VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 78236

Last change on this file since 78236 was 78236, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: VMXMSRPM_ALLOW_RD_WR shorthand macro.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 641.5 KB
Line 
1/* $Id: HMVMXR0.cpp 78236 2019-04-22 04:04:57Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include <VBox/vmm/hmvmxinline.h>
43#include "HMVMXR0.h"
44#include "dtrace/VBoxVMM.h"
45
46# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
47#ifdef DEBUG_ramshankar
48# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
49# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/** @name HMVMX_READ_XXX
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82/** @} */
83
84/**
85 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
86 * guest using hardware-assisted VMX.
87 *
88 * This excludes state like GPRs (other than RSP) which are always are
89 * swapped and restored across the world-switch and also registers like EFER,
90 * MSR which cannot be modified by the guest without causing a VM-exit.
91 */
92#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
93 | CPUMCTX_EXTRN_RFLAGS \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_TABLE_MASK \
97 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
98 | CPUMCTX_EXTRN_SYSCALL_MSRS \
99 | CPUMCTX_EXTRN_SYSENTER_MSRS \
100 | CPUMCTX_EXTRN_TSC_AUX \
101 | CPUMCTX_EXTRN_OTHER_MSRS \
102 | CPUMCTX_EXTRN_CR0 \
103 | CPUMCTX_EXTRN_CR3 \
104 | CPUMCTX_EXTRN_CR4 \
105 | CPUMCTX_EXTRN_DR7 \
106 | CPUMCTX_EXTRN_HM_VMX_MASK)
107
108/**
109 * Exception bitmap mask for real-mode guests (real-on-v86).
110 *
111 * We need to intercept all exceptions manually except:
112 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
113 * due to bugs in Intel CPUs.
114 * - \#PF need not be intercepted even in real-mode if we have nested paging
115 * support.
116 */
117#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
118 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
119 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
120 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
121 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
122 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
123 | RT_BIT(X86_XCPT_XF))
124
125/** Maximum VM-instruction error number. */
126#define HMVMX_INSTR_ERROR_MAX 28
127
128/** Profiling macro. */
129#ifdef HM_PROFILE_EXIT_DISPATCH
130# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
131# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
132#else
133# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
134# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
135#endif
136
137/** Assert that preemption is disabled or covered by thread-context hooks. */
138#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
139 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
140
141/** Assert that we haven't migrated CPUs when thread-context hooks are not
142 * used. */
143#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
144 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
145 ("Illegal migration! Entered on CPU %u Current %u\n", \
146 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
147
148/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
149 * context. */
150#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
151 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
152 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
153
154/** Helper macro for VM-exit handlers called unexpectedly. */
155#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
156 do { \
157 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
158 return VERR_VMX_UNEXPECTED_EXIT; \
159 } while (0)
160
161#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
162/** Macro that does the necessary privilege checks and intercepted VM-exits for
163 * guests that attempted to execute a VMX instruction. */
164# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
165 do \
166 { \
167 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
168 if (rcStrictTmp == VINF_SUCCESS) \
169 { /* likely */ } \
170 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
171 { \
172 Assert((a_pVCpu)->hm.s.Event.fPending); \
173 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
174 return VINF_SUCCESS; \
175 } \
176 else \
177 { \
178 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
179 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
180 } \
181 } while (0)
182
183/** Macro that decodes a memory operand for an instruction VM-exit. */
184# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
185 do \
186 { \
187 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
188 (a_pGCPtrEffAddr)); \
189 if (rcStrictTmp == VINF_SUCCESS) \
190 { /* likely */ } \
191 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
192 { \
193 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
194 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
195 NOREF(uXcptTmp); \
196 return VINF_SUCCESS; \
197 } \
198 else \
199 { \
200 Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
201 return rcStrictTmp; \
202 } \
203 } while (0)
204
205#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
206
207
208/*********************************************************************************************************************************
209* Structures and Typedefs *
210*********************************************************************************************************************************/
211/**
212 * VMX transient state.
213 *
214 * A state structure for holding miscellaneous information across
215 * VMX non-root operation and restored after the transition.
216 */
217typedef struct VMXTRANSIENT
218{
219 /** The host's rflags/eflags. */
220 RTCCUINTREG fEFlags;
221#if HC_ARCH_BITS == 32
222 uint32_t u32Alignment0;
223#endif
224 /** The guest's TPR value used for TPR shadowing. */
225 uint8_t u8GuestTpr;
226 /** Alignment. */
227 uint8_t abAlignment0[7];
228
229 /** The basic VM-exit reason. */
230 uint16_t uExitReason;
231 /** Alignment. */
232 uint16_t u16Alignment0;
233 /** The VM-exit interruption error code. */
234 uint32_t uExitIntErrorCode;
235 /** The VM-exit exit code qualification. */
236 uint64_t uExitQual;
237 /** The Guest-linear address. */
238 uint64_t uGuestLinearAddr;
239
240 /** The VM-exit interruption-information field. */
241 uint32_t uExitIntInfo;
242 /** The VM-exit instruction-length field. */
243 uint32_t cbInstr;
244 /** The VM-exit instruction-information field. */
245 VMXEXITINSTRINFO ExitInstrInfo;
246 /** Whether the VM-entry failed or not. */
247 bool fVMEntryFailed;
248 /** Whether we are currently executing a nested-guest. */
249 bool fIsNestedGuest;
250 /** Alignment. */
251 uint8_t abAlignment1[2];
252
253 /** The VM-entry interruption-information field. */
254 uint32_t uEntryIntInfo;
255 /** The VM-entry exception error code field. */
256 uint32_t uEntryXcptErrorCode;
257 /** The VM-entry instruction length field. */
258 uint32_t cbEntryInstr;
259
260 /** IDT-vectoring information field. */
261 uint32_t uIdtVectoringInfo;
262 /** IDT-vectoring error code. */
263 uint32_t uIdtVectoringErrorCode;
264
265 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
266 uint32_t fVmcsFieldsRead;
267
268 /** Whether the guest debug state was active at the time of VM-exit. */
269 bool fWasGuestDebugStateActive;
270 /** Whether the hyper debug state was active at the time of VM-exit. */
271 bool fWasHyperDebugStateActive;
272 /** Whether TSC-offsetting and VMX-preemption timer was updated before VM-entry. */
273 bool fUpdatedTscOffsettingAndPreemptTimer;
274 /** Whether the VM-exit was caused by a page-fault during delivery of a
275 * contributory exception or a page-fault. */
276 bool fVectoringDoublePF;
277 /** Whether the VM-exit was caused by a page-fault during delivery of an
278 * external interrupt or NMI. */
279 bool fVectoringPF;
280 bool afAlignment0[3];
281
282 /** The VMCS info. object. */
283 PVMXVMCSINFO pVmcsInfo;
284} VMXTRANSIENT;
285AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
286AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
287AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
288AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
289AssertCompileMemberAlignment(VMXTRANSIENT, pVmcsInfo, sizeof(uint64_t));
290AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
291/** Pointer to VMX transient state. */
292typedef VMXTRANSIENT *PVMXTRANSIENT;
293
294/**
295 * Memory operand read or write access.
296 */
297typedef enum VMXMEMACCESS
298{
299 VMXMEMACCESS_READ = 0,
300 VMXMEMACCESS_WRITE = 1
301} VMXMEMACCESS;
302
303/**
304 * VMX VM-exit handler.
305 *
306 * @returns Strict VBox status code (i.e. informational status codes too).
307 * @param pVCpu The cross context virtual CPU structure.
308 * @param pVmxTransient The VMX-transient structure.
309 */
310#ifndef HMVMX_USE_FUNCTION_TABLE
311typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
312#else
313typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
314/** Pointer to VM-exit handler. */
315typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
316#endif
317
318/**
319 * VMX VM-exit handler, non-strict status code.
320 *
321 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
322 *
323 * @returns VBox status code, no informational status code returned.
324 * @param pVCpu The cross context virtual CPU structure.
325 * @param pVmxTransient The VMX-transient structure.
326 *
327 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
328 * use of that status code will be replaced with VINF_EM_SOMETHING
329 * later when switching over to IEM.
330 */
331#ifndef HMVMX_USE_FUNCTION_TABLE
332typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
333#else
334typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
335#endif
336
337
338/*********************************************************************************************************************************
339* Internal Functions *
340*********************************************************************************************************************************/
341#ifndef HMVMX_USE_FUNCTION_TABLE
342DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
343# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
344# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
345#else
346# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
347# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
348#endif
349#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
350DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
351#endif
352
353static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
354#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
355static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
356#endif
357
358/** @name VM-exit handlers.
359 * @{
360 */
361static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
362static FNVMXEXITHANDLER hmR0VmxExitExtInt;
363static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
364static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
365static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
366static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
367static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
368static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
369static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
370static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
371static FNVMXEXITHANDLER hmR0VmxExitCpuid;
372static FNVMXEXITHANDLER hmR0VmxExitGetsec;
373static FNVMXEXITHANDLER hmR0VmxExitHlt;
374static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
375static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
376static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
377static FNVMXEXITHANDLER hmR0VmxExitVmcall;
378#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
379static FNVMXEXITHANDLER hmR0VmxExitVmclear;
380static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
381static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
382static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
383static FNVMXEXITHANDLER hmR0VmxExitVmread;
384static FNVMXEXITHANDLER hmR0VmxExitVmresume;
385static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
386static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
387static FNVMXEXITHANDLER hmR0VmxExitVmxon;
388#endif
389static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
392static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
393static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
394static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
395static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
396static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
398static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
399static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
400static FNVMXEXITHANDLER hmR0VmxExitMwait;
401static FNVMXEXITHANDLER hmR0VmxExitMtf;
402static FNVMXEXITHANDLER hmR0VmxExitMonitor;
403static FNVMXEXITHANDLER hmR0VmxExitPause;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
405static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
406static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
407static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
408static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
409static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
410static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
411static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
413static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
414static FNVMXEXITHANDLER hmR0VmxExitRdrand;
415static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
416/** @} */
417
418/** @name Helpers for hardware exceptions VM-exit handlers.
419 * @{
420 */
421static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
422static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
423static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
424static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
425static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
426static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
427static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
428/** @} */
429
430
431/*********************************************************************************************************************************
432* Global Variables *
433*********************************************************************************************************************************/
434#ifdef VMX_USE_CACHED_VMCS_ACCESSES
435static const uint32_t g_aVmcsCacheSegBase[] =
436{
437 VMX_VMCS_GUEST_ES_BASE_CACHE_IDX,
438 VMX_VMCS_GUEST_CS_BASE_CACHE_IDX,
439 VMX_VMCS_GUEST_SS_BASE_CACHE_IDX,
440 VMX_VMCS_GUEST_DS_BASE_CACHE_IDX,
441 VMX_VMCS_GUEST_FS_BASE_CACHE_IDX,
442 VMX_VMCS_GUEST_GS_BASE_CACHE_IDX
443};
444AssertCompile(RT_ELEMENTS(g_aVmcsCacheSegBase) == X86_SREG_COUNT);
445#endif
446static const uint32_t g_aVmcsSegBase[] =
447{
448 VMX_VMCS_GUEST_ES_BASE,
449 VMX_VMCS_GUEST_CS_BASE,
450 VMX_VMCS_GUEST_SS_BASE,
451 VMX_VMCS_GUEST_DS_BASE,
452 VMX_VMCS_GUEST_FS_BASE,
453 VMX_VMCS_GUEST_GS_BASE
454};
455static const uint32_t g_aVmcsSegSel[] =
456{
457 VMX_VMCS16_GUEST_ES_SEL,
458 VMX_VMCS16_GUEST_CS_SEL,
459 VMX_VMCS16_GUEST_SS_SEL,
460 VMX_VMCS16_GUEST_DS_SEL,
461 VMX_VMCS16_GUEST_FS_SEL,
462 VMX_VMCS16_GUEST_GS_SEL
463};
464static const uint32_t g_aVmcsSegLimit[] =
465{
466 VMX_VMCS32_GUEST_ES_LIMIT,
467 VMX_VMCS32_GUEST_CS_LIMIT,
468 VMX_VMCS32_GUEST_SS_LIMIT,
469 VMX_VMCS32_GUEST_DS_LIMIT,
470 VMX_VMCS32_GUEST_FS_LIMIT,
471 VMX_VMCS32_GUEST_GS_LIMIT
472};
473static const uint32_t g_aVmcsSegAttr[] =
474{
475 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
476 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
477 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
478 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
479 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
480 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
481};
482AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
483AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
484AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
485AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
486
487#ifdef HMVMX_USE_FUNCTION_TABLE
488/**
489 * VMX_EXIT dispatch table.
490 */
491static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
492{
493 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
494 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
495 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
496 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
497 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
498 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
499 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
500 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
501 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
502 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
503 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
504 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
505 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
506 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
507 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
508 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
509 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
510 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
511 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
512#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
513 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
514 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
515 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
516 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
517 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
518 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
519 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
520 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
521 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
522#else
523 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
524 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
525 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
526 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
527 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
528 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
529 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
530 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
531 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
532#endif
533 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
534 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
535 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
536 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
537 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
538 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
539 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
540 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
541 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
542 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
543 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
544 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
545 /* 40 UNDEFINED */ hmR0VmxExitPause,
546 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
547 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
548 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
549 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
550 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
551 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
552 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
553 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
554 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
555 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
556 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
557 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
558 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
559 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
560 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
561 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
562 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
563 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
564 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
565 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
566 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
567 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
568 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
569 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
570};
571#endif /* HMVMX_USE_FUNCTION_TABLE */
572
573#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
574static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
575{
576 /* 0 */ "(Not Used)",
577 /* 1 */ "VMCALL executed in VMX root operation.",
578 /* 2 */ "VMCLEAR with invalid physical address.",
579 /* 3 */ "VMCLEAR with VMXON pointer.",
580 /* 4 */ "VMLAUNCH with non-clear VMCS.",
581 /* 5 */ "VMRESUME with non-launched VMCS.",
582 /* 6 */ "VMRESUME after VMXOFF",
583 /* 7 */ "VM-entry with invalid control fields.",
584 /* 8 */ "VM-entry with invalid host state fields.",
585 /* 9 */ "VMPTRLD with invalid physical address.",
586 /* 10 */ "VMPTRLD with VMXON pointer.",
587 /* 11 */ "VMPTRLD with incorrect revision identifier.",
588 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
589 /* 13 */ "VMWRITE to read-only VMCS component.",
590 /* 14 */ "(Not Used)",
591 /* 15 */ "VMXON executed in VMX root operation.",
592 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
593 /* 17 */ "VM-entry with non-launched executing VMCS.",
594 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
595 /* 19 */ "VMCALL with non-clear VMCS.",
596 /* 20 */ "VMCALL with invalid VM-exit control fields.",
597 /* 21 */ "(Not Used)",
598 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
599 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
600 /* 24 */ "VMCALL with invalid SMM-monitor features.",
601 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
602 /* 26 */ "VM-entry with events blocked by MOV SS.",
603 /* 27 */ "(Not Used)",
604 /* 28 */ "Invalid operand to INVEPT/INVVPID."
605};
606#endif /* VBOX_STRICT */
607
608
609/**
610 * Get the CR0 guest/host mask that does not change through the lifetime of a VM.
611 *
612 * Any bit set in this mask is owned by the host/hypervisor and would cause a
613 * VM-exit when modified by the guest.
614 *
615 * @returns The static CR0 guest/host mask.
616 * @param pVCpu The cross context virtual CPU structure.
617 */
618DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr0Mask(PVMCPU pVCpu)
619{
620 /*
621 * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
622 * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
623 */
624 /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
625 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
626 * and @bugref{6944}. */
627 PVM pVM = pVCpu->CTX_SUFF(pVM);
628 return ( X86_CR0_PE
629 | X86_CR0_NE
630 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
631 | X86_CR0_PG
632 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
633 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
634 | X86_CR0_NW); /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
635}
636
637
638/**
639 * Gets the CR4 guest/host mask that does not change through the lifetime of a VM.
640 *
641 * Any bit set in this mask is owned by the host/hypervisor and would cause a
642 * VM-exit when modified by the guest.
643 *
644 * @returns The static CR4 guest/host mask.
645 * @param pVCpu The cross context virtual CPU structure.
646 */
647DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr4Mask(PVMCPU pVCpu)
648{
649 /*
650 * We need to look at the host features here (for e.g. OSXSAVE, PCID) because
651 * these bits are reserved on hardware that does not support them. Since the
652 * CPU cannot refer to our virtual CPUID, we need to intercept CR4 changes to
653 * these bits and handle it depending on whether we expose them to the guest.
654 */
655 PVM pVM = pVCpu->CTX_SUFF(pVM);
656 bool const fXSaveRstor = pVM->cpum.ro.HostFeatures.fXSaveRstor;
657 bool const fPcid = pVM->cpum.ro.HostFeatures.fPcid;
658 return ( X86_CR4_VMXE
659 | X86_CR4_VME
660 | X86_CR4_PAE
661 | X86_CR4_PGE
662 | X86_CR4_PSE
663 | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
664 | (fPcid ? X86_CR4_PCIDE : 0));
665}
666
667
668/**
669 * Returns whether the the VM-exit MSR-store area differs from the VM-exit MSR-load
670 * area.
671 *
672 * @returns @c true if it's different, @c false otherwise.
673 * @param pVmcsInfo The VMCS info. object.
674 */
675DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
676{
677 return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
678 && pVmcsInfo->pvGuestMsrStore);
679}
680
681
682/**
683 * Adds one or more exceptions to the exception bitmap and commits it to the current
684 * VMCS.
685 *
686 * @returns VBox status code.
687 * @param pVmxTransient The VMX-transient structure.
688 * @param uXcptMask The exception(s) to add.
689 */
690static int hmR0VmxAddXcptInterceptMask(PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
691{
692 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
693 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
694 if ((uXcptBitmap & uXcptMask) != uXcptMask)
695 {
696 uXcptBitmap |= uXcptMask;
697 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
698 AssertRCReturn(rc, rc);
699 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
700 }
701 return VINF_SUCCESS;
702}
703
704
705/**
706 * Adds an exception to the exception bitmap and commits it to the current VMCS.
707 *
708 * @returns VBox status code.
709 * @param pVmxTransient The VMX-transient structure.
710 * @param uXcpt The exception to add.
711 */
712static int hmR0VmxAddXcptIntercept(PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
713{
714 Assert(uXcpt <= X86_XCPT_LAST);
715 return hmR0VmxAddXcptInterceptMask(pVmxTransient, RT_BIT_32(uXcpt));
716}
717
718
719/**
720 * Remove one or more exceptions from the exception bitmap and commits it to the
721 * current VMCS.
722 *
723 * This takes care of not removing the exception intercept if a nested-guest
724 * requires the exception to be intercepted.
725 *
726 * @returns VBox status code.
727 * @param pVCpu The cross context virtual CPU structure.
728 * @param pVmxTransient The VMX-transient structure.
729 * @param uXcptMask The exception(s) to remove.
730 */
731static int hmR0VmxRemoveXcptInterceptMask(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
732{
733 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
734 uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
735 if (u32XcptBitmap & uXcptMask)
736 {
737#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
738 if (!pVmxTransient->fIsNestedGuest)
739 { /* likely */ }
740 else
741 {
742 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
743 uXcptMask &= ~pVmcsNstGst->u32XcptBitmap;
744 }
745#endif
746#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
747 uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
748 | RT_BIT(X86_XCPT_DE)
749 | RT_BIT(X86_XCPT_NM)
750 | RT_BIT(X86_XCPT_TS)
751 | RT_BIT(X86_XCPT_UD)
752 | RT_BIT(X86_XCPT_NP)
753 | RT_BIT(X86_XCPT_SS)
754 | RT_BIT(X86_XCPT_GP)
755 | RT_BIT(X86_XCPT_PF)
756 | RT_BIT(X86_XCPT_MF));
757#elif defined(HMVMX_ALWAYS_TRAP_PF)
758 uXcptMask &= ~RT_BIT(X86_XCPT_PF);
759#endif
760 if (uXcptMask)
761 {
762 /* Validate we are not removing any essential exception intercepts. */
763 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF))); RT_NOREF(pVCpu);
764 Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
765 Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
766
767 /* Remove it from the exception bitmap. */
768 u32XcptBitmap &= ~uXcptMask;
769
770 /* Commit and update the cache if necessary. */
771 if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
772 {
773 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
774 AssertRCReturn(rc, rc);
775 pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
776 }
777 }
778 }
779 return VINF_SUCCESS;
780}
781
782
783/**
784 * Remove an exceptions from the exception bitmap and commits it to the current
785 * VMCS.
786 *
787 * @returns VBox status code.
788 * @param pVCpu The cross context virtual CPU structure.
789 * @param pVmxTransient The VMX-transient structure.
790 * @param uXcpt The exception to remove.
791 */
792static int hmR0VmxRemoveXcptIntercept(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
793{
794 return hmR0VmxRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
795}
796
797
798/**
799 * Loads the VMCS specified by the VMCS info. object.
800 *
801 * @returns VBox status code.
802 * @param pVmcsInfo The VMCS info. object.
803 */
804static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
805{
806 Assert(pVmcsInfo);
807 Assert(pVmcsInfo->HCPhysVmcs);
808 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
809
810 if (pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_CLEAR)
811 {
812 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
813 if (RT_SUCCESS(rc))
814 {
815 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
816 return VINF_SUCCESS;
817 }
818 return rc;
819 }
820 return VERR_VMX_INVALID_VMCS_LAUNCH_STATE;
821}
822
823
824/**
825 * Clears the VMCS specified by the VMCS info. object.
826 *
827 * @returns VBox status code.
828 * @param pVmcsInfo The VMCS info. object.
829 */
830static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
831{
832 Assert(pVmcsInfo);
833 Assert(pVmcsInfo->HCPhysVmcs);
834 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
835
836 int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
837 if (RT_SUCCESS(rc))
838 pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
839 return rc;
840}
841
842
843#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
844/**
845 * Switches the current VMCS to the one specified.
846 *
847 * @returns VBox status code.
848 * @param pVmcsInfoFrom The VMCS info. object we are switching from.
849 * @param pVmcsInfoTo The VMCS info. object we are switching to.
850 *
851 * @remarks Called with interrupts disabled.
852 */
853static int hmR0VmxSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
854{
855 Assert(pVmcsInfoFrom);
856 Assert(pVmcsInfoTo);
857
858 /*
859 * Clear the VMCS we are switching out if it has not already been cleared.
860 * This will sync any CPU internal data back to the VMCS.
861 */
862 if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
863 {
864 int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
865 if (RT_SUCCESS(rc))
866 { /* likely */ }
867 else
868 return rc;
869 }
870
871 /*
872 * Clear the VMCS we are switching to if it has not already been cleared.
873 * This will initialize the VMCS launch state to "clear" required for loading it.
874 *
875 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
876 */
877 if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
878 {
879 int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
880 if (RT_SUCCESS(rc))
881 { /* likely */ }
882 else
883 return rc;
884 }
885
886 /*
887 * Finally, load the VMCS we are switching to.
888 */
889 return hmR0VmxLoadVmcs(pVmcsInfoTo);
890}
891#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
892
893
894/**
895 * Updates the VM's last error record.
896 *
897 * If there was a VMX instruction error, reads the error data from the VMCS and
898 * updates VCPU's last error record as well.
899 *
900 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
901 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
902 * VERR_VMX_INVALID_VMCS_FIELD.
903 * @param rc The error code.
904 */
905static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
906{
907 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
908 || rc == VERR_VMX_UNABLE_TO_START_VM)
909 {
910 AssertPtrReturnVoid(pVCpu);
911 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
912 }
913 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
914}
915
916
917#ifdef VBOX_STRICT
918/**
919 * Reads the VM-entry interruption-information field from the VMCS into the VMX
920 * transient structure.
921 *
922 * @returns VBox status code.
923 * @param pVmxTransient The VMX-transient structure.
924 *
925 * @remarks No-long-jump zone!!!
926 */
927DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
928{
929 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
930 AssertRCReturn(rc, rc);
931 return VINF_SUCCESS;
932}
933
934
935/**
936 * Reads the VM-entry exception error code field from the VMCS into
937 * the VMX transient structure.
938 *
939 * @returns VBox status code.
940 * @param pVmxTransient The VMX-transient structure.
941 *
942 * @remarks No-long-jump zone!!!
943 */
944DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
945{
946 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
947 AssertRCReturn(rc, rc);
948 return VINF_SUCCESS;
949}
950
951
952/**
953 * Reads the VM-entry exception error code field from the VMCS into
954 * the VMX transient structure.
955 *
956 * @returns VBox status code.
957 * @param pVmxTransient The VMX-transient structure.
958 *
959 * @remarks No-long-jump zone!!!
960 */
961DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
962{
963 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
964 AssertRCReturn(rc, rc);
965 return VINF_SUCCESS;
966}
967#endif /* VBOX_STRICT */
968
969
970/**
971 * Reads the VM-exit interruption-information field from the VMCS into the VMX
972 * transient structure.
973 *
974 * @returns VBox status code.
975 * @param pVmxTransient The VMX-transient structure.
976 */
977DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
978{
979 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
980 {
981 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
982 AssertRCReturn(rc,rc);
983 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
984 }
985 return VINF_SUCCESS;
986}
987
988
989/**
990 * Reads the VM-exit interruption error code from the VMCS into the VMX
991 * transient structure.
992 *
993 * @returns VBox status code.
994 * @param pVmxTransient The VMX-transient structure.
995 */
996DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
997{
998 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
999 {
1000 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1001 AssertRCReturn(rc, rc);
1002 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
1003 }
1004 return VINF_SUCCESS;
1005}
1006
1007
1008/**
1009 * Reads the VM-exit instruction length field from the VMCS into the VMX
1010 * transient structure.
1011 *
1012 * @returns VBox status code.
1013 * @param pVmxTransient The VMX-transient structure.
1014 */
1015DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1016{
1017 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
1018 {
1019 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
1020 AssertRCReturn(rc, rc);
1021 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
1022 }
1023 return VINF_SUCCESS;
1024}
1025
1026
1027/**
1028 * Reads the VM-exit instruction-information field from the VMCS into
1029 * the VMX transient structure.
1030 *
1031 * @returns VBox status code.
1032 * @param pVmxTransient The VMX-transient structure.
1033 */
1034DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
1035{
1036 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
1037 {
1038 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1039 AssertRCReturn(rc, rc);
1040 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
1041 }
1042 return VINF_SUCCESS;
1043}
1044
1045
1046/**
1047 * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
1048 *
1049 * @returns VBox status code.
1050 * @param pVCpu The cross context virtual CPU structure of the
1051 * calling EMT. (Required for the VMCS cache case.)
1052 * @param pVmxTransient The VMX-transient structure.
1053 */
1054DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1055{
1056 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
1057 {
1058 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
1059 AssertRCReturn(rc, rc);
1060 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
1061 }
1062 return VINF_SUCCESS;
1063}
1064
1065
1066/**
1067 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
1068 *
1069 * @returns VBox status code.
1070 * @param pVCpu The cross context virtual CPU structure of the
1071 * calling EMT. (Required for the VMCS cache case.)
1072 * @param pVmxTransient The VMX-transient structure.
1073 */
1074DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1075{
1076 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
1077 {
1078 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
1079 AssertRCReturn(rc, rc);
1080 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
1081 }
1082 return VINF_SUCCESS;
1083}
1084
1085
1086/**
1087 * Reads the IDT-vectoring information field from the VMCS into the VMX
1088 * transient structure.
1089 *
1090 * @returns VBox status code.
1091 * @param pVmxTransient The VMX-transient structure.
1092 *
1093 * @remarks No-long-jump zone!!!
1094 */
1095DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
1096{
1097 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
1098 {
1099 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1100 AssertRCReturn(rc, rc);
1101 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
1102 }
1103 return VINF_SUCCESS;
1104}
1105
1106
1107/**
1108 * Reads the IDT-vectoring error code from the VMCS into the VMX
1109 * transient structure.
1110 *
1111 * @returns VBox status code.
1112 * @param pVmxTransient The VMX-transient structure.
1113 */
1114DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1115{
1116 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
1117 {
1118 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1119 AssertRCReturn(rc, rc);
1120 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
1121 }
1122 return VINF_SUCCESS;
1123}
1124
1125
1126/**
1127 * Enters VMX root mode operation on the current CPU.
1128 *
1129 * @returns VBox status code.
1130 * @param pVM The cross context VM structure. Can be
1131 * NULL, after a resume.
1132 * @param HCPhysCpuPage Physical address of the VMXON region.
1133 * @param pvCpuPage Pointer to the VMXON region.
1134 */
1135static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
1136{
1137 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
1138 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
1139 Assert(pvCpuPage);
1140 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1141
1142 if (pVM)
1143 {
1144 /* Write the VMCS revision identifier to the VMXON region. */
1145 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
1146 }
1147
1148 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
1149 RTCCUINTREG fEFlags = ASMIntDisableFlags();
1150
1151 /* Enable the VMX bit in CR4 if necessary. */
1152 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
1153
1154 /* Enter VMX root mode. */
1155 int rc = VMXEnable(HCPhysCpuPage);
1156 if (RT_FAILURE(rc))
1157 {
1158 if (!(uOldCr4 & X86_CR4_VMXE))
1159 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
1160
1161 if (pVM)
1162 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
1163 }
1164
1165 /* Restore interrupts. */
1166 ASMSetFlags(fEFlags);
1167 return rc;
1168}
1169
1170
1171/**
1172 * Exits VMX root mode operation on the current CPU.
1173 *
1174 * @returns VBox status code.
1175 */
1176static int hmR0VmxLeaveRootMode(void)
1177{
1178 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1179
1180 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
1181 RTCCUINTREG fEFlags = ASMIntDisableFlags();
1182
1183 /* If we're for some reason not in VMX root mode, then don't leave it. */
1184 RTCCUINTREG uHostCR4 = ASMGetCR4();
1185
1186 int rc;
1187 if (uHostCR4 & X86_CR4_VMXE)
1188 {
1189 /* Exit VMX root mode and clear the VMX bit in CR4. */
1190 VMXDisable();
1191 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
1192 rc = VINF_SUCCESS;
1193 }
1194 else
1195 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
1196
1197 /* Restore interrupts. */
1198 ASMSetFlags(fEFlags);
1199 return rc;
1200}
1201
1202
1203/**
1204 * Allocates and maps a physically contiguous page. The allocated page is
1205 * zero'd out (used by various VT-x structures).
1206 *
1207 * @returns IPRT status code.
1208 * @param pMemObj Pointer to the ring-0 memory object.
1209 * @param ppVirt Where to store the virtual address of the
1210 * allocation.
1211 * @param pHCPhys Where to store the physical address of the
1212 * allocation.
1213 */
1214static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
1215{
1216 AssertPtr(pMemObj);
1217 AssertPtr(ppVirt);
1218 AssertPtr(pHCPhys);
1219 int rc = RTR0MemObjAllocCont(pMemObj, X86_PAGE_4K_SIZE, false /* fExecutable */);
1220 if (RT_FAILURE(rc))
1221 return rc;
1222 *ppVirt = RTR0MemObjAddress(*pMemObj);
1223 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
1224 ASMMemZero32(*ppVirt, X86_PAGE_4K_SIZE);
1225 return VINF_SUCCESS;
1226}
1227
1228
1229/**
1230 * Frees and unmaps an allocated, physical page.
1231 *
1232 * @param pMemObj Pointer to the ring-0 memory object.
1233 * @param ppVirt Where to re-initialize the virtual address of
1234 * allocation as 0.
1235 * @param pHCPhys Where to re-initialize the physical address of the
1236 * allocation as 0.
1237 */
1238static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
1239{
1240 AssertPtr(pMemObj);
1241 AssertPtr(ppVirt);
1242 AssertPtr(pHCPhys);
1243 /* NULL is valid, accepted and ignored by the free function below. */
1244 RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
1245 *pMemObj = NIL_RTR0MEMOBJ;
1246 *ppVirt = NULL;
1247 *pHCPhys = NIL_RTHCPHYS;
1248}
1249
1250
1251/**
1252 * Initializes a VMCS info. object.
1253 *
1254 * @param pVmcsInfo The VMCS info. object.
1255 */
1256static void hmR0VmxInitVmcsInfo(PVMXVMCSINFO pVmcsInfo)
1257{
1258 RT_ZERO(*pVmcsInfo);
1259
1260 Assert(pVmcsInfo->hMemObjVmcs == NIL_RTR0MEMOBJ);
1261 Assert(pVmcsInfo->hMemObjMsrBitmap == NIL_RTR0MEMOBJ);
1262 Assert(pVmcsInfo->hMemObjGuestMsrLoad == NIL_RTR0MEMOBJ);
1263 Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
1264 Assert(pVmcsInfo->hMemObjHostMsrLoad == NIL_RTR0MEMOBJ);
1265 pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
1266 pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
1267 pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
1268 pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
1269 pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
1270 pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
1271 pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
1272 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
1273}
1274
1275
1276/**
1277 * Frees the VT-x structures for a VMCS info. object.
1278 *
1279 * @param pVM The cross context VM structure.
1280 * @param pVmcsInfo The VMCS info. object.
1281 */
1282static void hmR0VmxFreeVmcsInfo(PVM pVM, PVMXVMCSINFO pVmcsInfo)
1283{
1284 hmR0VmxPageFree(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
1285
1286 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1287 hmR0VmxPageFree(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
1288
1289 hmR0VmxPageFree(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad, &pVmcsInfo->HCPhysHostMsrLoad);
1290 hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad, &pVmcsInfo->HCPhysGuestMsrLoad);
1291 hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrStore, &pVmcsInfo->pvGuestMsrStore, &pVmcsInfo->HCPhysGuestMsrStore);
1292
1293 hmR0VmxInitVmcsInfo(pVmcsInfo);
1294}
1295
1296
1297/**
1298 * Allocates the VT-x structures for a VMCS info. object.
1299 *
1300 * @returns VBox status code.
1301 * @param pVCpu The cross context virtual CPU structure.
1302 * @param pVmcsInfo The VMCS info. object.
1303 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1304 */
1305static int hmR0VmxAllocVmcsInfo(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
1306{
1307 PVM pVM = pVCpu->CTX_SUFF(pVM);
1308
1309 /* Allocate the guest VM control structure (VMCS). */
1310 int rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
1311 if (RT_SUCCESS(rc))
1312 {
1313 if (!fIsNstGstVmcs)
1314 {
1315 /* Get the allocated virtual-APIC page from the virtual APIC device. */
1316 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
1317 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
1318 {
1319 rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic,
1320 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1321 }
1322 }
1323 else
1324 {
1325 Assert(pVmcsInfo->HCPhysVirtApic == NIL_RTHCPHYS);
1326 Assert(!pVmcsInfo->pbVirtApic);
1327 }
1328
1329 if (RT_SUCCESS(rc))
1330 {
1331 /*
1332 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1333 * transparent accesses of specific MSRs.
1334 *
1335 * If the condition for enabling MSR bitmaps changes here, don't forget to
1336 * update HMIsMsrBitmapActive().
1337 *
1338 * We don't share MSR bitmaps between the guest and nested-guest as we then
1339 * don't need to care about carefully restoring the guest MSR bitmap.
1340 * The guest visible nested-guest MSR bitmap needs to remain unchanged.
1341 * Hence, allocate a separate MSR bitmap for the guest and nested-guest.
1342 */
1343 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1344 {
1345 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
1346 if (RT_SUCCESS(rc))
1347 ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
1348 }
1349
1350 if (RT_SUCCESS(rc))
1351 {
1352 /*
1353 * Allocate the VM-entry MSR-load area for the guest MSRs.
1354 *
1355 * Similar to MSR-bitmaps, we do not share the auto MSR-load/store are between
1356 * the guest and nested-guest.
1357 */
1358 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad,
1359 &pVmcsInfo->HCPhysGuestMsrLoad);
1360 if (RT_SUCCESS(rc))
1361 {
1362 /*
1363 * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
1364 * These contain the guest MSRs to load on VM-entry and store on VM-exit.
1365 */
1366 Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
1367 pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
1368 pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
1369
1370 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1371 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad,
1372 &pVmcsInfo->HCPhysHostMsrLoad);
1373 }
1374 }
1375 }
1376 }
1377
1378 return rc;
1379}
1380
1381
1382/**
1383 * Free all VT-x structures for the VM.
1384 *
1385 * @returns IPRT status code.
1386 * @param pVM The cross context VM structure.
1387 */
1388static void hmR0VmxStructsFree(PVM pVM)
1389{
1390#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1391 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1392#endif
1393 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
1394
1395 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1396 {
1397 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1398 PVMXVMCSINFO pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
1399 hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
1400#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1401 if (pVM->cpum.ro.GuestFeatures.fVmx)
1402 {
1403 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1404 hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
1405 }
1406#endif
1407 }
1408}
1409
1410
1411/**
1412 * Allocate all VT-x structures for the VM.
1413 *
1414 * @returns IPRT status code.
1415 * @param pVM The cross context VM structure.
1416 */
1417static int hmR0VmxStructsAlloc(PVM pVM)
1418{
1419 /*
1420 * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
1421 * The VMCS size cannot be more than 4096 bytes.
1422 *
1423 * See Intel spec. Appendix A.1 "Basic VMX Information".
1424 */
1425 uint32_t const cbVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
1426 if (cbVmcs <= X86_PAGE_4K_SIZE)
1427 { /* likely */ }
1428 else
1429 {
1430 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
1431 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1432 }
1433
1434 /*
1435 * Initialize/check members up-front so we can cleanup en masse on allocation failures.
1436 */
1437#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1438 Assert(pVM->hm.s.vmx.hMemObjScratch == NIL_RTR0MEMOBJ);
1439 Assert(pVM->hm.s.vmx.pbScratch == NULL);
1440 pVM->hm.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
1441#endif
1442
1443 Assert(pVM->hm.s.vmx.hMemObjApicAccess == NIL_RTR0MEMOBJ);
1444 Assert(pVM->hm.s.vmx.pbApicAccess == NULL);
1445 pVM->hm.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
1446
1447 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1448 {
1449 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1450 hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfo);
1451 hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
1452 }
1453
1454 /*
1455 * Allocate per-VM VT-x structures.
1456 */
1457 int rc = VINF_SUCCESS;
1458#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1459 /* Allocate crash-dump magic scratch page. */
1460 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1461 if (RT_FAILURE(rc))
1462 {
1463 hmR0VmxStructsFree(pVM);
1464 return rc;
1465 }
1466 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
1467 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
1468#endif
1469
1470 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
1471 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
1472 {
1473 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
1474 &pVM->hm.s.vmx.HCPhysApicAccess);
1475 if (RT_FAILURE(rc))
1476 {
1477 hmR0VmxStructsFree(pVM);
1478 return rc;
1479 }
1480 }
1481
1482 /*
1483 * Initialize per-VCPU VT-x structures.
1484 */
1485 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1486 {
1487 /* Allocate the guest VMCS structures. */
1488 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1489 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
1490 if (RT_SUCCESS(rc))
1491 {
1492#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1493 /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
1494 if (pVM->cpum.ro.GuestFeatures.fVmx)
1495 {
1496 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
1497 if (RT_SUCCESS(rc))
1498 { /* likely */ }
1499 else
1500 break;
1501 }
1502#endif
1503 }
1504 else
1505 break;
1506 }
1507
1508 if (RT_FAILURE(rc))
1509 {
1510 hmR0VmxStructsFree(pVM);
1511 return rc;
1512 }
1513
1514 return VINF_SUCCESS;
1515}
1516
1517
1518#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1519/**
1520 * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
1521 *
1522 * @returns @c true if the MSR is intercepted, @c false otherwise.
1523 * @param pvMsrBitmap The MSR bitmap.
1524 * @param offMsr The MSR byte offset.
1525 * @param iBit The bit offset from the byte offset.
1526 */
1527DECLINLINE(bool) hmR0VmxIsMsrBitSet(const void *pvMsrBitmap, uint16_t offMsr, int32_t iBit)
1528{
1529 uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
1530 Assert(pbMsrBitmap);
1531 Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
1532 return ASMBitTest(pbMsrBitmap + offMsr, iBit);
1533}
1534#endif
1535
1536
1537/**
1538 * Sets the permission bits for the specified MSR in the given MSR bitmap.
1539 *
1540 * If the passed VMCS is a nested-guest VMCS, this function ensures that the
1541 * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
1542 * VMX execution of the nested-guest, only if nested-guest is also not intercepting
1543 * the read/write access of this MSR.
1544 *
1545 * @param pVCpu The cross context virtual CPU structure.
1546 * @param pVmcsInfo The VMCS info. object.
1547 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1548 * @param idMsr The MSR value.
1549 * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
1550 * include both a read -and- a write permission!
1551 *
1552 * @sa HMGetVmxMsrPermission.
1553 */
1554static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
1555{
1556 uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
1557 Assert(pbMsrBitmap);
1558 Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
1559
1560 /*
1561 * MSR-bitmap Layout:
1562 * Byte index MSR range Interpreted as
1563 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
1564 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
1565 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
1566 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
1567 *
1568 * A bit corresponding to an MSR within the above range causes a VM-exit
1569 * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
1570 * the MSR range, it always cause a VM-exit.
1571 *
1572 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
1573 */
1574 uint16_t const offBitmapRead = 0;
1575 uint16_t const offBitmapWrite = 0x800;
1576 uint16_t offMsr;
1577 int32_t iBit;
1578 if (idMsr <= UINT32_C(0x00001fff))
1579 {
1580 offMsr = 0;
1581 iBit = idMsr;
1582 }
1583 else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1584 {
1585 offMsr = 0x400;
1586 iBit = idMsr - UINT32_C(0xc0000000);
1587 }
1588 else
1589 AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
1590
1591 /*
1592 * Set the MSR read permission.
1593 */
1594 uint16_t const offMsrRead = offBitmapRead + offMsr;
1595 Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
1596 if (fMsrpm & VMXMSRPM_ALLOW_RD)
1597 {
1598#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1599 bool const fClear = !fIsNstGstVmcs ? true
1600 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrRead, iBit);
1601#else
1602 RT_NOREF2(pVCpu, fIsNstGstVmcs);
1603 bool const fClear = true;
1604#endif
1605 if (fClear)
1606 ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
1607 }
1608 else
1609 ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
1610
1611 /*
1612 * Set the MSR write permission.
1613 */
1614 uint16_t const offMsrWrite = offBitmapWrite + offMsr;
1615 Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
1616 if (fMsrpm & VMXMSRPM_ALLOW_WR)
1617 {
1618#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1619 bool const fClear = !fIsNstGstVmcs ? true
1620 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrWrite, iBit);
1621#else
1622 RT_NOREF2(pVCpu, fIsNstGstVmcs);
1623 bool const fClear = true;
1624#endif
1625 if (fClear)
1626 ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
1627 }
1628 else
1629 ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
1630}
1631
1632
1633/**
1634 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1635 * area.
1636 *
1637 * @returns VBox status code.
1638 * @param pVCpu The cross context virtual CPU structure.
1639 * @param pVmcsInfo The VMCS info. object.
1640 * @param cMsrs The number of MSRs.
1641 */
1642static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
1643{
1644 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1645 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1646 if (RT_UNLIKELY(cMsrs >= cMaxSupportedMsrs))
1647 {
1648 LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1649 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1650 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1651 }
1652
1653 /* Commit the MSR counts to the VMCS and update the cache. */
1654 int rc = VINF_SUCCESS;
1655 if (pVmcsInfo->cEntryMsrLoad != cMsrs)
1656 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1657 if (pVmcsInfo->cExitMsrStore != cMsrs)
1658 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1659 if (pVmcsInfo->cExitMsrLoad != cMsrs)
1660 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1661 AssertRCReturn(rc, rc);
1662
1663 pVmcsInfo->cEntryMsrLoad = cMsrs;
1664 pVmcsInfo->cExitMsrStore = cMsrs;
1665 pVmcsInfo->cExitMsrLoad = cMsrs;
1666
1667 return VINF_SUCCESS;
1668}
1669
1670
1671/**
1672 * Adds a new (or updates the value of an existing) guest/host MSR
1673 * pair to be swapped during the world-switch as part of the
1674 * auto-load/store MSR area in the VMCS.
1675 *
1676 * @returns VBox status code.
1677 * @param pVCpu The cross context virtual CPU structure.
1678 * @param pVmxTransient The VMX-transient structure.
1679 * @param idMsr The MSR.
1680 * @param uGuestMsrValue Value of the guest MSR.
1681 * @param fSetReadWrite Whether to set the guest read/write access of this
1682 * MSR (thus not causing a VM-exit).
1683 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1684 * necessary.
1685 */
1686static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
1687 bool fSetReadWrite, bool fUpdateHostMsr)
1688{
1689 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1690 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
1691 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1692 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
1693 uint32_t i;
1694
1695 /* Paranoia. */
1696 Assert(pGuestMsrLoad);
1697
1698 /* Check if the MSR already exists in the VM-entry MSR-load area. */
1699 for (i = 0; i < cMsrs; i++)
1700 {
1701 if (pGuestMsrLoad->u32Msr == idMsr)
1702 break;
1703 pGuestMsrLoad++;
1704 }
1705
1706 bool fAdded = false;
1707 if (i == cMsrs)
1708 {
1709 /* The MSR does not exist, bump the MSR coun to make room for the new MSR. */
1710 ++cMsrs;
1711 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
1712 AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
1713
1714 /* Set the guest to read/write this MSR without causing VM-exits. */
1715 if ( fSetReadWrite
1716 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
1717 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
1718
1719 fAdded = true;
1720 }
1721
1722 /* Update the MSR value for the newly added or already existing MSR. */
1723 pGuestMsrLoad->u32Msr = idMsr;
1724 pGuestMsrLoad->u64Value = uGuestMsrValue;
1725
1726 /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
1727 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
1728 {
1729 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1730 pGuestMsrStore += i;
1731 pGuestMsrStore->u32Msr = idMsr;
1732 pGuestMsrStore->u64Value = 0;
1733 }
1734
1735 /* Update the corresponding slot in the host MSR area. */
1736 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1737 Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad && pHostMsr != pVmcsInfo->pvGuestMsrStore);
1738 pHostMsr += i;
1739 pHostMsr->u32Msr = idMsr;
1740
1741 /*
1742 * Only if the caller requests to update the host MSR value AND we've newly added the
1743 * MSR to the host MSR area do we actually update the value. Otherwise, it will be
1744 * updated by hmR0VmxUpdateAutoLoadHostMsrs().
1745 *
1746 * We do this for performance reasons since reading MSRs may be quite expensive.
1747 */
1748 if ( fAdded
1749 && fUpdateHostMsr)
1750 {
1751 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1752 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1753 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1754 }
1755 return VINF_SUCCESS;
1756}
1757
1758
1759/**
1760 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1761 * auto-load/store MSR area in the VMCS.
1762 *
1763 * @returns VBox status code.
1764 * @param pVCpu The cross context virtual CPU structure.
1765 * @param pVmxTransient The VMX-transient structure.
1766 * @param idMsr The MSR.
1767 */
1768static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr)
1769{
1770 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1771 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
1772 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1773 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
1774
1775 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
1776 for (uint32_t i = 0; i < cMsrs; i++)
1777 {
1778 /* Find the MSR. */
1779 if (pGuestMsrLoad->u32Msr == idMsr)
1780 {
1781 /* If it's the last MSR, simply reduce the count. */
1782 if (i == cMsrs - 1)
1783 {
1784 --cMsrs;
1785 break;
1786 }
1787
1788 /* Remove it by copying the last MSR in place of it, and reducing the count. */
1789 PVMXAUTOMSR pLastGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1790 pLastGuestMsrLoad += cMsrs - 1;
1791 pGuestMsrLoad->u32Msr = pLastGuestMsrLoad->u32Msr;
1792 pGuestMsrLoad->u64Value = pLastGuestMsrLoad->u64Value;
1793
1794 /* Remove it from the VM-exit MSR-store area if we are using a different page. */
1795 if (fSeparateExitMsrStorePage)
1796 {
1797 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1798 PVMXAUTOMSR pLastGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1799 pGuestMsrStore += i;
1800 pLastGuestMsrStore += cMsrs - 1;
1801 Assert(pGuestMsrStore->u32Msr == idMsr);
1802 pGuestMsrStore->u32Msr = pLastGuestMsrStore->u32Msr;
1803 pGuestMsrStore->u64Value = pLastGuestMsrStore->u64Value;
1804 }
1805
1806 /* Remove it from the VM-exit MSR-load area. */
1807 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1808 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1809 pHostMsr += i;
1810 pLastHostMsr += cMsrs - 1;
1811 Assert(pHostMsr->u32Msr == idMsr);
1812 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1813 pHostMsr->u64Value = pLastHostMsr->u64Value;
1814 --cMsrs;
1815 break;
1816 }
1817 pGuestMsrLoad++;
1818 }
1819
1820 /* Update the VMCS if the count changed (meaning the MSR was found). */
1821 if (cMsrs != pVmcsInfo->cEntryMsrLoad)
1822 {
1823 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
1824 AssertRCReturn(rc, rc);
1825
1826 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1827 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1828 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
1829
1830 Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
1831 return VINF_SUCCESS;
1832 }
1833
1834 return VERR_NOT_FOUND;
1835}
1836
1837
1838/**
1839 * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
1840 *
1841 * @returns @c true if found, @c false otherwise.
1842 * @param pVmcsInfo The VMCS info. object.
1843 * @param idMsr The MSR to find.
1844 */
1845static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
1846{
1847 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1848 uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
1849 for (uint32_t i = 0; i < cMsrs; i++)
1850 {
1851 if (pGuestMsrLoad->u32Msr == idMsr)
1852 return true;
1853 pGuestMsrLoad++;
1854 }
1855 return false;
1856}
1857
1858
1859/**
1860 * Updates the value of all host MSRs in the VM-exit MSR-load area.
1861 *
1862 * @param pVCpu The cross context virtual CPU structure.
1863 * @param pVmcsInfo The VMCS info. object.
1864 *
1865 * @remarks No-long-jump zone!!!
1866 */
1867static void hmR0VmxUpdateAutoLoadHostMsrs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
1868{
1869 PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1870 uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
1871
1872 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1873 Assert(pHostMsrLoad);
1874
1875 for (uint32_t i = 0; i < cMsrs; i++, pHostMsrLoad++)
1876 {
1877 /*
1878 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1879 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1880 */
1881 if (pHostMsrLoad->u32Msr == MSR_K6_EFER)
1882 pHostMsrLoad->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
1883 else
1884 pHostMsrLoad->u64Value = ASMRdMsr(pHostMsrLoad->u32Msr);
1885 }
1886}
1887
1888
1889/**
1890 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1891 * perform lazy restoration of the host MSRs while leaving VT-x.
1892 *
1893 * @param pVCpu The cross context virtual CPU structure.
1894 *
1895 * @remarks No-long-jump zone!!!
1896 */
1897static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1898{
1899 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1900
1901 /*
1902 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
1903 */
1904 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1905 {
1906 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1907#if HC_ARCH_BITS == 64
1908 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1909 {
1910 pVCpu->hm.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
1911 pVCpu->hm.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
1912 pVCpu->hm.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
1913 pVCpu->hm.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1914 }
1915#endif
1916 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1917 }
1918}
1919
1920
1921/**
1922 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1923 * lazily while leaving VT-x.
1924 *
1925 * @returns true if it does, false otherwise.
1926 * @param pVCpu The cross context virtual CPU structure.
1927 * @param idMsr The MSR to check.
1928 */
1929static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t idMsr)
1930{
1931 NOREF(pVCpu);
1932#if HC_ARCH_BITS == 64
1933 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1934 {
1935 switch (idMsr)
1936 {
1937 case MSR_K8_LSTAR:
1938 case MSR_K6_STAR:
1939 case MSR_K8_SF_MASK:
1940 case MSR_K8_KERNEL_GS_BASE:
1941 return true;
1942 }
1943 }
1944#else
1945 RT_NOREF(pVCpu, idMsr);
1946#endif
1947 return false;
1948}
1949
1950
1951/**
1952 * Loads a set of guests MSRs to allow read/passthru to the guest.
1953 *
1954 * The name of this function is slightly confusing. This function does NOT
1955 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1956 * common prefix for functions dealing with "lazy restoration" of the shared
1957 * MSRs.
1958 *
1959 * @param pVCpu The cross context virtual CPU structure.
1960 *
1961 * @remarks No-long-jump zone!!!
1962 */
1963static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1964{
1965 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1966 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1967
1968 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1969#if HC_ARCH_BITS == 64
1970 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1971 {
1972 /*
1973 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1974 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1975 * we can skip a few MSR writes.
1976 *
1977 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1978 * guest MSR values in the guest-CPU context might be different to what's currently
1979 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1980 * CPU, see @bugref{8728}.
1981 */
1982 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1983 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1984 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostMsrKernelGsBase
1985 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostMsrLStar
1986 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostMsrStar
1987 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostMsrSfMask)
1988 {
1989#ifdef VBOX_STRICT
1990 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1991 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1992 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1993 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1994#endif
1995 }
1996 else
1997 {
1998 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1999 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
2000 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
2001 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
2002 }
2003 }
2004#endif
2005 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
2006}
2007
2008
2009/**
2010 * Performs lazy restoration of the set of host MSRs if they were previously
2011 * loaded with guest MSR values.
2012 *
2013 * @param pVCpu The cross context virtual CPU structure.
2014 *
2015 * @remarks No-long-jump zone!!!
2016 * @remarks The guest MSRs should have been saved back into the guest-CPU
2017 * context by hmR0VmxImportGuestState()!!!
2018 */
2019static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
2020{
2021 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2022 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2023
2024 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2025 {
2026 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2027#if HC_ARCH_BITS == 64
2028 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2029 {
2030 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostMsrLStar);
2031 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostMsrStar);
2032 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostMsrSfMask);
2033 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostMsrKernelGsBase);
2034 }
2035#endif
2036 }
2037 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
2038}
2039
2040
2041/**
2042 * Verifies that our cached values of the VMCS fields are all consistent with
2043 * what's actually present in the VMCS.
2044 *
2045 * @returns VBox status code.
2046 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
2047 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
2048 * VMCS content. HMCPU error-field is
2049 * updated, see VMX_VCI_XXX.
2050 * @param pVCpu The cross context virtual CPU structure.
2051 * @param pVmcsInfo The VMCS info. object.
2052 */
2053static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2054{
2055 uint32_t u32Val;
2056 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
2057 AssertRCReturn(rc, rc);
2058 AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
2059 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32EntryCtls, u32Val),
2060 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
2061 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2062
2063 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
2064 AssertRCReturn(rc, rc);
2065 AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
2066 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ExitCtls, u32Val),
2067 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
2068 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2069
2070 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
2071 AssertRCReturn(rc, rc);
2072 AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
2073 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32PinCtls, u32Val),
2074 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
2075 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2076
2077 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
2078 AssertRCReturn(rc, rc);
2079 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
2080 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls, u32Val),
2081 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
2082 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2083
2084 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2085 {
2086 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
2087 AssertRCReturn(rc, rc);
2088 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
2089 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls2, u32Val),
2090 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
2091 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2092 }
2093
2094 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
2095 AssertRCReturn(rc, rc);
2096 AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
2097 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32XcptBitmap, u32Val),
2098 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
2099 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2100
2101 uint64_t u64Val;
2102 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
2103 AssertRCReturn(rc, rc);
2104 AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
2105 ("Cache=%#RX64 VMCS=%#RX64\n", pVmcsInfo->u64TscOffset, u64Val),
2106 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
2107 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2108
2109 return VINF_SUCCESS;
2110}
2111
2112
2113#ifdef VBOX_STRICT
2114/**
2115 * Verifies that our cached host EFER MSR value has not changed since we cached it.
2116 *
2117 * @param pVCpu The cross context virtual CPU structure.
2118 * @param pVmcsInfo The VMCS info. object.
2119 */
2120static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2121{
2122 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2123
2124 if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2125 {
2126 uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
2127 uint64_t const uHostEferMsrCache = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2128 uint64_t uVmcsEferMsrVmcs;
2129 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
2130 AssertRC(rc);
2131
2132 AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
2133 ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
2134 AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
2135 ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
2136 }
2137}
2138
2139
2140/**
2141 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
2142 * VMCS are correct.
2143 *
2144 * @param pVCpu The cross context virtual CPU structure.
2145 * @param pVmcsInfo The VMCS info. object.
2146 */
2147static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2148{
2149 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2150
2151 /* Verify MSR counts in the VMCS are what we think it should be. */
2152 uint32_t cMsrs;
2153 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs);
2154 AssertRC(rc);
2155 Assert(cMsrs == pVmcsInfo->cEntryMsrLoad);
2156
2157 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs);
2158 AssertRC(rc);
2159 Assert(cMsrs == pVmcsInfo->cExitMsrStore);
2160
2161 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs);
2162 AssertRC(rc);
2163 Assert(cMsrs == pVmcsInfo->cExitMsrLoad);
2164
2165 /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
2166 Assert(cMsrs < VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc));
2167
2168 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2169 PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2170 PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2171 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
2172 for (uint32_t i = 0; i < cMsrs; i++)
2173 {
2174 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
2175 if (fSeparateExitMsrStorePage)
2176 {
2177 AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
2178 ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
2179 pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
2180 }
2181
2182 AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
2183 ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
2184 pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
2185
2186 uint64_t const u64Msr = ASMRdMsr(pHostMsrLoad->u32Msr);
2187 AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64Msr,
2188 ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2189 pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64Msr, cMsrs));
2190
2191 /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
2192 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2193 {
2194 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
2195 if (pGuestMsrLoad->u32Msr == MSR_K6_EFER)
2196 {
2197 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
2198 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
2199 }
2200 else
2201 {
2202 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR,
2203 ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
2204 }
2205 }
2206
2207 /* Move to the next MSR. */
2208 pHostMsrLoad++;
2209 pGuestMsrLoad++;
2210 pGuestMsrStore++;
2211 }
2212}
2213#endif /* VBOX_STRICT */
2214
2215
2216/**
2217 * Flushes the TLB using EPT.
2218 *
2219 * @returns VBox status code.
2220 * @param pVCpu The cross context virtual CPU structure of the calling
2221 * EMT. Can be NULL depending on @a enmTlbFlush.
2222 * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
2223 * enmTlbFlush.
2224 * @param enmTlbFlush Type of flush.
2225 *
2226 * @remarks Caller is responsible for making sure this function is called only
2227 * when NestedPaging is supported and providing @a enmTlbFlush that is
2228 * supported by the CPU.
2229 * @remarks Can be called with interrupts disabled.
2230 */
2231static void hmR0VmxFlushEpt(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
2232{
2233 uint64_t au64Descriptor[2];
2234 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
2235 au64Descriptor[0] = 0;
2236 else
2237 {
2238 Assert(pVCpu);
2239 Assert(pVmcsInfo);
2240 au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
2241 }
2242 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
2243
2244 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
2245 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
2246
2247 if ( RT_SUCCESS(rc)
2248 && pVCpu)
2249 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
2250}
2251
2252
2253/**
2254 * Flushes the TLB using VPID.
2255 *
2256 * @returns VBox status code.
2257 * @param pVCpu The cross context virtual CPU structure of the calling
2258 * EMT. Can be NULL depending on @a enmTlbFlush.
2259 * @param enmTlbFlush Type of flush.
2260 * @param GCPtr Virtual address of the page to flush (can be 0 depending
2261 * on @a enmTlbFlush).
2262 *
2263 * @remarks Can be called with interrupts disabled.
2264 */
2265static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
2266{
2267 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
2268
2269 uint64_t au64Descriptor[2];
2270 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2271 {
2272 au64Descriptor[0] = 0;
2273 au64Descriptor[1] = 0;
2274 }
2275 else
2276 {
2277 AssertPtr(pVCpu);
2278 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2279 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2280 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
2281 au64Descriptor[1] = GCPtr;
2282 }
2283
2284 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
2285 AssertMsg(rc == VINF_SUCCESS,
2286 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
2287
2288 if ( RT_SUCCESS(rc)
2289 && pVCpu)
2290 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
2291 NOREF(rc);
2292}
2293
2294
2295/**
2296 * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
2297 * otherwise there is nothing really to invalidate.
2298 *
2299 * @returns VBox status code.
2300 * @param pVCpu The cross context virtual CPU structure.
2301 * @param GCVirt Guest virtual address of the page to invalidate.
2302 */
2303VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
2304{
2305 AssertPtr(pVCpu);
2306 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
2307
2308 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
2309 {
2310 /*
2311 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
2312 * the EPT case. See @bugref{6043} and @bugref{6177}.
2313 *
2314 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
2315 * as this function maybe called in a loop with individual addresses.
2316 */
2317 PVM pVM = pVCpu->CTX_SUFF(pVM);
2318 if (pVM->hm.s.vmx.fVpid)
2319 {
2320 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
2321
2322#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
2323 /*
2324 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
2325 * where executing INVVPID outside 64-bit mode does not flush translations of
2326 * 64-bit linear addresses, see @bugref{6208#c72}.
2327 */
2328 if (RT_HI_U32(GCVirt))
2329 fVpidFlush = false;
2330#endif
2331
2332 if (fVpidFlush)
2333 {
2334 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
2335 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
2336 }
2337 else
2338 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2339 }
2340 else if (pVM->hm.s.fNestedPaging)
2341 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2342 }
2343
2344 return VINF_SUCCESS;
2345}
2346
2347
2348/**
2349 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
2350 * case where neither EPT nor VPID is supported by the CPU.
2351 *
2352 * @param pHostCpu The HM physical-CPU structure.
2353 * @param pVCpu The cross context virtual CPU structure.
2354 *
2355 * @remarks Called with interrupts disabled.
2356 */
2357static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2358{
2359 AssertPtr(pVCpu);
2360 AssertPtr(pHostCpu);
2361
2362 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2363
2364 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2365 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2366 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2367 pVCpu->hm.s.fForceTLBFlush = false;
2368 return;
2369}
2370
2371
2372/**
2373 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
2374 *
2375 * @param pHostCpu The HM physical-CPU structure.
2376 * @param pVCpu The cross context virtual CPU structure.
2377 * @param pVmcsInfo The VMCS info. object.
2378 *
2379 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
2380 * nomenclature. The reason is, to avoid confusion in compare statements
2381 * since the host-CPU copies are named "ASID".
2382 *
2383 * @remarks Called with interrupts disabled.
2384 */
2385static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2386{
2387#ifdef VBOX_WITH_STATISTICS
2388 bool fTlbFlushed = false;
2389# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
2390# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
2391 if (!fTlbFlushed) \
2392 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
2393 } while (0)
2394#else
2395# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
2396# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
2397#endif
2398
2399 AssertPtr(pVCpu);
2400 AssertPtr(pHostCpu);
2401 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2402
2403 PVM pVM = pVCpu->CTX_SUFF(pVM);
2404 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
2405 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
2406 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
2407
2408 /*
2409 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
2410 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2411 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2412 * cannot reuse the current ASID anymore.
2413 */
2414 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2415 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2416 {
2417 ++pHostCpu->uCurrentAsid;
2418 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2419 {
2420 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
2421 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2422 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2423 }
2424
2425 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2426 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2427 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2428
2429 /*
2430 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
2431 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
2432 */
2433 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
2434 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2435 HMVMX_SET_TAGGED_TLB_FLUSHED();
2436 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2437 }
2438 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
2439 {
2440 /*
2441 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
2442 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
2443 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
2444 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
2445 * mappings, see @bugref{6568}.
2446 *
2447 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
2448 */
2449 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
2450 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2451 HMVMX_SET_TAGGED_TLB_FLUSHED();
2452 }
2453
2454 pVCpu->hm.s.fForceTLBFlush = false;
2455 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2456
2457 Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
2458 Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
2459 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2460 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2461 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2462 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2463 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2464 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2465 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2466
2467 /* Update VMCS with the VPID. */
2468 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2469 AssertRC(rc);
2470
2471#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2472}
2473
2474
2475/**
2476 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2477 *
2478 * @param pHostCpu The HM physical-CPU structure.
2479 * @param pVCpu The cross context virtual CPU structure.
2480 * @param pVmcsInfo The VMCS info. object.
2481 *
2482 * @remarks Called with interrupts disabled.
2483 */
2484static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2485{
2486 AssertPtr(pVCpu);
2487 AssertPtr(pHostCpu);
2488 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2489 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2490 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2491
2492 /*
2493 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2494 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2495 */
2496 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2497 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2498 {
2499 pVCpu->hm.s.fForceTLBFlush = true;
2500 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2501 }
2502
2503 /* Check for explicit TLB flushes. */
2504 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2505 {
2506 pVCpu->hm.s.fForceTLBFlush = true;
2507 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2508 }
2509
2510 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2511 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2512
2513 if (pVCpu->hm.s.fForceTLBFlush)
2514 {
2515 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2516 pVCpu->hm.s.fForceTLBFlush = false;
2517 }
2518}
2519
2520
2521/**
2522 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2523 *
2524 * @param pHostCpu The HM physical-CPU structure.
2525 * @param pVCpu The cross context virtual CPU structure.
2526 *
2527 * @remarks Called with interrupts disabled.
2528 */
2529static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2530{
2531 AssertPtr(pVCpu);
2532 AssertPtr(pHostCpu);
2533 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2534 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2535 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2536
2537 /*
2538 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2539 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2540 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2541 * cannot reuse the current ASID anymore.
2542 */
2543 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2544 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2545 {
2546 pVCpu->hm.s.fForceTLBFlush = true;
2547 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2548 }
2549
2550 /* Check for explicit TLB flushes. */
2551 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2552 {
2553 /*
2554 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2555 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2556 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
2557 * include fExplicitFlush's too) - an obscure corner case.
2558 */
2559 pVCpu->hm.s.fForceTLBFlush = true;
2560 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2561 }
2562
2563 PVM pVM = pVCpu->CTX_SUFF(pVM);
2564 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2565 if (pVCpu->hm.s.fForceTLBFlush)
2566 {
2567 ++pHostCpu->uCurrentAsid;
2568 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2569 {
2570 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2571 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2572 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2573 }
2574
2575 pVCpu->hm.s.fForceTLBFlush = false;
2576 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2577 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2578 if (pHostCpu->fFlushAsidBeforeUse)
2579 {
2580 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2581 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2582 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2583 {
2584 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2585 pHostCpu->fFlushAsidBeforeUse = false;
2586 }
2587 else
2588 {
2589 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2590 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2591 }
2592 }
2593 }
2594
2595 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2596 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2597 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2598 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2599 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2600 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2601 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2602
2603 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2604 AssertRC(rc);
2605}
2606
2607
2608/**
2609 * Flushes the guest TLB entry based on CPU capabilities.
2610 *
2611 * @param pHostCpu The HM physical-CPU structure.
2612 * @param pVCpu The cross context virtual CPU structure.
2613 * @param pVmcsInfo The VMCS info. object.
2614 *
2615 * @remarks Called with interrupts disabled.
2616 */
2617DECLINLINE(void) hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2618{
2619#ifdef HMVMX_ALWAYS_FLUSH_TLB
2620 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2621#endif
2622 PVM pVM = pVCpu->CTX_SUFF(pVM);
2623 switch (pVM->hm.s.vmx.enmTlbFlushType)
2624 {
2625 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
2626 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
2627 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
2628 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
2629 default:
2630 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2631 break;
2632 }
2633 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2634}
2635
2636
2637/**
2638 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2639 * TLB entries from the host TLB before VM-entry.
2640 *
2641 * @returns VBox status code.
2642 * @param pVM The cross context VM structure.
2643 */
2644static int hmR0VmxSetupTaggedTlb(PVM pVM)
2645{
2646 /*
2647 * Determine optimal flush type for nested paging.
2648 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
2649 * unrestricted guest execution (see hmR3InitFinalizeR0()).
2650 */
2651 if (pVM->hm.s.fNestedPaging)
2652 {
2653 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2654 {
2655 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2656 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2657 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2658 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2659 else
2660 {
2661 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2662 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2663 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2664 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2665 }
2666
2667 /* Make sure the write-back cacheable memory type for EPT is supported. */
2668 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2669 {
2670 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2671 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2672 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2673 }
2674
2675 /* EPT requires a page-walk length of 4. */
2676 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2677 {
2678 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2679 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2680 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2681 }
2682 }
2683 else
2684 {
2685 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2686 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2687 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2688 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2689 }
2690 }
2691
2692 /*
2693 * Determine optimal flush type for VPID.
2694 */
2695 if (pVM->hm.s.vmx.fVpid)
2696 {
2697 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2698 {
2699 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2700 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2701 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2702 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2703 else
2704 {
2705 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2706 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2707 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2708 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2709 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2710 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2711 pVM->hm.s.vmx.fVpid = false;
2712 }
2713 }
2714 else
2715 {
2716 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2717 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2718 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2719 pVM->hm.s.vmx.fVpid = false;
2720 }
2721 }
2722
2723 /*
2724 * Setup the handler for flushing tagged-TLBs.
2725 */
2726 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2727 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2728 else if (pVM->hm.s.fNestedPaging)
2729 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2730 else if (pVM->hm.s.vmx.fVpid)
2731 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2732 else
2733 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2734 return VINF_SUCCESS;
2735}
2736
2737
2738/**
2739 * Sets up the virtual-APIC page address for the VMCS.
2740 *
2741 * @returns VBox status code.
2742 * @param pVCpu The cross context virtual CPU structure.
2743 * @param pVmcsInfo The VMCS info. object.
2744 */
2745DECLINLINE(int) hmR0VmxSetupVmcsVirtApicAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2746{
2747 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2748 RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
2749 Assert(HCPhysVirtApic != NIL_RTHCPHYS);
2750 Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2751 return VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
2752}
2753
2754
2755/**
2756 * Sets up the MSR-bitmap address for the VMCS.
2757 *
2758 * @returns VBox status code.
2759 * @param pVCpu The cross context virtual CPU structure.
2760 * @param pVmcsInfo The VMCS info. object.
2761 */
2762DECLINLINE(int) hmR0VmxSetupVmcsMsrBitmapAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2763{
2764 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2765 RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
2766 Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
2767 Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2768 return VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
2769}
2770
2771
2772/**
2773 * Sets up the APIC-access page address for the VMCS.
2774 *
2775 * @returns VBox status code.
2776 * @param pVCpu The cross context virtual CPU structure.
2777 */
2778DECLINLINE(int) hmR0VmxSetupVmcsApicAccessAddr(PVMCPU pVCpu)
2779{
2780 RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysApicAccess;
2781 Assert(HCPhysApicAccess != NIL_RTHCPHYS);
2782 Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2783 return VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
2784}
2785
2786
2787/**
2788 * Sets up the VMCS link pointer for the VMCS.
2789 *
2790 * @returns VBox status code.
2791 * @param pVCpu The cross context virtual CPU structure.
2792 * @param pVmcsInfo The VMCS info. object.
2793 */
2794DECLINLINE(int) hmR0VmxSetupVmcsLinkPtr(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2795{
2796 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2797 uint64_t const u64VmcsLinkPtr = pVmcsInfo->u64VmcsLinkPtr;
2798 Assert(u64VmcsLinkPtr == UINT64_C(0xffffffffffffffff)); /* Bits 63:0 MB1. */
2799 return VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, u64VmcsLinkPtr);
2800}
2801
2802
2803/**
2804 * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
2805 * in the VMCS.
2806 *
2807 * @returns VBox status code.
2808 * @param pVCpu The cross context virtual CPU structure.
2809 * @param pVmcsInfo The VMCS info. object.
2810 */
2811DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2812{
2813 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2814
2815 RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
2816 Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
2817 Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
2818
2819 RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
2820 Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
2821 Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
2822
2823 RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
2824 Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
2825 Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
2826
2827 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad);
2828 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore);
2829 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad);
2830 AssertRCReturn(rc, rc);
2831 return VINF_SUCCESS;
2832}
2833
2834
2835/**
2836 * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
2837 *
2838 * @param pVCpu The cross context virtual CPU structure.
2839 * @param pVmcsInfo The VMCS info. object.
2840 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2841 */
2842static void hmR0VmxSetupVmcsMsrPermissions(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2843{
2844 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
2845
2846 /*
2847 * The guest can access the following MSRs (read, write) without causing
2848 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2849 */
2850 PVM pVM = pVCpu->CTX_SUFF(pVM);
2851 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
2852 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
2853 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
2854 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
2855 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
2856
2857#ifdef VBOX_STRICT
2858 /** @todo NSTVMX: Remove this later. */
2859 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_IA32_SYSENTER_CS);
2860 Assert((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR);
2861
2862 fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K8_GS_BASE);
2863 Assert((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR);
2864#endif
2865
2866 /*
2867 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2868 * associated with then. We never need to intercept access (writes need to be
2869 * executed without causing a VM-exit, reads will #GP fault anyway).
2870 *
2871 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2872 * read/write them. We swap the the guest/host MSR value using the
2873 * auto-load/store MSR area.
2874 */
2875 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2876 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
2877 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2878 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
2879 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2880 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
2881
2882 /*
2883 * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
2884 */
2885
2886#if HC_ARCH_BITS == 64
2887 /*
2888 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2889 * required for 64-bit guests.
2890 */
2891 if (pVM->hm.s.fAllow64BitGuests)
2892 {
2893 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
2894 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
2895 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
2896 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
2897
2898# ifdef VBOX_STRICT
2899 fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K8_GS_BASE);
2900 Assert((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR);
2901# endif
2902 }
2903#endif
2904}
2905
2906
2907/**
2908 * Sets up pin-based VM-execution controls in the VMCS.
2909 *
2910 * @returns VBox status code.
2911 * @param pVCpu The cross context virtual CPU structure.
2912 * @param pVmcsInfo The VMCS info. object.
2913 */
2914static int hmR0VmxSetupVmcsPinCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2915{
2916 PVM pVM = pVCpu->CTX_SUFF(pVM);
2917 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
2918 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2919
2920 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2921 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2922
2923 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2924 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2925
2926 /* Enable the VMX-preemption timer. */
2927 if (pVM->hm.s.vmx.fUsePreemptTimer)
2928 {
2929 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2930 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2931 }
2932
2933#if 0
2934 /* Enable posted-interrupt processing. */
2935 if (pVM->hm.s.fPostedIntrs)
2936 {
2937 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2938 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2939 fVal |= VMX_PIN_CTL_POSTED_INT;
2940 }
2941#endif
2942
2943 if ((fVal & fZap) != fVal)
2944 {
2945 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2946 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
2947 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2948 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2949 }
2950
2951 /* Commit it to the VMCS and update our cache. */
2952 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2953 AssertRCReturn(rc, rc);
2954 pVmcsInfo->u32PinCtls = fVal;
2955
2956 return VINF_SUCCESS;
2957}
2958
2959
2960/**
2961 * Sets up secondary processor-based VM-execution controls in the VMCS.
2962 *
2963 * @returns VBox status code.
2964 * @param pVCpu The cross context virtual CPU structure.
2965 * @param pVmcsInfo The VMCS info. object.
2966 */
2967static int hmR0VmxSetupVmcsProcCtls2(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2968{
2969 PVM pVM = pVCpu->CTX_SUFF(pVM);
2970 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2971 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2972
2973 /* WBINVD causes a VM-exit. */
2974 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2975 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2976
2977 /* Enable EPT (aka nested-paging). */
2978 if (pVM->hm.s.fNestedPaging)
2979 fVal |= VMX_PROC_CTLS2_EPT;
2980
2981 /* Enable the INVPCID instruction if supported by the hardware and we expose
2982 it to the guest. Without this, guest executing INVPCID would cause a #UD. */
2983 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2984 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2985 fVal |= VMX_PROC_CTLS2_INVPCID;
2986
2987 /* Enable VPID. */
2988 if (pVM->hm.s.vmx.fVpid)
2989 fVal |= VMX_PROC_CTLS2_VPID;
2990
2991 /* Enable unrestricted guest execution. */
2992 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2993 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2994
2995#if 0
2996 if (pVM->hm.s.fVirtApicRegs)
2997 {
2998 /* Enable APIC-register virtualization. */
2999 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
3000 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
3001
3002 /* Enable virtual-interrupt delivery. */
3003 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
3004 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
3005 }
3006#endif
3007
3008 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
3009 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
3010 * done dynamically. */
3011 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3012 {
3013 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
3014 int rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3015 AssertRCReturn(rc, rc);
3016 }
3017
3018 /* Enable the RDTSCP instruction if supported by the hardware and we expose
3019 it to the guest. Without this, guest executing RDTSCP would cause a #UD. */
3020 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
3021 && pVM->cpum.ro.GuestFeatures.fRdTscP)
3022 fVal |= VMX_PROC_CTLS2_RDTSCP;
3023
3024 /* Enable Pause-Loop exiting. */
3025 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
3026 && pVM->hm.s.vmx.cPleGapTicks
3027 && pVM->hm.s.vmx.cPleWindowTicks)
3028 {
3029 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
3030
3031 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
3032 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
3033 AssertRCReturn(rc, rc);
3034 }
3035
3036 if ((fVal & fZap) != fVal)
3037 {
3038 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3039 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
3040 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
3041 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3042 }
3043
3044 /* Commit it to the VMCS and update our cache. */
3045 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
3046 AssertRCReturn(rc, rc);
3047 pVmcsInfo->u32ProcCtls2 = fVal;
3048
3049 return VINF_SUCCESS;
3050}
3051
3052
3053/**
3054 * Sets up processor-based VM-execution controls in the VMCS.
3055 *
3056 * @returns VBox status code.
3057 * @param pVCpu The cross context virtual CPU structure.
3058 * @param pVmcsInfo The VMCS info. object.
3059 */
3060static int hmR0VmxSetupVmcsProcCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3061{
3062 PVM pVM = pVCpu->CTX_SUFF(pVM);
3063
3064 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3065 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3066
3067 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
3068 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
3069 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
3070 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
3071 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
3072 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
3073 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
3074
3075 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
3076 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
3077 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
3078 {
3079 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
3080 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3081 }
3082
3083 /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
3084 if (!pVM->hm.s.fNestedPaging)
3085 {
3086 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
3087 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
3088 | VMX_PROC_CTLS_CR3_LOAD_EXIT
3089 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3090 }
3091
3092 /* Use TPR shadowing if supported by the CPU. */
3093 if ( PDMHasApic(pVM)
3094 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
3095 {
3096 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3097 /* CR8 writes cause a VM-exit based on TPR threshold. */
3098 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3099 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3100 int rc = hmR0VmxSetupVmcsVirtApicAddr(pVCpu, pVmcsInfo);
3101 AssertRCReturn(rc, rc);
3102 }
3103 else
3104 {
3105 /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
3106 invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
3107 if (pVM->hm.s.fAllow64BitGuests)
3108 {
3109 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3110 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3111 }
3112 }
3113
3114 /* Use MSR-bitmaps if supported by the CPU. */
3115 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3116 {
3117 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
3118 int rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVCpu, pVmcsInfo);
3119 AssertRCReturn(rc, rc);
3120 }
3121
3122 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
3123 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3124 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
3125
3126 if ((fVal & fZap) != fVal)
3127 {
3128 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3129 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
3130 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
3131 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3132 }
3133
3134 /* Commit it to the VMCS and update our cache. */
3135 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3136 AssertRCReturn(rc, rc);
3137 pVmcsInfo->u32ProcCtls = fVal;
3138
3139 /* Set up MSR permissions that don't change through the lifetime of the VM. */
3140 hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo, false /* fIsNstGstVmcs */);
3141
3142 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
3143 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3144 return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
3145
3146 /* Sanity check, should not really happen. */
3147 if (RT_LIKELY(!pVM->hm.s.vmx.fUnrestrictedGuest))
3148 { /* likely */ }
3149 else
3150 {
3151 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
3152 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3153 }
3154
3155 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
3156 return VINF_SUCCESS;
3157}
3158
3159
3160/**
3161 * Sets up miscellaneous (everything other than Pin, Processor and secondary
3162 * Processor-based VM-execution) control fields in the VMCS.
3163 *
3164 * @returns VBox status code.
3165 * @param pVCpu The cross context virtual CPU structure.
3166 * @param pVmcsInfo The VMCS info. object.
3167 */
3168static int hmR0VmxSetupVmcsMiscCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3169{
3170 /* Set the auto-load/store MSR area addresses in the VMCS. */
3171 int rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVCpu, pVmcsInfo);
3172 if (RT_SUCCESS(rc))
3173 {
3174 /* Set the VMCS link pointer in the VMCS. */
3175 rc = hmR0VmxSetupVmcsLinkPtr(pVCpu, pVmcsInfo);
3176 if (RT_SUCCESS(rc))
3177 {
3178 /* Set the CR0/CR4 guest/host mask. */
3179 uint64_t const u64Cr0Mask = hmR0VmxGetFixedCr0Mask(pVCpu);
3180 uint64_t const u64Cr4Mask = hmR0VmxGetFixedCr4Mask(pVCpu);
3181 rc = VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
3182 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
3183 if (RT_SUCCESS(rc))
3184 {
3185 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
3186 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
3187 return VINF_SUCCESS;
3188 }
3189 LogRelFunc(("Failed to initialize VMCS CR0/CR4 guest/host mask. rc=%Rrc\n", rc));
3190 }
3191 else
3192 LogRelFunc(("Failed to initialize VMCS link pointer. rc=%Rrc\n", rc));
3193 }
3194 else
3195 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
3196 return rc;
3197}
3198
3199
3200/**
3201 * Sets up the initial exception bitmap in the VMCS based on static conditions.
3202 *
3203 * We shall setup those exception intercepts that don't change during the
3204 * lifetime of the VM here. The rest are done dynamically while loading the
3205 * guest state.
3206 *
3207 * @returns VBox status code.
3208 * @param pVCpu The cross context virtual CPU structure.
3209 * @param pVmcsInfo The VMCS info. object.
3210 */
3211static int hmR0VmxSetupVmcsXcptBitmap(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3212{
3213 /*
3214 * The following exceptions are always intercepted:
3215 *
3216 * #AC - To prevent the guest from hanging the CPU.
3217 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
3218 * recursive #DBs can cause a CPU hang.
3219 * #PF - To sync our shadow page tables when nested-paging is not used.
3220 */
3221 bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
3222 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
3223 | RT_BIT(X86_XCPT_DB)
3224 | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
3225
3226 /* Commit it to the VMCS. */
3227 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3228 AssertRCReturn(rc, rc);
3229
3230 /* Update our cache of the exception bitmap. */
3231 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
3232 return VINF_SUCCESS;
3233}
3234
3235
3236#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3237/**
3238 * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
3239 *
3240 * @returns VBox status code.
3241 * @param pVCpu The cross context virtual CPU structure.
3242 * @param pVmcsInfo The VMCS info. object.
3243 */
3244static int hmR0VmxSetupVmcsCtlsNested(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3245{
3246 PVM pVM = pVCpu->CTX_SUFF(pVM);
3247 int rc = hmR0VmxSetupVmcsLinkPtr(pVCpu, pVmcsInfo);
3248 if (RT_SUCCESS(rc))
3249 {
3250 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVCpu, pVmcsInfo);
3251 if (RT_SUCCESS(rc))
3252 {
3253 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3254 rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVCpu, pVmcsInfo);
3255 if (RT_SUCCESS(rc))
3256 {
3257 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3258 rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3259 if (RT_SUCCESS(rc))
3260 return VINF_SUCCESS;
3261
3262 LogRelFunc(("Failed to set up the APIC-access address in the nested-guest VMCS. rc=%Rrc\n", rc));
3263 }
3264 else
3265 LogRelFunc(("Failed to set up the MSR-bitmap address in the nested-guest VMCS. rc=%Rrc\n", rc));
3266 }
3267 else
3268 LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
3269 }
3270 else
3271 LogRelFunc(("Failed to set up the auto-load/store MSR addresses in the nested-guest VMCS. rc=%Rrc\n", rc));
3272
3273 return rc;
3274}
3275#endif
3276
3277
3278/**
3279 * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
3280 * VMX.
3281 *
3282 * @returns VBox status code.
3283 * @param pVCpu The cross context virtual CPU structure.
3284 * @param pVmcsInfo The VMCS info. object.
3285 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
3286 */
3287static int hmR0VmxSetupVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
3288{
3289 Assert(pVmcsInfo);
3290 Assert(pVmcsInfo->pvVmcs);
3291 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3292
3293 /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
3294 PVM pVM = pVCpu->CTX_SUFF(pVM);
3295 *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
3296 const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
3297
3298 LogFlowFunc(("\n"));
3299
3300 /*
3301 * Initialize the VMCS using VMCLEAR before loading the VMCS.
3302 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
3303 */
3304 int rc = hmR0VmxClearVmcs(pVmcsInfo);
3305 if (RT_SUCCESS(rc))
3306 {
3307 rc = hmR0VmxLoadVmcs(pVmcsInfo);
3308 if (RT_SUCCESS(rc))
3309 {
3310 if (!fIsNstGstVmcs)
3311 {
3312 rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
3313 if (RT_SUCCESS(rc))
3314 {
3315 rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
3316 if (RT_SUCCESS(rc))
3317 {
3318 rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
3319 if (RT_SUCCESS(rc))
3320 {
3321 rc = hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
3322 if (RT_SUCCESS(rc))
3323 { /* likely */ }
3324 else
3325 LogRelFunc(("Failed to initialize exception bitmap. rc=%Rrc\n", rc));
3326 }
3327 else
3328 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
3329 }
3330 else
3331 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
3332 }
3333 else
3334 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
3335 }
3336 else
3337 {
3338#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3339 rc = hmR0VmxSetupVmcsCtlsNested(pVCpu, pVmcsInfo);
3340 if (RT_SUCCESS(rc))
3341 { /* likely */ }
3342 else
3343 LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
3344#else
3345 AssertFailed();
3346#endif
3347 }
3348 }
3349 else
3350 LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
3351 }
3352 else
3353 LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
3354
3355 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
3356 if (RT_SUCCESS(rc))
3357 {
3358 rc = hmR0VmxClearVmcs(pVmcsInfo);
3359 if (RT_SUCCESS(rc))
3360 { /* likely */ }
3361 else
3362 LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
3363 }
3364
3365 /*
3366 * Update the last-error record both for failures and success, so we
3367 * can propagate the status code back to ring-3 for diagnostics.
3368 */
3369 hmR0VmxUpdateErrorRecord(pVCpu, rc);
3370 NOREF(pszVmcs);
3371 return rc;
3372}
3373
3374
3375/**
3376 * Does global VT-x initialization (called during module initialization).
3377 *
3378 * @returns VBox status code.
3379 */
3380VMMR0DECL(int) VMXR0GlobalInit(void)
3381{
3382#ifdef HMVMX_USE_FUNCTION_TABLE
3383 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
3384# ifdef VBOX_STRICT
3385 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
3386 Assert(g_apfnVMExitHandlers[i]);
3387# endif
3388#endif
3389 return VINF_SUCCESS;
3390}
3391
3392
3393/**
3394 * Does global VT-x termination (called during module termination).
3395 */
3396VMMR0DECL(void) VMXR0GlobalTerm()
3397{
3398 /* Nothing to do currently. */
3399}
3400
3401
3402/**
3403 * Sets up and activates VT-x on the current CPU.
3404 *
3405 * @returns VBox status code.
3406 * @param pHostCpu The HM physical-CPU structure.
3407 * @param pVM The cross context VM structure. Can be
3408 * NULL after a host resume operation.
3409 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
3410 * fEnabledByHost is @c true).
3411 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
3412 * @a fEnabledByHost is @c true).
3413 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
3414 * enable VT-x on the host.
3415 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
3416 */
3417VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
3418 PCSUPHWVIRTMSRS pHwvirtMsrs)
3419{
3420 Assert(pHostCpu);
3421 Assert(pHwvirtMsrs);
3422 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3423
3424 /* Enable VT-x if it's not already enabled by the host. */
3425 if (!fEnabledByHost)
3426 {
3427 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
3428 if (RT_FAILURE(rc))
3429 return rc;
3430 }
3431
3432 /*
3433 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
3434 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
3435 * invalidated when flushing by VPID.
3436 */
3437 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
3438 {
3439 hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
3440 pHostCpu->fFlushAsidBeforeUse = false;
3441 }
3442 else
3443 pHostCpu->fFlushAsidBeforeUse = true;
3444
3445 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
3446 ++pHostCpu->cTlbFlushes;
3447
3448 return VINF_SUCCESS;
3449}
3450
3451
3452/**
3453 * Deactivates VT-x on the current CPU.
3454 *
3455 * @returns VBox status code.
3456 * @param pvCpuPage Pointer to the VMXON region.
3457 * @param HCPhysCpuPage Physical address of the VMXON region.
3458 *
3459 * @remarks This function should never be called when SUPR0EnableVTx() or
3460 * similar was used to enable VT-x on the host.
3461 */
3462VMMR0DECL(int) VMXR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
3463{
3464 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
3465
3466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3467 return hmR0VmxLeaveRootMode();
3468}
3469
3470
3471/**
3472 * Does per-VM VT-x initialization.
3473 *
3474 * @returns VBox status code.
3475 * @param pVM The cross context VM structure.
3476 */
3477VMMR0DECL(int) VMXR0InitVM(PVM pVM)
3478{
3479 LogFlowFunc(("pVM=%p\n", pVM));
3480
3481 int rc = hmR0VmxStructsAlloc(pVM);
3482 if (RT_FAILURE(rc))
3483 {
3484 LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
3485 return rc;
3486 }
3487
3488 return VINF_SUCCESS;
3489}
3490
3491
3492/**
3493 * Does per-VM VT-x termination.
3494 *
3495 * @returns VBox status code.
3496 * @param pVM The cross context VM structure.
3497 */
3498VMMR0DECL(int) VMXR0TermVM(PVM pVM)
3499{
3500 LogFlowFunc(("pVM=%p\n", pVM));
3501
3502#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3503 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
3504 {
3505 Assert(pVM->hm.s.vmx.pvScratch);
3506 ASMMemZero32(pVM->hm.s.vmx.pvScratch, X86_PAGE_4K_SIZE);
3507 }
3508#endif
3509 hmR0VmxStructsFree(pVM);
3510 return VINF_SUCCESS;
3511}
3512
3513
3514/**
3515 * Sets up the VM for execution using hardware-assisted VMX.
3516 * This function is only called once per-VM during initialization.
3517 *
3518 * @returns VBox status code.
3519 * @param pVM The cross context VM structure.
3520 */
3521VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
3522{
3523 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
3524 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3525
3526 LogFlowFunc(("pVM=%p\n", pVM));
3527
3528 /*
3529 * At least verify if VMX is enabled, since we can't check if we're in
3530 * VMX root mode or not without causing a #GP.
3531 */
3532 RTCCUINTREG const uHostCR4 = ASMGetCR4();
3533 if (RT_LIKELY(uHostCR4 & X86_CR4_VMXE))
3534 { /* likely */ }
3535 else
3536 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
3537
3538 /*
3539 * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
3540 * always be allocated. We no longer support the highly unlikely case of unrestricted guest
3541 * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
3542 */
3543 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
3544 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
3545 || !pVM->hm.s.vmx.pRealModeTSS))
3546 {
3547 LogRelFunc(("Invalid real-on-v86 state.\n"));
3548 return VERR_INTERNAL_ERROR;
3549 }
3550
3551 /* Initialize these always, see hmR3InitFinalizeR0().*/
3552 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
3553 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
3554
3555 /* Setup the tagged-TLB flush handlers. */
3556 int rc = hmR0VmxSetupTaggedTlb(pVM);
3557 if (RT_FAILURE(rc))
3558 {
3559 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
3560 return rc;
3561 }
3562
3563 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
3564 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
3565#if HC_ARCH_BITS == 64
3566 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
3567 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
3568 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
3569 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
3570#endif
3571
3572 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3573 {
3574 PVMCPU pVCpu = &pVM->aCpus[idCpu];
3575 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
3576
3577 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
3578 if (RT_SUCCESS(rc))
3579 {
3580#if HC_ARCH_BITS == 32
3581 hmR0VmxInitVmcsReadCache(pVCpu);
3582#endif
3583#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3584 if (pVM->cpum.ro.GuestFeatures.fVmx)
3585 {
3586 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
3587 if (RT_SUCCESS(rc))
3588 { /* likely */ }
3589 else
3590 {
3591 LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
3592 return rc;
3593 }
3594 }
3595#endif
3596 }
3597 else
3598 {
3599 LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
3600 return rc;
3601 }
3602 }
3603
3604 return VINF_SUCCESS;
3605}
3606
3607
3608#if HC_ARCH_BITS == 32
3609# ifdef VBOX_ENABLE_64_BITS_GUESTS
3610/**
3611 * Check if guest state allows safe use of 32-bit switcher again.
3612 *
3613 * Segment bases and protected mode structures must be 32-bit addressable
3614 * because the 32-bit switcher will ignore high dword when writing these VMCS
3615 * fields. See @bugref{8432} for details.
3616 *
3617 * @returns true if safe, false if must continue to use the 64-bit switcher.
3618 * @param pCtx Pointer to the guest-CPU context.
3619 *
3620 * @remarks No-long-jump zone!!!
3621 */
3622static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
3623{
3624 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
3625 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
3626 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
3627 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
3628 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
3629 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3630 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
3631 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
3632 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3633 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3634
3635 /* All good, bases are 32-bit. */
3636 return true;
3637}
3638# endif /* VBOX_ENABLE_64_BITS_GUESTS */
3639
3640# ifdef VBOX_STRICT
3641static bool hmR0VmxIsValidWriteField(uint32_t idxField)
3642{
3643 switch (idxField)
3644 {
3645 case VMX_VMCS_GUEST_RIP:
3646 case VMX_VMCS_GUEST_RSP:
3647 case VMX_VMCS_GUEST_SYSENTER_EIP:
3648 case VMX_VMCS_GUEST_SYSENTER_ESP:
3649 case VMX_VMCS_GUEST_GDTR_BASE:
3650 case VMX_VMCS_GUEST_IDTR_BASE:
3651 case VMX_VMCS_GUEST_CS_BASE:
3652 case VMX_VMCS_GUEST_DS_BASE:
3653 case VMX_VMCS_GUEST_ES_BASE:
3654 case VMX_VMCS_GUEST_FS_BASE:
3655 case VMX_VMCS_GUEST_GS_BASE:
3656 case VMX_VMCS_GUEST_SS_BASE:
3657 case VMX_VMCS_GUEST_LDTR_BASE:
3658 case VMX_VMCS_GUEST_TR_BASE:
3659 case VMX_VMCS_GUEST_CR3:
3660 return true;
3661 }
3662 return false;
3663}
3664
3665static bool hmR0VmxIsValidReadField(uint32_t idxField)
3666{
3667 switch (idxField)
3668 {
3669 /* Read-only fields. */
3670 case VMX_VMCS_RO_EXIT_QUALIFICATION:
3671 return true;
3672 }
3673 /* Remaining readable fields should also be writable. */
3674 return hmR0VmxIsValidWriteField(idxField);
3675}
3676# endif /* VBOX_STRICT */
3677
3678
3679/**
3680 * Executes the specified handler in 64-bit mode.
3681 *
3682 * @returns VBox status code (no informational status codes).
3683 * @param pVCpu The cross context virtual CPU structure.
3684 * @param enmOp The operation to perform.
3685 * @param cParams Number of parameters.
3686 * @param paParam Array of 32-bit parameters.
3687 */
3688VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
3689{
3690 PVM pVM = pVCpu->CTX_SUFF(pVM);
3691 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
3692 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
3693 Assert(pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Write.aField));
3694 Assert(pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Read.aField));
3695
3696#ifdef VBOX_STRICT
3697 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries; i++)
3698 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VmcsCache.Write.aField[i]));
3699
3700 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries; i++)
3701 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VmcsCache.Read.aField[i]));
3702#endif
3703
3704 /* Disable interrupts. */
3705 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
3706
3707#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
3708 RTCPUID idHostCpu = RTMpCpuId();
3709 CPUMR0SetLApic(pVCpu, idHostCpu);
3710#endif
3711
3712 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
3713
3714 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
3715 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
3716
3717 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
3718 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3719 hmR0VmxClearVmcs(pVmcsInfo);
3720
3721 /* Leave VMX root mode and disable VMX. */
3722 VMXDisable();
3723 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
3724
3725 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
3726 CPUMSetHyperEIP(pVCpu, enmOp);
3727 for (int i = (int)cParams - 1; i >= 0; i--)
3728 CPUMPushHyper(pVCpu, paParam[i]);
3729
3730 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
3731
3732 /* Call the switcher. */
3733 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
3734 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
3735
3736 /* Re-enable VMX to make sure the VMX instructions don't cause #UD faults. */
3737 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
3738
3739 /* Re-enter VMX root mode. */
3740 int rc2 = VMXEnable(HCPhysCpuPage);
3741 if (RT_FAILURE(rc2))
3742 {
3743 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
3744 ASMSetFlags(fOldEFlags);
3745 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
3746 return rc2;
3747 }
3748
3749 /* Restore the VMCS as the current VMCS. */
3750 rc2 = hmR0VmxLoadVmcs(pVmcsInfo);
3751 AssertRC(rc2);
3752 Assert(!(ASMGetFlags() & X86_EFL_IF));
3753 ASMSetFlags(fOldEFlags);
3754 return rc;
3755}
3756
3757
3758/**
3759 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
3760 * supporting 64-bit guests.
3761 *
3762 * @returns VBox status code.
3763 * @param fResume Whether to VMLAUNCH or VMRESUME.
3764 * @param pCtx Pointer to the guest-CPU context.
3765 * @param pCache Pointer to the VMCS batch cache.
3766 * @param pVM The cross context VM structure.
3767 * @param pVCpu The cross context virtual CPU structure.
3768 */
3769DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMXVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
3770{
3771 NOREF(fResume);
3772
3773 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3774 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
3775 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
3776
3777#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3778 pCache->uPos = 1;
3779 pCache->interPD = PGMGetInterPaeCR3(pVM);
3780 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
3781#endif
3782
3783#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
3784 pCache->TestIn.HCPhysCpuPage = 0;
3785 pCache->TestIn.HCPhysVmcs = 0;
3786 pCache->TestIn.pCache = 0;
3787 pCache->TestOut.HCPhysVmcs = 0;
3788 pCache->TestOut.pCache = 0;
3789 pCache->TestOut.pCtx = 0;
3790 pCache->TestOut.eflags = 0;
3791#else
3792 NOREF(pCache);
3793#endif
3794
3795 uint32_t aParam[10];
3796 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
3797 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
3798 aParam[2] = RT_LO_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
3799 aParam[3] = RT_HI_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
3800 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache);
3801 aParam[5] = 0;
3802 aParam[6] = VM_RC_ADDR(pVM, pVM);
3803 aParam[7] = 0;
3804 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
3805 aParam[9] = 0;
3806
3807#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3808 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
3809 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
3810#endif
3811 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
3812
3813#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3814 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
3815 Assert(pCtx->dr[4] == 10);
3816 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
3817#endif
3818
3819#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
3820 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
3821 AssertMsg(pCache->TestIn.HCPhysVmcs == pVmcsInfo->HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
3822 pVmcsInfo->HCPhysVmcs));
3823 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
3824 pCache->TestOut.HCPhysVmcs));
3825 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
3826 pCache->TestOut.pCache));
3827 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache),
3828 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache)));
3829 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
3830 pCache->TestOut.pCtx));
3831 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
3832#endif
3833 NOREF(pCtx);
3834 return rc;
3835}
3836#endif
3837
3838
3839/**
3840 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
3841 * the VMCS.
3842 *
3843 * @returns VBox status code.
3844 */
3845static int hmR0VmxExportHostControlRegs(void)
3846{
3847 RTCCUINTREG uReg = ASMGetCR0();
3848 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
3849 AssertRCReturn(rc, rc);
3850
3851 uReg = ASMGetCR3();
3852 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
3853 AssertRCReturn(rc, rc);
3854
3855 uReg = ASMGetCR4();
3856 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
3857 AssertRCReturn(rc, rc);
3858 return rc;
3859}
3860
3861
3862/**
3863 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
3864 * the host-state area in the VMCS.
3865 *
3866 * @returns VBox status code.
3867 * @param pVCpu The cross context virtual CPU structure.
3868 */
3869static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
3870{
3871#if HC_ARCH_BITS == 64
3872/**
3873 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
3874 * requirements. See hmR0VmxExportHostSegmentRegs().
3875 */
3876# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
3877 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
3878 { \
3879 bool fValidSelector = true; \
3880 if ((selValue) & X86_SEL_LDT) \
3881 { \
3882 uint32_t uAttr = ASMGetSegAttr((selValue)); \
3883 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
3884 } \
3885 if (fValidSelector) \
3886 { \
3887 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
3888 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
3889 } \
3890 (selValue) = 0; \
3891 }
3892
3893 /*
3894 * If we've executed guest code using hardware-assisted VMX, the host-state bits
3895 * will be messed up. We should -not- save the messed up state without restoring
3896 * the original host-state, see @bugref{7240}.
3897 *
3898 * This apparently can happen (most likely the FPU changes), deal with it rather than
3899 * asserting. Was observed booting Solaris 10u10 32-bit guest.
3900 */
3901 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
3902 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
3903 {
3904 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
3905 pVCpu->idCpu));
3906 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
3907 }
3908 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
3909#else
3910 RT_NOREF(pVCpu);
3911#endif
3912
3913 /*
3914 * Host DS, ES, FS and GS segment registers.
3915 */
3916#if HC_ARCH_BITS == 64
3917 RTSEL uSelDS = ASMGetDS();
3918 RTSEL uSelES = ASMGetES();
3919 RTSEL uSelFS = ASMGetFS();
3920 RTSEL uSelGS = ASMGetGS();
3921#else
3922 RTSEL uSelDS = 0;
3923 RTSEL uSelES = 0;
3924 RTSEL uSelFS = 0;
3925 RTSEL uSelGS = 0;
3926#endif
3927
3928 /*
3929 * Host CS and SS segment registers.
3930 */
3931 RTSEL uSelCS = ASMGetCS();
3932 RTSEL uSelSS = ASMGetSS();
3933
3934 /*
3935 * Host TR segment register.
3936 */
3937 RTSEL uSelTR = ASMGetTR();
3938
3939#if HC_ARCH_BITS == 64
3940 /*
3941 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
3942 * gain VM-entry and restore them before we get preempted.
3943 *
3944 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
3945 */
3946 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
3947 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
3948 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
3949 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
3950# undef VMXLOCAL_ADJUST_HOST_SEG
3951#endif
3952
3953 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
3954 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
3955 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
3956 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
3957 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
3958 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
3959 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
3960 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
3961 Assert(uSelCS);
3962 Assert(uSelTR);
3963
3964 /* Write these host selector fields into the host-state area in the VMCS. */
3965 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
3966 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
3967#if HC_ARCH_BITS == 64
3968 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
3969 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
3970 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
3971 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
3972#else
3973 NOREF(uSelDS);
3974 NOREF(uSelES);
3975 NOREF(uSelFS);
3976 NOREF(uSelGS);
3977#endif
3978 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3979 AssertRCReturn(rc, rc);
3980
3981 /*
3982 * Host GDTR and IDTR.
3983 */
3984 RTGDTR Gdtr;
3985 RTIDTR Idtr;
3986 RT_ZERO(Gdtr);
3987 RT_ZERO(Idtr);
3988 ASMGetGDTR(&Gdtr);
3989 ASMGetIDTR(&Idtr);
3990 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3991 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3992 AssertRCReturn(rc, rc);
3993
3994#if HC_ARCH_BITS == 64
3995 /*
3996 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
3997 * them to the maximum limit (0xffff) on every VM-exit.
3998 */
3999 if (Gdtr.cbGdt != 0xffff)
4000 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
4001
4002 /*
4003 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
4004 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
4005 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
4006 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
4007 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
4008 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
4009 * at 0xffff on hosts where we are sure it won't cause trouble.
4010 */
4011# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
4012 if (Idtr.cbIdt < 0x0fff)
4013# else
4014 if (Idtr.cbIdt != 0xffff)
4015# endif
4016 {
4017 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
4018 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
4019 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
4020 }
4021#endif
4022
4023 /*
4024 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
4025 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
4026 * RPL should be too in most cases.
4027 */
4028 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
4029 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
4030
4031 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
4032#if HC_ARCH_BITS == 64
4033 uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
4034
4035 /*
4036 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
4037 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
4038 * restoration if the host has something else. Task switching is not supported in 64-bit
4039 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
4040 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
4041 *
4042 * [1] See Intel spec. 3.5 "System Descriptor Types".
4043 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
4044 */
4045 PVM pVM = pVCpu->CTX_SUFF(pVM);
4046 Assert(pDesc->System.u4Type == 11);
4047 if ( pDesc->System.u16LimitLow != 0x67
4048 || pDesc->System.u4LimitHigh)
4049 {
4050 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
4051 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
4052 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
4053 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
4054 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
4055 }
4056
4057 /*
4058 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
4059 */
4060 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
4061 {
4062 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
4063 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
4064 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
4065 {
4066 /* The GDT is read-only but the writable GDT is available. */
4067 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
4068 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
4069 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
4070 AssertRCReturn(rc, rc);
4071 }
4072 }
4073#else
4074 uintptr_t const uTRBase = X86DESC_BASE(pDesc);
4075#endif
4076 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
4077 AssertRCReturn(rc, rc);
4078
4079 /*
4080 * Host FS base and GS base.
4081 */
4082#if HC_ARCH_BITS == 64
4083 uint64_t const u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
4084 uint64_t const u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
4085 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
4086 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
4087 AssertRCReturn(rc, rc);
4088
4089 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
4090 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
4091 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
4092 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
4093 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
4094#endif
4095 return VINF_SUCCESS;
4096}
4097
4098
4099/**
4100 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
4101 * host-state area of the VMCS.
4102 *
4103 * These MSRs will be automatically restored on the host after every successful
4104 * VM-exit.
4105 *
4106 * @returns VBox status code.
4107 * @param pVCpu The cross context virtual CPU structure.
4108 *
4109 * @remarks No-long-jump zone!!!
4110 */
4111static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
4112{
4113 AssertPtr(pVCpu);
4114
4115 /*
4116 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
4117 * rather than swapping them on every VM-entry.
4118 */
4119 hmR0VmxLazySaveHostMsrs(pVCpu);
4120
4121 /*
4122 * Host Sysenter MSRs.
4123 */
4124 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
4125#if HC_ARCH_BITS == 32
4126 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
4127 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
4128#else
4129 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
4130 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
4131#endif
4132 AssertRCReturn(rc, rc);
4133
4134 /*
4135 * Host EFER MSR.
4136 *
4137 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
4138 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
4139 */
4140 PVM pVM = pVCpu->CTX_SUFF(pVM);
4141 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4142 {
4143 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostMsrEfer);
4144 AssertRCReturn(rc, rc);
4145 }
4146
4147 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
4148 * hmR0VmxExportGuestEntryExitCtls(). */
4149
4150 return VINF_SUCCESS;
4151}
4152
4153
4154/**
4155 * Figures out if we need to swap the EFER MSR which is particularly expensive.
4156 *
4157 * We check all relevant bits. For now, that's everything besides LMA/LME, as
4158 * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
4159 *
4160 * @returns true if we need to load guest EFER, false otherwise.
4161 * @param pVCpu The cross context virtual CPU structure.
4162 *
4163 * @remarks Requires EFER, CR4.
4164 * @remarks No-long-jump zone!!!
4165 */
4166static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
4167{
4168#ifdef HMVMX_ALWAYS_SWAP_EFER
4169 RT_NOREF(pVCpu);
4170 return true;
4171#else
4172 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4173#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4174 /* For 32-bit hosts running 64-bit guests, we always swap EFER MSR in the world-switcher. Nothing to do here. */
4175 if (CPUMIsGuestInLongModeEx(pCtx))
4176 return false;
4177#endif
4178
4179 PVM pVM = pVCpu->CTX_SUFF(pVM);
4180 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostMsrEfer;
4181 uint64_t const u64GuestEfer = pCtx->msrEFER;
4182
4183 /*
4184 * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
4185 * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
4186 */
4187 if ( CPUMIsGuestInLongModeEx(pCtx)
4188 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
4189 return true;
4190
4191 /*
4192 * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
4193 * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
4194 *
4195 * See Intel spec. 4.5 "IA-32e Paging".
4196 * See Intel spec. 4.1.1 "Three Paging Modes".
4197 *
4198 * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
4199 * import CR4 and CR0 from the VMCS here as those bits are always up to date.
4200 */
4201 Assert(hmR0VmxGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
4202 Assert(hmR0VmxGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
4203 if ( (pCtx->cr4 & X86_CR4_PAE)
4204 && (pCtx->cr0 & X86_CR0_PG)
4205 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
4206 {
4207 /* Assert that host is NX capable. */
4208 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
4209 return true;
4210 }
4211
4212 return false;
4213#endif
4214}
4215
4216/**
4217 * Exports the guest state with appropriate VM-entry and VM-exit controls in the
4218 * VMCS.
4219 *
4220 * This is typically required when the guest changes paging mode.
4221 *
4222 * @returns VBox status code.
4223 * @param pVCpu The cross context virtual CPU structure.
4224 * @param pVmxTransient The VMX-transient structure.
4225 *
4226 * @remarks Requires EFER.
4227 * @remarks No-long-jump zone!!!
4228 */
4229static int hmR0VmxExportGuestEntryExitCtls(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4230{
4231 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
4232 {
4233 PVM pVM = pVCpu->CTX_SUFF(pVM);
4234 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4235
4236 /*
4237 * VM-entry controls.
4238 */
4239 {
4240 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4241 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4242
4243 /*
4244 * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
4245 * The first VT-x capable CPUs only supported the 1-setting of this bit.
4246 *
4247 * For nested-guests, this is a mandatory VM-entry control. It's also
4248 * required because we do not want to leak host bits to the nested-guest.
4249 */
4250 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
4251
4252 /*
4253 * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
4254 *
4255 * For nested-guests, the "IA-32e mode guest" control we initialize with what is
4256 * required to get the nested-guest working with hardware-assisted VMX execution.
4257 * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested-hypervisor
4258 * can skip intercepting changes to the EFER MSR. This is why it it needs to be done
4259 * here rather than while merging the guest VMCS controls.
4260 */
4261 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4262 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
4263 else
4264 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
4265
4266 /*
4267 * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
4268 *
4269 * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
4270 * regardless of whether the nested-guest VMCS specifies it because we are free to
4271 * load whatever MSRs we require and we do not need to modify the guest visible copy
4272 * of the VM-entry MSR load area.
4273 */
4274 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4275 && hmR0VmxShouldSwapEferMsr(pVCpu))
4276 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
4277 else
4278 Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
4279
4280 /*
4281 * The following should -not- be set (since we're not in SMM mode):
4282 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
4283 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
4284 */
4285
4286 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
4287 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
4288
4289 if ((fVal & fZap) == fVal)
4290 { /* likely */ }
4291 else
4292 {
4293 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
4294 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
4295 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
4296 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4297 }
4298
4299 /* Commit it to the VMCS. */
4300 if (pVmcsInfo->u32EntryCtls != fVal)
4301 {
4302 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
4303 AssertRCReturn(rc, rc);
4304 pVmcsInfo->u32EntryCtls = fVal;
4305 }
4306 }
4307
4308 /*
4309 * VM-exit controls.
4310 */
4311 {
4312 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4313 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4314
4315 /*
4316 * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
4317 * supported the 1-setting of this bit.
4318 *
4319 * For nested-guests, we set the "save debug controls" as the converse
4320 * "load debug controls" is mandatory for nested-guests anyway.
4321 */
4322 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
4323
4324 /*
4325 * Set the host long mode active (EFER.LMA) bit (which Intel calls
4326 * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
4327 * host EFER.LMA and EFER.LME bit to this value. See assertion in
4328 * hmR0VmxExportHostMsrs().
4329 *
4330 * For nested-guests, we always set this bit as we do not support 32-bit
4331 * hosts.
4332 */
4333#if HC_ARCH_BITS == 64
4334 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4335#else
4336 Assert(!pVmxTransient->fIsNestedGuest);
4337 Assert( pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64
4338 || pVmcsInfo->pfnStartVM == VMXR0StartVM32);
4339 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
4340 if (pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64)
4341 {
4342 /* The switcher returns to long mode, the EFER MSR is managed by the switcher. */
4343 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4344 }
4345 else
4346 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
4347#endif
4348
4349 /*
4350 * If the VMCS EFER MSR fields are supported by the hardware, we use it.
4351 *
4352 * For nested-guests, we should use the "save IA32_EFER" control if we also
4353 * used the "load IA32_EFER" control while exporting VM-entry controls.
4354 */
4355 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4356 && hmR0VmxShouldSwapEferMsr(pVCpu))
4357 {
4358 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
4359 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
4360 }
4361
4362 /*
4363 * Enable saving of the VMX-preemption timer value on VM-exit.
4364 * For nested-guests, currently not exposed/used.
4365 */
4366 if ( pVM->hm.s.vmx.fUsePreemptTimer
4367 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
4368 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
4369
4370 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
4371 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
4372
4373 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
4374 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
4375 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
4376
4377 if ((fVal & fZap) == fVal)
4378 { /* likely */ }
4379 else
4380 {
4381 Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
4382 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
4383 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
4384 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4385 }
4386
4387 /* Commit it to the VMCS. */
4388 if (pVmcsInfo->u32ExitCtls != fVal)
4389 {
4390 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
4391 AssertRCReturn(rc, rc);
4392 pVmcsInfo->u32ExitCtls = fVal;
4393 }
4394 }
4395
4396 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
4397 }
4398 return VINF_SUCCESS;
4399}
4400
4401
4402/**
4403 * Sets the TPR threshold in the VMCS.
4404 *
4405 * @returns VBox status code.
4406 * @param pVCpu The cross context virtual CPU structure.
4407 * @param pVmcsInfo The VMCS info. object.
4408 * @param u32TprThreshold The TPR threshold (task-priority class only).
4409 */
4410DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
4411{
4412 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
4413 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4414 RT_NOREF2(pVCpu, pVmcsInfo);
4415 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
4416}
4417
4418
4419/**
4420 * Exports the guest APIC TPR state into the VMCS.
4421 *
4422 * @returns VBox status code.
4423 * @param pVCpu The cross context virtual CPU structure.
4424 * @param pVmxTransient The VMX-transient structure.
4425 *
4426 * @remarks No-long-jump zone!!!
4427 */
4428static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4429{
4430 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
4431 {
4432 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
4433
4434 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4435 if (!pVmxTransient->fIsNestedGuest)
4436 {
4437 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
4438 && APICIsEnabled(pVCpu))
4439 {
4440 /*
4441 * Setup TPR shadowing.
4442 */
4443 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4444 {
4445 bool fPendingIntr = false;
4446 uint8_t u8Tpr = 0;
4447 uint8_t u8PendingIntr = 0;
4448 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
4449 AssertRCReturn(rc, rc);
4450
4451 /*
4452 * If there are interrupts pending but masked by the TPR, instruct VT-x to
4453 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
4454 * priority of the pending interrupt so we can deliver the interrupt. If there
4455 * are no interrupts pending, set threshold to 0 to not cause any
4456 * TPR-below-threshold VM-exits.
4457 */
4458 Assert(pVmcsInfo->pbVirtApic);
4459 pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
4460 uint32_t u32TprThreshold = 0;
4461 if (fPendingIntr)
4462 {
4463 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
4464 (which is the Task-Priority Class). */
4465 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
4466 const uint8_t u8TprPriority = u8Tpr >> 4;
4467 if (u8PendingPriority <= u8TprPriority)
4468 u32TprThreshold = u8PendingPriority;
4469 }
4470
4471 rc = hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u32TprThreshold);
4472 AssertRCReturn(rc, rc);
4473 }
4474 }
4475 }
4476 /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
4477 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
4478 }
4479 return VINF_SUCCESS;
4480}
4481
4482
4483/**
4484 * Gets the guest interruptibility-state.
4485 *
4486 * @returns Guest's interruptibility-state.
4487 * @param pVCpu The cross context virtual CPU structure.
4488 * @param pVmcsInfo The VMCS info. object.
4489 *
4490 * @remarks No-long-jump zone!!!
4491 */
4492static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
4493{
4494 /*
4495 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
4496 */
4497 uint32_t fIntrState = 0;
4498 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
4499 {
4500 /* If inhibition is active, RIP and RFLAGS should've been updated
4501 (i.e. read previously from the VMCS or from ring-3). */
4502 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4503#ifdef VBOX_STRICT
4504 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
4505 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4506 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
4507#endif
4508 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
4509 {
4510 if (pCtx->eflags.Bits.u1IF)
4511 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
4512 else
4513 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
4514 }
4515 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
4516 {
4517 /*
4518 * We can clear the inhibit force flag as even if we go back to the recompiler
4519 * without executing guest code in VT-x, the flag's condition to be cleared is
4520 * met and thus the cleared state is correct.
4521 */
4522 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
4523 }
4524 }
4525
4526 /*
4527 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
4528 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
4529 * setting this would block host-NMIs and IRET will not clear the blocking.
4530 *
4531 * We always set NMI-exiting so when the host receives an NMI we get a VM-exit.
4532 *
4533 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
4534 */
4535 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
4536 && CPUMIsGuestNmiBlocking(pVCpu))
4537 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
4538
4539 return fIntrState;
4540}
4541
4542
4543/**
4544 * Exports the exception intercepts required for guest execution in the VMCS.
4545 *
4546 * @returns VBox status code.
4547 * @param pVCpu The cross context virtual CPU structure.
4548 * @param pVmxTransient The VMX-transient structure.
4549 *
4550 * @remarks No-long-jump zone!!!
4551 */
4552static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4553{
4554 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
4555 {
4556 /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
4557 if ( !pVmxTransient->fIsNestedGuest
4558 && pVCpu->hm.s.fGIMTrapXcptUD)
4559 hmR0VmxAddXcptIntercept(pVmxTransient, X86_XCPT_UD);
4560 else
4561 hmR0VmxRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
4562
4563 /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
4564 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
4565 }
4566 return VINF_SUCCESS;
4567}
4568
4569
4570/**
4571 * Exports the guest's RIP into the guest-state area in the VMCS.
4572 *
4573 * @returns VBox status code.
4574 * @param pVCpu The cross context virtual CPU structure.
4575 *
4576 * @remarks No-long-jump zone!!!
4577 */
4578static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
4579{
4580 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
4581 {
4582 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
4583
4584 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
4585 AssertRCReturn(rc, rc);
4586
4587 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
4588 Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
4589 }
4590 return VINF_SUCCESS;
4591}
4592
4593
4594/**
4595 * Exports the guest's RSP into the guest-state area in the VMCS.
4596 *
4597 * @returns VBox status code.
4598 * @param pVCpu The cross context virtual CPU structure.
4599 *
4600 * @remarks No-long-jump zone!!!
4601 */
4602static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
4603{
4604 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
4605 {
4606 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
4607
4608 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
4609 AssertRCReturn(rc, rc);
4610
4611 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
4612 }
4613 return VINF_SUCCESS;
4614}
4615
4616
4617/**
4618 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
4619 *
4620 * @returns VBox status code.
4621 * @param pVCpu The cross context virtual CPU structure.
4622 * @param pVmxTransient The VMX-transient structure.
4623 *
4624 * @remarks No-long-jump zone!!!
4625 */
4626static int hmR0VmxExportGuestRflags(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4627{
4628 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
4629 {
4630 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
4631
4632 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
4633 Let us assert it as such and use 32-bit VMWRITE. */
4634 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
4635 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
4636 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
4637 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
4638
4639 /*
4640 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
4641 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
4642 * can run the real-mode guest code under Virtual 8086 mode.
4643 */
4644 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4645 if (pVmcsInfo->RealMode.fRealOnV86Active)
4646 {
4647 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4648 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4649 Assert(!pVmxTransient->fIsNestedGuest);
4650 pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
4651 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
4652 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
4653 }
4654
4655 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
4656 AssertRCReturn(rc, rc);
4657
4658 /*
4659 * Setup pending debug exceptions if the guest is single-stepping using EFLAGS.TF.
4660 *
4661 * We must avoid setting any automatic debug exceptions delivery when single-stepping
4662 * through the hypervisor debugger using EFLAGS.TF.
4663 */
4664 if ( !pVmxTransient->fIsNestedGuest
4665 && !pVCpu->hm.s.fSingleInstruction
4666 && fEFlags.Bits.u1TF)
4667 {
4668 /** @todo r=ramshankar: Warning!! We ASSUME EFLAGS.TF will not cleared on
4669 * premature trips to ring-3 esp since IEM does not yet handle it. */
4670 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
4671 AssertRCReturn(rc, rc);
4672 }
4673 /** @todo NSTVMX: Handling copying of VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS from
4674 * nested-guest VMCS. */
4675
4676 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
4677 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
4678 }
4679 return VINF_SUCCESS;
4680}
4681
4682
4683/**
4684 * Exports the guest CR0 control register into the guest-state area in the VMCS.
4685 *
4686 * The guest FPU state is always pre-loaded hence we don't need to bother about
4687 * sharing FPU related CR0 bits between the guest and host.
4688 *
4689 * @returns VBox status code.
4690 * @param pVCpu The cross context virtual CPU structure.
4691 * @param pVmxTransient The VMX-transient structure.
4692 *
4693 * @remarks No-long-jump zone!!!
4694 */
4695static int hmR0VmxExportGuestCR0(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4696{
4697 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
4698 {
4699 PVM pVM = pVCpu->CTX_SUFF(pVM);
4700 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4701
4702 /*
4703 * Figure out fixed CR0 bits in VMX operation.
4704 */
4705 uint64_t fSetCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
4706 uint64_t const fZapCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
4707 if (pVM->hm.s.vmx.fUnrestrictedGuest)
4708 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
4709 else
4710 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
4711
4712 if (!pVmxTransient->fIsNestedGuest)
4713 {
4714 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
4715 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
4716 uint64_t const u64ShadowCr0 = u64GuestCr0;
4717 Assert(!RT_HI_U32(u64GuestCr0));
4718
4719 /*
4720 * Setup VT-x's view of the guest CR0.
4721 */
4722 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
4723 if (pVM->hm.s.fNestedPaging)
4724 {
4725 if (CPUMIsGuestPagingEnabled(pVCpu))
4726 {
4727 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
4728 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
4729 | VMX_PROC_CTLS_CR3_STORE_EXIT);
4730 }
4731 else
4732 {
4733 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
4734 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
4735 | VMX_PROC_CTLS_CR3_STORE_EXIT;
4736 }
4737
4738 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
4739 if (pVM->hm.s.vmx.fUnrestrictedGuest)
4740 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
4741 }
4742 else
4743 {
4744 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
4745 u64GuestCr0 |= X86_CR0_WP;
4746 }
4747
4748 /*
4749 * Guest FPU bits.
4750 *
4751 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
4752 * using CR0.TS.
4753 *
4754 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
4755 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
4756 */
4757 u64GuestCr0 |= X86_CR0_NE;
4758
4759 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
4760 bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
4761
4762 /*
4763 * Update exception intercepts.
4764 */
4765 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
4766 if (pVmcsInfo->RealMode.fRealOnV86Active)
4767 {
4768 Assert(PDMVmmDevHeapIsEnabled(pVM));
4769 Assert(pVM->hm.s.vmx.pRealModeTSS);
4770 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
4771 }
4772 else
4773 {
4774 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
4775 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
4776 if (fInterceptMF)
4777 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
4778 }
4779
4780 /* Additional intercepts for debugging, define these yourself explicitly. */
4781#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
4782 uXcptBitmap |= 0
4783 | RT_BIT(X86_XCPT_BP)
4784 | RT_BIT(X86_XCPT_DE)
4785 | RT_BIT(X86_XCPT_NM)
4786 | RT_BIT(X86_XCPT_TS)
4787 | RT_BIT(X86_XCPT_UD)
4788 | RT_BIT(X86_XCPT_NP)
4789 | RT_BIT(X86_XCPT_SS)
4790 | RT_BIT(X86_XCPT_GP)
4791 | RT_BIT(X86_XCPT_PF)
4792 | RT_BIT(X86_XCPT_MF)
4793 ;
4794#elif defined(HMVMX_ALWAYS_TRAP_PF)
4795 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
4796#endif
4797 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
4798 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
4799 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
4800
4801 /* Apply the fixed CR0 bits and enable caching. */
4802 u64GuestCr0 |= fSetCr0;
4803 u64GuestCr0 &= fZapCr0;
4804 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
4805
4806 /* Commit the CR0 and related fields to the guest VMCS. */
4807 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR0, u64GuestCr0);
4808 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
4809 if (uProcCtls != pVmcsInfo->u32ProcCtls)
4810 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4811 if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
4812 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
4813 AssertRCReturn(rc, rc);
4814
4815 /* Update our caches. */
4816 pVmcsInfo->u32ProcCtls = uProcCtls;
4817 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
4818
4819 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
4820 }
4821 else
4822 {
4823 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4824 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
4825 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
4826 uint64_t const u64ShadowCr0 = pVmcsNstGst->u64Cr0ReadShadow.u;
4827 Assert(!RT_HI_U32(u64GuestCr0));
4828 Assert(u64GuestCr0 & X86_CR0_NE);
4829
4830 /* Apply the fixed CR0 bits and enable caching. */
4831 u64GuestCr0 |= fSetCr0;
4832 u64GuestCr0 &= fZapCr0;
4833 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
4834
4835 /* Commit the CR0 and CR0 read shadow to the nested-guest VMCS. */
4836 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR0, u64GuestCr0);
4837 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
4838 AssertRCReturn(rc, rc);
4839
4840 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
4841 }
4842
4843 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
4844 }
4845
4846 return VINF_SUCCESS;
4847}
4848
4849
4850/**
4851 * Exports the guest control registers (CR3, CR4) into the guest-state area
4852 * in the VMCS.
4853 *
4854 * @returns VBox strict status code.
4855 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
4856 * without unrestricted guest access and the VMMDev is not presently
4857 * mapped (e.g. EFI32).
4858 *
4859 * @param pVCpu The cross context virtual CPU structure.
4860 * @param pVmxTransient The VMX-transient structure.
4861 *
4862 * @remarks No-long-jump zone!!!
4863 */
4864static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4865{
4866 int rc = VINF_SUCCESS;
4867 PVM pVM = pVCpu->CTX_SUFF(pVM);
4868
4869 /*
4870 * Guest CR2.
4871 * It's always loaded in the assembler code. Nothing to do here.
4872 */
4873
4874 /*
4875 * Guest CR3.
4876 */
4877 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
4878 {
4879 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
4880
4881 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
4882 if (pVM->hm.s.fNestedPaging)
4883 {
4884 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4885 pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
4886
4887 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
4888 Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
4889 Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
4890 Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
4891
4892 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
4893 pVmcsInfo->HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
4894 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
4895
4896 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
4897 AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
4898 && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
4899 ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
4900 AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
4901 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
4902 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
4903
4904 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
4905 AssertRCReturn(rc, rc);
4906
4907 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4908 if ( pVM->hm.s.vmx.fUnrestrictedGuest
4909 || CPUMIsGuestPagingEnabledEx(pCtx))
4910 {
4911 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
4912 if (CPUMIsGuestInPAEModeEx(pCtx))
4913 {
4914 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
4915 AssertRCReturn(rc, rc);
4916 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
4917 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
4918 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
4919 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
4920 AssertRCReturn(rc, rc);
4921 }
4922
4923 /*
4924 * The guest's view of its CR3 is unblemished with nested paging when the
4925 * guest is using paging or we have unrestricted guest execution to handle
4926 * the guest when it's not using paging.
4927 */
4928 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
4929 GCPhysGuestCR3 = pCtx->cr3;
4930 }
4931 else
4932 {
4933 /*
4934 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
4935 * thinks it accesses physical memory directly, we use our identity-mapped
4936 * page table to map guest-linear to guest-physical addresses. EPT takes care
4937 * of translating it to host-physical addresses.
4938 */
4939 RTGCPHYS GCPhys;
4940 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
4941
4942 /* We obtain it here every time as the guest could have relocated this PCI region. */
4943 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
4944 if (RT_SUCCESS(rc))
4945 { /* likely */ }
4946 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
4947 {
4948 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
4949 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
4950 }
4951 else
4952 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
4953
4954 GCPhysGuestCR3 = GCPhys;
4955 }
4956
4957 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
4958 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4959 AssertRCReturn(rc, rc);
4960 }
4961 else
4962 {
4963 /* Non-nested paging case, just use the hypervisor's CR3. */
4964 RTHCPHYS const HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4965
4966 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
4967 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4968 AssertRCReturn(rc, rc);
4969 }
4970
4971 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
4972 }
4973
4974 /*
4975 * Guest CR4.
4976 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4977 */
4978 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
4979 {
4980 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4981 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4982 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4983
4984 /*
4985 * Figure out fixed CR4 bits in VMX operation.
4986 */
4987 uint64_t const fSetCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
4988 uint64_t const fZapCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
4989
4990 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
4991 uint64_t u64GuestCr4 = pCtx->cr4;
4992 uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest ? pCtx->cr4 : pVmcsNstGst->u64Cr4ReadShadow.u;
4993 Assert(!RT_HI_U32(u64GuestCr4));
4994
4995 /*
4996 * Setup VT-x's view of the guest CR4.
4997 *
4998 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
4999 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
5000 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
5001 *
5002 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
5003 */
5004 if (pVmcsInfo->RealMode.fRealOnV86Active)
5005 {
5006 Assert(pVM->hm.s.vmx.pRealModeTSS);
5007 Assert(PDMVmmDevHeapIsEnabled(pVM));
5008 u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
5009 }
5010
5011 if (pVM->hm.s.fNestedPaging)
5012 {
5013 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
5014 && !pVM->hm.s.vmx.fUnrestrictedGuest)
5015 {
5016 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
5017 u64GuestCr4 |= X86_CR4_PSE;
5018 /* Our identity mapping is a 32-bit page directory. */
5019 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5020 }
5021 /* else use guest CR4.*/
5022 }
5023 else
5024 {
5025 Assert(!pVmxTransient->fIsNestedGuest);
5026
5027 /*
5028 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
5029 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
5030 */
5031 switch (pVCpu->hm.s.enmShadowMode)
5032 {
5033 case PGMMODE_REAL: /* Real-mode. */
5034 case PGMMODE_PROTECTED: /* Protected mode without paging. */
5035 case PGMMODE_32_BIT: /* 32-bit paging. */
5036 {
5037 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5038 break;
5039 }
5040
5041 case PGMMODE_PAE: /* PAE paging. */
5042 case PGMMODE_PAE_NX: /* PAE paging with NX. */
5043 {
5044 u64GuestCr4 |= X86_CR4_PAE;
5045 break;
5046 }
5047
5048 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
5049 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
5050#ifdef VBOX_ENABLE_64_BITS_GUESTS
5051 break;
5052#endif
5053 default:
5054 AssertFailed();
5055 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5056 }
5057 }
5058
5059 /* Apply the fixed CR4 bits (mainly CR4.VMXE). */
5060 u64GuestCr4 |= fSetCr4;
5061 u64GuestCr4 &= fZapCr4;
5062
5063 /* Commit the CR4 and CR4 read shadow to the guest VMCS. */
5064 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR4, u64GuestCr4);
5065 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4);
5066 AssertRCReturn(rc, rc);
5067
5068 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
5069 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
5070
5071 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
5072
5073 Log4Func(("cr4=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
5074 }
5075 return rc;
5076}
5077
5078
5079/**
5080 * Exports the guest debug registers into the guest-state area in the VMCS.
5081 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
5082 *
5083 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
5084 *
5085 * @returns VBox status code.
5086 * @param pVCpu The cross context virtual CPU structure.
5087 * @param pVmxTransient The VMX-transient structure.
5088 *
5089 * @remarks No-long-jump zone!!!
5090 */
5091static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5092{
5093 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5094
5095 /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
5096 * stepping. */
5097 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5098 if (pVmxTransient->fIsNestedGuest)
5099 {
5100 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
5101 AssertRCReturn(rc, rc);
5102 return VINF_SUCCESS;
5103 }
5104
5105#ifdef VBOX_STRICT
5106 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
5107 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5108 {
5109 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
5110 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
5111 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
5112 }
5113#endif
5114
5115 bool fSteppingDB = false;
5116 bool fInterceptMovDRx = false;
5117 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5118 if (pVCpu->hm.s.fSingleInstruction)
5119 {
5120 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
5121 PVM pVM = pVCpu->CTX_SUFF(pVM);
5122 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
5123 {
5124 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
5125 Assert(fSteppingDB == false);
5126 }
5127 else
5128 {
5129 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
5130 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
5131 pVCpu->hm.s.fClearTrapFlag = true;
5132 fSteppingDB = true;
5133 }
5134 }
5135
5136 uint32_t u32GuestDr7;
5137 if ( fSteppingDB
5138 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
5139 {
5140 /*
5141 * Use the combined guest and host DRx values found in the hypervisor register set
5142 * because the hypervisor debugger has breakpoints active or someone is single stepping
5143 * on the host side without a monitor trap flag.
5144 *
5145 * Note! DBGF expects a clean DR6 state before executing guest code.
5146 */
5147#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5148 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
5149 && !CPUMIsHyperDebugStateActivePending(pVCpu))
5150 {
5151 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5152 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
5153 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
5154 }
5155 else
5156#endif
5157 if (!CPUMIsHyperDebugStateActive(pVCpu))
5158 {
5159 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5160 Assert(CPUMIsHyperDebugStateActive(pVCpu));
5161 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
5162 }
5163
5164 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
5165 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
5166 pVCpu->hm.s.fUsingHyperDR7 = true;
5167 fInterceptMovDRx = true;
5168 }
5169 else
5170 {
5171 /*
5172 * If the guest has enabled debug registers, we need to load them prior to
5173 * executing guest code so they'll trigger at the right time.
5174 */
5175 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
5176 {
5177#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5178 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
5179 && !CPUMIsGuestDebugStateActivePending(pVCpu))
5180 {
5181 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
5182 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
5183 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
5184 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
5185 }
5186 else
5187#endif
5188 if (!CPUMIsGuestDebugStateActive(pVCpu))
5189 {
5190 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
5191 Assert(CPUMIsGuestDebugStateActive(pVCpu));
5192 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
5193 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
5194 }
5195 Assert(!fInterceptMovDRx);
5196 }
5197 /*
5198 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
5199 * must intercept #DB in order to maintain a correct DR6 guest value, and
5200 * because we need to intercept it to prevent nested #DBs from hanging the
5201 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
5202 */
5203#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5204 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
5205 && !CPUMIsGuestDebugStateActive(pVCpu))
5206#else
5207 else if (!CPUMIsGuestDebugStateActive(pVCpu))
5208#endif
5209 {
5210 fInterceptMovDRx = true;
5211 }
5212
5213 /* Update DR7 with the actual guest value. */
5214 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
5215 pVCpu->hm.s.fUsingHyperDR7 = false;
5216 }
5217
5218 if (fInterceptMovDRx)
5219 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
5220 else
5221 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
5222
5223 /*
5224 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
5225 * monitor-trap flag and update our cache.
5226 */
5227 if (uProcCtls != pVmcsInfo->u32ProcCtls)
5228 {
5229 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5230 AssertRCReturn(rc2, rc2);
5231 pVmcsInfo->u32ProcCtls = uProcCtls;
5232 }
5233
5234 /*
5235 * Update guest DR7.
5236 */
5237 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
5238 AssertRCReturn(rc, rc);
5239
5240 /*
5241 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
5242 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
5243 *
5244 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5245 */
5246 if (fSteppingDB)
5247 {
5248 Assert(pVCpu->hm.s.fSingleInstruction);
5249 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
5250
5251 uint32_t fIntrState = 0;
5252 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
5253 AssertRCReturn(rc, rc);
5254
5255 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5256 {
5257 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
5258 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
5259 AssertRCReturn(rc, rc);
5260 }
5261 }
5262
5263 return VINF_SUCCESS;
5264}
5265
5266
5267#ifdef VBOX_STRICT
5268/**
5269 * Strict function to validate segment registers.
5270 *
5271 * @param pVCpu The cross context virtual CPU structure.
5272 * @param pVmcsInfo The VMCS info. object.
5273 *
5274 * @remarks Will import guest CR0 on strict builds during validation of
5275 * segments.
5276 */
5277static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
5278{
5279 /*
5280 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
5281 *
5282 * The reason we check for attribute value 0 in this function and not just the unusable bit is
5283 * because hmR0VmxExportGuestSegReg() only updates the VMCS' copy of the value with the
5284 * unusable bit and doesn't change the guest-context value.
5285 */
5286 PVM pVM = pVCpu->CTX_SUFF(pVM);
5287 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5288 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
5289 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
5290 && ( !CPUMIsGuestInRealModeEx(pCtx)
5291 && !CPUMIsGuestInV86ModeEx(pCtx)))
5292 {
5293 /* Protected mode checks */
5294 /* CS */
5295 Assert(pCtx->cs.Attr.n.u1Present);
5296 Assert(!(pCtx->cs.Attr.u & 0xf00));
5297 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
5298 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
5299 || !(pCtx->cs.Attr.n.u1Granularity));
5300 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
5301 || (pCtx->cs.Attr.n.u1Granularity));
5302 /* CS cannot be loaded with NULL in protected mode. */
5303 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
5304 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
5305 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
5306 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
5307 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
5308 else
5309 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
5310 /* SS */
5311 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
5312 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
5313 if ( !(pCtx->cr0 & X86_CR0_PE)
5314 || pCtx->cs.Attr.n.u4Type == 3)
5315 {
5316 Assert(!pCtx->ss.Attr.n.u2Dpl);
5317 }
5318 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
5319 {
5320 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
5321 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
5322 Assert(pCtx->ss.Attr.n.u1Present);
5323 Assert(!(pCtx->ss.Attr.u & 0xf00));
5324 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
5325 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
5326 || !(pCtx->ss.Attr.n.u1Granularity));
5327 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
5328 || (pCtx->ss.Attr.n.u1Granularity));
5329 }
5330 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegReg(). */
5331 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
5332 {
5333 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5334 Assert(pCtx->ds.Attr.n.u1Present);
5335 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
5336 Assert(!(pCtx->ds.Attr.u & 0xf00));
5337 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
5338 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
5339 || !(pCtx->ds.Attr.n.u1Granularity));
5340 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
5341 || (pCtx->ds.Attr.n.u1Granularity));
5342 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5343 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
5344 }
5345 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
5346 {
5347 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5348 Assert(pCtx->es.Attr.n.u1Present);
5349 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
5350 Assert(!(pCtx->es.Attr.u & 0xf00));
5351 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
5352 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
5353 || !(pCtx->es.Attr.n.u1Granularity));
5354 Assert( !(pCtx->es.u32Limit & 0xfff00000)
5355 || (pCtx->es.Attr.n.u1Granularity));
5356 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5357 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
5358 }
5359 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
5360 {
5361 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5362 Assert(pCtx->fs.Attr.n.u1Present);
5363 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
5364 Assert(!(pCtx->fs.Attr.u & 0xf00));
5365 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
5366 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
5367 || !(pCtx->fs.Attr.n.u1Granularity));
5368 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
5369 || (pCtx->fs.Attr.n.u1Granularity));
5370 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5371 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
5372 }
5373 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
5374 {
5375 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5376 Assert(pCtx->gs.Attr.n.u1Present);
5377 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
5378 Assert(!(pCtx->gs.Attr.u & 0xf00));
5379 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
5380 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
5381 || !(pCtx->gs.Attr.n.u1Granularity));
5382 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
5383 || (pCtx->gs.Attr.n.u1Granularity));
5384 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5385 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
5386 }
5387 /* 64-bit capable CPUs. */
5388# if HC_ARCH_BITS == 64
5389 Assert(!RT_HI_U32(pCtx->cs.u64Base));
5390 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
5391 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
5392 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
5393# endif
5394 }
5395 else if ( CPUMIsGuestInV86ModeEx(pCtx)
5396 || ( CPUMIsGuestInRealModeEx(pCtx)
5397 && !pVM->hm.s.vmx.fUnrestrictedGuest))
5398 {
5399 /* Real and v86 mode checks. */
5400 /* hmR0VmxExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
5401 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
5402 if (pVmcsInfo->RealMode.fRealOnV86Active)
5403 {
5404 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
5405 u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
5406 }
5407 else
5408 {
5409 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
5410 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
5411 }
5412
5413 /* CS */
5414 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
5415 Assert(pCtx->cs.u32Limit == 0xffff);
5416 Assert(u32CSAttr == 0xf3);
5417 /* SS */
5418 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
5419 Assert(pCtx->ss.u32Limit == 0xffff);
5420 Assert(u32SSAttr == 0xf3);
5421 /* DS */
5422 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
5423 Assert(pCtx->ds.u32Limit == 0xffff);
5424 Assert(u32DSAttr == 0xf3);
5425 /* ES */
5426 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
5427 Assert(pCtx->es.u32Limit == 0xffff);
5428 Assert(u32ESAttr == 0xf3);
5429 /* FS */
5430 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
5431 Assert(pCtx->fs.u32Limit == 0xffff);
5432 Assert(u32FSAttr == 0xf3);
5433 /* GS */
5434 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
5435 Assert(pCtx->gs.u32Limit == 0xffff);
5436 Assert(u32GSAttr == 0xf3);
5437 /* 64-bit capable CPUs. */
5438# if HC_ARCH_BITS == 64
5439 Assert(!RT_HI_U32(pCtx->cs.u64Base));
5440 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
5441 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
5442 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
5443# endif
5444 }
5445}
5446#endif /* VBOX_STRICT */
5447
5448
5449/**
5450 * Exports a guest segment register into the guest-state area in the VMCS.
5451 *
5452 * @returns VBox status code.
5453 * @param pVCpu The cross context virtual CPU structure.
5454 * @param pVmcsInfo The VMCS info. object.
5455 * @param iSegReg The segment register number (X86_SREG_XXX).
5456 * @param pSelReg Pointer to the segment selector.
5457 *
5458 * @remarks No-long-jump zone!!!
5459 */
5460static int hmR0VmxExportGuestSegReg(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint8_t iSegReg, PCCPUMSELREG pSelReg)
5461{
5462 Assert(iSegReg < X86_SREG_COUNT);
5463 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
5464 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
5465 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
5466 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
5467
5468 uint32_t u32Access = pSelReg->Attr.u;
5469 if (pVmcsInfo->RealMode.fRealOnV86Active)
5470 {
5471 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
5472 u32Access = 0xf3;
5473 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5474 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
5475 RT_NOREF_PV(pVCpu);
5476 }
5477 else
5478 {
5479 /*
5480 * The way to differentiate between whether this is really a null selector or was just
5481 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
5482 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
5483 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
5484 * NULL selectors loaded in protected-mode have their attribute as 0.
5485 */
5486 if (!u32Access)
5487 u32Access = X86DESCATTR_UNUSABLE;
5488 }
5489
5490 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
5491 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
5492 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
5493
5494 /*
5495 * Commit it to the VMCS.
5496 */
5497 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel);
5498 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit);
5499 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base);
5500 rc |= VMXWriteVmcs32(idxAttr, u32Access);
5501 AssertRCReturn(rc, rc);
5502 return rc;
5503}
5504
5505
5506/**
5507 * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
5508 * area in the VMCS.
5509 *
5510 * @returns VBox status code.
5511 * @param pVCpu The cross context virtual CPU structure.
5512 * @param pVmxTransient The VMX-transient structure.
5513 *
5514 * @remarks Will import guest CR0 on strict builds during validation of
5515 * segments.
5516 * @remarks No-long-jump zone!!!
5517 */
5518static int hmR0VmxExportGuestSegRegsXdtr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5519{
5520 int rc = VERR_INTERNAL_ERROR_5;
5521 PVM pVM = pVCpu->CTX_SUFF(pVM);
5522 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5523 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5524
5525 /*
5526 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
5527 */
5528 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
5529 {
5530#ifdef VBOX_WITH_REM
5531 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
5532 {
5533 Assert(!pVmxTransient->fIsNestedGuest);
5534 Assert(pVM->hm.s.vmx.pRealModeTSS);
5535 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
5536 if ( pVmcsInfo->fWasInRealMode
5537 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
5538 {
5539 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
5540 in real-mode (e.g. OpenBSD 4.0) */
5541 REMFlushTBs(pVM);
5542 Log4Func(("Switch to protected mode detected!\n"));
5543 pVmcsInfo->fWasInRealMode = false;
5544 }
5545 }
5546#endif
5547 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
5548 {
5549 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
5550 if (pVmcsInfo->RealMode.fRealOnV86Active)
5551 pVmcsInfo->RealMode.AttrCS.u = pCtx->cs.Attr.u;
5552 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
5553 AssertRCReturn(rc, rc);
5554 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
5555 }
5556
5557 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
5558 {
5559 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
5560 if (pVmcsInfo->RealMode.fRealOnV86Active)
5561 pVmcsInfo->RealMode.AttrSS.u = pCtx->ss.Attr.u;
5562 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
5563 AssertRCReturn(rc, rc);
5564 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
5565 }
5566
5567 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
5568 {
5569 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
5570 if (pVmcsInfo->RealMode.fRealOnV86Active)
5571 pVmcsInfo->RealMode.AttrDS.u = pCtx->ds.Attr.u;
5572 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
5573 AssertRCReturn(rc, rc);
5574 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
5575 }
5576
5577 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
5578 {
5579 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
5580 if (pVmcsInfo->RealMode.fRealOnV86Active)
5581 pVmcsInfo->RealMode.AttrES.u = pCtx->es.Attr.u;
5582 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
5583 AssertRCReturn(rc, rc);
5584 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
5585 }
5586
5587 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
5588 {
5589 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
5590 if (pVmcsInfo->RealMode.fRealOnV86Active)
5591 pVmcsInfo->RealMode.AttrFS.u = pCtx->fs.Attr.u;
5592 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
5593 AssertRCReturn(rc, rc);
5594 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
5595 }
5596
5597 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
5598 {
5599 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
5600 if (pVmcsInfo->RealMode.fRealOnV86Active)
5601 pVmcsInfo->RealMode.AttrGS.u = pCtx->gs.Attr.u;
5602 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
5603 AssertRCReturn(rc, rc);
5604 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
5605 }
5606
5607#ifdef VBOX_STRICT
5608 hmR0VmxValidateSegmentRegs(pVCpu, pVmcsInfo);
5609#endif
5610 Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
5611 pCtx->cs.Attr.u));
5612 }
5613
5614 /*
5615 * Guest TR.
5616 */
5617 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
5618 {
5619 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
5620
5621 /*
5622 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
5623 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
5624 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
5625 */
5626 uint16_t u16Sel;
5627 uint32_t u32Limit;
5628 uint64_t u64Base;
5629 uint32_t u32AccessRights;
5630 if (!pVmcsInfo->RealMode.fRealOnV86Active)
5631 {
5632 u16Sel = pCtx->tr.Sel;
5633 u32Limit = pCtx->tr.u32Limit;
5634 u64Base = pCtx->tr.u64Base;
5635 u32AccessRights = pCtx->tr.Attr.u;
5636 }
5637 else
5638 {
5639 Assert(!pVmxTransient->fIsNestedGuest);
5640 Assert(pVM->hm.s.vmx.pRealModeTSS);
5641 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
5642
5643 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
5644 RTGCPHYS GCPhys;
5645 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
5646 AssertRCReturn(rc, rc);
5647
5648 X86DESCATTR DescAttr;
5649 DescAttr.u = 0;
5650 DescAttr.n.u1Present = 1;
5651 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
5652
5653 u16Sel = 0;
5654 u32Limit = HM_VTX_TSS_SIZE;
5655 u64Base = GCPhys;
5656 u32AccessRights = DescAttr.u;
5657 }
5658
5659 /* Validate. */
5660 Assert(!(u16Sel & RT_BIT(2)));
5661 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
5662 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
5663 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
5664 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
5665 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
5666 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
5667 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
5668 Assert( (u32Limit & 0xfff) == 0xfff
5669 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
5670 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
5671 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
5672
5673 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
5674 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
5675 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
5676 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
5677 AssertRCReturn(rc, rc);
5678
5679 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
5680 Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
5681 }
5682
5683 /*
5684 * Guest GDTR.
5685 */
5686 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
5687 {
5688 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
5689
5690 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
5691 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
5692 AssertRCReturn(rc, rc);
5693
5694 /* Validate. */
5695 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
5696
5697 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
5698 Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
5699 }
5700
5701 /*
5702 * Guest LDTR.
5703 */
5704 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
5705 {
5706 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
5707
5708 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
5709 uint32_t u32Access;
5710 if ( !pVmxTransient->fIsNestedGuest
5711 && !pCtx->ldtr.Attr.u)
5712 u32Access = X86DESCATTR_UNUSABLE;
5713 else
5714 u32Access = pCtx->ldtr.Attr.u;
5715
5716 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
5717 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
5718 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
5719 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
5720 AssertRCReturn(rc, rc);
5721
5722 /* Validate. */
5723 if (!(u32Access & X86DESCATTR_UNUSABLE))
5724 {
5725 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
5726 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
5727 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
5728 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
5729 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
5730 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
5731 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
5732 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
5733 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
5734 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
5735 }
5736
5737 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
5738 Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
5739 }
5740
5741 /*
5742 * Guest IDTR.
5743 */
5744 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
5745 {
5746 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
5747
5748 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
5749 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
5750 AssertRCReturn(rc, rc);
5751
5752 /* Validate. */
5753 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
5754
5755 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
5756 Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
5757 }
5758
5759 return VINF_SUCCESS;
5760}
5761
5762
5763/**
5764 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
5765 * areas.
5766 *
5767 * These MSRs will automatically be loaded to the host CPU on every successful
5768 * VM-entry and stored from the host CPU on every successful VM-exit.
5769 *
5770 * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
5771 * actual host MSR values are not- updated here for performance reasons. See
5772 * hmR0VmxExportHostMsrs().
5773 *
5774 * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
5775 *
5776 * @returns VBox status code.
5777 * @param pVCpu The cross context virtual CPU structure.
5778 * @param pVmxTransient The VMX-transient structure.
5779 *
5780 * @remarks No-long-jump zone!!!
5781 */
5782static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5783{
5784 AssertPtr(pVCpu);
5785 AssertPtr(pVmxTransient);
5786
5787 PVM pVM = pVCpu->CTX_SUFF(pVM);
5788 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5789
5790 /*
5791 * MSRs that we use the auto-load/store MSR area in the VMCS.
5792 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
5793 * The host MSR values are updated when it's safe in hmR0VmxLazySaveHostMsrs().
5794 *
5795 * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
5796 * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
5797 * emulation, nothing to do here.
5798 */
5799 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
5800 {
5801 if ( !pVmxTransient->fIsNestedGuest
5802 && pVM->hm.s.fAllow64BitGuests)
5803 {
5804#if HC_ARCH_BITS == 32
5805 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
5806 Assert(!pVmxTransient->fIsNestedGuest);
5807
5808 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_LSTAR, pCtx->msrLSTAR, true, false);
5809 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_STAR, pCtx->msrSTAR, true, false);
5810 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_SF_MASK, pCtx->msrSFMASK, true, false);
5811 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, true, false);
5812 AssertRCReturn(rc, rc);
5813#endif
5814 }
5815 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
5816 }
5817
5818 /*
5819 * Guest Sysenter MSRs.
5820 */
5821 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
5822 {
5823 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
5824
5825 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
5826 {
5827 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
5828 AssertRCReturn(rc, rc);
5829 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
5830 }
5831
5832 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
5833 {
5834 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
5835 AssertRCReturn(rc, rc);
5836 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
5837 }
5838
5839 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
5840 {
5841 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
5842 AssertRCReturn(rc, rc);
5843 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
5844 }
5845 }
5846
5847 /*
5848 * Guest/host EFER MSR.
5849 */
5850 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
5851 {
5852 /* Whether we are using the VMCS to swap the EFER MSR must have been
5853 determined earlier while exporting VM-entry/VM-exit controls. */
5854 Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
5855 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
5856
5857 if (hmR0VmxShouldSwapEferMsr(pVCpu))
5858 {
5859 /*
5860 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
5861 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
5862 */
5863 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
5864 {
5865 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
5866 AssertRCReturn(rc, rc);
5867 }
5868 else
5869 {
5870 /*
5871 * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
5872 * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
5873 */
5874 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, pCtx->msrEFER,
5875 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
5876 AssertRCReturn(rc, rc);
5877 }
5878 }
5879 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
5880 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
5881
5882 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
5883 }
5884
5885 /*
5886 * Other MSRs.
5887 * Speculation Control (R/W).
5888 */
5889 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
5890 {
5891 HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
5892 if (pVM->cpum.ro.GuestFeatures.fIbrs)
5893 {
5894 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
5895 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
5896 AssertRCReturn(rc, rc);
5897 }
5898 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
5899 }
5900
5901 return VINF_SUCCESS;
5902}
5903
5904
5905/**
5906 * Selects up the appropriate function to run guest code.
5907 *
5908 * @returns VBox status code.
5909 * @param pVCpu The cross context virtual CPU structure.
5910 * @param pVmxTransient The VMX-transient structure.
5911 *
5912 * @remarks No-long-jump zone!!!
5913 */
5914static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5915{
5916 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5917 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5918
5919 if (CPUMIsGuestInLongModeEx(pCtx))
5920 {
5921#ifndef VBOX_ENABLE_64_BITS_GUESTS
5922 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5923#endif
5924 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
5925#if HC_ARCH_BITS == 32
5926 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
5927 if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
5928 {
5929#ifdef VBOX_STRICT
5930 if (pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
5931 {
5932 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
5933 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
5934 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
5935 AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
5936 ("fCtxChanged=%#RX64\n", fCtxChanged));
5937 }
5938#endif
5939 pVmcsInfo->pfnStartVM = VMXR0SwitcherStartVM64;
5940
5941 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
5942 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
5943 pVmcsInfo->fSwitchedTo64on32 = true;
5944 Log4Func(("Selected 64-bit switcher\n"));
5945 }
5946#else
5947 /* 64-bit host. */
5948 pVmcsInfo->pfnStartVM = VMXR0StartVM64;
5949#endif
5950 }
5951 else
5952 {
5953 /* Guest is not in long mode, use the 32-bit handler. */
5954#if HC_ARCH_BITS == 32
5955 if ( pVmcsInfo->pfnStartVM != VMXR0StartVM32
5956 && !pVmcsInfo->fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
5957 && pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
5958 {
5959# ifdef VBOX_STRICT
5960 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
5961 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
5962 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
5963 AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
5964 ("fCtxChanged=%#RX64\n", fCtxChanged));
5965# endif
5966 }
5967# ifdef VBOX_ENABLE_64_BITS_GUESTS
5968 /*
5969 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
5970 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
5971 * switcher flag now because we know the guest is in a sane state where it's safe
5972 * to use the 32-bit switcher. Otherwise, check the guest state if it's safe to use
5973 * the much faster 32-bit switcher again.
5974 */
5975 if (!pVmcsInfo->fSwitchedTo64on32)
5976 {
5977 if (pVmcsInfo->pfnStartVM != VMXR0StartVM32)
5978 Log4Func(("Selected 32-bit switcher\n"));
5979 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5980 }
5981 else
5982 {
5983 Assert(pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64);
5984 if ( pVmcsInfo->RealMode.fRealOnV86Active
5985 || hmR0VmxIs32BitSwitcherSafe(pCtx))
5986 {
5987 pVmcsInfo->fSwitchedTo64on32 = false;
5988 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5989 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
5990 | HM_CHANGED_VMX_ENTRY_EXIT_CTLS
5991 | HM_CHANGED_HOST_CONTEXT);
5992 Log4Func(("Selected 32-bit switcher (safe)\n"));
5993 }
5994 }
5995# else
5996 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5997# endif
5998#else
5999 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
6000#endif
6001 }
6002 Assert(pVmcsInfo->pfnStartVM);
6003 return VINF_SUCCESS;
6004}
6005
6006
6007/**
6008 * Wrapper for running the guest code in VT-x.
6009 *
6010 * @returns VBox status code, no informational status codes.
6011 * @param pVCpu The cross context virtual CPU structure.
6012 * @param pVmxTransient The VMX-transient structure.
6013 *
6014 * @remarks No-long-jump zone!!!
6015 */
6016DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6017{
6018 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
6019 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6020 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
6021
6022 /** @todo Add stats for VMRESUME vs VMLAUNCH. */
6023
6024 /*
6025 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
6026 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
6027 * callee-saved and thus the need for this XMM wrapper.
6028 *
6029 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
6030 */
6031 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6032 bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
6033 PVM pVM = pVCpu->CTX_SUFF(pVM);
6034#ifdef VBOX_WITH_KERNEL_USING_XMM
6035 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu, pVmcsInfo->pfnStartVM);
6036#else
6037 int rc = pVmcsInfo->pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu);
6038#endif
6039 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
6040 return rc;
6041}
6042
6043
6044/**
6045 * Reports world-switch error and dumps some useful debug info.
6046 *
6047 * @param pVCpu The cross context virtual CPU structure.
6048 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
6049 * @param pVmxTransient The VMX-transient structure (only
6050 * exitReason updated).
6051 */
6052static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
6053{
6054 Assert(pVCpu);
6055 Assert(pVmxTransient);
6056 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
6057
6058 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
6059 switch (rcVMRun)
6060 {
6061 case VERR_VMX_INVALID_VMXON_PTR:
6062 AssertFailed();
6063 break;
6064 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
6065 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
6066 {
6067 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
6068 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
6069 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
6070 AssertRC(rc);
6071
6072 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6073 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
6074 Cannot do it here as we may have been long preempted. */
6075
6076#ifdef VBOX_STRICT
6077 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6078 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
6079 pVmxTransient->uExitReason));
6080 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
6081 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
6082 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
6083 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
6084 else
6085 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
6086 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
6087 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
6088
6089 /* VMX control bits. */
6090 uint32_t u32Val;
6091 uint64_t u64Val;
6092 RTHCUINTREG uHCReg;
6093 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
6094 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
6095 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
6096 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
6097 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6098 {
6099 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
6100 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
6101 }
6102 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
6103 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
6104 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
6105 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
6106 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
6107 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
6108 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
6109 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
6110 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
6111 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
6112 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
6113 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
6114 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
6115 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
6116 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
6117 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
6118 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
6119 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
6120 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
6121 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
6122 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
6123 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
6124 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
6125 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
6126 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
6127 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
6128 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
6129 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
6130 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
6131 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
6132 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
6133 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
6134 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
6135 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
6136 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
6137 {
6138 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
6139 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
6140 }
6141
6142 /* Guest bits. */
6143 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
6144 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
6145 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
6146 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
6147 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
6148 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
6149 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
6150 {
6151 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
6152 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
6153 }
6154
6155 /* Host bits. */
6156 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
6157 Log4(("Host CR0 %#RHr\n", uHCReg));
6158 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
6159 Log4(("Host CR3 %#RHr\n", uHCReg));
6160 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
6161 Log4(("Host CR4 %#RHr\n", uHCReg));
6162
6163 RTGDTR HostGdtr;
6164 PCX86DESCHC pDesc;
6165 ASMGetGDTR(&HostGdtr);
6166 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
6167 Log4(("Host CS %#08x\n", u32Val));
6168 if (u32Val < HostGdtr.cbGdt)
6169 {
6170 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6171 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
6172 }
6173
6174 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
6175 Log4(("Host DS %#08x\n", u32Val));
6176 if (u32Val < HostGdtr.cbGdt)
6177 {
6178 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6179 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
6180 }
6181
6182 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
6183 Log4(("Host ES %#08x\n", u32Val));
6184 if (u32Val < HostGdtr.cbGdt)
6185 {
6186 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6187 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
6188 }
6189
6190 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
6191 Log4(("Host FS %#08x\n", u32Val));
6192 if (u32Val < HostGdtr.cbGdt)
6193 {
6194 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6195 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
6196 }
6197
6198 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
6199 Log4(("Host GS %#08x\n", u32Val));
6200 if (u32Val < HostGdtr.cbGdt)
6201 {
6202 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6203 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
6204 }
6205
6206 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
6207 Log4(("Host SS %#08x\n", u32Val));
6208 if (u32Val < HostGdtr.cbGdt)
6209 {
6210 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6211 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
6212 }
6213
6214 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
6215 Log4(("Host TR %#08x\n", u32Val));
6216 if (u32Val < HostGdtr.cbGdt)
6217 {
6218 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6219 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
6220 }
6221
6222 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
6223 Log4(("Host TR Base %#RHv\n", uHCReg));
6224 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
6225 Log4(("Host GDTR Base %#RHv\n", uHCReg));
6226 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
6227 Log4(("Host IDTR Base %#RHv\n", uHCReg));
6228 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
6229 Log4(("Host SYSENTER CS %#08x\n", u32Val));
6230 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
6231 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
6232 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
6233 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
6234 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
6235 Log4(("Host RSP %#RHv\n", uHCReg));
6236 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
6237 Log4(("Host RIP %#RHv\n", uHCReg));
6238# if HC_ARCH_BITS == 64
6239 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
6240 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
6241 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
6242 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
6243 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
6244 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
6245# endif
6246#endif /* VBOX_STRICT */
6247 break;
6248 }
6249
6250 default:
6251 /* Impossible */
6252 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
6253 break;
6254 }
6255}
6256
6257
6258#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
6259# ifndef VMX_USE_CACHED_VMCS_ACCESSES
6260# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
6261# endif
6262
6263/**
6264 * Initialize the VMCS-Read cache.
6265 *
6266 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
6267 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
6268 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
6269 * (those that have a 32-bit FULL & HIGH part).
6270 *
6271 * @param pVCpu The cross context virtual CPU structure.
6272 */
6273static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
6274{
6275#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
6276 do { \
6277 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
6278 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
6279 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
6280 ++cReadFields; \
6281 } while (0)
6282
6283 PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
6284 uint32_t cReadFields = 0;
6285
6286 /*
6287 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
6288 * and serve to indicate exceptions to the rules.
6289 */
6290
6291 /* Guest-natural selector base fields. */
6292#if 0
6293 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
6294 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
6295 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
6296#endif
6297 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
6298 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
6299 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
6300 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
6301 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
6302 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
6303 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
6304 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
6305 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
6306 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
6307 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
6308 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
6309#if 0
6310 /* Unused natural width guest-state fields. */
6311 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS);
6312 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in nested paging case */
6313#endif
6314 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
6315 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
6316
6317 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
6318 these 64-bit fields (using "FULL" and "HIGH" fields). */
6319#if 0
6320 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
6321 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
6322 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
6323 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
6324 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
6325 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
6326 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
6327 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
6328 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
6329#endif
6330
6331 /* Natural width guest-state fields. */
6332 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
6333 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_GUEST_LINEAR_ADDR);
6334
6335 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
6336 {
6337 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
6338 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
6339 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
6340 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
6341 }
6342 else
6343 {
6344 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
6345 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
6346 }
6347
6348#undef VMXLOCAL_INIT_READ_CACHE_FIELD
6349}
6350
6351
6352/**
6353 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
6354 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
6355 * darwin, running 64-bit guests).
6356 *
6357 * @returns VBox status code.
6358 * @param pVCpu The cross context virtual CPU structure.
6359 * @param idxField The VMCS field encoding.
6360 * @param u64Val 16, 32 or 64-bit value.
6361 */
6362VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
6363{
6364 int rc;
6365 switch (idxField)
6366 {
6367 /*
6368 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
6369 */
6370 /* 64-bit Control fields. */
6371 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
6372 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
6373 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
6374 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
6375 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
6376 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
6377 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
6378 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
6379 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
6380 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
6381 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
6382 case VMX_VMCS64_CTRL_EPTP_FULL:
6383 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
6384 /* 64-bit Guest-state fields. */
6385 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
6386 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
6387 case VMX_VMCS64_GUEST_PAT_FULL:
6388 case VMX_VMCS64_GUEST_EFER_FULL:
6389 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
6390 case VMX_VMCS64_GUEST_PDPTE0_FULL:
6391 case VMX_VMCS64_GUEST_PDPTE1_FULL:
6392 case VMX_VMCS64_GUEST_PDPTE2_FULL:
6393 case VMX_VMCS64_GUEST_PDPTE3_FULL:
6394 /* 64-bit Host-state fields. */
6395 case VMX_VMCS64_HOST_PAT_FULL:
6396 case VMX_VMCS64_HOST_EFER_FULL:
6397 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
6398 {
6399 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
6400 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
6401 break;
6402 }
6403
6404 /*
6405 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
6406 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
6407 */
6408 /* Natural-width Guest-state fields. */
6409 case VMX_VMCS_GUEST_CR3:
6410 case VMX_VMCS_GUEST_ES_BASE:
6411 case VMX_VMCS_GUEST_CS_BASE:
6412 case VMX_VMCS_GUEST_SS_BASE:
6413 case VMX_VMCS_GUEST_DS_BASE:
6414 case VMX_VMCS_GUEST_FS_BASE:
6415 case VMX_VMCS_GUEST_GS_BASE:
6416 case VMX_VMCS_GUEST_LDTR_BASE:
6417 case VMX_VMCS_GUEST_TR_BASE:
6418 case VMX_VMCS_GUEST_GDTR_BASE:
6419 case VMX_VMCS_GUEST_IDTR_BASE:
6420 case VMX_VMCS_GUEST_RSP:
6421 case VMX_VMCS_GUEST_RIP:
6422 case VMX_VMCS_GUEST_SYSENTER_ESP:
6423 case VMX_VMCS_GUEST_SYSENTER_EIP:
6424 {
6425 if (!(RT_HI_U32(u64Val)))
6426 {
6427 /* If this field is 64-bit, VT-x will zero out the top bits. */
6428 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
6429 }
6430 else
6431 {
6432 /* Assert that only the 32->64 switcher case should ever come here. */
6433 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
6434 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
6435 }
6436 break;
6437 }
6438
6439 default:
6440 {
6441 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
6442 rc = VERR_INVALID_PARAMETER;
6443 break;
6444 }
6445 }
6446 AssertRCReturn(rc, rc);
6447 return rc;
6448}
6449
6450
6451/**
6452 * Queue up a VMWRITE by using the VMCS write cache.
6453 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
6454 *
6455 * @param pVCpu The cross context virtual CPU structure.
6456 * @param idxField The VMCS field encoding.
6457 * @param u64Val 16, 32 or 64-bit value.
6458 */
6459VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
6460{
6461 AssertPtr(pVCpu);
6462 PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
6463
6464 AssertMsgReturn(pCache->Write.cValidEntries < VMX_VMCS_CACHE_MAX_ENTRY - 1,
6465 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
6466
6467 /* Make sure there are no duplicates. */
6468 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
6469 {
6470 if (pCache->Write.aField[i] == idxField)
6471 {
6472 pCache->Write.aFieldVal[i] = u64Val;
6473 return VINF_SUCCESS;
6474 }
6475 }
6476
6477 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
6478 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
6479 pCache->Write.cValidEntries++;
6480 return VINF_SUCCESS;
6481}
6482#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
6483
6484
6485/**
6486 * Sets up the usage of TSC-offsetting and updates the VMCS.
6487 *
6488 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
6489 * VMX-preemption timer.
6490 *
6491 * @returns VBox status code.
6492 * @param pVCpu The cross context virtual CPU structure.
6493 * @param pVmxTransient The VMX-transient structure.
6494 *
6495 * @remarks No-long-jump zone!!!
6496 */
6497static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6498{
6499 bool fOffsettedTsc;
6500 bool fParavirtTsc;
6501 uint64_t uTscOffset;
6502 PVM pVM = pVCpu->CTX_SUFF(pVM);
6503 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);;
6504
6505 if (pVM->hm.s.vmx.fUsePreemptTimer)
6506 {
6507 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
6508
6509 /* Make sure the returned values have sane upper and lower boundaries. */
6510 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
6511 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
6512 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
6513 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
6514
6515 /** @todo r=ramshankar: We need to find a way to integrate nested-guest
6516 * preemption timers here. We probably need to clamp the preemption timer,
6517 * after converting the timer value to the host. */
6518 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
6519 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
6520 AssertRC(rc);
6521 }
6522 else
6523 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
6524
6525 if (fParavirtTsc)
6526 {
6527 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
6528 information before every VM-entry, hence disable it for performance sake. */
6529#if 0
6530 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
6531 AssertRC(rc);
6532#endif
6533 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
6534 }
6535
6536 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
6537 if ( fOffsettedTsc
6538 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
6539 {
6540 if (pVmxTransient->fIsNestedGuest)
6541 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
6542 if (pVmcsInfo->u64TscOffset != uTscOffset)
6543 {
6544 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
6545 AssertRC(rc);
6546 pVmcsInfo->u64TscOffset = uTscOffset;
6547 }
6548
6549 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
6550 {
6551 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
6552 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6553 AssertRC(rc);
6554 pVmcsInfo->u32ProcCtls = uProcCtls;
6555 }
6556 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
6557 }
6558 else
6559 {
6560 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
6561 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
6562 {
6563 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
6564 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6565 AssertRC(rc);
6566 pVmcsInfo->u32ProcCtls = uProcCtls;
6567 }
6568 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
6569 }
6570}
6571
6572
6573/**
6574 * Gets the IEM exception flags for the specified vector and IDT vectoring /
6575 * VM-exit interruption info type.
6576 *
6577 * @returns The IEM exception flags.
6578 * @param uVector The event vector.
6579 * @param uVmxEventType The VMX event type.
6580 *
6581 * @remarks This function currently only constructs flags required for
6582 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
6583 * and CR2 aspects of an exception are not included).
6584 */
6585static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
6586{
6587 uint32_t fIemXcptFlags;
6588 switch (uVmxEventType)
6589 {
6590 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
6591 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
6592 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
6593 break;
6594
6595 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
6596 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
6597 break;
6598
6599 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
6600 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
6601 break;
6602
6603 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
6604 {
6605 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
6606 if (uVector == X86_XCPT_BP)
6607 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
6608 else if (uVector == X86_XCPT_OF)
6609 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
6610 else
6611 {
6612 fIemXcptFlags = 0;
6613 AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
6614 }
6615 break;
6616 }
6617
6618 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
6619 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
6620 break;
6621
6622 default:
6623 fIemXcptFlags = 0;
6624 AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
6625 break;
6626 }
6627 return fIemXcptFlags;
6628}
6629
6630
6631/**
6632 * Sets an event as a pending event to be injected into the guest.
6633 *
6634 * @param pVCpu The cross context virtual CPU structure.
6635 * @param u32IntInfo The VM-entry interruption-information field.
6636 * @param cbInstr The VM-entry instruction length in bytes (for software
6637 * interrupts, exceptions and privileged software
6638 * exceptions).
6639 * @param u32ErrCode The VM-entry exception error code.
6640 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
6641 * page-fault.
6642 */
6643DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
6644 RTGCUINTPTR GCPtrFaultAddress)
6645{
6646 Assert(!pVCpu->hm.s.Event.fPending);
6647 pVCpu->hm.s.Event.fPending = true;
6648 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
6649 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
6650 pVCpu->hm.s.Event.cbInstr = cbInstr;
6651 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
6652}
6653
6654
6655/**
6656 * Sets an external interrupt as pending-for-injection into the VM.
6657 *
6658 * @param pVCpu The cross context virtual CPU structure.
6659 * @param u8Interrupt The external interrupt vector.
6660 */
6661DECLINLINE(void) hmR0VmxSetPendingExtInt(PVMCPU pVCpu, uint8_t u8Interrupt)
6662{
6663 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
6664 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
6665 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6666 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6667 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6668}
6669
6670
6671/**
6672 * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
6673 *
6674 * @param pVCpu The cross context virtual CPU structure.
6675 */
6676DECLINLINE(void) hmR0VmxSetPendingXcptNmi(PVMCPU pVCpu)
6677{
6678 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
6679 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
6680 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6681 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6682 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6683}
6684
6685
6686/**
6687 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
6688 *
6689 * @param pVCpu The cross context virtual CPU structure.
6690 */
6691DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
6692{
6693 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
6694 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6695 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6696 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6697 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6698}
6699
6700
6701/**
6702 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
6703 *
6704 * @param pVCpu The cross context virtual CPU structure.
6705 */
6706DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
6707{
6708 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
6709 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6710 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6711 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6712 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6713}
6714
6715
6716/**
6717 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
6718 *
6719 * @param pVCpu The cross context virtual CPU structure.
6720 */
6721DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
6722{
6723 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
6724 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6725 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6726 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6727 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6728}
6729
6730
6731#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6732/**
6733 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
6734 *
6735 * @param pVCpu The cross context virtual CPU structure.
6736 * @param u32ErrCode The error code for the general-protection exception.
6737 */
6738DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
6739{
6740 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
6741 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6742 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6743 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6744 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
6745}
6746
6747
6748/**
6749 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
6750 *
6751 * @param pVCpu The cross context virtual CPU structure.
6752 * @param u32ErrCode The error code for the stack exception.
6753 */
6754DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
6755{
6756 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
6757 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6758 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6759 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6760 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
6761}
6762
6763
6764/**
6765 * Decodes the memory operand of an instruction that caused a VM-exit.
6766 *
6767 * The VM-exit qualification field provides the displacement field for memory
6768 * operand instructions, if any.
6769 *
6770 * @returns Strict VBox status code (i.e. informational status codes too).
6771 * @retval VINF_SUCCESS if the operand was successfully decoded.
6772 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
6773 * operand.
6774 * @param pVCpu The cross context virtual CPU structure.
6775 * @param uExitInstrInfo The VM-exit instruction information field.
6776 * @param enmMemAccess The memory operand's access type (read or write).
6777 * @param GCPtrDisp The instruction displacement field, if any. For
6778 * RIP-relative addressing pass RIP + displacement here.
6779 * @param pGCPtrMem Where to store the effective destination memory address.
6780 */
6781static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
6782 PRTGCPTR pGCPtrMem)
6783{
6784 Assert(pGCPtrMem);
6785 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
6786 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
6787 | CPUMCTX_EXTRN_CR0);
6788
6789 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
6790 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
6791 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
6792
6793 VMXEXITINSTRINFO ExitInstrInfo;
6794 ExitInstrInfo.u = uExitInstrInfo;
6795 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
6796 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
6797 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
6798 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
6799 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
6800 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
6801 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
6802 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
6803 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
6804
6805 /*
6806 * Validate instruction information.
6807 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
6808 */
6809 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
6810 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
6811 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
6812 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
6813 AssertLogRelMsgReturn(fIsMemOperand,
6814 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
6815
6816 /*
6817 * Compute the complete effective address.
6818 *
6819 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
6820 * See AMD spec. 4.5.2 "Segment Registers".
6821 */
6822 RTGCPTR GCPtrMem = GCPtrDisp;
6823 if (fBaseRegValid)
6824 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
6825 if (fIdxRegValid)
6826 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
6827
6828 RTGCPTR const GCPtrOff = GCPtrMem;
6829 if ( !fIsLongMode
6830 || iSegReg >= X86_SREG_FS)
6831 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
6832 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
6833
6834 /*
6835 * Validate effective address.
6836 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
6837 */
6838 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
6839 Assert(cbAccess > 0);
6840 if (fIsLongMode)
6841 {
6842 if (X86_IS_CANONICAL(GCPtrMem))
6843 {
6844 *pGCPtrMem = GCPtrMem;
6845 return VINF_SUCCESS;
6846 }
6847
6848 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
6849 * "Data Limit Checks in 64-bit Mode". */
6850 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
6851 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6852 return VINF_HM_PENDING_XCPT;
6853 }
6854
6855 /*
6856 * This is a watered down version of iemMemApplySegment().
6857 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
6858 * and segment CPL/DPL checks are skipped.
6859 */
6860 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
6861 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
6862 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6863
6864 /* Check if the segment is present and usable. */
6865 if ( pSel->Attr.n.u1Present
6866 && !pSel->Attr.n.u1Unusable)
6867 {
6868 Assert(pSel->Attr.n.u1DescType);
6869 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
6870 {
6871 /* Check permissions for the data segment. */
6872 if ( enmMemAccess == VMXMEMACCESS_WRITE
6873 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
6874 {
6875 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6876 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
6877 return VINF_HM_PENDING_XCPT;
6878 }
6879
6880 /* Check limits if it's a normal data segment. */
6881 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
6882 {
6883 if ( GCPtrFirst32 > pSel->u32Limit
6884 || GCPtrLast32 > pSel->u32Limit)
6885 {
6886 Log4Func(("Data segment limit exceeded."
6887 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6888 GCPtrLast32, pSel->u32Limit));
6889 if (iSegReg == X86_SREG_SS)
6890 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6891 else
6892 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6893 return VINF_HM_PENDING_XCPT;
6894 }
6895 }
6896 else
6897 {
6898 /* Check limits if it's an expand-down data segment.
6899 Note! The upper boundary is defined by the B bit, not the G bit! */
6900 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
6901 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
6902 {
6903 Log4Func(("Expand-down data segment limit exceeded."
6904 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6905 GCPtrLast32, pSel->u32Limit));
6906 if (iSegReg == X86_SREG_SS)
6907 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6908 else
6909 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6910 return VINF_HM_PENDING_XCPT;
6911 }
6912 }
6913 }
6914 else
6915 {
6916 /* Check permissions for the code segment. */
6917 if ( enmMemAccess == VMXMEMACCESS_WRITE
6918 || ( enmMemAccess == VMXMEMACCESS_READ
6919 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
6920 {
6921 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6922 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6923 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6924 return VINF_HM_PENDING_XCPT;
6925 }
6926
6927 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6928 if ( GCPtrFirst32 > pSel->u32Limit
6929 || GCPtrLast32 > pSel->u32Limit)
6930 {
6931 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6932 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6933 if (iSegReg == X86_SREG_SS)
6934 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6935 else
6936 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6937 return VINF_HM_PENDING_XCPT;
6938 }
6939 }
6940 }
6941 else
6942 {
6943 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6944 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6945 return VINF_HM_PENDING_XCPT;
6946 }
6947
6948 *pGCPtrMem = GCPtrMem;
6949 return VINF_SUCCESS;
6950}
6951
6952
6953/**
6954 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6955 * guest attempting to execute a VMX instruction.
6956 *
6957 * @returns Strict VBox status code (i.e. informational status codes too).
6958 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6959 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6960 *
6961 * @param pVCpu The cross context virtual CPU structure.
6962 * @param uExitReason The VM-exit reason.
6963 *
6964 * @todo NSTVMX: Document other error codes when VM-exit is implemented.
6965 * @remarks No-long-jump zone!!!
6966 */
6967static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
6968{
6969 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6970 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
6971
6972 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6973 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6974 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6975 {
6976 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6977 hmR0VmxSetPendingXcptUD(pVCpu);
6978 return VINF_HM_PENDING_XCPT;
6979 }
6980
6981 if (uExitReason == VMX_EXIT_VMXON)
6982 {
6983 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6984
6985 /*
6986 * We check CR4.VMXE because it is required to be always set while in VMX operation
6987 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6988 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6989 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6990 */
6991 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6992 {
6993 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6994 hmR0VmxSetPendingXcptUD(pVCpu);
6995 return VINF_HM_PENDING_XCPT;
6996 }
6997 }
6998 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6999 {
7000 /*
7001 * The guest has not entered VMX operation but attempted to execute a VMX instruction
7002 * (other than VMXON), we need to raise a #UD.
7003 */
7004 Log4Func(("Not in VMX root mode -> #UD\n"));
7005 hmR0VmxSetPendingXcptUD(pVCpu);
7006 return VINF_HM_PENDING_XCPT;
7007 }
7008
7009 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
7010 {
7011 /*
7012 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
7013 * the guest hypervisor deal with it.
7014 */
7015 /** @todo NSTVMX: Trigger a VM-exit */
7016 }
7017
7018 /*
7019 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
7020 * (above) takes preceedence over the CPL check.
7021 */
7022 if (CPUMGetGuestCPL(pVCpu) > 0)
7023 {
7024 Log4Func(("CPL > 0 -> #GP(0)\n"));
7025 hmR0VmxSetPendingXcptGP(pVCpu, 0);
7026 return VINF_HM_PENDING_XCPT;
7027 }
7028
7029 return VINF_SUCCESS;
7030}
7031#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
7032
7033
7034static void hmR0VmxFixUnusableSegRegAttr(PVMCPU pVCpu, PCPUMSELREG pSelReg, uint32_t idxSel)
7035{
7036 Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
7037
7038 /*
7039 * If VT-x marks the segment as unusable, most other bits remain undefined:
7040 * - For CS the L, D and G bits have meaning.
7041 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
7042 * - For the remaining data segments no bits are defined.
7043 *
7044 * The present bit and the unusable bit has been observed to be set at the
7045 * same time (the selector was supposed to be invalid as we started executing
7046 * a V8086 interrupt in ring-0).
7047 *
7048 * What should be important for the rest of the VBox code, is that the P bit is
7049 * cleared. Some of the other VBox code recognizes the unusable bit, but
7050 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
7051 * safe side here, we'll strip off P and other bits we don't care about. If
7052 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
7053 *
7054 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
7055 */
7056#ifdef VBOX_STRICT
7057 uint32_t const uAttr = pSelReg->Attr.u;
7058#endif
7059
7060 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
7061 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
7062 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
7063
7064#ifdef VBOX_STRICT
7065 VMMRZCallRing3Disable(pVCpu);
7066 Log4Func(("Unusable %#x: sel=%#x attr=%#x -> %#x\n", idxSel, pSelReg->Sel, uAttr, pSelReg->Attr.u));
7067# ifdef DEBUG_bird
7068 AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
7069 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
7070 idxSel, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
7071# endif
7072 VMMRZCallRing3Enable(pVCpu);
7073 NOREF(uAttr);
7074#endif
7075 RT_NOREF2(pVCpu, idxSel);
7076}
7077
7078
7079/**
7080 * Imports a guest segment register from the current VMCS into the guest-CPU
7081 * context.
7082 *
7083 * @returns VBox status code.
7084 * @param pVCpu The cross context virtual CPU structure.
7085 * @param iSegReg The segment register number (X86_SREG_XXX).
7086 *
7087 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7088 * do not log!
7089 */
7090static int hmR0VmxImportGuestSegReg(PVMCPU pVCpu, uint8_t iSegReg)
7091{
7092 Assert(iSegReg < X86_SREG_COUNT);
7093
7094 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
7095 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
7096 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
7097#ifdef VMX_USE_CACHED_VMCS_ACCESSES
7098 uint32_t const idxBase = g_aVmcsCacheSegBase[iSegReg];
7099#else
7100 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
7101#endif
7102 uint64_t u64Base;
7103 uint32_t u32Sel, u32Limit, u32Attr;
7104 int rc = VMXReadVmcs32(idxSel, &u32Sel);
7105 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
7106 rc |= VMXReadVmcs32(idxAttr, &u32Attr);
7107 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
7108 if (RT_SUCCESS(rc))
7109 {
7110 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
7111 pSelReg->Sel = u32Sel;
7112 pSelReg->ValidSel = u32Sel;
7113 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
7114 pSelReg->u32Limit = u32Limit;
7115 pSelReg->u64Base = u64Base;
7116 pSelReg->Attr.u = u32Attr;
7117 if (u32Attr & X86DESCATTR_UNUSABLE)
7118 hmR0VmxFixUnusableSegRegAttr(pVCpu, pSelReg, idxSel);
7119 }
7120 return rc;
7121}
7122
7123
7124/**
7125 * Imports the guest LDTR from the current VMCS into the guest-CPU context.
7126 *
7127 * @returns VBox status code.
7128 * @param pVCpu The cross context virtual CPU structure.
7129 *
7130 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7131 * do not log!
7132 */
7133static int hmR0VmxImportGuestLdtr(PVMCPU pVCpu)
7134{
7135 uint64_t u64Base;
7136 uint32_t u32Sel, u32Limit, u32Attr;
7137 int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, &u32Sel);
7138 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit);
7139 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr);
7140 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, &u64Base);
7141
7142 if (RT_SUCCESS(rc))
7143 {
7144 pVCpu->cpum.GstCtx.ldtr.Sel = u32Sel;
7145 pVCpu->cpum.GstCtx.ldtr.ValidSel = u32Sel;
7146 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
7147 pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
7148 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
7149 pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
7150 if (u32Attr & X86DESCATTR_UNUSABLE)
7151 hmR0VmxFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, VMX_VMCS16_GUEST_LDTR_SEL);
7152 }
7153 return rc;
7154}
7155
7156
7157/**
7158 * Imports the guest TR from the current VMCS into the guest-CPU context.
7159 *
7160 * @returns VBox status code.
7161 * @param pVCpu The cross context virtual CPU structure.
7162 *
7163 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7164 * do not log!
7165 */
7166static int hmR0VmxImportGuestTr(PVMCPU pVCpu)
7167{
7168 uint32_t u32Sel, u32Limit, u32Attr;
7169 uint64_t u64Base;
7170 int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_TR_SEL, &u32Sel);
7171 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit);
7172 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr);
7173 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_TR_BASE, &u64Base);
7174 AssertRCReturn(rc, rc);
7175
7176 pVCpu->cpum.GstCtx.tr.Sel = u32Sel;
7177 pVCpu->cpum.GstCtx.tr.ValidSel = u32Sel;
7178 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
7179 pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
7180 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
7181 pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
7182 /* TR is the only selector that can never be unusable. */
7183 Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
7184 return VINF_SUCCESS;
7185}
7186
7187
7188/**
7189 * Imports the guest RIP from the VMCS back into the guest-CPU context.
7190 *
7191 * @returns VBox status code.
7192 * @param pVCpu The cross context virtual CPU structure.
7193 *
7194 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7195 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7196 * instead!!!
7197 */
7198static int hmR0VmxImportGuestRip(PVMCPU pVCpu)
7199{
7200 uint64_t u64Val;
7201 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7202 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
7203 {
7204 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
7205 if (RT_SUCCESS(rc))
7206 {
7207 pCtx->rip = u64Val;
7208 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
7209 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
7210 }
7211 return rc;
7212 }
7213 return VINF_SUCCESS;
7214}
7215
7216
7217/**
7218 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
7219 *
7220 * @returns VBox status code.
7221 * @param pVCpu The cross context virtual CPU structure.
7222 * @param pVmcsInfo The VMCS info. object.
7223 *
7224 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7225 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7226 * instead!!!
7227 */
7228static int hmR0VmxImportGuestRFlags(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
7229{
7230 uint32_t u32Val;
7231 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7232 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
7233 {
7234 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
7235 if (RT_SUCCESS(rc))
7236 {
7237 pCtx->eflags.u32 = u32Val;
7238
7239 /* Restore eflags for real-on-v86-mode hack. */
7240 if (pVmcsInfo->RealMode.fRealOnV86Active)
7241 {
7242 pCtx->eflags.Bits.u1VM = 0;
7243 pCtx->eflags.Bits.u2IOPL = pVmcsInfo->RealMode.Eflags.Bits.u2IOPL;
7244 }
7245 }
7246 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
7247 return rc;
7248 }
7249 return VINF_SUCCESS;
7250}
7251
7252
7253/**
7254 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
7255 * context.
7256 *
7257 * @returns VBox status code.
7258 * @param pVCpu The cross context virtual CPU structure.
7259 * @param pVmcsInfo The VMCS info. object.
7260 *
7261 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7262 * do not log!
7263 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7264 * instead!!!
7265 */
7266static int hmR0VmxImportGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
7267{
7268 uint32_t u32Val;
7269 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
7270 if (RT_SUCCESS(rc))
7271 {
7272 if (!u32Val)
7273 {
7274 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7275 {
7276 rc = hmR0VmxImportGuestRip(pVCpu);
7277 rc |= hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7278 AssertRCReturn(rc, rc);
7279 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7280 }
7281
7282 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7283 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7284 }
7285 else
7286 {
7287 /*
7288 * We must import RIP here to set our EM interrupt-inhibited state.
7289 * We also import RFLAGS as our code that evaluates pending interrupts
7290 * before VM-entry requires it.
7291 */
7292 rc = hmR0VmxImportGuestRip(pVCpu);
7293 rc |= hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7294 if (RT_SUCCESS(rc))
7295 {
7296 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
7297 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
7298 {
7299 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7300 }
7301 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7302 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7303
7304 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
7305 {
7306 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7307 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
7308 }
7309 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7310 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7311 }
7312 }
7313 }
7314 return rc;
7315}
7316
7317
7318/**
7319 * Worker for VMXR0ImportStateOnDemand.
7320 *
7321 * @returns VBox status code.
7322 * @param pVCpu The cross context virtual CPU structure.
7323 * @param pVmcsInfo The VMCS info. object.
7324 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7325 */
7326static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
7327{
7328#define VMXLOCAL_BREAK_RC(a_rc) \
7329 if (RT_SUCCESS(a_rc)) \
7330 { } \
7331 else \
7332 break
7333
7334 int rc = VINF_SUCCESS;
7335 PVM pVM = pVCpu->CTX_SUFF(pVM);
7336 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7337 uint64_t u64Val;
7338 uint32_t u32Val;
7339
7340 STAM_PROFILE_ADV_START(& pVCpu->hm.s.StatImportGuestState, x);
7341
7342 /*
7343 * We disable interrupts to make the updating of the state and in particular
7344 * the fExtrn modification atomic wrt to preemption hooks.
7345 */
7346 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
7347
7348 fWhat &= pCtx->fExtrn;
7349 if (fWhat)
7350 {
7351 do
7352 {
7353 if (fWhat & CPUMCTX_EXTRN_RIP)
7354 {
7355 rc = hmR0VmxImportGuestRip(pVCpu);
7356 VMXLOCAL_BREAK_RC(rc);
7357 }
7358
7359 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
7360 {
7361 rc = hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7362 VMXLOCAL_BREAK_RC(rc);
7363 }
7364
7365 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
7366 {
7367 rc = hmR0VmxImportGuestIntrState(pVCpu, pVmcsInfo);
7368 VMXLOCAL_BREAK_RC(rc);
7369 }
7370
7371 if (fWhat & CPUMCTX_EXTRN_RSP)
7372 {
7373 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
7374 VMXLOCAL_BREAK_RC(rc);
7375 pCtx->rsp = u64Val;
7376 }
7377
7378 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
7379 {
7380 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
7381 if (fWhat & CPUMCTX_EXTRN_CS)
7382 {
7383 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_CS);
7384 rc |= hmR0VmxImportGuestRip(pVCpu);
7385 if (fRealOnV86Active)
7386 pCtx->cs.Attr.u = pVmcsInfo->RealMode.AttrCS.u;
7387 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
7388 }
7389 if (fWhat & CPUMCTX_EXTRN_SS)
7390 {
7391 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_SS);
7392 if (fRealOnV86Active)
7393 pCtx->ss.Attr.u = pVmcsInfo->RealMode.AttrSS.u;
7394 }
7395 if (fWhat & CPUMCTX_EXTRN_DS)
7396 {
7397 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_DS);
7398 if (fRealOnV86Active)
7399 pCtx->ds.Attr.u = pVmcsInfo->RealMode.AttrDS.u;
7400 }
7401 if (fWhat & CPUMCTX_EXTRN_ES)
7402 {
7403 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_ES);
7404 if (fRealOnV86Active)
7405 pCtx->es.Attr.u = pVmcsInfo->RealMode.AttrES.u;
7406 }
7407 if (fWhat & CPUMCTX_EXTRN_FS)
7408 {
7409 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_FS);
7410 if (fRealOnV86Active)
7411 pCtx->fs.Attr.u = pVmcsInfo->RealMode.AttrFS.u;
7412 }
7413 if (fWhat & CPUMCTX_EXTRN_GS)
7414 {
7415 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_GS);
7416 if (fRealOnV86Active)
7417 pCtx->gs.Attr.u = pVmcsInfo->RealMode.AttrGS.u;
7418 }
7419 VMXLOCAL_BREAK_RC(rc);
7420 }
7421
7422 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
7423 {
7424 if (fWhat & CPUMCTX_EXTRN_LDTR)
7425 rc |= hmR0VmxImportGuestLdtr(pVCpu);
7426
7427 if (fWhat & CPUMCTX_EXTRN_GDTR)
7428 {
7429 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
7430 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
7431 pCtx->gdtr.pGdt = u64Val;
7432 pCtx->gdtr.cbGdt = u32Val;
7433 }
7434
7435 /* Guest IDTR. */
7436 if (fWhat & CPUMCTX_EXTRN_IDTR)
7437 {
7438 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
7439 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
7440 pCtx->idtr.pIdt = u64Val;
7441 pCtx->idtr.cbIdt = u32Val;
7442 }
7443
7444 /* Guest TR. */
7445 if (fWhat & CPUMCTX_EXTRN_TR)
7446 {
7447 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
7448 don't need to import that one. */
7449 if (!pVmcsInfo->RealMode.fRealOnV86Active)
7450 rc |= hmR0VmxImportGuestTr(pVCpu);
7451 }
7452 VMXLOCAL_BREAK_RC(rc);
7453 }
7454
7455 if (fWhat & CPUMCTX_EXTRN_DR7)
7456 {
7457 if (!pVCpu->hm.s.fUsingHyperDR7)
7458 {
7459 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
7460 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
7461 VMXLOCAL_BREAK_RC(rc);
7462 pCtx->dr[7] = u32Val;
7463 }
7464 }
7465
7466 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
7467 {
7468 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
7469 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
7470 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
7471 pCtx->SysEnter.cs = u32Val;
7472 VMXLOCAL_BREAK_RC(rc);
7473 }
7474
7475#if HC_ARCH_BITS == 64
7476 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
7477 {
7478 if ( pVM->hm.s.fAllow64BitGuests
7479 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7480 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
7481 }
7482
7483 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
7484 {
7485 if ( pVM->hm.s.fAllow64BitGuests
7486 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7487 {
7488 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
7489 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
7490 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
7491 }
7492 }
7493#endif
7494
7495 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
7496#if HC_ARCH_BITS == 32
7497 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
7498#endif
7499 )
7500 {
7501 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
7502 uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
7503 Assert(cMsrs == 0 || pMsr != NULL);
7504 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
7505 {
7506 switch (pMsr->u32Msr)
7507 {
7508#if HC_ARCH_BITS == 32
7509 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
7510 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
7511 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
7512 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
7513#endif
7514 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
7515 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
7516 case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
7517
7518 default:
7519 {
7520 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
7521 ASMSetFlags(fEFlags);
7522 AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
7523 cMsrs));
7524 return VERR_HM_UNEXPECTED_LD_ST_MSR;
7525 }
7526 }
7527 }
7528 }
7529
7530 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
7531 {
7532 uint64_t u64Shadow;
7533 if (fWhat & CPUMCTX_EXTRN_CR0)
7534 {
7535 /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
7536 * remove when we drop 32-bit host w/ 64-bit host support, see
7537 * @bugref{9180#c39}. */
7538 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
7539#if HC_ARCH_BITS == 32
7540 uint32_t u32Shadow;
7541 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
7542 u64Shadow = u32Shadow;
7543#else
7544 rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow);
7545#endif
7546 VMXLOCAL_BREAK_RC(rc);
7547 u64Val = u32Val;
7548 u64Val = (u64Val & ~pVmcsInfo->u64Cr0Mask)
7549 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7550 VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
7551 CPUMSetGuestCR0(pVCpu, u64Val);
7552 VMMRZCallRing3Enable(pVCpu);
7553 }
7554
7555 if (fWhat & CPUMCTX_EXTRN_CR4)
7556 {
7557 /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
7558 * remove when we drop 32-bit host w/ 64-bit host support, see
7559 * @bugref{9180#c39}. */
7560 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
7561#if HC_ARCH_BITS == 32
7562 uint32_t u32Shadow;
7563 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
7564 u64Shadow = u32Shadow;
7565#else
7566 rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow);
7567#endif
7568 VMXLOCAL_BREAK_RC(rc);
7569 u64Val = u32Val;
7570 u64Val = (u64Val & ~pVmcsInfo->u64Cr4Mask)
7571 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7572 pCtx->cr4 = u64Val;
7573 }
7574
7575 if (fWhat & CPUMCTX_EXTRN_CR3)
7576 {
7577 /* CR0.PG bit changes are always intercepted, so it's up to date. */
7578 if ( pVM->hm.s.vmx.fUnrestrictedGuest
7579 || ( pVM->hm.s.fNestedPaging
7580 && CPUMIsGuestPagingEnabledEx(pCtx)))
7581 {
7582 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
7583 if (pCtx->cr3 != u64Val)
7584 {
7585 pCtx->cr3 = u64Val;
7586 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
7587 }
7588
7589 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
7590 Note: CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. */
7591 if (CPUMIsGuestInPAEModeEx(pCtx))
7592 {
7593 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
7594 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
7595 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
7596 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
7597 VMXLOCAL_BREAK_RC(rc);
7598 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
7599 }
7600 }
7601 }
7602 }
7603 } while (0);
7604
7605 if (RT_SUCCESS(rc))
7606 {
7607 /* Update fExtrn. */
7608 pCtx->fExtrn &= ~fWhat;
7609
7610 /* If everything has been imported, clear the HM keeper bit. */
7611 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
7612 {
7613 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
7614 Assert(!pCtx->fExtrn);
7615 }
7616 }
7617 }
7618 else
7619 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
7620
7621 ASMSetFlags(fEFlags);
7622
7623 STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
7624
7625 if (RT_SUCCESS(rc))
7626 { /* likely */ }
7627 else
7628 return rc;
7629
7630 /*
7631 * Honor any pending CR3 updates.
7632 *
7633 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
7634 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
7635 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
7636 *
7637 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
7638 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
7639 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
7640 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
7641 *
7642 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
7643 */
7644 if (VMMRZCallRing3IsEnabled(pVCpu))
7645 {
7646 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7647 {
7648 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
7649 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
7650 }
7651
7652 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7653 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7654
7655 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7656 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7657 }
7658
7659 return VINF_SUCCESS;
7660#undef VMXLOCAL_BREAK_RC
7661}
7662
7663
7664/**
7665 * Saves the guest state from the VMCS into the guest-CPU context.
7666 *
7667 * @returns VBox status code.
7668 * @param pVCpu The cross context virtual CPU structure.
7669 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7670 */
7671VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
7672{
7673 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
7674 return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
7675}
7676
7677
7678/**
7679 * Check per-VM and per-VCPU force flag actions that require us to go back to
7680 * ring-3 for one reason or another.
7681 *
7682 * @returns Strict VBox status code (i.e. informational status codes too)
7683 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7684 * ring-3.
7685 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7686 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7687 * interrupts)
7688 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7689 * all EMTs to be in ring-3.
7690 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7691 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7692 * to the EM loop.
7693 *
7694 * @param pVCpu The cross context virtual CPU structure.
7695 * @param fStepping Whether we are single-stepping the guest using the
7696 * hypervisor debugger.
7697 */
7698static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
7699{
7700 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7701
7702 /*
7703 * Update pending interrupts into the APIC's IRR.
7704 */
7705 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7706 APICUpdatePendingInterrupts(pVCpu);
7707
7708 /*
7709 * Anything pending? Should be more likely than not if we're doing a good job.
7710 */
7711 PVM pVM = pVCpu->CTX_SUFF(pVM);
7712 if ( !fStepping
7713 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7714 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7715 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7716 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7717 return VINF_SUCCESS;
7718
7719 /* Pending PGM C3 sync. */
7720 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7721 {
7722 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7723 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
7724 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
7725 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7726 if (rcStrict2 != VINF_SUCCESS)
7727 {
7728 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
7729 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
7730 return rcStrict2;
7731 }
7732 }
7733
7734 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7735 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
7736 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7737 {
7738 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7739 int rc2 = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
7740 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
7741 return rc2;
7742 }
7743
7744 /* Pending VM request packets, such as hardware interrupts. */
7745 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
7746 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
7747 {
7748 Log4Func(("Pending VM request forcing us back to ring-3\n"));
7749 return VINF_EM_PENDING_REQUEST;
7750 }
7751
7752 /* Pending PGM pool flushes. */
7753 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7754 {
7755 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
7756 return VINF_PGM_POOL_FLUSH_PENDING;
7757 }
7758
7759 /* Pending DMA requests. */
7760 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
7761 {
7762 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
7763 return VINF_EM_RAW_TO_R3;
7764 }
7765
7766 return VINF_SUCCESS;
7767}
7768
7769
7770/**
7771 * Converts any TRPM trap into a pending HM event. This is typically used when
7772 * entering from ring-3 (not longjmp returns).
7773 *
7774 * @param pVCpu The cross context virtual CPU structure.
7775 */
7776static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
7777{
7778 Assert(TRPMHasTrap(pVCpu));
7779 Assert(!pVCpu->hm.s.Event.fPending);
7780
7781 uint8_t uVector;
7782 TRPMEVENT enmTrpmEvent;
7783 RTGCUINT uErrCode;
7784 RTGCUINTPTR GCPtrFaultAddress;
7785 uint8_t cbInstr;
7786
7787 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7788 AssertRC(rc);
7789
7790 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7791 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
7792 if (enmTrpmEvent == TRPM_TRAP)
7793 {
7794 /** @todo r=ramshankar: TRPM currently offers no way to determine a \#DB that was
7795 * generated using INT1 (ICEBP). */
7796 switch (uVector)
7797 {
7798 case X86_XCPT_NMI:
7799 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7800 break;
7801
7802 case X86_XCPT_BP:
7803 case X86_XCPT_OF:
7804 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7805 break;
7806
7807 case X86_XCPT_PF:
7808 case X86_XCPT_DF:
7809 case X86_XCPT_TS:
7810 case X86_XCPT_NP:
7811 case X86_XCPT_SS:
7812 case X86_XCPT_GP:
7813 case X86_XCPT_AC:
7814 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7815 RT_FALL_THRU();
7816 default:
7817 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7818 break;
7819 }
7820 }
7821 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7822 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7823 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7824 {
7825 switch (uVector)
7826 {
7827 case X86_XCPT_BP:
7828 case X86_XCPT_OF:
7829 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7830 break;
7831
7832 default:
7833 Assert(uVector == X86_XCPT_DB);
7834 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7835 break;
7836 }
7837 }
7838 else
7839 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7840
7841 rc = TRPMResetTrap(pVCpu);
7842 AssertRC(rc);
7843 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7844 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7845
7846 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7847}
7848
7849
7850/**
7851 * Converts the pending HM event into a TRPM trap.
7852 *
7853 * @param pVCpu The cross context virtual CPU structure.
7854 */
7855static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7856{
7857 Assert(pVCpu->hm.s.Event.fPending);
7858
7859 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7860 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7861 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7862 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7863
7864 /* If a trap was already pending, we did something wrong! */
7865 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7866
7867 /** @todo Use HMVmxEventToTrpmEventType() later. */
7868 TRPMEVENT enmTrapType;
7869 switch (uVectorType)
7870 {
7871 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7872 enmTrapType = TRPM_HARDWARE_INT;
7873 break;
7874
7875 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7876 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7877 enmTrapType = TRPM_TRAP;
7878 break;
7879
7880 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT: /* #DB (INT1/ICEBP). */
7881 Assert(uVector == X86_XCPT_DB);
7882 enmTrapType = TRPM_SOFTWARE_INT;
7883 break;
7884
7885 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP (INT3) and #OF (INTO) */
7886 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7887 enmTrapType = TRPM_SOFTWARE_INT;
7888 break;
7889
7890 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7891 enmTrapType = TRPM_SOFTWARE_INT;
7892 break;
7893
7894 default:
7895 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7896 enmTrapType = TRPM_32BIT_HACK;
7897 break;
7898 }
7899
7900 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7901
7902 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7903 AssertRC(rc);
7904
7905 if (fErrorCodeValid)
7906 TRPMSetErrorCode(pVCpu, uErrorCode);
7907
7908 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7909 && uVector == X86_XCPT_PF)
7910 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7911 else if (enmTrapType == TRPM_SOFTWARE_INT)
7912 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7913
7914 /* We're now done converting the pending event. */
7915 pVCpu->hm.s.Event.fPending = false;
7916}
7917
7918
7919/**
7920 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7921 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7922 *
7923 * @param pVCpu The cross context virtual CPU structure.
7924 * @param pVmcsInfo The VMCS info. object.
7925 */
7926static void hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
7927{
7928 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7929 {
7930 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7931 {
7932 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7933 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7934 AssertRC(rc);
7935 }
7936 } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
7937}
7938
7939
7940/**
7941 * Clears the interrupt-window exiting control in the VMCS.
7942 *
7943 * @param pVmcsInfo The VMCS info. object.
7944 */
7945DECLINLINE(int) hmR0VmxClearIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
7946{
7947 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7948 {
7949 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7950 return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7951 }
7952 return VINF_SUCCESS;
7953}
7954
7955
7956/**
7957 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7958 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7959 *
7960 * @param pVCpu The cross context virtual CPU structure.
7961 * @param pVmcsInfo The VMCS info. object.
7962 */
7963static void hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
7964{
7965 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7966 {
7967 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7968 {
7969 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7970 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7971 AssertRC(rc);
7972 Log4Func(("Setup NMI-window exiting\n"));
7973 }
7974 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7975}
7976
7977
7978/**
7979 * Clears the NMI-window exiting control in the VMCS.
7980 *
7981 * @param pVmcsInfo The VMCS info. object.
7982 */
7983DECLINLINE(int) hmR0VmxClearNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
7984{
7985 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7986 {
7987 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7988 return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7989 }
7990 return VINF_SUCCESS;
7991}
7992
7993
7994/**
7995 * Does the necessary state syncing before returning to ring-3 for any reason
7996 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7997 *
7998 * @returns VBox status code.
7999 * @param pVCpu The cross context virtual CPU structure.
8000 * @param fImportState Whether to import the guest state from the VMCS back
8001 * to the guest-CPU context.
8002 *
8003 * @remarks No-long-jmp zone!!!
8004 */
8005static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
8006{
8007 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8008 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8009
8010 RTCPUID idCpu = RTMpCpuId();
8011 Log4Func(("HostCpuId=%u\n", idCpu));
8012
8013 /*
8014 * !!! IMPORTANT !!!
8015 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
8016 */
8017
8018 /* Save the guest state if necessary. */
8019 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8020 if (fImportState)
8021 {
8022 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8023 AssertRCReturn(rc, rc);
8024 }
8025
8026 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
8027 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8028 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
8029
8030 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
8031#ifdef VBOX_STRICT
8032 if (CPUMIsHyperDebugStateActive(pVCpu))
8033 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
8034#endif
8035 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8036 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
8037 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
8038
8039#if HC_ARCH_BITS == 64
8040 /* Restore host-state bits that VT-x only restores partially. */
8041 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8042 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8043 {
8044 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
8045 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8046 }
8047 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8048#endif
8049
8050 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8051 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8052 {
8053 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
8054 if (!fImportState)
8055 {
8056 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
8057 AssertRCReturn(rc, rc);
8058 }
8059 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8060 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
8061 }
8062 else
8063 pVCpu->hm.s.vmx.fLazyMsrs = 0;
8064
8065 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8066 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8067
8068 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
8069 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
8070 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
8071 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
8072 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
8073 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
8074 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
8075 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
8076 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8077
8078 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8079
8080 /** @todo This partially defeats the purpose of having preemption hooks.
8081 * The problem is, deregistering the hooks should be moved to a place that
8082 * lasts until the EMT is about to be destroyed not everytime while leaving HM
8083 * context.
8084 */
8085 int rc = hmR0VmxClearVmcs(pVmcsInfo);
8086 AssertRCReturn(rc, rc);
8087
8088 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
8089 NOREF(idCpu);
8090 return VINF_SUCCESS;
8091}
8092
8093
8094/**
8095 * Leaves the VT-x session.
8096 *
8097 * @returns VBox status code.
8098 * @param pVCpu The cross context virtual CPU structure.
8099 *
8100 * @remarks No-long-jmp zone!!!
8101 */
8102static int hmR0VmxLeaveSession(PVMCPU pVCpu)
8103{
8104 HM_DISABLE_PREEMPT(pVCpu);
8105 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8106 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8107 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8108
8109 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
8110 and done this from the VMXR0ThreadCtxCallback(). */
8111 if (!pVCpu->hm.s.fLeaveDone)
8112 {
8113 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
8114 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
8115 pVCpu->hm.s.fLeaveDone = true;
8116 }
8117 Assert(!pVCpu->cpum.GstCtx.fExtrn);
8118
8119 /*
8120 * !!! IMPORTANT !!!
8121 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
8122 */
8123
8124 /* Deregister hook now that we've left HM context before re-enabling preemption. */
8125 /** @todo Deregistering here means we need to VMCLEAR always
8126 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
8127 * for calling VMMR0ThreadCtxHookDisable here! */
8128 VMMR0ThreadCtxHookDisable(pVCpu);
8129
8130 /* Leave HM context. This takes care of local init (term). */
8131 int rc = HMR0LeaveCpu(pVCpu);
8132
8133 HM_RESTORE_PREEMPT();
8134 return rc;
8135}
8136
8137
8138/**
8139 * Does the necessary state syncing before doing a longjmp to ring-3.
8140 *
8141 * @returns VBox status code.
8142 * @param pVCpu The cross context virtual CPU structure.
8143 *
8144 * @remarks No-long-jmp zone!!!
8145 */
8146DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
8147{
8148 return hmR0VmxLeaveSession(pVCpu);
8149}
8150
8151
8152/**
8153 * Take necessary actions before going back to ring-3.
8154 *
8155 * An action requires us to go back to ring-3. This function does the necessary
8156 * steps before we can safely return to ring-3. This is not the same as longjmps
8157 * to ring-3, this is voluntary and prepares the guest so it may continue
8158 * executing outside HM (recompiler/IEM).
8159 *
8160 * @returns VBox status code.
8161 * @param pVCpu The cross context virtual CPU structure.
8162 * @param rcExit The reason for exiting to ring-3. Can be
8163 * VINF_VMM_UNKNOWN_RING3_CALL.
8164 */
8165static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
8166{
8167 Assert(pVCpu);
8168 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8169
8170 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8171 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
8172 {
8173 VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
8174 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
8175 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
8176 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
8177 }
8178
8179 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
8180 VMMRZCallRing3Disable(pVCpu);
8181 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
8182
8183 /*
8184 * Convert any pending HM events back to TRPM due to premature exits to ring-3.
8185 * We need to do this only on returns to ring-3 and not for longjmps to ring3.
8186 *
8187 * This is because execution may continue from ring-3 and we would need to inject
8188 * the event from there (hence place it back in TRPM).
8189 */
8190 if (pVCpu->hm.s.Event.fPending)
8191 {
8192 hmR0VmxPendingEventToTrpmTrap(pVCpu);
8193 Assert(!pVCpu->hm.s.Event.fPending);
8194
8195 /* Clear the events from the VMCS. */
8196 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
8197 AssertRCReturn(rc, rc);
8198 }
8199#ifdef VBOX_STRICT
8200 else
8201 {
8202 /*
8203 * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
8204 * This can be pretty hard to debug otherwise, interrupts might get injected twice
8205 * occasionally, see @bugref{9180#c42}.
8206 */
8207 uint32_t uEntryIntInfo;
8208 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
8209 AssertRC(rc);
8210 Assert(!VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
8211 }
8212#endif
8213
8214 /*
8215 * Clear the interrupt-window and NMI-window VMCS controls as we could have got
8216 * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
8217 * (e.g. TPR below threshold).
8218 */
8219 int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
8220 rc |= hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
8221 AssertRCReturn(rc, rc);
8222
8223 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
8224 and if we're injecting an event we should have a TRPM trap pending. */
8225 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8226#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
8227 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8228#endif
8229
8230 /* Save guest state and restore host state bits. */
8231 rc = hmR0VmxLeaveSession(pVCpu);
8232 AssertRCReturn(rc, rc);
8233 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8234
8235 /* Thread-context hooks are unregistered at this point!!! */
8236
8237 /* Sync recompiler state. */
8238 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
8239 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
8240 | CPUM_CHANGED_LDTR
8241 | CPUM_CHANGED_GDTR
8242 | CPUM_CHANGED_IDTR
8243 | CPUM_CHANGED_TR
8244 | CPUM_CHANGED_HIDDEN_SEL_REGS);
8245 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
8246 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
8247 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
8248
8249 Assert(!pVCpu->hm.s.fClearTrapFlag);
8250
8251 /* Update the exit-to-ring 3 reason. */
8252 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
8253
8254 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
8255 if ( rcExit != VINF_EM_RAW_INTERRUPT
8256 || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8257 {
8258 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
8259 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8260 }
8261
8262 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
8263
8264 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
8265 VMMRZCallRing3RemoveNotification(pVCpu);
8266 VMMRZCallRing3Enable(pVCpu);
8267
8268 return rc;
8269}
8270
8271
8272/**
8273 * VMMRZCallRing3() callback wrapper which saves the guest state before we
8274 * longjump to ring-3 and possibly get preempted.
8275 *
8276 * @returns VBox status code.
8277 * @param pVCpu The cross context virtual CPU structure.
8278 * @param enmOperation The operation causing the ring-3 longjump.
8279 * @param pvUser User argument, currently unused, NULL.
8280 */
8281static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
8282{
8283 RT_NOREF(pvUser);
8284 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
8285 {
8286 /*
8287 * !!! IMPORTANT !!!
8288 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
8289 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
8290 */
8291 VMMRZCallRing3RemoveNotification(pVCpu);
8292 VMMRZCallRing3Disable(pVCpu);
8293 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
8294 RTThreadPreemptDisable(&PreemptState);
8295
8296 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8297 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8298 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8299 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8300
8301#if HC_ARCH_BITS == 64
8302 /* Restore host-state bits that VT-x only restores partially. */
8303 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8304 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8305 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8306 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8307#endif
8308
8309 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8310 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8311 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8312
8313 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8314 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8315 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8316
8317 /* Clear the current VMCS data back to memory. */
8318 hmR0VmxClearVmcs(pVmcsInfo);
8319
8320 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
8321 VMMR0ThreadCtxHookDisable(pVCpu);
8322 HMR0LeaveCpu(pVCpu);
8323 RTThreadPreemptRestore(&PreemptState);
8324 return VINF_SUCCESS;
8325 }
8326
8327 Assert(pVCpu);
8328 Assert(pvUser);
8329 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8330 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8331
8332 VMMRZCallRing3Disable(pVCpu);
8333 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8334
8335 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
8336
8337 int rc = hmR0VmxLongJmpToRing3(pVCpu);
8338 AssertRCReturn(rc, rc);
8339
8340 VMMRZCallRing3Enable(pVCpu);
8341 return VINF_SUCCESS;
8342}
8343
8344
8345/**
8346 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8347 * stack.
8348 *
8349 * @returns Strict VBox status code (i.e. informational status codes too).
8350 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8351 * @param pVCpu The cross context virtual CPU structure.
8352 * @param uValue The value to push to the guest stack.
8353 */
8354static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
8355{
8356 /*
8357 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8358 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8359 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8360 */
8361 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8362 if (pCtx->sp == 1)
8363 return VINF_EM_RESET;
8364 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8365 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
8366 AssertRC(rc);
8367 return rc;
8368}
8369
8370
8371/**
8372 * Injects an event into the guest upon VM-entry by updating the relevant fields
8373 * in the VM-entry area in the VMCS.
8374 *
8375 * @returns Strict VBox status code (i.e. informational status codes too).
8376 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8377 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8378 *
8379 * @param pVCpu The cross context virtual CPU structure.
8380 * @param pVmxTransient The VMX-transient structure.
8381 * @param pEvent The event being injected.
8382 * @param pfIntrState Pointer to the VT-x guest-interruptibility-state.
8383 * This will be updated if necessary. This cannot not
8384 * be NULL.
8385 * @param fStepping Whether we're single-stepping guest execution and
8386 * should return VINF_EM_DBG_STEPPED if the event is
8387 * injected directly (registers modified by us, not by
8388 * hardware on VM-entry).
8389 */
8390static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCHMEVENT pEvent, bool fStepping,
8391 uint32_t *pfIntrState)
8392{
8393 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8394 AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
8395 Assert(pfIntrState);
8396
8397 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8398 uint32_t u32IntInfo = pEvent->u64IntInfo;
8399 uint32_t const u32ErrCode = pEvent->u32ErrCode;
8400 uint32_t const cbInstr = pEvent->cbInstr;
8401 RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
8402 uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
8403 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
8404
8405#ifdef VBOX_STRICT
8406 /*
8407 * Validate the error-code-valid bit for hardware exceptions.
8408 * No error codes for exceptions in real-mode.
8409 *
8410 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8411 */
8412 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8413 && !CPUMIsGuestInRealModeEx(pCtx))
8414 {
8415 switch (uVector)
8416 {
8417 case X86_XCPT_PF:
8418 case X86_XCPT_DF:
8419 case X86_XCPT_TS:
8420 case X86_XCPT_NP:
8421 case X86_XCPT_SS:
8422 case X86_XCPT_GP:
8423 case X86_XCPT_AC:
8424 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
8425 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8426 RT_FALL_THRU();
8427 default:
8428 break;
8429 }
8430 }
8431
8432 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8433 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
8434 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
8435#endif
8436
8437 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8438
8439 /*
8440 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
8441 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
8442 * interrupt handler in the (real-mode) guest.
8443 *
8444 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
8445 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8446 */
8447 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
8448 {
8449 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
8450 {
8451 /*
8452 * For CPUs with unrestricted guest execution enabled and with the guest
8453 * in real-mode, we must not set the deliver-error-code bit.
8454 *
8455 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8456 */
8457 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
8458 }
8459 else
8460 {
8461 PVM pVM = pVCpu->CTX_SUFF(pVM);
8462 Assert(PDMVmmDevHeapIsEnabled(pVM));
8463 Assert(pVM->hm.s.vmx.pRealModeTSS);
8464 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
8465
8466 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
8467 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8468 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
8469 | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
8470 AssertRCReturn(rc2, rc2);
8471
8472 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8473 size_t const cbIdtEntry = sizeof(X86IDTR16);
8474 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
8475 {
8476 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8477 if (uVector == X86_XCPT_DF)
8478 return VINF_EM_RESET;
8479
8480 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
8481 No error codes for exceptions in real-mode. */
8482 if (uVector == X86_XCPT_GP)
8483 {
8484 uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
8485 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8486 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8487 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8488 HMEVENT EventXcptDf;
8489 RT_ZERO(EventXcptDf);
8490 EventXcptDf.u64IntInfo = uXcptDfInfo;
8491 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptDf, fStepping, pfIntrState);
8492 }
8493
8494 /*
8495 * If we're injecting an event with no valid IDT entry, inject a #GP.
8496 * No error codes for exceptions in real-mode.
8497 *
8498 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8499 */
8500 uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
8501 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8502 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8503 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8504 HMEVENT EventXcptGp;
8505 RT_ZERO(EventXcptGp);
8506 EventXcptGp.u64IntInfo = uXcptGpInfo;
8507 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptGp, fStepping, pfIntrState);
8508 }
8509
8510 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8511 uint16_t uGuestIp = pCtx->ip;
8512 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
8513 {
8514 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8515 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8516 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8517 }
8518 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
8519 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8520
8521 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8522 X86IDTR16 IdtEntry;
8523 RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
8524 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8525 AssertRCReturn(rc2, rc2);
8526
8527 /* Construct the stack frame for the interrupt/exception handler. */
8528 VBOXSTRICTRC rcStrict;
8529 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
8530 if (rcStrict == VINF_SUCCESS)
8531 {
8532 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
8533 if (rcStrict == VINF_SUCCESS)
8534 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
8535 }
8536
8537 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8538 if (rcStrict == VINF_SUCCESS)
8539 {
8540 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8541 pCtx->rip = IdtEntry.offSel;
8542 pCtx->cs.Sel = IdtEntry.uSel;
8543 pCtx->cs.ValidSel = IdtEntry.uSel;
8544 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8545 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
8546 && uVector == X86_XCPT_PF)
8547 pCtx->cr2 = GCPtrFault;
8548
8549 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
8550 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
8551 | HM_CHANGED_GUEST_RSP);
8552
8553 /*
8554 * If we delivered a hardware exception (other than an NMI) and if there was
8555 * block-by-STI in effect, we should clear it.
8556 */
8557 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
8558 {
8559 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
8560 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
8561 Log4Func(("Clearing inhibition due to STI\n"));
8562 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
8563 }
8564
8565 Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8566 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
8567
8568 /*
8569 * The event has been truly dispatched to the guest. Mark it as no longer pending so
8570 * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
8571 */
8572 pVCpu->hm.s.Event.fPending = false;
8573
8574 /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
8575 if (fStepping)
8576 rcStrict = VINF_EM_DBG_STEPPED;
8577 }
8578 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8579 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8580 return rcStrict;
8581 }
8582 }
8583
8584 /*
8585 * Validate.
8586 */
8587 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8588 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
8589
8590 /*
8591 * Inject the event into the VMCS.
8592 */
8593 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8594 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8595 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8596 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8597 AssertRCReturn(rc, rc);
8598
8599 /*
8600 * Update guest CR2 if this is a page-fault.
8601 */
8602 if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8603 && uVector == X86_XCPT_PF)
8604 pCtx->cr2 = GCPtrFault;
8605
8606 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8607 return VINF_SUCCESS;
8608}
8609
8610
8611/**
8612 * Evaluates the event to be delivered to the guest and sets it as the pending
8613 * event.
8614 *
8615 * @returns Strict VBox status code (i.e. informational status codes too).
8616 * @param pVCpu The cross context virtual CPU structure.
8617 * @param pVmxTransient The VMX-transient structure.
8618 * @param pfIntrState Where to store the VT-x guest-interruptibility state.
8619 */
8620static VBOXSTRICTRC hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t *pfIntrState)
8621{
8622 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8623 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8624
8625 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
8626 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu, pVmcsInfo);
8627 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8628 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8629 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
8630
8631 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8632 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8633 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8634 Assert(!TRPMHasTrap(pVCpu));
8635 Assert(pfIntrState);
8636
8637 *pfIntrState = fIntrState;
8638
8639 /*
8640 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
8641 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
8642 */
8643 /** @todo SMI. SMIs take priority over NMIs. */
8644 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
8645 {
8646 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
8647 if ( !pVCpu->hm.s.Event.fPending
8648 && !fBlockNmi
8649 && !fBlockSti
8650 && !fBlockMovSS)
8651 {
8652#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8653 if ( pVmxTransient->fIsNestedGuest
8654 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_NMI_EXIT))
8655 return IEMExecVmxVmexitNmi(pVCpu);
8656#endif
8657 hmR0VmxSetPendingXcptNmi(pVCpu);
8658 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
8659 Log4Func(("Pending NMI\n"));
8660 }
8661 else
8662 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8663 }
8664 /*
8665 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
8666 * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
8667 */
8668 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8669 && !pVCpu->hm.s.fSingleInstruction)
8670 {
8671 Assert(!DBGFIsStepping(pVCpu));
8672 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
8673 AssertRCReturn(rc, rc);
8674 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
8675 if ( !pVCpu->hm.s.Event.fPending
8676 && !fBlockInt
8677 && !fBlockSti
8678 && !fBlockMovSS)
8679 {
8680#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8681 if ( pVmxTransient->fIsNestedGuest
8682 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
8683 {
8684 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0/* uVector */, true /* fIntPending */);
8685 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8686 return rcStrict;
8687 }
8688#endif
8689 uint8_t u8Interrupt;
8690 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
8691 if (RT_SUCCESS(rc))
8692 {
8693#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8694 if ( pVmxTransient->fIsNestedGuest
8695 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8696 && CPUMIsGuestVmxExitCtlsSet(pVCpu, pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8697 {
8698 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
8699 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8700 return rcStrict;
8701 }
8702#endif
8703 hmR0VmxSetPendingExtInt(pVCpu, u8Interrupt);
8704 Log4Func(("Pending external interrupt vector %#x\n", u8Interrupt));
8705 }
8706 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
8707 {
8708 if ( !pVmxTransient->fIsNestedGuest
8709 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
8710 hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u8Interrupt >> 4);
8711 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
8712
8713 /*
8714 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
8715 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
8716 * need to re-set this force-flag here.
8717 */
8718 }
8719 else
8720 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
8721 }
8722 else
8723 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8724 }
8725
8726 return VINF_SUCCESS;
8727}
8728
8729
8730/**
8731 * Injects any pending events into the guest if the guest is in a state to
8732 * receive them.
8733 *
8734 * @returns Strict VBox status code (i.e. informational status codes too).
8735 * @param pVCpu The cross context virtual CPU structure.
8736 * @param pVmxTransient The VMX-transient structure.
8737 * @param fIntrState The VT-x guest-interruptibility state.
8738 * @param fStepping Whether we are single-stepping the guest using the
8739 * hypervisor debugger and should return
8740 * VINF_EM_DBG_STEPPED if the event was dispatched
8741 * directly.
8742 */
8743static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t fIntrState, bool fStepping)
8744{
8745 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8746 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8747
8748 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8749 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8750
8751 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8752 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8753 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8754 Assert(!TRPMHasTrap(pVCpu));
8755
8756 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8757 if (pVCpu->hm.s.Event.fPending)
8758 {
8759 /*
8760 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
8761 * pending even while injecting an event and in this case, we want a VM-exit as soon as
8762 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
8763 *
8764 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
8765 */
8766 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
8767#ifdef VBOX_STRICT
8768 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
8769 {
8770 bool const fBlockInt = !(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
8771 Assert(!fBlockInt);
8772 Assert(!fBlockSti);
8773 Assert(!fBlockMovSS);
8774 }
8775 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
8776 {
8777 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
8778 Assert(!fBlockSti);
8779 Assert(!fBlockMovSS);
8780 Assert(!fBlockNmi);
8781 }
8782#endif
8783 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
8784 uIntType));
8785
8786 /*
8787 * Inject the event and get any changes to the guest-interruptibility state.
8788 *
8789 * The guest-interruptibility state may need to be updated if we inject the event
8790 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
8791 */
8792 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &pVCpu->hm.s.Event, fStepping, &fIntrState);
8793 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
8794
8795 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
8796 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
8797 else
8798 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
8799 }
8800
8801 /*
8802 * Update the guest-interruptibility state.
8803 *
8804 * This is required for the real-on-v86 software interrupt injection case above, as well as
8805 * updates to the guest state from ring-3 or IEM/REM.
8806 */
8807 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
8808 AssertRCReturn(rc, rc);
8809
8810 /*
8811 * There's no need to clear the VM-entry interruption-information field here if we're not
8812 * injecting anything. VT-x clears the valid bit on every VM-exit.
8813 *
8814 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
8815 */
8816
8817 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
8818 NOREF(fBlockMovSS); NOREF(fBlockSti);
8819 return rcStrict;
8820}
8821
8822
8823/**
8824 * Enters the VT-x session.
8825 *
8826 * @returns VBox status code.
8827 * @param pVCpu The cross context virtual CPU structure.
8828 */
8829VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu)
8830{
8831 AssertPtr(pVCpu);
8832 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8833 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8834
8835 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8836 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8837 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8838
8839#ifdef VBOX_STRICT
8840 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8841 RTCCUINTREG uHostCR4 = ASMGetCR4();
8842 if (!(uHostCR4 & X86_CR4_VMXE))
8843 {
8844 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8845 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8846 }
8847#endif
8848
8849 /*
8850 * Load the appropriate VMCS as the current and active one.
8851 */
8852 PVMXVMCSINFO pVmcsInfo;
8853 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
8854 if (!fInNestedGuestMode)
8855 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
8856 else
8857 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
8858 int rc = hmR0VmxLoadVmcs(pVmcsInfo);
8859 if (RT_SUCCESS(rc))
8860 {
8861 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
8862 pVCpu->hm.s.fLeaveDone = false;
8863 Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8864
8865 /*
8866 * Do the EMT scheduled L1D flush here if needed.
8867 */
8868 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8869 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8870 }
8871 return rc;
8872}
8873
8874
8875/**
8876 * The thread-context callback (only on platforms which support it).
8877 *
8878 * @param enmEvent The thread-context event.
8879 * @param pVCpu The cross context virtual CPU structure.
8880 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8881 * @thread EMT(pVCpu)
8882 */
8883VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8884{
8885 NOREF(fGlobalInit);
8886
8887 switch (enmEvent)
8888 {
8889 case RTTHREADCTXEVENT_OUT:
8890 {
8891 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8892 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8893 VMCPU_ASSERT_EMT(pVCpu);
8894
8895 /* No longjmps (logger flushes, locks) in this fragile context. */
8896 VMMRZCallRing3Disable(pVCpu);
8897 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8898
8899 /* Restore host-state (FPU, debug etc.) */
8900 if (!pVCpu->hm.s.fLeaveDone)
8901 {
8902 /*
8903 * Do -not- import the guest-state here as we might already be in the middle of importing
8904 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8905 */
8906 hmR0VmxLeave(pVCpu, false /* fImportState */);
8907 pVCpu->hm.s.fLeaveDone = true;
8908 }
8909
8910 /* Leave HM context, takes care of local init (term). */
8911 int rc = HMR0LeaveCpu(pVCpu);
8912 AssertRC(rc);
8913
8914 /* Restore longjmp state. */
8915 VMMRZCallRing3Enable(pVCpu);
8916 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8917 break;
8918 }
8919
8920 case RTTHREADCTXEVENT_IN:
8921 {
8922 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8923 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8924 VMCPU_ASSERT_EMT(pVCpu);
8925
8926 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8927 VMMRZCallRing3Disable(pVCpu);
8928 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8929
8930 /* Initialize the bare minimum state required for HM. This takes care of
8931 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8932 int rc = hmR0EnterCpu(pVCpu);
8933 AssertRC(rc);
8934 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8935 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8936
8937 /* Load the active VMCS as the current one. */
8938 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8939 rc = hmR0VmxLoadVmcs(pVmcsInfo);
8940 AssertRC(rc);
8941 Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8942 pVCpu->hm.s.fLeaveDone = false;
8943
8944 /* Do the EMT scheduled L1D flush if needed. */
8945 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8946 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8947
8948 /* Restore longjmp state. */
8949 VMMRZCallRing3Enable(pVCpu);
8950 break;
8951 }
8952
8953 default:
8954 break;
8955 }
8956}
8957
8958
8959/**
8960 * Exports the host state into the VMCS host-state area.
8961 * Sets up the VM-exit MSR-load area.
8962 *
8963 * The CPU state will be loaded from these fields on every successful VM-exit.
8964 *
8965 * @returns VBox status code.
8966 * @param pVCpu The cross context virtual CPU structure.
8967 *
8968 * @remarks No-long-jump zone!!!
8969 */
8970static int hmR0VmxExportHostState(PVMCPU pVCpu)
8971{
8972 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8973
8974 int rc = VINF_SUCCESS;
8975 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8976 {
8977 rc = hmR0VmxExportHostControlRegs();
8978 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8979
8980 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8981 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8982
8983 rc = hmR0VmxExportHostMsrs(pVCpu);
8984 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8985
8986 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8987 }
8988 return rc;
8989}
8990
8991
8992/**
8993 * Saves the host state in the VMCS host-state.
8994 *
8995 * @returns VBox status code.
8996 * @param pVCpu The cross context virtual CPU structure.
8997 *
8998 * @remarks No-long-jump zone!!!
8999 */
9000VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
9001{
9002 AssertPtr(pVCpu);
9003 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9004
9005 /*
9006 * Export the host state here while entering HM context.
9007 * When thread-context hooks are used, we might get preempted and have to re-save the host
9008 * state but most of the time we won't be, so do it here before we disable interrupts.
9009 */
9010 return hmR0VmxExportHostState(pVCpu);
9011}
9012
9013
9014/**
9015 * Exports the guest state into the VMCS guest-state area.
9016 *
9017 * The will typically be done before VM-entry when the guest-CPU state and the
9018 * VMCS state may potentially be out of sync.
9019 *
9020 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
9021 * VM-entry controls.
9022 * Sets up the appropriate VMX non-root function to execute guest code based on
9023 * the guest CPU mode.
9024 *
9025 * @returns VBox strict status code.
9026 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9027 * without unrestricted guest execution and the VMMDev is not presently
9028 * mapped (e.g. EFI32).
9029 *
9030 * @param pVCpu The cross context virtual CPU structure.
9031 * @param pVmxTransient The VMX-transient structure.
9032 *
9033 * @remarks No-long-jump zone!!!
9034 */
9035static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9036{
9037 AssertPtr(pVCpu);
9038 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9039 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9040
9041 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
9042
9043 /*
9044 * Determine real-on-v86 mode.
9045 * Used when the guest is in real-mode and unrestricted guest execution is not used.
9046 */
9047 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
9048 if ( pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
9049 || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
9050 pVmcsInfo->RealMode. fRealOnV86Active = false;
9051 else
9052 {
9053 Assert(!pVmxTransient->fIsNestedGuest);
9054 pVmcsInfo->RealMode.fRealOnV86Active = true;
9055 }
9056
9057 /*
9058 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
9059 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
9060 */
9061 /** @todo r=ramshankar: Move hmR0VmxSelectVMRunHandler inside
9062 * hmR0VmxExportGuestEntryExitCtls and do it conditionally. There shouldn't
9063 * be a need to evaluate this everytime since I'm pretty sure we intercept
9064 * all guest paging mode changes. */
9065 int rc = hmR0VmxSelectVMRunHandler(pVCpu, pVmxTransient);
9066 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9067
9068 rc = hmR0VmxExportGuestEntryExitCtls(pVCpu, pVmxTransient);
9069 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9070
9071 rc = hmR0VmxExportGuestCR0(pVCpu, pVmxTransient);
9072 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9073
9074 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu, pVmxTransient);
9075 if (rcStrict == VINF_SUCCESS)
9076 { /* likely */ }
9077 else
9078 {
9079 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
9080 return rcStrict;
9081 }
9082
9083 rc = hmR0VmxExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
9084 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9085
9086 rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
9087 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9088
9089 rc = hmR0VmxExportGuestApicTpr(pVCpu, pVmxTransient);
9090 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9091
9092 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu, pVmxTransient);
9093 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9094
9095 rc = hmR0VmxExportGuestRip(pVCpu);
9096 rc |= hmR0VmxExportGuestRsp(pVCpu);
9097 rc |= hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9098 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9099
9100 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
9101 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
9102 | HM_CHANGED_GUEST_CR2
9103 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
9104 | HM_CHANGED_GUEST_X87
9105 | HM_CHANGED_GUEST_SSE_AVX
9106 | HM_CHANGED_GUEST_OTHER_XSAVE
9107 | HM_CHANGED_GUEST_XCRx
9108 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
9109 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
9110 | HM_CHANGED_GUEST_TSC_AUX
9111 | HM_CHANGED_GUEST_OTHER_MSRS
9112 | HM_CHANGED_GUEST_HWVIRT /* More accurate PLE handling someday? */
9113 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
9114
9115 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
9116 return rc;
9117}
9118
9119
9120/**
9121 * Exports the state shared between the host and guest into the VMCS.
9122 *
9123 * @param pVCpu The cross context virtual CPU structure.
9124 * @param pVmxTransient The VMX-transient structure.
9125 *
9126 * @remarks No-long-jump zone!!!
9127 */
9128static void hmR0VmxExportSharedState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9129{
9130 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9131 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9132
9133 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
9134 {
9135 int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
9136 AssertRC(rc);
9137 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
9138
9139 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
9140 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
9141 {
9142 rc = hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9143 AssertRC(rc);
9144 }
9145 }
9146
9147 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
9148 {
9149 hmR0VmxLazyLoadGuestMsrs(pVCpu);
9150 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
9151 }
9152
9153 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
9154 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
9155}
9156
9157
9158/**
9159 * Worker for loading the guest-state bits in the inner VT-x execution loop.
9160 *
9161 * @returns Strict VBox status code (i.e. informational status codes too).
9162 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9163 * without unrestricted guest execution and the VMMDev is not presently
9164 * mapped (e.g. EFI32).
9165 *
9166 * @param pVCpu The cross context virtual CPU structure.
9167 * @param pVmxTransient The VMX-transient structure.
9168 *
9169 * @remarks No-long-jump zone!!!
9170 */
9171static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9172{
9173 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9174 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9175 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9176
9177#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
9178 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
9179#endif
9180
9181 /*
9182 * For many exits it's only RIP that changes and hence try to export it first
9183 * without going through a lot of change flag checks.
9184 */
9185 VBOXSTRICTRC rcStrict;
9186 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9187 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
9188 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
9189 {
9190 rcStrict = hmR0VmxExportGuestRip(pVCpu);
9191 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9192 { /* likely */}
9193 else
9194 AssertMsgFailedReturn(("Failed to export guest RIP! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
9195 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
9196 }
9197 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9198 {
9199 rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
9200 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9201 { /* likely */}
9202 else
9203 {
9204 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
9205 VBOXSTRICTRC_VAL(rcStrict)));
9206 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9207 return rcStrict;
9208 }
9209 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
9210 }
9211 else
9212 rcStrict = VINF_SUCCESS;
9213
9214#ifdef VBOX_STRICT
9215 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
9216 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9217 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
9218 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
9219 ("fCtxChanged=%#RX64\n", fCtxChanged));
9220#endif
9221 return rcStrict;
9222}
9223
9224
9225/**
9226 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9227 * and update error record fields accordingly.
9228 *
9229 * @return VMX_IGS_* return codes.
9230 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9231 * wrong with the guest state.
9232 *
9233 * @param pVCpu The cross context virtual CPU structure.
9234 * @param pVmcsInfo The VMCS info. object.
9235 *
9236 * @remarks This function assumes our cache of the VMCS controls
9237 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
9238 */
9239static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
9240{
9241#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9242#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
9243 uError = (err); \
9244 break; \
9245 } else do { } while (0)
9246
9247 int rc;
9248 PVM pVM = pVCpu->CTX_SUFF(pVM);
9249 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9250 uint32_t uError = VMX_IGS_ERROR;
9251 uint32_t u32Val;
9252 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
9253
9254 do
9255 {
9256 /*
9257 * CR0.
9258 */
9259 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9260 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9261 /* Exceptions for unrestricted guest execution for fixed CR0 bits (PE, PG).
9262 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9263 if (fUnrestrictedGuest)
9264 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
9265
9266 uint32_t u32GuestCr0;
9267 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
9268 AssertRCBreak(rc);
9269 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
9270 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
9271 if ( !fUnrestrictedGuest
9272 && (u32GuestCr0 & X86_CR0_PG)
9273 && !(u32GuestCr0 & X86_CR0_PE))
9274 {
9275 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9276 }
9277
9278 /*
9279 * CR4.
9280 */
9281 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9282 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9283
9284 uint32_t u32GuestCr4;
9285 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
9286 AssertRCBreak(rc);
9287 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
9288 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
9289
9290 /*
9291 * IA32_DEBUGCTL MSR.
9292 */
9293 uint64_t u64Val;
9294 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9295 AssertRCBreak(rc);
9296 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9297 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9298 {
9299 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9300 }
9301 uint64_t u64DebugCtlMsr = u64Val;
9302
9303#ifdef VBOX_STRICT
9304 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9305 AssertRCBreak(rc);
9306 Assert(u32Val == pVmcsInfo->u32EntryCtls);
9307#endif
9308 bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
9309
9310 /*
9311 * RIP and RFLAGS.
9312 */
9313 uint32_t u32Eflags;
9314#if HC_ARCH_BITS == 64
9315 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
9316 AssertRCBreak(rc);
9317 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9318 if ( !fLongModeGuest
9319 || !pCtx->cs.Attr.n.u1Long)
9320 {
9321 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9322 }
9323 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9324 * must be identical if the "IA-32e mode guest" VM-entry
9325 * control is 1 and CS.L is 1. No check applies if the
9326 * CPU supports 64 linear-address bits. */
9327
9328 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9329 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9330 AssertRCBreak(rc);
9331 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9332 VMX_IGS_RFLAGS_RESERVED);
9333 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9334 u32Eflags = u64Val;
9335#else
9336 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
9337 AssertRCBreak(rc);
9338 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
9339 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9340#endif
9341
9342 if ( fLongModeGuest
9343 || ( fUnrestrictedGuest
9344 && !(u32GuestCr0 & X86_CR0_PE)))
9345 {
9346 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9347 }
9348
9349 uint32_t u32EntryInfo;
9350 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9351 AssertRCBreak(rc);
9352 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
9353 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
9354 {
9355 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9356 }
9357
9358 /*
9359 * 64-bit checks.
9360 */
9361#if HC_ARCH_BITS == 64
9362 if (fLongModeGuest)
9363 {
9364 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9365 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9366 }
9367
9368 if ( !fLongModeGuest
9369 && (u32GuestCr4 & X86_CR4_PCIDE))
9370 {
9371 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9372 }
9373
9374 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9375 * 51:32 beyond the processor's physical-address width are 0. */
9376
9377 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9378 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9379 {
9380 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9381 }
9382
9383 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9384 AssertRCBreak(rc);
9385 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9386
9387 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9388 AssertRCBreak(rc);
9389 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9390#endif
9391
9392 /*
9393 * PERF_GLOBAL MSR.
9394 */
9395 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
9396 {
9397 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9398 AssertRCBreak(rc);
9399 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9400 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9401 }
9402
9403 /*
9404 * PAT MSR.
9405 */
9406 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
9407 {
9408 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9409 AssertRCBreak(rc);
9410 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9411 for (unsigned i = 0; i < 8; i++)
9412 {
9413 uint8_t u8Val = (u64Val & 0xff);
9414 if ( u8Val != 0 /* UC */
9415 && u8Val != 1 /* WC */
9416 && u8Val != 4 /* WT */
9417 && u8Val != 5 /* WP */
9418 && u8Val != 6 /* WB */
9419 && u8Val != 7 /* UC- */)
9420 {
9421 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9422 }
9423 u64Val >>= 8;
9424 }
9425 }
9426
9427 /*
9428 * EFER MSR.
9429 */
9430 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
9431 {
9432 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
9433 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9434 AssertRCBreak(rc);
9435 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9436 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9437 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
9438 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
9439 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9440 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
9441 * iemVmxVmentryCheckGuestState(). */
9442 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9443 || !(u32GuestCr0 & X86_CR0_PG)
9444 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9445 VMX_IGS_EFER_LMA_LME_MISMATCH);
9446 }
9447
9448 /*
9449 * Segment registers.
9450 */
9451 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9452 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9453 if (!(u32Eflags & X86_EFL_VM))
9454 {
9455 /* CS */
9456 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9457 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9458 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9459 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9460 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9461 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9462 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9463 /* CS cannot be loaded with NULL in protected mode. */
9464 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9465 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9466 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9467 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9468 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9469 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9470 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9471 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9472 else
9473 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9474
9475 /* SS */
9476 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9477 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9478 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9479 if ( !(pCtx->cr0 & X86_CR0_PE)
9480 || pCtx->cs.Attr.n.u4Type == 3)
9481 {
9482 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9483 }
9484 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9485 {
9486 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9487 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9488 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9489 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9490 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9491 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9492 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9493 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9494 }
9495
9496 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSReg(). */
9497 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9498 {
9499 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9500 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9501 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9502 || pCtx->ds.Attr.n.u4Type > 11
9503 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9504 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9505 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9506 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9507 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9508 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9509 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9510 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9511 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9512 }
9513 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9514 {
9515 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9516 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9517 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9518 || pCtx->es.Attr.n.u4Type > 11
9519 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9520 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9521 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9522 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9523 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9524 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9525 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9526 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9527 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9528 }
9529 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9530 {
9531 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
9532 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
9533 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9534 || pCtx->fs.Attr.n.u4Type > 11
9535 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
9536 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
9537 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
9538 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
9539 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9540 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
9541 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9542 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9543 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
9544 }
9545 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
9546 {
9547 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
9548 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
9549 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9550 || pCtx->gs.Attr.n.u4Type > 11
9551 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
9552 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
9553 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
9554 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
9555 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9556 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
9557 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9558 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9559 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
9560 }
9561 /* 64-bit capable CPUs. */
9562#if HC_ARCH_BITS == 64
9563 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9564 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9565 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9566 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9567 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9568 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9569 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9570 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9571 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9572 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9573 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9574#endif
9575 }
9576 else
9577 {
9578 /* V86 mode checks. */
9579 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
9580 if (pVmcsInfo->RealMode.fRealOnV86Active)
9581 {
9582 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
9583 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
9584 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
9585 }
9586 else
9587 {
9588 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
9589 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
9590 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
9591 }
9592
9593 /* CS */
9594 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9595 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9596 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9597 /* SS */
9598 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9599 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9600 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9601 /* DS */
9602 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9603 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9604 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9605 /* ES */
9606 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9607 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9608 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9609 /* FS */
9610 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9611 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9612 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9613 /* GS */
9614 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9615 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9616 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9617 /* 64-bit capable CPUs. */
9618#if HC_ARCH_BITS == 64
9619 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9620 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9621 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9622 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9623 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9624 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9625 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9626 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9627 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9628 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9629 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9630#endif
9631 }
9632
9633 /*
9634 * TR.
9635 */
9636 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9637 /* 64-bit capable CPUs. */
9638#if HC_ARCH_BITS == 64
9639 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9640#endif
9641 if (fLongModeGuest)
9642 {
9643 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9644 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9645 }
9646 else
9647 {
9648 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9649 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9650 VMX_IGS_TR_ATTR_TYPE_INVALID);
9651 }
9652 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9653 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9654 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9655 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9656 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9657 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9658 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9659 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9660
9661 /*
9662 * GDTR and IDTR.
9663 */
9664#if HC_ARCH_BITS == 64
9665 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9666 AssertRCBreak(rc);
9667 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9668
9669 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9670 AssertRCBreak(rc);
9671 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9672#endif
9673
9674 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9675 AssertRCBreak(rc);
9676 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9677
9678 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9679 AssertRCBreak(rc);
9680 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9681
9682 /*
9683 * Guest Non-Register State.
9684 */
9685 /* Activity State. */
9686 uint32_t u32ActivityState;
9687 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9688 AssertRCBreak(rc);
9689 HMVMX_CHECK_BREAK( !u32ActivityState
9690 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
9691 VMX_IGS_ACTIVITY_STATE_INVALID);
9692 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9693 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9694 uint32_t u32IntrState;
9695 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
9696 AssertRCBreak(rc);
9697 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
9698 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9699 {
9700 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9701 }
9702
9703 /** @todo Activity state and injecting interrupts. Left as a todo since we
9704 * currently don't use activity states but ACTIVE. */
9705
9706 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9707 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9708
9709 /* Guest interruptibility-state. */
9710 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9711 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9712 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9713 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9714 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9715 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9716 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9717 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
9718 {
9719 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
9720 {
9721 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9722 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9723 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9724 }
9725 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
9726 {
9727 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9728 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9729 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9730 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9731 }
9732 }
9733 /** @todo Assumes the processor is not in SMM. */
9734 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9735 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9736 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9737 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9738 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9739 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
9740 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
9741 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
9742 {
9743 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
9744 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9745 }
9746
9747 /* Pending debug exceptions. */
9748#if HC_ARCH_BITS == 64
9749 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
9750 AssertRCBreak(rc);
9751 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9752 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9753 u32Val = u64Val; /* For pending debug exceptions checks below. */
9754#else
9755 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
9756 AssertRCBreak(rc);
9757 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
9758 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
9759#endif
9760
9761 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9762 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
9763 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9764 {
9765 if ( (u32Eflags & X86_EFL_TF)
9766 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9767 {
9768 /* Bit 14 is PendingDebug.BS. */
9769 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9770 }
9771 if ( !(u32Eflags & X86_EFL_TF)
9772 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9773 {
9774 /* Bit 14 is PendingDebug.BS. */
9775 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
9776 }
9777 }
9778
9779 /* VMCS link pointer. */
9780 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
9781 AssertRCBreak(rc);
9782 if (u64Val != UINT64_C(0xffffffffffffffff))
9783 {
9784 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
9785 /** @todo Bits beyond the processor's physical-address width MBZ. */
9786 /** @todo 32-bit located in memory referenced by value of this field (as a
9787 * physical address) must contain the processor's VMCS revision ID. */
9788 /** @todo SMM checks. */
9789 }
9790
9791 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
9792 * not using nested paging? */
9793 if ( pVM->hm.s.fNestedPaging
9794 && !fLongModeGuest
9795 && CPUMIsGuestInPAEModeEx(pCtx))
9796 {
9797 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
9798 AssertRCBreak(rc);
9799 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9800
9801 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
9802 AssertRCBreak(rc);
9803 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9804
9805 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
9806 AssertRCBreak(rc);
9807 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9808
9809 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
9810 AssertRCBreak(rc);
9811 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9812 }
9813
9814 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
9815 if (uError == VMX_IGS_ERROR)
9816 uError = VMX_IGS_REASON_NOT_FOUND;
9817 } while (0);
9818
9819 pVCpu->hm.s.u32HMError = uError;
9820 return uError;
9821
9822#undef HMVMX_ERROR_BREAK
9823#undef HMVMX_CHECK_BREAK
9824}
9825
9826
9827/**
9828 * Setup the APIC-access page for virtualizing APIC access.
9829 *
9830 * This can cause a longjumps to R3 due to the acquisition of the PGM lock, hence
9831 * this not done as part of exporting guest state, see @bugref{8721}.
9832 *
9833 * @returns VBox status code.
9834 * @param pVCpu The cross context virtual CPU structure.
9835 */
9836static int hmR0VmxMapHCApicAccessPage(PVMCPU pVCpu)
9837{
9838 PVM pVM = pVCpu->CTX_SUFF(pVM);
9839 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
9840
9841 Assert(PDMHasApic(pVM));
9842 Assert(u64MsrApicBase);
9843
9844 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
9845 Log4Func(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
9846
9847 /* Unalias any existing mapping. */
9848 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
9849 AssertRCReturn(rc, rc);
9850
9851 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
9852 Assert(pVM->hm.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
9853 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
9854 AssertRCReturn(rc, rc);
9855
9856 /* Update the per-VCPU cache of the APIC base MSR. */
9857 pVCpu->hm.s.vmx.u64GstMsrApicBase = u64MsrApicBase;
9858 return VINF_SUCCESS;
9859}
9860
9861
9862#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9863/**
9864 * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
9865 * nested-guest using hardware-assisted VMX.
9866 *
9867 * @param pVCpu The cross context virtual CPU structure.
9868 * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
9869 * @param pVmcsInfoGst The guest VMCS info. object.
9870 */
9871static void hmR0VmxMergeMsrBitmapNested(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
9872{
9873 uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
9874 uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
9875 uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
9876 Assert(pu64MsrBitmapNstGst);
9877 Assert(pu64MsrBitmapGst);
9878 Assert(pu64MsrBitmap);
9879
9880 /*
9881 * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
9882 * MSR that is intercepted by the guest is also intercepted while executing the
9883 * nested-guest using hardware-assisted VMX.
9884 */
9885 uint32_t const cbFrag = sizeof(uint64_t);
9886 uint32_t const cFrags = X86_PAGE_4K_SIZE / cbFrag;
9887 for (uint32_t i = 0; i <= cFrags; i++)
9888 pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
9889}
9890
9891
9892/**
9893 * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
9894 * hardware-assisted VMX execution of the nested-guest.
9895 *
9896 * For a guest, we don't modify these controls once we set up the VMCS.
9897 *
9898 * For nested-guests since the guest hypervisor provides these controls on every
9899 * nested-guest VM-entry and could potentially change them everytime we need to
9900 * merge them before every nested-guest VM-entry.
9901 *
9902 * @returns VBox status code.
9903 * @param pVCpu The cross context virtual CPU structure.
9904 */
9905static int hmR0VmxMergeVmcsNested(PVMCPU pVCpu)
9906{
9907 PVM pVM = pVCpu->CTX_SUFF(pVM);
9908 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
9909 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
9910 Assert(pVmcsNstGst);
9911
9912 /*
9913 * Merge the controls with the requirements of the guest VMCS.
9914 *
9915 * We do not need to validate the nested-guest VMX features specified in the
9916 * nested-guest VMCS with the features supported by the physical CPU as it's
9917 * already done by the VMLAUNCH/VMRESUME instruction emulation.
9918 *
9919 * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the
9920 * guest are derived from the VMX features supported by the physical CPU.
9921 */
9922
9923 /* Pin-based VM-execution controls. */
9924 uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
9925
9926 /* Processor-based VM-execution controls. */
9927 uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
9928 | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
9929 | VMX_PROC_CTLS_NMI_WINDOW_EXIT
9930 | VMX_PROC_CTLS_USE_TPR_SHADOW
9931 | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
9932
9933 /* Secondary processor-based VM-execution controls. */
9934 uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
9935 | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
9936 | VMX_PROC_CTLS2_INVPCID
9937 | VMX_PROC_CTLS2_RDTSCP
9938 | VMX_PROC_CTLS2_XSAVES_XRSTORS
9939 | VMX_PROC_CTLS2_APIC_REG_VIRT
9940 | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
9941 | VMX_PROC_CTLS2_VMFUNC));
9942
9943 /*
9944 * VM-entry controls:
9945 * These controls contains state that depends on the nested-guest state (primarily
9946 * EFER MSR) and is thus not constant through VMLAUNCH/VMRESUME and the nested-guest
9947 * VM-exit. Although the nested-hypervisor cannot change it, we need to in order to
9948 * properly continue executing the nested-guest if the EFER MSR changes but does not
9949 * cause a nested-guest VM-exits.
9950 *
9951 * VM-exit controls:
9952 * These controls specify the host state on return. We cannot use the controls from
9953 * the nested-hypervisor state as is as it would contain the guest state rather than
9954 * the host state. Since the host state is subject to change (e.g. preemption, trips
9955 * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
9956 * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
9957 *
9958 * VM-entry MSR-load:
9959 * The guest MSRs from the VM-entry MSR-load area are already loaded into the
9960 * guest-CPU context by the VMLAUNCH/VMRESUME instruction emulation.
9961 *
9962 * VM-exit MSR-store:
9963 * The VM-exit emulation will take care of populating the MSRs from the guest-CPU
9964 * context back into the VM-exit MSR-store area.
9965 *
9966 * VM-exit MSR-load areas:
9967 * This must contain the real host MSRs with hardware-assisted VMX execution. Hence,
9968 * we can entirely ignore what the nested-hypervisor wants to load here.
9969 */
9970
9971 /*
9972 * Exception bitmap.
9973 *
9974 * We could remove #UD from the guest bitmap and merge it with the nested-guest
9975 * bitmap here (and avoid doing anything while exporting nested-guest state), but to
9976 * keep the code more flexible if intercepting exceptions become more dynamic in
9977 * the future we do it as part of exporting the nested-guest state.
9978 */
9979 uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
9980
9981 /*
9982 * CR0/CR4 guest/host mask.
9983 *
9984 * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest
9985 * must cause VM-exits, so we need to merge them here.
9986 */
9987 uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
9988 uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
9989
9990 /*
9991 * Page-fault error-code mask and match.
9992 *
9993 * Although we require unrestricted guest execution (and thereby nested-paging) for
9994 * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
9995 * normally intercept #PFs, it might intercept them for debugging purposes.
9996 *
9997 * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF
9998 * filters. If the outer guest is intercepting #PFs we must intercept all #PFs.
9999 */
10000 uint32_t u32XcptPFMask;
10001 uint32_t u32XcptPFMatch;
10002 if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
10003 {
10004 u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
10005 u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
10006 }
10007 else
10008 {
10009 u32XcptPFMask = 0;
10010 u32XcptPFMatch = 0;
10011 }
10012
10013 /*
10014 * Pause-Loop exiting.
10015 */
10016 uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
10017 uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
10018
10019 /*
10020 * I/O Bitmap.
10021 *
10022 * We do not use the I/O bitmap that may be provided by the guest hypervisor as we
10023 * always intercept all I/O port accesses.
10024 */
10025 Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
10026
10027 /*
10028 * APIC-access page.
10029 *
10030 * The APIC-access page address has already been initialized while setting up the
10031 * nested-guest VMCS. In theory, even if the guest-physical address is invalid, it
10032 * should not be on any consequence to the host or to the guest for that matter, but
10033 * we only accept valid addresses verified by the VMLAUNCH/VMRESUME instruction
10034 * emulation to keep it simple.
10035 */
10036
10037 /*
10038 * Virtual-APIC page and TPR threshold.
10039 *
10040 * We shall use the host-physical address of the virtual-APIC page in guest memory directly.
10041 * For this reason, we can access the virtual-APIC page of the nested-guest only using
10042 * PGM physical handlers as we must not assume a kernel virtual-address mapping exists and
10043 * requesting PGM for a mapping could be expensive/resource intensive (PGM mapping cache).
10044 */
10045 RTHCPHYS HCPhysVirtApic = NIL_RTHCPHYS;
10046 uint32_t const u32TprThreshold = pVmcsNstGst->u32TprThreshold;
10047 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10048 {
10049 int rc = PGMPhysGCPhys2HCPhys(pVM, pVmcsNstGst->u64AddrVirtApic.u, &HCPhysVirtApic);
10050
10051 /*
10052 * If the guest hypervisor has loaded crap into the virtual-APIC page field
10053 * we would fail to obtain a valid host-physical address for its guest-physical
10054 * address.
10055 *
10056 * We currently do not support this scenario. Maybe in the future if there is a
10057 * pressing need we can explore making this particular set of conditions work.
10058 * Right now we just cause a VM-entry failure.
10059 *
10060 * This has already been checked by VMLAUNCH/VMRESUME instruction emulation,
10061 * so should not really failure at the moment.
10062 */
10063 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
10064 }
10065 else
10066 {
10067 /*
10068 * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
10069 * used by the guest hypervisor. Preventing MMIO accesses to the physical APIC will
10070 * be taken care of by EPT/shadow paging.
10071 */
10072 if (pVM->hm.s.fAllow64BitGuests)
10073 {
10074 u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
10075 | VMX_PROC_CTLS_CR8_LOAD_EXIT;
10076 }
10077 }
10078
10079 /*
10080 * Validate basic assumptions.
10081 */
10082 PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10083 Assert(pVM->hm.s.vmx.fAllowUnrestricted);
10084 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
10085 Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
10086
10087 /*
10088 * Commit it to the nested-guest VMCS.
10089 */
10090 int rc = VINF_SUCCESS;
10091 if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
10092 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
10093 if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
10094 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
10095 if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
10096 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
10097 if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
10098 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
10099 if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
10100 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
10101 if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
10102 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
10103 if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
10104 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
10105 if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
10106 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
10107 if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
10108 && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
10109 {
10110 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
10111 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
10112 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
10113 }
10114 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10115 {
10116 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
10117 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
10118 }
10119 AssertRCReturn(rc, rc);
10120
10121 /*
10122 * Update the nested-guest VMCS cache.
10123 */
10124 pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
10125 pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
10126 pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
10127 pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
10128 pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
10129 pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
10130 pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
10131 pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
10132 pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
10133
10134 /*
10135 * MSR bitmap.
10136 *
10137 * The MSR bitmap address has already been initialized while setting up the
10138 * nested-guest VMCS, here we need to merge the MSR bitmaps.
10139 */
10140 if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10141 hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
10142
10143 return VINF_SUCCESS;
10144}
10145#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10146
10147
10148/**
10149 * Does the preparations before executing guest code in VT-x.
10150 *
10151 * This may cause longjmps to ring-3 and may even result in rescheduling to the
10152 * recompiler/IEM. We must be cautious what we do here regarding committing
10153 * guest-state information into the VMCS assuming we assuredly execute the
10154 * guest in VT-x mode.
10155 *
10156 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
10157 * the common-state (TRPM/forceflags), we must undo those changes so that the
10158 * recompiler/IEM can (and should) use them when it resumes guest execution.
10159 * Otherwise such operations must be done when we can no longer exit to ring-3.
10160 *
10161 * @returns Strict VBox status code (i.e. informational status codes too).
10162 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
10163 * have been disabled.
10164 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
10165 * double-fault into the guest.
10166 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
10167 * dispatched directly.
10168 * @retval VINF_* scheduling changes, we have to go back to ring-3.
10169 *
10170 * @param pVCpu The cross context virtual CPU structure.
10171 * @param pVmxTransient The VMX-transient structure.
10172 * @param fStepping Whether we are single-stepping the guest in the
10173 * hypervisor debugger. Makes us ignore some of the reasons
10174 * for returning to ring-3, and return VINF_EM_DBG_STEPPED
10175 * if event dispatching took place.
10176 */
10177static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
10178{
10179 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10180
10181#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
10182 if (pVmxTransient->fIsNestedGuest)
10183 {
10184 RT_NOREF2(pVCpu, fStepping);
10185 Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
10186 return VINF_EM_RESCHEDULE_REM;
10187 }
10188#endif
10189
10190#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
10191 PGMRZDynMapFlushAutoSet(pVCpu);
10192#endif
10193
10194 /*
10195 * Check and process force flag actions, some of which might require us to go back to ring-3.
10196 */
10197 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
10198 if (rcStrict == VINF_SUCCESS)
10199 { /* FFs don't get set all the time. */ }
10200 else
10201 return rcStrict;
10202
10203#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10204 /*
10205 * Switch to the nested-guest VMCS as we may have transitioned into executing
10206 * the nested-guest without leaving ring-0. Otherwise, if we came from ring-3
10207 * we would load the nested-guest VMCS while entering the VMX ring-0 session.
10208 *
10209 * We do this as late as possible to minimize (though not completely remove)
10210 * clearing/loading VMCS again due to premature trips to ring-3 above.
10211 */
10212 if (pVmxTransient->fIsNestedGuest)
10213 {
10214 if (!pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
10215 {
10216 /*
10217 * Ensure we have synced everything from the guest VMCS and also flag that
10218 * that we need to export the full (nested) guest-CPU context to the
10219 * nested-guest VMCS.
10220 */
10221 HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
10222 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
10223
10224 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
10225 int rc = hmR0VmxSwitchVmcs(&pVCpu->hm.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
10226 if (RT_LIKELY(rc == VINF_SUCCESS))
10227 {
10228 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = true;
10229 ASMSetFlags(fEFlags);
10230 pVmxTransient->pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10231
10232 /*
10233 * We use a different VM-exit MSR-store area for the nested-guest. Hence,
10234 * flag that we need to update the host MSR values there. Even if we decide
10235 * in the future to share the VM-exit MSR-store area page with the guest,
10236 * if its content differs, we would have to update the host MSRs anyway.
10237 */
10238 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
10239 Assert(!pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer); /** @todo NSTVMX: Paranoia remove later. */
10240 }
10241 else
10242 {
10243 ASMSetFlags(fEFlags);
10244 return rc;
10245 }
10246 }
10247
10248 /*
10249 * Merge guest VMCS controls with the nested-guest VMCS controls.
10250 *
10251 * Even if we have not executed the guest prior to this (e.g. when resuming
10252 * from a saved state), we should be okay with merging controls as we
10253 * initialize the guest VMCS controls as part of VM setup phase.
10254 */
10255 if (!pVCpu->hm.s.vmx.fMergedNstGstCtls)
10256 {
10257 int rc = hmR0VmxMergeVmcsNested(pVCpu);
10258 AssertRCReturn(rc, rc);
10259 pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
10260 }
10261 }
10262#endif
10263
10264 /*
10265 * Virtualize memory-mapped accesses to the physical APIC (may take locks).
10266 * We look at the guest VMCS control here as we always set it when supported by
10267 * the physical CPU. Looking at the nested-guest control here would not be
10268 * possible because they are not merged yet.
10269 */
10270 PVM pVM = pVCpu->CTX_SUFF(pVM);
10271 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10272 if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
10273 && (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10274 && PDMHasApic(pVM))
10275 {
10276 int rc = hmR0VmxMapHCApicAccessPage(pVCpu);
10277 AssertRCReturn(rc, rc);
10278 }
10279
10280 /*
10281 * Evaluate events to be injected into the guest.
10282 *
10283 * Events in TRPM can be injected without inspecting the guest state.
10284 * If any new events (interrupts/NMI) are pending currently, we try to set up the
10285 * guest to cause a VM-exit the next time they are ready to receive the event.
10286 */
10287 if (TRPMHasTrap(pVCpu))
10288 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
10289
10290 uint32_t fIntrState;
10291 rcStrict = hmR0VmxEvaluatePendingEvent(pVCpu, pVmxTransient, &fIntrState);
10292
10293#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10294 /*
10295 * While evaluating pending events if something failed (unlikely) or if we were
10296 * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
10297 */
10298 if ( rcStrict != VINF_SUCCESS
10299 || ( pVmxTransient->fIsNestedGuest
10300 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)))
10301 return rcStrict;
10302#endif
10303
10304 /*
10305 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
10306 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
10307 * also result in triple-faulting the VM.
10308 *
10309 * The above does not apply when executing a nested-guest (since unrestricted guest execution
10310 * is a requirement) regardless doing it avoid duplicating code elsewhere.
10311 */
10312 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pVmxTransient, fIntrState, fStepping);
10313 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10314 { /* likely */ }
10315 else
10316 {
10317 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
10318 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10319 return rcStrict;
10320 }
10321
10322 /*
10323 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
10324 * import CR3 themselves. We will need to update them here, as even as late as the above
10325 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
10326 * the below force flags to be set.
10327 */
10328 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
10329 {
10330 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
10331 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
10332 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
10333 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
10334 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10335 }
10336 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
10337 {
10338 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
10339 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10340 }
10341
10342#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10343 /* Paranoia. */
10344 Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10345#endif
10346
10347 /*
10348 * No longjmps to ring-3 from this point on!!!
10349 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
10350 * This also disables flushing of the R0-logger instance (if any).
10351 */
10352 VMMRZCallRing3Disable(pVCpu);
10353
10354 /*
10355 * Export the guest state bits.
10356 *
10357 * We cannot perform longjmps while loading the guest state because we do not preserve the
10358 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
10359 * CPU migration.
10360 *
10361 * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
10362 * registers. Hence, loading of the guest state needs to be done -after- injection of events.
10363 */
10364 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
10365 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10366 { /* likely */ }
10367 else
10368 {
10369 VMMRZCallRing3Enable(pVCpu);
10370 return rcStrict;
10371 }
10372
10373 /*
10374 * We disable interrupts so that we don't miss any interrupts that would flag preemption
10375 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
10376 * preemption disabled for a while. Since this is purely to aid the
10377 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
10378 * disable interrupt on NT.
10379 *
10380 * We need to check for force-flags that could've possible been altered since we last
10381 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
10382 * see @bugref{6398}).
10383 *
10384 * We also check a couple of other force-flags as a last opportunity to get the EMT back
10385 * to ring-3 before executing guest code.
10386 */
10387 pVmxTransient->fEFlags = ASMIntDisableFlags();
10388
10389 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
10390 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
10391 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
10392 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
10393 {
10394 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
10395 {
10396 pVCpu->hm.s.Event.fPending = false;
10397
10398 /*
10399 * We've injected any pending events. This is really the point of no return (to ring-3).
10400 *
10401 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
10402 * returns from this function, so don't enable them here.
10403 */
10404 return VINF_SUCCESS;
10405 }
10406
10407 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
10408 rcStrict = VINF_EM_RAW_INTERRUPT;
10409 }
10410 else
10411 {
10412 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
10413 rcStrict = VINF_EM_RAW_TO_R3;
10414 }
10415
10416 ASMSetFlags(pVmxTransient->fEFlags);
10417 VMMRZCallRing3Enable(pVCpu);
10418
10419 return rcStrict;
10420}
10421
10422
10423/**
10424 * Final preparations before executing guest code using hardware-assisted VMX.
10425 *
10426 * We can no longer get preempted to a different host CPU and there are no returns
10427 * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
10428 * failures), this function is not intended to fail sans unrecoverable hardware
10429 * errors.
10430 *
10431 * @param pVCpu The cross context virtual CPU structure.
10432 * @param pVmxTransient The VMX-transient structure.
10433 *
10434 * @remarks Called with preemption disabled.
10435 * @remarks No-long-jump zone!!!
10436 */
10437static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10438{
10439 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10440 Assert(VMMR0IsLogFlushDisabled(pVCpu));
10441 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
10442 Assert(!pVCpu->hm.s.Event.fPending);
10443
10444 /*
10445 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
10446 */
10447 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10448 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
10449
10450 PVM pVM = pVCpu->CTX_SUFF(pVM);
10451 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10452
10453 if (!CPUMIsGuestFPUStateActive(pVCpu))
10454 {
10455 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10456 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
10457 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
10458 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10459 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
10460 }
10461
10462 /*
10463 * Re-save the host state bits as we may've been preempted (only happens when
10464 * thread-context hooks are used or when the VM start function changes).
10465 * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
10466 * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
10467 * see @bugref{8432}.
10468 *
10469 * This may also happen when switching to/from a nested-guest VMCS without leaving
10470 * ring-0.
10471 */
10472 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
10473 {
10474 int rc = hmR0VmxExportHostState(pVCpu);
10475 AssertRC(rc);
10476 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
10477 }
10478 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
10479
10480 /*
10481 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
10482 */
10483 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
10484 hmR0VmxExportSharedState(pVCpu, pVmxTransient);
10485 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
10486
10487 /*
10488 * Store status of the shared guest/host debug state at the time of VM-entry.
10489 */
10490#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
10491 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
10492 {
10493 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
10494 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
10495 }
10496 else
10497#endif
10498 {
10499 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
10500 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
10501 }
10502
10503 /*
10504 * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
10505 * more than one conditional check. The post-run side of our code shall determine
10506 * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
10507 */
10508 if (pVmcsInfo->pbVirtApic)
10509 pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
10510
10511 /*
10512 * Update the host MSRs values in the VM-exit MSR-load area.
10513 */
10514 if (!pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs)
10515 {
10516 if (pVmcsInfo->cExitMsrLoad > 0)
10517 hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
10518 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = true;
10519 }
10520
10521 /*
10522 * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
10523 * VMX-preemption timer based on the next virtual sync clock deadline.
10524 */
10525 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
10526 RTCPUID const idCurrentCpu = pHostCpu->idCpu;
10527 if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
10528 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
10529 {
10530 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient);
10531 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
10532 }
10533
10534 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
10535 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
10536 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
10537 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
10538
10539 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
10540
10541 TMNotifyStartOfExecution(pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
10542 as we're about to start executing the guest . */
10543
10544 /*
10545 * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
10546 *
10547 * This is done this late as updating the TSC offsetting/preemption timer above
10548 * figures out if we can skip intercepting RDTSCP by calculating the number of
10549 * host CPU ticks till the next virtual sync deadline (for the dynamic case).
10550 */
10551 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
10552 {
10553 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10554 {
10555 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
10556 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
10557 true /* fSetReadWrite */, true /* fUpdateHostMsr */);
10558 AssertRC(rc);
10559 }
10560 else
10561 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
10562 }
10563
10564#ifdef VBOX_STRICT
10565 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo);
10566 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo);
10567 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo));
10568#endif
10569
10570#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
10571 /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
10572 * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs. */
10573 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
10574 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
10575 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
10576#endif
10577}
10578
10579
10580/**
10581 * First C routine invoked after running guest code using hardware-assisted VMX.
10582 *
10583 * @param pVCpu The cross context virtual CPU structure.
10584 * @param pVmxTransient The VMX-transient structure.
10585 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
10586 *
10587 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
10588 *
10589 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
10590 * unconditionally when it is safe to do so.
10591 */
10592static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
10593{
10594 uint64_t const uHostTsc = ASMReadTSC(); /** @todo We can do a lot better here, see @bugref{9180#c38}. */
10595
10596 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
10597 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
10598 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
10599 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
10600 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
10601 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
10602
10603 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10604 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10605 {
10606 uint64_t uGstTsc;
10607 if (!pVmxTransient->fIsNestedGuest)
10608 uGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10609 else
10610 {
10611 uint64_t const uNstGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10612 uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
10613 }
10614 TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
10615 }
10616
10617 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
10618 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
10619 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10620
10621#if HC_ARCH_BITS == 64
10622 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
10623#endif
10624#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
10625 /* The 64-on-32 switcher maintains VMCS-launch state on its own
10626 and we need to leave it alone here. */
10627 if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
10628 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10629#else
10630 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10631#endif
10632#ifdef VBOX_STRICT
10633 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
10634#endif
10635 Assert(!ASMIntAreEnabled());
10636 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
10637 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10638
10639 /*
10640 * Save the basic VM-exit reason and check if the VM-entry failed.
10641 * See Intel spec. 24.9.1 "Basic VM-exit Information".
10642 */
10643 uint32_t uExitReason;
10644 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
10645 AssertRC(rc);
10646 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
10647 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
10648
10649 /*
10650 * Check if VMLAUNCH/VMRESUME succeeded.
10651 * If this failed, we cause a guru meditation and cease further execution.
10652 */
10653 if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
10654 {
10655 /*
10656 * Update the VM-exit history array here even if the VM-entry failed due to:
10657 * - Invalid guest state.
10658 * - MSR loading.
10659 * - Machine-check event.
10660 *
10661 * In any of the above cases we will still have a "valid" VM-exit reason
10662 * despite @a fVMEntryFailed being false.
10663 *
10664 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
10665 *
10666 * Note! We don't have CS or RIP at this point. Will probably address that later
10667 * by amending the history entry added here.
10668 */
10669 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
10670 UINT64_MAX, uHostTsc);
10671
10672 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
10673 {
10674 VMMRZCallRing3Enable(pVCpu);
10675
10676 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10677 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10678
10679#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
10680 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
10681 AssertRC(rc);
10682#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
10683 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_RFLAGS);
10684 AssertRC(rc);
10685#else
10686 /*
10687 * Import the guest-interruptibility state always as we need it while evaluating
10688 * injecting events on re-entry.
10689 *
10690 * We don't import CR0 (when unrestricted guest execution is unavailable) despite
10691 * checking for real-mode while exporting the state because all bits that cause
10692 * mode changes wrt CR0 are intercepted.
10693 */
10694 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
10695 AssertRC(rc);
10696#endif
10697
10698 /*
10699 * Sync the TPR shadow with our APIC state.
10700 */
10701 if ( !pVmxTransient->fIsNestedGuest
10702 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
10703 {
10704 Assert(pVmcsInfo->pbVirtApic);
10705 if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
10706 {
10707 rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
10708 AssertRC(rc);
10709 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
10710 }
10711 }
10712
10713 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10714 return;
10715 }
10716 }
10717 else
10718 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
10719
10720 VMMRZCallRing3Enable(pVCpu);
10721}
10722
10723
10724/**
10725 * Runs the guest code using hardware-assisted VMX the normal way.
10726 *
10727 * @returns VBox status code.
10728 * @param pVCpu The cross context virtual CPU structure.
10729 * @param pcLoops Pointer to the number of executed loops.
10730 */
10731static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
10732{
10733 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
10734 Assert(pcLoops);
10735 Assert(*pcLoops <= cMaxResumeLoops);
10736
10737 VMXTRANSIENT VmxTransient;
10738 RT_ZERO(VmxTransient);
10739 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10740
10741 /* Paranoia. */
10742 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfo);
10743 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10744
10745 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10746 for (;;)
10747 {
10748 Assert(!HMR0SuspendPending());
10749 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10750 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10751
10752 /*
10753 * Preparatory work for running nested-guest code, this may force us to
10754 * return to ring-3.
10755 *
10756 * Warning! This bugger disables interrupts on VINF_SUCCESS!
10757 */
10758 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
10759 if (rcStrict != VINF_SUCCESS)
10760 break;
10761
10762 /* Interrupts are disabled at this point! */
10763 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10764 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
10765 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10766 /* Interrupts are re-enabled at this point! */
10767
10768 /*
10769 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
10770 */
10771 if (RT_SUCCESS(rcRun))
10772 { /* very likely */ }
10773 else
10774 {
10775 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10776 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10777 return rcRun;
10778 }
10779
10780 /*
10781 * Profile the VM-exit.
10782 */
10783 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10784 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10785 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10786 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10787 HMVMX_START_EXIT_DISPATCH_PROF();
10788
10789 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10790
10791 /*
10792 * Handle the VM-exit.
10793 */
10794#ifdef HMVMX_USE_FUNCTION_TABLE
10795 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
10796#else
10797 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
10798#endif
10799 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10800 if (rcStrict == VINF_SUCCESS)
10801 {
10802 if (++(*pcLoops) <= cMaxResumeLoops)
10803 continue;
10804 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10805 rcStrict = VINF_EM_RAW_INTERRUPT;
10806 }
10807 break;
10808 }
10809
10810 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10811 return rcStrict;
10812}
10813
10814#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10815/**
10816 * Runs the nested-guest code using hardware-assisted VMX.
10817 *
10818 * @returns VBox status code.
10819 * @param pVCpu The cross context virtual CPU structure.
10820 * @param pcLoops Pointer to the number of executed loops.
10821 *
10822 * @sa hmR0VmxRunGuestCodeNormal().
10823 */
10824static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
10825{
10826 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
10827 Assert(pcLoops);
10828 Assert(*pcLoops <= cMaxResumeLoops);
10829
10830 VMXTRANSIENT VmxTransient;
10831 RT_ZERO(VmxTransient);
10832 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10833 VmxTransient.fIsNestedGuest = true;
10834
10835 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10836 for (;;)
10837 {
10838 Assert(!HMR0SuspendPending());
10839 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10840 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10841
10842 /*
10843 * Preparatory work for running guest code, this may force us to
10844 * return to ring-3.
10845 *
10846 * Warning! This bugger disables interrupts on VINF_SUCCESS!
10847 */
10848 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
10849 if (rcStrict != VINF_SUCCESS)
10850 break;
10851
10852 /* Interrupts are disabled at this point! */
10853 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10854 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
10855 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10856 /* Interrupts are re-enabled at this point! */
10857
10858 /*
10859 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
10860 */
10861 if (RT_SUCCESS(rcRun))
10862 { /* very likely */ }
10863 else
10864 {
10865 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10866 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10867 return rcRun;
10868 }
10869
10870 /*
10871 * Profile the VM-exit.
10872 */
10873 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10874 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10875 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10876 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10877 HMVMX_START_EXIT_DISPATCH_PROF();
10878
10879 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10880
10881 /*
10882 * Handle the VM-exit.
10883 */
10884 rcStrict = hmR0VmxHandleExitNested(pVCpu, &VmxTransient);
10885 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10886 if ( rcStrict == VINF_SUCCESS
10887 && CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10888 {
10889 if (++(*pcLoops) <= cMaxResumeLoops)
10890 continue;
10891 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10892 rcStrict = VINF_EM_RAW_INTERRUPT;
10893 }
10894 break;
10895 }
10896
10897 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10898 return rcStrict;
10899}
10900#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10901
10902
10903/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
10904 * probes.
10905 *
10906 * The following few functions and associated structure contains the bloat
10907 * necessary for providing detailed debug events and dtrace probes as well as
10908 * reliable host side single stepping. This works on the principle of
10909 * "subclassing" the normal execution loop and workers. We replace the loop
10910 * method completely and override selected helpers to add necessary adjustments
10911 * to their core operation.
10912 *
10913 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
10914 * any performance for debug and analysis features.
10915 *
10916 * @{
10917 */
10918
10919/**
10920 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
10921 * the debug run loop.
10922 */
10923typedef struct VMXRUNDBGSTATE
10924{
10925 /** The RIP we started executing at. This is for detecting that we stepped. */
10926 uint64_t uRipStart;
10927 /** The CS we started executing with. */
10928 uint16_t uCsStart;
10929
10930 /** Whether we've actually modified the 1st execution control field. */
10931 bool fModifiedProcCtls : 1;
10932 /** Whether we've actually modified the 2nd execution control field. */
10933 bool fModifiedProcCtls2 : 1;
10934 /** Whether we've actually modified the exception bitmap. */
10935 bool fModifiedXcptBitmap : 1;
10936
10937 /** We desire the modified the CR0 mask to be cleared. */
10938 bool fClearCr0Mask : 1;
10939 /** We desire the modified the CR4 mask to be cleared. */
10940 bool fClearCr4Mask : 1;
10941 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
10942 uint32_t fCpe1Extra;
10943 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
10944 uint32_t fCpe1Unwanted;
10945 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
10946 uint32_t fCpe2Extra;
10947 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
10948 uint32_t bmXcptExtra;
10949 /** The sequence number of the Dtrace provider settings the state was
10950 * configured against. */
10951 uint32_t uDtraceSettingsSeqNo;
10952 /** VM-exits to check (one bit per VM-exit). */
10953 uint32_t bmExitsToCheck[3];
10954
10955 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
10956 uint32_t fProcCtlsInitial;
10957 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
10958 uint32_t fProcCtls2Initial;
10959 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
10960 uint32_t bmXcptInitial;
10961} VMXRUNDBGSTATE;
10962AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
10963typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
10964
10965
10966/**
10967 * Initializes the VMXRUNDBGSTATE structure.
10968 *
10969 * @param pVCpu The cross context virtual CPU structure of the
10970 * calling EMT.
10971 * @param pVmxTransient The VMX-transient structure.
10972 * @param pDbgState The debug state to initialize.
10973 */
10974static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
10975{
10976 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
10977 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
10978
10979 pDbgState->fModifiedProcCtls = false;
10980 pDbgState->fModifiedProcCtls2 = false;
10981 pDbgState->fModifiedXcptBitmap = false;
10982 pDbgState->fClearCr0Mask = false;
10983 pDbgState->fClearCr4Mask = false;
10984 pDbgState->fCpe1Extra = 0;
10985 pDbgState->fCpe1Unwanted = 0;
10986 pDbgState->fCpe2Extra = 0;
10987 pDbgState->bmXcptExtra = 0;
10988 pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls;
10989 pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2;
10990 pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap;
10991}
10992
10993
10994/**
10995 * Updates the VMSC fields with changes requested by @a pDbgState.
10996 *
10997 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
10998 * immediately before executing guest code, i.e. when interrupts are disabled.
10999 * We don't check status codes here as we cannot easily assert or return in the
11000 * latter case.
11001 *
11002 * @param pVCpu The cross context virtual CPU structure.
11003 * @param pVmxTransient The VMX-transient structure.
11004 * @param pDbgState The debug state.
11005 */
11006static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11007{
11008 /*
11009 * Ensure desired flags in VMCS control fields are set.
11010 * (Ignoring write failure here, as we're committed and it's just debug extras.)
11011 *
11012 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
11013 * there should be no stale data in pCtx at this point.
11014 */
11015 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11016 if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
11017 || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
11018 {
11019 pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
11020 pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
11021 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
11022 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
11023 pDbgState->fModifiedProcCtls = true;
11024 }
11025
11026 if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
11027 {
11028 pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra;
11029 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
11030 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
11031 pDbgState->fModifiedProcCtls2 = true;
11032 }
11033
11034 if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
11035 {
11036 pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
11037 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
11038 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
11039 pDbgState->fModifiedXcptBitmap = true;
11040 }
11041
11042 if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
11043 {
11044 pVmcsInfo->u64Cr0Mask = 0;
11045 VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, 0);
11046 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
11047 }
11048
11049 if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
11050 {
11051 pVmcsInfo->u64Cr4Mask = 0;
11052 VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, 0);
11053 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
11054 }
11055
11056 NOREF(pVCpu);
11057}
11058
11059
11060/**
11061 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
11062 * re-entry next time around.
11063 *
11064 * @returns Strict VBox status code (i.e. informational status codes too).
11065 * @param pVCpu The cross context virtual CPU structure.
11066 * @param pVmxTransient The VMX-transient structure.
11067 * @param pDbgState The debug state.
11068 * @param rcStrict The return code from executing the guest using single
11069 * stepping.
11070 */
11071static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
11072 VBOXSTRICTRC rcStrict)
11073{
11074 /*
11075 * Restore VM-exit control settings as we may not reenter this function the
11076 * next time around.
11077 */
11078 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11079
11080 /* We reload the initial value, trigger what we can of recalculations the
11081 next time around. From the looks of things, that's all that's required atm. */
11082 if (pDbgState->fModifiedProcCtls)
11083 {
11084 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
11085 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
11086 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
11087 AssertRCReturn(rc2, rc2);
11088 pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
11089 }
11090
11091 /* We're currently the only ones messing with this one, so just restore the
11092 cached value and reload the field. */
11093 if ( pDbgState->fModifiedProcCtls2
11094 && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
11095 {
11096 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
11097 AssertRCReturn(rc2, rc2);
11098 pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
11099 }
11100
11101 /* If we've modified the exception bitmap, we restore it and trigger
11102 reloading and partial recalculation the next time around. */
11103 if (pDbgState->fModifiedXcptBitmap)
11104 pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
11105
11106 return rcStrict;
11107}
11108
11109
11110/**
11111 * Configures VM-exit controls for current DBGF and DTrace settings.
11112 *
11113 * This updates @a pDbgState and the VMCS execution control fields to reflect
11114 * the necessary VM-exits demanded by DBGF and DTrace.
11115 *
11116 * @param pVCpu The cross context virtual CPU structure.
11117 * @param pVmxTransient The VMX-transient structure. May update
11118 * fUpdatedTscOffsettingAndPreemptTimer.
11119 * @param pDbgState The debug state.
11120 */
11121static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11122{
11123 /*
11124 * Take down the dtrace serial number so we can spot changes.
11125 */
11126 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
11127 ASMCompilerBarrier();
11128
11129 /*
11130 * We'll rebuild most of the middle block of data members (holding the
11131 * current settings) as we go along here, so start by clearing it all.
11132 */
11133 pDbgState->bmXcptExtra = 0;
11134 pDbgState->fCpe1Extra = 0;
11135 pDbgState->fCpe1Unwanted = 0;
11136 pDbgState->fCpe2Extra = 0;
11137 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
11138 pDbgState->bmExitsToCheck[i] = 0;
11139
11140 /*
11141 * Software interrupts (INT XXh) - no idea how to trigger these...
11142 */
11143 PVM pVM = pVCpu->CTX_SUFF(pVM);
11144 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
11145 || VBOXVMM_INT_SOFTWARE_ENABLED())
11146 {
11147 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11148 }
11149
11150 /*
11151 * INT3 breakpoints - triggered by #BP exceptions.
11152 */
11153 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
11154 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11155
11156 /*
11157 * Exception bitmap and XCPT events+probes.
11158 */
11159 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
11160 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
11161 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
11162
11163 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
11164 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
11165 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11166 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
11167 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
11168 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
11169 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
11170 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
11171 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
11172 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
11173 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
11174 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
11175 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
11176 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
11177 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
11178 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
11179 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
11180 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
11181
11182 if (pDbgState->bmXcptExtra)
11183 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11184
11185 /*
11186 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
11187 *
11188 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
11189 * So, when adding/changing/removing please don't forget to update it.
11190 *
11191 * Some of the macros are picking up local variables to save horizontal space,
11192 * (being able to see it in a table is the lesser evil here).
11193 */
11194#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
11195 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
11196 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
11197#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
11198 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11199 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11200 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11201 } else do { } while (0)
11202#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
11203 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11204 { \
11205 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
11206 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11207 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11208 } else do { } while (0)
11209#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
11210 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11211 { \
11212 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
11213 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11214 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11215 } else do { } while (0)
11216#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
11217 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11218 { \
11219 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
11220 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11221 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11222 } else do { } while (0)
11223
11224 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
11225 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
11226 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
11227 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
11228 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
11229
11230 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
11231 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
11232 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
11233 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
11234 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
11235 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
11236 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
11237 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
11238 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
11239 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
11240 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
11241 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
11242 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
11243 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
11244 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
11245 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
11246 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
11247 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
11248 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
11249 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
11250 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
11251 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
11252 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
11253 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
11254 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
11255 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
11256 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
11257 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
11258 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
11259 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
11260 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
11261 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
11262 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
11263 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
11264 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
11265 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
11266
11267 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
11268 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11269 {
11270 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4
11271 | CPUMCTX_EXTRN_APIC_TPR);
11272 AssertRC(rc);
11273
11274#if 0 /** @todo fix me */
11275 pDbgState->fClearCr0Mask = true;
11276 pDbgState->fClearCr4Mask = true;
11277#endif
11278 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
11279 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
11280 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11281 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
11282 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
11283 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
11284 require clearing here and in the loop if we start using it. */
11285 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
11286 }
11287 else
11288 {
11289 if (pDbgState->fClearCr0Mask)
11290 {
11291 pDbgState->fClearCr0Mask = false;
11292 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
11293 }
11294 if (pDbgState->fClearCr4Mask)
11295 {
11296 pDbgState->fClearCr4Mask = false;
11297 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
11298 }
11299 }
11300 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
11301 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
11302
11303 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
11304 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
11305 {
11306 /** @todo later, need to fix handler as it assumes this won't usually happen. */
11307 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
11308 }
11309 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
11310 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
11311
11312 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
11313 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
11314 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
11315 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
11316 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
11317 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
11318 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
11319 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
11320#if 0 /** @todo too slow, fix handler. */
11321 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
11322#endif
11323 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
11324
11325 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
11326 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
11327 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
11328 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
11329 {
11330 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11331 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
11332 }
11333 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11334 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11335 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11336 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11337
11338 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
11339 || IS_EITHER_ENABLED(pVM, INSTR_STR)
11340 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
11341 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
11342 {
11343 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11344 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
11345 }
11346 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
11347 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
11348 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
11349 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
11350
11351 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
11352 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
11353 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
11354 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
11355 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
11356 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
11357 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
11358 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
11359 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
11360 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
11361 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
11362 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
11363 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
11364 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
11365 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
11366 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
11367 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
11368 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
11369 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
11370 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
11371 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
11372 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
11373
11374#undef IS_EITHER_ENABLED
11375#undef SET_ONLY_XBM_IF_EITHER_EN
11376#undef SET_CPE1_XBM_IF_EITHER_EN
11377#undef SET_CPEU_XBM_IF_EITHER_EN
11378#undef SET_CPE2_XBM_IF_EITHER_EN
11379
11380 /*
11381 * Sanitize the control stuff.
11382 */
11383 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
11384 if (pDbgState->fCpe2Extra)
11385 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
11386 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
11387 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
11388 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
11389 {
11390 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
11391 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
11392 }
11393
11394 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
11395 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
11396 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
11397 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
11398}
11399
11400
11401/**
11402 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
11403 * appropriate.
11404 *
11405 * The caller has checked the VM-exit against the
11406 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
11407 * already, so we don't have to do that either.
11408 *
11409 * @returns Strict VBox status code (i.e. informational status codes too).
11410 * @param pVCpu The cross context virtual CPU structure.
11411 * @param pVmxTransient The VMX-transient structure.
11412 * @param uExitReason The VM-exit reason.
11413 *
11414 * @remarks The name of this function is displayed by dtrace, so keep it short
11415 * and to the point. No longer than 33 chars long, please.
11416 */
11417static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
11418{
11419 /*
11420 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
11421 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
11422 *
11423 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
11424 * does. Must add/change/remove both places. Same ordering, please.
11425 *
11426 * Added/removed events must also be reflected in the next section
11427 * where we dispatch dtrace events.
11428 */
11429 bool fDtrace1 = false;
11430 bool fDtrace2 = false;
11431 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
11432 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
11433 uint32_t uEventArg = 0;
11434#define SET_EXIT(a_EventSubName) \
11435 do { \
11436 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11437 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11438 } while (0)
11439#define SET_BOTH(a_EventSubName) \
11440 do { \
11441 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
11442 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11443 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
11444 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11445 } while (0)
11446 switch (uExitReason)
11447 {
11448 case VMX_EXIT_MTF:
11449 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11450
11451 case VMX_EXIT_XCPT_OR_NMI:
11452 {
11453 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
11454 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
11455 {
11456 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11457 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
11458 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
11459 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
11460 {
11461 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
11462 {
11463 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11464 uEventArg = pVmxTransient->uExitIntErrorCode;
11465 }
11466 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
11467 switch (enmEvent1)
11468 {
11469 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
11470 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
11471 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
11472 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
11473 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
11474 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
11475 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
11476 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
11477 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
11478 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
11479 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
11480 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
11481 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
11482 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
11483 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
11484 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
11485 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
11486 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
11487 default: break;
11488 }
11489 }
11490 else
11491 AssertFailed();
11492 break;
11493
11494 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
11495 uEventArg = idxVector;
11496 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
11497 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
11498 break;
11499 }
11500 break;
11501 }
11502
11503 case VMX_EXIT_TRIPLE_FAULT:
11504 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
11505 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
11506 break;
11507 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
11508 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
11509 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
11510 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
11511 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
11512
11513 /* Instruction specific VM-exits: */
11514 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
11515 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
11516 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
11517 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
11518 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
11519 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
11520 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
11521 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
11522 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
11523 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
11524 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
11525 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
11526 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
11527 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
11528 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
11529 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
11530 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
11531 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
11532 case VMX_EXIT_MOV_CRX:
11533 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11534 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
11535 SET_BOTH(CRX_READ);
11536 else
11537 SET_BOTH(CRX_WRITE);
11538 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
11539 break;
11540 case VMX_EXIT_MOV_DRX:
11541 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11542 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
11543 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
11544 SET_BOTH(DRX_READ);
11545 else
11546 SET_BOTH(DRX_WRITE);
11547 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
11548 break;
11549 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
11550 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
11551 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
11552 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
11553 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
11554 case VMX_EXIT_GDTR_IDTR_ACCESS:
11555 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11556 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
11557 {
11558 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
11559 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
11560 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
11561 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
11562 }
11563 break;
11564
11565 case VMX_EXIT_LDTR_TR_ACCESS:
11566 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11567 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
11568 {
11569 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
11570 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
11571 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
11572 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
11573 }
11574 break;
11575
11576 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
11577 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
11578 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
11579 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
11580 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
11581 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
11582 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
11583 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
11584 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
11585 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
11586 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
11587
11588 /* Events that aren't relevant at this point. */
11589 case VMX_EXIT_EXT_INT:
11590 case VMX_EXIT_INT_WINDOW:
11591 case VMX_EXIT_NMI_WINDOW:
11592 case VMX_EXIT_TPR_BELOW_THRESHOLD:
11593 case VMX_EXIT_PREEMPT_TIMER:
11594 case VMX_EXIT_IO_INSTR:
11595 break;
11596
11597 /* Errors and unexpected events. */
11598 case VMX_EXIT_INIT_SIGNAL:
11599 case VMX_EXIT_SIPI:
11600 case VMX_EXIT_IO_SMI:
11601 case VMX_EXIT_SMI:
11602 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
11603 case VMX_EXIT_ERR_MSR_LOAD:
11604 case VMX_EXIT_ERR_MACHINE_CHECK:
11605 break;
11606
11607 default:
11608 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
11609 break;
11610 }
11611#undef SET_BOTH
11612#undef SET_EXIT
11613
11614 /*
11615 * Dtrace tracepoints go first. We do them here at once so we don't
11616 * have to copy the guest state saving and stuff a few dozen times.
11617 * Down side is that we've got to repeat the switch, though this time
11618 * we use enmEvent since the probes are a subset of what DBGF does.
11619 */
11620 if (fDtrace1 || fDtrace2)
11621 {
11622 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11623 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
11624 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11625 switch (enmEvent1)
11626 {
11627 /** @todo consider which extra parameters would be helpful for each probe. */
11628 case DBGFEVENT_END: break;
11629 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
11630 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
11631 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
11632 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
11633 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
11634 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
11635 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
11636 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
11637 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
11638 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
11639 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
11640 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
11641 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
11642 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
11643 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
11644 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
11645 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
11646 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
11647 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11648 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
11649 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
11650 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
11651 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
11652 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
11653 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
11654 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
11655 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
11656 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11657 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11658 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11659 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11660 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
11661 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
11662 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
11663 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
11664 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
11665 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
11666 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
11667 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
11668 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
11669 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
11670 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
11671 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
11672 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
11673 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
11674 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
11675 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
11676 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
11677 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
11678 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
11679 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
11680 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
11681 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
11682 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
11683 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
11684 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
11685 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
11686 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
11687 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
11688 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
11689 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
11690 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
11691 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
11692 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
11693 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
11694 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
11695 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
11696 }
11697 switch (enmEvent2)
11698 {
11699 /** @todo consider which extra parameters would be helpful for each probe. */
11700 case DBGFEVENT_END: break;
11701 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
11702 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
11703 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
11704 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
11705 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
11706 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
11707 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
11708 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
11709 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
11710 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11711 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11712 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11713 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11714 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
11715 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
11716 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
11717 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
11718 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
11719 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
11720 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
11721 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
11722 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
11723 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
11724 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
11725 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
11726 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
11727 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
11728 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
11729 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
11730 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
11731 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
11732 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
11733 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
11734 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
11735 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
11736 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
11737 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
11738 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
11739 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
11740 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
11741 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
11742 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
11743 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
11744 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
11745 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
11746 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
11747 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
11748 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
11749 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
11750 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
11751 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
11752 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
11753 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
11754 }
11755 }
11756
11757 /*
11758 * Fire of the DBGF event, if enabled (our check here is just a quick one,
11759 * the DBGF call will do a full check).
11760 *
11761 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
11762 * Note! If we have to events, we prioritize the first, i.e. the instruction
11763 * one, in order to avoid event nesting.
11764 */
11765 PVM pVM = pVCpu->CTX_SUFF(pVM);
11766 if ( enmEvent1 != DBGFEVENT_END
11767 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
11768 {
11769 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11770 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
11771 if (rcStrict != VINF_SUCCESS)
11772 return rcStrict;
11773 }
11774 else if ( enmEvent2 != DBGFEVENT_END
11775 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
11776 {
11777 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11778 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
11779 if (rcStrict != VINF_SUCCESS)
11780 return rcStrict;
11781 }
11782
11783 return VINF_SUCCESS;
11784}
11785
11786
11787/**
11788 * Single-stepping VM-exit filtering.
11789 *
11790 * This is preprocessing the VM-exits and deciding whether we've gotten far
11791 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
11792 * handling is performed.
11793 *
11794 * @returns Strict VBox status code (i.e. informational status codes too).
11795 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
11796 * @param pVmxTransient The VMX-transient structure.
11797 * @param pDbgState The debug state.
11798 */
11799DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11800{
11801 /*
11802 * Expensive (saves context) generic dtrace VM-exit probe.
11803 */
11804 uint32_t const uExitReason = pVmxTransient->uExitReason;
11805 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
11806 { /* more likely */ }
11807 else
11808 {
11809 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11810 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
11811 AssertRC(rc);
11812 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
11813 }
11814
11815 /*
11816 * Check for host NMI, just to get that out of the way.
11817 */
11818 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
11819 { /* normally likely */ }
11820 else
11821 {
11822 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11823 AssertRCReturn(rc2, rc2);
11824 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11825 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11826 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
11827 }
11828
11829 /*
11830 * Check for single stepping event if we're stepping.
11831 */
11832 if (pVCpu->hm.s.fSingleInstruction)
11833 {
11834 switch (uExitReason)
11835 {
11836 case VMX_EXIT_MTF:
11837 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11838
11839 /* Various events: */
11840 case VMX_EXIT_XCPT_OR_NMI:
11841 case VMX_EXIT_EXT_INT:
11842 case VMX_EXIT_TRIPLE_FAULT:
11843 case VMX_EXIT_INT_WINDOW:
11844 case VMX_EXIT_NMI_WINDOW:
11845 case VMX_EXIT_TASK_SWITCH:
11846 case VMX_EXIT_TPR_BELOW_THRESHOLD:
11847 case VMX_EXIT_APIC_ACCESS:
11848 case VMX_EXIT_EPT_VIOLATION:
11849 case VMX_EXIT_EPT_MISCONFIG:
11850 case VMX_EXIT_PREEMPT_TIMER:
11851
11852 /* Instruction specific VM-exits: */
11853 case VMX_EXIT_CPUID:
11854 case VMX_EXIT_GETSEC:
11855 case VMX_EXIT_HLT:
11856 case VMX_EXIT_INVD:
11857 case VMX_EXIT_INVLPG:
11858 case VMX_EXIT_RDPMC:
11859 case VMX_EXIT_RDTSC:
11860 case VMX_EXIT_RSM:
11861 case VMX_EXIT_VMCALL:
11862 case VMX_EXIT_VMCLEAR:
11863 case VMX_EXIT_VMLAUNCH:
11864 case VMX_EXIT_VMPTRLD:
11865 case VMX_EXIT_VMPTRST:
11866 case VMX_EXIT_VMREAD:
11867 case VMX_EXIT_VMRESUME:
11868 case VMX_EXIT_VMWRITE:
11869 case VMX_EXIT_VMXOFF:
11870 case VMX_EXIT_VMXON:
11871 case VMX_EXIT_MOV_CRX:
11872 case VMX_EXIT_MOV_DRX:
11873 case VMX_EXIT_IO_INSTR:
11874 case VMX_EXIT_RDMSR:
11875 case VMX_EXIT_WRMSR:
11876 case VMX_EXIT_MWAIT:
11877 case VMX_EXIT_MONITOR:
11878 case VMX_EXIT_PAUSE:
11879 case VMX_EXIT_GDTR_IDTR_ACCESS:
11880 case VMX_EXIT_LDTR_TR_ACCESS:
11881 case VMX_EXIT_INVEPT:
11882 case VMX_EXIT_RDTSCP:
11883 case VMX_EXIT_INVVPID:
11884 case VMX_EXIT_WBINVD:
11885 case VMX_EXIT_XSETBV:
11886 case VMX_EXIT_RDRAND:
11887 case VMX_EXIT_INVPCID:
11888 case VMX_EXIT_VMFUNC:
11889 case VMX_EXIT_RDSEED:
11890 case VMX_EXIT_XSAVES:
11891 case VMX_EXIT_XRSTORS:
11892 {
11893 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11894 AssertRCReturn(rc, rc);
11895 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
11896 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
11897 return VINF_EM_DBG_STEPPED;
11898 break;
11899 }
11900
11901 /* Errors and unexpected events: */
11902 case VMX_EXIT_INIT_SIGNAL:
11903 case VMX_EXIT_SIPI:
11904 case VMX_EXIT_IO_SMI:
11905 case VMX_EXIT_SMI:
11906 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
11907 case VMX_EXIT_ERR_MSR_LOAD:
11908 case VMX_EXIT_ERR_MACHINE_CHECK:
11909 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
11910 break;
11911
11912 default:
11913 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
11914 break;
11915 }
11916 }
11917
11918 /*
11919 * Check for debugger event breakpoints and dtrace probes.
11920 */
11921 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
11922 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
11923 {
11924 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
11925 if (rcStrict != VINF_SUCCESS)
11926 return rcStrict;
11927 }
11928
11929 /*
11930 * Normal processing.
11931 */
11932#ifdef HMVMX_USE_FUNCTION_TABLE
11933 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
11934#else
11935 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
11936#endif
11937}
11938
11939
11940/**
11941 * Single steps guest code using hardware-assisted VMX.
11942 *
11943 * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
11944 * but single-stepping through the hypervisor debugger.
11945 *
11946 * @returns Strict VBox status code (i.e. informational status codes too).
11947 * @param pVCpu The cross context virtual CPU structure.
11948 * @param pcLoops Pointer to the number of executed loops.
11949 *
11950 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
11951 */
11952static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu, uint32_t *pcLoops)
11953{
11954 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11955 Assert(pcLoops);
11956 Assert(*pcLoops <= cMaxResumeLoops);
11957
11958 VMXTRANSIENT VmxTransient;
11959 RT_ZERO(VmxTransient);
11960 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11961
11962 /* Set HMCPU indicators. */
11963 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
11964 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
11965 pVCpu->hm.s.fDebugWantRdTscExit = false;
11966 pVCpu->hm.s.fUsingDebugLoop = true;
11967
11968 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
11969 VMXRUNDBGSTATE DbgState;
11970 hmR0VmxRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
11971 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
11972
11973 /*
11974 * The loop.
11975 */
11976 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11977 for (;;)
11978 {
11979 Assert(!HMR0SuspendPending());
11980 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11981 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11982 bool fStepping = pVCpu->hm.s.fSingleInstruction;
11983
11984 /* Set up VM-execution controls the next two can respond to. */
11985 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
11986
11987 /*
11988 * Preparatory work for running guest code, this may force us to
11989 * return to ring-3.
11990 *
11991 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11992 */
11993 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
11994 if (rcStrict != VINF_SUCCESS)
11995 break;
11996
11997 /* Interrupts are disabled at this point! */
11998 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11999
12000 /* Override any obnoxious code in the above two calls. */
12001 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12002
12003 /*
12004 * Finally execute the guest.
12005 */
12006 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
12007
12008 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
12009 /* Interrupts are re-enabled at this point! */
12010
12011 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
12012 if (RT_SUCCESS(rcRun))
12013 { /* very likely */ }
12014 else
12015 {
12016 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
12017 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
12018 return rcRun;
12019 }
12020
12021 /* Profile the VM-exit. */
12022 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
12023 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
12024 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
12025 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
12026 HMVMX_START_EXIT_DISPATCH_PROF();
12027
12028 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
12029
12030 /*
12031 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
12032 */
12033 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
12034 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
12035 if (rcStrict != VINF_SUCCESS)
12036 break;
12037 if (++(*pcLoops) > cMaxResumeLoops)
12038 {
12039 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
12040 rcStrict = VINF_EM_RAW_INTERRUPT;
12041 break;
12042 }
12043
12044 /*
12045 * Stepping: Did the RIP change, if so, consider it a single step.
12046 * Otherwise, make sure one of the TFs gets set.
12047 */
12048 if (fStepping)
12049 {
12050 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12051 AssertRC(rc);
12052 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
12053 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
12054 {
12055 rcStrict = VINF_EM_DBG_STEPPED;
12056 break;
12057 }
12058 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12059 }
12060
12061 /*
12062 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
12063 */
12064 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
12065 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12066 }
12067
12068 /*
12069 * Clear the X86_EFL_TF if necessary.
12070 */
12071 if (pVCpu->hm.s.fClearTrapFlag)
12072 {
12073 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
12074 AssertRC(rc);
12075 pVCpu->hm.s.fClearTrapFlag = false;
12076 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
12077 }
12078 /** @todo there seems to be issues with the resume flag when the monitor trap
12079 * flag is pending without being used. Seen early in bios init when
12080 * accessing APIC page in protected mode. */
12081
12082 /*
12083 * Restore VM-exit control settings as we may not re-enter this function the
12084 * next time around.
12085 */
12086 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
12087
12088 /* Restore HMCPU indicators. */
12089 pVCpu->hm.s.fUsingDebugLoop = false;
12090 pVCpu->hm.s.fDebugWantRdTscExit = false;
12091 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
12092
12093 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
12094 return rcStrict;
12095}
12096
12097
12098/** @} */
12099
12100
12101/**
12102 * Checks if any expensive dtrace probes are enabled and we should go to the
12103 * debug loop.
12104 *
12105 * @returns true if we should use debug loop, false if not.
12106 */
12107static bool hmR0VmxAnyExpensiveProbesEnabled(void)
12108{
12109 /* It's probably faster to OR the raw 32-bit counter variables together.
12110 Since the variables are in an array and the probes are next to one
12111 another (more or less), we have good locality. So, better read
12112 eight-nine cache lines ever time and only have one conditional, than
12113 128+ conditionals, right? */
12114 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
12115 | VBOXVMM_XCPT_DE_ENABLED_RAW()
12116 | VBOXVMM_XCPT_DB_ENABLED_RAW()
12117 | VBOXVMM_XCPT_BP_ENABLED_RAW()
12118 | VBOXVMM_XCPT_OF_ENABLED_RAW()
12119 | VBOXVMM_XCPT_BR_ENABLED_RAW()
12120 | VBOXVMM_XCPT_UD_ENABLED_RAW()
12121 | VBOXVMM_XCPT_NM_ENABLED_RAW()
12122 | VBOXVMM_XCPT_DF_ENABLED_RAW()
12123 | VBOXVMM_XCPT_TS_ENABLED_RAW()
12124 | VBOXVMM_XCPT_NP_ENABLED_RAW()
12125 | VBOXVMM_XCPT_SS_ENABLED_RAW()
12126 | VBOXVMM_XCPT_GP_ENABLED_RAW()
12127 | VBOXVMM_XCPT_PF_ENABLED_RAW()
12128 | VBOXVMM_XCPT_MF_ENABLED_RAW()
12129 | VBOXVMM_XCPT_AC_ENABLED_RAW()
12130 | VBOXVMM_XCPT_XF_ENABLED_RAW()
12131 | VBOXVMM_XCPT_VE_ENABLED_RAW()
12132 | VBOXVMM_XCPT_SX_ENABLED_RAW()
12133 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
12134 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
12135 ) != 0
12136 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
12137 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
12138 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
12139 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
12140 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
12141 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
12142 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
12143 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
12144 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
12145 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
12146 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
12147 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
12148 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
12149 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
12150 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
12151 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
12152 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
12153 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
12154 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
12155 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
12156 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
12157 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
12158 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
12159 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
12160 | VBOXVMM_INSTR_STR_ENABLED_RAW()
12161 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
12162 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
12163 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
12164 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
12165 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
12166 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
12167 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
12168 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
12169 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
12170 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
12171 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
12172 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
12173 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
12174 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
12175 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
12176 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
12177 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
12178 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
12179 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
12180 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
12181 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
12182 ) != 0
12183 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
12184 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
12185 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
12186 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
12187 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
12188 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
12189 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
12190 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
12191 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
12192 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
12193 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
12194 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
12195 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
12196 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
12197 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
12198 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
12199 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
12200 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
12201 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
12202 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
12203 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
12204 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
12205 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
12206 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
12207 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
12208 | VBOXVMM_EXIT_STR_ENABLED_RAW()
12209 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
12210 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
12211 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
12212 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
12213 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
12214 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
12215 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
12216 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
12217 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
12218 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
12219 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
12220 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
12221 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
12222 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
12223 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
12224 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
12225 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
12226 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
12227 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
12228 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
12229 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
12230 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
12231 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
12232 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
12233 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
12234 ) != 0;
12235}
12236
12237
12238/**
12239 * Runs the guest using hardware-assisted VMX.
12240 *
12241 * @returns Strict VBox status code (i.e. informational status codes too).
12242 * @param pVCpu The cross context virtual CPU structure.
12243 */
12244VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
12245{
12246 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12247 Assert(VMMRZCallRing3IsEnabled(pVCpu));
12248 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12249 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
12250
12251 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
12252
12253 VBOXSTRICTRC rcStrict;
12254 uint32_t cLoops = 0;
12255#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12256 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
12257#else
12258 bool const fInNestedGuestMode = false;
12259#endif
12260 if (!fInNestedGuestMode)
12261 {
12262 if ( !pVCpu->hm.s.fUseDebugLoop
12263 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
12264 && !DBGFIsStepping(pVCpu)
12265 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
12266 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
12267 else
12268 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
12269 }
12270#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12271 else
12272 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
12273
12274 if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
12275 rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
12276#endif
12277
12278 if (rcStrict == VERR_EM_INTERPRETER)
12279 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12280 else if (rcStrict == VINF_EM_RESET)
12281 rcStrict = VINF_EM_TRIPLE_FAULT;
12282
12283 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
12284 if (RT_FAILURE(rc2))
12285 {
12286 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
12287 rcStrict = rc2;
12288 }
12289 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12290 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
12291 return rcStrict;
12292}
12293
12294
12295#ifndef HMVMX_USE_FUNCTION_TABLE
12296/**
12297 * Handles a guest VM-exit from hardware-assisted VMX execution.
12298 *
12299 * @returns Strict VBox status code (i.e. informational status codes too).
12300 * @param pVCpu The cross context virtual CPU structure.
12301 * @param pVmxTransient The VMX-transient structure.
12302 */
12303DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12304{
12305#ifdef DEBUG_ramshankar
12306#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
12307 do { \
12308 if (a_fSave != 0) \
12309 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
12310 VBOXSTRICTRC rcStrict = a_CallExpr; \
12311 if (a_fSave != 0) \
12312 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
12313 return rcStrict; \
12314 } while (0)
12315#else
12316# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
12317#endif
12318 uint32_t const rcReason = pVmxTransient->uExitReason;
12319 switch (rcReason)
12320 {
12321 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
12322 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
12323 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
12324 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
12325 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
12326 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
12327 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
12328 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
12329 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
12330 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
12331 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
12332 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
12333 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
12334 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
12335 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
12336 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
12337 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
12338 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
12339 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
12340 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
12341 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
12342 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
12343 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
12344 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
12345 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
12346 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
12347 case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
12348 case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
12349 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
12350 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
12351 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
12352 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
12353 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
12354 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
12355#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12356 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
12357 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
12358 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
12359 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
12360 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
12361 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
12362 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
12363 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
12364 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
12365#else
12366 case VMX_EXIT_VMCLEAR:
12367 case VMX_EXIT_VMLAUNCH:
12368 case VMX_EXIT_VMPTRLD:
12369 case VMX_EXIT_VMPTRST:
12370 case VMX_EXIT_VMREAD:
12371 case VMX_EXIT_VMRESUME:
12372 case VMX_EXIT_VMWRITE:
12373 case VMX_EXIT_VMXOFF:
12374 case VMX_EXIT_VMXON:
12375 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12376#endif
12377
12378 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
12379 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
12380 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
12381 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
12382 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
12383 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
12384 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
12385 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
12386 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
12387
12388 case VMX_EXIT_INVEPT:
12389 case VMX_EXIT_INVVPID:
12390 case VMX_EXIT_VMFUNC:
12391 case VMX_EXIT_XSAVES:
12392 case VMX_EXIT_XRSTORS:
12393 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12394
12395 case VMX_EXIT_ENCLS:
12396 case VMX_EXIT_RDSEED:
12397 case VMX_EXIT_PML_FULL:
12398 default:
12399 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
12400 }
12401#undef VMEXIT_CALL_RET
12402}
12403#endif /* !HMVMX_USE_FUNCTION_TABLE */
12404
12405
12406#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12407/**
12408 * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
12409 *
12410 * @returns Strict VBox status code (i.e. informational status codes too).
12411 * @param pVCpu The cross context virtual CPU structure.
12412 * @param pVmxTransient The VMX-transient structure.
12413 */
12414DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12415{
12416 uint32_t const rcReason = pVmxTransient->uExitReason;
12417 switch (rcReason)
12418 {
12419 case VMX_EXIT_EPT_MISCONFIG:
12420 case VMX_EXIT_EPT_VIOLATION:
12421 case VMX_EXIT_IO_INSTR:
12422 case VMX_EXIT_CPUID:
12423 case VMX_EXIT_RDTSC:
12424 case VMX_EXIT_RDTSCP:
12425 case VMX_EXIT_APIC_ACCESS:
12426 case VMX_EXIT_XCPT_OR_NMI:
12427 case VMX_EXIT_MOV_CRX:
12428 case VMX_EXIT_EXT_INT:
12429 case VMX_EXIT_INT_WINDOW:
12430 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12431 case VMX_EXIT_MWAIT:
12432 case VMX_EXIT_MONITOR:
12433 case VMX_EXIT_TASK_SWITCH:
12434 case VMX_EXIT_PREEMPT_TIMER:
12435 case VMX_EXIT_RDMSR:
12436 case VMX_EXIT_WRMSR:
12437 case VMX_EXIT_VMCALL:
12438 case VMX_EXIT_MOV_DRX:
12439 case VMX_EXIT_HLT:
12440 case VMX_EXIT_INVD:
12441 case VMX_EXIT_INVLPG:
12442 case VMX_EXIT_RSM:
12443 case VMX_EXIT_MTF:
12444 case VMX_EXIT_PAUSE:
12445 case VMX_EXIT_GDTR_IDTR_ACCESS:
12446 case VMX_EXIT_LDTR_TR_ACCESS:
12447 case VMX_EXIT_WBINVD:
12448 case VMX_EXIT_XSETBV:
12449 case VMX_EXIT_RDRAND:
12450 case VMX_EXIT_INVPCID:
12451 case VMX_EXIT_GETSEC:
12452 case VMX_EXIT_RDPMC:
12453#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12454 case VMX_EXIT_VMCLEAR:
12455 case VMX_EXIT_VMLAUNCH:
12456 case VMX_EXIT_VMPTRLD:
12457 case VMX_EXIT_VMPTRST:
12458 case VMX_EXIT_VMREAD:
12459 case VMX_EXIT_VMRESUME:
12460 case VMX_EXIT_VMWRITE:
12461 case VMX_EXIT_VMXOFF:
12462 case VMX_EXIT_VMXON:
12463#endif
12464 case VMX_EXIT_TRIPLE_FAULT:
12465 case VMX_EXIT_NMI_WINDOW:
12466 case VMX_EXIT_INIT_SIGNAL:
12467 case VMX_EXIT_SIPI:
12468 case VMX_EXIT_IO_SMI:
12469 case VMX_EXIT_SMI:
12470 case VMX_EXIT_ERR_MSR_LOAD:
12471 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12472 case VMX_EXIT_ERR_MACHINE_CHECK:
12473
12474 case VMX_EXIT_INVEPT:
12475 case VMX_EXIT_INVVPID:
12476 case VMX_EXIT_VMFUNC:
12477 case VMX_EXIT_XSAVES:
12478 case VMX_EXIT_XRSTORS:
12479
12480 case VMX_EXIT_ENCLS:
12481 case VMX_EXIT_RDSEED:
12482 case VMX_EXIT_PML_FULL:
12483 default:
12484 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
12485 }
12486#undef VMEXIT_CALL_RET
12487}
12488#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
12489
12490
12491#ifdef VBOX_STRICT
12492/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
12493# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
12494 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
12495
12496# define HMVMX_ASSERT_PREEMPT_CPUID() \
12497 do { \
12498 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
12499 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
12500 } while (0)
12501
12502# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12503 do { \
12504 AssertPtr((a_pVCpu)); \
12505 AssertPtr((a_pVmxTransient)); \
12506 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
12507 Assert((a_pVmxTransient)->pVmcsInfo); \
12508 Assert(ASMIntAreEnabled()); \
12509 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
12510 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
12511 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
12512 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
12513 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
12514 HMVMX_ASSERT_PREEMPT_CPUID(); \
12515 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
12516 } while (0)
12517
12518# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12519 do { \
12520 Log4Func(("\n")); \
12521 } while (0)
12522#else
12523# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12524 do { \
12525 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
12526 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
12527 } while (0)
12528# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
12529#endif
12530
12531
12532/**
12533 * Advances the guest RIP by the specified number of bytes.
12534 *
12535 * @param pVCpu The cross context virtual CPU structure.
12536 * @param cbInstr Number of bytes to advance the RIP by.
12537 *
12538 * @remarks No-long-jump zone!!!
12539 */
12540DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
12541{
12542 /* Advance the RIP. */
12543 pVCpu->cpum.GstCtx.rip += cbInstr;
12544 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12545
12546 /* Update interrupt inhibition. */
12547 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
12548 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
12549 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
12550}
12551
12552
12553/**
12554 * Advances the guest RIP after reading it from the VMCS.
12555 *
12556 * @returns VBox status code, no informational status codes.
12557 * @param pVCpu The cross context virtual CPU structure.
12558 * @param pVmxTransient The VMX-transient structure.
12559 *
12560 * @remarks No-long-jump zone!!!
12561 */
12562static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12563{
12564 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12565 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
12566 AssertRCReturn(rc, rc);
12567
12568 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
12569 return VINF_SUCCESS;
12570}
12571
12572
12573/**
12574 * Handle a condition that occurred while delivering an event through the guest
12575 * IDT.
12576 *
12577 * @returns Strict VBox status code (i.e. informational status codes too).
12578 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
12579 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
12580 * to continue execution of the guest which will delivery the \#DF.
12581 * @retval VINF_EM_RESET if we detected a triple-fault condition.
12582 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
12583 *
12584 * @param pVCpu The cross context virtual CPU structure.
12585 * @param pVmxTransient The VMX-transient structure.
12586 *
12587 * @remarks No-long-jump zone!!!
12588 */
12589static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12590{
12591 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
12592
12593 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12594 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12595 AssertRCReturn(rc2, rc2);
12596
12597 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
12598 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12599 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12600 {
12601 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12602 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12603
12604 /*
12605 * If the event was a software interrupt (generated with INT n) or a software exception
12606 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
12607 * can handle the VM-exit and continue guest execution which will re-execute the
12608 * instruction rather than re-injecting the exception, as that can cause premature
12609 * trips to ring-3 before injection and involve TRPM which currently has no way of
12610 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
12611 * the problem).
12612 */
12613 IEMXCPTRAISE enmRaise;
12614 IEMXCPTRAISEINFO fRaiseInfo;
12615 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
12616 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
12617 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
12618 {
12619 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
12620 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
12621 }
12622 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
12623 {
12624 uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12625 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
12626 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
12627 /** @todo Make AssertMsgReturn as just AssertMsg later. */
12628 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
12629 ("Unexpected VM-exit interruption vector type %#x!\n", uExitVectorType), VERR_VMX_IPE_5);
12630
12631 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
12632
12633 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
12634 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
12635 {
12636 pVmxTransient->fVectoringPF = true;
12637 enmRaise = IEMXCPTRAISE_PREV_EVENT;
12638 }
12639 }
12640 else
12641 {
12642 /*
12643 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
12644 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
12645 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
12646 */
12647 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12648 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
12649 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
12650 enmRaise = IEMXCPTRAISE_PREV_EVENT;
12651 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
12652 }
12653
12654 /*
12655 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
12656 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
12657 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
12658 * subsequent VM-entry would fail.
12659 *
12660 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
12661 */
12662 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
12663 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
12664 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
12665 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
12666 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
12667 {
12668 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
12669 }
12670
12671 switch (enmRaise)
12672 {
12673 case IEMXCPTRAISE_CURRENT_XCPT:
12674 {
12675 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
12676 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
12677 Assert(rcStrict == VINF_SUCCESS);
12678 break;
12679 }
12680
12681 case IEMXCPTRAISE_PREV_EVENT:
12682 {
12683 uint32_t u32ErrCode;
12684 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
12685 {
12686 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12687 AssertRCReturn(rc2, rc2);
12688 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12689 }
12690 else
12691 u32ErrCode = 0;
12692
12693 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
12694 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
12695 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12696 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
12697
12698 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
12699 pVCpu->hm.s.Event.u32ErrCode));
12700 Assert(rcStrict == VINF_SUCCESS);
12701 break;
12702 }
12703
12704 case IEMXCPTRAISE_REEXEC_INSTR:
12705 Assert(rcStrict == VINF_SUCCESS);
12706 break;
12707
12708 case IEMXCPTRAISE_DOUBLE_FAULT:
12709 {
12710 /*
12711 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
12712 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
12713 */
12714 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
12715 {
12716 pVmxTransient->fVectoringDoublePF = true;
12717 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
12718 pVCpu->cpum.GstCtx.cr2));
12719 rcStrict = VINF_SUCCESS;
12720 }
12721 else
12722 {
12723 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
12724 hmR0VmxSetPendingXcptDF(pVCpu);
12725 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
12726 uIdtVector, uExitVector));
12727 rcStrict = VINF_HM_DOUBLE_FAULT;
12728 }
12729 break;
12730 }
12731
12732 case IEMXCPTRAISE_TRIPLE_FAULT:
12733 {
12734 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
12735 rcStrict = VINF_EM_RESET;
12736 break;
12737 }
12738
12739 case IEMXCPTRAISE_CPU_HANG:
12740 {
12741 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
12742 rcStrict = VERR_EM_GUEST_CPU_HANG;
12743 break;
12744 }
12745
12746 default:
12747 {
12748 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
12749 rcStrict = VERR_VMX_IPE_2;
12750 break;
12751 }
12752 }
12753 }
12754 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
12755 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
12756 && uExitVector != X86_XCPT_DF
12757 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
12758 {
12759 /*
12760 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
12761 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
12762 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
12763 */
12764 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
12765 {
12766 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
12767 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
12768 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
12769 }
12770 }
12771
12772 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
12773 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
12774 return rcStrict;
12775}
12776
12777
12778/** @name VM-exit handlers.
12779 * @{
12780 */
12781/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12782/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12783/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12784
12785/**
12786 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
12787 */
12788HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12789{
12790 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12791 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
12792 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
12793 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
12794 return VINF_SUCCESS;
12795 return VINF_EM_RAW_INTERRUPT;
12796}
12797
12798
12799/**
12800 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
12801 */
12802HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12803{
12804 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12805 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
12806
12807 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12808 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12809 AssertRCReturn(rc, rc);
12810
12811 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12812 Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
12813 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
12814 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
12815
12816 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
12817 {
12818 /*
12819 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
12820 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
12821 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
12822 *
12823 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
12824 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
12825 */
12826 VMXDispatchHostNmi();
12827 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
12828 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12829 return VINF_SUCCESS;
12830 }
12831
12832 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12833 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12834 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
12835 { /* likely */ }
12836 else
12837 {
12838 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
12839 rcStrictRc1 = VINF_SUCCESS;
12840 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12841 return rcStrictRc1;
12842 }
12843
12844 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
12845 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
12846 switch (uIntType)
12847 {
12848 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
12849 Assert(uVector == X86_XCPT_DB);
12850 RT_FALL_THRU();
12851 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
12852 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
12853 RT_FALL_THRU();
12854 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
12855 {
12856 /*
12857 * If there's any exception caused as a result of event injection, the resulting
12858 * secondary/final execption will be pending, we shall continue guest execution
12859 * after injecting the event. The page-fault case is complicated and we manually
12860 * handle any currently pending event in hmR0VmxExitXcptPF.
12861 */
12862 if (!pVCpu->hm.s.Event.fPending)
12863 { /* likely */ }
12864 else if (uVector != X86_XCPT_PF)
12865 {
12866 rc = VINF_SUCCESS;
12867 break;
12868 }
12869
12870 switch (uVector)
12871 {
12872 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
12873 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
12874 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
12875 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
12876 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
12877 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
12878
12879 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
12880 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12881 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
12882 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12883 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
12884 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12885 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
12886 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12887 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
12888 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12889 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
12890 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12891 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
12892 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12893 default:
12894 {
12895 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
12896 if (pVmcsInfo->RealMode.fRealOnV86Active)
12897 {
12898 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
12899 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
12900 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
12901
12902 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
12903 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12904 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
12905 AssertRCReturn(rc, rc);
12906 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
12907 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
12908 0 /* GCPtrFaultAddress */);
12909 }
12910 else
12911 {
12912 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
12913 pVCpu->hm.s.u32HMError = uVector;
12914 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
12915 }
12916 break;
12917 }
12918 }
12919 break;
12920 }
12921
12922 default:
12923 {
12924 pVCpu->hm.s.u32HMError = uExitIntInfo;
12925 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
12926 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
12927 break;
12928 }
12929 }
12930 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12931 return rc;
12932}
12933
12934
12935/**
12936 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
12937 */
12938HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12939{
12940 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12941
12942 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
12943 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12944 int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
12945 AssertRCReturn(rc, rc);
12946
12947 /* Evaluate and deliver pending events and resume guest execution. */
12948 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
12949 return VINF_SUCCESS;
12950}
12951
12952
12953/**
12954 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
12955 */
12956HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12957{
12958 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12959
12960 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12961 if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
12962 {
12963 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
12964 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12965 }
12966
12967 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS));
12968
12969 /*
12970 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
12971 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
12972 */
12973 uint32_t fIntrState;
12974 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
12975 AssertRCReturn(rc, rc);
12976 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
12977 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
12978 {
12979 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
12980 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
12981
12982 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
12983 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
12984 AssertRCReturn(rc, rc);
12985 }
12986
12987 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
12988 rc = hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
12989 AssertRCReturn(rc, rc);
12990
12991 /* Evaluate and deliver pending events and resume guest execution. */
12992 return VINF_SUCCESS;
12993}
12994
12995
12996/**
12997 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
12998 */
12999HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13000{
13001 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13002 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13003}
13004
13005
13006/**
13007 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
13008 */
13009HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13010{
13011 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13012 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13013}
13014
13015
13016/**
13017 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
13018 */
13019HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13020{
13021 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13022
13023 /*
13024 * Get the state we need and update the exit history entry.
13025 */
13026 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13027 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13028 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
13029 AssertRCReturn(rc, rc);
13030
13031 VBOXSTRICTRC rcStrict;
13032 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
13033 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
13034 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
13035 if (!pExitRec)
13036 {
13037 /*
13038 * Regular CPUID instruction execution.
13039 */
13040 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
13041 if (rcStrict == VINF_SUCCESS)
13042 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13043 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13044 {
13045 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13046 rcStrict = VINF_SUCCESS;
13047 }
13048 }
13049 else
13050 {
13051 /*
13052 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
13053 */
13054 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13055 AssertRCReturn(rc2, rc2);
13056
13057 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
13058 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
13059
13060 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
13061 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13062
13063 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
13064 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
13065 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
13066 }
13067 return rcStrict;
13068}
13069
13070
13071/**
13072 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
13073 */
13074HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13075{
13076 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13077
13078 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13079 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
13080 AssertRCReturn(rc, rc);
13081
13082 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
13083 return VINF_EM_RAW_EMULATE_INSTR;
13084
13085 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
13086 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13087}
13088
13089
13090/**
13091 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
13092 */
13093HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13094{
13095 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13096
13097 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13098 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13099 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13100 AssertRCReturn(rc, rc);
13101
13102 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
13103 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13104 {
13105 /* If we get a spurious VM-exit when TSC offsetting is enabled,
13106 we must reset offsetting on VM-entry. See @bugref{6634}. */
13107 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
13108 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13109 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13110 }
13111 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13112 {
13113 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13114 rcStrict = VINF_SUCCESS;
13115 }
13116 return rcStrict;
13117}
13118
13119
13120/**
13121 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
13122 */
13123HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13124{
13125 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13126
13127 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13128 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
13129 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13130 AssertRCReturn(rc, rc);
13131
13132 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
13133 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13134 {
13135 /* If we get a spurious VM-exit when TSC offsetting is enabled,
13136 we must reset offsetting on VM-reentry. See @bugref{6634}. */
13137 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
13138 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13139 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13140 }
13141 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13142 {
13143 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13144 rcStrict = VINF_SUCCESS;
13145 }
13146 return rcStrict;
13147}
13148
13149
13150/**
13151 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
13152 */
13153HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13154{
13155 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13156
13157 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13158 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
13159 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13160 AssertRCReturn(rc, rc);
13161
13162 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13163 rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13164 if (RT_LIKELY(rc == VINF_SUCCESS))
13165 {
13166 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13167 Assert(pVmxTransient->cbInstr == 2);
13168 }
13169 else
13170 {
13171 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
13172 rc = VERR_EM_INTERPRETER;
13173 }
13174 return rc;
13175}
13176
13177
13178/**
13179 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
13180 */
13181HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13182{
13183 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13184
13185 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
13186 if (EMAreHypercallInstructionsEnabled(pVCpu))
13187 {
13188 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13189 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
13190 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
13191 AssertRCReturn(rc, rc);
13192
13193 /* Perform the hypercall. */
13194 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
13195 if (rcStrict == VINF_SUCCESS)
13196 {
13197 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13198 AssertRCReturn(rc, rc);
13199 }
13200 else
13201 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
13202 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
13203 || RT_FAILURE(rcStrict));
13204
13205 /* If the hypercall changes anything other than guest's general-purpose registers,
13206 we would need to reload the guest changed bits here before VM-entry. */
13207 }
13208 else
13209 Log4Func(("Hypercalls not enabled\n"));
13210
13211 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
13212 if (RT_FAILURE(rcStrict))
13213 {
13214 hmR0VmxSetPendingXcptUD(pVCpu);
13215 rcStrict = VINF_SUCCESS;
13216 }
13217
13218 return rcStrict;
13219}
13220
13221
13222/**
13223 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
13224 */
13225HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13226{
13227 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13228 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
13229
13230 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13231 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13232 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13233 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13234 AssertRCReturn(rc, rc);
13235
13236 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
13237
13238 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
13239 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13240 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13241 {
13242 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13243 rcStrict = VINF_SUCCESS;
13244 }
13245 else
13246 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
13247 VBOXSTRICTRC_VAL(rcStrict)));
13248 return rcStrict;
13249}
13250
13251
13252/**
13253 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
13254 */
13255HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13256{
13257 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13258
13259 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13260 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13261 AssertRCReturn(rc, rc);
13262
13263 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13264 rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13265 if (RT_LIKELY(rc == VINF_SUCCESS))
13266 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13267 else
13268 {
13269 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
13270 rc = VERR_EM_INTERPRETER;
13271 }
13272 return rc;
13273}
13274
13275
13276/**
13277 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
13278 */
13279HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13280{
13281 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13282
13283 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13284 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13285 AssertRCReturn(rc, rc);
13286
13287 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13288 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13289 rc = VBOXSTRICTRC_VAL(rc2);
13290 if (RT_LIKELY( rc == VINF_SUCCESS
13291 || rc == VINF_EM_HALT))
13292 {
13293 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13294 AssertRCReturn(rc3, rc3);
13295
13296 if ( rc == VINF_EM_HALT
13297 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
13298 rc = VINF_SUCCESS;
13299 }
13300 else
13301 {
13302 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
13303 rc = VERR_EM_INTERPRETER;
13304 }
13305 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
13306 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
13307 return rc;
13308}
13309
13310
13311/**
13312 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
13313 */
13314HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13315{
13316 /*
13317 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
13318 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
13319 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
13320 * VMX root operation. If we get here, something funny is going on.
13321 *
13322 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
13323 */
13324 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13325 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
13326 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13327}
13328
13329
13330/**
13331 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
13332 */
13333HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13334{
13335 /*
13336 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
13337 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
13338 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
13339 * an SMI. If we get here, something funny is going on.
13340 *
13341 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
13342 * See Intel spec. 25.3 "Other Causes of VM-Exits"
13343 */
13344 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13345 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
13346 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13347}
13348
13349
13350/**
13351 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
13352 */
13353HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13354{
13355 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
13356 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13357 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
13358 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13359}
13360
13361
13362/**
13363 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
13364 */
13365HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13366{
13367 /*
13368 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
13369 * We don't make use of it as our guests don't have direct access to the host LAPIC.
13370 * See Intel spec. 25.3 "Other Causes of VM-exits".
13371 */
13372 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13373 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
13374 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13375}
13376
13377
13378/**
13379 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
13380 * VM-exit.
13381 */
13382HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13383{
13384 /*
13385 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
13386 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
13387 *
13388 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
13389 * See Intel spec. "23.8 Restrictions on VMX operation".
13390 */
13391 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13392 return VINF_SUCCESS;
13393}
13394
13395
13396/**
13397 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
13398 * VM-exit.
13399 */
13400HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13401{
13402 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13403 return VINF_EM_RESET;
13404}
13405
13406
13407/**
13408 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
13409 */
13410HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13411{
13412 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13413
13414 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13415 AssertRCReturn(rc, rc);
13416
13417 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
13418 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
13419 rc = VINF_SUCCESS;
13420 else
13421 rc = VINF_EM_HALT;
13422
13423 if (rc != VINF_SUCCESS)
13424 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
13425 return rc;
13426}
13427
13428
13429/**
13430 * VM-exit handler for instructions that result in a \#UD exception delivered to
13431 * the guest.
13432 */
13433HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13434{
13435 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13436 hmR0VmxSetPendingXcptUD(pVCpu);
13437 return VINF_SUCCESS;
13438}
13439
13440
13441/**
13442 * VM-exit handler for expiry of the VMX-preemption timer.
13443 */
13444HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13445{
13446 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13447
13448 /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
13449 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13450
13451 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
13452 PVM pVM = pVCpu->CTX_SUFF(pVM);
13453 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
13454 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
13455 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
13456}
13457
13458
13459/**
13460 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
13461 */
13462HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13463{
13464 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13465
13466 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13467 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13468 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
13469 AssertRCReturn(rc, rc);
13470
13471 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
13472 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
13473 : HM_CHANGED_RAISED_XCPT_MASK);
13474
13475 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13476 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
13477
13478 return rcStrict;
13479}
13480
13481
13482/**
13483 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
13484 */
13485HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13486{
13487 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13488 /** @todo Use VM-exit instruction information. */
13489 return VERR_EM_INTERPRETER;
13490}
13491
13492
13493/**
13494 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
13495 * Error VM-exit.
13496 */
13497HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13498{
13499 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13500 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13501 AssertRCReturn(rc, rc);
13502
13503 rc = hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo);
13504 if (RT_FAILURE(rc))
13505 return rc;
13506
13507 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
13508 NOREF(uInvalidReason);
13509
13510#ifdef VBOX_STRICT
13511 uint32_t fIntrState;
13512 RTHCUINTREG uHCReg;
13513 uint64_t u64Val;
13514 uint32_t u32Val;
13515 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
13516 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
13517 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
13518 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
13519 AssertRCReturn(rc, rc);
13520
13521 Log4(("uInvalidReason %u\n", uInvalidReason));
13522 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
13523 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
13524 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
13525 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
13526
13527 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
13528 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
13529 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
13530 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
13531 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
13532 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
13533 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
13534 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
13535 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
13536 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
13537 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
13538 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
13539
13540 hmR0DumpRegs(pVCpu);
13541#endif
13542
13543 return VERR_VMX_INVALID_GUEST_STATE;
13544}
13545
13546
13547/**
13548 * VM-exit handler for VM-entry failure due to an MSR-load
13549 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
13550 */
13551HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13552{
13553 AssertMsgFailed(("Unexpected MSR-load exit\n"));
13554 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13555}
13556
13557
13558/**
13559 * VM-exit handler for VM-entry failure due to a machine-check event
13560 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
13561 */
13562HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13563{
13564 AssertMsgFailed(("Unexpected machine-check event exit\n"));
13565 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13566}
13567
13568
13569/**
13570 * VM-exit handler for all undefined reasons. Should never ever happen.. in
13571 * theory.
13572 */
13573HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13574{
13575 RT_NOREF2(pVCpu, pVmxTransient);
13576 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
13577 return VERR_VMX_UNDEFINED_EXIT_CODE;
13578}
13579
13580
13581/**
13582 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
13583 * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
13584 * Conditional VM-exit.
13585 */
13586HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13587{
13588 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13589
13590 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
13591 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
13592 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13593 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
13594 return VERR_EM_INTERPRETER;
13595 AssertMsgFailed(("Unexpected XDTR access\n"));
13596 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13597}
13598
13599
13600/**
13601 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
13602 */
13603HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13604{
13605 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13606
13607 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
13608 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13609 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
13610 return VERR_EM_INTERPRETER;
13611 AssertMsgFailed(("Unexpected RDRAND exit\n"));
13612 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13613}
13614
13615
13616/**
13617 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
13618 */
13619HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13620{
13621 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13622
13623 /** @todo Optimize this: We currently drag in in the whole MSR state
13624 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
13625 * MSRs required. That would require changes to IEM and possibly CPUM too.
13626 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
13627 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13628 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
13629 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
13630 switch (idMsr)
13631 {
13632 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
13633 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
13634 }
13635
13636 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13637 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
13638 AssertRCReturn(rc, rc);
13639
13640 Log4Func(("ecx=%#RX32\n", idMsr));
13641
13642#ifdef VBOX_STRICT
13643 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
13644 {
13645 if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
13646 && idMsr != MSR_K6_EFER)
13647 {
13648 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
13649 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13650 }
13651 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13652 {
13653 Assert(pVmcsInfo->pvMsrBitmap);
13654 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
13655 if (fMsrpm & VMXMSRPM_ALLOW_RD)
13656 {
13657 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
13658 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13659 }
13660 }
13661 }
13662#endif
13663
13664 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
13665 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
13666 if (rcStrict == VINF_SUCCESS)
13667 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
13668 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
13669 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13670 {
13671 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13672 rcStrict = VINF_SUCCESS;
13673 }
13674 else
13675 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
13676
13677 return rcStrict;
13678}
13679
13680
13681/**
13682 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
13683 */
13684HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13685{
13686 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13687
13688 /** @todo Optimize this: We currently drag in in the whole MSR state
13689 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
13690 * MSRs required. That would require changes to IEM and possibly CPUM too.
13691 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
13692 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
13693 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
13694
13695 /*
13696 * The FS and GS base MSRs are not part of the above all-MSRs mask.
13697 * Although we don't need to fetch the base as it will be overwritten shortly, while
13698 * loading guest-state we would also load the entire segment register including limit
13699 * and attributes and thus we need to load them here.
13700 */
13701 switch (idMsr)
13702 {
13703 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
13704 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
13705 }
13706
13707 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13708 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13709 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
13710 AssertRCReturn(rc, rc);
13711
13712 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
13713
13714 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
13715 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
13716
13717 if (rcStrict == VINF_SUCCESS)
13718 {
13719 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13720
13721 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
13722 if ( idMsr == MSR_IA32_APICBASE
13723 || ( idMsr >= MSR_IA32_X2APIC_START
13724 && idMsr <= MSR_IA32_X2APIC_END))
13725 {
13726 /*
13727 * We've already saved the APIC related guest-state (TPR) in post-run phase.
13728 * When full APIC register virtualization is implemented we'll have to make
13729 * sure APIC state is saved from the VMCS before IEM changes it.
13730 */
13731 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
13732 }
13733 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
13734 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13735 else if (idMsr == MSR_K6_EFER)
13736 {
13737 /*
13738 * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
13739 * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
13740 * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
13741 */
13742 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
13743 }
13744
13745 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
13746 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
13747 {
13748 switch (idMsr)
13749 {
13750 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
13751 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
13752 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
13753 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
13754 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
13755 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
13756 default:
13757 {
13758 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
13759 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
13760 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13761 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
13762 break;
13763 }
13764 }
13765 }
13766#ifdef VBOX_STRICT
13767 else
13768 {
13769 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
13770 switch (idMsr)
13771 {
13772 case MSR_IA32_SYSENTER_CS:
13773 case MSR_IA32_SYSENTER_EIP:
13774 case MSR_IA32_SYSENTER_ESP:
13775 case MSR_K8_FS_BASE:
13776 case MSR_K8_GS_BASE:
13777 {
13778 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
13779 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13780 }
13781
13782 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
13783 default:
13784 {
13785 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
13786 {
13787 /* EFER MSR writes are always intercepted. */
13788 if (idMsr != MSR_K6_EFER)
13789 {
13790 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
13791 idMsr));
13792 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13793 }
13794 }
13795
13796 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13797 {
13798 Assert(pVmcsInfo->pvMsrBitmap);
13799 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
13800 if (fMsrpm & VMXMSRPM_ALLOW_WR)
13801 {
13802 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
13803 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13804 }
13805 }
13806 break;
13807 }
13808 }
13809 }
13810#endif /* VBOX_STRICT */
13811 }
13812 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13813 {
13814 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13815 rcStrict = VINF_SUCCESS;
13816 }
13817 else
13818 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
13819
13820 return rcStrict;
13821}
13822
13823
13824/**
13825 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
13826 */
13827HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13828{
13829 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13830 /** @todo The guest has likely hit a contended spinlock. We might want to
13831 * poke a schedule different guest VCPU. */
13832 return VINF_EM_RAW_INTERRUPT;
13833}
13834
13835
13836/**
13837 * VM-exit handler for when the TPR value is lowered below the specified
13838 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
13839 */
13840HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13841{
13842 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13843 Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
13844
13845 /*
13846 * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
13847 * We'll re-evaluate pending interrupts and inject them before the next VM
13848 * entry so we can just continue execution here.
13849 */
13850 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
13851 return VINF_SUCCESS;
13852}
13853
13854
13855/**
13856 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
13857 * VM-exit.
13858 *
13859 * @retval VINF_SUCCESS when guest execution can continue.
13860 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
13861 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
13862 * interpreter.
13863 */
13864HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13865{
13866 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13867 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
13868
13869 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13870 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13871 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13872 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13873 AssertRCReturn(rc, rc);
13874
13875 VBOXSTRICTRC rcStrict;
13876 PVM pVM = pVCpu->CTX_SUFF(pVM);
13877 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
13878 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
13879 switch (uAccessType)
13880 {
13881 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
13882 {
13883 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
13884 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
13885 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
13886 AssertMsg( rcStrict == VINF_SUCCESS
13887 || rcStrict == VINF_IEM_RAISED_XCPT
13888 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13889
13890 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
13891 {
13892 case 0:
13893 {
13894 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13895 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13896 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
13897 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
13898
13899 /*
13900 * This is a kludge for handling switches back to real mode when we try to use
13901 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
13902 * deal with special selector values, so we have to return to ring-3 and run
13903 * there till the selector values are V86 mode compatible.
13904 *
13905 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
13906 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
13907 * at the end of this function.
13908 */
13909 if ( rc == VINF_SUCCESS
13910 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
13911 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
13912 && (uOldCr0 & X86_CR0_PE)
13913 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
13914 {
13915 /** @todo check selectors rather than returning all the time. */
13916 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
13917 rcStrict = VINF_EM_RESCHEDULE_REM;
13918 }
13919 break;
13920 }
13921
13922 case 2:
13923 {
13924 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
13925 /* Nothing to do here, CR2 it's not part of the VMCS. */
13926 break;
13927 }
13928
13929 case 3:
13930 {
13931 Assert( !pVM->hm.s.fNestedPaging
13932 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
13933 || pVCpu->hm.s.fUsingDebugLoop);
13934 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
13935 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13936 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
13937 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
13938 break;
13939 }
13940
13941 case 4:
13942 {
13943 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
13944 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13945 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
13946 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
13947 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
13948 break;
13949 }
13950
13951 case 8:
13952 {
13953 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
13954 Assert(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
13955 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13956 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
13957 break;
13958 }
13959 default:
13960 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
13961 break;
13962 }
13963 break;
13964 }
13965
13966 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
13967 {
13968 Assert( !pVM->hm.s.fNestedPaging
13969 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
13970 || pVCpu->hm.s.fUsingDebugLoop
13971 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
13972 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
13973 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
13974 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
13975
13976 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
13977 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
13978 AssertMsg( rcStrict == VINF_SUCCESS
13979 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13980#ifdef VBOX_WITH_STATISTICS
13981 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
13982 {
13983 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
13984 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
13985 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
13986 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
13987 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
13988 }
13989#endif
13990 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
13991 VBOXSTRICTRC_VAL(rcStrict)));
13992 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
13993 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
13994 else
13995 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13996 break;
13997 }
13998
13999 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
14000 {
14001 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
14002 AssertMsg( rcStrict == VINF_SUCCESS
14003 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14004
14005 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
14006 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
14007 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
14008 break;
14009 }
14010
14011 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
14012 {
14013 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
14014 rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
14015 AssertRCReturn(rc, rc);
14016 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
14017 pVmxTransient->uGuestLinearAddr);
14018 AssertMsg( rcStrict == VINF_SUCCESS
14019 || rcStrict == VINF_IEM_RAISED_XCPT
14020 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14021
14022 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
14023 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
14024 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
14025 break;
14026 }
14027
14028 default:
14029 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
14030 VERR_VMX_UNEXPECTED_EXCEPTION);
14031 }
14032
14033 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
14034 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
14035 if (rcStrict == VINF_IEM_RAISED_XCPT)
14036 {
14037 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14038 rcStrict = VINF_SUCCESS;
14039 }
14040
14041 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
14042 NOREF(pVM);
14043 return rcStrict;
14044}
14045
14046
14047/**
14048 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
14049 * VM-exit.
14050 */
14051HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14052{
14053 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14054 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
14055
14056 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14057 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14058 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14059 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14060 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
14061 | CPUMCTX_EXTRN_EFER);
14062 /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
14063 AssertRCReturn(rc, rc);
14064
14065 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
14066 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
14067 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
14068 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
14069 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
14070 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
14071 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
14072 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
14073
14074 /*
14075 * Update exit history to see if this exit can be optimized.
14076 */
14077 VBOXSTRICTRC rcStrict;
14078 PCEMEXITREC pExitRec = NULL;
14079 if ( !fGstStepping
14080 && !fDbgStepping)
14081 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14082 !fIOString
14083 ? !fIOWrite
14084 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
14085 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
14086 : !fIOWrite
14087 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
14088 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
14089 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14090 if (!pExitRec)
14091 {
14092 /* I/O operation lookup arrays. */
14093 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
14094 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
14095 uint32_t const cbValue = s_aIOSizes[uIOWidth];
14096 uint32_t const cbInstr = pVmxTransient->cbInstr;
14097 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
14098 PVM pVM = pVCpu->CTX_SUFF(pVM);
14099 if (fIOString)
14100 {
14101 /*
14102 * INS/OUTS - I/O String instruction.
14103 *
14104 * Use instruction-information if available, otherwise fall back on
14105 * interpreting the instruction.
14106 */
14107 Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
14108 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
14109 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
14110 if (fInsOutsInfo)
14111 {
14112 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
14113 AssertRCReturn(rc2, rc2);
14114 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
14115 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
14116 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
14117 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
14118 if (fIOWrite)
14119 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
14120 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
14121 else
14122 {
14123 /*
14124 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
14125 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
14126 * See Intel Instruction spec. for "INS".
14127 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
14128 */
14129 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
14130 }
14131 }
14132 else
14133 rcStrict = IEMExecOne(pVCpu);
14134
14135 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
14136 fUpdateRipAlready = true;
14137 }
14138 else
14139 {
14140 /*
14141 * IN/OUT - I/O instruction.
14142 */
14143 Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
14144 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
14145 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
14146 if (fIOWrite)
14147 {
14148 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
14149 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
14150 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
14151 && !pCtx->eflags.Bits.u1TF)
14152 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
14153 }
14154 else
14155 {
14156 uint32_t u32Result = 0;
14157 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
14158 if (IOM_SUCCESS(rcStrict))
14159 {
14160 /* Save result of I/O IN instr. in AL/AX/EAX. */
14161 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
14162 }
14163 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
14164 && !pCtx->eflags.Bits.u1TF)
14165 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
14166 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
14167 }
14168 }
14169
14170 if (IOM_SUCCESS(rcStrict))
14171 {
14172 if (!fUpdateRipAlready)
14173 {
14174 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
14175 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
14176 }
14177
14178 /*
14179 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
14180 * while booting Fedora 17 64-bit guest.
14181 *
14182 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
14183 */
14184 if (fIOString)
14185 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
14186
14187 /*
14188 * If any I/O breakpoints are armed, we need to check if one triggered
14189 * and take appropriate action.
14190 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
14191 */
14192 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
14193 AssertRCReturn(rc, rc);
14194
14195 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
14196 * execution engines about whether hyper BPs and such are pending. */
14197 uint32_t const uDr7 = pCtx->dr[7];
14198 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
14199 && X86_DR7_ANY_RW_IO(uDr7)
14200 && (pCtx->cr4 & X86_CR4_DE))
14201 || DBGFBpIsHwIoArmed(pVM)))
14202 {
14203 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
14204
14205 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
14206 VMMRZCallRing3Disable(pVCpu);
14207 HM_DISABLE_PREEMPT(pVCpu);
14208
14209 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
14210
14211 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
14212 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
14213 {
14214 /* Raise #DB. */
14215 if (fIsGuestDbgActive)
14216 ASMSetDR6(pCtx->dr[6]);
14217 if (pCtx->dr[7] != uDr7)
14218 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
14219
14220 hmR0VmxSetPendingXcptDB(pVCpu);
14221 }
14222 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
14223 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
14224 else if ( rcStrict2 != VINF_SUCCESS
14225 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
14226 rcStrict = rcStrict2;
14227 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
14228
14229 HM_RESTORE_PREEMPT();
14230 VMMRZCallRing3Enable(pVCpu);
14231 }
14232 }
14233
14234#ifdef VBOX_STRICT
14235 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
14236 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
14237 Assert(!fIOWrite);
14238 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
14239 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
14240 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
14241 Assert(fIOWrite);
14242 else
14243 {
14244# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
14245 * statuses, that the VMM device and some others may return. See
14246 * IOM_SUCCESS() for guidance. */
14247 AssertMsg( RT_FAILURE(rcStrict)
14248 || rcStrict == VINF_SUCCESS
14249 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
14250 || rcStrict == VINF_EM_DBG_BREAKPOINT
14251 || rcStrict == VINF_EM_RAW_GUEST_TRAP
14252 || rcStrict == VINF_EM_RAW_TO_R3
14253 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14254# endif
14255 }
14256#endif
14257 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
14258 }
14259 else
14260 {
14261 /*
14262 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14263 */
14264 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14265 AssertRCReturn(rc2, rc2);
14266 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
14267 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
14268 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
14269 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14270 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
14271 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
14272
14273 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14274 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14275
14276 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14277 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14278 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14279 }
14280 return rcStrict;
14281}
14282
14283
14284/**
14285 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
14286 * VM-exit.
14287 */
14288HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14289{
14290 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14291
14292 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
14293 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14294 AssertRCReturn(rc, rc);
14295 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
14296 {
14297 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
14298 AssertRCReturn(rc, rc);
14299 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
14300 {
14301 uint32_t uErrCode;
14302 RTGCUINTPTR GCPtrFaultAddress;
14303 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
14304 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
14305 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
14306 if (fErrorCodeValid)
14307 {
14308 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
14309 AssertRCReturn(rc, rc);
14310 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
14311 }
14312 else
14313 uErrCode = 0;
14314
14315 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
14316 && uVector == X86_XCPT_PF)
14317 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
14318 else
14319 GCPtrFaultAddress = 0;
14320
14321 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14322 AssertRCReturn(rc, rc);
14323
14324 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
14325 pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
14326
14327 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
14328 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
14329 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14330 }
14331 }
14332
14333 /* Fall back to the interpreter to emulate the task-switch. */
14334 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
14335 return VERR_EM_INTERPRETER;
14336}
14337
14338
14339/**
14340 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
14341 */
14342HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14343{
14344 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14345
14346 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14347 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
14348 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
14349 AssertRCReturn(rc, rc);
14350 return VINF_EM_DBG_STEPPED;
14351}
14352
14353
14354/**
14355 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
14356 */
14357HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14358{
14359 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14360 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
14361
14362 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14363 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14364 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14365 {
14366 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
14367 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14368 {
14369 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
14370 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14371 }
14372 }
14373 else
14374 {
14375 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14376 rcStrict1 = VINF_SUCCESS;
14377 return rcStrict1;
14378 }
14379
14380 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
14381 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14382 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14383 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14384 AssertRCReturn(rc, rc);
14385
14386 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
14387 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
14388 VBOXSTRICTRC rcStrict2;
14389 switch (uAccessType)
14390 {
14391 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
14392 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
14393 {
14394 AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
14395 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
14396 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
14397
14398 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
14399 GCPhys &= PAGE_BASE_GC_MASK;
14400 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
14401 PVM pVM = pVCpu->CTX_SUFF(pVM);
14402 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
14403 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
14404
14405 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14406 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
14407 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
14408 CPUMCTX2CORE(pCtx), GCPhys);
14409 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
14410 if ( rcStrict2 == VINF_SUCCESS
14411 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
14412 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
14413 {
14414 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
14415 | HM_CHANGED_GUEST_APIC_TPR);
14416 rcStrict2 = VINF_SUCCESS;
14417 }
14418 break;
14419 }
14420
14421 default:
14422 Log4Func(("uAccessType=%#x\n", uAccessType));
14423 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
14424 break;
14425 }
14426
14427 if (rcStrict2 != VINF_SUCCESS)
14428 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
14429 return rcStrict2;
14430}
14431
14432
14433/**
14434 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
14435 * VM-exit.
14436 */
14437HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14438{
14439 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14440
14441 /* We should -not- get this VM-exit if the guest's debug registers were active. */
14442 if (pVmxTransient->fWasGuestDebugStateActive)
14443 {
14444 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
14445 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
14446 }
14447
14448 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14449 if ( !pVCpu->hm.s.fSingleInstruction
14450 && !pVmxTransient->fWasHyperDebugStateActive)
14451 {
14452 Assert(!DBGFIsStepping(pVCpu));
14453 Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
14454
14455 /* Don't intercept MOV DRx any more. */
14456 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
14457 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
14458 AssertRCReturn(rc, rc);
14459
14460 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
14461 VMMRZCallRing3Disable(pVCpu);
14462 HM_DISABLE_PREEMPT(pVCpu);
14463
14464 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
14465 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
14466 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
14467
14468 HM_RESTORE_PREEMPT();
14469 VMMRZCallRing3Enable(pVCpu);
14470
14471#ifdef VBOX_WITH_STATISTICS
14472 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14473 AssertRCReturn(rc, rc);
14474 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
14475 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
14476 else
14477 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
14478#endif
14479 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
14480 return VINF_SUCCESS;
14481 }
14482
14483 /*
14484 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
14485 * The EFER MSR is always up-to-date.
14486 * Update the segment registers and DR7 from the CPU.
14487 */
14488 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14489 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14490 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
14491 AssertRCReturn(rc, rc);
14492 Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
14493
14494 PVM pVM = pVCpu->CTX_SUFF(pVM);
14495 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
14496 {
14497 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
14498 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
14499 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
14500 if (RT_SUCCESS(rc))
14501 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
14502 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
14503 }
14504 else
14505 {
14506 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
14507 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
14508 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
14509 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
14510 }
14511
14512 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
14513 if (RT_SUCCESS(rc))
14514 {
14515 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14516 AssertRCReturn(rc2, rc2);
14517 return VINF_SUCCESS;
14518 }
14519 return rc;
14520}
14521
14522
14523/**
14524 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
14525 * Conditional VM-exit.
14526 */
14527HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14528{
14529 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14530 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
14531
14532 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14533 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14534 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14535 {
14536 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
14537 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
14538 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14539 {
14540 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
14541 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14542 }
14543 }
14544 else
14545 {
14546 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14547 rcStrict1 = VINF_SUCCESS;
14548 return rcStrict1;
14549 }
14550
14551 /*
14552 * Get sufficent state and update the exit history entry.
14553 */
14554 RTGCPHYS GCPhys;
14555 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14556 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
14557 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14558 AssertRCReturn(rc, rc);
14559
14560 VBOXSTRICTRC rcStrict;
14561 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14562 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
14563 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14564 if (!pExitRec)
14565 {
14566 /*
14567 * If we succeed, resume guest execution.
14568 * If we fail in interpreting the instruction because we couldn't get the guest physical address
14569 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
14570 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
14571 * weird case. See @bugref{6043}.
14572 */
14573 PVM pVM = pVCpu->CTX_SUFF(pVM);
14574 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14575 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
14576 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
14577 if ( rcStrict == VINF_SUCCESS
14578 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
14579 || rcStrict == VERR_PAGE_NOT_PRESENT)
14580 {
14581 /* Successfully handled MMIO operation. */
14582 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
14583 | HM_CHANGED_GUEST_APIC_TPR);
14584 rcStrict = VINF_SUCCESS;
14585 }
14586 }
14587 else
14588 {
14589 /*
14590 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14591 */
14592 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14593 AssertRCReturn(rc2, rc2);
14594
14595 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
14596 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
14597
14598 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14599 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14600
14601 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14602 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14603 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14604 }
14605 return VBOXSTRICTRC_TODO(rcStrict);
14606}
14607
14608
14609/**
14610 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
14611 * VM-exit.
14612 */
14613HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14614{
14615 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14616 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
14617
14618 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14619 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14620 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14621 {
14622 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
14623 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14624 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
14625 }
14626 else
14627 {
14628 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14629 rcStrict1 = VINF_SUCCESS;
14630 return rcStrict1;
14631 }
14632
14633 RTGCPHYS GCPhys;
14634 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14635 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
14636 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14637 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14638 AssertRCReturn(rc, rc);
14639
14640 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
14641 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
14642
14643 RTGCUINT uErrorCode = 0;
14644 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
14645 uErrorCode |= X86_TRAP_PF_ID;
14646 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
14647 uErrorCode |= X86_TRAP_PF_RW;
14648 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
14649 uErrorCode |= X86_TRAP_PF_P;
14650
14651 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
14652
14653
14654 /* Handle the pagefault trap for the nested shadow table. */
14655 PVM pVM = pVCpu->CTX_SUFF(pVM);
14656 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14657
14658 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x cs:rip=%#04x:%#RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
14659 pCtx->cs.Sel, pCtx->rip));
14660
14661 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
14662 TRPMResetTrap(pVCpu);
14663
14664 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
14665 if ( rcStrict2 == VINF_SUCCESS
14666 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
14667 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
14668 {
14669 /* Successfully synced our nested page tables. */
14670 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
14671 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
14672 return VINF_SUCCESS;
14673 }
14674
14675 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
14676 return rcStrict2;
14677}
14678
14679/** @} */
14680
14681/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14682/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
14683/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14684
14685/**
14686 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
14687 */
14688static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14689{
14690 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14691 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
14692
14693 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
14694 AssertRCReturn(rc, rc);
14695
14696 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
14697 {
14698 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
14699 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
14700
14701 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
14702 * provides VM-exit instruction length. If this causes problem later,
14703 * disassemble the instruction like it's done on AMD-V. */
14704 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14705 AssertRCReturn(rc2, rc2);
14706 return rc;
14707 }
14708
14709 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14710 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14711 return rc;
14712}
14713
14714
14715/**
14716 * VM-exit exception handler for \#BP (Breakpoint exception).
14717 */
14718static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14719{
14720 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14721 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
14722
14723 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14724 AssertRCReturn(rc, rc);
14725
14726 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14727 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
14728 if (rc == VINF_EM_RAW_GUEST_TRAP)
14729 {
14730 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14731 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14732 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14733 AssertRCReturn(rc, rc);
14734
14735 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14736 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14737 }
14738
14739 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
14740 return rc;
14741}
14742
14743
14744/**
14745 * VM-exit exception handler for \#AC (alignment check exception).
14746 */
14747static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14748{
14749 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14750
14751 /*
14752 * Re-inject it. We'll detect any nesting before getting here.
14753 */
14754 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14755 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14756 AssertRCReturn(rc, rc);
14757 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
14758
14759 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14760 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14761 return VINF_SUCCESS;
14762}
14763
14764
14765/**
14766 * VM-exit exception handler for \#DB (Debug exception).
14767 */
14768static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14769{
14770 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14771 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
14772
14773 /*
14774 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
14775 * for processing.
14776 */
14777 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14778
14779 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
14780 uint64_t uDR6 = X86_DR6_INIT_VAL;
14781 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
14782
14783 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14784 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
14785 Log6Func(("rc=%Rrc\n", rc));
14786 if (rc == VINF_EM_RAW_GUEST_TRAP)
14787 {
14788 /*
14789 * The exception was for the guest. Update DR6, DR7.GD and
14790 * IA32_DEBUGCTL.LBR before forwarding it.
14791 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
14792 */
14793 VMMRZCallRing3Disable(pVCpu);
14794 HM_DISABLE_PREEMPT(pVCpu);
14795
14796 pCtx->dr[6] &= ~X86_DR6_B_MASK;
14797 pCtx->dr[6] |= uDR6;
14798 if (CPUMIsGuestDebugStateActive(pVCpu))
14799 ASMSetDR6(pCtx->dr[6]);
14800
14801 HM_RESTORE_PREEMPT();
14802 VMMRZCallRing3Enable(pVCpu);
14803
14804 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
14805 AssertRCReturn(rc, rc);
14806
14807 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
14808 pCtx->dr[7] &= ~X86_DR7_GD;
14809
14810 /* Paranoia. */
14811 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
14812 pCtx->dr[7] |= X86_DR7_RA1_MASK;
14813
14814 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
14815 AssertRCReturn(rc, rc);
14816
14817 /*
14818 * Raise #DB in the guest.
14819 *
14820 * It is important to reflect exactly what the VM-exit gave us (preserving the
14821 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
14822 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
14823 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
14824 *
14825 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
14826 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
14827 */
14828 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14829 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14830 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14831 AssertRCReturn(rc, rc);
14832 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14833 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14834 return VINF_SUCCESS;
14835 }
14836
14837 /*
14838 * Not a guest trap, must be a hypervisor related debug event then.
14839 * Update DR6 in case someone is interested in it.
14840 */
14841 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
14842 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
14843 CPUMSetHyperDR6(pVCpu, uDR6);
14844
14845 return rc;
14846}
14847
14848
14849/**
14850 * Hacks its way around the lovely mesa driver's backdoor accesses.
14851 *
14852 * @sa hmR0SvmHandleMesaDrvGp
14853 */
14854static int hmR0VmxHandleMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14855{
14856 LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
14857 RT_NOREF(pCtx);
14858
14859 /* For now we'll just skip the instruction. */
14860 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14861}
14862
14863
14864/**
14865 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
14866 * backdoor logging w/o checking what it is running inside.
14867 *
14868 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
14869 * backdoor port and magic numbers loaded in registers.
14870 *
14871 * @returns true if it is, false if it isn't.
14872 * @sa hmR0SvmIsMesaDrvGp
14873 */
14874DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14875{
14876 /* 0xed: IN eAX,dx */
14877 uint8_t abInstr[1];
14878 if (pVmxTransient->cbInstr != sizeof(abInstr))
14879 return false;
14880
14881 /* Check that it is #GP(0). */
14882 if (pVmxTransient->uExitIntErrorCode != 0)
14883 return false;
14884
14885 /* Check magic and port. */
14886 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
14887 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
14888 if (pCtx->rax != UINT32_C(0x564d5868))
14889 return false;
14890 if (pCtx->dx != UINT32_C(0x5658))
14891 return false;
14892
14893 /* Flat ring-3 CS. */
14894 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
14895 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
14896 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
14897 if (pCtx->cs.Attr.n.u2Dpl != 3)
14898 return false;
14899 if (pCtx->cs.u64Base != 0)
14900 return false;
14901
14902 /* Check opcode. */
14903 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
14904 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
14905 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
14906 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
14907 if (RT_FAILURE(rc))
14908 return false;
14909 if (abInstr[0] != 0xed)
14910 return false;
14911
14912 return true;
14913}
14914
14915
14916/**
14917 * VM-exit exception handler for \#GP (General-protection exception).
14918 *
14919 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
14920 */
14921static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14922{
14923 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14924 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
14925
14926 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14927 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14928 if (pVmcsInfo->RealMode.fRealOnV86Active)
14929 { /* likely */ }
14930 else
14931 {
14932#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14933 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv);
14934#endif
14935 /* If the guest is not in real-mode or we have unrestricted guest execution support, reflect #GP to the guest. */
14936 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14937 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14938 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14939 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14940 AssertRCReturn(rc, rc);
14941 Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
14942 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
14943
14944 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
14945 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
14946 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14947 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14948 else
14949 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
14950 return rc;
14951 }
14952
14953 Assert(CPUMIsGuestInRealModeEx(pCtx));
14954 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
14955
14956 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14957 AssertRCReturn(rc, rc);
14958
14959 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
14960 if (rcStrict == VINF_SUCCESS)
14961 {
14962 if (!CPUMIsGuestInRealModeEx(pCtx))
14963 {
14964 /*
14965 * The guest is no longer in real-mode, check if we can continue executing the
14966 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
14967 */
14968 pVmcsInfo->RealMode.fRealOnV86Active = false;
14969 if (HMCanExecuteVmxGuest(pVCpu, pCtx))
14970 {
14971 Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
14972 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14973 }
14974 else
14975 {
14976 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
14977 rcStrict = VINF_EM_RESCHEDULE;
14978 }
14979 }
14980 else
14981 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14982 }
14983 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14984 {
14985 rcStrict = VINF_SUCCESS;
14986 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14987 }
14988 return VBOXSTRICTRC_VAL(rcStrict);
14989}
14990
14991
14992/**
14993 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
14994 * the exception reported in the VMX transient structure back into the VM.
14995 *
14996 * @remarks Requires uExitIntInfo in the VMX transient structure to be
14997 * up-to-date.
14998 */
14999static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15000{
15001 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15002#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
15003 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15004 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVmcsInfo->RealMode.fRealOnV86Active,
15005 ("uVector=%#x u32XcptBitmap=%#X32\n",
15006 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
15007 NOREF(pVmcsInfo);
15008#endif
15009
15010 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
15011 hmR0VmxCheckExitDueToEventDelivery(). */
15012 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15013 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15014 AssertRCReturn(rc, rc);
15015 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
15016
15017#ifdef DEBUG_ramshankar
15018 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
15019 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n",
15020 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pCtx->cs.Sel, pCtx->rip));
15021#endif
15022
15023 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
15024 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
15025 return VINF_SUCCESS;
15026}
15027
15028
15029/**
15030 * VM-exit exception handler for \#PF (Page-fault exception).
15031 */
15032static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15033{
15034 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15035 PVM pVM = pVCpu->CTX_SUFF(pVM);
15036 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15037 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15038 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15039 AssertRCReturn(rc, rc);
15040
15041 if (!pVM->hm.s.fNestedPaging)
15042 { /* likely */ }
15043 else
15044 {
15045#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
15046 Assert(pVCpu->hm.s.fUsingDebugLoop);
15047#endif
15048 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
15049 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
15050 {
15051 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
15052 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
15053 }
15054 else
15055 {
15056 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
15057 hmR0VmxSetPendingXcptDF(pVCpu);
15058 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
15059 }
15060 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
15061 return rc;
15062 }
15063
15064 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
15065 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
15066 if (pVmxTransient->fVectoringPF)
15067 {
15068 Assert(pVCpu->hm.s.Event.fPending);
15069 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15070 }
15071
15072 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15073 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15074 AssertRCReturn(rc, rc);
15075
15076 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
15077 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
15078
15079 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
15080 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
15081
15082 Log4Func(("#PF: rc=%Rrc\n", rc));
15083 if (rc == VINF_SUCCESS)
15084 {
15085 /*
15086 * This is typically a shadow page table sync or a MMIO instruction. But we may have
15087 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
15088 */
15089 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15090 TRPMResetTrap(pVCpu);
15091 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
15092 return rc;
15093 }
15094
15095 if (rc == VINF_EM_RAW_GUEST_TRAP)
15096 {
15097 if (!pVmxTransient->fVectoringDoublePF)
15098 {
15099 /* It's a guest page fault and needs to be reflected to the guest. */
15100 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
15101 TRPMResetTrap(pVCpu);
15102 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
15103 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
15104 uGstErrorCode, pVmxTransient->uExitQual);
15105 }
15106 else
15107 {
15108 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
15109 TRPMResetTrap(pVCpu);
15110 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
15111 hmR0VmxSetPendingXcptDF(pVCpu);
15112 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
15113 }
15114
15115 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
15116 return VINF_SUCCESS;
15117 }
15118
15119 TRPMResetTrap(pVCpu);
15120 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
15121 return rc;
15122}
15123
15124#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
15125/** @name VMX instruction handlers.
15126 * @{
15127 */
15128/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15129/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VMX instructions VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15130/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15131
15132/**
15133 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
15134 */
15135HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15136{
15137 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15138
15139 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15140 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15141 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15142 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15143 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15144 AssertRCReturn(rc, rc);
15145
15146 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15147
15148 VMXVEXITINFO ExitInfo;
15149 RT_ZERO(ExitInfo);
15150 ExitInfo.uReason = pVmxTransient->uExitReason;
15151 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15152 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15153 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15154 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15155
15156 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
15157 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15158 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15159 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15160 {
15161 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15162 rcStrict = VINF_SUCCESS;
15163 }
15164 return rcStrict;
15165}
15166
15167
15168/**
15169 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
15170 */
15171HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15172{
15173 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15174
15175 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
15176 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
15177 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15178 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15179 AssertRCReturn(rc, rc);
15180
15181 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15182
15183 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMLAUNCH);
15184 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15185 {
15186 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
15187 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15188 }
15189 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15190 return rcStrict;
15191}
15192
15193
15194/**
15195 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
15196 */
15197HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15198{
15199 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15200
15201 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15202 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15203 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15204 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15205 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15206 AssertRCReturn(rc, rc);
15207
15208 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15209
15210 VMXVEXITINFO ExitInfo;
15211 RT_ZERO(ExitInfo);
15212 ExitInfo.uReason = pVmxTransient->uExitReason;
15213 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15214 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15215 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15216 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15217
15218 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
15219 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15220 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15221 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15222 {
15223 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15224 rcStrict = VINF_SUCCESS;
15225 }
15226 return rcStrict;
15227}
15228
15229
15230/**
15231 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
15232 */
15233HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15234{
15235 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15236
15237 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15238 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15239 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15240 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15241 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15242 AssertRCReturn(rc, rc);
15243
15244 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15245
15246 VMXVEXITINFO ExitInfo;
15247 RT_ZERO(ExitInfo);
15248 ExitInfo.uReason = pVmxTransient->uExitReason;
15249 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15250 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15251 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15252 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
15253
15254 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
15255 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15256 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15257 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15258 {
15259 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15260 rcStrict = VINF_SUCCESS;
15261 }
15262 return rcStrict;
15263}
15264
15265
15266/**
15267 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
15268 */
15269HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15270{
15271 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15272
15273 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15274 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15275 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15276 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15277 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15278 AssertRCReturn(rc, rc);
15279
15280 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15281
15282 VMXVEXITINFO ExitInfo;
15283 RT_ZERO(ExitInfo);
15284 ExitInfo.uReason = pVmxTransient->uExitReason;
15285 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15286 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15287 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15288 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
15289 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
15290
15291 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
15292 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15293 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15294 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15295 {
15296 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15297 rcStrict = VINF_SUCCESS;
15298 }
15299 return rcStrict;
15300}
15301
15302
15303/**
15304 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
15305 */
15306HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15307{
15308 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15309
15310 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
15311 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
15312 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15313 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15314 AssertRCReturn(rc, rc);
15315
15316 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15317
15318 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMRESUME);
15319 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15320 {
15321 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
15322 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15323 }
15324 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15325 return rcStrict;
15326}
15327
15328
15329/**
15330 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
15331 */
15332HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15333{
15334 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15335
15336 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15337 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15338 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15339 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15340 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15341 AssertRCReturn(rc, rc);
15342
15343 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15344
15345 VMXVEXITINFO ExitInfo;
15346 RT_ZERO(ExitInfo);
15347 ExitInfo.uReason = pVmxTransient->uExitReason;
15348 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15349 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15350 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15351 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
15352 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15353
15354 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
15355 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15356 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15357 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15358 {
15359 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15360 rcStrict = VINF_SUCCESS;
15361 }
15362 return rcStrict;
15363}
15364
15365
15366/**
15367 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
15368 */
15369HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15370{
15371 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15372
15373 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15374 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
15375 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
15376 AssertRCReturn(rc, rc);
15377
15378 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15379
15380 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
15381 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15382 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
15383 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15384 {
15385 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15386 rcStrict = VINF_SUCCESS;
15387 }
15388 return rcStrict;
15389}
15390
15391
15392/**
15393 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
15394 */
15395HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15396{
15397 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15398
15399 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15400 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15401 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15402 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15403 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15404 AssertRCReturn(rc, rc);
15405
15406 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15407
15408 VMXVEXITINFO ExitInfo;
15409 RT_ZERO(ExitInfo);
15410 ExitInfo.uReason = pVmxTransient->uExitReason;
15411 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15412 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15413 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15414 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15415
15416 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
15417 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15418 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15419 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15420 {
15421 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15422 rcStrict = VINF_SUCCESS;
15423 }
15424 return rcStrict;
15425}
15426
15427/** @} */
15428#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
15429
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette