAILURE(rc))
1509 {
1510 hmR0VmxStructsFree(pVM);
1511 return rc;
1512 }
1513
1514 return VINF_SUCCESS;
1515}
1516
1517
1518#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1519/**
1520 * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
1521 *
1522 * @returns @c true if the MSR is intercepted, @c false otherwise.
1523 * @param pvMsrBitmap The MSR bitmap.
1524 * @param offMsr The MSR byte offset.
1525 * @param iBit The bit offset from the byte offset.
1526 */
1527DECLINLINE(bool) hmR0VmxIsMsrBitSet(const void *pvMsrBitmap, uint16_t offMsr, int32_t iBit)
1528{
1529 uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
1530 Assert(pbMsrBitmap);
1531 Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
1532 return ASMBitTest(pbMsrBitmap + offMsr, iBit);
1533}
1534#endif
1535
1536
1537/**
1538 * Sets the permission bits for the specified MSR in the given MSR bitmap.
1539 *
1540 * If the passed VMCS is a nested-guest VMCS, this function ensures that the
1541 * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
1542 * VMX execution of the nested-guest, only if nested-guest is also not intercepting
1543 * the read/write access of this MSR.
1544 *
1545 * @param pVCpu The cross context virtual CPU structure.
1546 * @param pVmcsInfo The VMCS info. object.
1547 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1548 * @param idMsr The MSR value.
1549 * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
1550 * include both a read -and- a write permission!
1551 *
1552 * @sa HMGetVmxMsrPermission.
1553 */
1554static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
1555{
1556 uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
1557 Assert(pbMsrBitmap);
1558 Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
1559
1560 /*
1561 * MSR-bitmap Layout:
1562 * Byte index MSR range Interpreted as
1563 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
1564 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
1565 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
1566 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
1567 *
1568 * A bit corresponding to an MSR within the above range causes a VM-exit
1569 * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
1570 * the MSR range, it always cause a VM-exit.
1571 *
1572 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
1573 */
1574 uint16_t const offBitmapRead = 0;
1575 uint16_t const offBitmapWrite = 0x800;
1576 uint16_t offMsr;
1577 int32_t iBit;
1578 if (idMsr <= UINT32_C(0x00001fff))
1579 {
1580 offMsr = 0;
1581 iBit = idMsr;
1582 }
1583 else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1584 {
1585 offMsr = 0x400;
1586 iBit = idMsr - UINT32_C(0xc0000000);
1587 }
1588 else
1589 AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
1590
1591 /*
1592 * Set the MSR read permission.
1593 */
1594 uint16_t const offMsrRead = offBitmapRead + offMsr;
1595 Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
1596 if (fMsrpm & VMXMSRPM_ALLOW_RD)
1597 {
1598#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1599 bool const fClear = !fIsNstGstVmcs ? true
1600 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrRead, iBit);
1601#else
1602 RT_NOREF2(pVCpu, fIsNstGstVmcs);
1603 bool const fClear = true;
1604#endif
1605 if (fClear)
1606 ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
1607 }
1608 else
1609 ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
1610
1611 /*
1612 * Set the MSR write permission.
1613 */
1614 uint16_t const offMsrWrite = offBitmapWrite + offMsr;
1615 Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
1616 if (fMsrpm & VMXMSRPM_ALLOW_WR)
1617 {
1618#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1619 bool const fClear = !fIsNstGstVmcs ? true
1620 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrWrite, iBit);
1621#else
1622 RT_NOREF2(pVCpu, fIsNstGstVmcs);
1623 bool const fClear = true;
1624#endif
1625 if (fClear)
1626 ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
1627 }
1628 else
1629 ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
1630}
1631
1632
1633/**
1634 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1635 * area.
1636 *
1637 * @returns VBox status code.
1638 * @param pVCpu The cross context virtual CPU structure.
1639 * @param pVmcsInfo The VMCS info. object.
1640 * @param cMsrs The number of MSRs.
1641 */
1642static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
1643{
1644 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1645 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1646 if (RT_UNLIKELY(cMsrs >= cMaxSupportedMsrs))
1647 {
1648 LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1649 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1650 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1651 }
1652
1653 /* Commit the MSR counts to the VMCS and update the cache. */
1654 int rc = VINF_SUCCESS;
1655 if (pVmcsInfo->cEntryMsrLoad != cMsrs)
1656 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1657 if (pVmcsInfo->cExitMsrStore != cMsrs)
1658 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1659 if (pVmcsInfo->cExitMsrLoad != cMsrs)
1660 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1661 AssertRCReturn(rc, rc);
1662
1663 pVmcsInfo->cEntryMsrLoad = cMsrs;
1664 pVmcsInfo->cExitMsrStore = cMsrs;
1665 pVmcsInfo->cExitMsrLoad = cMsrs;
1666
1667 return VINF_SUCCESS;
1668}
1669
1670
1671/**
1672 * Adds a new (or updates the value of an existing) guest/host MSR
1673 * pair to be swapped during the world-switch as part of the
1674 * auto-load/store MSR area in the VMCS.
1675 *
1676 * @returns VBox status code.
1677 * @param pVCpu The cross context virtual CPU structure.
1678 * @param pVmxTransient The VMX-transient structure.
1679 * @param idMsr The MSR.
1680 * @param uGuestMsrValue Value of the guest MSR.
1681 * @param fSetReadWrite Whether to set the guest read/write access of this
1682 * MSR (thus not causing a VM-exit).
1683 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1684 * necessary.
1685 */
1686static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
1687 bool fSetReadWrite, bool fUpdateHostMsr)
1688{
1689 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1690 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
1691 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1692 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
1693 uint32_t i;
1694
1695 /* Paranoia. */
1696 Assert(pGuestMsrLoad);
1697
1698 /* Check if the MSR already exists in the VM-entry MSR-load area. */
1699 for (i = 0; i < cMsrs; i++)
1700 {
1701 if (pGuestMsrLoad->u32Msr == idMsr)
1702 break;
1703 pGuestMsrLoad++;
1704 }
1705
1706 bool fAdded = false;
1707 if (i == cMsrs)
1708 {
1709 /* The MSR does not exist, bump the MSR coun to make room for the new MSR. */
1710 ++cMsrs;
1711 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
1712 AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
1713
1714 /* Set the guest to read/write this MSR without causing VM-exits. */
1715 if ( fSetReadWrite
1716 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
1717 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
1718
1719 fAdded = true;
1720 }
1721
1722 /* Update the MSR value for the newly added or already existing MSR. */
1723 pGuestMsrLoad->u32Msr = idMsr;
1724 pGuestMsrLoad->u64Value = uGuestMsrValue;
1725
1726 /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
1727 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
1728 {
1729 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1730 pGuestMsrStore += i;
1731 pGuestMsrStore->u32Msr = idMsr;
1732 pGuestMsrStore->u64Value = 0;
1733 }
1734
1735 /* Update the corresponding slot in the host MSR area. */
1736 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1737 Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad && pHostMsr != pVmcsInfo->pvGuestMsrStore);
1738 pHostMsr += i;
1739 pHostMsr->u32Msr = idMsr;
1740
1741 /*
1742 * Only if the caller requests to update the host MSR value AND we've newly added the
1743 * MSR to the host MSR area do we actually update the value. Otherwise, it will be
1744 * updated by hmR0VmxUpdateAutoLoadHostMsrs().
1745 *
1746 * We do this for performance reasons since reading MSRs may be quite expensive.
1747 */
1748 if ( fAdded
1749 && fUpdateHostMsr)
1750 {
1751 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1752 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1753 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1754 }
1755 return VINF_SUCCESS;
1756}
1757
1758
1759/**
1760 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1761 * auto-load/store MSR area in the VMCS.
1762 *
1763 * @returns VBox status code.
1764 * @param pVCpu The cross context virtual CPU structure.
1765 * @param pVmxTransient The VMX-transient structure.
1766 * @param idMsr The MSR.
1767 */
1768static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr)
1769{
1770 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1771 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
1772 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1773 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
1774
1775 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
1776 for (uint32_t i = 0; i < cMsrs; i++)
1777 {
1778 /* Find the MSR. */
1779 if (pGuestMsrLoad->u32Msr == idMsr)
1780 {
1781 /* If it's the last MSR, simply reduce the count. */
1782 if (i == cMsrs - 1)
1783 {
1784 --cMsrs;
1785 break;
1786 }
1787
1788 /* Remove it by copying the last MSR in place of it, and reducing the count. */
1789 PVMXAUTOMSR pLastGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1790 pLastGuestMsrLoad += cMsrs - 1;
1791 pGuestMsrLoad->u32Msr = pLastGuestMsrLoad->u32Msr;
1792 pGuestMsrLoad->u64Value = pLastGuestMsrLoad->u64Value;
1793
1794 /* Remove it from the VM-exit MSR-store area if we are using a different page. */
1795 if (fSeparateExitMsrStorePage)
1796 {
1797 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1798 PVMXAUTOMSR pLastGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1799 pGuestMsrStore += i;
1800 pLastGuestMsrStore += cMsrs - 1;
1801 Assert(pGuestMsrStore->u32Msr == idMsr);
1802 pGuestMsrStore->u32Msr = pLastGuestMsrStore->u32Msr;
1803 pGuestMsrStore->u64Value = pLastGuestMsrStore->u64Value;
1804 }
1805
1806 /* Remove it from the VM-exit MSR-load area. */
1807 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1808 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1809 pHostMsr += i;
1810 pLastHostMsr += cMsrs - 1;
1811 Assert(pHostMsr->u32Msr == idMsr);
1812 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1813 pHostMsr->u64Value = pLastHostMsr->u64Value;
1814 --cMsrs;
1815 break;
1816 }
1817 pGuestMsrLoad++;
1818 }
1819
1820 /* Update the VMCS if the count changed (meaning the MSR was found). */
1821 if (cMsrs != pVmcsInfo->cEntryMsrLoad)
1822 {
1823 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
1824 AssertRCReturn(rc, rc);
1825
1826 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1827 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1828 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
1829
1830 Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
1831 return VINF_SUCCESS;
1832 }
1833
1834 return VERR_NOT_FOUND;
1835}
1836
1837
1838/**
1839 * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
1840 *
1841 * @returns @c true if found, @c false otherwise.
1842 * @param pVmcsInfo The VMCS info. object.
1843 * @param idMsr The MSR to find.
1844 */
1845static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
1846{
1847 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1848 uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
1849 for (uint32_t i = 0; i < cMsrs; i++)
1850 {
1851 if (pGuestMsrLoad->u32Msr == idMsr)
1852 return true;
1853 pGuestMsrLoad++;
1854 }
1855 return false;
1856}
1857
1858
1859/**
1860 * Updates the value of all host MSRs in the VM-exit MSR-load area.
1861 *
1862 * @param pVCpu The cross context virtual CPU structure.
1863 * @param pVmcsInfo The VMCS info. object.
1864 *
1865 * @remarks No-long-jump zone!!!
1866 */
1867static void hmR0VmxUpdateAutoLoadHostMsrs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
1868{
1869 PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1870 uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
1871
1872 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1873 Assert(pHostMsrLoad);
1874
1875 for (uint32_t i = 0; i < cMsrs; i++, pHostMsrLoad++)
1876 {
1877 /*
1878 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1879 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1880 */
1881 if (pHostMsrLoad->u32Msr == MSR_K6_EFER)
1882 pHostMsrLoad->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
1883 else
1884 pHostMsrLoad->u64Value = ASMRdMsr(pHostMsrLoad->u32Msr);
1885 }
1886}
1887
1888
1889/**
1890 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1891 * perform lazy restoration of the host MSRs while leaving VT-x.
1892 *
1893 * @param pVCpu The cross context virtual CPU structure.
1894 *
1895 * @remarks No-long-jump zone!!!
1896 */
1897static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1898{
1899 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1900
1901 /*
1902 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
1903 */
1904 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1905 {
1906 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1907#if HC_ARCH_BITS == 64
1908 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1909 {
1910 pVCpu->hm.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
1911 pVCpu->hm.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
1912 pVCpu->hm.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
1913 pVCpu->hm.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1914 }
1915#endif
1916 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1917 }
1918}
1919
1920
1921/**
1922 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1923 * lazily while leaving VT-x.
1924 *
1925 * @returns true if it does, false otherwise.
1926 * @param pVCpu The cross context virtual CPU structure.
1927 * @param idMsr The MSR to check.
1928 */
1929static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t idMsr)
1930{
1931 NOREF(pVCpu);
1932#if HC_ARCH_BITS == 64
1933 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1934 {
1935 switch (idMsr)
1936 {
1937 case MSR_K8_LSTAR:
1938 case MSR_K6_STAR:
1939 case MSR_K8_SF_MASK:
1940 case MSR_K8_KERNEL_GS_BASE:
1941 return true;
1942 }
1943 }
1944#else
1945 RT_NOREF(pVCpu, idMsr);
1946#endif
1947 return false;
1948}
1949
1950
1951/**
1952 * Loads a set of guests MSRs to allow read/passthru to the guest.
1953 *
1954 * The name of this function is slightly confusing. This function does NOT
1955 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1956 * common prefix for functions dealing with "lazy restoration" of the shared
1957 * MSRs.
1958 *
1959 * @param pVCpu The cross context virtual CPU structure.
1960 *
1961 * @remarks No-long-jump zone!!!
1962 */
1963static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1964{
1965 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1966 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1967
1968 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1969#if HC_ARCH_BITS == 64
1970 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1971 {
1972 /*
1973 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1974 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1975 * we can skip a few MSR writes.
1976 *
1977 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1978 * guest MSR values in the guest-CPU context might be different to what's currently
1979 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1980 * CPU, see @bugref{8728}.
1981 */
1982 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1983 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1984 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostMsrKernelGsBase
1985 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostMsrLStar
1986 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostMsrStar
1987 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostMsrSfMask)
1988 {
1989#ifdef VBOX_STRICT
1990 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1991 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1992 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1993 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1994#endif
1995 }
1996 else
1997 {
1998 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1999 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
2000 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
2001 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
2002 }
2003 }
2004#endif
2005 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
2006}
2007
2008
2009/**
2010 * Performs lazy restoration of the set of host MSRs if they were previously
2011 * loaded with guest MSR values.
2012 *
2013 * @param pVCpu The cross context virtual CPU structure.
2014 *
2015 * @remarks No-long-jump zone!!!
2016 * @remarks The guest MSRs should have been saved back into the guest-CPU
2017 * context by hmR0VmxImportGuestState()!!!
2018 */
2019static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
2020{
2021 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2022 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2023
2024 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2025 {
2026 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2027#if HC_ARCH_BITS == 64
2028 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2029 {
2030 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostMsrLStar);
2031 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostMsrStar);
2032 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostMsrSfMask);
2033 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostMsrKernelGsBase);
2034 }
2035#endif
2036 }
2037 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
2038}
2039
2040
2041/**
2042 * Verifies that our cached values of the VMCS fields are all consistent with
2043 * what's actually present in the VMCS.
2044 *
2045 * @returns VBox status code.
2046 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
2047 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
2048 * VMCS content. HMCPU error-field is
2049 * updated, see VMX_VCI_XXX.
2050 * @param pVCpu The cross context virtual CPU structure.
2051 * @param pVmcsInfo The VMCS info. object.
2052 */
2053static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2054{
2055 uint32_t u32Val;
2056 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
2057 AssertRCReturn(rc, rc);
2058 AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
2059 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32EntryCtls, u32Val),
2060 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
2061 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2062
2063 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
2064 AssertRCReturn(rc, rc);
2065 AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
2066 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ExitCtls, u32Val),
2067 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
2068 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2069
2070 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
2071 AssertRCReturn(rc, rc);
2072 AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
2073 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32PinCtls, u32Val),
2074 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
2075 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2076
2077 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
2078 AssertRCReturn(rc, rc);
2079 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
2080 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls, u32Val),
2081 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
2082 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2083
2084 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2085 {
2086 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
2087 AssertRCReturn(rc, rc);
2088 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
2089 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls2, u32Val),
2090 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
2091 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2092 }
2093
2094 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
2095 AssertRCReturn(rc, rc);
2096 AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
2097 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32XcptBitmap, u32Val),
2098 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
2099 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2100
2101 uint64_t u64Val;
2102 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
2103 AssertRCReturn(rc, rc);
2104 AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
2105 ("Cache=%#RX64 VMCS=%#RX64\n", pVmcsInfo->u64TscOffset, u64Val),
2106 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
2107 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2108
2109 return VINF_SUCCESS;
2110}
2111
2112
2113#ifdef VBOX_STRICT
2114/**
2115 * Verifies that our cached host EFER MSR value has not changed since we cached it.
2116 *
2117 * @param pVCpu The cross context virtual CPU structure.
2118 * @param pVmcsInfo The VMCS info. object.
2119 */
2120static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2121{
2122 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2123
2124 if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2125 {
2126 uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
2127 uint64_t const uHostEferMsrCache = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2128 uint64_t uVmcsEferMsrVmcs;
2129 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
2130 AssertRC(rc);
2131
2132 AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
2133 ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
2134 AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
2135 ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
2136 }
2137}
2138
2139
2140/**
2141 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
2142 * VMCS are correct.
2143 *
2144 * @param pVCpu The cross context virtual CPU structure.
2145 * @param pVmcsInfo The VMCS info. object.
2146 */
2147static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2148{
2149 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2150
2151 /* Verify MSR counts in the VMCS are what we think it should be. */
2152 uint32_t cMsrs;
2153 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs);
2154 AssertRC(rc);
2155 Assert(cMsrs == pVmcsInfo->cEntryMsrLoad);
2156
2157 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs);
2158 AssertRC(rc);
2159 Assert(cMsrs == pVmcsInfo->cExitMsrStore);
2160
2161 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs);
2162 AssertRC(rc);
2163 Assert(cMsrs == pVmcsInfo->cExitMsrLoad);
2164
2165 /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
2166 Assert(cMsrs < VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc));
2167
2168 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2169 PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2170 PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2171 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
2172 for (uint32_t i = 0; i < cMsrs; i++)
2173 {
2174 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
2175 if (fSeparateExitMsrStorePage)
2176 {
2177 AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
2178 ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
2179 pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
2180 }
2181
2182 AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
2183 ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
2184 pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
2185
2186 uint64_t const u64Msr = ASMRdMsr(pHostMsrLoad->u32Msr);
2187 AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64Msr,
2188 ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2189 pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64Msr, cMsrs));
2190
2191 /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
2192 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2193 {
2194 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
2195 if (pGuestMsrLoad->u32Msr == MSR_K6_EFER)
2196 {
2197 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
2198 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
2199 }
2200 else
2201 {
2202 AssertMsgReturnVoid((fMsrpm & (VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR))
2203 == (VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR),
2204 ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
2205 }
2206 }
2207
2208 /* Move to the next MSR. */
2209 pHostMsrLoad++;
2210 pGuestMsrLoad++;
2211 pGuestMsrStore++;
2212 }
2213}
2214#endif /* VBOX_STRICT */
2215
2216
2217/**
2218 * Flushes the TLB using EPT.
2219 *
2220 * @returns VBox status code.
2221 * @param pVCpu The cross context virtual CPU structure of the calling
2222 * EMT. Can be NULL depending on @a enmTlbFlush.
2223 * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
2224 * enmTlbFlush.
2225 * @param enmTlbFlush Type of flush.
2226 *
2227 * @remarks Caller is responsible for making sure this function is called only
2228 * when NestedPaging is supported and providing @a enmTlbFlush that is
2229 * supported by the CPU.
2230 * @remarks Can be called with interrupts disabled.
2231 */
2232static void hmR0VmxFlushEpt(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
2233{
2234 uint64_t au64Descriptor[2];
2235 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
2236 au64Descriptor[0] = 0;
2237 else
2238 {
2239 Assert(pVCpu);
2240 Assert(pVmcsInfo);
2241 au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
2242 }
2243 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
2244
2245 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
2246 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
2247
2248 if ( RT_SUCCESS(rc)
2249 && pVCpu)
2250 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
2251}
2252
2253
2254/**
2255 * Flushes the TLB using VPID.
2256 *
2257 * @returns VBox status code.
2258 * @param pVCpu The cross context virtual CPU structure of the calling
2259 * EMT. Can be NULL depending on @a enmTlbFlush.
2260 * @param enmTlbFlush Type of flush.
2261 * @param GCPtr Virtual address of the page to flush (can be 0 depending
2262 * on @a enmTlbFlush).
2263 *
2264 * @remarks Can be called with interrupts disabled.
2265 */
2266static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
2267{
2268 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
2269
2270 uint64_t au64Descriptor[2];
2271 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2272 {
2273 au64Descriptor[0] = 0;
2274 au64Descriptor[1] = 0;
2275 }
2276 else
2277 {
2278 AssertPtr(pVCpu);
2279 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2280 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2281 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
2282 au64Descriptor[1] = GCPtr;
2283 }
2284
2285 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
2286 AssertMsg(rc == VINF_SUCCESS,
2287 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
2288
2289 if ( RT_SUCCESS(rc)
2290 && pVCpu)
2291 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
2292 NOREF(rc);
2293}
2294
2295
2296/**
2297 * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
2298 * otherwise there is nothing really to invalidate.
2299 *
2300 * @returns VBox status code.
2301 * @param pVCpu The cross context virtual CPU structure.
2302 * @param GCVirt Guest virtual address of the page to invalidate.
2303 */
2304VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
2305{
2306 AssertPtr(pVCpu);
2307 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
2308
2309 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
2310 {
2311 /*
2312 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
2313 * the EPT case. See @bugref{6043} and @bugref{6177}.
2314 *
2315 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
2316 * as this function maybe called in a loop with individual addresses.
2317 */
2318 PVM pVM = pVCpu->CTX_SUFF(pVM);
2319 if (pVM->hm.s.vmx.fVpid)
2320 {
2321 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
2322
2323#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
2324 /*
2325 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
2326 * where executing INVVPID outside 64-bit mode does not flush translations of
2327 * 64-bit linear addresses, see @bugref{6208#c72}.
2328 */
2329 if (RT_HI_U32(GCVirt))
2330 fVpidFlush = false;
2331#endif
2332
2333 if (fVpidFlush)
2334 {
2335 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
2336 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
2337 }
2338 else
2339 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2340 }
2341 else if (pVM->hm.s.fNestedPaging)
2342 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2343 }
2344
2345 return VINF_SUCCESS;
2346}
2347
2348
2349/**
2350 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
2351 * case where neither EPT nor VPID is supported by the CPU.
2352 *
2353 * @param pHostCpu The HM physical-CPU structure.
2354 * @param pVCpu The cross context virtual CPU structure.
2355 *
2356 * @remarks Called with interrupts disabled.
2357 */
2358static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2359{
2360 AssertPtr(pVCpu);
2361 AssertPtr(pHostCpu);
2362
2363 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2364
2365 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2366 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2367 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2368 pVCpu->hm.s.fForceTLBFlush = false;
2369 return;
2370}
2371
2372
2373/**
2374 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
2375 *
2376 * @param pHostCpu The HM physical-CPU structure.
2377 * @param pVCpu The cross context virtual CPU structure.
2378 * @param pVmcsInfo The VMCS info. object.
2379 *
2380 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
2381 * nomenclature. The reason is, to avoid confusion in compare statements
2382 * since the host-CPU copies are named "ASID".
2383 *
2384 * @remarks Called with interrupts disabled.
2385 */
2386static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2387{
2388#ifdef VBOX_WITH_STATISTICS
2389 bool fTlbFlushed = false;
2390# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
2391# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
2392 if (!fTlbFlushed) \
2393 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
2394 } while (0)
2395#else
2396# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
2397# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
2398#endif
2399
2400 AssertPtr(pVCpu);
2401 AssertPtr(pHostCpu);
2402 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2403
2404 PVM pVM = pVCpu->CTX_SUFF(pVM);
2405 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
2406 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
2407 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
2408
2409 /*
2410 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
2411 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2412 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2413 * cannot reuse the current ASID anymore.
2414 */
2415 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2416 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2417 {
2418 ++pHostCpu->uCurrentAsid;
2419 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2420 {
2421 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
2422 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2423 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2424 }
2425
2426 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2427 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2428 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2429
2430 /*
2431 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
2432 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
2433 */
2434 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
2435 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2436 HMVMX_SET_TAGGED_TLB_FLUSHED();
2437 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2438 }
2439 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
2440 {
2441 /*
2442 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
2443 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
2444 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
2445 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
2446 * mappings, see @bugref{6568}.
2447 *
2448 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
2449 */
2450 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
2451 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2452 HMVMX_SET_TAGGED_TLB_FLUSHED();
2453 }
2454
2455 pVCpu->hm.s.fForceTLBFlush = false;
2456 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2457
2458 Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
2459 Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
2460 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2461 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2462 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2463 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2464 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2465 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2466 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2467
2468 /* Update VMCS with the VPID. */
2469 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2470 AssertRC(rc);
2471
2472#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2473}
2474
2475
2476/**
2477 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2478 *
2479 * @param pHostCpu The HM physical-CPU structure.
2480 * @param pVCpu The cross context virtual CPU structure.
2481 * @param pVmcsInfo The VMCS info. object.
2482 *
2483 * @remarks Called with interrupts disabled.
2484 */
2485static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2486{
2487 AssertPtr(pVCpu);
2488 AssertPtr(pHostCpu);
2489 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2490 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2491 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2492
2493 /*
2494 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2495 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2496 */
2497 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2498 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2499 {
2500 pVCpu->hm.s.fForceTLBFlush = true;
2501 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2502 }
2503
2504 /* Check for explicit TLB flushes. */
2505 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2506 {
2507 pVCpu->hm.s.fForceTLBFlush = true;
2508 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2509 }
2510
2511 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2512 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2513
2514 if (pVCpu->hm.s.fForceTLBFlush)
2515 {
2516 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2517 pVCpu->hm.s.fForceTLBFlush = false;
2518 }
2519}
2520
2521
2522/**
2523 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2524 *
2525 * @param pHostCpu The HM physical-CPU structure.
2526 * @param pVCpu The cross context virtual CPU structure.
2527 *
2528 * @remarks Called with interrupts disabled.
2529 */
2530static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2531{
2532 AssertPtr(pVCpu);
2533 AssertPtr(pHostCpu);
2534 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2535 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2536 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2537
2538 /*
2539 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2540 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2541 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2542 * cannot reuse the current ASID anymore.
2543 */
2544 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2545 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2546 {
2547 pVCpu->hm.s.fForceTLBFlush = true;
2548 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2549 }
2550
2551 /* Check for explicit TLB flushes. */
2552 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2553 {
2554 /*
2555 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2556 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2557 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
2558 * include fExplicitFlush's too) - an obscure corner case.
2559 */
2560 pVCpu->hm.s.fForceTLBFlush = true;
2561 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2562 }
2563
2564 PVM pVM = pVCpu->CTX_SUFF(pVM);
2565 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2566 if (pVCpu->hm.s.fForceTLBFlush)
2567 {
2568 ++pHostCpu->uCurrentAsid;
2569 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2570 {
2571 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2572 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2573 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2574 }
2575
2576 pVCpu->hm.s.fForceTLBFlush = false;
2577 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2578 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2579 if (pHostCpu->fFlushAsidBeforeUse)
2580 {
2581 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2582 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2583 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2584 {
2585 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2586 pHostCpu->fFlushAsidBeforeUse = false;
2587 }
2588 else
2589 {
2590 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2591 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2592 }
2593 }
2594 }
2595
2596 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2597 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2598 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2599 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2600 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2601 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2602 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2603
2604 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2605 AssertRC(rc);
2606}
2607
2608
2609/**
2610 * Flushes the guest TLB entry based on CPU capabilities.
2611 *
2612 * @param pHostCpu The HM physical-CPU structure.
2613 * @param pVCpu The cross context virtual CPU structure.
2614 * @param pVmcsInfo The VMCS info. object.
2615 *
2616 * @remarks Called with interrupts disabled.
2617 */
2618DECLINLINE(void) hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2619{
2620#ifdef HMVMX_ALWAYS_FLUSH_TLB
2621 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2622#endif
2623 PVM pVM = pVCpu->CTX_SUFF(pVM);
2624 switch (pVM->hm.s.vmx.enmTlbFlushType)
2625 {
2626 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
2627 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
2628 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
2629 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
2630 default:
2631 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2632 break;
2633 }
2634 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2635}
2636
2637
2638/**
2639 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2640 * TLB entries from the host TLB before VM-entry.
2641 *
2642 * @returns VBox status code.
2643 * @param pVM The cross context VM structure.
2644 */
2645static int hmR0VmxSetupTaggedTlb(PVM pVM)
2646{
2647 /*
2648 * Determine optimal flush type for nested paging.
2649 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
2650 * unrestricted guest execution (see hmR3InitFinalizeR0()).
2651 */
2652 if (pVM->hm.s.fNestedPaging)
2653 {
2654 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2655 {
2656 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2657 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2658 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2659 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2660 else
2661 {
2662 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2663 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2664 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2665 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2666 }
2667
2668 /* Make sure the write-back cacheable memory type for EPT is supported. */
2669 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2670 {
2671 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2672 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2673 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2674 }
2675
2676 /* EPT requires a page-walk length of 4. */
2677 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2678 {
2679 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2680 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2681 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2682 }
2683 }
2684 else
2685 {
2686 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2687 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2688 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2689 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2690 }
2691 }
2692
2693 /*
2694 * Determine optimal flush type for VPID.
2695 */
2696 if (pVM->hm.s.vmx.fVpid)
2697 {
2698 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2699 {
2700 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2701 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2702 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2703 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2704 else
2705 {
2706 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2707 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2708 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2709 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2710 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2711 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2712 pVM->hm.s.vmx.fVpid = false;
2713 }
2714 }
2715 else
2716 {
2717 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2718 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2719 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2720 pVM->hm.s.vmx.fVpid = false;
2721 }
2722 }
2723
2724 /*
2725 * Setup the handler for flushing tagged-TLBs.
2726 */
2727 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2728 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2729 else if (pVM->hm.s.fNestedPaging)
2730 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2731 else if (pVM->hm.s.vmx.fVpid)
2732 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2733 else
2734 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2735 return VINF_SUCCESS;
2736}
2737
2738
2739/**
2740 * Sets up the virtual-APIC page address for the VMCS.
2741 *
2742 * @returns VBox status code.
2743 * @param pVCpu The cross context virtual CPU structure.
2744 * @param pVmcsInfo The VMCS info. object.
2745 */
2746DECLINLINE(int) hmR0VmxSetupVmcsVirtApicAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2747{
2748 NOREF(pVCpu);
2749 RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
2750 Assert(HCPhysVirtApic != NIL_RTHCPHYS);
2751 Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2752 return VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
2753}
2754
2755
2756/**
2757 * Sets up the MSR-bitmap address for the VMCS.
2758 *
2759 * @returns VBox status code.
2760 * @param pVCpu The cross context virtual CPU structure.
2761 * @param pVmcsInfo The VMCS info. object.
2762 */
2763DECLINLINE(int) hmR0VmxSetupVmcsMsrBitmapAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2764{
2765 NOREF(pVCpu);
2766 RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
2767 Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
2768 Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2769 return VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
2770}
2771
2772
2773/**
2774 * Sets up the APIC-access page address for the VMCS.
2775 *
2776 * @returns VBox status code.
2777 * @param pVCpu The cross context virtual CPU structure.
2778 */
2779DECLINLINE(int) hmR0VmxSetupVmcsApicAccessAddr(PVMCPU pVCpu)
2780{
2781 RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysApicAccess;
2782 Assert(HCPhysApicAccess != NIL_RTHCPHYS);
2783 Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2784 return VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
2785}
2786
2787
2788/**
2789 * Sets up the VMCS link pointer for the VMCS.
2790 *
2791 * @returns VBox status code.
2792 * @param pVCpu The cross context virtual CPU structure.
2793 * @param pVmcsInfo The VMCS info. object.
2794 */
2795DECLINLINE(int) hmR0VmxSetupVmcsLinkPtr(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2796{
2797 NOREF(pVCpu);
2798 uint64_t const u64VmcsLinkPtr = pVmcsInfo->u64VmcsLinkPtr;
2799 Assert(u64VmcsLinkPtr == UINT64_C(0xffffffffffffffff)); /* Bits 63:0 MB1. */
2800 return VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, u64VmcsLinkPtr);
2801}
2802
2803
2804/**
2805 * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
2806 * in the VMCS.
2807 *
2808 * @returns VBox status code.
2809 * @param pVCpu The cross context virtual CPU structure.
2810 * @param pVmcsInfo The VMCS info. object.
2811 */
2812DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2813{
2814 NOREF(pVCpu);
2815 RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
2816 Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
2817 Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
2818
2819 RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
2820 Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
2821 Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
2822
2823 RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
2824 Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
2825 Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
2826
2827 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad);
2828 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore);
2829 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad);
2830 AssertRCReturn(rc, rc);
2831 return VINF_SUCCESS;
2832}
2833
2834
2835/**
2836 * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
2837 *
2838 * @param pVCpu The cross context virtual CPU structure.
2839 * @param pVmcsInfo The VMCS info. object.
2840 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2841 */
2842static void hmR0VmxSetupVmcsMsrPermissions(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2843{
2844 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
2845
2846 /*
2847 * The guest can access the following MSRs (read, write) without causing
2848 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2849 */
2850 PVM pVM = pVCpu->CTX_SUFF(pVM);
2851 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2852 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2853 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2854 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2855 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2856
2857#ifdef VBOX_STRICT
2858 /** @todo NSTVMX: Remove this later. */
2859 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_IA32_SYSENTER_CS);
2860 Assert((fMsrpm & (VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR)) == (VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR));
2861
2862 fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K8_GS_BASE);
2863 Assert((fMsrpm & (VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR)) == (VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR));
2864#endif
2865
2866 /*
2867 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2868 * associated with then. We never need to intercept access (writes need to be
2869 * executed without causing a VM-exit, reads will #GP fault anyway).
2870 *
2871 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2872 * read/write them. We swap the the guest/host MSR value using the
2873 * auto-load/store MSR area.
2874 */
2875 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2876 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2877 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2878 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2879 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2880 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2881
2882 /*
2883 * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
2884 */
2885
2886#if HC_ARCH_BITS == 64
2887 /*
2888 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2889 * required for 64-bit guests.
2890 */
2891 if (pVM->hm.s.fAllow64BitGuests)
2892 {
2893 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2894 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K6_STAR, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2895 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2896 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR);
2897
2898# ifdef VBOX_STRICT
2899 fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K8_GS_BASE);
2900 Assert((fMsrpm & (VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR)) == (VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR));
2901# endif
2902 }
2903#endif
2904}
2905
2906
2907/**
2908 * Sets up pin-based VM-execution controls in the VMCS.
2909 *
2910 * @returns VBox status code.
2911 * @param pVCpu The cross context virtual CPU structure.
2912 * @param pVmcsInfo The VMCS info. object.
2913 */
2914static int hmR0VmxSetupVmcsPinCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2915{
2916 PVM pVM = pVCpu->CTX_SUFF(pVM);
2917 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
2918 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2919
2920 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2921 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2922
2923 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2924 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2925
2926 /* Enable the VMX-preemption timer. */
2927 if (pVM->hm.s.vmx.fUsePreemptTimer)
2928 {
2929 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2930 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2931 }
2932
2933#if 0
2934 /* Enable posted-interrupt processing. */
2935 if (pVM->hm.s.fPostedIntrs)
2936 {
2937 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2938 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2939 fVal |= VMX_PIN_CTL_POSTED_INT;
2940 }
2941#endif
2942
2943 if ((fVal & fZap) != fVal)
2944 {
2945 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2946 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
2947 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2948 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2949 }
2950
2951 /* Commit it to the VMCS and update our cache. */
2952 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2953 AssertRCReturn(rc, rc);
2954 pVmcsInfo->u32PinCtls = fVal;
2955
2956 return VINF_SUCCESS;
2957}
2958
2959
2960/**
2961 * Sets up secondary processor-based VM-execution controls in the VMCS.
2962 *
2963 * @returns VBox status code.
2964 * @param pVCpu The cross context virtual CPU structure.
2965 * @param pVmcsInfo The VMCS info. object.
2966 */
2967static int hmR0VmxSetupVmcsProcCtls2(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2968{
2969 PVM pVM = pVCpu->CTX_SUFF(pVM);
2970 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2971 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2972
2973 /* WBINVD causes a VM-exit. */
2974 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2975 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2976
2977 /* Enable EPT (aka nested-paging). */
2978 if (pVM->hm.s.fNestedPaging)
2979 fVal |= VMX_PROC_CTLS2_EPT;
2980
2981 /* Enable the INVPCID instruction if supported by the hardware and we expose
2982 it to the guest. Without this, guest executing INVPCID would cause a #UD. */
2983 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2984 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2985 fVal |= VMX_PROC_CTLS2_INVPCID;
2986
2987 /* Enable VPID. */
2988 if (pVM->hm.s.vmx.fVpid)
2989 fVal |= VMX_PROC_CTLS2_VPID;
2990
2991 /* Enable unrestricted guest execution. */
2992 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2993 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2994
2995#if 0
2996 if (pVM->hm.s.fVirtApicRegs)
2997 {
2998 /* Enable APIC-register virtualization. */
2999 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
3000 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
3001
3002 /* Enable virtual-interrupt delivery. */
3003 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
3004 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
3005 }
3006#endif
3007
3008 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
3009 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
3010 * done dynamically. */
3011 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3012 {
3013 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
3014 int rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3015 AssertRCReturn(rc, rc);
3016 }
3017
3018 /* Enable the RDTSCP instruction if supported by the hardware and we expose
3019 it to the guest. Without this, guest executing RDTSCP would cause a #UD. */
3020 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
3021 && pVM->cpum.ro.GuestFeatures.fRdTscP)
3022 fVal |= VMX_PROC_CTLS2_RDTSCP;
3023
3024 /* Enable Pause-Loop exiting. */
3025 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
3026 && pVM->hm.s.vmx.cPleGapTicks
3027 && pVM->hm.s.vmx.cPleWindowTicks)
3028 {
3029 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
3030
3031 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
3032 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
3033 AssertRCReturn(rc, rc);
3034 }
3035
3036 if ((fVal & fZap) != fVal)
3037 {
3038 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3039 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
3040 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
3041 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3042 }
3043
3044 /* Commit it to the VMCS and update our cache. */
3045 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
3046 AssertRCReturn(rc, rc);
3047 pVmcsInfo->u32ProcCtls2 = fVal;
3048
3049 return VINF_SUCCESS;
3050}
3051
3052
3053/**
3054 * Sets up processor-based VM-execution controls in the VMCS.
3055 *
3056 * @returns VBox status code.
3057 * @param pVCpu The cross context virtual CPU structure.
3058 * @param pVmcsInfo The VMCS info. object.
3059 */
3060static int hmR0VmxSetupVmcsProcCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3061{
3062 PVM pVM = pVCpu->CTX_SUFF(pVM);
3063
3064 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3065 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3066
3067 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
3068 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
3069 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
3070 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
3071 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
3072 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
3073 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
3074
3075 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
3076 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
3077 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
3078 {
3079 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
3080 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3081 }
3082
3083 /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
3084 if (!pVM->hm.s.fNestedPaging)
3085 {
3086 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
3087 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
3088 | VMX_PROC_CTLS_CR3_LOAD_EXIT
3089 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3090 }
3091
3092 /* Use TPR shadowing if supported by the CPU. */
3093 if ( PDMHasApic(pVM)
3094 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
3095 {
3096 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3097 /* CR8 writes cause a VM-exit based on TPR threshold. */
3098 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3099 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3100 int rc = hmR0VmxSetupVmcsVirtApicAddr(pVCpu, pVmcsInfo);
3101 AssertRCReturn(rc, rc);
3102 }
3103 else
3104 {
3105 /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
3106 invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
3107 if (pVM->hm.s.fAllow64BitGuests)
3108 {
3109 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3110 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3111 }
3112 }
3113
3114 /* Use MSR-bitmaps if supported by the CPU. */
3115 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3116 {
3117 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
3118 int rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVCpu, pVmcsInfo);
3119 AssertRCReturn(rc, rc);
3120 }
3121
3122 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
3123 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3124 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
3125
3126 if ((fVal & fZap) != fVal)
3127 {
3128 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3129 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
3130 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
3131 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3132 }
3133
3134 /* Commit it to the VMCS and update our cache. */
3135 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3136 AssertRCReturn(rc, rc);
3137 pVmcsInfo->u32ProcCtls = fVal;
3138
3139 /* Set up MSR permissions that don't change through the lifetime of the VM. */
3140 hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo, false /* fIsNstGstVmcs */);
3141
3142 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
3143 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3144 return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
3145
3146 /* Sanity check, should not really happen. */
3147 if (RT_LIKELY(!pVM->hm.s.vmx.fUnrestrictedGuest))
3148 { /* likely */ }
3149 else
3150 {
3151 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
3152 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3153 }
3154
3155 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
3156 return VINF_SUCCESS;
3157}
3158
3159
3160/**
3161 * Sets up miscellaneous (everything other than Pin, Processor and secondary
3162 * Processor-based VM-execution) control fields in the VMCS.
3163 *
3164 * @returns VBox status code.
3165 * @param pVCpu The cross context virtual CPU structure.
3166 * @param pVmcsInfo The VMCS info. object.
3167 */
3168static int hmR0VmxSetupVmcsMiscCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3169{
3170 /* Set the auto-load/store MSR area addresses in the VMCS. */
3171 int rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVCpu, pVmcsInfo);
3172 if (RT_SUCCESS(rc))
3173 {
3174 /* Set the VMCS link pointer in the VMCS. */
3175 rc = hmR0VmxSetupVmcsLinkPtr(pVCpu, pVmcsInfo);
3176 if (RT_SUCCESS(rc))
3177 {
3178 /* Set the CR0/CR4 guest/host mask. */
3179 uint64_t const u64Cr0Mask = hmR0VmxGetFixedCr0Mask(pVCpu);
3180 uint64_t const u64Cr4Mask = hmR0VmxGetFixedCr4Mask(pVCpu);
3181 rc = VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
3182 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
3183 if (RT_SUCCESS(rc))
3184 {
3185 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
3186 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
3187 return VINF_SUCCESS;
3188 }
3189 LogRelFunc(("Failed to initialize VMCS CR0/CR4 guest/host mask. rc=%Rrc\n", rc));
3190 }
3191 else
3192 LogRelFunc(("Failed to initialize VMCS link pointer. rc=%Rrc\n", rc));
3193 }
3194 else
3195 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
3196 return rc;
3197}
3198
3199
3200/**
3201 * Sets up the initial exception bitmap in the VMCS based on static conditions.
3202 *
3203 * We shall setup those exception intercepts that don't change during the
3204 * lifetime of the VM here. The rest are done dynamically while loading the
3205 * guest state.
3206 *
3207 * @returns VBox status code.
3208 * @param pVCpu The cross context virtual CPU structure.
3209 * @param pVmcsInfo The VMCS info. object.
3210 */
3211static int hmR0VmxSetupVmcsXcptBitmap(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3212{
3213 /*
3214 * The following exceptions are always intercepted:
3215 *
3216 * #AC - To prevent the guest from hanging the CPU.
3217 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
3218 * recursive #DBs can cause a CPU hang.
3219 * #PF - To sync our shadow page tables when nested-paging is not used.
3220 */
3221 bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
3222 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
3223 | RT_BIT(X86_XCPT_DB)
3224 | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
3225
3226 /* Commit it to the VMCS. */
3227 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3228 AssertRCReturn(rc, rc);
3229
3230 /* Update our cache of the exception bitmap. */
3231 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
3232 return VINF_SUCCESS;
3233}
3234
3235
3236#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3237/**
3238 * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
3239 *
3240 * @returns VBox status code.
3241 * @param pVCpu The cross context virtual CPU structure.
3242 * @param pVmcsInfo The VMCS info. object.
3243 */
3244static int hmR0VmxSetupVmcsCtlsNested(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3245{
3246 PVM pVM = pVCpu->CTX_SUFF(pVM);
3247 int rc = hmR0VmxSetupVmcsLinkPtr(pVmcsInfo);
3248 if (RT_SUCCESS(rc))
3249 {
3250 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
3251 if (RT_SUCCESS(rc))
3252 {
3253 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3254 rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
3255 if (RT_SUCCESS(rc))
3256 {
3257 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3258 rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3259 if (RT_SUCCESS(rc))
3260 return VINF_SUCCESS;
3261
3262 LogRelFunc(("Failed to set up the APIC-access address in the nested-guest VMCS. rc=%Rrc\n", rc));
3263 }
3264 else
3265 LogRelFunc(("Failed to set up the MSR-bitmap address in the nested-guest VMCS. rc=%Rrc\n", rc));
3266 }
3267 else
3268 LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
3269 }
3270 else
3271 LogRelFunc(("Failed to set up the auto-load/store MSR addresses in the nested-guest VMCS. rc=%Rrc\n", rc));
3272
3273 return rc;
3274}
3275#endif
3276
3277
3278/**
3279 * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
3280 * VMX.
3281 *
3282 * @returns VBox status code.
3283 * @param pVCpu The cross context virtual CPU structure.
3284 * @param pVmcsInfo The VMCS info. object.
3285 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
3286 */
3287static int hmR0VmxSetupVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
3288{
3289 Assert(pVmcsInfo);
3290 Assert(pVmcsInfo->pvVmcs);
3291 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3292
3293 /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
3294 PVM pVM = pVCpu->CTX_SUFF(pVM);
3295 *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
3296 const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
3297
3298 LogFlowFunc(("\n"));
3299
3300 /*
3301 * Initialize the VMCS using VMCLEAR before loading the VMCS.
3302 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
3303 */
3304 int rc = hmR0VmxClearVmcs(pVmcsInfo);
3305 if (RT_SUCCESS(rc))
3306 {
3307 rc = hmR0VmxLoadVmcs(pVmcsInfo);
3308 if (RT_SUCCESS(rc))
3309 {
3310 if (!fIsNstGstVmcs)
3311 {
3312 rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
3313 if (RT_SUCCESS(rc))
3314 {
3315 rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
3316 if (RT_SUCCESS(rc))
3317 {
3318 rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
3319 if (RT_SUCCESS(rc))
3320 {
3321 rc = hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
3322 if (RT_SUCCESS(rc))
3323 { /* likely */ }
3324 else
3325 LogRelFunc(("Failed to initialize exception bitmap. rc=%Rrc\n", rc));
3326 }
3327 else
3328 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
3329 }
3330 else
3331 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
3332 }
3333 else
3334 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
3335 }
3336 else
3337 {
3338#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3339 rc = hmR0VmxSetupVmcsCtlsNested(pVCpu, pVmcsInfo);
3340 if (RT_SUCCESS(rc))
3341 { /* likely */ }
3342 else
3343 LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
3344#else
3345 AssertFailed();
3346#endif
3347 }
3348 }
3349 else
3350 LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
3351 }
3352 else
3353 LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
3354
3355 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
3356 if (RT_SUCCESS(rc))
3357 {
3358 rc = hmR0VmxClearVmcs(pVmcsInfo);
3359 if (RT_SUCCESS(rc))
3360 { /* likely */ }
3361 else
3362 LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
3363 }
3364
3365 /*
3366 * Update the last-error record both for failures and success, so we
3367 * can propagate the status code back to ring-3 for diagnostics.
3368 */
3369 hmR0VmxUpdateErrorRecord(pVCpu, rc);
3370 NOREF(pszVmcs);
3371 return rc;
3372}
3373
3374
3375/**
3376 * Does global VT-x initialization (called during module initialization).
3377 *
3378 * @returns VBox status code.
3379 */
3380VMMR0DECL(int) VMXR0GlobalInit(void)
3381{
3382#ifdef HMVMX_USE_FUNCTION_TABLE
3383 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
3384# ifdef VBOX_STRICT
3385 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
3386 Assert(g_apfnVMExitHandlers[i]);
3387# endif
3388#endif
3389 return VINF_SUCCESS;
3390}
3391
3392
3393/**
3394 * Does global VT-x termination (called during module termination).
3395 */
3396VMMR0DECL(void) VMXR0GlobalTerm()
3397{
3398 /* Nothing to do currently. */
3399}
3400
3401
3402/**
3403 * Sets up and activates VT-x on the current CPU.
3404 *
3405 * @returns VBox status code.
3406 * @param pHostCpu The HM physical-CPU structure.
3407 * @param pVM The cross context VM structure. Can be
3408 * NULL after a host resume operation.
3409 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
3410 * fEnabledByHost is @c true).
3411 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
3412 * @a fEnabledByHost is @c true).
3413 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
3414 * enable VT-x on the host.
3415 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
3416 */
3417VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
3418 PCSUPHWVIRTMSRS pHwvirtMsrs)
3419{
3420 Assert(pHostCpu);
3421 Assert(pHwvirtMsrs);
3422 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3423
3424 /* Enable VT-x if it's not already enabled by the host. */
3425 if (!fEnabledByHost)
3426 {
3427 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
3428 if (RT_FAILURE(rc))
3429 return rc;
3430 }
3431
3432 /*
3433 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
3434 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
3435 * invalidated when flushing by VPID.
3436 */
3437 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
3438 {
3439 hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
3440 pHostCpu->fFlushAsidBeforeUse = false;
3441 }
3442 else
3443 pHostCpu->fFlushAsidBeforeUse = true;
3444
3445 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
3446 ++pHostCpu->cTlbFlushes;
3447
3448 return VINF_SUCCESS;
3449}
3450
3451
3452/**
3453 * Deactivates VT-x on the current CPU.
3454 *
3455 * @returns VBox status code.
3456 * @param pvCpuPage Pointer to the VMXON region.
3457 * @param HCPhysCpuPage Physical address of the VMXON region.
3458 *
3459 * @remarks This function should never be called when SUPR0EnableVTx() or
3460 * similar was used to enable VT-x on the host.
3461 */
3462VMMR0DECL(int) VMXR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
3463{
3464 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
3465
3466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3467 return hmR0VmxLeaveRootMode();
3468}
3469
3470
3471/**
3472 * Does per-VM VT-x initialization.
3473 *
3474 * @returns VBox status code.
3475 * @param pVM The cross context VM structure.
3476 */
3477VMMR0DECL(int) VMXR0InitVM(PVM pVM)
3478{
3479 LogFlowFunc(("pVM=%p\n", pVM));
3480
3481 int rc = hmR0VmxStructsAlloc(pVM);
3482 if (RT_FAILURE(rc))
3483 {
3484 LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
3485 return rc;
3486 }
3487
3488 return VINF_SUCCESS;
3489}
3490
3491
3492/**
3493 * Does per-VM VT-x termination.
3494 *
3495 * @returns VBox status code.
3496 * @param pVM The cross context VM structure.
3497 */
3498VMMR0DECL(int) VMXR0TermVM(PVM pVM)
3499{
3500 LogFlowFunc(("pVM=%p\n", pVM));
3501
3502#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3503 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
3504 {
3505 Assert(pVM->hm.s.vmx.pvScratch);
3506 ASMMemZero32(pVM->hm.s.vmx.pvScratch, X86_PAGE_4K_SIZE);
3507 }
3508#endif
3509 hmR0VmxStructsFree(pVM);
3510 return VINF_SUCCESS;
3511}
3512
3513
3514/**
3515 * Sets up the VM for execution using hardware-assisted VMX.
3516 * This function is only called once per-VM during initialization.
3517 *
3518 * @returns VBox status code.
3519 * @param pVM The cross context VM structure.
3520 */
3521VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
3522{
3523 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
3524 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3525
3526 LogFlowFunc(("pVM=%p\n", pVM));
3527
3528 /*
3529 * At least verify if VMX is enabled, since we can't check if we're in
3530 * VMX root mode or not without causing a #GP.
3531 */
3532 RTCCUINTREG const uHostCR4 = ASMGetCR4();
3533 if (RT_LIKELY(uHostCR4 & X86_CR4_VMXE))
3534 { /* likely */ }
3535 else
3536 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
3537
3538 /*
3539 * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
3540 * always be allocated. We no longer support the highly unlikely case of unrestricted guest
3541 * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
3542 */
3543 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
3544 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
3545 || !pVM->hm.s.vmx.pRealModeTSS))
3546 {
3547 LogRelFunc(("Invalid real-on-v86 state.\n"));
3548 return VERR_INTERNAL_ERROR;
3549 }
3550
3551 /* Initialize these always, see hmR3InitFinalizeR0().*/
3552 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
3553 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
3554
3555 /* Setup the tagged-TLB flush handlers. */
3556 int rc = hmR0VmxSetupTaggedTlb(pVM);
3557 if (RT_FAILURE(rc))
3558 {
3559 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
3560 return rc;
3561 }
3562
3563 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
3564 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
3565#if HC_ARCH_BITS == 64
3566 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
3567 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
3568 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
3569 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
3570#endif
3571
3572 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3573 {
3574 PVMCPU pVCpu = &pVM->aCpus[idCpu];
3575 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
3576
3577 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
3578 if (RT_SUCCESS(rc))
3579 {
3580#if HC_ARCH_BITS == 32
3581 hmR0VmxInitVmcsReadCache(pVCpu);
3582#endif
3583#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3584 if (pVM->cpum.ro.GuestFeatures.fVmx)
3585 {
3586 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
3587 if (RT_SUCCESS(rc))
3588 { /* likely */ }
3589 else
3590 {
3591 LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
3592 return rc;
3593 }
3594 }
3595#endif
3596 }
3597 else
3598 {
3599 LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
3600 return rc;
3601 }
3602 }
3603
3604 return VINF_SUCCESS;
3605}
3606
3607
3608#if HC_ARCH_BITS == 32
3609# ifdef VBOX_ENABLE_64_BITS_GUESTS
3610/**
3611 * Check if guest state allows safe use of 32-bit switcher again.
3612 *
3613 * Segment bases and protected mode structures must be 32-bit addressable
3614 * because the 32-bit switcher will ignore high dword when writing these VMCS
3615 * fields. See @bugref{8432} for details.
3616 *
3617 * @returns true if safe, false if must continue to use the 64-bit switcher.
3618 * @param pCtx Pointer to the guest-CPU context.
3619 *
3620 * @remarks No-long-jump zone!!!
3621 */
3622static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
3623{
3624 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
3625 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
3626 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
3627 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
3628 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
3629 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3630 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
3631 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
3632 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3633 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3634
3635 /* All good, bases are 32-bit. */
3636 return true;
3637}
3638# endif /* VBOX_ENABLE_64_BITS_GUESTS */
3639
3640# ifdef VBOX_STRICT
3641static bool hmR0VmxIsValidWriteField(uint32_t idxField)
3642{
3643 switch (idxField)
3644 {
3645 case VMX_VMCS_GUEST_RIP:
3646 case VMX_VMCS_GUEST_RSP:
3647 case VMX_VMCS_GUEST_SYSENTER_EIP:
3648 case VMX_VMCS_GUEST_SYSENTER_ESP:
3649 case VMX_VMCS_GUEST_GDTR_BASE:
3650 case VMX_VMCS_GUEST_IDTR_BASE:
3651 case VMX_VMCS_GUEST_CS_BASE:
3652 case VMX_VMCS_GUEST_DS_BASE:
3653 case VMX_VMCS_GUEST_ES_BASE:
3654 case VMX_VMCS_GUEST_FS_BASE:
3655 case VMX_VMCS_GUEST_GS_BASE:
3656 case VMX_VMCS_GUEST_SS_BASE:
3657 case VMX_VMCS_GUEST_LDTR_BASE:
3658 case VMX_VMCS_GUEST_TR_BASE:
3659 case VMX_VMCS_GUEST_CR3:
3660 return true;
3661 }
3662 return false;
3663}
3664
3665static bool hmR0VmxIsValidReadField(uint32_t idxField)
3666{
3667 switch (idxField)
3668 {
3669 /* Read-only fields. */
3670 case VMX_VMCS_RO_EXIT_QUALIFICATION:
3671 return true;
3672 }
3673 /* Remaining readable fields should also be writable. */
3674 return hmR0VmxIsValidWriteField(idxField);
3675}
3676# endif /* VBOX_STRICT */
3677
3678
3679/**
3680 * Executes the specified handler in 64-bit mode.
3681 *
3682 * @returns VBox status code (no informational status codes).
3683 * @param pVCpu The cross context virtual CPU structure.
3684 * @param enmOp The operation to perform.
3685 * @param cParams Number of parameters.
3686 * @param paParam Array of 32-bit parameters.
3687 */
3688VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
3689{
3690 PVM pVM = pVCpu->CTX_SUFF(pVM);
3691 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
3692 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
3693 Assert(pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Write.aField));
3694 Assert(pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Read.aField));
3695
3696#ifdef VBOX_STRICT
3697 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries; i++)
3698 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VmcsCache.Write.aField[i]));
3699
3700 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries; i++)
3701 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VmcsCache.Read.aField[i]));
3702#endif
3703
3704 /* Disable interrupts. */
3705 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
3706
3707#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
3708 RTCPUID idHostCpu = RTMpCpuId();
3709 CPUMR0SetLApic(pVCpu, idHostCpu);
3710#endif
3711
3712 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
3713
3714 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
3715 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
3716
3717 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
3718 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3719 hmR0VmxClearVmcs(pVmcsInfo);
3720
3721 /* Leave VMX root mode and disable VMX. */
3722 VMXDisable();
3723 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
3724
3725 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
3726 CPUMSetHyperEIP(pVCpu, enmOp);
3727 for (int i = (int)cParams - 1; i >= 0; i--)
3728 CPUMPushHyper(pVCpu, paParam[i]);
3729
3730 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
3731
3732 /* Call the switcher. */
3733 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
3734 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
3735
3736 /* Re-enable VMX to make sure the VMX instructions don't cause #UD faults. */
3737 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
3738
3739 /* Re-enter VMX root mode. */
3740 int rc2 = VMXEnable(HCPhysCpuPage);
3741 if (RT_FAILURE(rc2))
3742 {
3743 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
3744 ASMSetFlags(fOldEFlags);
3745 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
3746 return rc2;
3747 }
3748
3749 /* Restore the VMCS as the current VMCS. */
3750 rc2 = hmR0VmxLoadVmcs(pVmcsInfo);
3751 AssertRC(rc2);
3752 Assert(!(ASMGetFlags() & X86_EFL_IF));
3753 ASMSetFlags(fOldEFlags);
3754 return rc;
3755}
3756
3757
3758/**
3759 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
3760 * supporting 64-bit guests.
3761 *
3762 * @returns VBox status code.
3763 * @param fResume Whether to VMLAUNCH or VMRESUME.
3764 * @param pCtx Pointer to the guest-CPU context.
3765 * @param pCache Pointer to the VMCS batch cache.
3766 * @param pVM The cross context VM structure.
3767 * @param pVCpu The cross context virtual CPU structure.
3768 */
3769DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMXVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
3770{
3771 NOREF(fResume);
3772
3773 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3774 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
3775 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
3776
3777#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3778 pCache->uPos = 1;
3779 pCache->interPD = PGMGetInterPaeCR3(pVM);
3780 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
3781#endif
3782
3783#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
3784 pCache->TestIn.HCPhysCpuPage = 0;
3785 pCache->TestIn.HCPhysVmcs = 0;
3786 pCache->TestIn.pCache = 0;
3787 pCache->TestOut.HCPhysVmcs = 0;
3788 pCache->TestOut.pCache = 0;
3789 pCache->TestOut.pCtx = 0;
3790 pCache->TestOut.eflags = 0;
3791#else
3792 NOREF(pCache);
3793#endif
3794
3795 uint32_t aParam[10];
3796 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
3797 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
3798 aParam[2] = RT_LO_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
3799 aParam[3] = RT_HI_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
3800 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache);
3801 aParam[5] = 0;
3802 aParam[6] = VM_RC_ADDR(pVM, pVM);
3803 aParam[7] = 0;
3804 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
3805 aParam[9] = 0;
3806
3807#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3808 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
3809 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
3810#endif
3811 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
3812
3813#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3814 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
3815 Assert(pCtx->dr[4] == 10);
3816 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
3817#endif
3818
3819#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
3820 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
3821 AssertMsg(pCache->TestIn.HCPhysVmcs == pVmcsInfo->HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
3822 pVmcsInfo->HCPhysVmcs));
3823 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
3824 pCache->TestOut.HCPhysVmcs));
3825 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
3826 pCache->TestOut.pCache));
3827 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache),
3828 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache)));
3829 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
3830 pCache->TestOut.pCtx));
3831 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
3832#endif
3833 NOREF(pCtx);
3834 return rc;
3835}
3836#endif
3837
3838
3839/**
3840 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
3841 * the VMCS.
3842 *
3843 * @returns VBox status code.
3844 */
3845static int hmR0VmxExportHostControlRegs(void)
3846{
3847 RTCCUINTREG uReg = ASMGetCR0();
3848 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
3849 AssertRCReturn(rc, rc);
3850
3851 uReg = ASMGetCR3();
3852 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
3853 AssertRCReturn(rc, rc);
3854
3855 uReg = ASMGetCR4();
3856 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
3857 AssertRCReturn(rc, rc);
3858 return rc;
3859}
3860
3861
3862/**
3863 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
3864 * the host-state area in the VMCS.
3865 *
3866 * @returns VBox status code.
3867 * @param pVCpu The cross context virtual CPU structure.
3868 */
3869static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
3870{
3871#if HC_ARCH_BITS == 64
3872/**
3873 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
3874 * requirements. See hmR0VmxExportHostSegmentRegs().
3875 */
3876# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
3877 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
3878 { \
3879 bool fValidSelector = true; \
3880 if ((selValue) & X86_SEL_LDT) \
3881 { \
3882 uint32_t uAttr = ASMGetSegAttr((selValue)); \
3883 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
3884 } \
3885 if (fValidSelector) \
3886 { \
3887 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
3888 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
3889 } \
3890 (selValue) = 0; \
3891 }
3892
3893 /*
3894 * If we've executed guest code using hardware-assisted VMX, the host-state bits
3895 * will be messed up. We should -not- save the messed up state without restoring
3896 * the original host-state, see @bugref{7240}.
3897 *
3898 * This apparently can happen (most likely the FPU changes), deal with it rather than
3899 * asserting. Was observed booting Solaris 10u10 32-bit guest.
3900 */
3901 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
3902 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
3903 {
3904 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
3905 pVCpu->idCpu));
3906 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
3907 }
3908 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
3909#else
3910 RT_NOREF(pVCpu);
3911#endif
3912
3913 /*
3914 * Host DS, ES, FS and GS segment registers.
3915 */
3916#if HC_ARCH_BITS == 64
3917 RTSEL uSelDS = ASMGetDS();
3918 RTSEL uSelES = ASMGetES();
3919 RTSEL uSelFS = ASMGetFS();
3920 RTSEL uSelGS = ASMGetGS();
3921#else
3922 RTSEL uSelDS = 0;
3923 RTSEL uSelES = 0;
3924 RTSEL uSelFS = 0;
3925 RTSEL uSelGS = 0;
3926#endif
3927
3928 /*
3929 * Host CS and SS segment registers.
3930 */
3931 RTSEL uSelCS = ASMGetCS();
3932 RTSEL uSelSS = ASMGetSS();
3933
3934 /*
3935 * Host TR segment register.
3936 */
3937 RTSEL uSelTR = ASMGetTR();
3938
3939#if HC_ARCH_BITS == 64
3940 /*
3941 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
3942 * gain VM-entry and restore them before we get preempted.
3943 *
3944 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
3945 */
3946 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
3947 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
3948 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
3949 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
3950# undef VMXLOCAL_ADJUST_HOST_SEG
3951#endif
3952
3953 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
3954 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
3955 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
3956 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
3957 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
3958 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
3959 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
3960 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
3961 Assert(uSelCS);
3962 Assert(uSelTR);
3963
3964 /* Write these host selector fields into the host-state area in the VMCS. */
3965 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
3966 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
3967#if HC_ARCH_BITS == 64
3968 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
3969 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
3970 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
3971 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
3972#else
3973 NOREF(uSelDS);
3974 NOREF(uSelES);
3975 NOREF(uSelFS);
3976 NOREF(uSelGS);
3977#endif
3978 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3979 AssertRCReturn(rc, rc);
3980
3981 /*
3982 * Host GDTR and IDTR.
3983 */
3984 RTGDTR Gdtr;
3985 RTIDTR Idtr;
3986 RT_ZERO(Gdtr);
3987 RT_ZERO(Idtr);
3988 ASMGetGDTR(&Gdtr);
3989 ASMGetIDTR(&Idtr);
3990 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3991 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3992 AssertRCReturn(rc, rc);
3993
3994#if HC_ARCH_BITS == 64
3995 /*
3996 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
3997 * them to the maximum limit (0xffff) on every VM-exit.
3998 */
3999 if (Gdtr.cbGdt != 0xffff)
4000 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
4001
4002 /*
4003 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
4004 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
4005 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
4006 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
4007 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
4008 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
4009 * at 0xffff on hosts where we are sure it won't cause trouble.
4010 */
4011# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
4012 if (Idtr.cbIdt < 0x0fff)
4013# else
4014 if (Idtr.cbIdt != 0xffff)
4015# endif
4016 {
4017 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
4018 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
4019 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
4020 }
4021#endif
4022
4023 /*
4024 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
4025 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
4026 * RPL should be too in most cases.
4027 */
4028 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
4029 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
4030
4031 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
4032#if HC_ARCH_BITS == 64
4033 uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
4034
4035 /*
4036 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
4037 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
4038 * restoration if the host has something else. Task switching is not supported in 64-bit
4039 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
4040 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
4041 *
4042 * [1] See Intel spec. 3.5 "System Descriptor Types".
4043 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
4044 */
4045 PVM pVM = pVCpu->CTX_SUFF(pVM);
4046 Assert(pDesc->System.u4Type == 11);
4047 if ( pDesc->System.u16LimitLow != 0x67
4048 || pDesc->System.u4LimitHigh)
4049 {
4050 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
4051 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
4052 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
4053 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
4054 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
4055 }
4056
4057 /*
4058 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
4059 */
4060 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
4061 {
4062 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
4063 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
4064 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
4065 {
4066 /* The GDT is read-only but the writable GDT is available. */
4067 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
4068 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
4069 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
4070 AssertRCReturn(rc, rc);
4071 }
4072 }
4073#else
4074 uintptr_t const uTRBase = X86DESC_BASE(pDesc);
4075#endif
4076 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
4077 AssertRCReturn(rc, rc);
4078
4079 /*
4080 * Host FS base and GS base.
4081 */
4082#if HC_ARCH_BITS == 64
4083 uint64_t const u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
4084 uint64_t const u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
4085 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
4086 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
4087 AssertRCReturn(rc, rc);
4088
4089 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
4090 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
4091 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
4092 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
4093 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
4094#endif
4095 return VINF_SUCCESS;
4096}
4097
4098
4099/**
4100 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
4101 * host-state area of the VMCS.
4102 *
4103 * These MSRs will be automatically restored on the host after every successful
4104 * VM-exit.
4105 *
4106 * @returns VBox status code.
4107 * @param pVCpu The cross context virtual CPU structure.
4108 *
4109 * @remarks No-long-jump zone!!!
4110 */
4111static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
4112{
4113 AssertPtr(pVCpu);
4114
4115 /*
4116 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
4117 * rather than swapping them on every VM-entry.
4118 */
4119 hmR0VmxLazySaveHostMsrs(pVCpu);
4120
4121 /*
4122 * Host Sysenter MSRs.
4123 */
4124 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
4125#if HC_ARCH_BITS == 32
4126 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
4127 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
4128#else
4129 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
4130 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
4131#endif
4132 AssertRCReturn(rc, rc);
4133
4134 /*
4135 * Host EFER MSR.
4136 *
4137 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
4138 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
4139 */
4140 PVM pVM = pVCpu->CTX_SUFF(pVM);
4141 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4142 {
4143 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostMsrEfer);
4144 AssertRCReturn(rc, rc);
4145 }
4146
4147 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
4148 * hmR0VmxExportGuestEntryExitCtls(). */
4149
4150 return VINF_SUCCESS;
4151}
4152
4153
4154/**
4155 * Figures out if we need to swap the EFER MSR which is particularly expensive.
4156 *
4157 * We check all relevant bits. For now, that's everything besides LMA/LME, as
4158 * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
4159 *
4160 * @returns true if we need to load guest EFER, false otherwise.
4161 * @param pVCpu The cross context virtual CPU structure.
4162 *
4163 * @remarks Requires EFER, CR4.
4164 * @remarks No-long-jump zone!!!
4165 */
4166static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
4167{
4168#ifdef HMVMX_ALWAYS_SWAP_EFER
4169 RT_NOREF(pVCpu);
4170 return true;
4171#else
4172 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4173#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4174 /* For 32-bit hosts running 64-bit guests, we always swap EFER MSR in the world-switcher. Nothing to do here. */
4175 if (CPUMIsGuestInLongModeEx(pCtx))
4176 return false;
4177#endif
4178
4179 PVM pVM = pVCpu->CTX_SUFF(pVM);
4180 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostMsrEfer;
4181 uint64_t const u64GuestEfer = pCtx->msrEFER;
4182
4183 /*
4184 * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
4185 * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
4186 */
4187 if ( CPUMIsGuestInLongModeEx(pCtx)
4188 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
4189 return true;
4190
4191 /*
4192 * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
4193 * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
4194 *
4195 * See Intel spec. 4.5 "IA-32e Paging".
4196 * See Intel spec. 4.1.1 "Three Paging Modes".
4197 *
4198 * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
4199 * import CR4 and CR0 from the VMCS here as those bits are always up to date.
4200 */
4201 Assert(hmR0VmxGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
4202 Assert(hmR0VmxGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
4203 if ( (pCtx->cr4 & X86_CR4_PAE)
4204 && (pCtx->cr0 & X86_CR0_PG)
4205 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
4206 {
4207 /* Assert that host is NX capable. */
4208 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
4209 return true;
4210 }
4211
4212 return false;
4213#endif
4214}
4215
4216/**
4217 * Exports the guest state with appropriate VM-entry and VM-exit controls in the
4218 * VMCS.
4219 *
4220 * This is typically required when the guest changes paging mode.
4221 *
4222 * @returns VBox status code.
4223 * @param pVCpu The cross context virtual CPU structure.
4224 * @param pVmxTransient The VMX-transient structure.
4225 *
4226 * @remarks Requires EFER.
4227 * @remarks No-long-jump zone!!!
4228 */
4229static int hmR0VmxExportGuestEntryExitCtls(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4230{
4231 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
4232 {
4233 PVM pVM = pVCpu->CTX_SUFF(pVM);
4234 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4235
4236 /*
4237 * VM-entry controls.
4238 */
4239 {
4240 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4241 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4242
4243 /*
4244 * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
4245 * The first VT-x capable CPUs only supported the 1-setting of this bit.
4246 *
4247 * For nested-guests, this is a mandatory VM-entry control. It's also
4248 * required because we do not want to leak host bits to the nested-guest.
4249 */
4250 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
4251
4252 /*
4253 * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
4254 *
4255 * For nested-guests, the "IA-32e mode guest" control we initialize with what is
4256 * required to get the nested-guest working with hardware-assisted VMX execution.
4257 * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested-hypervisor
4258 * can skip intercepting changes to the EFER MSR. This is why it it needs to be done
4259 * here rather than while merging the guest VMCS controls.
4260 */
4261 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4262 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
4263 else
4264 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
4265
4266 /*
4267 * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
4268 *
4269 * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
4270 * regardless of whether the nested-guest VMCS specifies it because we are free to
4271 * load whatever MSRs we require and we do not need to modify the guest visible copy
4272 * of the VM-entry MSR load area.
4273 */
4274 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4275 && hmR0VmxShouldSwapEferMsr(pVCpu))
4276 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
4277 else
4278 Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
4279
4280 /*
4281 * The following should -not- be set (since we're not in SMM mode):
4282 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
4283 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
4284 */
4285
4286 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
4287 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
4288
4289 if ((fVal & fZap) == fVal)
4290 { /* likely */ }
4291 else
4292 {
4293 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
4294 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
4295 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
4296 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4297 }
4298
4299 /* Commit it to the VMCS. */
4300 if (pVmcsInfo->u32EntryCtls != fVal)
4301 {
4302 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
4303 AssertRCReturn(rc, rc);
4304 pVmcsInfo->u32EntryCtls = fVal;
4305 }
4306 }
4307
4308 /*
4309 * VM-exit controls.
4310 */
4311 {
4312 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4313 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4314
4315 /*
4316 * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
4317 * supported the 1-setting of this bit.
4318 *
4319 * For nested-guests, we set the "save debug controls" as the converse
4320 * "load debug controls" is mandatory for nested-guests anyway.
4321 */
4322 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
4323
4324 /*
4325 * Set the host long mode active (EFER.LMA) bit (which Intel calls
4326 * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
4327 * host EFER.LMA and EFER.LME bit to this value. See assertion in
4328 * hmR0VmxExportHostMsrs().
4329 *
4330 * For nested-guests, we always set this bit as we do not support 32-bit
4331 * hosts.
4332 */
4333#if HC_ARCH_BITS == 64
4334 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4335#else
4336 Assert(!pVmxTransient->fIsNestedGuest);
4337 Assert( pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64
4338 || pVmcsInfo->pfnStartVM == VMXR0StartVM32);
4339 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
4340 if (pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64)
4341 {
4342 /* The switcher returns to long mode, the EFER MSR is managed by the switcher. */
4343 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4344 }
4345 else
4346 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
4347#endif
4348
4349 /*
4350 * If the VMCS EFER MSR fields are supported by the hardware, we use it.
4351 *
4352 * For nested-guests, we should use the "save IA32_EFER" control if we also
4353 * used the "load IA32_EFER" control while exporting VM-entry controls.
4354 */
4355 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4356 && hmR0VmxShouldSwapEferMsr(pVCpu))
4357 {
4358 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
4359 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
4360 }
4361
4362 /*
4363 * Enable saving of the VMX-preemption timer value on VM-exit.
4364 * For nested-guests, currently not exposed/used.
4365 */
4366 if ( pVM->hm.s.vmx.fUsePreemptTimer
4367 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
4368 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
4369
4370 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
4371 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
4372
4373 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
4374 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
4375 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
4376
4377 if ((fVal & fZap) == fVal)
4378 { /* likely */ }
4379 else
4380 {
4381 Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
4382 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
4383 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
4384 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4385 }
4386
4387 /* Commit it to the VMCS. */
4388 if (pVmcsInfo->u32ExitCtls != fVal)
4389 {
4390 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
4391 AssertRCReturn(rc, rc);
4392 pVmcsInfo->u32ExitCtls = fVal;
4393 }
4394 }
4395
4396 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
4397 }
4398 return VINF_SUCCESS;
4399}
4400
4401
4402/**
4403 * Sets the TPR threshold in the VMCS.
4404 *
4405 * @returns VBox status code.
4406 * @param pVCpu The cross context virtual CPU structure.
4407 * @param pVmcsInfo The VMCS info. object.
4408 * @param u32TprThreshold The TPR threshold (task-priority class only).
4409 */
4410DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
4411{
4412 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
4413 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4414 RT_NOREF2(pVCpu, pVmcsInfo);
4415 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
4416}
4417
4418
4419/**
4420 * Exports the guest APIC TPR state into the VMCS.
4421 *
4422 * @returns VBox status code.
4423 * @param pVCpu The cross context virtual CPU structure.
4424 * @param pVmxTransient The VMX-transient structure.
4425 *
4426 * @remarks No-long-jump zone!!!
4427 */
4428static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4429{
4430 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
4431 {
4432 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
4433
4434 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4435 if (!pVmxTransient->fIsNestedGuest)
4436 {
4437 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
4438 && APICIsEnabled(pVCpu))
4439 {
4440 /*
4441 * Setup TPR shadowing.
4442 */
4443 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4444 {
4445 bool fPendingIntr = false;
4446 uint8_t u8Tpr = 0;
4447 uint8_t u8PendingIntr = 0;
4448 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
4449 AssertRCReturn(rc, rc);
4450
4451 /*
4452 * If there are interrupts pending but masked by the TPR, instruct VT-x to
4453 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
4454 * priority of the pending interrupt so we can deliver the interrupt. If there
4455 * are no interrupts pending, set threshold to 0 to not cause any
4456 * TPR-below-threshold VM-exits.
4457 */
4458 Assert(pVmcsInfo->pbVirtApic);
4459 pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
4460 uint32_t u32TprThreshold = 0;
4461 if (fPendingIntr)
4462 {
4463 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
4464 (which is the Task-Priority Class). */
4465 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
4466 const uint8_t u8TprPriority = u8Tpr >> 4;
4467 if (u8PendingPriority <= u8TprPriority)
4468 u32TprThreshold = u8PendingPriority;
4469 }
4470
4471 rc = hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u32TprThreshold);
4472 AssertRCReturn(rc, rc);
4473 }
4474 }
4475 }
4476 /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
4477 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
4478 }
4479 return VINF_SUCCESS;
4480}
4481
4482
4483/**
4484 * Gets the guest interruptibility-state.
4485 *
4486 * @returns Guest's interruptibility-state.
4487 * @param pVCpu The cross context virtual CPU structure.
4488 * @param pVmcsInfo The VMCS info. object.
4489 *
4490 * @remarks No-long-jump zone!!!
4491 */
4492static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
4493{
4494 /*
4495 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
4496 */
4497 uint32_t fIntrState = 0;
4498 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
4499 {
4500 /* If inhibition is active, RIP and RFLAGS should've been updated
4501 (i.e. read previously from the VMCS or from ring-3). */
4502 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4503#ifdef VBOX_STRICT
4504 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
4505 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4506 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
4507#endif
4508 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
4509 {
4510 if (pCtx->eflags.Bits.u1IF)
4511 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
4512 else
4513 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
4514 }
4515 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
4516 {
4517 /*
4518 * We can clear the inhibit force flag as even if we go back to the recompiler
4519 * without executing guest code in VT-x, the flag's condition to be cleared is
4520 * met and thus the cleared state is correct.
4521 */
4522 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
4523 }
4524 }
4525
4526 /*
4527 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
4528 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
4529 * setting this would block host-NMIs and IRET will not clear the blocking.
4530 *
4531 * We always set NMI-exiting so when the host receives an NMI we get a VM-exit.
4532 *
4533 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
4534 */
4535 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
4536 && CPUMIsGuestNmiBlocking(pVCpu))
4537 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
4538
4539 return fIntrState;
4540}
4541
4542
4543/**
4544 * Exports the exception intercepts required for guest execution in the VMCS.
4545 *
4546 * @returns VBox status code.
4547 * @param pVCpu The cross context virtual CPU structure.
4548 * @param pVmxTransient The VMX-transient structure.
4549 *
4550 * @remarks No-long-jump zone!!!
4551 */
4552static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4553{
4554 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
4555 {
4556 /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
4557 if ( !pVmxTransient->fIsNestedGuest
4558 && pVCpu->hm.s.fGIMTrapXcptUD)
4559 hmR0VmxAddXcptIntercept(pVmxTransient, X86_XCPT_UD);
4560 else
4561 hmR0VmxRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
4562
4563 /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
4564 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
4565 }
4566 return VINF_SUCCESS;
4567}
4568
4569
4570/**
4571 * Exports the guest's RIP into the guest-state area in the VMCS.
4572 *
4573 * @returns VBox status code.
4574 * @param pVCpu The cross context virtual CPU structure.
4575 *
4576 * @remarks No-long-jump zone!!!
4577 */
4578static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
4579{
4580 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
4581 {
4582 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
4583
4584 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
4585 AssertRCReturn(rc, rc);
4586
4587 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
4588 Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
4589 }
4590 return VINF_SUCCESS;
4591}
4592
4593
4594/**
4595 * Exports the guest's RSP into the guest-state area in the VMCS.
4596 *
4597 * @returns VBox status code.
4598 * @param pVCpu The cross context virtual CPU structure.
4599 *
4600 * @remarks No-long-jump zone!!!
4601 */
4602static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
4603{
4604 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
4605 {
4606 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
4607
4608 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
4609 AssertRCReturn(rc, rc);
4610
4611 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
4612 }
4613 return VINF_SUCCESS;
4614}
4615
4616
4617/**
4618 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
4619 *
4620 * @returns VBox status code.
4621 * @param pVCpu The cross context virtual CPU structure.
4622 * @param pVmxTransient The VMX-transient structure.
4623 *
4624 * @remarks No-long-jump zone!!!
4625 */
4626static int hmR0VmxExportGuestRflags(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4627{
4628 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
4629 {
4630 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
4631
4632 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
4633 Let us assert it as such and use 32-bit VMWRITE. */
4634 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
4635 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
4636 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
4637 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
4638
4639 /*
4640 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
4641 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
4642 * can run the real-mode guest code under Virtual 8086 mode.
4643 */
4644 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4645 if (pVmcsInfo->RealMode.fRealOnV86Active)
4646 {
4647 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4648 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4649 Assert(!pVmxTransient->fIsNestedGuest);
4650 pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
4651 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
4652 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
4653 }
4654
4655 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
4656 AssertRCReturn(rc, rc);
4657
4658 /*
4659 * Setup pending debug exceptions if the guest is single-stepping using EFLAGS.TF.
4660 *
4661 * We must avoid setting any automatic debug exceptions delivery when single-stepping
4662 * through the hypervisor debugger using EFLAGS.TF.
4663 */
4664 if ( !pVmxTransient->fIsNestedGuest
4665 && !pVCpu->hm.s.fSingleInstruction
4666 && fEFlags.Bits.u1TF)
4667 {
4668 /** @todo r=ramshankar: Warning!! We ASSUME EFLAGS.TF will not cleared on
4669 * premature trips to ring-3 esp since IEM does not yet handle it. */
4670 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
4671 AssertRCReturn(rc, rc);
4672 }
4673 /** @todo NSTVMX: Handling copying of VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS from
4674 * nested-guest VMCS. */
4675
4676 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
4677 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
4678 }
4679 return VINF_SUCCESS;
4680}
4681
4682
4683/**
4684 * Exports the guest CR0 control register into the guest-state area in the VMCS.
4685 *
4686 * The guest FPU state is always pre-loaded hence we don't need to bother about
4687 * sharing FPU related CR0 bits between the guest and host.
4688 *
4689 * @returns VBox status code.
4690 * @param pVCpu The cross context virtual CPU structure.
4691 * @param pVmxTransient The VMX-transient structure.
4692 *
4693 * @remarks No-long-jump zone!!!
4694 */
4695static int hmR0VmxExportGuestCR0(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4696{
4697 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
4698 {
4699 PVM pVM = pVCpu->CTX_SUFF(pVM);
4700 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4701
4702 /*
4703 * Figure out fixed CR0 bits in VMX operation.
4704 */
4705 uint64_t fSetCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
4706 uint64_t const fZapCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
4707 if (pVM->hm.s.vmx.fUnrestrictedGuest)
4708 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
4709 else
4710 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
4711
4712 if (!pVmxTransient->fIsNestedGuest)
4713 {
4714 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
4715 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
4716 uint64_t const u64ShadowCr0 = u64GuestCr0;
4717 Assert(!RT_HI_U32(u64GuestCr0));
4718
4719 /*
4720 * Setup VT-x's view of the guest CR0.
4721 */
4722 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
4723 if (pVM->hm.s.fNestedPaging)
4724 {
4725 if (CPUMIsGuestPagingEnabled(pVCpu))
4726 {
4727 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
4728 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
4729 | VMX_PROC_CTLS_CR3_STORE_EXIT);
4730 }
4731 else
4732 {
4733 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
4734 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
4735 | VMX_PROC_CTLS_CR3_STORE_EXIT;
4736 }
4737
4738 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
4739 if (pVM->hm.s.vmx.fUnrestrictedGuest)
4740 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
4741 }
4742 else
4743 {
4744 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
4745 u64GuestCr0 |= X86_CR0_WP;
4746 }
4747
4748 /*
4749 * Guest FPU bits.
4750 *
4751 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
4752 * using CR0.TS.
4753 *
4754 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
4755 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
4756 */
4757 u64GuestCr0 |= X86_CR0_NE;
4758
4759 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
4760 bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
4761
4762 /*
4763 * Update exception intercepts.
4764 */
4765 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
4766 if (pVmcsInfo->RealMode.fRealOnV86Active)
4767 {
4768 Assert(PDMVmmDevHeapIsEnabled(pVM));
4769 Assert(pVM->hm.s.vmx.pRealModeTSS);
4770 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
4771 }
4772 else
4773 {
4774 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
4775 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
4776 if (fInterceptMF)
4777 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
4778 }
4779
4780 /* Additional intercepts for debugging, define these yourself explicitly. */
4781#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
4782 uXcptBitmap |= 0
4783 | RT_BIT(X86_XCPT_BP)
4784 | RT_BIT(X86_XCPT_DE)
4785 | RT_BIT(X86_XCPT_NM)
4786 | RT_BIT(X86_XCPT_TS)
4787 | RT_BIT(X86_XCPT_UD)
4788 | RT_BIT(X86_XCPT_NP)
4789 | RT_BIT(X86_XCPT_SS)
4790 | RT_BIT(X86_XCPT_GP)
4791 | RT_BIT(X86_XCPT_PF)
4792 | RT_BIT(X86_XCPT_MF)
4793 ;
4794#elif defined(HMVMX_ALWAYS_TRAP_PF)
4795 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
4796#endif
4797 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
4798 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
4799 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
4800
4801 /* Apply the fixed CR0 bits and enable caching. */
4802 u64GuestCr0 |= fSetCr0;
4803 u64GuestCr0 &= fZapCr0;
4804 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
4805
4806 /* Commit the CR0 and related fields to the guest VMCS. */
4807 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR0, u64GuestCr0);
4808 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
4809 if (uProcCtls != pVmcsInfo->u32ProcCtls)
4810 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4811 if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
4812 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
4813 AssertRCReturn(rc, rc);
4814
4815 /* Update our caches. */
4816 pVmcsInfo->u32ProcCtls = uProcCtls;
4817 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
4818
4819 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
4820 }
4821 else
4822 {
4823 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4824 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
4825 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
4826 uint64_t const u64ShadowCr0 = pVmcsNstGst->u64Cr0ReadShadow.u;
4827 Assert(!RT_HI_U32(u64GuestCr0));
4828 Assert(u64GuestCr0 & X86_CR0_NE);
4829
4830 /* Apply the fixed CR0 bits and enable caching. */
4831 u64GuestCr0 |= fSetCr0;
4832 u64GuestCr0 &= fZapCr0;
4833 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
4834
4835 /* Commit the CR0 and CR0 read shadow to the nested-guest VMCS. */
4836 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR0, u64GuestCr0);
4837 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
4838 AssertRCReturn(rc, rc);
4839
4840 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
4841 }
4842
4843 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
4844 }
4845
4846 return VINF_SUCCESS;
4847}
4848
4849
4850/**
4851 * Exports the guest control registers (CR3, CR4) into the guest-state area
4852 * in the VMCS.
4853 *
4854 * @returns VBox strict status code.
4855 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
4856 * without unrestricted guest access and the VMMDev is not presently
4857 * mapped (e.g. EFI32).
4858 *
4859 * @param pVCpu The cross context virtual CPU structure.
4860 * @param pVmxTransient The VMX-transient structure.
4861 *
4862 * @remarks No-long-jump zone!!!
4863 */
4864static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4865{
4866 int rc = VINF_SUCCESS;
4867 PVM pVM = pVCpu->CTX_SUFF(pVM);
4868
4869 /*
4870 * Guest CR2.
4871 * It's always loaded in the assembler code. Nothing to do here.
4872 */
4873
4874 /*
4875 * Guest CR3.
4876 */
4877 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
4878 {
4879 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
4880
4881 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
4882 if (pVM->hm.s.fNestedPaging)
4883 {
4884 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4885 pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
4886
4887 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
4888 Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
4889 Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
4890 Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
4891
4892 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
4893 pVmcsInfo->HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
4894 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
4895
4896 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
4897 AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
4898 && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
4899 ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
4900 AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
4901 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
4902 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
4903
4904 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
4905 AssertRCReturn(rc, rc);
4906
4907 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4908 if ( pVM->hm.s.vmx.fUnrestrictedGuest
4909 || CPUMIsGuestPagingEnabledEx(pCtx))
4910 {
4911 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
4912 if (CPUMIsGuestInPAEModeEx(pCtx))
4913 {
4914 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
4915 AssertRCReturn(rc, rc);
4916 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
4917 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
4918 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
4919 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
4920 AssertRCReturn(rc, rc);
4921 }
4922
4923 /*
4924 * The guest's view of its CR3 is unblemished with nested paging when the
4925 * guest is using paging or we have unrestricted guest execution to handle
4926 * the guest when it's not using paging.
4927 */
4928 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
4929 GCPhysGuestCR3 = pCtx->cr3;
4930 }
4931 else
4932 {
4933 /*
4934 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
4935 * thinks it accesses physical memory directly, we use our identity-mapped
4936 * page table to map guest-linear to guest-physical addresses. EPT takes care
4937 * of translating it to host-physical addresses.
4938 */
4939 RTGCPHYS GCPhys;
4940 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
4941
4942 /* We obtain it here every time as the guest could have relocated this PCI region. */
4943 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
4944 if (RT_SUCCESS(rc))
4945 { /* likely */ }
4946 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
4947 {
4948 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
4949 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
4950 }
4951 else
4952 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
4953
4954 GCPhysGuestCR3 = GCPhys;
4955 }
4956
4957 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
4958 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4959 AssertRCReturn(rc, rc);
4960 }
4961 else
4962 {
4963 /* Non-nested paging case, just use the hypervisor's CR3. */
4964 RTHCPHYS const HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4965
4966 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
4967 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4968 AssertRCReturn(rc, rc);
4969 }
4970
4971 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
4972 }
4973
4974 /*
4975 * Guest CR4.
4976 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4977 */
4978 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
4979 {
4980 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4981 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4982 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4983
4984 /*
4985 * Figure out fixed CR4 bits in VMX operation.
4986 */
4987 uint64_t const fSetCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
4988 uint64_t const fZapCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
4989
4990 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
4991 uint64_t u64GuestCr4 = pCtx->cr4;
4992 uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest ? pCtx->cr4 : pVmcsNstGst->u64Cr4ReadShadow.u;
4993 Assert(!RT_HI_U32(u64GuestCr4));
4994
4995 /*
4996 * Setup VT-x's view of the guest CR4.
4997 *
4998 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
4999 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
5000 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
5001 *
5002 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
5003 */
5004 if (pVmcsInfo->RealMode.fRealOnV86Active)
5005 {
5006 Assert(pVM->hm.s.vmx.pRealModeTSS);
5007 Assert(PDMVmmDevHeapIsEnabled(pVM));
5008 u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
5009 }
5010
5011 if (pVM->hm.s.fNestedPaging)
5012 {
5013 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
5014 && !pVM->hm.s.vmx.fUnrestrictedGuest)
5015 {
5016 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
5017 u64GuestCr4 |= X86_CR4_PSE;
5018 /* Our identity mapping is a 32-bit page directory. */
5019 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5020 }
5021 /* else use guest CR4.*/
5022 }
5023 else
5024 {
5025 Assert(!pVmxTransient->fIsNestedGuest);
5026
5027 /*
5028 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
5029 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
5030 */
5031 switch (pVCpu->hm.s.enmShadowMode)
5032 {
5033 case PGMMODE_REAL: /* Real-mode. */
5034 case PGMMODE_PROTECTED: /* Protected mode without paging. */
5035 case PGMMODE_32_BIT: /* 32-bit paging. */
5036 {
5037 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5038 break;
5039 }
5040
5041 case PGMMODE_PAE: /* PAE paging. */
5042 case PGMMODE_PAE_NX: /* PAE paging with NX. */
5043 {
5044 u64GuestCr4 |= X86_CR4_PAE;
5045 break;
5046 }
5047
5048 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
5049 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
5050#ifdef VBOX_ENABLE_64_BITS_GUESTS
5051 break;
5052#endif
5053 default:
5054 AssertFailed();
5055 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5056 }
5057 }
5058
5059 /* Apply the fixed CR4 bits (mainly CR4.VMXE). */
5060 u64GuestCr4 |= fSetCr4;
5061 u64GuestCr4 &= fZapCr4;
5062
5063 /* Commit the CR4 and CR4 read shadow to the guest VMCS. */
5064 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR4, u64GuestCr4);
5065 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4);
5066 AssertRCReturn(rc, rc);
5067
5068 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
5069 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
5070
5071 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
5072
5073 Log4Func(("cr4=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
5074 }
5075 return rc;
5076}
5077
5078
5079/**
5080 * Exports the guest debug registers into the guest-state area in the VMCS.
5081 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
5082 *
5083 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
5084 *
5085 * @returns VBox status code.
5086 * @param pVCpu The cross context virtual CPU structure.
5087 * @param pVmxTransient The VMX-transient structure.
5088 *
5089 * @remarks No-long-jump zone!!!
5090 */
5091static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5092{
5093 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5094
5095 /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
5096 * stepping. */
5097 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5098 if (pVmxTransient->fIsNestedGuest)
5099 {
5100 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
5101 AssertRCReturn(rc, rc);
5102 return VINF_SUCCESS;
5103 }
5104
5105#ifdef VBOX_STRICT
5106 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
5107 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5108 {
5109 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
5110 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
5111 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
5112 }
5113#endif
5114
5115 bool fSteppingDB = false;
5116 bool fInterceptMovDRx = false;
5117 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5118 if (pVCpu->hm.s.fSingleInstruction)
5119 {
5120 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
5121 PVM pVM = pVCpu->CTX_SUFF(pVM);
5122 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
5123 {
5124 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
5125 Assert(fSteppingDB == false);
5126 }
5127 else
5128 {
5129 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
5130 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
5131 pVCpu->hm.s.fClearTrapFlag = true;
5132 fSteppingDB = true;
5133 }
5134 }
5135
5136 uint32_t u32GuestDr7;
5137 if ( fSteppingDB
5138 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
5139 {
5140 /*
5141 * Use the combined guest and host DRx values found in the hypervisor register set
5142 * because the hypervisor debugger has breakpoints active or someone is single stepping
5143 * on the host side without a monitor trap flag.
5144 *
5145 * Note! DBGF expects a clean DR6 state before executing guest code.
5146 */
5147#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5148 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
5149 && !CPUMIsHyperDebugStateActivePending(pVCpu))
5150 {
5151 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5152 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
5153 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
5154 }
5155 else
5156#endif
5157 if (!CPUMIsHyperDebugStateActive(pVCpu))
5158 {
5159 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5160 Assert(CPUMIsHyperDebugStateActive(pVCpu));
5161 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
5162 }
5163
5164 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
5165 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
5166 pVCpu->hm.s.fUsingHyperDR7 = true;
5167 fInterceptMovDRx = true;
5168 }
5169 else
5170 {
5171 /*
5172 * If the guest has enabled debug registers, we need to load them prior to
5173 * executing guest code so they'll trigger at the right time.
5174 */
5175 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
5176 {
5177#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5178 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
5179 && !CPUMIsGuestDebugStateActivePending(pVCpu))
5180 {
5181 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
5182 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
5183 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
5184 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
5185 }
5186 else
5187#endif
5188 if (!CPUMIsGuestDebugStateActive(pVCpu))
5189 {
5190 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
5191 Assert(CPUMIsGuestDebugStateActive(pVCpu));
5192 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
5193 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
5194 }
5195 Assert(!fInterceptMovDRx);
5196 }
5197 /*
5198 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
5199 * must intercept #DB in order to maintain a correct DR6 guest value, and
5200 * because we need to intercept it to prevent nested #DBs from hanging the
5201 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
5202 */
5203#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5204 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
5205 && !CPUMIsGuestDebugStateActive(pVCpu))
5206#else
5207 else if (!CPUMIsGuestDebugStateActive(pVCpu))
5208#endif
5209 {
5210 fInterceptMovDRx = true;
5211 }
5212
5213 /* Update DR7 with the actual guest value. */
5214 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
5215 pVCpu->hm.s.fUsingHyperDR7 = false;
5216 }
5217
5218 if (fInterceptMovDRx)
5219 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
5220 else
5221 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
5222
5223 /*
5224 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
5225 * monitor-trap flag and update our cache.
5226 */
5227 if (uProcCtls != pVmcsInfo->u32ProcCtls)
5228 {
5229 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5230 AssertRCReturn(rc2, rc2);
5231 pVmcsInfo->u32ProcCtls = uProcCtls;
5232 }
5233
5234 /*
5235 * Update guest DR7.
5236 */
5237 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
5238 AssertRCReturn(rc, rc);
5239
5240 /*
5241 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
5242 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
5243 *
5244 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5245 */
5246 if (fSteppingDB)
5247 {
5248 Assert(pVCpu->hm.s.fSingleInstruction);
5249 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
5250
5251 uint32_t fIntrState = 0;
5252 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
5253 AssertRCReturn(rc, rc);
5254
5255 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5256 {
5257 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
5258 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
5259 AssertRCReturn(rc, rc);
5260 }
5261 }
5262
5263 return VINF_SUCCESS;
5264}
5265
5266
5267#ifdef VBOX_STRICT
5268/**
5269 * Strict function to validate segment registers.
5270 *
5271 * @param pVCpu The cross context virtual CPU structure.
5272 * @param pVmcsInfo The VMCS info. object.
5273 *
5274 * @remarks Will import guest CR0 on strict builds during validation of
5275 * segments.
5276 */
5277static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
5278{
5279 /*
5280 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
5281 *
5282 * The reason we check for attribute value 0 in this function and not just the unusable bit is
5283 * because hmR0VmxExportGuestSegReg() only updates the VMCS' copy of the value with the
5284 * unusable bit and doesn't change the guest-context value.
5285 */
5286 PVM pVM = pVCpu->CTX_SUFF(pVM);
5287 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5288 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
5289 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
5290 && ( !CPUMIsGuestInRealModeEx(pCtx)
5291 && !CPUMIsGuestInV86ModeEx(pCtx)))
5292 {
5293 /* Protected mode checks */
5294 /* CS */
5295 Assert(pCtx->cs.Attr.n.u1Present);
5296 Assert(!(pCtx->cs.Attr.u & 0xf00));
5297 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
5298 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
5299 || !(pCtx->cs.Attr.n.u1Granularity));
5300 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
5301 || (pCtx->cs.Attr.n.u1Granularity));
5302 /* CS cannot be loaded with NULL in protected mode. */
5303 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
5304 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
5305 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
5306 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
5307 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
5308 else
5309 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
5310 /* SS */
5311 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
5312 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
5313 if ( !(pCtx->cr0 & X86_CR0_PE)
5314 || pCtx->cs.Attr.n.u4Type == 3)
5315 {
5316 Assert(!pCtx->ss.Attr.n.u2Dpl);
5317 }
5318 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
5319 {
5320 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
5321 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
5322 Assert(pCtx->ss.Attr.n.u1Present);
5323 Assert(!(pCtx->ss.Attr.u & 0xf00));
5324 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
5325 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
5326 || !(pCtx->ss.Attr.n.u1Granularity));
5327 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
5328 || (pCtx->ss.Attr.n.u1Granularity));
5329 }
5330 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegReg(). */
5331 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
5332 {
5333 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5334 Assert(pCtx->ds.Attr.n.u1Present);
5335 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
5336 Assert(!(pCtx->ds.Attr.u & 0xf00));
5337 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
5338 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
5339 || !(pCtx->ds.Attr.n.u1Granularity));
5340 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
5341 || (pCtx->ds.Attr.n.u1Granularity));
5342 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5343 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
5344 }
5345 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
5346 {
5347 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5348 Assert(pCtx->es.Attr.n.u1Present);
5349 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
5350 Assert(!(pCtx->es.Attr.u & 0xf00));
5351 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
5352 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
5353 || !(pCtx->es.Attr.n.u1Granularity));
5354 Assert( !(pCtx->es.u32Limit & 0xfff00000)
5355 || (pCtx->es.Attr.n.u1Granularity));
5356 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5357 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
5358 }
5359 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
5360 {
5361 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5362 Assert(pCtx->fs.Attr.n.u1Present);
5363 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
5364 Assert(!(pCtx->fs.Attr.u & 0xf00));
5365 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
5366 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
5367 || !(pCtx->fs.Attr.n.u1Granularity));
5368 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
5369 || (pCtx->fs.Attr.n.u1Granularity));
5370 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5371 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
5372 }
5373 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
5374 {
5375 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5376 Assert(pCtx->gs.Attr.n.u1Present);
5377 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
5378 Assert(!(pCtx->gs.Attr.u & 0xf00));
5379 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
5380 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
5381 || !(pCtx->gs.Attr.n.u1Granularity));
5382 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
5383 || (pCtx->gs.Attr.n.u1Granularity));
5384 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5385 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
5386 }
5387 /* 64-bit capable CPUs. */
5388# if HC_ARCH_BITS == 64
5389 Assert(!RT_HI_U32(pCtx->cs.u64Base));
5390 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
5391 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
5392 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
5393# endif
5394 }
5395 else if ( CPUMIsGuestInV86ModeEx(pCtx)
5396 || ( CPUMIsGuestInRealModeEx(pCtx)
5397 && !pVM->hm.s.vmx.fUnrestrictedGuest))
5398 {
5399 /* Real and v86 mode checks. */
5400 /* hmR0VmxExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
5401 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
5402 if (pVmcsInfo->RealMode.fRealOnV86Active)
5403 {
5404 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
5405 u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
5406 }
5407 else
5408 {
5409 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
5410 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
5411 }
5412
5413 /* CS */
5414 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
5415 Assert(pCtx->cs.u32Limit == 0xffff);
5416 Assert(u32CSAttr == 0xf3);
5417 /* SS */
5418 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
5419 Assert(pCtx->ss.u32Limit == 0xffff);
5420 Assert(u32SSAttr == 0xf3);
5421 /* DS */
5422 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
5423 Assert(pCtx->ds.u32Limit == 0xffff);
5424 Assert(u32DSAttr == 0xf3);
5425 /* ES */
5426 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
5427 Assert(pCtx->es.u32Limit == 0xffff);
5428 Assert(u32ESAttr == 0xf3);
5429 /* FS */
5430 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
5431 Assert(pCtx->fs.u32Limit == 0xffff);
5432 Assert(u32FSAttr == 0xf3);
5433 /* GS */
5434 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
5435 Assert(pCtx->gs.u32Limit == 0xffff);
5436 Assert(u32GSAttr == 0xf3);
5437 /* 64-bit capable CPUs. */
5438# if HC_ARCH_BITS == 64
5439 Assert(!RT_HI_U32(pCtx->cs.u64Base));
5440 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
5441 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
5442 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
5443# endif
5444 }
5445}
5446#endif /* VBOX_STRICT */
5447
5448
5449/**
5450 * Exports a guest segment register into the guest-state area in the VMCS.
5451 *
5452 * @returns VBox status code.
5453 * @param pVCpu The cross context virtual CPU structure.
5454 * @param pVmcsInfo The VMCS info. object.
5455 * @param iSegReg The segment register number (X86_SREG_XXX).
5456 * @param pSelReg Pointer to the segment selector.
5457 *
5458 * @remarks No-long-jump zone!!!
5459 */
5460static int hmR0VmxExportGuestSegReg(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint8_t iSegReg, PCCPUMSELREG pSelReg)
5461{
5462 Assert(iSegReg < X86_SREG_COUNT);
5463 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
5464 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
5465 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
5466 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
5467
5468 uint32_t u32Access = pSelReg->Attr.u;
5469 if (pVmcsInfo->RealMode.fRealOnV86Active)
5470 {
5471 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
5472 u32Access = 0xf3;
5473 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5474 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
5475 RT_NOREF_PV(pVCpu);
5476 }
5477 else
5478 {
5479 /*
5480 * The way to differentiate between whether this is really a null selector or was just
5481 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
5482 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
5483 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
5484 * NULL selectors loaded in protected-mode have their attribute as 0.
5485 */
5486 if (!u32Access)
5487 u32Access = X86DESCATTR_UNUSABLE;
5488 }
5489
5490 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
5491 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
5492 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
5493
5494 /*
5495 * Commit it to the VMCS.
5496 */
5497 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel);
5498 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit);
5499 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base);
5500 rc |= VMXWriteVmcs32(idxAttr, u32Access);
5501 AssertRCReturn(rc, rc);
5502 return rc;
5503}
5504
5505
5506/**
5507 * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
5508 * area in the VMCS.
5509 *
5510 * @returns VBox status code.
5511 * @param pVCpu The cross context virtual CPU structure.
5512 * @param pVmxTransient The VMX-transient structure.
5513 *
5514 * @remarks Will import guest CR0 on strict builds during validation of
5515 * segments.
5516 * @remarks No-long-jump zone!!!
5517 */
5518static int hmR0VmxExportGuestSegRegsXdtr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5519{
5520 int rc = VERR_INTERNAL_ERROR_5;
5521 PVM pVM = pVCpu->CTX_SUFF(pVM);
5522 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5523 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5524
5525 /*
5526 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
5527 */
5528 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
5529 {
5530#ifdef VBOX_WITH_REM
5531 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
5532 {
5533 Assert(!pVmxTransient->fIsNestedGuest);
5534 Assert(pVM->hm.s.vmx.pRealModeTSS);
5535 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
5536 if ( pVmcsInfo->fWasInRealMode
5537 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
5538 {
5539 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
5540 in real-mode (e.g. OpenBSD 4.0) */
5541 REMFlushTBs(pVM);
5542 Log4Func(("Switch to protected mode detected!\n"));
5543 pVmcsInfo->fWasInRealMode = false;
5544 }
5545 }
5546#endif
5547 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
5548 {
5549 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
5550 if (pVmcsInfo->RealMode.fRealOnV86Active)
5551 pVmcsInfo->RealMode.AttrCS.u = pCtx->cs.Attr.u;
5552 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
5553 AssertRCReturn(rc, rc);
5554 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
5555 }
5556
5557 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
5558 {
5559 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
5560 if (pVmcsInfo->RealMode.fRealOnV86Active)
5561 pVmcsInfo->RealMode.AttrSS.u = pCtx->ss.Attr.u;
5562 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
5563 AssertRCReturn(rc, rc);
5564 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
5565 }
5566
5567 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
5568 {
5569 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
5570 if (pVmcsInfo->RealMode.fRealOnV86Active)
5571 pVmcsInfo->RealMode.AttrDS.u = pCtx->ds.Attr.u;
5572 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
5573 AssertRCReturn(rc, rc);
5574 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
5575 }
5576
5577 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
5578 {
5579 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
5580 if (pVmcsInfo->RealMode.fRealOnV86Active)
5581 pVmcsInfo->RealMode.AttrES.u = pCtx->es.Attr.u;
5582 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
5583 AssertRCReturn(rc, rc);
5584 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
5585 }
5586
5587 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
5588 {
5589 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
5590 if (pVmcsInfo->RealMode.fRealOnV86Active)
5591 pVmcsInfo->RealMode.AttrFS.u = pCtx->fs.Attr.u;
5592 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
5593 AssertRCReturn(rc, rc);
5594 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
5595 }
5596
5597 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
5598 {
5599 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
5600 if (pVmcsInfo->RealMode.fRealOnV86Active)
5601 pVmcsInfo->RealMode.AttrGS.u = pCtx->gs.Attr.u;
5602 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
5603 AssertRCReturn(rc, rc);
5604 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
5605 }
5606
5607#ifdef VBOX_STRICT
5608 hmR0VmxValidateSegmentRegs(pVCpu, pVmcsInfo);
5609#endif
5610 Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
5611 pCtx->cs.Attr.u));
5612 }
5613
5614 /*
5615 * Guest TR.
5616 */
5617 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
5618 {
5619 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
5620
5621 /*
5622 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
5623 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
5624 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
5625 */
5626 uint16_t u16Sel;
5627 uint32_t u32Limit;
5628 uint64_t u64Base;
5629 uint32_t u32AccessRights;
5630 if (!pVmcsInfo->RealMode.fRealOnV86Active)
5631 {
5632 u16Sel = pCtx->tr.Sel;
5633 u32Limit = pCtx->tr.u32Limit;
5634 u64Base = pCtx->tr.u64Base;
5635 u32AccessRights = pCtx->tr.Attr.u;
5636 }
5637 else
5638 {
5639 Assert(!pVmxTransient->fIsNestedGuest);
5640 Assert(pVM->hm.s.vmx.pRealModeTSS);
5641 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
5642
5643 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
5644 RTGCPHYS GCPhys;
5645 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
5646 AssertRCReturn(rc, rc);
5647
5648 X86DESCATTR DescAttr;
5649 DescAttr.u = 0;
5650 DescAttr.n.u1Present = 1;
5651 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
5652
5653 u16Sel = 0;
5654 u32Limit = HM_VTX_TSS_SIZE;
5655 u64Base = GCPhys;
5656 u32AccessRights = DescAttr.u;
5657 }
5658
5659 /* Validate. */
5660 Assert(!(u16Sel & RT_BIT(2)));
5661 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
5662 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
5663 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
5664 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
5665 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
5666 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
5667 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
5668 Assert( (u32Limit & 0xfff) == 0xfff
5669 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
5670 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
5671 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
5672
5673 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
5674 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
5675 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
5676 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
5677 AssertRCReturn(rc, rc);
5678
5679 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
5680 Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
5681 }
5682
5683 /*
5684 * Guest GDTR.
5685 */
5686 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
5687 {
5688 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
5689
5690 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
5691 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
5692 AssertRCReturn(rc, rc);
5693
5694 /* Validate. */
5695 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
5696
5697 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
5698 Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
5699 }
5700
5701 /*
5702 * Guest LDTR.
5703 */
5704 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
5705 {
5706 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
5707
5708 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
5709 uint32_t u32Access;
5710 if ( !pVmxTransient->fIsNestedGuest
5711 && !pCtx->ldtr.Attr.u)
5712 u32Access = X86DESCATTR_UNUSABLE;
5713 else
5714 u32Access = pCtx->ldtr.Attr.u;
5715
5716 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
5717 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
5718 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
5719 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
5720 AssertRCReturn(rc, rc);
5721
5722 /* Validate. */
5723 if (!(u32Access & X86DESCATTR_UNUSABLE))
5724 {
5725 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
5726 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
5727 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
5728 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
5729 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
5730 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
5731 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
5732 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
5733 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
5734 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
5735 }
5736
5737 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
5738 Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
5739 }
5740
5741 /*
5742 * Guest IDTR.
5743 */
5744 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
5745 {
5746 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
5747
5748 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
5749 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
5750 AssertRCReturn(rc, rc);
5751
5752 /* Validate. */
5753 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
5754
5755 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
5756 Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
5757 }
5758
5759 return VINF_SUCCESS;
5760}
5761
5762
5763/**
5764 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
5765 * areas.
5766 *
5767 * These MSRs will automatically be loaded to the host CPU on every successful
5768 * VM-entry and stored from the host CPU on every successful VM-exit.
5769 *
5770 * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
5771 * actual host MSR values are not- updated here for performance reasons. See
5772 * hmR0VmxExportHostMsrs().
5773 *
5774 * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
5775 *
5776 * @returns VBox status code.
5777 * @param pVCpu The cross context virtual CPU structure.
5778 * @param pVmxTransient The VMX-transient structure.
5779 *
5780 * @remarks No-long-jump zone!!!
5781 */
5782static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5783{
5784 AssertPtr(pVCpu);
5785 AssertPtr(pVmxTransient);
5786
5787 PVM pVM = pVCpu->CTX_SUFF(pVM);
5788 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5789
5790 /*
5791 * MSRs that we use the auto-load/store MSR area in the VMCS.
5792 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
5793 * The host MSR values are updated when it's safe in hmR0VmxLazySaveHostMsrs().
5794 *
5795 * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
5796 * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
5797 * emulation, nothing to do here.
5798 */
5799 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
5800 {
5801 if ( !pVmxTransient->fIsNestedGuest
5802 && pVM->hm.s.fAllow64BitGuests)
5803 {
5804#if HC_ARCH_BITS == 32
5805 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
5806 Assert(!pVmxTransient->fIsNestedGuest);
5807
5808 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_LSTAR, pCtx->msrLSTAR, true, false);
5809 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_STAR, pCtx->msrSTAR, true, false);
5810 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_SF_MASK, pCtx->msrSFMASK, true, false);
5811 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, true, false);
5812 AssertRCReturn(rc, rc);
5813#endif
5814 }
5815 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
5816 }
5817
5818 /*
5819 * Guest Sysenter MSRs.
5820 */
5821 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
5822 {
5823 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
5824
5825 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
5826 {
5827 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
5828 AssertRCReturn(rc, rc);
5829 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
5830 }
5831
5832 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
5833 {
5834 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
5835 AssertRCReturn(rc, rc);
5836 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
5837 }
5838
5839 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
5840 {
5841 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
5842 AssertRCReturn(rc, rc);
5843 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
5844 }
5845 }
5846
5847 /*
5848 * Guest/host EFER MSR.
5849 */
5850 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
5851 {
5852 /* Whether we are using the VMCS to swap the EFER MSR must have been
5853 determined earlier while exporting VM-entry/VM-exit controls. */
5854 Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
5855 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
5856
5857 if (hmR0VmxShouldSwapEferMsr(pVCpu))
5858 {
5859 /*
5860 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
5861 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
5862 */
5863 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
5864 {
5865 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
5866 AssertRCReturn(rc, rc);
5867 }
5868 else
5869 {
5870 /*
5871 * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
5872 * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
5873 */
5874 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, pCtx->msrEFER,
5875 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
5876 AssertRCReturn(rc, rc);
5877 }
5878 }
5879 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
5880 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
5881
5882 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
5883 }
5884
5885 /*
5886 * Other MSRs.
5887 * Speculation Control (R/W).
5888 */
5889 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
5890 {
5891 HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
5892 if (pVM->cpum.ro.GuestFeatures.fIbrs)
5893 {
5894 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
5895 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
5896 AssertRCReturn(rc, rc);
5897 }
5898 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
5899 }
5900
5901 return VINF_SUCCESS;
5902}
5903
5904
5905/**
5906 * Selects up the appropriate function to run guest code.
5907 *
5908 * @returns VBox status code.
5909 * @param pVCpu The cross context virtual CPU structure.
5910 * @param pVmxTransient The VMX-transient structure.
5911 *
5912 * @remarks No-long-jump zone!!!
5913 */
5914static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5915{
5916 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5917 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5918
5919 if (CPUMIsGuestInLongModeEx(pCtx))
5920 {
5921#ifndef VBOX_ENABLE_64_BITS_GUESTS
5922 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5923#endif
5924 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
5925#if HC_ARCH_BITS == 32
5926 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
5927 if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
5928 {
5929#ifdef VBOX_STRICT
5930 if (pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
5931 {
5932 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
5933 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
5934 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
5935 AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
5936 ("fCtxChanged=%#RX64\n", fCtxChanged));
5937 }
5938#endif
5939 pVmcsInfo->pfnStartVM = VMXR0SwitcherStartVM64;
5940
5941 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
5942 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
5943 pVmcsInfo->fSwitchedTo64on32 = true;
5944 Log4Func(("Selected 64-bit switcher\n"));
5945 }
5946#else
5947 /* 64-bit host. */
5948 pVmcsInfo->pfnStartVM = VMXR0StartVM64;
5949#endif
5950 }
5951 else
5952 {
5953 /* Guest is not in long mode, use the 32-bit handler. */
5954#if HC_ARCH_BITS == 32
5955 if ( pVmcsInfo->pfnStartVM != VMXR0StartVM32
5956 && !pVmcsInfo->fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
5957 && pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
5958 {
5959# ifdef VBOX_STRICT
5960 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
5961 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
5962 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
5963 AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
5964 ("fCtxChanged=%#RX64\n", fCtxChanged));
5965# endif
5966 }
5967# ifdef VBOX_ENABLE_64_BITS_GUESTS
5968 /*
5969 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
5970 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
5971 * switcher flag now because we know the guest is in a sane state where it's safe
5972 * to use the 32-bit switcher. Otherwise, check the guest state if it's safe to use
5973 * the much faster 32-bit switcher again.
5974 */
5975 if (!pVmcsInfo->fSwitchedTo64on32)
5976 {
5977 if (pVmcsInfo->pfnStartVM != VMXR0StartVM32)
5978 Log4Func(("Selected 32-bit switcher\n"));
5979 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5980 }
5981 else
5982 {
5983 Assert(pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64);
5984 if ( pVmcsInfo->RealMode.fRealOnV86Active
5985 || hmR0VmxIs32BitSwitcherSafe(pCtx))
5986 {
5987 pVmcsInfo->fSwitchedTo64on32 = false;
5988 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5989 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
5990 | HM_CHANGED_VMX_ENTRY_EXIT_CTLS
5991 | HM_CHANGED_HOST_CONTEXT);
5992 Log4Func(("Selected 32-bit switcher (safe)\n"));
5993 }
5994 }
5995# else
5996 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5997# endif
5998#else
5999 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
6000#endif
6001 }
6002 Assert(pVmcsInfo->pfnStartVM);
6003 return VINF_SUCCESS;
6004}
6005
6006
6007/**
6008 * Wrapper for running the guest code in VT-x.
6009 *
6010 * @returns VBox status code, no informational status codes.
6011 * @param pVCpu The cross context virtual CPU structure.
6012 * @param pVmxTransient The VMX-transient structure.
6013 *
6014 * @remarks No-long-jump zone!!!
6015 */
6016DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6017{
6018 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
6019 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6020 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
6021
6022 /** @todo Add stats for VMRESUME vs VMLAUNCH. */
6023
6024 /*
6025 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
6026 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
6027 * callee-saved and thus the need for this XMM wrapper.
6028 *
6029 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
6030 */
6031 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6032 bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
6033 PVM pVM = pVCpu->CTX_SUFF(pVM);
6034#ifdef VBOX_WITH_KERNEL_USING_XMM
6035 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu, pVmcsInfo->pfnStartVM);
6036#else
6037 int rc = pVmcsInfo->pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu);
6038#endif
6039 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
6040 return rc;
6041}
6042
6043
6044/**
6045 * Reports world-switch error and dumps some useful debug info.
6046 *
6047 * @param pVCpu The cross context virtual CPU structure.
6048 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
6049 * @param pVmxTransient The VMX-transient structure (only
6050 * exitReason updated).
6051 */
6052static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
6053{
6054 Assert(pVCpu);
6055 Assert(pVmxTransient);
6056 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
6057
6058 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
6059 switch (rcVMRun)
6060 {
6061 case VERR_VMX_INVALID_VMXON_PTR:
6062 AssertFailed();
6063 break;
6064 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
6065 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
6066 {
6067 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
6068 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
6069 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
6070 AssertRC(rc);
6071
6072 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6073 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
6074 Cannot do it here as we may have been long preempted. */
6075
6076#ifdef VBOX_STRICT
6077 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6078 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
6079 pVmxTransient->uExitReason));
6080 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
6081 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
6082 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
6083 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
6084 else
6085 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
6086 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
6087 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
6088
6089 /* VMX control bits. */
6090 uint32_t u32Val;
6091 uint64_t u64Val;
6092 RTHCUINTREG uHCReg;
6093 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
6094 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
6095 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
6096 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
6097 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6098 {
6099 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
6100 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
6101 }
6102 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
6103 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
6104 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
6105 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
6106 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
6107 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
6108 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
6109 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
6110 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
6111 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
6112 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
6113 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
6114 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
6115 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
6116 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
6117 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
6118 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
6119 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
6120 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
6121 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
6122 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
6123 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
6124 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
6125 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
6126 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
6127 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
6128 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
6129 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
6130 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
6131 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
6132 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
6133 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
6134 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
6135 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
6136 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
6137 {
6138 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
6139 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
6140 }
6141
6142 /* Guest bits. */
6143 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
6144 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
6145 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
6146 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
6147 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
6148 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
6149 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
6150 {
6151 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
6152 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
6153 }
6154
6155 /* Host bits. */
6156 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
6157 Log4(("Host CR0 %#RHr\n", uHCReg));
6158 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
6159 Log4(("Host CR3 %#RHr\n", uHCReg));
6160 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
6161 Log4(("Host CR4 %#RHr\n", uHCReg));
6162
6163 RTGDTR HostGdtr;
6164 PCX86DESCHC pDesc;
6165 ASMGetGDTR(&HostGdtr);
6166 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
6167 Log4(("Host CS %#08x\n", u32Val));
6168 if (u32Val < HostGdtr.cbGdt)
6169 {
6170 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6171 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
6172 }
6173
6174 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
6175 Log4(("Host DS %#08x\n", u32Val));
6176 if (u32Val < HostGdtr.cbGdt)
6177 {
6178 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6179 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
6180 }
6181
6182 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
6183 Log4(("Host ES %#08x\n", u32Val));
6184 if (u32Val < HostGdtr.cbGdt)
6185 {
6186 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6187 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
6188 }
6189
6190 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
6191 Log4(("Host FS %#08x\n", u32Val));
6192 if (u32Val < HostGdtr.cbGdt)
6193 {
6194 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6195 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
6196 }
6197
6198 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
6199 Log4(("Host GS %#08x\n", u32Val));
6200 if (u32Val < HostGdtr.cbGdt)
6201 {
6202 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6203 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
6204 }
6205
6206 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
6207 Log4(("Host SS %#08x\n", u32Val));
6208 if (u32Val < HostGdtr.cbGdt)
6209 {
6210 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6211 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
6212 }
6213
6214 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
6215 Log4(("Host TR %#08x\n", u32Val));
6216 if (u32Val < HostGdtr.cbGdt)
6217 {
6218 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6219 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
6220 }
6221
6222 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
6223 Log4(("Host TR Base %#RHv\n", uHCReg));
6224 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
6225 Log4(("Host GDTR Base %#RHv\n", uHCReg));
6226 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
6227 Log4(("Host IDTR Base %#RHv\n", uHCReg));
6228 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
6229 Log4(("Host SYSENTER CS %#08x\n", u32Val));
6230 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
6231 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
6232 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
6233 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
6234 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
6235 Log4(("Host RSP %#RHv\n", uHCReg));
6236 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
6237 Log4(("Host RIP %#RHv\n", uHCReg));
6238# if HC_ARCH_BITS == 64
6239 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
6240 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
6241 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
6242 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
6243 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
6244 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
6245# endif
6246#endif /* VBOX_STRICT */
6247 break;
6248 }
6249
6250 default:
6251 /* Impossible */
6252 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
6253 break;
6254 }
6255}
6256
6257
6258#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
6259# ifndef VMX_USE_CACHED_VMCS_ACCESSES
6260# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
6261# endif
6262
6263/**
6264 * Initialize the VMCS-Read cache.
6265 *
6266 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
6267 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
6268 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
6269 * (those that have a 32-bit FULL & HIGH part).
6270 *
6271 * @param pVCpu The cross context virtual CPU structure.
6272 */
6273static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
6274{
6275#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
6276 do { \
6277 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
6278 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
6279 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
6280 ++cReadFields; \
6281 } while (0)
6282
6283 PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
6284 uint32_t cReadFields = 0;
6285
6286 /*
6287 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
6288 * and serve to indicate exceptions to the rules.
6289 */
6290
6291 /* Guest-natural selector base fields. */
6292#if 0
6293 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
6294 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
6295 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
6296#endif
6297 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
6298 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
6299 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
6300 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
6301 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
6302 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
6303 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
6304 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
6305 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
6306 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
6307 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
6308 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
6309#if 0
6310 /* Unused natural width guest-state fields. */
6311 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS);
6312 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in nested paging case */
6313#endif
6314 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
6315 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
6316
6317 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
6318 these 64-bit fields (using "FULL" and "HIGH" fields). */
6319#if 0
6320 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
6321 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
6322 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
6323 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
6324 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
6325 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
6326 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
6327 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
6328 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
6329#endif
6330
6331 /* Natural width guest-state fields. */
6332 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
6333 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_GUEST_LINEAR_ADDR);
6334
6335 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
6336 {
6337 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
6338 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
6339 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
6340 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
6341 }
6342 else
6343 {
6344 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
6345 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
6346 }
6347
6348#undef VMXLOCAL_INIT_READ_CACHE_FIELD
6349}
6350
6351
6352/**
6353 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
6354 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
6355 * darwin, running 64-bit guests).
6356 *
6357 * @returns VBox status code.
6358 * @param pVCpu The cross context virtual CPU structure.
6359 * @param idxField The VMCS field encoding.
6360 * @param u64Val 16, 32 or 64-bit value.
6361 */
6362VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
6363{
6364 int rc;
6365 switch (idxField)
6366 {
6367 /*
6368 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
6369 */
6370 /* 64-bit Control fields. */
6371 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
6372 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
6373 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
6374 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
6375 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
6376 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
6377 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
6378 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
6379 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
6380 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
6381 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
6382 case VMX_VMCS64_CTRL_EPTP_FULL:
6383 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
6384 /* 64-bit Guest-state fields. */
6385 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
6386 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
6387 case VMX_VMCS64_GUEST_PAT_FULL:
6388 case VMX_VMCS64_GUEST_EFER_FULL:
6389 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
6390 case VMX_VMCS64_GUEST_PDPTE0_FULL:
6391 case VMX_VMCS64_GUEST_PDPTE1_FULL:
6392 case VMX_VMCS64_GUEST_PDPTE2_FULL:
6393 case VMX_VMCS64_GUEST_PDPTE3_FULL:
6394 /* 64-bit Host-state fields. */
6395 case VMX_VMCS64_HOST_PAT_FULL:
6396 case VMX_VMCS64_HOST_EFER_FULL:
6397 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
6398 {
6399 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
6400 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
6401 break;
6402 }
6403
6404 /*
6405 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
6406 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
6407 */
6408 /* Natural-width Guest-state fields. */
6409 case VMX_VMCS_GUEST_CR3:
6410 case VMX_VMCS_GUEST_ES_BASE:
6411 case VMX_VMCS_GUEST_CS_BASE:
6412 case VMX_VMCS_GUEST_SS_BASE:
6413 case VMX_VMCS_GUEST_DS_BASE:
6414 case VMX_VMCS_GUEST_FS_BASE:
6415 case VMX_VMCS_GUEST_GS_BASE:
6416 case VMX_VMCS_GUEST_LDTR_BASE:
6417 case VMX_VMCS_GUEST_TR_BASE:
6418 case VMX_VMCS_GUEST_GDTR_BASE:
6419 case VMX_VMCS_GUEST_IDTR_BASE:
6420 case VMX_VMCS_GUEST_RSP:
6421 case VMX_VMCS_GUEST_RIP:
6422 case VMX_VMCS_GUEST_SYSENTER_ESP:
6423 case VMX_VMCS_GUEST_SYSENTER_EIP:
6424 {
6425 if (!(RT_HI_U32(u64Val)))
6426 {
6427 /* If this field is 64-bit, VT-x will zero out the top bits. */
6428 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
6429 }
6430 else
6431 {
6432 /* Assert that only the 32->64 switcher case should ever come here. */
6433 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
6434 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
6435 }
6436 break;
6437 }
6438
6439 default:
6440 {
6441 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
6442 rc = VERR_INVALID_PARAMETER;
6443 break;
6444 }
6445 }
6446 AssertRCReturn(rc, rc);
6447 return rc;
6448}
6449
6450
6451/**
6452 * Queue up a VMWRITE by using the VMCS write cache.
6453 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
6454 *
6455 * @param pVCpu The cross context virtual CPU structure.
6456 * @param idxField The VMCS field encoding.
6457 * @param u64Val 16, 32 or 64-bit value.
6458 */
6459VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
6460{
6461 AssertPtr(pVCpu);
6462 PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
6463
6464 AssertMsgReturn(pCache->Write.cValidEntries < VMX_VMCS_CACHE_MAX_ENTRY - 1,
6465 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
6466
6467 /* Make sure there are no duplicates. */
6468 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
6469 {
6470 if (pCache->Write.aField[i] == idxField)
6471 {
6472 pCache->Write.aFieldVal[i] = u64Val;
6473 return VINF_SUCCESS;
6474 }
6475 }
6476
6477 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
6478 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
6479 pCache->Write.cValidEntries++;
6480 return VINF_SUCCESS;
6481}
6482#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
6483
6484
6485/**
6486 * Sets up the usage of TSC-offsetting and updates the VMCS.
6487 *
6488 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
6489 * VMX-preemption timer.
6490 *
6491 * @returns VBox status code.
6492 * @param pVCpu The cross context virtual CPU structure.
6493 * @param pVmxTransient The VMX-transient structure.
6494 *
6495 * @remarks No-long-jump zone!!!
6496 */
6497static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6498{
6499 bool fOffsettedTsc;
6500 bool fParavirtTsc;
6501 uint64_t uTscOffset;
6502 PVM pVM = pVCpu->CTX_SUFF(pVM);
6503 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);;
6504
6505 if (pVM->hm.s.vmx.fUsePreemptTimer)
6506 {
6507 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
6508
6509 /* Make sure the returned values have sane upper and lower boundaries. */
6510 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
6511 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
6512 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
6513 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
6514
6515 /** @todo r=ramshankar: We need to find a way to integrate nested-guest
6516 * preemption timers here. We probably need to clamp the preemption timer,
6517 * after converting the timer value to the host. */
6518 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
6519 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
6520 AssertRC(rc);
6521 }
6522 else
6523 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
6524
6525 if (fParavirtTsc)
6526 {
6527 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
6528 information before every VM-entry, hence disable it for performance sake. */
6529#if 0
6530 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
6531 AssertRC(rc);
6532#endif
6533 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
6534 }
6535
6536 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
6537 if ( fOffsettedTsc
6538 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
6539 {
6540 if (pVmxTransient->fIsNestedGuest)
6541 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
6542 if (pVmcsInfo->u64TscOffset != uTscOffset)
6543 {
6544 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
6545 AssertRC(rc);
6546 pVmcsInfo->u64TscOffset = uTscOffset;
6547 }
6548
6549 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
6550 {
6551 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
6552 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6553 AssertRC(rc);
6554 pVmcsInfo->u32ProcCtls = uProcCtls;
6555 }
6556 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
6557 }
6558 else
6559 {
6560 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
6561 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
6562 {
6563 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
6564 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6565 AssertRC(rc);
6566 pVmcsInfo->u32ProcCtls = uProcCtls;
6567 }
6568 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
6569 }
6570}
6571
6572
6573/**
6574 * Gets the IEM exception flags for the specified vector and IDT vectoring /
6575 * VM-exit interruption info type.
6576 *
6577 * @returns The IEM exception flags.
6578 * @param uVector The event vector.
6579 * @param uVmxEventType The VMX event type.
6580 *
6581 * @remarks This function currently only constructs flags required for
6582 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
6583 * and CR2 aspects of an exception are not included).
6584 */
6585static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
6586{
6587 uint32_t fIemXcptFlags;
6588 switch (uVmxEventType)
6589 {
6590 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
6591 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
6592 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
6593 break;
6594
6595 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
6596 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
6597 break;
6598
6599 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
6600 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
6601 break;
6602
6603 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
6604 {
6605 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
6606 if (uVector == X86_XCPT_BP)
6607 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
6608 else if (uVector == X86_XCPT_OF)
6609 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
6610 else
6611 {
6612 fIemXcptFlags = 0;
6613 AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
6614 }
6615 break;
6616 }
6617
6618 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
6619 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
6620 break;
6621
6622 default:
6623 fIemXcptFlags = 0;
6624 AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
6625 break;
6626 }
6627 return fIemXcptFlags;
6628}
6629
6630
6631/**
6632 * Sets an event as a pending event to be injected into the guest.
6633 *
6634 * @param pVCpu The cross context virtual CPU structure.
6635 * @param u32IntInfo The VM-entry interruption-information field.
6636 * @param cbInstr The VM-entry instruction length in bytes (for software
6637 * interrupts, exceptions and privileged software
6638 * exceptions).
6639 * @param u32ErrCode The VM-entry exception error code.
6640 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
6641 * page-fault.
6642 */
6643DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
6644 RTGCUINTPTR GCPtrFaultAddress)
6645{
6646 Assert(!pVCpu->hm.s.Event.fPending);
6647 pVCpu->hm.s.Event.fPending = true;
6648 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
6649 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
6650 pVCpu->hm.s.Event.cbInstr = cbInstr;
6651 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
6652}
6653
6654
6655/**
6656 * Sets an external interrupt as pending-for-injection into the VM.
6657 *
6658 * @param pVCpu The cross context virtual CPU structure.
6659 * @param u8Interrupt The external interrupt vector.
6660 */
6661DECLINLINE(void) hmR0VmxSetPendingExtInt(PVMCPU pVCpu, uint8_t u8Interrupt)
6662{
6663 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
6664 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
6665 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6666 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6667 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6668}
6669
6670
6671/**
6672 * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
6673 *
6674 * @param pVCpu The cross context virtual CPU structure.
6675 */
6676DECLINLINE(void) hmR0VmxSetPendingXcptNmi(PVMCPU pVCpu)
6677{
6678 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
6679 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
6680 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6681 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6682 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6683}
6684
6685
6686/**
6687 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
6688 *
6689 * @param pVCpu The cross context virtual CPU structure.
6690 */
6691DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
6692{
6693 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
6694 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6695 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6696 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6697 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6698}
6699
6700
6701/**
6702 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
6703 *
6704 * @param pVCpu The cross context virtual CPU structure.
6705 */
6706DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
6707{
6708 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
6709 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6710 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6711 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6712 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6713}
6714
6715
6716/**
6717 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
6718 *
6719 * @param pVCpu The cross context virtual CPU structure.
6720 */
6721DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
6722{
6723 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
6724 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6725 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6726 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6727 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6728}
6729
6730
6731#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6732/**
6733 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
6734 *
6735 * @param pVCpu The cross context virtual CPU structure.
6736 * @param u32ErrCode The error code for the general-protection exception.
6737 */
6738DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
6739{
6740 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
6741 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6742 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6743 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6744 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
6745}
6746
6747
6748/**
6749 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
6750 *
6751 * @param pVCpu The cross context virtual CPU structure.
6752 * @param u32ErrCode The error code for the stack exception.
6753 */
6754DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
6755{
6756 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
6757 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6758 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6759 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6760 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
6761}
6762
6763
6764/**
6765 * Decodes the memory operand of an instruction that caused a VM-exit.
6766 *
6767 * The VM-exit qualification field provides the displacement field for memory
6768 * operand instructions, if any.
6769 *
6770 * @returns Strict VBox status code (i.e. informational status codes too).
6771 * @retval VINF_SUCCESS if the operand was successfully decoded.
6772 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
6773 * operand.
6774 * @param pVCpu The cross context virtual CPU structure.
6775 * @param uExitInstrInfo The VM-exit instruction information field.
6776 * @param enmMemAccess The memory operand's access type (read or write).
6777 * @param GCPtrDisp The instruction displacement field, if any. For
6778 * RIP-relative addressing pass RIP + displacement here.
6779 * @param pGCPtrMem Where to store the effective destination memory address.
6780 */
6781static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
6782 PRTGCPTR pGCPtrMem)
6783{
6784 Assert(pGCPtrMem);
6785 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
6786 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
6787 | CPUMCTX_EXTRN_CR0);
6788
6789 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
6790 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
6791 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
6792
6793 VMXEXITINSTRINFO ExitInstrInfo;
6794 ExitInstrInfo.u = uExitInstrInfo;
6795 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
6796 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
6797 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
6798 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
6799 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
6800 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
6801 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
6802 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
6803 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
6804
6805 /*
6806 * Validate instruction information.
6807 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
6808 */
6809 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
6810 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
6811 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
6812 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
6813 AssertLogRelMsgReturn(fIsMemOperand,
6814 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
6815
6816 /*
6817 * Compute the complete effective address.
6818 *
6819 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
6820 * See AMD spec. 4.5.2 "Segment Registers".
6821 */
6822 RTGCPTR GCPtrMem = GCPtrDisp;
6823 if (fBaseRegValid)
6824 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
6825 if (fIdxRegValid)
6826 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
6827
6828 RTGCPTR const GCPtrOff = GCPtrMem;
6829 if ( !fIsLongMode
6830 || iSegReg >= X86_SREG_FS)
6831 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
6832 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
6833
6834 /*
6835 * Validate effective address.
6836 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
6837 */
6838 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
6839 Assert(cbAccess > 0);
6840 if (fIsLongMode)
6841 {
6842 if (X86_IS_CANONICAL(GCPtrMem))
6843 {
6844 *pGCPtrMem = GCPtrMem;
6845 return VINF_SUCCESS;
6846 }
6847
6848 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
6849 * "Data Limit Checks in 64-bit Mode". */
6850 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
6851 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6852 return VINF_HM_PENDING_XCPT;
6853 }
6854
6855 /*
6856 * This is a watered down version of iemMemApplySegment().
6857 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
6858 * and segment CPL/DPL checks are skipped.
6859 */
6860 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
6861 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
6862 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6863
6864 /* Check if the segment is present and usable. */
6865 if ( pSel->Attr.n.u1Present
6866 && !pSel->Attr.n.u1Unusable)
6867 {
6868 Assert(pSel->Attr.n.u1DescType);
6869 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
6870 {
6871 /* Check permissions for the data segment. */
6872 if ( enmMemAccess == VMXMEMACCESS_WRITE
6873 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
6874 {
6875 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6876 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
6877 return VINF_HM_PENDING_XCPT;
6878 }
6879
6880 /* Check limits if it's a normal data segment. */
6881 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
6882 {
6883 if ( GCPtrFirst32 > pSel->u32Limit
6884 || GCPtrLast32 > pSel->u32Limit)
6885 {
6886 Log4Func(("Data segment limit exceeded."
6887 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6888 GCPtrLast32, pSel->u32Limit));
6889 if (iSegReg == X86_SREG_SS)
6890 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6891 else
6892 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6893 return VINF_HM_PENDING_XCPT;
6894 }
6895 }
6896 else
6897 {
6898 /* Check limits if it's an expand-down data segment.
6899 Note! The upper boundary is defined by the B bit, not the G bit! */
6900 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
6901 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
6902 {
6903 Log4Func(("Expand-down data segment limit exceeded."
6904 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6905 GCPtrLast32, pSel->u32Limit));
6906 if (iSegReg == X86_SREG_SS)
6907 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6908 else
6909 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6910 return VINF_HM_PENDING_XCPT;
6911 }
6912 }
6913 }
6914 else
6915 {
6916 /* Check permissions for the code segment. */
6917 if ( enmMemAccess == VMXMEMACCESS_WRITE
6918 || ( enmMemAccess == VMXMEMACCESS_READ
6919 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
6920 {
6921 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6922 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6923 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6924 return VINF_HM_PENDING_XCPT;
6925 }
6926
6927 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6928 if ( GCPtrFirst32 > pSel->u32Limit
6929 || GCPtrLast32 > pSel->u32Limit)
6930 {
6931 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6932 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6933 if (iSegReg == X86_SREG_SS)
6934 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6935 else
6936 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6937 return VINF_HM_PENDING_XCPT;
6938 }
6939 }
6940 }
6941 else
6942 {
6943 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6944 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6945 return VINF_HM_PENDING_XCPT;
6946 }
6947
6948 *pGCPtrMem = GCPtrMem;
6949 return VINF_SUCCESS;
6950}
6951
6952
6953/**
6954 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6955 * guest attempting to execute a VMX instruction.
6956 *
6957 * @returns Strict VBox status code (i.e. informational status codes too).
6958 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6959 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6960 *
6961 * @param pVCpu The cross context virtual CPU structure.
6962 * @param uExitReason The VM-exit reason.
6963 *
6964 * @todo NSTVMX: Document other error codes when VM-exit is implemented.
6965 * @remarks No-long-jump zone!!!
6966 */
6967static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
6968{
6969 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6970 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
6971
6972 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6973 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6974 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6975 {
6976 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6977 hmR0VmxSetPendingXcptUD(pVCpu);
6978 return VINF_HM_PENDING_XCPT;
6979 }
6980
6981 if (uExitReason == VMX_EXIT_VMXON)
6982 {
6983 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6984
6985 /*
6986 * We check CR4.VMXE because it is required to be always set while in VMX operation
6987 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6988 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6989 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6990 */
6991 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6992 {
6993 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6994 hmR0VmxSetPendingXcptUD(pVCpu);
6995 return VINF_HM_PENDING_XCPT;
6996 }
6997 }
6998 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6999 {
7000 /*
7001 * The guest has not entered VMX operation but attempted to execute a VMX instruction
7002 * (other than VMXON), we need to raise a #UD.
7003 */
7004 Log4Func(("Not in VMX root mode -> #UD\n"));
7005 hmR0VmxSetPendingXcptUD(pVCpu);
7006 return VINF_HM_PENDING_XCPT;
7007 }
7008
7009 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
7010 {
7011 /*
7012 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
7013 * the guest hypervisor deal with it.
7014 */
7015 /** @todo NSTVMX: Trigger a VM-exit */
7016 }
7017
7018 /*
7019 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
7020 * (above) takes preceedence over the CPL check.
7021 */
7022 if (CPUMGetGuestCPL(pVCpu) > 0)
7023 {
7024 Log4Func(("CPL > 0 -> #GP(0)\n"));
7025 hmR0VmxSetPendingXcptGP(pVCpu, 0);
7026 return VINF_HM_PENDING_XCPT;
7027 }
7028
7029 return VINF_SUCCESS;
7030}
7031#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
7032
7033
7034static void hmR0VmxFixUnusableSegRegAttr(PVMCPU pVCpu, PCPUMSELREG pSelReg, uint32_t idxSel)
7035{
7036 Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
7037
7038 /*
7039 * If VT-x marks the segment as unusable, most other bits remain undefined:
7040 * - For CS the L, D and G bits have meaning.
7041 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
7042 * - For the remaining data segments no bits are defined.
7043 *
7044 * The present bit and the unusable bit has been observed to be set at the
7045 * same time (the selector was supposed to be invalid as we started executing
7046 * a V8086 interrupt in ring-0).
7047 *
7048 * What should be important for the rest of the VBox code, is that the P bit is
7049 * cleared. Some of the other VBox code recognizes the unusable bit, but
7050 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
7051 * safe side here, we'll strip off P and other bits we don't care about. If
7052 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
7053 *
7054 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
7055 */
7056#ifdef VBOX_STRICT
7057 uint32_t const uAttr = pSelReg->Attr.u;
7058#endif
7059
7060 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
7061 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
7062 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
7063
7064#ifdef VBOX_STRICT
7065 VMMRZCallRing3Disable(pVCpu);
7066 Log4Func(("Unusable %#x: sel=%#x attr=%#x -> %#x\n", idxSel, pSelReg->Sel, uAttr, pSelReg->Attr.u));
7067# ifdef DEBUG_bird
7068 AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
7069 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
7070 idxSel, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
7071# endif
7072 VMMRZCallRing3Enable(pVCpu);
7073#endif
7074 RT_NOREF2(pVCpu, idxSel);
7075}
7076
7077
7078/**
7079 * Imports a guest segment register from the current VMCS into the guest-CPU
7080 * context.
7081 *
7082 * @returns VBox status code.
7083 * @param pVCpu The cross context virtual CPU structure.
7084 * @param iSegReg The segment register number (X86_SREG_XXX).
7085 *
7086 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7087 * do not log!
7088 */
7089static int hmR0VmxImportGuestSegReg(PVMCPU pVCpu, uint8_t iSegReg)
7090{
7091 Assert(iSegReg < X86_SREG_COUNT);
7092
7093 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
7094 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
7095 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
7096#ifdef VMX_USE_CACHED_VMCS_ACCESSES
7097 uint32_t const idxBase = g_aVmcsCacheSegBase[iSegReg];
7098#else
7099 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
7100#endif
7101 uint64_t u64Base;
7102 uint32_t u32Sel, u32Limit, u32Attr;
7103 int rc = VMXReadVmcs32(idxSel, &u32Sel);
7104 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
7105 rc |= VMXReadVmcs32(idxAttr, &u32Attr);
7106 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
7107 if (RT_SUCCESS(rc))
7108 {
7109 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
7110 pSelReg->Sel = u32Sel;
7111 pSelReg->ValidSel = u32Sel;
7112 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
7113 pSelReg->u32Limit = u32Limit;
7114 pSelReg->u64Base = u64Base;
7115 pSelReg->Attr.u = u32Attr;
7116 if (u32Attr & X86DESCATTR_UNUSABLE)
7117 hmR0VmxFixUnusableSegRegAttr(pVCpu, pSelReg, idxSel);
7118 }
7119 return rc;
7120}
7121
7122
7123/**
7124 * Imports the guest LDTR from the current VMCS into the guest-CPU context.
7125 *
7126 * @returns VBox status code.
7127 * @param pVCpu The cross context virtual CPU structure.
7128 *
7129 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7130 * do not log!
7131 */
7132static int hmR0VmxImportGuestLdtr(PVMCPU pVCpu)
7133{
7134 uint64_t u64Base;
7135 uint32_t u32Sel, u32Limit, u32Attr;
7136 int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, &u32Sel);
7137 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit);
7138 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr);
7139 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, &u64Base);
7140
7141 if (RT_SUCCESS(rc))
7142 {
7143 pVCpu->cpum.GstCtx.ldtr.Sel = u32Sel;
7144 pVCpu->cpum.GstCtx.ldtr.ValidSel = u32Sel;
7145 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
7146 pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
7147 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
7148 pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
7149 if (u32Attr & X86DESCATTR_UNUSABLE)
7150 hmR0VmxFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, VMX_VMCS16_GUEST_LDTR_SEL);
7151 }
7152 return rc;
7153}
7154
7155
7156/**
7157 * Imports the guest TR from the current VMCS into the guest-CPU context.
7158 *
7159 * @returns VBox status code.
7160 * @param pVCpu The cross context virtual CPU structure.
7161 *
7162 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7163 * do not log!
7164 */
7165static int hmR0VmxImportGuestTr(PVMCPU pVCpu)
7166{
7167 uint32_t u32Sel, u32Limit, u32Attr;
7168 uint64_t u64Base;
7169 int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_TR_SEL, &u32Sel);
7170 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit);
7171 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr);
7172 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_TR_BASE, &u64Base);
7173 AssertRCReturn(rc, rc);
7174
7175 pVCpu->cpum.GstCtx.tr.Sel = u32Sel;
7176 pVCpu->cpum.GstCtx.tr.ValidSel = u32Sel;
7177 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
7178 pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
7179 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
7180 pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
7181 /* TR is the only selector that can never be unusable. */
7182 Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
7183 return VINF_SUCCESS;
7184}
7185
7186
7187/**
7188 * Imports the guest RIP from the VMCS back into the guest-CPU context.
7189 *
7190 * @returns VBox status code.
7191 * @param pVCpu The cross context virtual CPU structure.
7192 *
7193 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7194 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7195 * instead!!!
7196 */
7197static int hmR0VmxImportGuestRip(PVMCPU pVCpu)
7198{
7199 uint64_t u64Val;
7200 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7201 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
7202 {
7203 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
7204 if (RT_SUCCESS(rc))
7205 {
7206 pCtx->rip = u64Val;
7207 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
7208 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
7209 }
7210 return rc;
7211 }
7212 return VINF_SUCCESS;
7213}
7214
7215
7216/**
7217 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
7218 *
7219 * @returns VBox status code.
7220 * @param pVCpu The cross context virtual CPU structure.
7221 * @param pVmcsInfo The VMCS info. object.
7222 *
7223 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7224 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7225 * instead!!!
7226 */
7227static int hmR0VmxImportGuestRFlags(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
7228{
7229 uint32_t u32Val;
7230 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7231 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
7232 {
7233 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
7234 if (RT_SUCCESS(rc))
7235 {
7236 pCtx->eflags.u32 = u32Val;
7237
7238 /* Restore eflags for real-on-v86-mode hack. */
7239 if (pVmcsInfo->RealMode.fRealOnV86Active)
7240 {
7241 pCtx->eflags.Bits.u1VM = 0;
7242 pCtx->eflags.Bits.u2IOPL = pVmcsInfo->RealMode.Eflags.Bits.u2IOPL;
7243 }
7244 }
7245 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
7246 return rc;
7247 }
7248 return VINF_SUCCESS;
7249}
7250
7251
7252/**
7253 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
7254 * context.
7255 *
7256 * @returns VBox status code.
7257 * @param pVCpu The cross context virtual CPU structure.
7258 * @param pVmcsInfo The VMCS info. object.
7259 *
7260 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7261 * do not log!
7262 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7263 * instead!!!
7264 */
7265static int hmR0VmxImportGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
7266{
7267 uint32_t u32Val;
7268 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
7269 if (RT_SUCCESS(rc))
7270 {
7271 if (!u32Val)
7272 {
7273 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7274 {
7275 rc = hmR0VmxImportGuestRip(pVCpu);
7276 rc |= hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7277 AssertRCReturn(rc, rc);
7278 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7279 }
7280
7281 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7282 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7283 }
7284 else
7285 {
7286 /*
7287 * We must import RIP here to set our EM interrupt-inhibited state.
7288 * We also import RFLAGS as our code that evaluates pending interrupts
7289 * before VM-entry requires it.
7290 */
7291 rc = hmR0VmxImportGuestRip(pVCpu);
7292 rc |= hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7293 if (RT_SUCCESS(rc))
7294 {
7295 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
7296 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
7297 {
7298 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7299 }
7300 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7301 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7302
7303 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
7304 {
7305 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7306 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
7307 }
7308 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7309 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7310 }
7311 }
7312 }
7313 return rc;
7314}
7315
7316
7317/**
7318 * Worker for VMXR0ImportStateOnDemand.
7319 *
7320 * @returns VBox status code.
7321 * @param pVCpu The cross context virtual CPU structure.
7322 * @param pVmcsInfo The VMCS info. object.
7323 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7324 */
7325static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
7326{
7327#define VMXLOCAL_BREAK_RC(a_rc) \
7328 if (RT_SUCCESS(a_rc)) \
7329 { } \
7330 else \
7331 break
7332
7333 int rc = VINF_SUCCESS;
7334 PVM pVM = pVCpu->CTX_SUFF(pVM);
7335 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7336 uint64_t u64Val;
7337 uint32_t u32Val;
7338
7339 STAM_PROFILE_ADV_START(& pVCpu->hm.s.StatImportGuestState, x);
7340
7341 /*
7342 * We disable interrupts to make the updating of the state and in particular
7343 * the fExtrn modification atomic wrt to preemption hooks.
7344 */
7345 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
7346
7347 fWhat &= pCtx->fExtrn;
7348 if (fWhat)
7349 {
7350 do
7351 {
7352 if (fWhat & CPUMCTX_EXTRN_RIP)
7353 {
7354 rc = hmR0VmxImportGuestRip(pVCpu);
7355 VMXLOCAL_BREAK_RC(rc);
7356 }
7357
7358 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
7359 {
7360 rc = hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7361 VMXLOCAL_BREAK_RC(rc);
7362 }
7363
7364 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
7365 {
7366 rc = hmR0VmxImportGuestIntrState(pVCpu, pVmcsInfo);
7367 VMXLOCAL_BREAK_RC(rc);
7368 }
7369
7370 if (fWhat & CPUMCTX_EXTRN_RSP)
7371 {
7372 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
7373 VMXLOCAL_BREAK_RC(rc);
7374 pCtx->rsp = u64Val;
7375 }
7376
7377 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
7378 {
7379 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
7380 if (fWhat & CPUMCTX_EXTRN_CS)
7381 {
7382 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_CS);
7383 rc |= hmR0VmxImportGuestRip(pVCpu);
7384 if (fRealOnV86Active)
7385 pCtx->cs.Attr.u = pVmcsInfo->RealMode.AttrCS.u;
7386 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
7387 }
7388 if (fWhat & CPUMCTX_EXTRN_SS)
7389 {
7390 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_SS);
7391 if (fRealOnV86Active)
7392 pCtx->ss.Attr.u = pVmcsInfo->RealMode.AttrSS.u;
7393 }
7394 if (fWhat & CPUMCTX_EXTRN_DS)
7395 {
7396 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_DS);
7397 if (fRealOnV86Active)
7398 pCtx->ds.Attr.u = pVmcsInfo->RealMode.AttrDS.u;
7399 }
7400 if (fWhat & CPUMCTX_EXTRN_ES)
7401 {
7402 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_ES);
7403 if (fRealOnV86Active)
7404 pCtx->es.Attr.u = pVmcsInfo->RealMode.AttrES.u;
7405 }
7406 if (fWhat & CPUMCTX_EXTRN_FS)
7407 {
7408 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_FS);
7409 if (fRealOnV86Active)
7410 pCtx->fs.Attr.u = pVmcsInfo->RealMode.AttrFS.u;
7411 }
7412 if (fWhat & CPUMCTX_EXTRN_GS)
7413 {
7414 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_GS);
7415 if (fRealOnV86Active)
7416 pCtx->gs.Attr.u = pVmcsInfo->RealMode.AttrGS.u;
7417 }
7418 VMXLOCAL_BREAK_RC(rc);
7419 }
7420
7421 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
7422 {
7423 if (fWhat & CPUMCTX_EXTRN_LDTR)
7424 rc |= hmR0VmxImportGuestLdtr(pVCpu);
7425
7426 if (fWhat & CPUMCTX_EXTRN_GDTR)
7427 {
7428 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
7429 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
7430 pCtx->gdtr.pGdt = u64Val;
7431 pCtx->gdtr.cbGdt = u32Val;
7432 }
7433
7434 /* Guest IDTR. */
7435 if (fWhat & CPUMCTX_EXTRN_IDTR)
7436 {
7437 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
7438 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
7439 pCtx->idtr.pIdt = u64Val;
7440 pCtx->idtr.cbIdt = u32Val;
7441 }
7442
7443 /* Guest TR. */
7444 if (fWhat & CPUMCTX_EXTRN_TR)
7445 {
7446 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
7447 don't need to import that one. */
7448 if (!pVmcsInfo->RealMode.fRealOnV86Active)
7449 rc |= hmR0VmxImportGuestTr(pVCpu);
7450 }
7451 VMXLOCAL_BREAK_RC(rc);
7452 }
7453
7454 if (fWhat & CPUMCTX_EXTRN_DR7)
7455 {
7456 if (!pVCpu->hm.s.fUsingHyperDR7)
7457 {
7458 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
7459 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
7460 VMXLOCAL_BREAK_RC(rc);
7461 pCtx->dr[7] = u32Val;
7462 }
7463 }
7464
7465 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
7466 {
7467 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
7468 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
7469 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
7470 pCtx->SysEnter.cs = u32Val;
7471 VMXLOCAL_BREAK_RC(rc);
7472 }
7473
7474#if HC_ARCH_BITS == 64
7475 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
7476 {
7477 if ( pVM->hm.s.fAllow64BitGuests
7478 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7479 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
7480 }
7481
7482 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
7483 {
7484 if ( pVM->hm.s.fAllow64BitGuests
7485 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7486 {
7487 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
7488 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
7489 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
7490 }
7491 }
7492#endif
7493
7494 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
7495#if HC_ARCH_BITS == 32
7496 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
7497#endif
7498 )
7499 {
7500 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
7501 uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
7502 Assert(cMsrs == 0 || pMsr != NULL);
7503 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
7504 {
7505 switch (pMsr->u32Msr)
7506 {
7507#if HC_ARCH_BITS == 32
7508 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
7509 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
7510 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
7511 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
7512#endif
7513 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
7514 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
7515 case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
7516
7517 default:
7518 {
7519 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
7520 ASMSetFlags(fEFlags);
7521 AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
7522 cMsrs));
7523 return VERR_HM_UNEXPECTED_LD_ST_MSR;
7524 }
7525 }
7526 }
7527 }
7528
7529 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
7530 {
7531 uint64_t u64Shadow;
7532 if (fWhat & CPUMCTX_EXTRN_CR0)
7533 {
7534 /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
7535 * remove when we drop 32-bit host w/ 64-bit host support, see
7536 * @bugref{9180#c39}. */
7537 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
7538#if HC_ARCH_BITS == 32
7539 uint32_t u32Shadow;
7540 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
7541 u64Shadow = u32Shadow;
7542#else
7543 rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow);
7544#endif
7545 VMXLOCAL_BREAK_RC(rc);
7546 u64Val = u32Val;
7547 u64Val = (u64Val & ~pVmcsInfo->u64Cr0Mask)
7548 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7549 VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
7550 CPUMSetGuestCR0(pVCpu, u64Val);
7551 VMMRZCallRing3Enable(pVCpu);
7552 }
7553
7554 if (fWhat & CPUMCTX_EXTRN_CR4)
7555 {
7556 /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
7557 * remove when we drop 32-bit host w/ 64-bit host support, see
7558 * @bugref{9180#c39}. */
7559 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
7560#if HC_ARCH_BITS == 32
7561 uint32_t u32Shadow;
7562 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
7563 u64Shadow = u32Shadow;
7564#else
7565 rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow);
7566#endif
7567 VMXLOCAL_BREAK_RC(rc);
7568 u64Val = u32Val;
7569 u64Val = (u64Val & ~pVmcsInfo->u64Cr4Mask)
7570 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7571 pCtx->cr4 = u64Val;
7572 }
7573
7574 if (fWhat & CPUMCTX_EXTRN_CR3)
7575 {
7576 /* CR0.PG bit changes are always intercepted, so it's up to date. */
7577 if ( pVM->hm.s.vmx.fUnrestrictedGuest
7578 || ( pVM->hm.s.fNestedPaging
7579 && CPUMIsGuestPagingEnabledEx(pCtx)))
7580 {
7581 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
7582 if (pCtx->cr3 != u64Val)
7583 {
7584 pCtx->cr3 = u64Val;
7585 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
7586 }
7587
7588 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
7589 Note: CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. */
7590 if (CPUMIsGuestInPAEModeEx(pCtx))
7591 {
7592 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
7593 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
7594 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
7595 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
7596 VMXLOCAL_BREAK_RC(rc);
7597 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
7598 }
7599 }
7600 }
7601 }
7602 } while (0);
7603
7604 if (RT_SUCCESS(rc))
7605 {
7606 /* Update fExtrn. */
7607 pCtx->fExtrn &= ~fWhat;
7608
7609 /* If everything has been imported, clear the HM keeper bit. */
7610 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
7611 {
7612 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
7613 Assert(!pCtx->fExtrn);
7614 }
7615 }
7616 }
7617 else
7618 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
7619
7620 ASMSetFlags(fEFlags);
7621
7622 STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
7623
7624 if (RT_SUCCESS(rc))
7625 { /* likely */ }
7626 else
7627 return rc;
7628
7629 /*
7630 * Honor any pending CR3 updates.
7631 *
7632 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
7633 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
7634 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
7635 *
7636 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
7637 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
7638 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
7639 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
7640 *
7641 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
7642 */
7643 if (VMMRZCallRing3IsEnabled(pVCpu))
7644 {
7645 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7646 {
7647 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
7648 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
7649 }
7650
7651 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7652 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7653
7654 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7655 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7656 }
7657
7658 return VINF_SUCCESS;
7659#undef VMXLOCAL_BREAK_RC
7660}
7661
7662
7663/**
7664 * Saves the guest state from the VMCS into the guest-CPU context.
7665 *
7666 * @returns VBox status code.
7667 * @param pVCpu The cross context virtual CPU structure.
7668 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7669 */
7670VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
7671{
7672 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
7673 return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
7674}
7675
7676
7677/**
7678 * Check per-VM and per-VCPU force flag actions that require us to go back to
7679 * ring-3 for one reason or another.
7680 *
7681 * @returns Strict VBox status code (i.e. informational status codes too)
7682 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7683 * ring-3.
7684 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7685 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7686 * interrupts)
7687 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7688 * all EMTs to be in ring-3.
7689 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7690 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7691 * to the EM loop.
7692 *
7693 * @param pVCpu The cross context virtual CPU structure.
7694 * @param fStepping Whether we are single-stepping the guest using the
7695 * hypervisor debugger.
7696 */
7697static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
7698{
7699 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7700
7701 /*
7702 * Update pending interrupts into the APIC's IRR.
7703 */
7704 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7705 APICUpdatePendingInterrupts(pVCpu);
7706
7707 /*
7708 * Anything pending? Should be more likely than not if we're doing a good job.
7709 */
7710 PVM pVM = pVCpu->CTX_SUFF(pVM);
7711 if ( !fStepping
7712 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7713 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7714 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7715 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7716 return VINF_SUCCESS;
7717
7718 /* Pending PGM C3 sync. */
7719 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7720 {
7721 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7722 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
7723 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
7724 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7725 if (rcStrict2 != VINF_SUCCESS)
7726 {
7727 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
7728 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
7729 return rcStrict2;
7730 }
7731 }
7732
7733 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7734 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
7735 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7736 {
7737 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7738 int rc2 = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
7739 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
7740 return rc2;
7741 }
7742
7743 /* Pending VM request packets, such as hardware interrupts. */
7744 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
7745 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
7746 {
7747 Log4Func(("Pending VM request forcing us back to ring-3\n"));
7748 return VINF_EM_PENDING_REQUEST;
7749 }
7750
7751 /* Pending PGM pool flushes. */
7752 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7753 {
7754 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
7755 return VINF_PGM_POOL_FLUSH_PENDING;
7756 }
7757
7758 /* Pending DMA requests. */
7759 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
7760 {
7761 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
7762 return VINF_EM_RAW_TO_R3;
7763 }
7764
7765 return VINF_SUCCESS;
7766}
7767
7768
7769/**
7770 * Converts any TRPM trap into a pending HM event. This is typically used when
7771 * entering from ring-3 (not longjmp returns).
7772 *
7773 * @param pVCpu The cross context virtual CPU structure.
7774 */
7775static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
7776{
7777 Assert(TRPMHasTrap(pVCpu));
7778 Assert(!pVCpu->hm.s.Event.fPending);
7779
7780 uint8_t uVector;
7781 TRPMEVENT enmTrpmEvent;
7782 RTGCUINT uErrCode;
7783 RTGCUINTPTR GCPtrFaultAddress;
7784 uint8_t cbInstr;
7785
7786 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7787 AssertRC(rc);
7788
7789 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7790 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
7791 if (enmTrpmEvent == TRPM_TRAP)
7792 {
7793 /** @todo r=ramshankar: TRPM currently offers no way to determine a \#DB that was
7794 * generated using INT1 (ICEBP). */
7795 switch (uVector)
7796 {
7797 case X86_XCPT_NMI:
7798 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7799 break;
7800
7801 case X86_XCPT_BP:
7802 case X86_XCPT_OF:
7803 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7804 break;
7805
7806 case X86_XCPT_PF:
7807 case X86_XCPT_DF:
7808 case X86_XCPT_TS:
7809 case X86_XCPT_NP:
7810 case X86_XCPT_SS:
7811 case X86_XCPT_GP:
7812 case X86_XCPT_AC:
7813 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7814 RT_FALL_THRU();
7815 default:
7816 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7817 break;
7818 }
7819 }
7820 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7821 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7822 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7823 {
7824 switch (uVector)
7825 {
7826 case X86_XCPT_BP:
7827 case X86_XCPT_OF:
7828 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7829 break;
7830
7831 default:
7832 Assert(uVector == X86_XCPT_DB);
7833 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7834 break;
7835 }
7836 }
7837 else
7838 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7839
7840 rc = TRPMResetTrap(pVCpu);
7841 AssertRC(rc);
7842 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7843 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7844
7845 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7846}
7847
7848
7849/**
7850 * Converts the pending HM event into a TRPM trap.
7851 *
7852 * @param pVCpu The cross context virtual CPU structure.
7853 */
7854static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7855{
7856 Assert(pVCpu->hm.s.Event.fPending);
7857
7858 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7859 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7860 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7861 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7862
7863 /* If a trap was already pending, we did something wrong! */
7864 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7865
7866 /** @todo Use HMVmxEventToTrpmEventType() later. */
7867 TRPMEVENT enmTrapType;
7868 switch (uVectorType)
7869 {
7870 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7871 enmTrapType = TRPM_HARDWARE_INT;
7872 break;
7873
7874 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7875 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7876 enmTrapType = TRPM_TRAP;
7877 break;
7878
7879 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT: /* #DB (INT1/ICEBP). */
7880 Assert(uVector == X86_XCPT_DB);
7881 enmTrapType = TRPM_SOFTWARE_INT;
7882 break;
7883
7884 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP (INT3) and #OF (INTO) */
7885 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7886 enmTrapType = TRPM_SOFTWARE_INT;
7887 break;
7888
7889 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7890 enmTrapType = TRPM_SOFTWARE_INT;
7891 break;
7892
7893 default:
7894 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7895 enmTrapType = TRPM_32BIT_HACK;
7896 break;
7897 }
7898
7899 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7900
7901 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7902 AssertRC(rc);
7903
7904 if (fErrorCodeValid)
7905 TRPMSetErrorCode(pVCpu, uErrorCode);
7906
7907 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7908 && uVector == X86_XCPT_PF)
7909 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7910 else if (enmTrapType == TRPM_SOFTWARE_INT)
7911 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7912
7913 /* We're now done converting the pending event. */
7914 pVCpu->hm.s.Event.fPending = false;
7915}
7916
7917
7918/**
7919 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7920 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7921 *
7922 * @param pVCpu The cross context virtual CPU structure.
7923 * @param pVmcsInfo The VMCS info. object.
7924 */
7925static void hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
7926{
7927 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7928 {
7929 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7930 {
7931 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7932 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7933 AssertRC(rc);
7934 }
7935 } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
7936}
7937
7938
7939/**
7940 * Clears the interrupt-window exiting control in the VMCS.
7941 *
7942 * @param pVmcsInfo The VMCS info. object.
7943 */
7944DECLINLINE(int) hmR0VmxClearIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
7945{
7946 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7947 {
7948 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7949 return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7950 }
7951 return VINF_SUCCESS;
7952}
7953
7954
7955/**
7956 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7957 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7958 *
7959 * @param pVCpu The cross context virtual CPU structure.
7960 * @param pVmcsInfo The VMCS info. object.
7961 */
7962static void hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
7963{
7964 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7965 {
7966 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7967 {
7968 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7969 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7970 AssertRC(rc);
7971 Log4Func(("Setup NMI-window exiting\n"));
7972 }
7973 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7974}
7975
7976
7977/**
7978 * Clears the NMI-window exiting control in the VMCS.
7979 *
7980 * @param pVmcsInfo The VMCS info. object.
7981 */
7982DECLINLINE(int) hmR0VmxClearNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
7983{
7984 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7985 {
7986 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7987 return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7988 }
7989 return VINF_SUCCESS;
7990}
7991
7992
7993/**
7994 * Does the necessary state syncing before returning to ring-3 for any reason
7995 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7996 *
7997 * @returns VBox status code.
7998 * @param pVCpu The cross context virtual CPU structure.
7999 * @param fImportState Whether to import the guest state from the VMCS back
8000 * to the guest-CPU context.
8001 *
8002 * @remarks No-long-jmp zone!!!
8003 */
8004static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
8005{
8006 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8007 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8008
8009 RTCPUID idCpu = RTMpCpuId();
8010 Log4Func(("HostCpuId=%u\n", idCpu));
8011
8012 /*
8013 * !!! IMPORTANT !!!
8014 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
8015 */
8016
8017 /* Save the guest state if necessary. */
8018 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8019 if (fImportState)
8020 {
8021 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8022 AssertRCReturn(rc, rc);
8023 }
8024
8025 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
8026 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8027 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
8028
8029 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
8030#ifdef VBOX_STRICT
8031 if (CPUMIsHyperDebugStateActive(pVCpu))
8032 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
8033#endif
8034 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8035 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
8036 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
8037
8038#if HC_ARCH_BITS == 64
8039 /* Restore host-state bits that VT-x only restores partially. */
8040 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8041 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8042 {
8043 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
8044 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8045 }
8046 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8047#endif
8048
8049 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8050 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8051 {
8052 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
8053 if (!fImportState)
8054 {
8055 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
8056 AssertRCReturn(rc, rc);
8057 }
8058 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8059 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
8060 }
8061 else
8062 pVCpu->hm.s.vmx.fLazyMsrs = 0;
8063
8064 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8065 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8066
8067 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
8068 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
8069 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
8070 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
8071 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
8072 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
8073 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
8074 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
8075 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8076
8077 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8078
8079 /** @todo This partially defeats the purpose of having preemption hooks.
8080 * The problem is, deregistering the hooks should be moved to a place that
8081 * lasts until the EMT is about to be destroyed not everytime while leaving HM
8082 * context.
8083 */
8084 int rc = hmR0VmxClearVmcs(pVmcsInfo);
8085 AssertRCReturn(rc, rc);
8086
8087 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
8088 NOREF(idCpu);
8089 return VINF_SUCCESS;
8090}
8091
8092
8093/**
8094 * Leaves the VT-x session.
8095 *
8096 * @returns VBox status code.
8097 * @param pVCpu The cross context virtual CPU structure.
8098 *
8099 * @remarks No-long-jmp zone!!!
8100 */
8101static int hmR0VmxLeaveSession(PVMCPU pVCpu)
8102{
8103 HM_DISABLE_PREEMPT(pVCpu);
8104 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8105 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8106 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8107
8108 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
8109 and done this from the VMXR0ThreadCtxCallback(). */
8110 if (!pVCpu->hm.s.fLeaveDone)
8111 {
8112 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
8113 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
8114 pVCpu->hm.s.fLeaveDone = true;
8115 }
8116 Assert(!pVCpu->cpum.GstCtx.fExtrn);
8117
8118 /*
8119 * !!! IMPORTANT !!!
8120 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
8121 */
8122
8123 /* Deregister hook now that we've left HM context before re-enabling preemption. */
8124 /** @todo Deregistering here means we need to VMCLEAR always
8125 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
8126 * for calling VMMR0ThreadCtxHookDisable here! */
8127 VMMR0ThreadCtxHookDisable(pVCpu);
8128
8129 /* Leave HM context. This takes care of local init (term). */
8130 int rc = HMR0LeaveCpu(pVCpu);
8131
8132 HM_RESTORE_PREEMPT();
8133 return rc;
8134}
8135
8136
8137/**
8138 * Does the necessary state syncing before doing a longjmp to ring-3.
8139 *
8140 * @returns VBox status code.
8141 * @param pVCpu The cross context virtual CPU structure.
8142 *
8143 * @remarks No-long-jmp zone!!!
8144 */
8145DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
8146{
8147 return hmR0VmxLeaveSession(pVCpu);
8148}
8149
8150
8151/**
8152 * Take necessary actions before going back to ring-3.
8153 *
8154 * An action requires us to go back to ring-3. This function does the necessary
8155 * steps before we can safely return to ring-3. This is not the same as longjmps
8156 * to ring-3, this is voluntary and prepares the guest so it may continue
8157 * executing outside HM (recompiler/IEM).
8158 *
8159 * @returns VBox status code.
8160 * @param pVCpu The cross context virtual CPU structure.
8161 * @param rcExit The reason for exiting to ring-3. Can be
8162 * VINF_VMM_UNKNOWN_RING3_CALL.
8163 */
8164static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
8165{
8166 Assert(pVCpu);
8167 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8168
8169 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8170 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
8171 {
8172 VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
8173 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
8174 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
8175 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
8176 }
8177
8178 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
8179 VMMRZCallRing3Disable(pVCpu);
8180 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
8181
8182 /*
8183 * Convert any pending HM events back to TRPM due to premature exits to ring-3.
8184 * We need to do this only on returns to ring-3 and not for longjmps to ring3.
8185 *
8186 * This is because execution may continue from ring-3 and we would need to inject
8187 * the event from there (hence place it back in TRPM).
8188 */
8189 if (pVCpu->hm.s.Event.fPending)
8190 {
8191 hmR0VmxPendingEventToTrpmTrap(pVCpu);
8192 Assert(!pVCpu->hm.s.Event.fPending);
8193
8194 /* Clear the events from the VMCS. */
8195 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
8196 AssertRCReturn(rc, rc);
8197 }
8198#ifdef VBOX_STRICT
8199 else
8200 {
8201 /*
8202 * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
8203 * This can be pretty hard to debug otherwise, interrupts might get injected twice
8204 * occasionally, see @bugref{9180#c42}.
8205 */
8206 uint32_t uEntryIntInfo;
8207 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
8208 AssertRC(rc);
8209 Assert(!VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
8210 }
8211#endif
8212
8213 /*
8214 * Clear the interrupt-window and NMI-window VMCS controls as we could have got
8215 * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
8216 * (e.g. TPR below threshold).
8217 */
8218 int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
8219 rc |= hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
8220 AssertRCReturn(rc, rc);
8221
8222 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
8223 and if we're injecting an event we should have a TRPM trap pending. */
8224 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8225#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
8226 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8227#endif
8228
8229 /* Save guest state and restore host state bits. */
8230 rc = hmR0VmxLeaveSession(pVCpu);
8231 AssertRCReturn(rc, rc);
8232 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8233
8234 /* Thread-context hooks are unregistered at this point!!! */
8235
8236 /* Sync recompiler state. */
8237 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
8238 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
8239 | CPUM_CHANGED_LDTR
8240 | CPUM_CHANGED_GDTR
8241 | CPUM_CHANGED_IDTR
8242 | CPUM_CHANGED_TR
8243 | CPUM_CHANGED_HIDDEN_SEL_REGS);
8244 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
8245 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
8246 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
8247
8248 Assert(!pVCpu->hm.s.fClearTrapFlag);
8249
8250 /* Update the exit-to-ring 3 reason. */
8251 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
8252
8253 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
8254 if ( rcExit != VINF_EM_RAW_INTERRUPT
8255 || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8256 {
8257 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
8258 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8259 }
8260
8261 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
8262
8263 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
8264 VMMRZCallRing3RemoveNotification(pVCpu);
8265 VMMRZCallRing3Enable(pVCpu);
8266
8267 return rc;
8268}
8269
8270
8271/**
8272 * VMMRZCallRing3() callback wrapper which saves the guest state before we
8273 * longjump to ring-3 and possibly get preempted.
8274 *
8275 * @returns VBox status code.
8276 * @param pVCpu The cross context virtual CPU structure.
8277 * @param enmOperation The operation causing the ring-3 longjump.
8278 * @param pvUser User argument, currently unused, NULL.
8279 */
8280static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
8281{
8282 RT_NOREF(pvUser);
8283 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
8284 {
8285 /*
8286 * !!! IMPORTANT !!!
8287 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
8288 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
8289 */
8290 VMMRZCallRing3RemoveNotification(pVCpu);
8291 VMMRZCallRing3Disable(pVCpu);
8292 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
8293 RTThreadPreemptDisable(&PreemptState);
8294
8295 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8296 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8297 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8298 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8299
8300#if HC_ARCH_BITS == 64
8301 /* Restore host-state bits that VT-x only restores partially. */
8302 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8303 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8304 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8305 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8306#endif
8307
8308 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8309 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8310 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8311
8312 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8313 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8314 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8315
8316 /* Clear the current VMCS data back to memory. */
8317 hmR0VmxClearVmcs(pVmcsInfo);
8318
8319 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
8320 VMMR0ThreadCtxHookDisable(pVCpu);
8321 HMR0LeaveCpu(pVCpu);
8322 RTThreadPreemptRestore(&PreemptState);
8323 return VINF_SUCCESS;
8324 }
8325
8326 Assert(pVCpu);
8327 Assert(pvUser);
8328 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8329 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8330
8331 VMMRZCallRing3Disable(pVCpu);
8332 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8333
8334 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
8335
8336 int rc = hmR0VmxLongJmpToRing3(pVCpu);
8337 AssertRCReturn(rc, rc);
8338
8339 VMMRZCallRing3Enable(pVCpu);
8340 return VINF_SUCCESS;
8341}
8342
8343
8344/**
8345 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8346 * stack.
8347 *
8348 * @returns Strict VBox status code (i.e. informational status codes too).
8349 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8350 * @param pVCpu The cross context virtual CPU structure.
8351 * @param uValue The value to push to the guest stack.
8352 */
8353static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
8354{
8355 /*
8356 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8357 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8358 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8359 */
8360 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8361 if (pCtx->sp == 1)
8362 return VINF_EM_RESET;
8363 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8364 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
8365 AssertRC(rc);
8366 return rc;
8367}
8368
8369
8370/**
8371 * Injects an event into the guest upon VM-entry by updating the relevant fields
8372 * in the VM-entry area in the VMCS.
8373 *
8374 * @returns Strict VBox status code (i.e. informational status codes too).
8375 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8376 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8377 *
8378 * @param pVCpu The cross context virtual CPU structure.
8379 * @param pVmxTransient The VMX-transient structure.
8380 * @param pEvent The event being injected.
8381 * @param pfIntrState Pointer to the VT-x guest-interruptibility-state.
8382 * This will be updated if necessary. This cannot not
8383 * be NULL.
8384 * @param fStepping Whether we're single-stepping guest execution and
8385 * should return VINF_EM_DBG_STEPPED if the event is
8386 * injected directly (registers modified by us, not by
8387 * hardware on VM-entry).
8388 */
8389static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCHMEVENT pEvent, bool fStepping,
8390 uint32_t *pfIntrState)
8391{
8392 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8393 AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
8394 Assert(pfIntrState);
8395
8396 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8397 uint32_t u32IntInfo = pEvent->u64IntInfo;
8398 uint32_t const u32ErrCode = pEvent->u32ErrCode;
8399 uint32_t const cbInstr = pEvent->cbInstr;
8400 RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
8401 uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
8402 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
8403
8404#ifdef VBOX_STRICT
8405 /*
8406 * Validate the error-code-valid bit for hardware exceptions.
8407 * No error codes for exceptions in real-mode.
8408 *
8409 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8410 */
8411 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8412 && !CPUMIsGuestInRealModeEx(pCtx))
8413 {
8414 switch (uVector)
8415 {
8416 case X86_XCPT_PF:
8417 case X86_XCPT_DF:
8418 case X86_XCPT_TS:
8419 case X86_XCPT_NP:
8420 case X86_XCPT_SS:
8421 case X86_XCPT_GP:
8422 case X86_XCPT_AC:
8423 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
8424 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8425 RT_FALL_THRU();
8426 default:
8427 break;
8428 }
8429 }
8430
8431 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8432 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
8433 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
8434#endif
8435
8436 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8437
8438 /*
8439 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
8440 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
8441 * interrupt handler in the (real-mode) guest.
8442 *
8443 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
8444 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8445 */
8446 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
8447 {
8448 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
8449 {
8450 /*
8451 * For CPUs with unrestricted guest execution enabled and with the guest
8452 * in real-mode, we must not set the deliver-error-code bit.
8453 *
8454 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8455 */
8456 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
8457 }
8458 else
8459 {
8460 PVM pVM = pVCpu->CTX_SUFF(pVM);
8461 Assert(PDMVmmDevHeapIsEnabled(pVM));
8462 Assert(pVM->hm.s.vmx.pRealModeTSS);
8463 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
8464
8465 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
8466 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8467 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
8468 | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
8469 AssertRCReturn(rc2, rc2);
8470
8471 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8472 size_t const cbIdtEntry = sizeof(X86IDTR16);
8473 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
8474 {
8475 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8476 if (uVector == X86_XCPT_DF)
8477 return VINF_EM_RESET;
8478
8479 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
8480 No error codes for exceptions in real-mode. */
8481 if (uVector == X86_XCPT_GP)
8482 {
8483 uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
8484 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8485 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8486 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8487 HMEVENT EventXcptDf;
8488 RT_ZERO(EventXcptDf);
8489 EventXcptDf.u64IntInfo = uXcptDfInfo;
8490 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptDf, fStepping, pfIntrState);
8491 }
8492
8493 /*
8494 * If we're injecting an event with no valid IDT entry, inject a #GP.
8495 * No error codes for exceptions in real-mode.
8496 *
8497 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8498 */
8499 uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
8500 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8501 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8502 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8503 HMEVENT EventXcptGp;
8504 RT_ZERO(EventXcptGp);
8505 EventXcptGp.u64IntInfo = uXcptGpInfo;
8506 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptGp, fStepping, pfIntrState);
8507 }
8508
8509 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8510 uint16_t uGuestIp = pCtx->ip;
8511 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
8512 {
8513 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8514 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8515 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8516 }
8517 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
8518 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8519
8520 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8521 X86IDTR16 IdtEntry;
8522 RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
8523 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8524 AssertRCReturn(rc2, rc2);
8525
8526 /* Construct the stack frame for the interrupt/exception handler. */
8527 VBOXSTRICTRC rcStrict;
8528 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
8529 if (rcStrict == VINF_SUCCESS)
8530 {
8531 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
8532 if (rcStrict == VINF_SUCCESS)
8533 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
8534 }
8535
8536 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8537 if (rcStrict == VINF_SUCCESS)
8538 {
8539 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8540 pCtx->rip = IdtEntry.offSel;
8541 pCtx->cs.Sel = IdtEntry.uSel;
8542 pCtx->cs.ValidSel = IdtEntry.uSel;
8543 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8544 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
8545 && uVector == X86_XCPT_PF)
8546 pCtx->cr2 = GCPtrFault;
8547
8548 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
8549 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
8550 | HM_CHANGED_GUEST_RSP);
8551
8552 /*
8553 * If we delivered a hardware exception (other than an NMI) and if there was
8554 * block-by-STI in effect, we should clear it.
8555 */
8556 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
8557 {
8558 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
8559 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
8560 Log4Func(("Clearing inhibition due to STI\n"));
8561 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
8562 }
8563
8564 Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8565 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
8566
8567 /*
8568 * The event has been truly dispatched to the guest. Mark it as no longer pending so
8569 * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
8570 */
8571 pVCpu->hm.s.Event.fPending = false;
8572
8573 /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
8574 if (fStepping)
8575 rcStrict = VINF_EM_DBG_STEPPED;
8576 }
8577 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8578 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8579 return rcStrict;
8580 }
8581 }
8582
8583 /*
8584 * Validate.
8585 */
8586 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8587 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
8588
8589 /*
8590 * Inject the event into the VMCS.
8591 */
8592 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8593 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8594 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8595 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8596 AssertRCReturn(rc, rc);
8597
8598 /*
8599 * Update guest CR2 if this is a page-fault.
8600 */
8601 if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8602 && uVector == X86_XCPT_PF)
8603 pCtx->cr2 = GCPtrFault;
8604
8605 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8606 return VINF_SUCCESS;
8607}
8608
8609
8610/**
8611 * Evaluates the event to be delivered to the guest and sets it as the pending
8612 * event.
8613 *
8614 * @returns Strict VBox status code (i.e. informational status codes too).
8615 * @param pVCpu The cross context virtual CPU structure.
8616 * @param pVmxTransient The VMX-transient structure.
8617 * @param pfIntrState Where to store the VT-x guest-interruptibility state.
8618 */
8619static VBOXSTRICTRC hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t *pfIntrState)
8620{
8621 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8622 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8623
8624 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
8625 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu, pVmcsInfo);
8626 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8627 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8628 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
8629
8630 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8631 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8632 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8633 Assert(!TRPMHasTrap(pVCpu));
8634 Assert(pfIntrState);
8635
8636 *pfIntrState = fIntrState;
8637
8638 /*
8639 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
8640 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
8641 */
8642 /** @todo SMI. SMIs take priority over NMIs. */
8643 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
8644 {
8645 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
8646 if ( !pVCpu->hm.s.Event.fPending
8647 && !fBlockNmi
8648 && !fBlockSti
8649 && !fBlockMovSS)
8650 {
8651#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8652 if ( pVmxTransient->fIsNestedGuest
8653 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_NMI_EXIT))
8654 return IEMExecVmxVmexitNmi(pVCpu);
8655#endif
8656 hmR0VmxSetPendingXcptNmi(pVCpu);
8657 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
8658 Log4Func(("Pending NMI\n"));
8659 }
8660 else
8661 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8662 }
8663 /*
8664 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
8665 * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
8666 */
8667 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8668 && !pVCpu->hm.s.fSingleInstruction)
8669 {
8670 Assert(!DBGFIsStepping(pVCpu));
8671 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
8672 AssertRCReturn(rc, rc);
8673 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
8674 if ( !pVCpu->hm.s.Event.fPending
8675 && !fBlockInt
8676 && !fBlockSti
8677 && !fBlockMovSS)
8678 {
8679#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8680 if ( pVmxTransient->fIsNestedGuest
8681 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
8682 {
8683 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0/* uVector */, true /* fIntPending */);
8684 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8685 return rcStrict;
8686 }
8687#endif
8688 uint8_t u8Interrupt;
8689 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
8690 if (RT_SUCCESS(rc))
8691 {
8692#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8693 if ( pVmxTransient->fIsNestedGuest
8694 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8695 && CPUMIsGuestVmxExitCtlsSet(pVCpu, pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8696 {
8697 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
8698 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8699 return rcStrict;
8700 }
8701#endif
8702 hmR0VmxSetPendingExtInt(pVCpu, u8Interrupt);
8703 Log4Func(("Pending external interrupt vector %#x\n", u8Interrupt));
8704 }
8705 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
8706 {
8707 if ( !pVmxTransient->fIsNestedGuest
8708 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
8709 hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u8Interrupt >> 4);
8710 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
8711
8712 /*
8713 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
8714 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
8715 * need to re-set this force-flag here.
8716 */
8717 }
8718 else
8719 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
8720 }
8721 else
8722 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8723 }
8724
8725 return VINF_SUCCESS;
8726}
8727
8728
8729/**
8730 * Injects any pending events into the guest if the guest is in a state to
8731 * receive them.
8732 *
8733 * @returns Strict VBox status code (i.e. informational status codes too).
8734 * @param pVCpu The cross context virtual CPU structure.
8735 * @param pVmxTransient The VMX-transient structure.
8736 * @param fIntrState The VT-x guest-interruptibility state.
8737 * @param fStepping Whether we are single-stepping the guest using the
8738 * hypervisor debugger and should return
8739 * VINF_EM_DBG_STEPPED if the event was dispatched
8740 * directly.
8741 */
8742static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t fIntrState, bool fStepping)
8743{
8744 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8745 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8746
8747 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8748 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8749
8750 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8751 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8752 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8753 Assert(!TRPMHasTrap(pVCpu));
8754
8755 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8756 if (pVCpu->hm.s.Event.fPending)
8757 {
8758 /*
8759 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
8760 * pending even while injecting an event and in this case, we want a VM-exit as soon as
8761 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
8762 *
8763 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
8764 */
8765 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
8766#ifdef VBOX_STRICT
8767 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
8768 {
8769 bool const fBlockInt = !(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
8770 Assert(!fBlockInt);
8771 Assert(!fBlockSti);
8772 Assert(!fBlockMovSS);
8773 }
8774 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
8775 {
8776 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
8777 Assert(!fBlockSti);
8778 Assert(!fBlockMovSS);
8779 Assert(!fBlockNmi);
8780 }
8781#endif
8782 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
8783 uIntType));
8784
8785 /*
8786 * Inject the event and get any changes to the guest-interruptibility state.
8787 *
8788 * The guest-interruptibility state may need to be updated if we inject the event
8789 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
8790 */
8791 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &pVCpu->hm.s.Event, fStepping, &fIntrState);
8792 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
8793
8794 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
8795 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
8796 else
8797 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
8798 }
8799
8800 /*
8801 * Update the guest-interruptibility state.
8802 *
8803 * This is required for the real-on-v86 software interrupt injection case above, as well as
8804 * updates to the guest state from ring-3 or IEM/REM.
8805 */
8806 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
8807 AssertRCReturn(rc, rc);
8808
8809 /*
8810 * There's no need to clear the VM-entry interruption-information field here if we're not
8811 * injecting anything. VT-x clears the valid bit on every VM-exit.
8812 *
8813 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
8814 */
8815
8816 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
8817 NOREF(fBlockMovSS); NOREF(fBlockSti);
8818 return rcStrict;
8819}
8820
8821
8822/**
8823 * Enters the VT-x session.
8824 *
8825 * @returns VBox status code.
8826 * @param pVCpu The cross context virtual CPU structure.
8827 */
8828VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu)
8829{
8830 AssertPtr(pVCpu);
8831 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8832 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8833
8834 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8835 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8836 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8837
8838#ifdef VBOX_STRICT
8839 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8840 RTCCUINTREG uHostCR4 = ASMGetCR4();
8841 if (!(uHostCR4 & X86_CR4_VMXE))
8842 {
8843 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8844 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8845 }
8846#endif
8847
8848 /*
8849 * Load the appropriate VMCS as the current and active one.
8850 */
8851 PVMXVMCSINFO pVmcsInfo;
8852 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
8853 if (!fInNestedGuestMode)
8854 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
8855 else
8856 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
8857 int rc = hmR0VmxLoadVmcs(pVmcsInfo);
8858 if (RT_SUCCESS(rc))
8859 {
8860 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
8861 pVCpu->hm.s.fLeaveDone = false;
8862 Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8863
8864 /*
8865 * Do the EMT scheduled L1D flush here if needed.
8866 */
8867 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8868 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8869 }
8870 return rc;
8871}
8872
8873
8874/**
8875 * The thread-context callback (only on platforms which support it).
8876 *
8877 * @param enmEvent The thread-context event.
8878 * @param pVCpu The cross context virtual CPU structure.
8879 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8880 * @thread EMT(pVCpu)
8881 */
8882VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8883{
8884 NOREF(fGlobalInit);
8885
8886 switch (enmEvent)
8887 {
8888 case RTTHREADCTXEVENT_OUT:
8889 {
8890 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8891 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8892 VMCPU_ASSERT_EMT(pVCpu);
8893
8894 /* No longjmps (logger flushes, locks) in this fragile context. */
8895 VMMRZCallRing3Disable(pVCpu);
8896 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8897
8898 /* Restore host-state (FPU, debug etc.) */
8899 if (!pVCpu->hm.s.fLeaveDone)
8900 {
8901 /*
8902 * Do -not- import the guest-state here as we might already be in the middle of importing
8903 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8904 */
8905 hmR0VmxLeave(pVCpu, false /* fImportState */);
8906 pVCpu->hm.s.fLeaveDone = true;
8907 }
8908
8909 /* Leave HM context, takes care of local init (term). */
8910 int rc = HMR0LeaveCpu(pVCpu);
8911 AssertRC(rc);
8912
8913 /* Restore longjmp state. */
8914 VMMRZCallRing3Enable(pVCpu);
8915 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8916 break;
8917 }
8918
8919 case RTTHREADCTXEVENT_IN:
8920 {
8921 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8922 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8923 VMCPU_ASSERT_EMT(pVCpu);
8924
8925 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8926 VMMRZCallRing3Disable(pVCpu);
8927 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8928
8929 /* Initialize the bare minimum state required for HM. This takes care of
8930 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8931 int rc = hmR0EnterCpu(pVCpu);
8932 AssertRC(rc);
8933 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8934 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8935
8936 /* Load the active VMCS as the current one. */
8937 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8938 rc = hmR0VmxLoadVmcs(pVmcsInfo);
8939 AssertRC(rc);
8940 Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8941 pVCpu->hm.s.fLeaveDone = false;
8942
8943 /* Do the EMT scheduled L1D flush if needed. */
8944 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8945 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8946
8947 /* Restore longjmp state. */
8948 VMMRZCallRing3Enable(pVCpu);
8949 break;
8950 }
8951
8952 default:
8953 break;
8954 }
8955}
8956
8957
8958/**
8959 * Exports the host state into the VMCS host-state area.
8960 * Sets up the VM-exit MSR-load area.
8961 *
8962 * The CPU state will be loaded from these fields on every successful VM-exit.
8963 *
8964 * @returns VBox status code.
8965 * @param pVCpu The cross context virtual CPU structure.
8966 *
8967 * @remarks No-long-jump zone!!!
8968 */
8969static int hmR0VmxExportHostState(PVMCPU pVCpu)
8970{
8971 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8972
8973 int rc = VINF_SUCCESS;
8974 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8975 {
8976 rc = hmR0VmxExportHostControlRegs();
8977 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8978
8979 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8980 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8981
8982 rc = hmR0VmxExportHostMsrs(pVCpu);
8983 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8984
8985 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8986 }
8987 return rc;
8988}
8989
8990
8991/**
8992 * Saves the host state in the VMCS host-state.
8993 *
8994 * @returns VBox status code.
8995 * @param pVCpu The cross context virtual CPU structure.
8996 *
8997 * @remarks No-long-jump zone!!!
8998 */
8999VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
9000{
9001 AssertPtr(pVCpu);
9002 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9003
9004 /*
9005 * Export the host state here while entering HM context.
9006 * When thread-context hooks are used, we might get preempted and have to re-save the host
9007 * state but most of the time we won't be, so do it here before we disable interrupts.
9008 */
9009 return hmR0VmxExportHostState(pVCpu);
9010}
9011
9012
9013/**
9014 * Exports the guest state into the VMCS guest-state area.
9015 *
9016 * The will typically be done before VM-entry when the guest-CPU state and the
9017 * VMCS state may potentially be out of sync.
9018 *
9019 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
9020 * VM-entry controls.
9021 * Sets up the appropriate VMX non-root function to execute guest code based on
9022 * the guest CPU mode.
9023 *
9024 * @returns VBox strict status code.
9025 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9026 * without unrestricted guest execution and the VMMDev is not presently
9027 * mapped (e.g. EFI32).
9028 *
9029 * @param pVCpu The cross context virtual CPU structure.
9030 * @param pVmxTransient The VMX-transient structure.
9031 *
9032 * @remarks No-long-jump zone!!!
9033 */
9034static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9035{
9036 AssertPtr(pVCpu);
9037 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9038 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9039
9040 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
9041
9042 /*
9043 * Determine real-on-v86 mode.
9044 * Used when the guest is in real-mode and unrestricted guest execution is not used.
9045 */
9046 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
9047 if ( pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
9048 || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
9049 pVmcsInfo->RealMode. fRealOnV86Active = false;
9050 else
9051 {
9052 Assert(!pVmxTransient->fIsNestedGuest);
9053 pVmcsInfo->RealMode.fRealOnV86Active = true;
9054 }
9055
9056 /*
9057 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
9058 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
9059 */
9060 /** @todo r=ramshankar: Move hmR0VmxSelectVMRunHandler inside
9061 * hmR0VmxExportGuestEntryExitCtls and do it conditionally. There shouldn't
9062 * be a need to evaluate this everytime since I'm pretty sure we intercept
9063 * all guest paging mode changes. */
9064 int rc = hmR0VmxSelectVMRunHandler(pVCpu, pVmxTransient);
9065 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9066
9067 rc = hmR0VmxExportGuestEntryExitCtls(pVCpu, pVmxTransient);
9068 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9069
9070 rc = hmR0VmxExportGuestCR0(pVCpu, pVmxTransient);
9071 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9072
9073 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu, pVmxTransient);
9074 if (rcStrict == VINF_SUCCESS)
9075 { /* likely */ }
9076 else
9077 {
9078 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
9079 return rcStrict;
9080 }
9081
9082 rc = hmR0VmxExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
9083 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9084
9085 rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
9086 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9087
9088 rc = hmR0VmxExportGuestApicTpr(pVCpu, pVmxTransient);
9089 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9090
9091 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu, pVmxTransient);
9092 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9093
9094 rc = hmR0VmxExportGuestRip(pVCpu);
9095 rc |= hmR0VmxExportGuestRsp(pVCpu);
9096 rc |= hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9097 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9098
9099 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
9100 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
9101 | HM_CHANGED_GUEST_CR2
9102 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
9103 | HM_CHANGED_GUEST_X87
9104 | HM_CHANGED_GUEST_SSE_AVX
9105 | HM_CHANGED_GUEST_OTHER_XSAVE
9106 | HM_CHANGED_GUEST_XCRx
9107 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
9108 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
9109 | HM_CHANGED_GUEST_TSC_AUX
9110 | HM_CHANGED_GUEST_OTHER_MSRS
9111 | HM_CHANGED_GUEST_HWVIRT /* More accurate PLE handling someday? */
9112 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
9113
9114 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
9115 return rc;
9116}
9117
9118
9119/**
9120 * Exports the state shared between the host and guest into the VMCS.
9121 *
9122 * @param pVCpu The cross context virtual CPU structure.
9123 * @param pVmxTransient The VMX-transient structure.
9124 *
9125 * @remarks No-long-jump zone!!!
9126 */
9127static void hmR0VmxExportSharedState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9128{
9129 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9130 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9131
9132 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
9133 {
9134 int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
9135 AssertRC(rc);
9136 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
9137
9138 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
9139 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
9140 {
9141 rc = hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9142 AssertRC(rc);
9143 }
9144 }
9145
9146 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
9147 {
9148 hmR0VmxLazyLoadGuestMsrs(pVCpu);
9149 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
9150 }
9151
9152 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
9153 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
9154}
9155
9156
9157/**
9158 * Worker for loading the guest-state bits in the inner VT-x execution loop.
9159 *
9160 * @returns Strict VBox status code (i.e. informational status codes too).
9161 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9162 * without unrestricted guest execution and the VMMDev is not presently
9163 * mapped (e.g. EFI32).
9164 *
9165 * @param pVCpu The cross context virtual CPU structure.
9166 * @param pVmxTransient The VMX-transient structure.
9167 *
9168 * @remarks No-long-jump zone!!!
9169 */
9170static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9171{
9172 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9173 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9174 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9175
9176#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
9177 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
9178#endif
9179
9180 /*
9181 * For many exits it's only RIP that changes and hence try to export it first
9182 * without going through a lot of change flag checks.
9183 */
9184 VBOXSTRICTRC rcStrict;
9185 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9186 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
9187 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
9188 {
9189 rcStrict = hmR0VmxExportGuestRip(pVCpu);
9190 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9191 { /* likely */}
9192 else
9193 AssertMsgFailedReturn(("Failed to export guest RIP! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
9194 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
9195 }
9196 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9197 {
9198 rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
9199 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9200 { /* likely */}
9201 else
9202 {
9203 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
9204 VBOXSTRICTRC_VAL(rcStrict)));
9205 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9206 return rcStrict;
9207 }
9208 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
9209 }
9210 else
9211 rcStrict = VINF_SUCCESS;
9212
9213#ifdef VBOX_STRICT
9214 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
9215 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9216 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
9217 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
9218 ("fCtxChanged=%#RX64\n", fCtxChanged));
9219#endif
9220 return rcStrict;
9221}
9222
9223
9224/**
9225 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9226 * and update error record fields accordingly.
9227 *
9228 * @return VMX_IGS_* return codes.
9229 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9230 * wrong with the guest state.
9231 *
9232 * @param pVCpu The cross context virtual CPU structure.
9233 * @param pVmcsInfo The VMCS info. object.
9234 *
9235 * @remarks This function assumes our cache of the VMCS controls
9236 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
9237 */
9238static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
9239{
9240#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9241#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
9242 uError = (err); \
9243 break; \
9244 } else do { } while (0)
9245
9246 int rc;
9247 PVM pVM = pVCpu->CTX_SUFF(pVM);
9248 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9249 uint32_t uError = VMX_IGS_ERROR;
9250 uint32_t u32Val;
9251 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
9252
9253 do
9254 {
9255 /*
9256 * CR0.
9257 */
9258 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9259 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9260 /* Exceptions for unrestricted guest execution for fixed CR0 bits (PE, PG).
9261 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9262 if (fUnrestrictedGuest)
9263 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
9264
9265 uint32_t u32GuestCr0;
9266 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
9267 AssertRCBreak(rc);
9268 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
9269 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
9270 if ( !fUnrestrictedGuest
9271 && (u32GuestCr0 & X86_CR0_PG)
9272 && !(u32GuestCr0 & X86_CR0_PE))
9273 {
9274 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9275 }
9276
9277 /*
9278 * CR4.
9279 */
9280 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9281 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9282
9283 uint32_t u32GuestCr4;
9284 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
9285 AssertRCBreak(rc);
9286 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
9287 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
9288
9289 /*
9290 * IA32_DEBUGCTL MSR.
9291 */
9292 uint64_t u64Val;
9293 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9294 AssertRCBreak(rc);
9295 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9296 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9297 {
9298 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9299 }
9300 uint64_t u64DebugCtlMsr = u64Val;
9301
9302#ifdef VBOX_STRICT
9303 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9304 AssertRCBreak(rc);
9305 Assert(u32Val == pVmcsInfo->u32EntryCtls);
9306#endif
9307 bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
9308
9309 /*
9310 * RIP and RFLAGS.
9311 */
9312 uint32_t u32Eflags;
9313#if HC_ARCH_BITS == 64
9314 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
9315 AssertRCBreak(rc);
9316 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9317 if ( !fLongModeGuest
9318 || !pCtx->cs.Attr.n.u1Long)
9319 {
9320 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9321 }
9322 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9323 * must be identical if the "IA-32e mode guest" VM-entry
9324 * control is 1 and CS.L is 1. No check applies if the
9325 * CPU supports 64 linear-address bits. */
9326
9327 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9328 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9329 AssertRCBreak(rc);
9330 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9331 VMX_IGS_RFLAGS_RESERVED);
9332 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9333 u32Eflags = u64Val;
9334#else
9335 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
9336 AssertRCBreak(rc);
9337 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
9338 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9339#endif
9340
9341 if ( fLongModeGuest
9342 || ( fUnrestrictedGuest
9343 && !(u32GuestCr0 & X86_CR0_PE)))
9344 {
9345 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9346 }
9347
9348 uint32_t u32EntryInfo;
9349 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9350 AssertRCBreak(rc);
9351 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
9352 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
9353 {
9354 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9355 }
9356
9357 /*
9358 * 64-bit checks.
9359 */
9360#if HC_ARCH_BITS == 64
9361 if (fLongModeGuest)
9362 {
9363 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9364 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9365 }
9366
9367 if ( !fLongModeGuest
9368 && (u32GuestCr4 & X86_CR4_PCIDE))
9369 {
9370 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9371 }
9372
9373 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9374 * 51:32 beyond the processor's physical-address width are 0. */
9375
9376 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9377 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9378 {
9379 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9380 }
9381
9382 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9383 AssertRCBreak(rc);
9384 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9385
9386 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9387 AssertRCBreak(rc);
9388 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9389#endif
9390
9391 /*
9392 * PERF_GLOBAL MSR.
9393 */
9394 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
9395 {
9396 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9397 AssertRCBreak(rc);
9398 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9399 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9400 }
9401
9402 /*
9403 * PAT MSR.
9404 */
9405 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
9406 {
9407 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9408 AssertRCBreak(rc);
9409 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9410 for (unsigned i = 0; i < 8; i++)
9411 {
9412 uint8_t u8Val = (u64Val & 0xff);
9413 if ( u8Val != 0 /* UC */
9414 && u8Val != 1 /* WC */
9415 && u8Val != 4 /* WT */
9416 && u8Val != 5 /* WP */
9417 && u8Val != 6 /* WB */
9418 && u8Val != 7 /* UC- */)
9419 {
9420 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9421 }
9422 u64Val >>= 8;
9423 }
9424 }
9425
9426 /*
9427 * EFER MSR.
9428 */
9429 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
9430 {
9431 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
9432 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9433 AssertRCBreak(rc);
9434 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9435 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9436 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
9437 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
9438 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9439 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
9440 * iemVmxVmentryCheckGuestState(). */
9441 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9442 || !(u32GuestCr0 & X86_CR0_PG)
9443 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9444 VMX_IGS_EFER_LMA_LME_MISMATCH);
9445 }
9446
9447 /*
9448 * Segment registers.
9449 */
9450 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9451 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9452 if (!(u32Eflags & X86_EFL_VM))
9453 {
9454 /* CS */
9455 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9456 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9457 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9458 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9459 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9460 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9461 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9462 /* CS cannot be loaded with NULL in protected mode. */
9463 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9464 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9465 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9466 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9467 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9468 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9469 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9470 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9471 else
9472 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9473
9474 /* SS */
9475 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9476 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9477 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9478 if ( !(pCtx->cr0 & X86_CR0_PE)
9479 || pCtx->cs.Attr.n.u4Type == 3)
9480 {
9481 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9482 }
9483 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9484 {
9485 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9486 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9487 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9488 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9489 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9490 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9491 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9492 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9493 }
9494
9495 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSReg(). */
9496 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9497 {
9498 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9499 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9500 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9501 || pCtx->ds.Attr.n.u4Type > 11
9502 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9503 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9504 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9505 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9506 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9507 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9508 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9509 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9510 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9511 }
9512 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9513 {
9514 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9515 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9516 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9517 || pCtx->es.Attr.n.u4Type > 11
9518 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9519 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9520 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9521 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9522 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9523 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9524 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9525 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9526 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9527 }
9528 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9529 {
9530 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
9531 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
9532 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9533 || pCtx->fs.Attr.n.u4Type > 11
9534 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
9535 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
9536 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
9537 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
9538 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9539 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
9540 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9541 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9542 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
9543 }
9544 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
9545 {
9546 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
9547 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
9548 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9549 || pCtx->gs.Attr.n.u4Type > 11
9550 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
9551 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
9552 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
9553 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
9554 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9555 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
9556 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9557 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9558 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
9559 }
9560 /* 64-bit capable CPUs. */
9561#if HC_ARCH_BITS == 64
9562 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9563 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9564 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9565 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9566 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9567 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9568 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9569 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9570 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9571 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9572 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9573#endif
9574 }
9575 else
9576 {
9577 /* V86 mode checks. */
9578 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
9579 if (pVmcsInfo->RealMode.fRealOnV86Active)
9580 {
9581 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
9582 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
9583 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
9584 }
9585 else
9586 {
9587 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
9588 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
9589 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
9590 }
9591
9592 /* CS */
9593 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9594 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9595 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9596 /* SS */
9597 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9598 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9599 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9600 /* DS */
9601 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9602 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9603 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9604 /* ES */
9605 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9606 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9607 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9608 /* FS */
9609 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9610 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9611 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9612 /* GS */
9613 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9614 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9615 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9616 /* 64-bit capable CPUs. */
9617#if HC_ARCH_BITS == 64
9618 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9619 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9620 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9621 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9622 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9623 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9624 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9625 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9626 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9627 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9628 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9629#endif
9630 }
9631
9632 /*
9633 * TR.
9634 */
9635 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9636 /* 64-bit capable CPUs. */
9637#if HC_ARCH_BITS == 64
9638 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9639#endif
9640 if (fLongModeGuest)
9641 {
9642 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9643 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9644 }
9645 else
9646 {
9647 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9648 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9649 VMX_IGS_TR_ATTR_TYPE_INVALID);
9650 }
9651 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9652 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9653 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9654 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9655 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9656 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9657 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9658 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9659
9660 /*
9661 * GDTR and IDTR.
9662 */
9663#if HC_ARCH_BITS == 64
9664 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9665 AssertRCBreak(rc);
9666 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9667
9668 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9669 AssertRCBreak(rc);
9670 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9671#endif
9672
9673 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9674 AssertRCBreak(rc);
9675 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9676
9677 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9678 AssertRCBreak(rc);
9679 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9680
9681 /*
9682 * Guest Non-Register State.
9683 */
9684 /* Activity State. */
9685 uint32_t u32ActivityState;
9686 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9687 AssertRCBreak(rc);
9688 HMVMX_CHECK_BREAK( !u32ActivityState
9689 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
9690 VMX_IGS_ACTIVITY_STATE_INVALID);
9691 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9692 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9693 uint32_t u32IntrState;
9694 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
9695 AssertRCBreak(rc);
9696 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
9697 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9698 {
9699 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9700 }
9701
9702 /** @todo Activity state and injecting interrupts. Left as a todo since we
9703 * currently don't use activity states but ACTIVE. */
9704
9705 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9706 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9707
9708 /* Guest interruptibility-state. */
9709 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9710 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9711 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9712 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9713 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9714 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9715 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9716 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
9717 {
9718 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
9719 {
9720 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9721 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9722 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9723 }
9724 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
9725 {
9726 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9727 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9728 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9729 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9730 }
9731 }
9732 /** @todo Assumes the processor is not in SMM. */
9733 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9734 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9735 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9736 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9737 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9738 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
9739 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
9740 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
9741 {
9742 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
9743 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9744 }
9745
9746 /* Pending debug exceptions. */
9747#if HC_ARCH_BITS == 64
9748 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
9749 AssertRCBreak(rc);
9750 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9751 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9752 u32Val = u64Val; /* For pending debug exceptions checks below. */
9753#else
9754 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
9755 AssertRCBreak(rc);
9756 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
9757 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
9758#endif
9759
9760 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9761 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
9762 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9763 {
9764 if ( (u32Eflags & X86_EFL_TF)
9765 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9766 {
9767 /* Bit 14 is PendingDebug.BS. */
9768 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9769 }
9770 if ( !(u32Eflags & X86_EFL_TF)
9771 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9772 {
9773 /* Bit 14 is PendingDebug.BS. */
9774 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
9775 }
9776 }
9777
9778 /* VMCS link pointer. */
9779 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
9780 AssertRCBreak(rc);
9781 if (u64Val != UINT64_C(0xffffffffffffffff))
9782 {
9783 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
9784 /** @todo Bits beyond the processor's physical-address width MBZ. */
9785 /** @todo 32-bit located in memory referenced by value of this field (as a
9786 * physical address) must contain the processor's VMCS revision ID. */
9787 /** @todo SMM checks. */
9788 }
9789
9790 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
9791 * not using nested paging? */
9792 if ( pVM->hm.s.fNestedPaging
9793 && !fLongModeGuest
9794 && CPUMIsGuestInPAEModeEx(pCtx))
9795 {
9796 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
9797 AssertRCBreak(rc);
9798 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9799
9800 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
9801 AssertRCBreak(rc);
9802 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9803
9804 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
9805 AssertRCBreak(rc);
9806 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9807
9808 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
9809 AssertRCBreak(rc);
9810 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9811 }
9812
9813 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
9814 if (uError == VMX_IGS_ERROR)
9815 uError = VMX_IGS_REASON_NOT_FOUND;
9816 } while (0);
9817
9818 pVCpu->hm.s.u32HMError = uError;
9819 return uError;
9820
9821#undef HMVMX_ERROR_BREAK
9822#undef HMVMX_CHECK_BREAK
9823}
9824
9825
9826/**
9827 * Setup the APIC-access page for virtualizing APIC access.
9828 *
9829 * This can cause a longjumps to R3 due to the acquisition of the PGM lock, hence
9830 * this not done as part of exporting guest state, see @bugref{8721}.
9831 *
9832 * @returns VBox status code.
9833 * @param pVCpu The cross context virtual CPU structure.
9834 */
9835static int hmR0VmxMapHCApicAccessPage(PVMCPU pVCpu)
9836{
9837 PVM pVM = pVCpu->CTX_SUFF(pVM);
9838 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
9839
9840 Assert(PDMHasApic(pVM));
9841 Assert(u64MsrApicBase);
9842
9843 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
9844 Log4Func(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
9845
9846 /* Unalias any existing mapping. */
9847 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
9848 AssertRCReturn(rc, rc);
9849
9850 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
9851 Assert(pVM->hm.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
9852 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
9853 AssertRCReturn(rc, rc);
9854
9855 /* Update the per-VCPU cache of the APIC base MSR. */
9856 pVCpu->hm.s.vmx.u64GstMsrApicBase = u64MsrApicBase;
9857 return VINF_SUCCESS;
9858}
9859
9860
9861#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9862/**
9863 * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
9864 * nested-guest using hardware-assisted VMX.
9865 *
9866 * @param pVCpu The cross context virtual CPU structure.
9867 * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
9868 * @param pVmcsInfoGst The guest VMCS info. object.
9869 */
9870static void hmR0VmxMergeMsrBitmapNested(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
9871{
9872 uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
9873 uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
9874 uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
9875 Assert(pu64MsrBitmapNstGst);
9876 Assert(pu64MsrBitmapGst);
9877 Assert(pu64MsrBitmap);
9878
9879 /*
9880 * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
9881 * MSR that is intercepted by the guest is also intercepted while executing the
9882 * nested-guest using hardware-assisted VMX.
9883 */
9884 uint32_t const cbFrag = sizeof(uint64_t);
9885 uint32_t const cFrags = X86_PAGE_4K_SIZE / cbFrag;
9886 for (uint32_t i = 0; i <= cFrags; i++)
9887 pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
9888}
9889
9890
9891/**
9892 * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
9893 * hardware-assisted VMX execution of the nested-guest.
9894 *
9895 * For a guest, we don't modify these controls once we set up the VMCS.
9896 *
9897 * For nested-guests since the guest hypervisor provides these controls on every
9898 * nested-guest VM-entry and could potentially change them everytime we need to
9899 * merge them before every nested-guest VM-entry.
9900 *
9901 * @returns VBox status code.
9902 * @param pVCpu The cross context virtual CPU structure.
9903 */
9904static int hmR0VmxMergeVmcsNested(PVMCPU pVCpu)
9905{
9906 PVM pVM = pVCpu->CTX_SUFF(pVM);
9907 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
9908 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
9909 Assert(pVmcsNstGst);
9910
9911 /*
9912 * Merge the controls with the requirements of the guest VMCS.
9913 *
9914 * We do not need to validate the nested-guest VMX features specified in the
9915 * nested-guest VMCS with the features supported by the physical CPU as it's
9916 * already done by the VMLAUNCH/VMRESUME instruction emulation.
9917 *
9918 * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the
9919 * guest are derived from the VMX features supported by the physical CPU.
9920 */
9921
9922 /* Pin-based VM-execution controls. */
9923 uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
9924
9925 /* Processor-based VM-execution controls. */
9926 uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
9927 | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
9928 | VMX_PROC_CTLS_NMI_WINDOW_EXIT
9929 | VMX_PROC_CTLS_USE_TPR_SHADOW
9930 | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
9931
9932 /* Secondary processor-based VM-execution controls. */
9933 uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
9934 | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
9935 | VMX_PROC_CTLS2_INVPCID
9936 | VMX_PROC_CTLS2_RDTSCP
9937 | VMX_PROC_CTLS2_XSAVES_XRSTORS
9938 | VMX_PROC_CTLS2_APIC_REG_VIRT
9939 | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
9940 | VMX_PROC_CTLS2_VMFUNC));
9941
9942 /*
9943 * VM-entry controls:
9944 * These controls contains state that depends on the nested-guest state (primarily
9945 * EFER MSR) and is thus not constant through VMLAUNCH/VMRESUME and the nested-guest
9946 * VM-exit. Although the nested-hypervisor cannot change it, we need to in order to
9947 * properly continue executing the nested-guest if the EFER MSR changes but does not
9948 * cause a nested-guest VM-exits.
9949 *
9950 * VM-exit controls:
9951 * These controls specify the host state on return. We cannot use the controls from
9952 * the nested-hypervisor state as is as it would contain the guest state rather than
9953 * the host state. Since the host state is subject to change (e.g. preemption, trips
9954 * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
9955 * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
9956 *
9957 * VM-entry MSR-load:
9958 * The guest MSRs from the VM-entry MSR-load area are already loaded into the
9959 * guest-CPU context by the VMLAUNCH/VMRESUME instruction emulation.
9960 *
9961 * VM-exit MSR-store:
9962 * The VM-exit emulation will take care of populating the MSRs from the guest-CPU
9963 * context back into the VM-exit MSR-store area.
9964 *
9965 * VM-exit MSR-load areas:
9966 * This must contain the real host MSRs with hardware-assisted VMX execution. Hence,
9967 * we can entirely ignore what the nested-hypervisor wants to load here.
9968 */
9969
9970 /*
9971 * Exception bitmap.
9972 *
9973 * We could remove #UD from the guest bitmap and merge it with the nested-guest
9974 * bitmap here (and avoid doing anything while exporting nested-guest state), but to
9975 * keep the code more flexible if intercepting exceptions become more dynamic in
9976 * the future we do it as part of exporting the nested-guest state.
9977 */
9978 uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
9979
9980 /*
9981 * CR0/CR4 guest/host mask.
9982 *
9983 * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest
9984 * must cause VM-exits, so we need to merge them here.
9985 */
9986 uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
9987 uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
9988
9989 /*
9990 * Page-fault error-code mask and match.
9991 *
9992 * Although we require unrestricted guest execution (and thereby nested-paging) for
9993 * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
9994 * normally intercept #PFs, it might intercept them for debugging purposes.
9995 *
9996 * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF
9997 * filters. If the outer guest is intercepting #PFs we must intercept all #PFs.
9998 */
9999 uint32_t u32XcptPFMask;
10000 uint32_t u32XcptPFMatch;
10001 if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
10002 {
10003 u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
10004 u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
10005 }
10006 else
10007 {
10008 u32XcptPFMask = 0;
10009 u32XcptPFMatch = 0;
10010 }
10011
10012 /*
10013 * Pause-Loop exiting.
10014 */
10015 uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
10016 uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
10017
10018 /*
10019 * I/O Bitmap.
10020 *
10021 * We do not use the I/O bitmap that may be provided by the guest hypervisor as we
10022 * always intercept all I/O port accesses.
10023 */
10024 Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
10025
10026 /*
10027 * APIC-access page.
10028 *
10029 * The APIC-access page address has already been initialized while setting up the
10030 * nested-guest VMCS. In theory, even if the guest-physical address is invalid, it
10031 * should not be on any consequence to the host or to the guest for that matter, but
10032 * we only accept valid addresses verified by the VMLAUNCH/VMRESUME instruction
10033 * emulation to keep it simple.
10034 */
10035
10036 /*
10037 * Virtual-APIC page and TPR threshold.
10038 *
10039 * We shall use the host-physical address of the virtual-APIC page in guest memory directly.
10040 * For this reason, we can access the virtual-APIC page of the nested-guest only using
10041 * PGM physical handlers as we must not assume a kernel virtual-address mapping exists and
10042 * requesting PGM for a mapping could be expensive/resource intensive (PGM mapping cache).
10043 */
10044 RTHCPHYS HCPhysVirtApic = NIL_RTHCPHYS;
10045 uint32_t const u32TprThreshold = pVmcsNstGst->u32TprThreshold;
10046 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10047 {
10048 int rc = PGMPhysGCPhys2HCPhys(pVM, pVmcsNstGst->u64AddrVirtApic.u, &HCPhysVirtApic);
10049
10050 /*
10051 * If the guest hypervisor has loaded crap into the virtual-APIC page field
10052 * we would fail to obtain a valid host-physical address for its guest-physical
10053 * address.
10054 *
10055 * We currently do not support this scenario. Maybe in the future if there is a
10056 * pressing need we can explore making this particular set of conditions work.
10057 * Right now we just cause a VM-entry failure.
10058 *
10059 * This has already been checked by VMLAUNCH/VMRESUME instruction emulation,
10060 * so should not really failure at the moment.
10061 */
10062 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
10063 }
10064 else
10065 {
10066 /*
10067 * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
10068 * used by the guest hypervisor. Preventing MMIO accesses to the physical APIC will
10069 * be taken care of by EPT/shadow paging.
10070 */
10071 if (pVM->hm.s.fAllow64BitGuests)
10072 {
10073 u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
10074 | VMX_PROC_CTLS_CR8_LOAD_EXIT;
10075 }
10076 }
10077
10078 /*
10079 * Validate basic assumptions.
10080 */
10081 PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10082 Assert(pVM->hm.s.vmx.fAllowUnrestricted);
10083 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
10084 Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
10085
10086 /*
10087 * Commit it to the nested-guest VMCS.
10088 */
10089 int rc = VINF_SUCCESS;
10090 if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
10091 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
10092 if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
10093 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
10094 if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
10095 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
10096 if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
10097 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
10098 if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
10099 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
10100 if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
10101 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
10102 if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
10103 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
10104 if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
10105 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
10106 if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
10107 && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
10108 {
10109 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
10110 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
10111 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
10112 }
10113 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10114 {
10115 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
10116 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
10117 }
10118 AssertRCReturn(rc, rc);
10119
10120 /*
10121 * Update the nested-guest VMCS cache.
10122 */
10123 pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
10124 pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
10125 pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
10126 pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
10127 pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
10128 pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
10129 pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
10130 pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
10131 pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
10132
10133 /*
10134 * MSR bitmap.
10135 *
10136 * The MSR bitmap address has already been initialized while setting up the
10137 * nested-guest VMCS, here we need to merge the MSR bitmaps.
10138 */
10139 if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10140 hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
10141
10142 return VINF_SUCCESS;
10143}
10144#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10145
10146
10147/**
10148 * Does the preparations before executing guest code in VT-x.
10149 *
10150 * This may cause longjmps to ring-3 and may even result in rescheduling to the
10151 * recompiler/IEM. We must be cautious what we do here regarding committing
10152 * guest-state information into the VMCS assuming we assuredly execute the
10153 * guest in VT-x mode.
10154 *
10155 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
10156 * the common-state (TRPM/forceflags), we must undo those changes so that the
10157 * recompiler/IEM can (and should) use them when it resumes guest execution.
10158 * Otherwise such operations must be done when we can no longer exit to ring-3.
10159 *
10160 * @returns Strict VBox status code (i.e. informational status codes too).
10161 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
10162 * have been disabled.
10163 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
10164 * double-fault into the guest.
10165 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
10166 * dispatched directly.
10167 * @retval VINF_* scheduling changes, we have to go back to ring-3.
10168 *
10169 * @param pVCpu The cross context virtual CPU structure.
10170 * @param pVmxTransient The VMX-transient structure.
10171 * @param fStepping Whether we are single-stepping the guest in the
10172 * hypervisor debugger. Makes us ignore some of the reasons
10173 * for returning to ring-3, and return VINF_EM_DBG_STEPPED
10174 * if event dispatching took place.
10175 */
10176static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
10177{
10178 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10179
10180#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
10181 if (pVmxTransient->fIsNestedGuest)
10182 {
10183 RT_NOREF2(pVCpu, fStepping);
10184 Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
10185 return VINF_EM_RESCHEDULE_REM;
10186 }
10187#endif
10188
10189#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
10190 PGMRZDynMapFlushAutoSet(pVCpu);
10191#endif
10192
10193 /*
10194 * Check and process force flag actions, some of which might require us to go back to ring-3.
10195 */
10196 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
10197 if (rcStrict == VINF_SUCCESS)
10198 { /* FFs don't get set all the time. */ }
10199 else
10200 return rcStrict;
10201
10202#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10203 /*
10204 * Switch to the nested-guest VMCS as we may have transitioned into executing
10205 * the nested-guest without leaving ring-0. Otherwise, if we came from ring-3
10206 * we would load the nested-guest VMCS while entering the VMX ring-0 session.
10207 *
10208 * We do this as late as possible to minimize (though not completely remove)
10209 * clearing/loading VMCS again due to premature trips to ring-3 above.
10210 */
10211 if (pVmxTransient->fIsNestedGuest)
10212 {
10213 if (!pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
10214 {
10215 /*
10216 * Ensure we have synced everything from the guest VMCS and also flag that
10217 * that we need to export the full (nested) guest-CPU context to the
10218 * nested-guest VMCS.
10219 */
10220 HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
10221 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
10222
10223 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
10224 int rc = hmR0VmxSwitchVmcs(&pVCpu->hm.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
10225 if (RT_LIKELY(rc == VINF_SUCCESS))
10226 {
10227 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = true;
10228 ASMSetFlags(fEFlags);
10229 pVmxTransient->pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10230
10231 /*
10232 * We use a different VM-exit MSR-store area for the nested-guest. Hence,
10233 * flag that we need to update the host MSR values there. Even if we decide
10234 * in the future to share the VM-exit MSR-store area page with the guest,
10235 * if its content differs, we would have to update the host MSRs anyway.
10236 */
10237 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
10238 Assert(!pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer); /** @todo NSTVMX: Paranoia remove later. */
10239 }
10240 else
10241 {
10242 ASMSetFlags(fEFlags);
10243 return rc;
10244 }
10245 }
10246
10247 /*
10248 * Merge guest VMCS controls with the nested-guest VMCS controls.
10249 *
10250 * Even if we have not executed the guest prior to this (e.g. when resuming
10251 * from a saved state), we should be okay with merging controls as we
10252 * initialize the guest VMCS controls as part of VM setup phase.
10253 */
10254 if (!pVCpu->hm.s.vmx.fMergedNstGstCtls)
10255 {
10256 int rc = hmR0VmxMergeVmcsNested(pVCpu);
10257 AssertRCReturn(rc, rc);
10258 pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
10259 }
10260 }
10261#endif
10262
10263 /*
10264 * Virtualize memory-mapped accesses to the physical APIC (may take locks).
10265 * We look at the guest VMCS control here as we always set it when supported by
10266 * the physical CPU. Looking at the nested-guest control here would not be
10267 * possible because they are not merged yet.
10268 */
10269 PVM pVM = pVCpu->CTX_SUFF(pVM);
10270 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10271 if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
10272 && (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10273 && PDMHasApic(pVM))
10274 {
10275 int rc = hmR0VmxMapHCApicAccessPage(pVCpu);
10276 AssertRCReturn(rc, rc);
10277 }
10278
10279 /*
10280 * Evaluate events to be injected into the guest.
10281 *
10282 * Events in TRPM can be injected without inspecting the guest state.
10283 * If any new events (interrupts/NMI) are pending currently, we try to set up the
10284 * guest to cause a VM-exit the next time they are ready to receive the event.
10285 */
10286 if (TRPMHasTrap(pVCpu))
10287 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
10288
10289 uint32_t fIntrState;
10290 rcStrict = hmR0VmxEvaluatePendingEvent(pVCpu, pVmxTransient, &fIntrState);
10291
10292#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10293 /*
10294 * While evaluating pending events if something failed (unlikely) or if we were
10295 * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
10296 */
10297 if ( rcStrict != VINF_SUCCESS
10298 || ( pVmxTransient->fIsNestedGuest
10299 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)))
10300 return rcStrict;
10301#endif
10302
10303 /*
10304 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
10305 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
10306 * also result in triple-faulting the VM.
10307 *
10308 * The above does not apply when executing a nested-guest (since unrestricted guest execution
10309 * is a requirement) regardless doing it avoid duplicating code elsewhere.
10310 */
10311 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pVmxTransient, fIntrState, fStepping);
10312 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10313 { /* likely */ }
10314 else
10315 {
10316 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
10317 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10318 return rcStrict;
10319 }
10320
10321 /*
10322 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
10323 * import CR3 themselves. We will need to update them here, as even as late as the above
10324 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
10325 * the below force flags to be set.
10326 */
10327 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
10328 {
10329 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
10330 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
10331 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
10332 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
10333 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10334 }
10335 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
10336 {
10337 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
10338 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10339 }
10340
10341#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10342 /* Paranoia. */
10343 Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10344#endif
10345
10346 /*
10347 * No longjmps to ring-3 from this point on!!!
10348 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
10349 * This also disables flushing of the R0-logger instance (if any).
10350 */
10351 VMMRZCallRing3Disable(pVCpu);
10352
10353 /*
10354 * Export the guest state bits.
10355 *
10356 * We cannot perform longjmps while loading the guest state because we do not preserve the
10357 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
10358 * CPU migration.
10359 *
10360 * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
10361 * registers. Hence, loading of the guest state needs to be done -after- injection of events.
10362 */
10363 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
10364 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10365 { /* likely */ }
10366 else
10367 {
10368 VMMRZCallRing3Enable(pVCpu);
10369 return rcStrict;
10370 }
10371
10372 /*
10373 * We disable interrupts so that we don't miss any interrupts that would flag preemption
10374 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
10375 * preemption disabled for a while. Since this is purely to aid the
10376 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
10377 * disable interrupt on NT.
10378 *
10379 * We need to check for force-flags that could've possible been altered since we last
10380 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
10381 * see @bugref{6398}).
10382 *
10383 * We also check a couple of other force-flags as a last opportunity to get the EMT back
10384 * to ring-3 before executing guest code.
10385 */
10386 pVmxTransient->fEFlags = ASMIntDisableFlags();
10387
10388 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
10389 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
10390 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
10391 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
10392 {
10393 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
10394 {
10395 pVCpu->hm.s.Event.fPending = false;
10396
10397 /*
10398 * We've injected any pending events. This is really the point of no return (to ring-3).
10399 *
10400 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
10401 * returns from this function, so don't enable them here.
10402 */
10403 return VINF_SUCCESS;
10404 }
10405
10406 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
10407 rcStrict = VINF_EM_RAW_INTERRUPT;
10408 }
10409 else
10410 {
10411 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
10412 rcStrict = VINF_EM_RAW_TO_R3;
10413 }
10414
10415 ASMSetFlags(pVmxTransient->fEFlags);
10416 VMMRZCallRing3Enable(pVCpu);
10417
10418 return rcStrict;
10419}
10420
10421
10422/**
10423 * Final preparations before executing guest code using hardware-assisted VMX.
10424 *
10425 * We can no longer get preempted to a different host CPU and there are no returns
10426 * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
10427 * failures), this function is not intended to fail sans unrecoverable hardware
10428 * errors.
10429 *
10430 * @param pVCpu The cross context virtual CPU structure.
10431 * @param pVmxTransient The VMX-transient structure.
10432 *
10433 * @remarks Called with preemption disabled.
10434 * @remarks No-long-jump zone!!!
10435 */
10436static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10437{
10438 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10439 Assert(VMMR0IsLogFlushDisabled(pVCpu));
10440 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
10441 Assert(!pVCpu->hm.s.Event.fPending);
10442
10443 /*
10444 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
10445 */
10446 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10447 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
10448
10449 PVM pVM = pVCpu->CTX_SUFF(pVM);
10450 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10451
10452 if (!CPUMIsGuestFPUStateActive(pVCpu))
10453 {
10454 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10455 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
10456 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
10457 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10458 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
10459 }
10460
10461 /*
10462 * Re-save the host state bits as we may've been preempted (only happens when
10463 * thread-context hooks are used or when the VM start function changes).
10464 * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
10465 * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
10466 * see @bugref{8432}.
10467 *
10468 * This may also happen when switching to/from a nested-guest VMCS without leaving
10469 * ring-0.
10470 */
10471 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
10472 {
10473 int rc = hmR0VmxExportHostState(pVCpu);
10474 AssertRC(rc);
10475 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
10476 }
10477 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
10478
10479 /*
10480 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
10481 */
10482 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
10483 hmR0VmxExportSharedState(pVCpu, pVmxTransient);
10484 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
10485
10486 /*
10487 * Store status of the shared guest/host debug state at the time of VM-entry.
10488 */
10489#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
10490 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
10491 {
10492 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
10493 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
10494 }
10495 else
10496#endif
10497 {
10498 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
10499 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
10500 }
10501
10502 /*
10503 * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
10504 * more than one conditional check. The post-run side of our code shall determine
10505 * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
10506 */
10507 if (pVmcsInfo->pbVirtApic)
10508 pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
10509
10510 /*
10511 * Update the host MSRs values in the VM-exit MSR-load area.
10512 */
10513 if (!pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs)
10514 {
10515 if (pVmcsInfo->cExitMsrLoad > 0)
10516 hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
10517 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = true;
10518 }
10519
10520 /*
10521 * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
10522 * VMX-preemption timer based on the next virtual sync clock deadline.
10523 */
10524 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
10525 RTCPUID const idCurrentCpu = pHostCpu->idCpu;
10526 if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
10527 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
10528 {
10529 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient);
10530 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
10531 }
10532
10533 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
10534 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
10535 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
10536 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
10537
10538 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
10539
10540 TMNotifyStartOfExecution(pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
10541 as we're about to start executing the guest . */
10542
10543 /*
10544 * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
10545 *
10546 * This is done this late as updating the TSC offsetting/preemption timer above
10547 * figures out if we can skip intercepting RDTSCP by calculating the number of
10548 * host CPU ticks till the next virtual sync deadline (for the dynamic case).
10549 */
10550 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
10551 {
10552 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10553 {
10554 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
10555 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
10556 true /* fSetReadWrite */, true /* fUpdateHostMsr */);
10557 AssertRC(rc);
10558 }
10559 else
10560 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
10561 }
10562
10563#ifdef VBOX_STRICT
10564 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo);
10565 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo);
10566 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo));
10567#endif
10568
10569#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
10570 /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
10571 * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs. */
10572 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
10573 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
10574 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
10575#endif
10576}
10577
10578
10579/**
10580 * First C routine invoked after running guest code using hardware-assisted VMX.
10581 *
10582 * @param pVCpu The cross context virtual CPU structure.
10583 * @param pVmxTransient The VMX-transient structure.
10584 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
10585 *
10586 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
10587 *
10588 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
10589 * unconditionally when it is safe to do so.
10590 */
10591static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
10592{
10593 uint64_t const uHostTsc = ASMReadTSC(); /** @todo We can do a lot better here, see @bugref{9180#c38}. */
10594
10595 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
10596 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
10597 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
10598 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
10599 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
10600 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
10601
10602 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10603 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10604 {
10605 uint64_t uGstTsc;
10606 if (!pVmxTransient->fIsNestedGuest)
10607 uGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10608 else
10609 {
10610 uint64_t const uNstGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10611 uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
10612 }
10613 TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
10614 }
10615
10616 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
10617 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
10618 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10619
10620#if HC_ARCH_BITS == 64
10621 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
10622#endif
10623#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
10624 /* The 64-on-32 switcher maintains VMCS-launch state on its own
10625 and we need to leave it alone here. */
10626 if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
10627 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10628#else
10629 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10630#endif
10631#ifdef VBOX_STRICT
10632 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
10633#endif
10634 Assert(!ASMIntAreEnabled());
10635 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
10636 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10637
10638 /*
10639 * Save the basic VM-exit reason and check if the VM-entry failed.
10640 * See Intel spec. 24.9.1 "Basic VM-exit Information".
10641 */
10642 uint32_t uExitReason;
10643 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
10644 AssertRC(rc);
10645 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
10646 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
10647
10648 /*
10649 * Check if VMLAUNCH/VMRESUME succeeded.
10650 * If this failed, we cause a guru meditation and cease further execution.
10651 */
10652 if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
10653 {
10654 /*
10655 * Update the VM-exit history array here even if the VM-entry failed due to:
10656 * - Invalid guest state.
10657 * - MSR loading.
10658 * - Machine-check event.
10659 *
10660 * In any of the above cases we will still have a "valid" VM-exit reason
10661 * despite @a fVMEntryFailed being false.
10662 *
10663 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
10664 *
10665 * Note! We don't have CS or RIP at this point. Will probably address that later
10666 * by amending the history entry added here.
10667 */
10668 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
10669 UINT64_MAX, uHostTsc);
10670
10671 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
10672 {
10673 VMMRZCallRing3Enable(pVCpu);
10674
10675 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10676 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10677
10678#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
10679 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
10680 AssertRC(rc);
10681#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
10682 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_RFLAGS);
10683 AssertRC(rc);
10684#else
10685 /*
10686 * Import the guest-interruptibility state always as we need it while evaluating
10687 * injecting events on re-entry.
10688 *
10689 * We don't import CR0 (when unrestricted guest execution is unavailable) despite
10690 * checking for real-mode while exporting the state because all bits that cause
10691 * mode changes wrt CR0 are intercepted.
10692 */
10693 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
10694 AssertRC(rc);
10695#endif
10696
10697 /*
10698 * Sync the TPR shadow with our APIC state.
10699 */
10700 if ( !pVmxTransient->fIsNestedGuest
10701 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
10702 {
10703 Assert(pVmcsInfo->pbVirtApic);
10704 if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
10705 {
10706 rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
10707 AssertRC(rc);
10708 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
10709 }
10710 }
10711
10712 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10713 return;
10714 }
10715 }
10716 else
10717 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
10718
10719 VMMRZCallRing3Enable(pVCpu);
10720}
10721
10722
10723/**
10724 * Runs the guest code using hardware-assisted VMX the normal way.
10725 *
10726 * @returns VBox status code.
10727 * @param pVCpu The cross context virtual CPU structure.
10728 * @param pcLoops Pointer to the number of executed loops.
10729 */
10730static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
10731{
10732 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
10733 Assert(pcLoops);
10734 Assert(*pcLoops <= cMaxResumeLoops);
10735
10736 VMXTRANSIENT VmxTransient;
10737 RT_ZERO(VmxTransient);
10738 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10739
10740 /* Paranoia. */
10741 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfo);
10742 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10743
10744 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10745 for (;;)
10746 {
10747 Assert(!HMR0SuspendPending());
10748 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10749 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10750
10751 /*
10752 * Preparatory work for running nested-guest code, this may force us to
10753 * return to ring-3.
10754 *
10755 * Warning! This bugger disables interrupts on VINF_SUCCESS!
10756 */
10757 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
10758 if (rcStrict != VINF_SUCCESS)
10759 break;
10760
10761 /* Interrupts are disabled at this point! */
10762 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10763 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
10764 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10765 /* Interrupts are re-enabled at this point! */
10766
10767 /*
10768 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
10769 */
10770 if (RT_SUCCESS(rcRun))
10771 { /* very likely */ }
10772 else
10773 {
10774 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10775 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10776 return rcRun;
10777 }
10778
10779 /*
10780 * Profile the VM-exit.
10781 */
10782 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10783 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10784 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10785 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10786 HMVMX_START_EXIT_DISPATCH_PROF();
10787
10788 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10789
10790 /*
10791 * Handle the VM-exit.
10792 */
10793#ifdef HMVMX_USE_FUNCTION_TABLE
10794 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
10795#else
10796 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
10797#endif
10798 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10799 if (rcStrict == VINF_SUCCESS)
10800 {
10801 if (++(*pcLoops) <= cMaxResumeLoops)
10802 continue;
10803 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10804 rcStrict = VINF_EM_RAW_INTERRUPT;
10805 }
10806 break;
10807 }
10808
10809 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10810 return rcStrict;
10811}
10812
10813#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10814/**
10815 * Runs the nested-guest code using hardware-assisted VMX.
10816 *
10817 * @returns VBox status code.
10818 * @param pVCpu The cross context virtual CPU structure.
10819 * @param pcLoops Pointer to the number of executed loops.
10820 *
10821 * @sa hmR0VmxRunGuestCodeNormal().
10822 */
10823static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
10824{
10825 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
10826 Assert(pcLoops);
10827 Assert(*pcLoops <= cMaxResumeLoops);
10828
10829 VMXTRANSIENT VmxTransient;
10830 RT_ZERO(VmxTransient);
10831 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10832 VmxTransient.fIsNestedGuest = true;
10833
10834 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10835 for (;;)
10836 {
10837 Assert(!HMR0SuspendPending());
10838 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10839 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10840
10841 /*
10842 * Preparatory work for running guest code, this may force us to
10843 * return to ring-3.
10844 *
10845 * Warning! This bugger disables interrupts on VINF_SUCCESS!
10846 */
10847 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
10848 if (rcStrict != VINF_SUCCESS)
10849 break;
10850
10851 /* Interrupts are disabled at this point! */
10852 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10853 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
10854 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10855 /* Interrupts are re-enabled at this point! */
10856
10857 /*
10858 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
10859 */
10860 if (RT_SUCCESS(rcRun))
10861 { /* very likely */ }
10862 else
10863 {
10864 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10865 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10866 return rcRun;
10867 }
10868
10869 /*
10870 * Profile the VM-exit.
10871 */
10872 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10873 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10874 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10875 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10876 HMVMX_START_EXIT_DISPATCH_PROF();
10877
10878 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10879
10880 /*
10881 * Handle the VM-exit.
10882 */
10883 rcStrict = hmR0VmxHandleExitNested(pVCpu, &VmxTransient);
10884 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10885 if ( rcStrict == VINF_SUCCESS
10886 && CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10887 {
10888 if (++(*pcLoops) <= cMaxResumeLoops)
10889 continue;
10890 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10891 rcStrict = VINF_EM_RAW_INTERRUPT;
10892 }
10893 break;
10894 }
10895
10896 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10897 return rcStrict;
10898}
10899#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10900
10901
10902/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
10903 * probes.
10904 *
10905 * The following few functions and associated structure contains the bloat
10906 * necessary for providing detailed debug events and dtrace probes as well as
10907 * reliable host side single stepping. This works on the principle of
10908 * "subclassing" the normal execution loop and workers. We replace the loop
10909 * method completely and override selected helpers to add necessary adjustments
10910 * to their core operation.
10911 *
10912 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
10913 * any performance for debug and analysis features.
10914 *
10915 * @{
10916 */
10917
10918/**
10919 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
10920 * the debug run loop.
10921 */
10922typedef struct VMXRUNDBGSTATE
10923{
10924 /** The RIP we started executing at. This is for detecting that we stepped. */
10925 uint64_t uRipStart;
10926 /** The CS we started executing with. */
10927 uint16_t uCsStart;
10928
10929 /** Whether we've actually modified the 1st execution control field. */
10930 bool fModifiedProcCtls : 1;
10931 /** Whether we've actually modified the 2nd execution control field. */
10932 bool fModifiedProcCtls2 : 1;
10933 /** Whether we've actually modified the exception bitmap. */
10934 bool fModifiedXcptBitmap : 1;
10935
10936 /** We desire the modified the CR0 mask to be cleared. */
10937 bool fClearCr0Mask : 1;
10938 /** We desire the modified the CR4 mask to be cleared. */
10939 bool fClearCr4Mask : 1;
10940 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
10941 uint32_t fCpe1Extra;
10942 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
10943 uint32_t fCpe1Unwanted;
10944 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
10945 uint32_t fCpe2Extra;
10946 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
10947 uint32_t bmXcptExtra;
10948 /** The sequence number of the Dtrace provider settings the state was
10949 * configured against. */
10950 uint32_t uDtraceSettingsSeqNo;
10951 /** VM-exits to check (one bit per VM-exit). */
10952 uint32_t bmExitsToCheck[3];
10953
10954 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
10955 uint32_t fProcCtlsInitial;
10956 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
10957 uint32_t fProcCtls2Initial;
10958 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
10959 uint32_t bmXcptInitial;
10960} VMXRUNDBGSTATE;
10961AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
10962typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
10963
10964
10965/**
10966 * Initializes the VMXRUNDBGSTATE structure.
10967 *
10968 * @param pVCpu The cross context virtual CPU structure of the
10969 * calling EMT.
10970 * @param pVmxTransient The VMX-transient structure.
10971 * @param pDbgState The debug state to initialize.
10972 */
10973static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
10974{
10975 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
10976 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
10977
10978 pDbgState->fModifiedProcCtls = false;
10979 pDbgState->fModifiedProcCtls2 = false;
10980 pDbgState->fModifiedXcptBitmap = false;
10981 pDbgState->fClearCr0Mask = false;
10982 pDbgState->fClearCr4Mask = false;
10983 pDbgState->fCpe1Extra = 0;
10984 pDbgState->fCpe1Unwanted = 0;
10985 pDbgState->fCpe2Extra = 0;
10986 pDbgState->bmXcptExtra = 0;
10987 pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls;
10988 pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2;
10989 pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap;
10990}
10991
10992
10993/**
10994 * Updates the VMSC fields with changes requested by @a pDbgState.
10995 *
10996 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
10997 * immediately before executing guest code, i.e. when interrupts are disabled.
10998 * We don't check status codes here as we cannot easily assert or return in the
10999 * latter case.
11000 *
11001 * @param pVCpu The cross context virtual CPU structure.
11002 * @param pVmxTransient The VMX-transient structure.
11003 * @param pDbgState The debug state.
11004 */
11005static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11006{
11007 /*
11008 * Ensure desired flags in VMCS control fields are set.
11009 * (Ignoring write failure here, as we're committed and it's just debug extras.)
11010 *
11011 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
11012 * there should be no stale data in pCtx at this point.
11013 */
11014 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11015 if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
11016 || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
11017 {
11018 pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
11019 pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
11020 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
11021 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
11022 pDbgState->fModifiedProcCtls = true;
11023 }
11024
11025 if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
11026 {
11027 pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra;
11028 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
11029 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
11030 pDbgState->fModifiedProcCtls2 = true;
11031 }
11032
11033 if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
11034 {
11035 pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
11036 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
11037 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
11038 pDbgState->fModifiedXcptBitmap = true;
11039 }
11040
11041 if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
11042 {
11043 pVmcsInfo->u64Cr0Mask = 0;
11044 VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, 0);
11045 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
11046 }
11047
11048 if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
11049 {
11050 pVmcsInfo->u64Cr4Mask = 0;
11051 VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, 0);
11052 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
11053 }
11054
11055 NOREF(pVCpu);
11056}
11057
11058
11059/**
11060 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
11061 * re-entry next time around.
11062 *
11063 * @returns Strict VBox status code (i.e. informational status codes too).
11064 * @param pVCpu The cross context virtual CPU structure.
11065 * @param pVmxTransient The VMX-transient structure.
11066 * @param pDbgState The debug state.
11067 * @param rcStrict The return code from executing the guest using single
11068 * stepping.
11069 */
11070static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
11071 VBOXSTRICTRC rcStrict)
11072{
11073 /*
11074 * Restore VM-exit control settings as we may not reenter this function the
11075 * next time around.
11076 */
11077 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11078
11079 /* We reload the initial value, trigger what we can of recalculations the
11080 next time around. From the looks of things, that's all that's required atm. */
11081 if (pDbgState->fModifiedProcCtls)
11082 {
11083 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
11084 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
11085 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
11086 AssertRCReturn(rc2, rc2);
11087 pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
11088 }
11089
11090 /* We're currently the only ones messing with this one, so just restore the
11091 cached value and reload the field. */
11092 if ( pDbgState->fModifiedProcCtls2
11093 && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
11094 {
11095 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
11096 AssertRCReturn(rc2, rc2);
11097 pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
11098 }
11099
11100 /* If we've modified the exception bitmap, we restore it and trigger
11101 reloading and partial recalculation the next time around. */
11102 if (pDbgState->fModifiedXcptBitmap)
11103 pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
11104
11105 return rcStrict;
11106}
11107
11108
11109/**
11110 * Configures VM-exit controls for current DBGF and DTrace settings.
11111 *
11112 * This updates @a pDbgState and the VMCS execution control fields to reflect
11113 * the necessary VM-exits demanded by DBGF and DTrace.
11114 *
11115 * @param pVCpu The cross context virtual CPU structure.
11116 * @param pVmxTransient The VMX-transient structure. May update
11117 * fUpdatedTscOffsettingAndPreemptTimer.
11118 * @param pDbgState The debug state.
11119 */
11120static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11121{
11122 /*
11123 * Take down the dtrace serial number so we can spot changes.
11124 */
11125 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
11126 ASMCompilerBarrier();
11127
11128 /*
11129 * We'll rebuild most of the middle block of data members (holding the
11130 * current settings) as we go along here, so start by clearing it all.
11131 */
11132 pDbgState->bmXcptExtra = 0;
11133 pDbgState->fCpe1Extra = 0;
11134 pDbgState->fCpe1Unwanted = 0;
11135 pDbgState->fCpe2Extra = 0;
11136 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
11137 pDbgState->bmExitsToCheck[i] = 0;
11138
11139 /*
11140 * Software interrupts (INT XXh) - no idea how to trigger these...
11141 */
11142 PVM pVM = pVCpu->CTX_SUFF(pVM);
11143 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
11144 || VBOXVMM_INT_SOFTWARE_ENABLED())
11145 {
11146 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11147 }
11148
11149 /*
11150 * INT3 breakpoints - triggered by #BP exceptions.
11151 */
11152 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
11153 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11154
11155 /*
11156 * Exception bitmap and XCPT events+probes.
11157 */
11158 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
11159 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
11160 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
11161
11162 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
11163 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
11164 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11165 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
11166 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
11167 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
11168 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
11169 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
11170 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
11171 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
11172 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
11173 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
11174 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
11175 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
11176 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
11177 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
11178 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
11179 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
11180
11181 if (pDbgState->bmXcptExtra)
11182 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11183
11184 /*
11185 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
11186 *
11187 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
11188 * So, when adding/changing/removing please don't forget to update it.
11189 *
11190 * Some of the macros are picking up local variables to save horizontal space,
11191 * (being able to see it in a table is the lesser evil here).
11192 */
11193#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
11194 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
11195 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
11196#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
11197 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11198 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11199 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11200 } else do { } while (0)
11201#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
11202 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11203 { \
11204 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
11205 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11206 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11207 } else do { } while (0)
11208#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
11209 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11210 { \
11211 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
11212 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11213 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11214 } else do { } while (0)
11215#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
11216 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11217 { \
11218 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
11219 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11220 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11221 } else do { } while (0)
11222
11223 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
11224 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
11225 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
11226 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
11227 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
11228
11229 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
11230 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
11231 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
11232 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
11233 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
11234 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
11235 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
11236 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
11237 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
11238 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
11239 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
11240 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
11241 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
11242 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
11243 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
11244 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
11245 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
11246 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
11247 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
11248 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
11249 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
11250 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
11251 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
11252 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
11253 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
11254 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
11255 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
11256 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
11257 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
11258 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
11259 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
11260 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
11261 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
11262 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
11263 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
11264 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
11265
11266 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
11267 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11268 {
11269 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4
11270 | CPUMCTX_EXTRN_APIC_TPR);
11271 AssertRC(rc);
11272
11273#if 0 /** @todo fix me */
11274 pDbgState->fClearCr0Mask = true;
11275 pDbgState->fClearCr4Mask = true;
11276#endif
11277 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
11278 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
11279 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11280 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
11281 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
11282 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
11283 require clearing here and in the loop if we start using it. */
11284 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
11285 }
11286 else
11287 {
11288 if (pDbgState->fClearCr0Mask)
11289 {
11290 pDbgState->fClearCr0Mask = false;
11291 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
11292 }
11293 if (pDbgState->fClearCr4Mask)
11294 {
11295 pDbgState->fClearCr4Mask = false;
11296 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
11297 }
11298 }
11299 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
11300 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
11301
11302 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
11303 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
11304 {
11305 /** @todo later, need to fix handler as it assumes this won't usually happen. */
11306 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
11307 }
11308 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
11309 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
11310
11311 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
11312 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
11313 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
11314 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
11315 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
11316 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
11317 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
11318 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
11319#if 0 /** @todo too slow, fix handler. */
11320 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
11321#endif
11322 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
11323
11324 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
11325 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
11326 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
11327 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
11328 {
11329 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11330 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
11331 }
11332 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11333 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11334 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11335 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11336
11337 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
11338 || IS_EITHER_ENABLED(pVM, INSTR_STR)
11339 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
11340 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
11341 {
11342 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11343 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
11344 }
11345 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
11346 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
11347 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
11348 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
11349
11350 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
11351 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
11352 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
11353 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
11354 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
11355 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
11356 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
11357 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
11358 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
11359 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
11360 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
11361 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
11362 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
11363 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
11364 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
11365 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
11366 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
11367 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
11368 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
11369 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
11370 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
11371 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
11372
11373#undef IS_EITHER_ENABLED
11374#undef SET_ONLY_XBM_IF_EITHER_EN
11375#undef SET_CPE1_XBM_IF_EITHER_EN
11376#undef SET_CPEU_XBM_IF_EITHER_EN
11377#undef SET_CPE2_XBM_IF_EITHER_EN
11378
11379 /*
11380 * Sanitize the control stuff.
11381 */
11382 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
11383 if (pDbgState->fCpe2Extra)
11384 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
11385 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
11386 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
11387 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
11388 {
11389 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
11390 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
11391 }
11392
11393 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
11394 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
11395 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
11396 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
11397}
11398
11399
11400/**
11401 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
11402 * appropriate.
11403 *
11404 * The caller has checked the VM-exit against the
11405 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
11406 * already, so we don't have to do that either.
11407 *
11408 * @returns Strict VBox status code (i.e. informational status codes too).
11409 * @param pVCpu The cross context virtual CPU structure.
11410 * @param pVmxTransient The VMX-transient structure.
11411 * @param uExitReason The VM-exit reason.
11412 *
11413 * @remarks The name of this function is displayed by dtrace, so keep it short
11414 * and to the point. No longer than 33 chars long, please.
11415 */
11416static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
11417{
11418 /*
11419 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
11420 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
11421 *
11422 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
11423 * does. Must add/change/remove both places. Same ordering, please.
11424 *
11425 * Added/removed events must also be reflected in the next section
11426 * where we dispatch dtrace events.
11427 */
11428 bool fDtrace1 = false;
11429 bool fDtrace2 = false;
11430 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
11431 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
11432 uint32_t uEventArg = 0;
11433#define SET_EXIT(a_EventSubName) \
11434 do { \
11435 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11436 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11437 } while (0)
11438#define SET_BOTH(a_EventSubName) \
11439 do { \
11440 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
11441 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11442 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
11443 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11444 } while (0)
11445 switch (uExitReason)
11446 {
11447 case VMX_EXIT_MTF:
11448 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11449
11450 case VMX_EXIT_XCPT_OR_NMI:
11451 {
11452 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
11453 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
11454 {
11455 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11456 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
11457 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
11458 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
11459 {
11460 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
11461 {
11462 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11463 uEventArg = pVmxTransient->uExitIntErrorCode;
11464 }
11465 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
11466 switch (enmEvent1)
11467 {
11468 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
11469 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
11470 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
11471 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
11472 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
11473 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
11474 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
11475 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
11476 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
11477 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
11478 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
11479 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
11480 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
11481 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
11482 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
11483 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
11484 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
11485 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
11486 default: break;
11487 }
11488 }
11489 else
11490 AssertFailed();
11491 break;
11492
11493 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
11494 uEventArg = idxVector;
11495 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
11496 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
11497 break;
11498 }
11499 break;
11500 }
11501
11502 case VMX_EXIT_TRIPLE_FAULT:
11503 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
11504 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
11505 break;
11506 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
11507 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
11508 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
11509 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
11510 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
11511
11512 /* Instruction specific VM-exits: */
11513 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
11514 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
11515 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
11516 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
11517 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
11518 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
11519 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
11520 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
11521 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
11522 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
11523 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
11524 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
11525 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
11526 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
11527 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
11528 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
11529 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
11530 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
11531 case VMX_EXIT_MOV_CRX:
11532 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11533 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
11534 SET_BOTH(CRX_READ);
11535 else
11536 SET_BOTH(CRX_WRITE);
11537 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
11538 break;
11539 case VMX_EXIT_MOV_DRX:
11540 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11541 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
11542 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
11543 SET_BOTH(DRX_READ);
11544 else
11545 SET_BOTH(DRX_WRITE);
11546 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
11547 break;
11548 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
11549 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
11550 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
11551 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
11552 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
11553 case VMX_EXIT_GDTR_IDTR_ACCESS:
11554 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11555 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
11556 {
11557 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
11558 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
11559 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
11560 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
11561 }
11562 break;
11563
11564 case VMX_EXIT_LDTR_TR_ACCESS:
11565 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11566 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
11567 {
11568 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
11569 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
11570 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
11571 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
11572 }
11573 break;
11574
11575 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
11576 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
11577 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
11578 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
11579 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
11580 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
11581 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
11582 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
11583 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
11584 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
11585 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
11586
11587 /* Events that aren't relevant at this point. */
11588 case VMX_EXIT_EXT_INT:
11589 case VMX_EXIT_INT_WINDOW:
11590 case VMX_EXIT_NMI_WINDOW:
11591 case VMX_EXIT_TPR_BELOW_THRESHOLD:
11592 case VMX_EXIT_PREEMPT_TIMER:
11593 case VMX_EXIT_IO_INSTR:
11594 break;
11595
11596 /* Errors and unexpected events. */
11597 case VMX_EXIT_INIT_SIGNAL:
11598 case VMX_EXIT_SIPI:
11599 case VMX_EXIT_IO_SMI:
11600 case VMX_EXIT_SMI:
11601 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
11602 case VMX_EXIT_ERR_MSR_LOAD:
11603 case VMX_EXIT_ERR_MACHINE_CHECK:
11604 break;
11605
11606 default:
11607 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
11608 break;
11609 }
11610#undef SET_BOTH
11611#undef SET_EXIT
11612
11613 /*
11614 * Dtrace tracepoints go first. We do them here at once so we don't
11615 * have to copy the guest state saving and stuff a few dozen times.
11616 * Down side is that we've got to repeat the switch, though this time
11617 * we use enmEvent since the probes are a subset of what DBGF does.
11618 */
11619 if (fDtrace1 || fDtrace2)
11620 {
11621 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11622 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
11623 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11624 switch (enmEvent1)
11625 {
11626 /** @todo consider which extra parameters would be helpful for each probe. */
11627 case DBGFEVENT_END: break;
11628 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
11629 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
11630 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
11631 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
11632 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
11633 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
11634 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
11635 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
11636 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
11637 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
11638 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
11639 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
11640 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
11641 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
11642 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
11643 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
11644 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
11645 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
11646 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11647 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
11648 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
11649 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
11650 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
11651 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
11652 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
11653 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
11654 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
11655 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11656 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11657 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11658 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11659 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
11660 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
11661 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
11662 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
11663 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
11664 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
11665 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
11666 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
11667 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
11668 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
11669 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
11670 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
11671 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
11672 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
11673 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
11674 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
11675 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
11676 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
11677 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
11678 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
11679 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
11680 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
11681 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
11682 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
11683 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
11684 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
11685 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
11686 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
11687 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
11688 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
11689 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
11690 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
11691 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
11692 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
11693 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
11694 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
11695 }
11696 switch (enmEvent2)
11697 {
11698 /** @todo consider which extra parameters would be helpful for each probe. */
11699 case DBGFEVENT_END: break;
11700 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
11701 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
11702 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
11703 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
11704 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
11705 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
11706 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
11707 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
11708 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
11709 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11710 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11711 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11712 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11713 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
11714 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
11715 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
11716 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
11717 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
11718 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
11719 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
11720 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
11721 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
11722 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
11723 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
11724 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
11725 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
11726 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
11727 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
11728 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
11729 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
11730 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
11731 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
11732 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
11733 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
11734 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
11735 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
11736 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
11737 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
11738 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
11739 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
11740 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
11741 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
11742 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
11743 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
11744 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
11745 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
11746 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
11747 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
11748 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
11749 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
11750 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
11751 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
11752 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
11753 }
11754 }
11755
11756 /*
11757 * Fire of the DBGF event, if enabled (our check here is just a quick one,
11758 * the DBGF call will do a full check).
11759 *
11760 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
11761 * Note! If we have to events, we prioritize the first, i.e. the instruction
11762 * one, in order to avoid event nesting.
11763 */
11764 PVM pVM = pVCpu->CTX_SUFF(pVM);
11765 if ( enmEvent1 != DBGFEVENT_END
11766 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
11767 {
11768 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11769 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
11770 if (rcStrict != VINF_SUCCESS)
11771 return rcStrict;
11772 }
11773 else if ( enmEvent2 != DBGFEVENT_END
11774 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
11775 {
11776 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11777 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
11778 if (rcStrict != VINF_SUCCESS)
11779 return rcStrict;
11780 }
11781
11782 return VINF_SUCCESS;
11783}
11784
11785
11786/**
11787 * Single-stepping VM-exit filtering.
11788 *
11789 * This is preprocessing the VM-exits and deciding whether we've gotten far
11790 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
11791 * handling is performed.
11792 *
11793 * @returns Strict VBox status code (i.e. informational status codes too).
11794 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
11795 * @param pVmxTransient The VMX-transient structure.
11796 * @param pDbgState The debug state.
11797 */
11798DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11799{
11800 /*
11801 * Expensive (saves context) generic dtrace VM-exit probe.
11802 */
11803 uint32_t const uExitReason = pVmxTransient->uExitReason;
11804 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
11805 { /* more likely */ }
11806 else
11807 {
11808 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11809 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
11810 AssertRC(rc);
11811 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
11812 }
11813
11814 /*
11815 * Check for host NMI, just to get that out of the way.
11816 */
11817 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
11818 { /* normally likely */ }
11819 else
11820 {
11821 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11822 AssertRCReturn(rc2, rc2);
11823 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11824 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11825 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
11826 }
11827
11828 /*
11829 * Check for single stepping event if we're stepping.
11830 */
11831 if (pVCpu->hm.s.fSingleInstruction)
11832 {
11833 switch (uExitReason)
11834 {
11835 case VMX_EXIT_MTF:
11836 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11837
11838 /* Various events: */
11839 case VMX_EXIT_XCPT_OR_NMI:
11840 case VMX_EXIT_EXT_INT:
11841 case VMX_EXIT_TRIPLE_FAULT:
11842 case VMX_EXIT_INT_WINDOW:
11843 case VMX_EXIT_NMI_WINDOW:
11844 case VMX_EXIT_TASK_SWITCH:
11845 case VMX_EXIT_TPR_BELOW_THRESHOLD:
11846 case VMX_EXIT_APIC_ACCESS:
11847 case VMX_EXIT_EPT_VIOLATION:
11848 case VMX_EXIT_EPT_MISCONFIG:
11849 case VMX_EXIT_PREEMPT_TIMER:
11850
11851 /* Instruction specific VM-exits: */
11852 case VMX_EXIT_CPUID:
11853 case VMX_EXIT_GETSEC:
11854 case VMX_EXIT_HLT:
11855 case VMX_EXIT_INVD:
11856 case VMX_EXIT_INVLPG:
11857 case VMX_EXIT_RDPMC:
11858 case VMX_EXIT_RDTSC:
11859 case VMX_EXIT_RSM:
11860 case VMX_EXIT_VMCALL:
11861 case VMX_EXIT_VMCLEAR:
11862 case VMX_EXIT_VMLAUNCH:
11863 case VMX_EXIT_VMPTRLD:
11864 case VMX_EXIT_VMPTRST:
11865 case VMX_EXIT_VMREAD:
11866 case VMX_EXIT_VMRESUME:
11867 case VMX_EXIT_VMWRITE:
11868 case VMX_EXIT_VMXOFF:
11869 case VMX_EXIT_VMXON:
11870 case VMX_EXIT_MOV_CRX:
11871 case VMX_EXIT_MOV_DRX:
11872 case VMX_EXIT_IO_INSTR:
11873 case VMX_EXIT_RDMSR:
11874 case VMX_EXIT_WRMSR:
11875 case VMX_EXIT_MWAIT:
11876 case VMX_EXIT_MONITOR:
11877 case VMX_EXIT_PAUSE:
11878 case VMX_EXIT_GDTR_IDTR_ACCESS:
11879 case VMX_EXIT_LDTR_TR_ACCESS:
11880 case VMX_EXIT_INVEPT:
11881 case VMX_EXIT_RDTSCP:
11882 case VMX_EXIT_INVVPID:
11883 case VMX_EXIT_WBINVD:
11884 case VMX_EXIT_XSETBV:
11885 case VMX_EXIT_RDRAND:
11886 case VMX_EXIT_INVPCID:
11887 case VMX_EXIT_VMFUNC:
11888 case VMX_EXIT_RDSEED:
11889 case VMX_EXIT_XSAVES:
11890 case VMX_EXIT_XRSTORS:
11891 {
11892 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11893 AssertRCReturn(rc, rc);
11894 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
11895 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
11896 return VINF_EM_DBG_STEPPED;
11897 break;
11898 }
11899
11900 /* Errors and unexpected events: */
11901 case VMX_EXIT_INIT_SIGNAL:
11902 case VMX_EXIT_SIPI:
11903 case VMX_EXIT_IO_SMI:
11904 case VMX_EXIT_SMI:
11905 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
11906 case VMX_EXIT_ERR_MSR_LOAD:
11907 case VMX_EXIT_ERR_MACHINE_CHECK:
11908 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
11909 break;
11910
11911 default:
11912 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
11913 break;
11914 }
11915 }
11916
11917 /*
11918 * Check for debugger event breakpoints and dtrace probes.
11919 */
11920 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
11921 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
11922 {
11923 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
11924 if (rcStrict != VINF_SUCCESS)
11925 return rcStrict;
11926 }
11927
11928 /*
11929 * Normal processing.
11930 */
11931#ifdef HMVMX_USE_FUNCTION_TABLE
11932 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
11933#else
11934 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
11935#endif
11936}
11937
11938
11939/**
11940 * Single steps guest code using hardware-assisted VMX.
11941 *
11942 * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
11943 * but single-stepping through the hypervisor debugger.
11944 *
11945 * @returns Strict VBox status code (i.e. informational status codes too).
11946 * @param pVCpu The cross context virtual CPU structure.
11947 * @param pcLoops Pointer to the number of executed loops.
11948 *
11949 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
11950 */
11951static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu, uint32_t *pcLoops)
11952{
11953 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11954 Assert(pcLoops);
11955 Assert(*pcLoops <= cMaxResumeLoops);
11956
11957 VMXTRANSIENT VmxTransient;
11958 RT_ZERO(VmxTransient);
11959 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11960
11961 /* Set HMCPU indicators. */
11962 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
11963 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
11964 pVCpu->hm.s.fDebugWantRdTscExit = false;
11965 pVCpu->hm.s.fUsingDebugLoop = true;
11966
11967 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
11968 VMXRUNDBGSTATE DbgState;
11969 hmR0VmxRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
11970 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
11971
11972 /*
11973 * The loop.
11974 */
11975 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11976 for (;;)
11977 {
11978 Assert(!HMR0SuspendPending());
11979 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11980 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11981 bool fStepping = pVCpu->hm.s.fSingleInstruction;
11982
11983 /* Set up VM-execution controls the next two can respond to. */
11984 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
11985
11986 /*
11987 * Preparatory work for running guest code, this may force us to
11988 * return to ring-3.
11989 *
11990 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11991 */
11992 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
11993 if (rcStrict != VINF_SUCCESS)
11994 break;
11995
11996 /* Interrupts are disabled at this point! */
11997 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11998
11999 /* Override any obnoxious code in the above two calls. */
12000 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12001
12002 /*
12003 * Finally execute the guest.
12004 */
12005 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
12006
12007 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
12008 /* Interrupts are re-enabled at this point! */
12009
12010 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
12011 if (RT_SUCCESS(rcRun))
12012 { /* very likely */ }
12013 else
12014 {
12015 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
12016 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
12017 return rcRun;
12018 }
12019
12020 /* Profile the VM-exit. */
12021 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
12022 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
12023 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
12024 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
12025 HMVMX_START_EXIT_DISPATCH_PROF();
12026
12027 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
12028
12029 /*
12030 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
12031 */
12032 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
12033 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
12034 if (rcStrict != VINF_SUCCESS)
12035 break;
12036 if (++(*pcLoops) > cMaxResumeLoops)
12037 {
12038 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
12039 rcStrict = VINF_EM_RAW_INTERRUPT;
12040 break;
12041 }
12042
12043 /*
12044 * Stepping: Did the RIP change, if so, consider it a single step.
12045 * Otherwise, make sure one of the TFs gets set.
12046 */
12047 if (fStepping)
12048 {
12049 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12050 AssertRC(rc);
12051 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
12052 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
12053 {
12054 rcStrict = VINF_EM_DBG_STEPPED;
12055 break;
12056 }
12057 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12058 }
12059
12060 /*
12061 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
12062 */
12063 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
12064 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12065 }
12066
12067 /*
12068 * Clear the X86_EFL_TF if necessary.
12069 */
12070 if (pVCpu->hm.s.fClearTrapFlag)
12071 {
12072 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
12073 AssertRC(rc);
12074 pVCpu->hm.s.fClearTrapFlag = false;
12075 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
12076 }
12077 /** @todo there seems to be issues with the resume flag when the monitor trap
12078 * flag is pending without being used. Seen early in bios init when
12079 * accessing APIC page in protected mode. */
12080
12081 /*
12082 * Restore VM-exit control settings as we may not re-enter this function the
12083 * next time around.
12084 */
12085 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
12086
12087 /* Restore HMCPU indicators. */
12088 pVCpu->hm.s.fUsingDebugLoop = false;
12089 pVCpu->hm.s.fDebugWantRdTscExit = false;
12090 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
12091
12092 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
12093 return rcStrict;
12094}
12095
12096
12097/** @} */
12098
12099
12100/**
12101 * Checks if any expensive dtrace probes are enabled and we should go to the
12102 * debug loop.
12103 *
12104 * @returns true if we should use debug loop, false if not.
12105 */
12106static bool hmR0VmxAnyExpensiveProbesEnabled(void)
12107{
12108 /* It's probably faster to OR the raw 32-bit counter variables together.
12109 Since the variables are in an array and the probes are next to one
12110 another (more or less), we have good locality. So, better read
12111 eight-nine cache lines ever time and only have one conditional, than
12112 128+ conditionals, right? */
12113 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
12114 | VBOXVMM_XCPT_DE_ENABLED_RAW()
12115 | VBOXVMM_XCPT_DB_ENABLED_RAW()
12116 | VBOXVMM_XCPT_BP_ENABLED_RAW()
12117 | VBOXVMM_XCPT_OF_ENABLED_RAW()
12118 | VBOXVMM_XCPT_BR_ENABLED_RAW()
12119 | VBOXVMM_XCPT_UD_ENABLED_RAW()
12120 | VBOXVMM_XCPT_NM_ENABLED_RAW()
12121 | VBOXVMM_XCPT_DF_ENABLED_RAW()
12122 | VBOXVMM_XCPT_TS_ENABLED_RAW()
12123 | VBOXVMM_XCPT_NP_ENABLED_RAW()
12124 | VBOXVMM_XCPT_SS_ENABLED_RAW()
12125 | VBOXVMM_XCPT_GP_ENABLED_RAW()
12126 | VBOXVMM_XCPT_PF_ENABLED_RAW()
12127 | VBOXVMM_XCPT_MF_ENABLED_RAW()
12128 | VBOXVMM_XCPT_AC_ENABLED_RAW()
12129 | VBOXVMM_XCPT_XF_ENABLED_RAW()
12130 | VBOXVMM_XCPT_VE_ENABLED_RAW()
12131 | VBOXVMM_XCPT_SX_ENABLED_RAW()
12132 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
12133 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
12134 ) != 0
12135 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
12136 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
12137 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
12138 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
12139 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
12140 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
12141 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
12142 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
12143 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
12144 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
12145 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
12146 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
12147 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
12148 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
12149 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
12150 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
12151 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
12152 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
12153 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
12154 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
12155 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
12156 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
12157 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
12158 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
12159 | VBOXVMM_INSTR_STR_ENABLED_RAW()
12160 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
12161 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
12162 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
12163 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
12164 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
12165 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
12166 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
12167 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
12168 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
12169 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
12170 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
12171 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
12172 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
12173 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
12174 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
12175 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
12176 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
12177 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
12178 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
12179 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
12180 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
12181 ) != 0
12182 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
12183 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
12184 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
12185 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
12186 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
12187 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
12188 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
12189 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
12190 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
12191 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
12192 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
12193 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
12194 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
12195 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
12196 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
12197 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
12198 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
12199 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
12200 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
12201 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
12202 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
12203 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
12204 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
12205 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
12206 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
12207 | VBOXVMM_EXIT_STR_ENABLED_RAW()
12208 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
12209 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
12210 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
12211 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
12212 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
12213 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
12214 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
12215 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
12216 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
12217 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
12218 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
12219 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
12220 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
12221 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
12222 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
12223 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
12224 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
12225 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
12226 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
12227 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
12228 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
12229 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
12230 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
12231 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
12232 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
12233 ) != 0;
12234}
12235
12236
12237/**
12238 * Runs the guest using hardware-assisted VMX.
12239 *
12240 * @returns Strict VBox status code (i.e. informational status codes too).
12241 * @param pVCpu The cross context virtual CPU structure.
12242 */
12243VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
12244{
12245 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12246 Assert(VMMRZCallRing3IsEnabled(pVCpu));
12247 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12248 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
12249
12250 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
12251
12252 VBOXSTRICTRC rcStrict;
12253 uint32_t cLoops = 0;
12254#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12255 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
12256#else
12257 bool const fInNestedGuestMode = false;
12258#endif
12259 if (!fInNestedGuestMode)
12260 {
12261 if ( !pVCpu->hm.s.fUseDebugLoop
12262 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
12263 && !DBGFIsStepping(pVCpu)
12264 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
12265 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
12266 else
12267 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
12268 }
12269#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12270 else
12271 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
12272
12273 if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
12274 rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
12275#endif
12276
12277 if (rcStrict == VERR_EM_INTERPRETER)
12278 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12279 else if (rcStrict == VINF_EM_RESET)
12280 rcStrict = VINF_EM_TRIPLE_FAULT;
12281
12282 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
12283 if (RT_FAILURE(rc2))
12284 {
12285 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
12286 rcStrict = rc2;
12287 }
12288 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12289 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
12290 return rcStrict;
12291}
12292
12293
12294#ifndef HMVMX_USE_FUNCTION_TABLE
12295/**
12296 * Handles a guest VM-exit from hardware-assisted VMX execution.
12297 *
12298 * @returns Strict VBox status code (i.e. informational status codes too).
12299 * @param pVCpu The cross context virtual CPU structure.
12300 * @param pVmxTransient The VMX-transient structure.
12301 */
12302DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12303{
12304#ifdef DEBUG_ramshankar
12305#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
12306 do { \
12307 if (a_fSave != 0) \
12308 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
12309 VBOXSTRICTRC rcStrict = a_CallExpr; \
12310 if (a_fSave != 0) \
12311 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
12312 return rcStrict; \
12313 } while (0)
12314#else
12315# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
12316#endif
12317 uint32_t const rcReason = pVmxTransient->uExitReason;
12318 switch (rcReason)
12319 {
12320 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
12321 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
12322 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
12323 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
12324 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
12325 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
12326 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
12327 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
12328 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
12329 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
12330 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
12331 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
12332 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
12333 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
12334 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
12335 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
12336 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
12337 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
12338 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
12339 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
12340 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
12341 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
12342 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
12343 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
12344 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
12345 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
12346 case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
12347 case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
12348 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
12349 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
12350 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
12351 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
12352 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
12353 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
12354#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12355 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
12356 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
12357 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
12358 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
12359 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
12360 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
12361 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
12362 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
12363 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
12364#else
12365 case VMX_EXIT_VMCLEAR:
12366 case VMX_EXIT_VMLAUNCH:
12367 case VMX_EXIT_VMPTRLD:
12368 case VMX_EXIT_VMPTRST:
12369 case VMX_EXIT_VMREAD:
12370 case VMX_EXIT_VMRESUME:
12371 case VMX_EXIT_VMWRITE:
12372 case VMX_EXIT_VMXOFF:
12373 case VMX_EXIT_VMXON:
12374 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12375#endif
12376
12377 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
12378 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
12379 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
12380 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
12381 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
12382 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
12383 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
12384 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
12385 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
12386
12387 case VMX_EXIT_INVEPT:
12388 case VMX_EXIT_INVVPID:
12389 case VMX_EXIT_VMFUNC:
12390 case VMX_EXIT_XSAVES:
12391 case VMX_EXIT_XRSTORS:
12392 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12393
12394 case VMX_EXIT_ENCLS:
12395 case VMX_EXIT_RDSEED:
12396 case VMX_EXIT_PML_FULL:
12397 default:
12398 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
12399 }
12400#undef VMEXIT_CALL_RET
12401}
12402#endif /* !HMVMX_USE_FUNCTION_TABLE */
12403
12404
12405#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12406/**
12407 * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
12408 *
12409 * @returns Strict VBox status code (i.e. informational status codes too).
12410 * @param pVCpu The cross context virtual CPU structure.
12411 * @param pVmxTransient The VMX-transient structure.
12412 */
12413DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12414{
12415 uint32_t const rcReason = pVmxTransient->uExitReason;
12416 switch (rcReason)
12417 {
12418 case VMX_EXIT_EPT_MISCONFIG:
12419 case VMX_EXIT_EPT_VIOLATION:
12420 case VMX_EXIT_IO_INSTR:
12421 case VMX_EXIT_CPUID:
12422 case VMX_EXIT_RDTSC:
12423 case VMX_EXIT_RDTSCP:
12424 case VMX_EXIT_APIC_ACCESS:
12425 case VMX_EXIT_XCPT_OR_NMI:
12426 case VMX_EXIT_MOV_CRX:
12427 case VMX_EXIT_EXT_INT:
12428 case VMX_EXIT_INT_WINDOW:
12429 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12430 case VMX_EXIT_MWAIT:
12431 case VMX_EXIT_MONITOR:
12432 case VMX_EXIT_TASK_SWITCH:
12433 case VMX_EXIT_PREEMPT_TIMER:
12434 case VMX_EXIT_RDMSR:
12435 case VMX_EXIT_WRMSR:
12436 case VMX_EXIT_VMCALL:
12437 case VMX_EXIT_MOV_DRX:
12438 case VMX_EXIT_HLT:
12439 case VMX_EXIT_INVD:
12440 case VMX_EXIT_INVLPG:
12441 case VMX_EXIT_RSM:
12442 case VMX_EXIT_MTF:
12443 case VMX_EXIT_PAUSE:
12444 case VMX_EXIT_GDTR_IDTR_ACCESS:
12445 case VMX_EXIT_LDTR_TR_ACCESS:
12446 case VMX_EXIT_WBINVD:
12447 case VMX_EXIT_XSETBV:
12448 case VMX_EXIT_RDRAND:
12449 case VMX_EXIT_INVPCID:
12450 case VMX_EXIT_GETSEC:
12451 case VMX_EXIT_RDPMC:
12452#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12453 case VMX_EXIT_VMCLEAR:
12454 case VMX_EXIT_VMLAUNCH:
12455 case VMX_EXIT_VMPTRLD:
12456 case VMX_EXIT_VMPTRST:
12457 case VMX_EXIT_VMREAD:
12458 case VMX_EXIT_VMRESUME:
12459 case VMX_EXIT_VMWRITE:
12460 case VMX_EXIT_VMXOFF:
12461 case VMX_EXIT_VMXON:
12462#endif
12463 case VMX_EXIT_TRIPLE_FAULT:
12464 case VMX_EXIT_NMI_WINDOW:
12465 case VMX_EXIT_INIT_SIGNAL:
12466 case VMX_EXIT_SIPI:
12467 case VMX_EXIT_IO_SMI:
12468 case VMX_EXIT_SMI:
12469 case VMX_EXIT_ERR_MSR_LOAD:
12470 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12471 case VMX_EXIT_ERR_MACHINE_CHECK:
12472
12473 case VMX_EXIT_INVEPT:
12474 case VMX_EXIT_INVVPID:
12475 case VMX_EXIT_VMFUNC:
12476 case VMX_EXIT_XSAVES:
12477 case VMX_EXIT_XRSTORS:
12478
12479 case VMX_EXIT_ENCLS:
12480 case VMX_EXIT_RDSEED:
12481 case VMX_EXIT_PML_FULL:
12482 default:
12483 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
12484 }
12485#undef VMEXIT_CALL_RET
12486}
12487#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
12488
12489
12490#ifdef VBOX_STRICT
12491/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
12492# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
12493 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
12494
12495# define HMVMX_ASSERT_PREEMPT_CPUID() \
12496 do { \
12497 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
12498 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
12499 } while (0)
12500
12501# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12502 do { \
12503 AssertPtr((a_pVCpu)); \
12504 AssertPtr((a_pVmxTransient)); \
12505 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
12506 Assert((a_pVmxTransient)->pVmcsInfo); \
12507 Assert(ASMIntAreEnabled()); \
12508 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
12509 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
12510 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
12511 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
12512 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
12513 HMVMX_ASSERT_PREEMPT_CPUID(); \
12514 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
12515 } while (0)
12516
12517# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12518 do { \
12519 Log4Func(("\n")); \
12520 } while (0)
12521#else
12522# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12523 do { \
12524 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
12525 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
12526 } while (0)
12527# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
12528#endif
12529
12530
12531/**
12532 * Advances the guest RIP by the specified number of bytes.
12533 *
12534 * @param pVCpu The cross context virtual CPU structure.
12535 * @param cbInstr Number of bytes to advance the RIP by.
12536 *
12537 * @remarks No-long-jump zone!!!
12538 */
12539DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
12540{
12541 /* Advance the RIP. */
12542 pVCpu->cpum.GstCtx.rip += cbInstr;
12543 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12544
12545 /* Update interrupt inhibition. */
12546 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
12547 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
12548 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
12549}
12550
12551
12552/**
12553 * Advances the guest RIP after reading it from the VMCS.
12554 *
12555 * @returns VBox status code, no informational status codes.
12556 * @param pVCpu The cross context virtual CPU structure.
12557 * @param pVmxTransient The VMX-transient structure.
12558 *
12559 * @remarks No-long-jump zone!!!
12560 */
12561static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12562{
12563 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12564 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
12565 AssertRCReturn(rc, rc);
12566
12567 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
12568 return VINF_SUCCESS;
12569}
12570
12571
12572/**
12573 * Handle a condition that occurred while delivering an event through the guest
12574 * IDT.
12575 *
12576 * @returns Strict VBox status code (i.e. informational status codes too).
12577 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
12578 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
12579 * to continue execution of the guest which will delivery the \#DF.
12580 * @retval VINF_EM_RESET if we detected a triple-fault condition.
12581 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
12582 *
12583 * @param pVCpu The cross context virtual CPU structure.
12584 * @param pVmxTransient The VMX-transient structure.
12585 *
12586 * @remarks No-long-jump zone!!!
12587 */
12588static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12589{
12590 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
12591
12592 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12593 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12594 AssertRCReturn(rc2, rc2);
12595
12596 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
12597 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12598 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12599 {
12600 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12601 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12602
12603 /*
12604 * If the event was a software interrupt (generated with INT n) or a software exception
12605 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
12606 * can handle the VM-exit and continue guest execution which will re-execute the
12607 * instruction rather than re-injecting the exception, as that can cause premature
12608 * trips to ring-3 before injection and involve TRPM which currently has no way of
12609 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
12610 * the problem).
12611 */
12612 IEMXCPTRAISE enmRaise;
12613 IEMXCPTRAISEINFO fRaiseInfo;
12614 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
12615 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
12616 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
12617 {
12618 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
12619 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
12620 }
12621 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
12622 {
12623 uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12624 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
12625 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
12626 /** @todo Make AssertMsgReturn as just AssertMsg later. */
12627 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
12628 ("Unexpected VM-exit interruption vector type %#x!\n", uExitVectorType), VERR_VMX_IPE_5);
12629
12630 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
12631
12632 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
12633 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
12634 {
12635 pVmxTransient->fVectoringPF = true;
12636 enmRaise = IEMXCPTRAISE_PREV_EVENT;
12637 }
12638 }
12639 else
12640 {
12641 /*
12642 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
12643 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
12644 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
12645 */
12646 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12647 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
12648 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
12649 enmRaise = IEMXCPTRAISE_PREV_EVENT;
12650 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
12651 }
12652
12653 /*
12654 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
12655 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
12656 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
12657 * subsequent VM-entry would fail.
12658 *
12659 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
12660 */
12661 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
12662 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
12663 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
12664 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
12665 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
12666 {
12667 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
12668 }
12669
12670 switch (enmRaise)
12671 {
12672 case IEMXCPTRAISE_CURRENT_XCPT:
12673 {
12674 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
12675 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
12676 Assert(rcStrict == VINF_SUCCESS);
12677 break;
12678 }
12679
12680 case IEMXCPTRAISE_PREV_EVENT:
12681 {
12682 uint32_t u32ErrCode;
12683 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
12684 {
12685 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12686 AssertRCReturn(rc2, rc2);
12687 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12688 }
12689 else
12690 u32ErrCode = 0;
12691
12692 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
12693 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
12694 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12695 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
12696
12697 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
12698 pVCpu->hm.s.Event.u32ErrCode));
12699 Assert(rcStrict == VINF_SUCCESS);
12700 break;
12701 }
12702
12703 case IEMXCPTRAISE_REEXEC_INSTR:
12704 Assert(rcStrict == VINF_SUCCESS);
12705 break;
12706
12707 case IEMXCPTRAISE_DOUBLE_FAULT:
12708 {
12709 /*
12710 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
12711 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
12712 */
12713 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
12714 {
12715 pVmxTransient->fVectoringDoublePF = true;
12716 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
12717 pVCpu->cpum.GstCtx.cr2));
12718 rcStrict = VINF_SUCCESS;
12719 }
12720 else
12721 {
12722 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
12723 hmR0VmxSetPendingXcptDF(pVCpu);
12724 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
12725 uIdtVector, uExitVector));
12726 rcStrict = VINF_HM_DOUBLE_FAULT;
12727 }
12728 break;
12729 }
12730
12731 case IEMXCPTRAISE_TRIPLE_FAULT:
12732 {
12733 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
12734 rcStrict = VINF_EM_RESET;
12735 break;
12736 }
12737
12738 case IEMXCPTRAISE_CPU_HANG:
12739 {
12740 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
12741 rcStrict = VERR_EM_GUEST_CPU_HANG;
12742 break;
12743 }
12744
12745 default:
12746 {
12747 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
12748 rcStrict = VERR_VMX_IPE_2;
12749 break;
12750 }
12751 }
12752 }
12753 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
12754 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
12755 && uExitVector != X86_XCPT_DF
12756 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
12757 {
12758 /*
12759 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
12760 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
12761 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
12762 */
12763 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
12764 {
12765 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
12766 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
12767 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
12768 }
12769 }
12770
12771 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
12772 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
12773 return rcStrict;
12774}
12775
12776
12777/** @name VM-exit handlers.
12778 * @{
12779 */
12780/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12781/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12782/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12783
12784/**
12785 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
12786 */
12787HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12788{
12789 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12790 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
12791 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
12792 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
12793 return VINF_SUCCESS;
12794 return VINF_EM_RAW_INTERRUPT;
12795}
12796
12797
12798/**
12799 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
12800 */
12801HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12802{
12803 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12804 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
12805
12806 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12807 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12808 AssertRCReturn(rc, rc);
12809
12810 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12811 Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
12812 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
12813 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
12814
12815 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
12816 {
12817 /*
12818 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
12819 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
12820 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
12821 *
12822 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
12823 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
12824 */
12825 VMXDispatchHostNmi();
12826 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
12827 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12828 return VINF_SUCCESS;
12829 }
12830
12831 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12832 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12833 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
12834 { /* likely */ }
12835 else
12836 {
12837 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
12838 rcStrictRc1 = VINF_SUCCESS;
12839 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12840 return rcStrictRc1;
12841 }
12842
12843 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
12844 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
12845 switch (uIntType)
12846 {
12847 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
12848 Assert(uVector == X86_XCPT_DB);
12849 RT_FALL_THRU();
12850 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
12851 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
12852 RT_FALL_THRU();
12853 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
12854 {
12855 /*
12856 * If there's any exception caused as a result of event injection, the resulting
12857 * secondary/final execption will be pending, we shall continue guest execution
12858 * after injecting the event. The page-fault case is complicated and we manually
12859 * handle any currently pending event in hmR0VmxExitXcptPF.
12860 */
12861 if (!pVCpu->hm.s.Event.fPending)
12862 { /* likely */ }
12863 else if (uVector != X86_XCPT_PF)
12864 {
12865 rc = VINF_SUCCESS;
12866 break;
12867 }
12868
12869 switch (uVector)
12870 {
12871 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
12872 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
12873 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
12874 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
12875 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
12876 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
12877
12878 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
12879 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12880 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
12881 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12882 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
12883 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12884 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
12885 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12886 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
12887 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12888 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
12889 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12890 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
12891 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12892 default:
12893 {
12894 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
12895 if (pVmcsInfo->RealMode.fRealOnV86Active)
12896 {
12897 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
12898 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
12899 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
12900
12901 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
12902 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12903 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
12904 AssertRCReturn(rc, rc);
12905 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
12906 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
12907 0 /* GCPtrFaultAddress */);
12908 }
12909 else
12910 {
12911 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
12912 pVCpu->hm.s.u32HMError = uVector;
12913 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
12914 }
12915 break;
12916 }
12917 }
12918 break;
12919 }
12920
12921 default:
12922 {
12923 pVCpu->hm.s.u32HMError = uExitIntInfo;
12924 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
12925 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
12926 break;
12927 }
12928 }
12929 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12930 return rc;
12931}
12932
12933
12934/**
12935 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
12936 */
12937HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12938{
12939 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12940
12941 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
12942 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12943 int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
12944 AssertRCReturn(rc, rc);
12945
12946 /* Evaluate and deliver pending events and resume guest execution. */
12947 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
12948 return VINF_SUCCESS;
12949}
12950
12951
12952/**
12953 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
12954 */
12955HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12956{
12957 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12958
12959 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12960 if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
12961 {
12962 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
12963 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12964 }
12965
12966 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS));
12967
12968 /*
12969 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
12970 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
12971 */
12972 uint32_t fIntrState;
12973 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
12974 AssertRCReturn(rc, rc);
12975 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
12976 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
12977 {
12978 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
12979 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
12980
12981 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
12982 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
12983 AssertRCReturn(rc, rc);
12984 }
12985
12986 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
12987 rc = hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
12988 AssertRCReturn(rc, rc);
12989
12990 /* Evaluate and deliver pending events and resume guest execution. */
12991 return VINF_SUCCESS;
12992}
12993
12994
12995/**
12996 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
12997 */
12998HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12999{
13000 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13001 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13002}
13003
13004
13005/**
13006 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
13007 */
13008HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13009{
13010 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13011 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13012}
13013
13014
13015/**
13016 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
13017 */
13018HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13019{
13020 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13021
13022 /*
13023 * Get the state we need and update the exit history entry.
13024 */
13025 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13026 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13027 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
13028 AssertRCReturn(rc, rc);
13029
13030 VBOXSTRICTRC rcStrict;
13031 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
13032 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
13033 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
13034 if (!pExitRec)
13035 {
13036 /*
13037 * Regular CPUID instruction execution.
13038 */
13039 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
13040 if (rcStrict == VINF_SUCCESS)
13041 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13042 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13043 {
13044 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13045 rcStrict = VINF_SUCCESS;
13046 }
13047 }
13048 else
13049 {
13050 /*
13051 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
13052 */
13053 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13054 AssertRCReturn(rc2, rc2);
13055
13056 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
13057 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
13058
13059 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
13060 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13061
13062 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
13063 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
13064 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
13065 }
13066 return rcStrict;
13067}
13068
13069
13070/**
13071 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
13072 */
13073HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13074{
13075 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13076
13077 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13078 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
13079 AssertRCReturn(rc, rc);
13080
13081 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
13082 return VINF_EM_RAW_EMULATE_INSTR;
13083
13084 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
13085 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13086}
13087
13088
13089/**
13090 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
13091 */
13092HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13093{
13094 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13095
13096 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13097 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13098 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13099 AssertRCReturn(rc, rc);
13100
13101 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
13102 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13103 {
13104 /* If we get a spurious VM-exit when TSC offsetting is enabled,
13105 we must reset offsetting on VM-entry. See @bugref{6634}. */
13106 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
13107 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13108 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13109 }
13110 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13111 {
13112 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13113 rcStrict = VINF_SUCCESS;
13114 }
13115 return rcStrict;
13116}
13117
13118
13119/**
13120 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
13121 */
13122HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13123{
13124 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13125
13126 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13127 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
13128 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13129 AssertRCReturn(rc, rc);
13130
13131 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
13132 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13133 {
13134 /* If we get a spurious VM-exit when TSC offsetting is enabled,
13135 we must reset offsetting on VM-reentry. See @bugref{6634}. */
13136 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
13137 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13138 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13139 }
13140 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13141 {
13142 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13143 rcStrict = VINF_SUCCESS;
13144 }
13145 return rcStrict;
13146}
13147
13148
13149/**
13150 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
13151 */
13152HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13153{
13154 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13155
13156 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13157 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
13158 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13159 AssertRCReturn(rc, rc);
13160
13161 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13162 rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13163 if (RT_LIKELY(rc == VINF_SUCCESS))
13164 {
13165 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13166 Assert(pVmxTransient->cbInstr == 2);
13167 }
13168 else
13169 {
13170 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
13171 rc = VERR_EM_INTERPRETER;
13172 }
13173 return rc;
13174}
13175
13176
13177/**
13178 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
13179 */
13180HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13181{
13182 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13183
13184 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
13185 if (EMAreHypercallInstructionsEnabled(pVCpu))
13186 {
13187 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13188 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
13189 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
13190 AssertRCReturn(rc, rc);
13191
13192 /* Perform the hypercall. */
13193 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
13194 if (rcStrict == VINF_SUCCESS)
13195 {
13196 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13197 AssertRCReturn(rc, rc);
13198 }
13199 else
13200 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
13201 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
13202 || RT_FAILURE(rcStrict));
13203
13204 /* If the hypercall changes anything other than guest's general-purpose registers,
13205 we would need to reload the guest changed bits here before VM-entry. */
13206 }
13207 else
13208 Log4Func(("Hypercalls not enabled\n"));
13209
13210 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
13211 if (RT_FAILURE(rcStrict))
13212 {
13213 hmR0VmxSetPendingXcptUD(pVCpu);
13214 rcStrict = VINF_SUCCESS;
13215 }
13216
13217 return rcStrict;
13218}
13219
13220
13221/**
13222 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
13223 */
13224HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13225{
13226 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13227 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
13228
13229 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13230 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13231 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13232 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13233 AssertRCReturn(rc, rc);
13234
13235 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
13236
13237 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
13238 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13239 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13240 {
13241 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13242 rcStrict = VINF_SUCCESS;
13243 }
13244 else
13245 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
13246 VBOXSTRICTRC_VAL(rcStrict)));
13247 return rcStrict;
13248}
13249
13250
13251/**
13252 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
13253 */
13254HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13255{
13256 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13257
13258 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13259 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13260 AssertRCReturn(rc, rc);
13261
13262 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13263 rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13264 if (RT_LIKELY(rc == VINF_SUCCESS))
13265 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13266 else
13267 {
13268 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
13269 rc = VERR_EM_INTERPRETER;
13270 }
13271 return rc;
13272}
13273
13274
13275/**
13276 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
13277 */
13278HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13279{
13280 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13281
13282 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13283 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13284 AssertRCReturn(rc, rc);
13285
13286 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13287 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13288 rc = VBOXSTRICTRC_VAL(rc2);
13289 if (RT_LIKELY( rc == VINF_SUCCESS
13290 || rc == VINF_EM_HALT))
13291 {
13292 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13293 AssertRCReturn(rc3, rc3);
13294
13295 if ( rc == VINF_EM_HALT
13296 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
13297 rc = VINF_SUCCESS;
13298 }
13299 else
13300 {
13301 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
13302 rc = VERR_EM_INTERPRETER;
13303 }
13304 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
13305 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
13306 return rc;
13307}
13308
13309
13310/**
13311 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
13312 */
13313HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13314{
13315 /*
13316 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
13317 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
13318 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
13319 * VMX root operation. If we get here, something funny is going on.
13320 *
13321 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
13322 */
13323 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13324 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
13325 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13326}
13327
13328
13329/**
13330 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
13331 */
13332HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13333{
13334 /*
13335 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
13336 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
13337 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
13338 * an SMI. If we get here, something funny is going on.
13339 *
13340 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
13341 * See Intel spec. 25.3 "Other Causes of VM-Exits"
13342 */
13343 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13344 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
13345 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13346}
13347
13348
13349/**
13350 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
13351 */
13352HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13353{
13354 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
13355 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13356 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
13357 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13358}
13359
13360
13361/**
13362 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
13363 */
13364HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13365{
13366 /*
13367 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
13368 * We don't make use of it as our guests don't have direct access to the host LAPIC.
13369 * See Intel spec. 25.3 "Other Causes of VM-exits".
13370 */
13371 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13372 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
13373 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13374}
13375
13376
13377/**
13378 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
13379 * VM-exit.
13380 */
13381HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13382{
13383 /*
13384 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
13385 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
13386 *
13387 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
13388 * See Intel spec. "23.8 Restrictions on VMX operation".
13389 */
13390 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13391 return VINF_SUCCESS;
13392}
13393
13394
13395/**
13396 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
13397 * VM-exit.
13398 */
13399HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13400{
13401 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13402 return VINF_EM_RESET;
13403}
13404
13405
13406/**
13407 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
13408 */
13409HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13410{
13411 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13412
13413 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13414 AssertRCReturn(rc, rc);
13415
13416 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
13417 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
13418 rc = VINF_SUCCESS;
13419 else
13420 rc = VINF_EM_HALT;
13421
13422 if (rc != VINF_SUCCESS)
13423 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
13424 return rc;
13425}
13426
13427
13428/**
13429 * VM-exit handler for instructions that result in a \#UD exception delivered to
13430 * the guest.
13431 */
13432HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13433{
13434 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13435 hmR0VmxSetPendingXcptUD(pVCpu);
13436 return VINF_SUCCESS;
13437}
13438
13439
13440/**
13441 * VM-exit handler for expiry of the VMX-preemption timer.
13442 */
13443HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13444{
13445 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13446
13447 /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
13448 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13449
13450 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
13451 PVM pVM = pVCpu->CTX_SUFF(pVM);
13452 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
13453 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
13454 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
13455}
13456
13457
13458/**
13459 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
13460 */
13461HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13462{
13463 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13464
13465 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13466 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13467 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
13468 AssertRCReturn(rc, rc);
13469
13470 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
13471 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
13472 : HM_CHANGED_RAISED_XCPT_MASK);
13473
13474 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13475 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
13476
13477 return rcStrict;
13478}
13479
13480
13481/**
13482 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
13483 */
13484HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13485{
13486 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13487 /** @todo Use VM-exit instruction information. */
13488 return VERR_EM_INTERPRETER;
13489}
13490
13491
13492/**
13493 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
13494 * Error VM-exit.
13495 */
13496HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13497{
13498 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13499 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13500 AssertRCReturn(rc, rc);
13501
13502 rc = hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo);
13503 if (RT_FAILURE(rc))
13504 return rc;
13505
13506 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
13507 NOREF(uInvalidReason);
13508
13509#ifdef VBOX_STRICT
13510 uint32_t fIntrState;
13511 RTHCUINTREG uHCReg;
13512 uint64_t u64Val;
13513 uint32_t u32Val;
13514 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
13515 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
13516 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
13517 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
13518 AssertRCReturn(rc, rc);
13519
13520 Log4(("uInvalidReason %u\n", uInvalidReason));
13521 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
13522 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
13523 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
13524 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
13525
13526 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
13527 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
13528 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
13529 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
13530 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
13531 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
13532 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
13533 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
13534 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
13535 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
13536 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
13537 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
13538
13539 hmR0DumpRegs(pVCpu);
13540#endif
13541
13542 return VERR_VMX_INVALID_GUEST_STATE;
13543}
13544
13545
13546/**
13547 * VM-exit handler for VM-entry failure due to an MSR-load
13548 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
13549 */
13550HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13551{
13552 AssertMsgFailed(("Unexpected MSR-load exit\n"));
13553 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13554}
13555
13556
13557/**
13558 * VM-exit handler for VM-entry failure due to a machine-check event
13559 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
13560 */
13561HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13562{
13563 AssertMsgFailed(("Unexpected machine-check event exit\n"));
13564 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13565}
13566
13567
13568/**
13569 * VM-exit handler for all undefined reasons. Should never ever happen.. in
13570 * theory.
13571 */
13572HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13573{
13574 RT_NOREF2(pVCpu, pVmxTransient);
13575 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
13576 return VERR_VMX_UNDEFINED_EXIT_CODE;
13577}
13578
13579
13580/**
13581 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
13582 * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
13583 * Conditional VM-exit.
13584 */
13585HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13586{
13587 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13588
13589 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
13590 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
13591 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13592 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
13593 return VERR_EM_INTERPRETER;
13594 AssertMsgFailed(("Unexpected XDTR access\n"));
13595 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13596}
13597
13598
13599/**
13600 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
13601 */
13602HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13603{
13604 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13605
13606 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
13607 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13608 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
13609 return VERR_EM_INTERPRETER;
13610 AssertMsgFailed(("Unexpected RDRAND exit\n"));
13611 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13612}
13613
13614
13615/**
13616 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
13617 */
13618HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13619{
13620 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13621
13622 /** @todo Optimize this: We currently drag in in the whole MSR state
13623 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
13624 * MSRs required. That would require changes to IEM and possibly CPUM too.
13625 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
13626 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13627 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
13628 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
13629 switch (idMsr)
13630 {
13631 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
13632 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
13633 }
13634
13635 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13636 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
13637 AssertRCReturn(rc, rc);
13638
13639 Log4Func(("ecx=%#RX32\n", idMsr));
13640
13641#ifdef VBOX_STRICT
13642 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
13643 {
13644 if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
13645 && idMsr != MSR_K6_EFER)
13646 {
13647 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
13648 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13649 }
13650 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13651 {
13652 Assert(pVmcsInfo->pvMsrBitmap);
13653 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
13654 if (fMsrpm & VMXMSRPM_ALLOW_RD)
13655 {
13656 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
13657 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13658 }
13659 }
13660 }
13661#endif
13662
13663 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
13664 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
13665 if (rcStrict == VINF_SUCCESS)
13666 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
13667 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
13668 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13669 {
13670 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13671 rcStrict = VINF_SUCCESS;
13672 }
13673 else
13674 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
13675
13676 return rcStrict;
13677}
13678
13679
13680/**
13681 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
13682 */
13683HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13684{
13685 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13686
13687 /** @todo Optimize this: We currently drag in in the whole MSR state
13688 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
13689 * MSRs required. That would require changes to IEM and possibly CPUM too.
13690 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
13691 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
13692 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
13693
13694 /*
13695 * The FS and GS base MSRs are not part of the above all-MSRs mask.
13696 * Although we don't need to fetch the base as it will be overwritten shortly, while
13697 * loading guest-state we would also load the entire segment register including limit
13698 * and attributes and thus we need to load them here.
13699 */
13700 switch (idMsr)
13701 {
13702 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
13703 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
13704 }
13705
13706 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13707 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13708 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
13709 AssertRCReturn(rc, rc);
13710
13711 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
13712
13713 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
13714 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
13715
13716 if (rcStrict == VINF_SUCCESS)
13717 {
13718 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13719
13720 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
13721 if ( idMsr == MSR_IA32_APICBASE
13722 || ( idMsr >= MSR_IA32_X2APIC_START
13723 && idMsr <= MSR_IA32_X2APIC_END))
13724 {
13725 /*
13726 * We've already saved the APIC related guest-state (TPR) in post-run phase.
13727 * When full APIC register virtualization is implemented we'll have to make
13728 * sure APIC state is saved from the VMCS before IEM changes it.
13729 */
13730 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
13731 }
13732 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
13733 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13734 else if (idMsr == MSR_K6_EFER)
13735 {
13736 /*
13737 * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
13738 * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
13739 * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
13740 */
13741 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
13742 }
13743
13744 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
13745 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
13746 {
13747 switch (idMsr)
13748 {
13749 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
13750 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
13751 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
13752 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
13753 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
13754 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
13755 default:
13756 {
13757 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
13758 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
13759 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13760 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
13761 break;
13762 }
13763 }
13764 }
13765#ifdef VBOX_STRICT
13766 else
13767 {
13768 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
13769 switch (idMsr)
13770 {
13771 case MSR_IA32_SYSENTER_CS:
13772 case MSR_IA32_SYSENTER_EIP:
13773 case MSR_IA32_SYSENTER_ESP:
13774 case MSR_K8_FS_BASE:
13775 case MSR_K8_GS_BASE:
13776 {
13777 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
13778 Assert(fMsrpm == (VMXMSRPM_ALLOW_RD | VMXMSRPM_ALLOW_WR));
13779
13780 uint32_t u32Proc;
13781 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Proc);
13782 AssertRC(rc);
13783 Assert(u32Proc == pVmcsInfo->u32ProcCtls);
13784 Assert(u32Proc & VMX_PROC_CTLS_USE_MSR_BITMAPS);
13785
13786 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32 fMsrpm=%#RX32\n", idMsr, fMsrpm));
13787 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13788 }
13789
13790 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
13791 default:
13792 {
13793 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
13794 {
13795 /* EFER MSR writes are always intercepted. */
13796 if (idMsr != MSR_K6_EFER)
13797 {
13798 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
13799 idMsr));
13800 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13801 }
13802 }
13803
13804 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13805 {
13806 Assert(pVmcsInfo->pvMsrBitmap);
13807 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
13808 if (fMsrpm & VMXMSRPM_ALLOW_WR)
13809 {
13810 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
13811 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13812 }
13813 }
13814 break;
13815 }
13816 }
13817 }
13818#endif /* VBOX_STRICT */
13819 }
13820 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13821 {
13822 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13823 rcStrict = VINF_SUCCESS;
13824 }
13825 else
13826 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
13827
13828 return rcStrict;
13829}
13830
13831
13832/**
13833 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
13834 */
13835HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13836{
13837 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13838 /** @todo The guest has likely hit a contended spinlock. We might want to
13839 * poke a schedule different guest VCPU. */
13840 return VINF_EM_RAW_INTERRUPT;
13841}
13842
13843
13844/**
13845 * VM-exit handler for when the TPR value is lowered below the specified
13846 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
13847 */
13848HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13849{
13850 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13851 Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
13852
13853 /*
13854 * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
13855 * We'll re-evaluate pending interrupts and inject them before the next VM
13856 * entry so we can just continue execution here.
13857 */
13858 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
13859 return VINF_SUCCESS;
13860}
13861
13862
13863/**
13864 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
13865 * VM-exit.
13866 *
13867 * @retval VINF_SUCCESS when guest execution can continue.
13868 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
13869 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
13870 * interpreter.
13871 */
13872HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13873{
13874 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13875 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
13876
13877 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13878 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13879 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13880 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13881 AssertRCReturn(rc, rc);
13882
13883 VBOXSTRICTRC rcStrict;
13884 PVM pVM = pVCpu->CTX_SUFF(pVM);
13885 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
13886 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
13887 switch (uAccessType)
13888 {
13889 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
13890 {
13891 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
13892 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
13893 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
13894 AssertMsg( rcStrict == VINF_SUCCESS
13895 || rcStrict == VINF_IEM_RAISED_XCPT
13896 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13897
13898 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
13899 {
13900 case 0:
13901 {
13902 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13903 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13904 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
13905 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
13906
13907 /*
13908 * This is a kludge for handling switches back to real mode when we try to use
13909 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
13910 * deal with special selector values, so we have to return to ring-3 and run
13911 * there till the selector values are V86 mode compatible.
13912 *
13913 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
13914 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
13915 * at the end of this function.
13916 */
13917 if ( rc == VINF_SUCCESS
13918 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
13919 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
13920 && (uOldCr0 & X86_CR0_PE)
13921 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
13922 {
13923 /** @todo check selectors rather than returning all the time. */
13924 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
13925 rcStrict = VINF_EM_RESCHEDULE_REM;
13926 }
13927 break;
13928 }
13929
13930 case 2:
13931 {
13932 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
13933 /* Nothing to do here, CR2 it's not part of the VMCS. */
13934 break;
13935 }
13936
13937 case 3:
13938 {
13939 Assert( !pVM->hm.s.fNestedPaging
13940 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
13941 || pVCpu->hm.s.fUsingDebugLoop);
13942 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
13943 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13944 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
13945 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
13946 break;
13947 }
13948
13949 case 4:
13950 {
13951 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
13952 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13953 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
13954 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
13955 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
13956 break;
13957 }
13958
13959 case 8:
13960 {
13961 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
13962 Assert(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
13963 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13964 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
13965 break;
13966 }
13967 default:
13968 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
13969 break;
13970 }
13971 break;
13972 }
13973
13974 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
13975 {
13976 Assert( !pVM->hm.s.fNestedPaging
13977 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
13978 || pVCpu->hm.s.fUsingDebugLoop
13979 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
13980 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
13981 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
13982 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
13983
13984 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
13985 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
13986 AssertMsg( rcStrict == VINF_SUCCESS
13987 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13988#ifdef VBOX_WITH_STATISTICS
13989 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
13990 {
13991 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
13992 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
13993 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
13994 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
13995 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
13996 }
13997#endif
13998 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
13999 VBOXSTRICTRC_VAL(rcStrict)));
14000 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
14001 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
14002 else
14003 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14004 break;
14005 }
14006
14007 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
14008 {
14009 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
14010 AssertMsg( rcStrict == VINF_SUCCESS
14011 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14012
14013 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
14014 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
14015 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
14016 break;
14017 }
14018
14019 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
14020 {
14021 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
14022 rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
14023 AssertRCReturn(rc, rc);
14024 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
14025 pVmxTransient->uGuestLinearAddr);
14026 AssertMsg( rcStrict == VINF_SUCCESS
14027 || rcStrict == VINF_IEM_RAISED_XCPT
14028 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14029
14030 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
14031 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
14032 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
14033 break;
14034 }
14035
14036 default:
14037 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
14038 VERR_VMX_UNEXPECTED_EXCEPTION);
14039 }
14040
14041 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
14042 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
14043 if (rcStrict == VINF_IEM_RAISED_XCPT)
14044 {
14045 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14046 rcStrict = VINF_SUCCESS;
14047 }
14048
14049 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
14050 NOREF(pVM);
14051 return rcStrict;
14052}
14053
14054
14055/**
14056 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
14057 * VM-exit.
14058 */
14059HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14060{
14061 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14062 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
14063
14064 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14065 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14066 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14067 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14068 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
14069 | CPUMCTX_EXTRN_EFER);
14070 /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
14071 AssertRCReturn(rc, rc);
14072
14073 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
14074 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
14075 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
14076 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
14077 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
14078 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
14079 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
14080 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
14081
14082 /*
14083 * Update exit history to see if this exit can be optimized.
14084 */
14085 VBOXSTRICTRC rcStrict;
14086 PCEMEXITREC pExitRec = NULL;
14087 if ( !fGstStepping
14088 && !fDbgStepping)
14089 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14090 !fIOString
14091 ? !fIOWrite
14092 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
14093 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
14094 : !fIOWrite
14095 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
14096 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
14097 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14098 if (!pExitRec)
14099 {
14100 /* I/O operation lookup arrays. */
14101 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
14102 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
14103 uint32_t const cbValue = s_aIOSizes[uIOWidth];
14104 uint32_t const cbInstr = pVmxTransient->cbInstr;
14105 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
14106 PVM pVM = pVCpu->CTX_SUFF(pVM);
14107 if (fIOString)
14108 {
14109 /*
14110 * INS/OUTS - I/O String instruction.
14111 *
14112 * Use instruction-information if available, otherwise fall back on
14113 * interpreting the instruction.
14114 */
14115 Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
14116 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
14117 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
14118 if (fInsOutsInfo)
14119 {
14120 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
14121 AssertRCReturn(rc2, rc2);
14122 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
14123 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
14124 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
14125 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
14126 if (fIOWrite)
14127 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
14128 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
14129 else
14130 {
14131 /*
14132 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
14133 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
14134 * See Intel Instruction spec. for "INS".
14135 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
14136 */
14137 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
14138 }
14139 }
14140 else
14141 rcStrict = IEMExecOne(pVCpu);
14142
14143 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
14144 fUpdateRipAlready = true;
14145 }
14146 else
14147 {
14148 /*
14149 * IN/OUT - I/O instruction.
14150 */
14151 Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
14152 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
14153 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
14154 if (fIOWrite)
14155 {
14156 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
14157 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
14158 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
14159 && !pCtx->eflags.Bits.u1TF)
14160 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
14161 }
14162 else
14163 {
14164 uint32_t u32Result = 0;
14165 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
14166 if (IOM_SUCCESS(rcStrict))
14167 {
14168 /* Save result of I/O IN instr. in AL/AX/EAX. */
14169 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
14170 }
14171 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
14172 && !pCtx->eflags.Bits.u1TF)
14173 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
14174 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
14175 }
14176 }
14177
14178 if (IOM_SUCCESS(rcStrict))
14179 {
14180 if (!fUpdateRipAlready)
14181 {
14182 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
14183 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
14184 }
14185
14186 /*
14187 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
14188 * while booting Fedora 17 64-bit guest.
14189 *
14190 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
14191 */
14192 if (fIOString)
14193 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
14194
14195 /*
14196 * If any I/O breakpoints are armed, we need to check if one triggered
14197 * and take appropriate action.
14198 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
14199 */
14200 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
14201 AssertRCReturn(rc, rc);
14202
14203 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
14204 * execution engines about whether hyper BPs and such are pending. */
14205 uint32_t const uDr7 = pCtx->dr[7];
14206 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
14207 && X86_DR7_ANY_RW_IO(uDr7)
14208 && (pCtx->cr4 & X86_CR4_DE))
14209 || DBGFBpIsHwIoArmed(pVM)))
14210 {
14211 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
14212
14213 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
14214 VMMRZCallRing3Disable(pVCpu);
14215 HM_DISABLE_PREEMPT(pVCpu);
14216
14217 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
14218
14219 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
14220 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
14221 {
14222 /* Raise #DB. */
14223 if (fIsGuestDbgActive)
14224 ASMSetDR6(pCtx->dr[6]);
14225 if (pCtx->dr[7] != uDr7)
14226 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
14227
14228 hmR0VmxSetPendingXcptDB(pVCpu);
14229 }
14230 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
14231 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
14232 else if ( rcStrict2 != VINF_SUCCESS
14233 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
14234 rcStrict = rcStrict2;
14235 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
14236
14237 HM_RESTORE_PREEMPT();
14238 VMMRZCallRing3Enable(pVCpu);
14239 }
14240 }
14241
14242#ifdef VBOX_STRICT
14243 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
14244 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
14245 Assert(!fIOWrite);
14246 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
14247 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
14248 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
14249 Assert(fIOWrite);
14250 else
14251 {
14252# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
14253 * statuses, that the VMM device and some others may return. See
14254 * IOM_SUCCESS() for guidance. */
14255 AssertMsg( RT_FAILURE(rcStrict)
14256 || rcStrict == VINF_SUCCESS
14257 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
14258 || rcStrict == VINF_EM_DBG_BREAKPOINT
14259 || rcStrict == VINF_EM_RAW_GUEST_TRAP
14260 || rcStrict == VINF_EM_RAW_TO_R3
14261 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14262# endif
14263 }
14264#endif
14265 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
14266 }
14267 else
14268 {
14269 /*
14270 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14271 */
14272 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14273 AssertRCReturn(rc2, rc2);
14274 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
14275 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
14276 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
14277 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14278 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
14279 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
14280
14281 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14282 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14283
14284 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14285 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14286 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14287 }
14288 return rcStrict;
14289}
14290
14291
14292/**
14293 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
14294 * VM-exit.
14295 */
14296HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14297{
14298 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14299
14300 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
14301 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14302 AssertRCReturn(rc, rc);
14303 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
14304 {
14305 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
14306 AssertRCReturn(rc, rc);
14307 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
14308 {
14309 uint32_t uErrCode;
14310 RTGCUINTPTR GCPtrFaultAddress;
14311 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
14312 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
14313 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
14314 if (fErrorCodeValid)
14315 {
14316 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
14317 AssertRCReturn(rc, rc);
14318 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
14319 }
14320 else
14321 uErrCode = 0;
14322
14323 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
14324 && uVector == X86_XCPT_PF)
14325 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
14326 else
14327 GCPtrFaultAddress = 0;
14328
14329 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14330 AssertRCReturn(rc, rc);
14331
14332 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
14333 pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
14334
14335 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
14336 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
14337 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14338 }
14339 }
14340
14341 /* Fall back to the interpreter to emulate the task-switch. */
14342 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
14343 return VERR_EM_INTERPRETER;
14344}
14345
14346
14347/**
14348 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
14349 */
14350HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14351{
14352 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14353
14354 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14355 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
14356 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
14357 AssertRCReturn(rc, rc);
14358 return VINF_EM_DBG_STEPPED;
14359}
14360
14361
14362/**
14363 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
14364 */
14365HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14366{
14367 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14368 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
14369
14370 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14371 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14372 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14373 {
14374 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
14375 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14376 {
14377 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
14378 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14379 }
14380 }
14381 else
14382 {
14383 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14384 rcStrict1 = VINF_SUCCESS;
14385 return rcStrict1;
14386 }
14387
14388 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
14389 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14390 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14391 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14392 AssertRCReturn(rc, rc);
14393
14394 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
14395 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
14396 VBOXSTRICTRC rcStrict2;
14397 switch (uAccessType)
14398 {
14399 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
14400 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
14401 {
14402 AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
14403 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
14404 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
14405
14406 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
14407 GCPhys &= PAGE_BASE_GC_MASK;
14408 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
14409 PVM pVM = pVCpu->CTX_SUFF(pVM);
14410 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
14411 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
14412
14413 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14414 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
14415 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
14416 CPUMCTX2CORE(pCtx), GCPhys);
14417 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
14418 if ( rcStrict2 == VINF_SUCCESS
14419 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
14420 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
14421 {
14422 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
14423 | HM_CHANGED_GUEST_APIC_TPR);
14424 rcStrict2 = VINF_SUCCESS;
14425 }
14426 break;
14427 }
14428
14429 default:
14430 Log4Func(("uAccessType=%#x\n", uAccessType));
14431 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
14432 break;
14433 }
14434
14435 if (rcStrict2 != VINF_SUCCESS)
14436 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
14437 return rcStrict2;
14438}
14439
14440
14441/**
14442 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
14443 * VM-exit.
14444 */
14445HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14446{
14447 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14448
14449 /* We should -not- get this VM-exit if the guest's debug registers were active. */
14450 if (pVmxTransient->fWasGuestDebugStateActive)
14451 {
14452 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
14453 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
14454 }
14455
14456 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14457 if ( !pVCpu->hm.s.fSingleInstruction
14458 && !pVmxTransient->fWasHyperDebugStateActive)
14459 {
14460 Assert(!DBGFIsStepping(pVCpu));
14461 Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
14462
14463 /* Don't intercept MOV DRx any more. */
14464 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
14465 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
14466 AssertRCReturn(rc, rc);
14467
14468 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
14469 VMMRZCallRing3Disable(pVCpu);
14470 HM_DISABLE_PREEMPT(pVCpu);
14471
14472 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
14473 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
14474 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
14475
14476 HM_RESTORE_PREEMPT();
14477 VMMRZCallRing3Enable(pVCpu);
14478
14479#ifdef VBOX_WITH_STATISTICS
14480 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14481 AssertRCReturn(rc, rc);
14482 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
14483 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
14484 else
14485 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
14486#endif
14487 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
14488 return VINF_SUCCESS;
14489 }
14490
14491 /*
14492 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
14493 * The EFER MSR is always up-to-date.
14494 * Update the segment registers and DR7 from the CPU.
14495 */
14496 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14497 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14498 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
14499 AssertRCReturn(rc, rc);
14500 Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
14501
14502 PVM pVM = pVCpu->CTX_SUFF(pVM);
14503 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
14504 {
14505 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
14506 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
14507 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
14508 if (RT_SUCCESS(rc))
14509 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
14510 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
14511 }
14512 else
14513 {
14514 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
14515 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
14516 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
14517 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
14518 }
14519
14520 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
14521 if (RT_SUCCESS(rc))
14522 {
14523 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14524 AssertRCReturn(rc2, rc2);
14525 return VINF_SUCCESS;
14526 }
14527 return rc;
14528}
14529
14530
14531/**
14532 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
14533 * Conditional VM-exit.
14534 */
14535HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14536{
14537 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14538 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
14539
14540 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14541 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14542 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14543 {
14544 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
14545 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
14546 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14547 {
14548 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
14549 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14550 }
14551 }
14552 else
14553 {
14554 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14555 rcStrict1 = VINF_SUCCESS;
14556 return rcStrict1;
14557 }
14558
14559 /*
14560 * Get sufficent state and update the exit history entry.
14561 */
14562 RTGCPHYS GCPhys;
14563 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14564 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
14565 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14566 AssertRCReturn(rc, rc);
14567
14568 VBOXSTRICTRC rcStrict;
14569 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14570 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
14571 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14572 if (!pExitRec)
14573 {
14574 /*
14575 * If we succeed, resume guest execution.
14576 * If we fail in interpreting the instruction because we couldn't get the guest physical address
14577 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
14578 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
14579 * weird case. See @bugref{6043}.
14580 */
14581 PVM pVM = pVCpu->CTX_SUFF(pVM);
14582 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14583 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
14584 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
14585 if ( rcStrict == VINF_SUCCESS
14586 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
14587 || rcStrict == VERR_PAGE_NOT_PRESENT)
14588 {
14589 /* Successfully handled MMIO operation. */
14590 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
14591 | HM_CHANGED_GUEST_APIC_TPR);
14592 rcStrict = VINF_SUCCESS;
14593 }
14594 }
14595 else
14596 {
14597 /*
14598 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14599 */
14600 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14601 AssertRCReturn(rc2, rc2);
14602
14603 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
14604 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
14605
14606 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14607 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14608
14609 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14610 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14611 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14612 }
14613 return VBOXSTRICTRC_TODO(rcStrict);
14614}
14615
14616
14617/**
14618 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
14619 * VM-exit.
14620 */
14621HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14622{
14623 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14624 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
14625
14626 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14627 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14628 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14629 {
14630 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
14631 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14632 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
14633 }
14634 else
14635 {
14636 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14637 rcStrict1 = VINF_SUCCESS;
14638 return rcStrict1;
14639 }
14640
14641 RTGCPHYS GCPhys;
14642 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14643 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
14644 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14645 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14646 AssertRCReturn(rc, rc);
14647
14648 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
14649 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
14650
14651 RTGCUINT uErrorCode = 0;
14652 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
14653 uErrorCode |= X86_TRAP_PF_ID;
14654 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
14655 uErrorCode |= X86_TRAP_PF_RW;
14656 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
14657 uErrorCode |= X86_TRAP_PF_P;
14658
14659 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
14660
14661
14662 /* Handle the pagefault trap for the nested shadow table. */
14663 PVM pVM = pVCpu->CTX_SUFF(pVM);
14664 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14665
14666 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x cs:rip=%#04x:%#RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
14667 pCtx->cs.Sel, pCtx->rip));
14668
14669 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
14670 TRPMResetTrap(pVCpu);
14671
14672 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
14673 if ( rcStrict2 == VINF_SUCCESS
14674 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
14675 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
14676 {
14677 /* Successfully synced our nested page tables. */
14678 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
14679 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
14680 return VINF_SUCCESS;
14681 }
14682
14683 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
14684 return rcStrict2;
14685}
14686
14687/** @} */
14688
14689/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14690/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
14691/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14692
14693/**
14694 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
14695 */
14696static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14697{
14698 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14699 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
14700
14701 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
14702 AssertRCReturn(rc, rc);
14703
14704 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
14705 {
14706 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
14707 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
14708
14709 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
14710 * provides VM-exit instruction length. If this causes problem later,
14711 * disassemble the instruction like it's done on AMD-V. */
14712 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14713 AssertRCReturn(rc2, rc2);
14714 return rc;
14715 }
14716
14717 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14718 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14719 return rc;
14720}
14721
14722
14723/**
14724 * VM-exit exception handler for \#BP (Breakpoint exception).
14725 */
14726static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14727{
14728 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14729 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
14730
14731 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14732 AssertRCReturn(rc, rc);
14733
14734 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14735 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
14736 if (rc == VINF_EM_RAW_GUEST_TRAP)
14737 {
14738 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14739 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14740 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14741 AssertRCReturn(rc, rc);
14742
14743 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14744 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14745 }
14746
14747 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
14748 return rc;
14749}
14750
14751
14752/**
14753 * VM-exit exception handler for \#AC (alignment check exception).
14754 */
14755static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14756{
14757 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14758
14759 /*
14760 * Re-inject it. We'll detect any nesting before getting here.
14761 */
14762 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14763 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14764 AssertRCReturn(rc, rc);
14765 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
14766
14767 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14768 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14769 return VINF_SUCCESS;
14770}
14771
14772
14773/**
14774 * VM-exit exception handler for \#DB (Debug exception).
14775 */
14776static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14777{
14778 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14779 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
14780
14781 /*
14782 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
14783 * for processing.
14784 */
14785 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14786
14787 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
14788 uint64_t uDR6 = X86_DR6_INIT_VAL;
14789 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
14790
14791 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14792 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
14793 Log6Func(("rc=%Rrc\n", rc));
14794 if (rc == VINF_EM_RAW_GUEST_TRAP)
14795 {
14796 /*
14797 * The exception was for the guest. Update DR6, DR7.GD and
14798 * IA32_DEBUGCTL.LBR before forwarding it.
14799 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
14800 */
14801 VMMRZCallRing3Disable(pVCpu);
14802 HM_DISABLE_PREEMPT(pVCpu);
14803
14804 pCtx->dr[6] &= ~X86_DR6_B_MASK;
14805 pCtx->dr[6] |= uDR6;
14806 if (CPUMIsGuestDebugStateActive(pVCpu))
14807 ASMSetDR6(pCtx->dr[6]);
14808
14809 HM_RESTORE_PREEMPT();
14810 VMMRZCallRing3Enable(pVCpu);
14811
14812 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
14813 AssertRCReturn(rc, rc);
14814
14815 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
14816 pCtx->dr[7] &= ~X86_DR7_GD;
14817
14818 /* Paranoia. */
14819 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
14820 pCtx->dr[7] |= X86_DR7_RA1_MASK;
14821
14822 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
14823 AssertRCReturn(rc, rc);
14824
14825 /*
14826 * Raise #DB in the guest.
14827 *
14828 * It is important to reflect exactly what the VM-exit gave us (preserving the
14829 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
14830 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
14831 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
14832 *
14833 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
14834 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
14835 */
14836 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14837 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14838 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14839 AssertRCReturn(rc, rc);
14840 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14841 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14842 return VINF_SUCCESS;
14843 }
14844
14845 /*
14846 * Not a guest trap, must be a hypervisor related debug event then.
14847 * Update DR6 in case someone is interested in it.
14848 */
14849 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
14850 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
14851 CPUMSetHyperDR6(pVCpu, uDR6);
14852
14853 return rc;
14854}
14855
14856
14857/**
14858 * Hacks its way around the lovely mesa driver's backdoor accesses.
14859 *
14860 * @sa hmR0SvmHandleMesaDrvGp
14861 */
14862static int hmR0VmxHandleMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14863{
14864 LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
14865 RT_NOREF(pCtx);
14866
14867 /* For now we'll just skip the instruction. */
14868 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14869}
14870
14871
14872/**
14873 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
14874 * backdoor logging w/o checking what it is running inside.
14875 *
14876 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
14877 * backdoor port and magic numbers loaded in registers.
14878 *
14879 * @returns true if it is, false if it isn't.
14880 * @sa hmR0SvmIsMesaDrvGp
14881 */
14882DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14883{
14884 /* 0xed: IN eAX,dx */
14885 uint8_t abInstr[1];
14886 if (pVmxTransient->cbInstr != sizeof(abInstr))
14887 return false;
14888
14889 /* Check that it is #GP(0). */
14890 if (pVmxTransient->uExitIntErrorCode != 0)
14891 return false;
14892
14893 /* Check magic and port. */
14894 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
14895 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
14896 if (pCtx->rax != UINT32_C(0x564d5868))
14897 return false;
14898 if (pCtx->dx != UINT32_C(0x5658))
14899 return false;
14900
14901 /* Flat ring-3 CS. */
14902 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
14903 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
14904 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
14905 if (pCtx->cs.Attr.n.u2Dpl != 3)
14906 return false;
14907 if (pCtx->cs.u64Base != 0)
14908 return false;
14909
14910 /* Check opcode. */
14911 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
14912 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
14913 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
14914 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
14915 if (RT_FAILURE(rc))
14916 return false;
14917 if (abInstr[0] != 0xed)
14918 return false;
14919
14920 return true;
14921}
14922
14923
14924/**
14925 * VM-exit exception handler for \#GP (General-protection exception).
14926 *
14927 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
14928 */
14929static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14930{
14931 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14932 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
14933
14934 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14935 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14936 if (pVmcsInfo->RealMode.fRealOnV86Active)
14937 { /* likely */ }
14938 else
14939 {
14940#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14941 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv);
14942#endif
14943 /* If the guest is not in real-mode or we have unrestricted guest execution support, reflect #GP to the guest. */
14944 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14945 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14946 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14947 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14948 AssertRCReturn(rc, rc);
14949 Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
14950 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
14951
14952 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
14953 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
14954 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14955 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14956 else
14957 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
14958 return rc;
14959 }
14960
14961 Assert(CPUMIsGuestInRealModeEx(pCtx));
14962 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
14963
14964 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14965 AssertRCReturn(rc, rc);
14966
14967 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
14968 if (rcStrict == VINF_SUCCESS)
14969 {
14970 if (!CPUMIsGuestInRealModeEx(pCtx))
14971 {
14972 /*
14973 * The guest is no longer in real-mode, check if we can continue executing the
14974 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
14975 */
14976 pVmcsInfo->RealMode.fRealOnV86Active = false;
14977 if (HMCanExecuteVmxGuest(pVCpu, pCtx))
14978 {
14979 Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
14980 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14981 }
14982 else
14983 {
14984 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
14985 rcStrict = VINF_EM_RESCHEDULE;
14986 }
14987 }
14988 else
14989 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14990 }
14991 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14992 {
14993 rcStrict = VINF_SUCCESS;
14994 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14995 }
14996 return VBOXSTRICTRC_VAL(rcStrict);
14997}
14998
14999
15000/**
15001 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
15002 * the exception reported in the VMX transient structure back into the VM.
15003 *
15004 * @remarks Requires uExitIntInfo in the VMX transient structure to be
15005 * up-to-date.
15006 */
15007static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15008{
15009 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15010#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
15011 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15012 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVmcsInfo->RealMode.fRealOnV86Active,
15013 ("uVector=%#x u32XcptBitmap=%#X32\n",
15014 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
15015 NOREF(pVmcsInfo);
15016#endif
15017
15018 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
15019 hmR0VmxCheckExitDueToEventDelivery(). */
15020 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15021 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15022 AssertRCReturn(rc, rc);
15023 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
15024
15025#ifdef DEBUG_ramshankar
15026 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
15027 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n",
15028 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pCtx->cs.Sel, pCtx->rip));
15029#endif
15030
15031 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
15032 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
15033 return VINF_SUCCESS;
15034}
15035
15036
15037/**
15038 * VM-exit exception handler for \#PF (Page-fault exception).
15039 */
15040static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15041{
15042 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15043 PVM pVM = pVCpu->CTX_SUFF(pVM);
15044 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15045 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15046 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15047 AssertRCReturn(rc, rc);
15048
15049 if (!pVM->hm.s.fNestedPaging)
15050 { /* likely */ }
15051 else
15052 {
15053#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
15054 Assert(pVCpu->hm.s.fUsingDebugLoop);
15055#endif
15056 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
15057 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
15058 {
15059 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
15060 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
15061 }
15062 else
15063 {
15064 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
15065 hmR0VmxSetPendingXcptDF(pVCpu);
15066 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
15067 }
15068 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
15069 return rc;
15070 }
15071
15072 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
15073 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
15074 if (pVmxTransient->fVectoringPF)
15075 {
15076 Assert(pVCpu->hm.s.Event.fPending);
15077 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15078 }
15079
15080 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15081 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15082 AssertRCReturn(rc, rc);
15083
15084 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
15085 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
15086
15087 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
15088 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
15089
15090 Log4Func(("#PF: rc=%Rrc\n", rc));
15091 if (rc == VINF_SUCCESS)
15092 {
15093 /*
15094 * This is typically a shadow page table sync or a MMIO instruction. But we may have
15095 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
15096 */
15097 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15098 TRPMResetTrap(pVCpu);
15099 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
15100 return rc;
15101 }
15102
15103 if (rc == VINF_EM_RAW_GUEST_TRAP)
15104 {
15105 if (!pVmxTransient->fVectoringDoublePF)
15106 {
15107 /* It's a guest page fault and needs to be reflected to the guest. */
15108 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
15109 TRPMResetTrap(pVCpu);
15110 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
15111 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
15112 uGstErrorCode, pVmxTransient->uExitQual);
15113 }
15114 else
15115 {
15116 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
15117 TRPMResetTrap(pVCpu);
15118 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
15119 hmR0VmxSetPendingXcptDF(pVCpu);
15120 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
15121 }
15122
15123 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
15124 return VINF_SUCCESS;
15125 }
15126
15127 TRPMResetTrap(pVCpu);
15128 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
15129 return rc;
15130}
15131
15132#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
15133/** @name VMX instruction handlers.
15134 * @{
15135 */
15136/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15137/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VMX instructions VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15138/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15139
15140/**
15141 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
15142 */
15143HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15144{
15145 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15146
15147 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15148 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15149 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15150 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15151 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15152 AssertRCReturn(rc, rc);
15153
15154 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15155
15156 VMXVEXITINFO ExitInfo;
15157 RT_ZERO(ExitInfo);
15158 ExitInfo.uReason = pVmxTransient->uExitReason;
15159 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15160 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15161 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15162 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15163
15164 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
15165 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15166 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15167 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15168 {
15169 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15170 rcStrict = VINF_SUCCESS;
15171 }
15172 return rcStrict;
15173}
15174
15175
15176/**
15177 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
15178 */
15179HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15180{
15181 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15182
15183 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
15184 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
15185 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15186 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15187 AssertRCReturn(rc, rc);
15188
15189 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15190
15191 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMLAUNCH);
15192 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15193 {
15194 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
15195 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15196 }
15197 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15198 return rcStrict;
15199}
15200
15201
15202/**
15203 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
15204 */
15205HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15206{
15207 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15208
15209 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15210 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15211 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15212 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15213 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15214 AssertRCReturn(rc, rc);
15215
15216 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15217
15218 VMXVEXITINFO ExitInfo;
15219 RT_ZERO(ExitInfo);
15220 ExitInfo.uReason = pVmxTransient->uExitReason;
15221 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15222 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15223 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15224 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15225
15226 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
15227 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15228 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15229 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15230 {
15231 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15232 rcStrict = VINF_SUCCESS;
15233 }
15234 return rcStrict;
15235}
15236
15237
15238/**
15239 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
15240 */
15241HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15242{
15243 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15244
15245 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15246 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15247 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15248 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15249 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15250 AssertRCReturn(rc, rc);
15251
15252 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15253
15254 VMXVEXITINFO ExitInfo;
15255 RT_ZERO(ExitInfo);
15256 ExitInfo.uReason = pVmxTransient->uExitReason;
15257 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15258 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15259 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15260 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
15261
15262 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
15263 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15264 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15265 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15266 {
15267 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15268 rcStrict = VINF_SUCCESS;
15269 }
15270 return rcStrict;
15271}
15272
15273
15274/**
15275 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
15276 */
15277HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15278{
15279 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15280
15281 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15282 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15283 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15284 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15285 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15286 AssertRCReturn(rc, rc);
15287
15288 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15289
15290 VMXVEXITINFO ExitInfo;
15291 RT_ZERO(ExitInfo);
15292 ExitInfo.uReason = pVmxTransient->uExitReason;
15293 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15294 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15295 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15296 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
15297 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
15298
15299 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
15300 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15301 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15302 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15303 {
15304 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15305 rcStrict = VINF_SUCCESS;
15306 }
15307 return rcStrict;
15308}
15309
15310
15311/**
15312 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
15313 */
15314HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15315{
15316 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15317
15318 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
15319 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
15320 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15321 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15322 AssertRCReturn(rc, rc);
15323
15324 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15325
15326 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMRESUME);
15327 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15328 {
15329 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
15330 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15331 }
15332 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15333 return rcStrict;
15334}
15335
15336
15337/**
15338 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
15339 */
15340HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15341{
15342 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15343
15344 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15345 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15346 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15347 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15348 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15349 AssertRCReturn(rc, rc);
15350
15351 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15352
15353 VMXVEXITINFO ExitInfo;
15354 RT_ZERO(ExitInfo);
15355 ExitInfo.uReason = pVmxTransient->uExitReason;
15356 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15357 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15358 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15359 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
15360 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15361
15362 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
15363 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15364 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15365 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15366 {
15367 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15368 rcStrict = VINF_SUCCESS;
15369 }
15370 return rcStrict;
15371}
15372
15373
15374/**
15375 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
15376 */
15377HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15378{
15379 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15380
15381 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15382 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
15383 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
15384 AssertRCReturn(rc, rc);
15385
15386 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15387
15388 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
15389 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15390 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
15391 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15392 {
15393 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15394 rcStrict = VINF_SUCCESS;
15395 }
15396 return rcStrict;
15397}
15398
15399
15400/**
15401 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
15402 */
15403HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15404{
15405 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15406
15407 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15408 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15409 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15410 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15411 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15412 AssertRCReturn(rc, rc);
15413
15414 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15415
15416 VMXVEXITINFO ExitInfo;
15417 RT_ZERO(ExitInfo);
15418 ExitInfo.uReason = pVmxTransient->uExitReason;
15419 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15420 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15421 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15422 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15423
15424 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
15425 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15426 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15427 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15428 {
15429 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15430 rcStrict = VINF_SUCCESS;
15431 }
15432 return rcStrict;
15433}
15434
15435/** @} */
15436#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
15437
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette