VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 78238

Last change on this file since 78238 was 78238, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: Don't need to import RIP, RFLAGS when there is no blocking-by-STI/MovSS/NMI. We'll import it while evaluating pending events or while injecting them if needed (real-on-v86 case).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 641.3 KB
Line 
1/* $Id: HMVMXR0.cpp 78238 2019-04-22 05:07:45Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include <VBox/vmm/hmvmxinline.h>
43#include "HMVMXR0.h"
44#include "dtrace/VBoxVMM.h"
45
46# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
47#ifdef DEBUG_ramshankar
48# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
49# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/** @name HMVMX_READ_XXX
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82/** @} */
83
84/**
85 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
86 * guest using hardware-assisted VMX.
87 *
88 * This excludes state like GPRs (other than RSP) which are always are
89 * swapped and restored across the world-switch and also registers like EFER,
90 * MSR which cannot be modified by the guest without causing a VM-exit.
91 */
92#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
93 | CPUMCTX_EXTRN_RFLAGS \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_TABLE_MASK \
97 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
98 | CPUMCTX_EXTRN_SYSCALL_MSRS \
99 | CPUMCTX_EXTRN_SYSENTER_MSRS \
100 | CPUMCTX_EXTRN_TSC_AUX \
101 | CPUMCTX_EXTRN_OTHER_MSRS \
102 | CPUMCTX_EXTRN_CR0 \
103 | CPUMCTX_EXTRN_CR3 \
104 | CPUMCTX_EXTRN_CR4 \
105 | CPUMCTX_EXTRN_DR7 \
106 | CPUMCTX_EXTRN_HM_VMX_MASK)
107
108/**
109 * Exception bitmap mask for real-mode guests (real-on-v86).
110 *
111 * We need to intercept all exceptions manually except:
112 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
113 * due to bugs in Intel CPUs.
114 * - \#PF need not be intercepted even in real-mode if we have nested paging
115 * support.
116 */
117#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
118 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
119 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
120 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
121 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
122 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
123 | RT_BIT(X86_XCPT_XF))
124
125/** Maximum VM-instruction error number. */
126#define HMVMX_INSTR_ERROR_MAX 28
127
128/** Profiling macro. */
129#ifdef HM_PROFILE_EXIT_DISPATCH
130# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
131# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
132#else
133# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
134# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
135#endif
136
137/** Assert that preemption is disabled or covered by thread-context hooks. */
138#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
139 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
140
141/** Assert that we haven't migrated CPUs when thread-context hooks are not
142 * used. */
143#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
144 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
145 ("Illegal migration! Entered on CPU %u Current %u\n", \
146 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
147
148/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
149 * context. */
150#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
151 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
152 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
153
154/** Helper macro for VM-exit handlers called unexpectedly. */
155#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
156 do { \
157 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
158 return VERR_VMX_UNEXPECTED_EXIT; \
159 } while (0)
160
161#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
162/** Macro that does the necessary privilege checks and intercepted VM-exits for
163 * guests that attempted to execute a VMX instruction. */
164# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
165 do \
166 { \
167 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
168 if (rcStrictTmp == VINF_SUCCESS) \
169 { /* likely */ } \
170 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
171 { \
172 Assert((a_pVCpu)->hm.s.Event.fPending); \
173 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
174 return VINF_SUCCESS; \
175 } \
176 else \
177 { \
178 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
179 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
180 } \
181 } while (0)
182
183/** Macro that decodes a memory operand for an instruction VM-exit. */
184# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
185 do \
186 { \
187 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
188 (a_pGCPtrEffAddr)); \
189 if (rcStrictTmp == VINF_SUCCESS) \
190 { /* likely */ } \
191 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
192 { \
193 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
194 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
195 NOREF(uXcptTmp); \
196 return VINF_SUCCESS; \
197 } \
198 else \
199 { \
200 Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
201 return rcStrictTmp; \
202 } \
203 } while (0)
204
205#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
206
207
208/*********************************************************************************************************************************
209* Structures and Typedefs *
210*********************************************************************************************************************************/
211/**
212 * VMX transient state.
213 *
214 * A state structure for holding miscellaneous information across
215 * VMX non-root operation and restored after the transition.
216 */
217typedef struct VMXTRANSIENT
218{
219 /** The host's rflags/eflags. */
220 RTCCUINTREG fEFlags;
221#if HC_ARCH_BITS == 32
222 uint32_t u32Alignment0;
223#endif
224 /** The guest's TPR value used for TPR shadowing. */
225 uint8_t u8GuestTpr;
226 /** Alignment. */
227 uint8_t abAlignment0[7];
228
229 /** The basic VM-exit reason. */
230 uint16_t uExitReason;
231 /** Alignment. */
232 uint16_t u16Alignment0;
233 /** The VM-exit interruption error code. */
234 uint32_t uExitIntErrorCode;
235 /** The VM-exit exit code qualification. */
236 uint64_t uExitQual;
237 /** The Guest-linear address. */
238 uint64_t uGuestLinearAddr;
239
240 /** The VM-exit interruption-information field. */
241 uint32_t uExitIntInfo;
242 /** The VM-exit instruction-length field. */
243 uint32_t cbInstr;
244 /** The VM-exit instruction-information field. */
245 VMXEXITINSTRINFO ExitInstrInfo;
246 /** Whether the VM-entry failed or not. */
247 bool fVMEntryFailed;
248 /** Whether we are currently executing a nested-guest. */
249 bool fIsNestedGuest;
250 /** Alignment. */
251 uint8_t abAlignment1[2];
252
253 /** The VM-entry interruption-information field. */
254 uint32_t uEntryIntInfo;
255 /** The VM-entry exception error code field. */
256 uint32_t uEntryXcptErrorCode;
257 /** The VM-entry instruction length field. */
258 uint32_t cbEntryInstr;
259
260 /** IDT-vectoring information field. */
261 uint32_t uIdtVectoringInfo;
262 /** IDT-vectoring error code. */
263 uint32_t uIdtVectoringErrorCode;
264
265 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
266 uint32_t fVmcsFieldsRead;
267
268 /** Whether the guest debug state was active at the time of VM-exit. */
269 bool fWasGuestDebugStateActive;
270 /** Whether the hyper debug state was active at the time of VM-exit. */
271 bool fWasHyperDebugStateActive;
272 /** Whether TSC-offsetting and VMX-preemption timer was updated before VM-entry. */
273 bool fUpdatedTscOffsettingAndPreemptTimer;
274 /** Whether the VM-exit was caused by a page-fault during delivery of a
275 * contributory exception or a page-fault. */
276 bool fVectoringDoublePF;
277 /** Whether the VM-exit was caused by a page-fault during delivery of an
278 * external interrupt or NMI. */
279 bool fVectoringPF;
280 bool afAlignment0[3];
281
282 /** The VMCS info. object. */
283 PVMXVMCSINFO pVmcsInfo;
284} VMXTRANSIENT;
285AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
286AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
287AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
288AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
289AssertCompileMemberAlignment(VMXTRANSIENT, pVmcsInfo, sizeof(uint64_t));
290AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
291/** Pointer to VMX transient state. */
292typedef VMXTRANSIENT *PVMXTRANSIENT;
293
294/**
295 * Memory operand read or write access.
296 */
297typedef enum VMXMEMACCESS
298{
299 VMXMEMACCESS_READ = 0,
300 VMXMEMACCESS_WRITE = 1
301} VMXMEMACCESS;
302
303/**
304 * VMX VM-exit handler.
305 *
306 * @returns Strict VBox status code (i.e. informational status codes too).
307 * @param pVCpu The cross context virtual CPU structure.
308 * @param pVmxTransient The VMX-transient structure.
309 */
310#ifndef HMVMX_USE_FUNCTION_TABLE
311typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
312#else
313typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
314/** Pointer to VM-exit handler. */
315typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
316#endif
317
318/**
319 * VMX VM-exit handler, non-strict status code.
320 *
321 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
322 *
323 * @returns VBox status code, no informational status code returned.
324 * @param pVCpu The cross context virtual CPU structure.
325 * @param pVmxTransient The VMX-transient structure.
326 *
327 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
328 * use of that status code will be replaced with VINF_EM_SOMETHING
329 * later when switching over to IEM.
330 */
331#ifndef HMVMX_USE_FUNCTION_TABLE
332typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
333#else
334typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
335#endif
336
337
338/*********************************************************************************************************************************
339* Internal Functions *
340*********************************************************************************************************************************/
341#ifndef HMVMX_USE_FUNCTION_TABLE
342DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
343# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
344# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
345#else
346# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
347# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
348#endif
349#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
350DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
351#endif
352
353static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
354#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
355static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
356#endif
357
358/** @name VM-exit handlers.
359 * @{
360 */
361static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
362static FNVMXEXITHANDLER hmR0VmxExitExtInt;
363static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
364static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
365static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
366static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
367static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
368static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
369static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
370static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
371static FNVMXEXITHANDLER hmR0VmxExitCpuid;
372static FNVMXEXITHANDLER hmR0VmxExitGetsec;
373static FNVMXEXITHANDLER hmR0VmxExitHlt;
374static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
375static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
376static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
377static FNVMXEXITHANDLER hmR0VmxExitVmcall;
378#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
379static FNVMXEXITHANDLER hmR0VmxExitVmclear;
380static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
381static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
382static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
383static FNVMXEXITHANDLER hmR0VmxExitVmread;
384static FNVMXEXITHANDLER hmR0VmxExitVmresume;
385static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
386static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
387static FNVMXEXITHANDLER hmR0VmxExitVmxon;
388#endif
389static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
392static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
393static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
394static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
395static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
396static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
398static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
399static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
400static FNVMXEXITHANDLER hmR0VmxExitMwait;
401static FNVMXEXITHANDLER hmR0VmxExitMtf;
402static FNVMXEXITHANDLER hmR0VmxExitMonitor;
403static FNVMXEXITHANDLER hmR0VmxExitPause;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
405static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
406static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
407static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
408static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
409static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
410static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
411static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
413static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
414static FNVMXEXITHANDLER hmR0VmxExitRdrand;
415static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
416/** @} */
417
418/** @name Helpers for hardware exceptions VM-exit handlers.
419 * @{
420 */
421static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
422static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
423static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
424static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
425static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
426static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
427static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
428/** @} */
429
430
431/*********************************************************************************************************************************
432* Global Variables *
433*********************************************************************************************************************************/
434#ifdef VMX_USE_CACHED_VMCS_ACCESSES
435static const uint32_t g_aVmcsCacheSegBase[] =
436{
437 VMX_VMCS_GUEST_ES_BASE_CACHE_IDX,
438 VMX_VMCS_GUEST_CS_BASE_CACHE_IDX,
439 VMX_VMCS_GUEST_SS_BASE_CACHE_IDX,
440 VMX_VMCS_GUEST_DS_BASE_CACHE_IDX,
441 VMX_VMCS_GUEST_FS_BASE_CACHE_IDX,
442 VMX_VMCS_GUEST_GS_BASE_CACHE_IDX
443};
444AssertCompile(RT_ELEMENTS(g_aVmcsCacheSegBase) == X86_SREG_COUNT);
445#endif
446static const uint32_t g_aVmcsSegBase[] =
447{
448 VMX_VMCS_GUEST_ES_BASE,
449 VMX_VMCS_GUEST_CS_BASE,
450 VMX_VMCS_GUEST_SS_BASE,
451 VMX_VMCS_GUEST_DS_BASE,
452 VMX_VMCS_GUEST_FS_BASE,
453 VMX_VMCS_GUEST_GS_BASE
454};
455static const uint32_t g_aVmcsSegSel[] =
456{
457 VMX_VMCS16_GUEST_ES_SEL,
458 VMX_VMCS16_GUEST_CS_SEL,
459 VMX_VMCS16_GUEST_SS_SEL,
460 VMX_VMCS16_GUEST_DS_SEL,
461 VMX_VMCS16_GUEST_FS_SEL,
462 VMX_VMCS16_GUEST_GS_SEL
463};
464static const uint32_t g_aVmcsSegLimit[] =
465{
466 VMX_VMCS32_GUEST_ES_LIMIT,
467 VMX_VMCS32_GUEST_CS_LIMIT,
468 VMX_VMCS32_GUEST_SS_LIMIT,
469 VMX_VMCS32_GUEST_DS_LIMIT,
470 VMX_VMCS32_GUEST_FS_LIMIT,
471 VMX_VMCS32_GUEST_GS_LIMIT
472};
473static const uint32_t g_aVmcsSegAttr[] =
474{
475 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
476 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
477 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
478 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
479 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
480 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
481};
482AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
483AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
484AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
485AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
486
487#ifdef HMVMX_USE_FUNCTION_TABLE
488/**
489 * VMX_EXIT dispatch table.
490 */
491static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
492{
493 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
494 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
495 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
496 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
497 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
498 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
499 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
500 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
501 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
502 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
503 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
504 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
505 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
506 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
507 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
508 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
509 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
510 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
511 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
512#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
513 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
514 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
515 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
516 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
517 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
518 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
519 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
520 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
521 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
522#else
523 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
524 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
525 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
526 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
527 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
528 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
529 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
530 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
531 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
532#endif
533 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
534 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
535 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
536 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
537 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
538 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
539 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
540 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
541 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
542 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
543 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
544 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
545 /* 40 UNDEFINED */ hmR0VmxExitPause,
546 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
547 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
548 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
549 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
550 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
551 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
552 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
553 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
554 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
555 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
556 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
557 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
558 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
559 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
560 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
561 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
562 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
563 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
564 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
565 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
566 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
567 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
568 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
569 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
570};
571#endif /* HMVMX_USE_FUNCTION_TABLE */
572
573#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
574static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
575{
576 /* 0 */ "(Not Used)",
577 /* 1 */ "VMCALL executed in VMX root operation.",
578 /* 2 */ "VMCLEAR with invalid physical address.",
579 /* 3 */ "VMCLEAR with VMXON pointer.",
580 /* 4 */ "VMLAUNCH with non-clear VMCS.",
581 /* 5 */ "VMRESUME with non-launched VMCS.",
582 /* 6 */ "VMRESUME after VMXOFF",
583 /* 7 */ "VM-entry with invalid control fields.",
584 /* 8 */ "VM-entry with invalid host state fields.",
585 /* 9 */ "VMPTRLD with invalid physical address.",
586 /* 10 */ "VMPTRLD with VMXON pointer.",
587 /* 11 */ "VMPTRLD with incorrect revision identifier.",
588 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
589 /* 13 */ "VMWRITE to read-only VMCS component.",
590 /* 14 */ "(Not Used)",
591 /* 15 */ "VMXON executed in VMX root operation.",
592 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
593 /* 17 */ "VM-entry with non-launched executing VMCS.",
594 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
595 /* 19 */ "VMCALL with non-clear VMCS.",
596 /* 20 */ "VMCALL with invalid VM-exit control fields.",
597 /* 21 */ "(Not Used)",
598 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
599 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
600 /* 24 */ "VMCALL with invalid SMM-monitor features.",
601 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
602 /* 26 */ "VM-entry with events blocked by MOV SS.",
603 /* 27 */ "(Not Used)",
604 /* 28 */ "Invalid operand to INVEPT/INVVPID."
605};
606#endif /* VBOX_STRICT */
607
608
609/**
610 * Get the CR0 guest/host mask that does not change through the lifetime of a VM.
611 *
612 * Any bit set in this mask is owned by the host/hypervisor and would cause a
613 * VM-exit when modified by the guest.
614 *
615 * @returns The static CR0 guest/host mask.
616 * @param pVCpu The cross context virtual CPU structure.
617 */
618DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr0Mask(PVMCPU pVCpu)
619{
620 /*
621 * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
622 * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
623 */
624 /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
625 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
626 * and @bugref{6944}. */
627 PVM pVM = pVCpu->CTX_SUFF(pVM);
628 return ( X86_CR0_PE
629 | X86_CR0_NE
630 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
631 | X86_CR0_PG
632 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
633 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
634 | X86_CR0_NW); /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
635}
636
637
638/**
639 * Gets the CR4 guest/host mask that does not change through the lifetime of a VM.
640 *
641 * Any bit set in this mask is owned by the host/hypervisor and would cause a
642 * VM-exit when modified by the guest.
643 *
644 * @returns The static CR4 guest/host mask.
645 * @param pVCpu The cross context virtual CPU structure.
646 */
647DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr4Mask(PVMCPU pVCpu)
648{
649 /*
650 * We need to look at the host features here (for e.g. OSXSAVE, PCID) because
651 * these bits are reserved on hardware that does not support them. Since the
652 * CPU cannot refer to our virtual CPUID, we need to intercept CR4 changes to
653 * these bits and handle it depending on whether we expose them to the guest.
654 */
655 PVM pVM = pVCpu->CTX_SUFF(pVM);
656 bool const fXSaveRstor = pVM->cpum.ro.HostFeatures.fXSaveRstor;
657 bool const fPcid = pVM->cpum.ro.HostFeatures.fPcid;
658 return ( X86_CR4_VMXE
659 | X86_CR4_VME
660 | X86_CR4_PAE
661 | X86_CR4_PGE
662 | X86_CR4_PSE
663 | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
664 | (fPcid ? X86_CR4_PCIDE : 0));
665}
666
667
668/**
669 * Returns whether the the VM-exit MSR-store area differs from the VM-exit MSR-load
670 * area.
671 *
672 * @returns @c true if it's different, @c false otherwise.
673 * @param pVmcsInfo The VMCS info. object.
674 */
675DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
676{
677 return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
678 && pVmcsInfo->pvGuestMsrStore);
679}
680
681
682/**
683 * Adds one or more exceptions to the exception bitmap and commits it to the current
684 * VMCS.
685 *
686 * @returns VBox status code.
687 * @param pVmxTransient The VMX-transient structure.
688 * @param uXcptMask The exception(s) to add.
689 */
690static int hmR0VmxAddXcptInterceptMask(PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
691{
692 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
693 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
694 if ((uXcptBitmap & uXcptMask) != uXcptMask)
695 {
696 uXcptBitmap |= uXcptMask;
697 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
698 AssertRCReturn(rc, rc);
699 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
700 }
701 return VINF_SUCCESS;
702}
703
704
705/**
706 * Adds an exception to the exception bitmap and commits it to the current VMCS.
707 *
708 * @returns VBox status code.
709 * @param pVmxTransient The VMX-transient structure.
710 * @param uXcpt The exception to add.
711 */
712static int hmR0VmxAddXcptIntercept(PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
713{
714 Assert(uXcpt <= X86_XCPT_LAST);
715 return hmR0VmxAddXcptInterceptMask(pVmxTransient, RT_BIT_32(uXcpt));
716}
717
718
719/**
720 * Remove one or more exceptions from the exception bitmap and commits it to the
721 * current VMCS.
722 *
723 * This takes care of not removing the exception intercept if a nested-guest
724 * requires the exception to be intercepted.
725 *
726 * @returns VBox status code.
727 * @param pVCpu The cross context virtual CPU structure.
728 * @param pVmxTransient The VMX-transient structure.
729 * @param uXcptMask The exception(s) to remove.
730 */
731static int hmR0VmxRemoveXcptInterceptMask(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
732{
733 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
734 uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
735 if (u32XcptBitmap & uXcptMask)
736 {
737#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
738 if (!pVmxTransient->fIsNestedGuest)
739 { /* likely */ }
740 else
741 {
742 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
743 uXcptMask &= ~pVmcsNstGst->u32XcptBitmap;
744 }
745#endif
746#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
747 uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
748 | RT_BIT(X86_XCPT_DE)
749 | RT_BIT(X86_XCPT_NM)
750 | RT_BIT(X86_XCPT_TS)
751 | RT_BIT(X86_XCPT_UD)
752 | RT_BIT(X86_XCPT_NP)
753 | RT_BIT(X86_XCPT_SS)
754 | RT_BIT(X86_XCPT_GP)
755 | RT_BIT(X86_XCPT_PF)
756 | RT_BIT(X86_XCPT_MF));
757#elif defined(HMVMX_ALWAYS_TRAP_PF)
758 uXcptMask &= ~RT_BIT(X86_XCPT_PF);
759#endif
760 if (uXcptMask)
761 {
762 /* Validate we are not removing any essential exception intercepts. */
763 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF))); RT_NOREF(pVCpu);
764 Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
765 Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
766
767 /* Remove it from the exception bitmap. */
768 u32XcptBitmap &= ~uXcptMask;
769
770 /* Commit and update the cache if necessary. */
771 if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
772 {
773 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
774 AssertRCReturn(rc, rc);
775 pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
776 }
777 }
778 }
779 return VINF_SUCCESS;
780}
781
782
783/**
784 * Remove an exceptions from the exception bitmap and commits it to the current
785 * VMCS.
786 *
787 * @returns VBox status code.
788 * @param pVCpu The cross context virtual CPU structure.
789 * @param pVmxTransient The VMX-transient structure.
790 * @param uXcpt The exception to remove.
791 */
792static int hmR0VmxRemoveXcptIntercept(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
793{
794 return hmR0VmxRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
795}
796
797
798/**
799 * Loads the VMCS specified by the VMCS info. object.
800 *
801 * @returns VBox status code.
802 * @param pVmcsInfo The VMCS info. object.
803 */
804static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
805{
806 Assert(pVmcsInfo);
807 Assert(pVmcsInfo->HCPhysVmcs);
808 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
809
810 if (pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_CLEAR)
811 {
812 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
813 if (RT_SUCCESS(rc))
814 {
815 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
816 return VINF_SUCCESS;
817 }
818 return rc;
819 }
820 return VERR_VMX_INVALID_VMCS_LAUNCH_STATE;
821}
822
823
824/**
825 * Clears the VMCS specified by the VMCS info. object.
826 *
827 * @returns VBox status code.
828 * @param pVmcsInfo The VMCS info. object.
829 */
830static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
831{
832 Assert(pVmcsInfo);
833 Assert(pVmcsInfo->HCPhysVmcs);
834 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
835
836 int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
837 if (RT_SUCCESS(rc))
838 pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
839 return rc;
840}
841
842
843#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
844/**
845 * Switches the current VMCS to the one specified.
846 *
847 * @returns VBox status code.
848 * @param pVmcsInfoFrom The VMCS info. object we are switching from.
849 * @param pVmcsInfoTo The VMCS info. object we are switching to.
850 *
851 * @remarks Called with interrupts disabled.
852 */
853static int hmR0VmxSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
854{
855 Assert(pVmcsInfoFrom);
856 Assert(pVmcsInfoTo);
857
858 /*
859 * Clear the VMCS we are switching out if it has not already been cleared.
860 * This will sync any CPU internal data back to the VMCS.
861 */
862 if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
863 {
864 int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
865 if (RT_SUCCESS(rc))
866 { /* likely */ }
867 else
868 return rc;
869 }
870
871 /*
872 * Clear the VMCS we are switching to if it has not already been cleared.
873 * This will initialize the VMCS launch state to "clear" required for loading it.
874 *
875 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
876 */
877 if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
878 {
879 int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
880 if (RT_SUCCESS(rc))
881 { /* likely */ }
882 else
883 return rc;
884 }
885
886 /*
887 * Finally, load the VMCS we are switching to.
888 */
889 return hmR0VmxLoadVmcs(pVmcsInfoTo);
890}
891#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
892
893
894/**
895 * Updates the VM's last error record.
896 *
897 * If there was a VMX instruction error, reads the error data from the VMCS and
898 * updates VCPU's last error record as well.
899 *
900 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
901 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
902 * VERR_VMX_INVALID_VMCS_FIELD.
903 * @param rc The error code.
904 */
905static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
906{
907 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
908 || rc == VERR_VMX_UNABLE_TO_START_VM)
909 {
910 AssertPtrReturnVoid(pVCpu);
911 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
912 }
913 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
914}
915
916
917#ifdef VBOX_STRICT
918/**
919 * Reads the VM-entry interruption-information field from the VMCS into the VMX
920 * transient structure.
921 *
922 * @returns VBox status code.
923 * @param pVmxTransient The VMX-transient structure.
924 *
925 * @remarks No-long-jump zone!!!
926 */
927DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
928{
929 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
930 AssertRCReturn(rc, rc);
931 return VINF_SUCCESS;
932}
933
934
935/**
936 * Reads the VM-entry exception error code field from the VMCS into
937 * the VMX transient structure.
938 *
939 * @returns VBox status code.
940 * @param pVmxTransient The VMX-transient structure.
941 *
942 * @remarks No-long-jump zone!!!
943 */
944DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
945{
946 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
947 AssertRCReturn(rc, rc);
948 return VINF_SUCCESS;
949}
950
951
952/**
953 * Reads the VM-entry exception error code field from the VMCS into
954 * the VMX transient structure.
955 *
956 * @returns VBox status code.
957 * @param pVmxTransient The VMX-transient structure.
958 *
959 * @remarks No-long-jump zone!!!
960 */
961DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
962{
963 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
964 AssertRCReturn(rc, rc);
965 return VINF_SUCCESS;
966}
967#endif /* VBOX_STRICT */
968
969
970/**
971 * Reads the VM-exit interruption-information field from the VMCS into the VMX
972 * transient structure.
973 *
974 * @returns VBox status code.
975 * @param pVmxTransient The VMX-transient structure.
976 */
977DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
978{
979 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
980 {
981 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
982 AssertRCReturn(rc,rc);
983 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
984 }
985 return VINF_SUCCESS;
986}
987
988
989/**
990 * Reads the VM-exit interruption error code from the VMCS into the VMX
991 * transient structure.
992 *
993 * @returns VBox status code.
994 * @param pVmxTransient The VMX-transient structure.
995 */
996DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
997{
998 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
999 {
1000 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1001 AssertRCReturn(rc, rc);
1002 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
1003 }
1004 return VINF_SUCCESS;
1005}
1006
1007
1008/**
1009 * Reads the VM-exit instruction length field from the VMCS into the VMX
1010 * transient structure.
1011 *
1012 * @returns VBox status code.
1013 * @param pVmxTransient The VMX-transient structure.
1014 */
1015DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1016{
1017 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
1018 {
1019 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
1020 AssertRCReturn(rc, rc);
1021 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
1022 }
1023 return VINF_SUCCESS;
1024}
1025
1026
1027/**
1028 * Reads the VM-exit instruction-information field from the VMCS into
1029 * the VMX transient structure.
1030 *
1031 * @returns VBox status code.
1032 * @param pVmxTransient The VMX-transient structure.
1033 */
1034DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
1035{
1036 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
1037 {
1038 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1039 AssertRCReturn(rc, rc);
1040 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
1041 }
1042 return VINF_SUCCESS;
1043}
1044
1045
1046/**
1047 * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
1048 *
1049 * @returns VBox status code.
1050 * @param pVCpu The cross context virtual CPU structure of the
1051 * calling EMT. (Required for the VMCS cache case.)
1052 * @param pVmxTransient The VMX-transient structure.
1053 */
1054DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1055{
1056 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
1057 {
1058 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
1059 AssertRCReturn(rc, rc);
1060 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
1061 }
1062 return VINF_SUCCESS;
1063}
1064
1065
1066/**
1067 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
1068 *
1069 * @returns VBox status code.
1070 * @param pVCpu The cross context virtual CPU structure of the
1071 * calling EMT. (Required for the VMCS cache case.)
1072 * @param pVmxTransient The VMX-transient structure.
1073 */
1074DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1075{
1076 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
1077 {
1078 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
1079 AssertRCReturn(rc, rc);
1080 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
1081 }
1082 return VINF_SUCCESS;
1083}
1084
1085
1086/**
1087 * Reads the IDT-vectoring information field from the VMCS into the VMX
1088 * transient structure.
1089 *
1090 * @returns VBox status code.
1091 * @param pVmxTransient The VMX-transient structure.
1092 *
1093 * @remarks No-long-jump zone!!!
1094 */
1095DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
1096{
1097 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
1098 {
1099 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1100 AssertRCReturn(rc, rc);
1101 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
1102 }
1103 return VINF_SUCCESS;
1104}
1105
1106
1107/**
1108 * Reads the IDT-vectoring error code from the VMCS into the VMX
1109 * transient structure.
1110 *
1111 * @returns VBox status code.
1112 * @param pVmxTransient The VMX-transient structure.
1113 */
1114DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1115{
1116 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
1117 {
1118 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1119 AssertRCReturn(rc, rc);
1120 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
1121 }
1122 return VINF_SUCCESS;
1123}
1124
1125
1126/**
1127 * Enters VMX root mode operation on the current CPU.
1128 *
1129 * @returns VBox status code.
1130 * @param pVM The cross context VM structure. Can be
1131 * NULL, after a resume.
1132 * @param HCPhysCpuPage Physical address of the VMXON region.
1133 * @param pvCpuPage Pointer to the VMXON region.
1134 */
1135static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
1136{
1137 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
1138 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
1139 Assert(pvCpuPage);
1140 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1141
1142 if (pVM)
1143 {
1144 /* Write the VMCS revision identifier to the VMXON region. */
1145 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
1146 }
1147
1148 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
1149 RTCCUINTREG fEFlags = ASMIntDisableFlags();
1150
1151 /* Enable the VMX bit in CR4 if necessary. */
1152 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
1153
1154 /* Enter VMX root mode. */
1155 int rc = VMXEnable(HCPhysCpuPage);
1156 if (RT_FAILURE(rc))
1157 {
1158 if (!(uOldCr4 & X86_CR4_VMXE))
1159 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
1160
1161 if (pVM)
1162 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
1163 }
1164
1165 /* Restore interrupts. */
1166 ASMSetFlags(fEFlags);
1167 return rc;
1168}
1169
1170
1171/**
1172 * Exits VMX root mode operation on the current CPU.
1173 *
1174 * @returns VBox status code.
1175 */
1176static int hmR0VmxLeaveRootMode(void)
1177{
1178 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1179
1180 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
1181 RTCCUINTREG fEFlags = ASMIntDisableFlags();
1182
1183 /* If we're for some reason not in VMX root mode, then don't leave it. */
1184 RTCCUINTREG uHostCR4 = ASMGetCR4();
1185
1186 int rc;
1187 if (uHostCR4 & X86_CR4_VMXE)
1188 {
1189 /* Exit VMX root mode and clear the VMX bit in CR4. */
1190 VMXDisable();
1191 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
1192 rc = VINF_SUCCESS;
1193 }
1194 else
1195 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
1196
1197 /* Restore interrupts. */
1198 ASMSetFlags(fEFlags);
1199 return rc;
1200}
1201
1202
1203/**
1204 * Allocates and maps a physically contiguous page. The allocated page is
1205 * zero'd out (used by various VT-x structures).
1206 *
1207 * @returns IPRT status code.
1208 * @param pMemObj Pointer to the ring-0 memory object.
1209 * @param ppVirt Where to store the virtual address of the
1210 * allocation.
1211 * @param pHCPhys Where to store the physical address of the
1212 * allocation.
1213 */
1214static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
1215{
1216 AssertPtr(pMemObj);
1217 AssertPtr(ppVirt);
1218 AssertPtr(pHCPhys);
1219 int rc = RTR0MemObjAllocCont(pMemObj, X86_PAGE_4K_SIZE, false /* fExecutable */);
1220 if (RT_FAILURE(rc))
1221 return rc;
1222 *ppVirt = RTR0MemObjAddress(*pMemObj);
1223 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
1224 ASMMemZero32(*ppVirt, X86_PAGE_4K_SIZE);
1225 return VINF_SUCCESS;
1226}
1227
1228
1229/**
1230 * Frees and unmaps an allocated, physical page.
1231 *
1232 * @param pMemObj Pointer to the ring-0 memory object.
1233 * @param ppVirt Where to re-initialize the virtual address of
1234 * allocation as 0.
1235 * @param pHCPhys Where to re-initialize the physical address of the
1236 * allocation as 0.
1237 */
1238static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
1239{
1240 AssertPtr(pMemObj);
1241 AssertPtr(ppVirt);
1242 AssertPtr(pHCPhys);
1243 /* NULL is valid, accepted and ignored by the free function below. */
1244 RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
1245 *pMemObj = NIL_RTR0MEMOBJ;
1246 *ppVirt = NULL;
1247 *pHCPhys = NIL_RTHCPHYS;
1248}
1249
1250
1251/**
1252 * Initializes a VMCS info. object.
1253 *
1254 * @param pVmcsInfo The VMCS info. object.
1255 */
1256static void hmR0VmxInitVmcsInfo(PVMXVMCSINFO pVmcsInfo)
1257{
1258 RT_ZERO(*pVmcsInfo);
1259
1260 Assert(pVmcsInfo->hMemObjVmcs == NIL_RTR0MEMOBJ);
1261 Assert(pVmcsInfo->hMemObjMsrBitmap == NIL_RTR0MEMOBJ);
1262 Assert(pVmcsInfo->hMemObjGuestMsrLoad == NIL_RTR0MEMOBJ);
1263 Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
1264 Assert(pVmcsInfo->hMemObjHostMsrLoad == NIL_RTR0MEMOBJ);
1265 pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
1266 pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
1267 pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
1268 pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
1269 pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
1270 pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
1271 pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
1272 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
1273}
1274
1275
1276/**
1277 * Frees the VT-x structures for a VMCS info. object.
1278 *
1279 * @param pVM The cross context VM structure.
1280 * @param pVmcsInfo The VMCS info. object.
1281 */
1282static void hmR0VmxFreeVmcsInfo(PVM pVM, PVMXVMCSINFO pVmcsInfo)
1283{
1284 hmR0VmxPageFree(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
1285
1286 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1287 hmR0VmxPageFree(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
1288
1289 hmR0VmxPageFree(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad, &pVmcsInfo->HCPhysHostMsrLoad);
1290 hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad, &pVmcsInfo->HCPhysGuestMsrLoad);
1291 hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrStore, &pVmcsInfo->pvGuestMsrStore, &pVmcsInfo->HCPhysGuestMsrStore);
1292
1293 hmR0VmxInitVmcsInfo(pVmcsInfo);
1294}
1295
1296
1297/**
1298 * Allocates the VT-x structures for a VMCS info. object.
1299 *
1300 * @returns VBox status code.
1301 * @param pVCpu The cross context virtual CPU structure.
1302 * @param pVmcsInfo The VMCS info. object.
1303 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1304 */
1305static int hmR0VmxAllocVmcsInfo(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
1306{
1307 PVM pVM = pVCpu->CTX_SUFF(pVM);
1308
1309 /* Allocate the guest VM control structure (VMCS). */
1310 int rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
1311 if (RT_SUCCESS(rc))
1312 {
1313 if (!fIsNstGstVmcs)
1314 {
1315 /* Get the allocated virtual-APIC page from the virtual APIC device. */
1316 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
1317 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
1318 {
1319 rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic,
1320 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1321 }
1322 }
1323 else
1324 {
1325 Assert(pVmcsInfo->HCPhysVirtApic == NIL_RTHCPHYS);
1326 Assert(!pVmcsInfo->pbVirtApic);
1327 }
1328
1329 if (RT_SUCCESS(rc))
1330 {
1331 /*
1332 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1333 * transparent accesses of specific MSRs.
1334 *
1335 * If the condition for enabling MSR bitmaps changes here, don't forget to
1336 * update HMIsMsrBitmapActive().
1337 *
1338 * We don't share MSR bitmaps between the guest and nested-guest as we then
1339 * don't need to care about carefully restoring the guest MSR bitmap.
1340 * The guest visible nested-guest MSR bitmap needs to remain unchanged.
1341 * Hence, allocate a separate MSR bitmap for the guest and nested-guest.
1342 */
1343 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1344 {
1345 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
1346 if (RT_SUCCESS(rc))
1347 ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
1348 }
1349
1350 if (RT_SUCCESS(rc))
1351 {
1352 /*
1353 * Allocate the VM-entry MSR-load area for the guest MSRs.
1354 *
1355 * Similar to MSR-bitmaps, we do not share the auto MSR-load/store are between
1356 * the guest and nested-guest.
1357 */
1358 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad,
1359 &pVmcsInfo->HCPhysGuestMsrLoad);
1360 if (RT_SUCCESS(rc))
1361 {
1362 /*
1363 * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
1364 * These contain the guest MSRs to load on VM-entry and store on VM-exit.
1365 */
1366 Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
1367 pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
1368 pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
1369
1370 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1371 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad,
1372 &pVmcsInfo->HCPhysHostMsrLoad);
1373 }
1374 }
1375 }
1376 }
1377
1378 return rc;
1379}
1380
1381
1382/**
1383 * Free all VT-x structures for the VM.
1384 *
1385 * @returns IPRT status code.
1386 * @param pVM The cross context VM structure.
1387 */
1388static void hmR0VmxStructsFree(PVM pVM)
1389{
1390#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1391 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1392#endif
1393 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
1394
1395 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1396 {
1397 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1398 PVMXVMCSINFO pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
1399 hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
1400#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1401 if (pVM->cpum.ro.GuestFeatures.fVmx)
1402 {
1403 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1404 hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
1405 }
1406#endif
1407 }
1408}
1409
1410
1411/**
1412 * Allocate all VT-x structures for the VM.
1413 *
1414 * @returns IPRT status code.
1415 * @param pVM The cross context VM structure.
1416 */
1417static int hmR0VmxStructsAlloc(PVM pVM)
1418{
1419 /*
1420 * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
1421 * The VMCS size cannot be more than 4096 bytes.
1422 *
1423 * See Intel spec. Appendix A.1 "Basic VMX Information".
1424 */
1425 uint32_t const cbVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
1426 if (cbVmcs <= X86_PAGE_4K_SIZE)
1427 { /* likely */ }
1428 else
1429 {
1430 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
1431 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1432 }
1433
1434 /*
1435 * Initialize/check members up-front so we can cleanup en masse on allocation failures.
1436 */
1437#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1438 Assert(pVM->hm.s.vmx.hMemObjScratch == NIL_RTR0MEMOBJ);
1439 Assert(pVM->hm.s.vmx.pbScratch == NULL);
1440 pVM->hm.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
1441#endif
1442
1443 Assert(pVM->hm.s.vmx.hMemObjApicAccess == NIL_RTR0MEMOBJ);
1444 Assert(pVM->hm.s.vmx.pbApicAccess == NULL);
1445 pVM->hm.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
1446
1447 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1448 {
1449 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1450 hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfo);
1451 hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
1452 }
1453
1454 /*
1455 * Allocate per-VM VT-x structures.
1456 */
1457 int rc = VINF_SUCCESS;
1458#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1459 /* Allocate crash-dump magic scratch page. */
1460 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1461 if (RT_FAILURE(rc))
1462 {
1463 hmR0VmxStructsFree(pVM);
1464 return rc;
1465 }
1466 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
1467 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
1468#endif
1469
1470 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
1471 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
1472 {
1473 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
1474 &pVM->hm.s.vmx.HCPhysApicAccess);
1475 if (RT_FAILURE(rc))
1476 {
1477 hmR0VmxStructsFree(pVM);
1478 return rc;
1479 }
1480 }
1481
1482 /*
1483 * Initialize per-VCPU VT-x structures.
1484 */
1485 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1486 {
1487 /* Allocate the guest VMCS structures. */
1488 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1489 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
1490 if (RT_SUCCESS(rc))
1491 {
1492#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1493 /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
1494 if (pVM->cpum.ro.GuestFeatures.fVmx)
1495 {
1496 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
1497 if (RT_SUCCESS(rc))
1498 { /* likely */ }
1499 else
1500 break;
1501 }
1502#endif
1503 }
1504 else
1505 break;
1506 }
1507
1508 if (RT_FAILURE(rc))
1509 {
1510 hmR0VmxStructsFree(pVM);
1511 return rc;
1512 }
1513
1514 return VINF_SUCCESS;
1515}
1516
1517
1518#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1519/**
1520 * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
1521 *
1522 * @returns @c true if the MSR is intercepted, @c false otherwise.
1523 * @param pvMsrBitmap The MSR bitmap.
1524 * @param offMsr The MSR byte offset.
1525 * @param iBit The bit offset from the byte offset.
1526 */
1527DECLINLINE(bool) hmR0VmxIsMsrBitSet(const void *pvMsrBitmap, uint16_t offMsr, int32_t iBit)
1528{
1529 uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
1530 Assert(pbMsrBitmap);
1531 Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
1532 return ASMBitTest(pbMsrBitmap + offMsr, iBit);
1533}
1534#endif
1535
1536
1537/**
1538 * Sets the permission bits for the specified MSR in the given MSR bitmap.
1539 *
1540 * If the passed VMCS is a nested-guest VMCS, this function ensures that the
1541 * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
1542 * VMX execution of the nested-guest, only if nested-guest is also not intercepting
1543 * the read/write access of this MSR.
1544 *
1545 * @param pVCpu The cross context virtual CPU structure.
1546 * @param pVmcsInfo The VMCS info. object.
1547 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1548 * @param idMsr The MSR value.
1549 * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
1550 * include both a read -and- a write permission!
1551 *
1552 * @sa HMGetVmxMsrPermission.
1553 */
1554static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
1555{
1556 uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
1557 Assert(pbMsrBitmap);
1558 Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
1559
1560 /*
1561 * MSR-bitmap Layout:
1562 * Byte index MSR range Interpreted as
1563 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
1564 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
1565 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
1566 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
1567 *
1568 * A bit corresponding to an MSR within the above range causes a VM-exit
1569 * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
1570 * the MSR range, it always cause a VM-exit.
1571 *
1572 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
1573 */
1574 uint16_t const offBitmapRead = 0;
1575 uint16_t const offBitmapWrite = 0x800;
1576 uint16_t offMsr;
1577 int32_t iBit;
1578 if (idMsr <= UINT32_C(0x00001fff))
1579 {
1580 offMsr = 0;
1581 iBit = idMsr;
1582 }
1583 else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1584 {
1585 offMsr = 0x400;
1586 iBit = idMsr - UINT32_C(0xc0000000);
1587 }
1588 else
1589 AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
1590
1591 /*
1592 * Set the MSR read permission.
1593 */
1594 uint16_t const offMsrRead = offBitmapRead + offMsr;
1595 Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
1596 if (fMsrpm & VMXMSRPM_ALLOW_RD)
1597 {
1598#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1599 bool const fClear = !fIsNstGstVmcs ? true
1600 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrRead, iBit);
1601#else
1602 RT_NOREF2(pVCpu, fIsNstGstVmcs);
1603 bool const fClear = true;
1604#endif
1605 if (fClear)
1606 ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
1607 }
1608 else
1609 ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
1610
1611 /*
1612 * Set the MSR write permission.
1613 */
1614 uint16_t const offMsrWrite = offBitmapWrite + offMsr;
1615 Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
1616 if (fMsrpm & VMXMSRPM_ALLOW_WR)
1617 {
1618#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1619 bool const fClear = !fIsNstGstVmcs ? true
1620 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrWrite, iBit);
1621#else
1622 RT_NOREF2(pVCpu, fIsNstGstVmcs);
1623 bool const fClear = true;
1624#endif
1625 if (fClear)
1626 ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
1627 }
1628 else
1629 ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
1630}
1631
1632
1633/**
1634 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1635 * area.
1636 *
1637 * @returns VBox status code.
1638 * @param pVCpu The cross context virtual CPU structure.
1639 * @param pVmcsInfo The VMCS info. object.
1640 * @param cMsrs The number of MSRs.
1641 */
1642static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
1643{
1644 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1645 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1646 if (RT_UNLIKELY(cMsrs >= cMaxSupportedMsrs))
1647 {
1648 LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1649 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1650 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1651 }
1652
1653 /* Commit the MSR counts to the VMCS and update the cache. */
1654 int rc = VINF_SUCCESS;
1655 if (pVmcsInfo->cEntryMsrLoad != cMsrs)
1656 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1657 if (pVmcsInfo->cExitMsrStore != cMsrs)
1658 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1659 if (pVmcsInfo->cExitMsrLoad != cMsrs)
1660 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1661 AssertRCReturn(rc, rc);
1662
1663 pVmcsInfo->cEntryMsrLoad = cMsrs;
1664 pVmcsInfo->cExitMsrStore = cMsrs;
1665 pVmcsInfo->cExitMsrLoad = cMsrs;
1666
1667 return VINF_SUCCESS;
1668}
1669
1670
1671/**
1672 * Adds a new (or updates the value of an existing) guest/host MSR
1673 * pair to be swapped during the world-switch as part of the
1674 * auto-load/store MSR area in the VMCS.
1675 *
1676 * @returns VBox status code.
1677 * @param pVCpu The cross context virtual CPU structure.
1678 * @param pVmxTransient The VMX-transient structure.
1679 * @param idMsr The MSR.
1680 * @param uGuestMsrValue Value of the guest MSR.
1681 * @param fSetReadWrite Whether to set the guest read/write access of this
1682 * MSR (thus not causing a VM-exit).
1683 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1684 * necessary.
1685 */
1686static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
1687 bool fSetReadWrite, bool fUpdateHostMsr)
1688{
1689 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1690 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
1691 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1692 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
1693 uint32_t i;
1694
1695 /* Paranoia. */
1696 Assert(pGuestMsrLoad);
1697
1698 /* Check if the MSR already exists in the VM-entry MSR-load area. */
1699 for (i = 0; i < cMsrs; i++)
1700 {
1701 if (pGuestMsrLoad->u32Msr == idMsr)
1702 break;
1703 pGuestMsrLoad++;
1704 }
1705
1706 bool fAdded = false;
1707 if (i == cMsrs)
1708 {
1709 /* The MSR does not exist, bump the MSR coun to make room for the new MSR. */
1710 ++cMsrs;
1711 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
1712 AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
1713
1714 /* Set the guest to read/write this MSR without causing VM-exits. */
1715 if ( fSetReadWrite
1716 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
1717 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
1718
1719 fAdded = true;
1720 }
1721
1722 /* Update the MSR value for the newly added or already existing MSR. */
1723 pGuestMsrLoad->u32Msr = idMsr;
1724 pGuestMsrLoad->u64Value = uGuestMsrValue;
1725
1726 /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
1727 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
1728 {
1729 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1730 pGuestMsrStore += i;
1731 pGuestMsrStore->u32Msr = idMsr;
1732 pGuestMsrStore->u64Value = 0;
1733 }
1734
1735 /* Update the corresponding slot in the host MSR area. */
1736 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1737 Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad && pHostMsr != pVmcsInfo->pvGuestMsrStore);
1738 pHostMsr += i;
1739 pHostMsr->u32Msr = idMsr;
1740
1741 /*
1742 * Only if the caller requests to update the host MSR value AND we've newly added the
1743 * MSR to the host MSR area do we actually update the value. Otherwise, it will be
1744 * updated by hmR0VmxUpdateAutoLoadHostMsrs().
1745 *
1746 * We do this for performance reasons since reading MSRs may be quite expensive.
1747 */
1748 if ( fAdded
1749 && fUpdateHostMsr)
1750 {
1751 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1752 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1753 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1754 }
1755 return VINF_SUCCESS;
1756}
1757
1758
1759/**
1760 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1761 * auto-load/store MSR area in the VMCS.
1762 *
1763 * @returns VBox status code.
1764 * @param pVCpu The cross context virtual CPU structure.
1765 * @param pVmxTransient The VMX-transient structure.
1766 * @param idMsr The MSR.
1767 */
1768static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr)
1769{
1770 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1771 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
1772 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1773 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
1774
1775 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
1776 for (uint32_t i = 0; i < cMsrs; i++)
1777 {
1778 /* Find the MSR. */
1779 if (pGuestMsrLoad->u32Msr == idMsr)
1780 {
1781 /* If it's the last MSR, simply reduce the count. */
1782 if (i == cMsrs - 1)
1783 {
1784 --cMsrs;
1785 break;
1786 }
1787
1788 /* Remove it by copying the last MSR in place of it, and reducing the count. */
1789 PVMXAUTOMSR pLastGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1790 pLastGuestMsrLoad += cMsrs - 1;
1791 pGuestMsrLoad->u32Msr = pLastGuestMsrLoad->u32Msr;
1792 pGuestMsrLoad->u64Value = pLastGuestMsrLoad->u64Value;
1793
1794 /* Remove it from the VM-exit MSR-store area if we are using a different page. */
1795 if (fSeparateExitMsrStorePage)
1796 {
1797 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1798 PVMXAUTOMSR pLastGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1799 pGuestMsrStore += i;
1800 pLastGuestMsrStore += cMsrs - 1;
1801 Assert(pGuestMsrStore->u32Msr == idMsr);
1802 pGuestMsrStore->u32Msr = pLastGuestMsrStore->u32Msr;
1803 pGuestMsrStore->u64Value = pLastGuestMsrStore->u64Value;
1804 }
1805
1806 /* Remove it from the VM-exit MSR-load area. */
1807 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1808 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1809 pHostMsr += i;
1810 pLastHostMsr += cMsrs - 1;
1811 Assert(pHostMsr->u32Msr == idMsr);
1812 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1813 pHostMsr->u64Value = pLastHostMsr->u64Value;
1814 --cMsrs;
1815 break;
1816 }
1817 pGuestMsrLoad++;
1818 }
1819
1820 /* Update the VMCS if the count changed (meaning the MSR was found). */
1821 if (cMsrs != pVmcsInfo->cEntryMsrLoad)
1822 {
1823 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
1824 AssertRCReturn(rc, rc);
1825
1826 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1827 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1828 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
1829
1830 Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
1831 return VINF_SUCCESS;
1832 }
1833
1834 return VERR_NOT_FOUND;
1835}
1836
1837
1838/**
1839 * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
1840 *
1841 * @returns @c true if found, @c false otherwise.
1842 * @param pVmcsInfo The VMCS info. object.
1843 * @param idMsr The MSR to find.
1844 */
1845static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
1846{
1847 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1848 uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
1849 for (uint32_t i = 0; i < cMsrs; i++)
1850 {
1851 if (pGuestMsrLoad->u32Msr == idMsr)
1852 return true;
1853 pGuestMsrLoad++;
1854 }
1855 return false;
1856}
1857
1858
1859/**
1860 * Updates the value of all host MSRs in the VM-exit MSR-load area.
1861 *
1862 * @param pVCpu The cross context virtual CPU structure.
1863 * @param pVmcsInfo The VMCS info. object.
1864 *
1865 * @remarks No-long-jump zone!!!
1866 */
1867static void hmR0VmxUpdateAutoLoadHostMsrs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
1868{
1869 PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1870 uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
1871
1872 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1873 Assert(pHostMsrLoad);
1874
1875 for (uint32_t i = 0; i < cMsrs; i++, pHostMsrLoad++)
1876 {
1877 /*
1878 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1879 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1880 */
1881 if (pHostMsrLoad->u32Msr == MSR_K6_EFER)
1882 pHostMsrLoad->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
1883 else
1884 pHostMsrLoad->u64Value = ASMRdMsr(pHostMsrLoad->u32Msr);
1885 }
1886}
1887
1888
1889/**
1890 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1891 * perform lazy restoration of the host MSRs while leaving VT-x.
1892 *
1893 * @param pVCpu The cross context virtual CPU structure.
1894 *
1895 * @remarks No-long-jump zone!!!
1896 */
1897static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1898{
1899 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1900
1901 /*
1902 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
1903 */
1904 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1905 {
1906 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1907#if HC_ARCH_BITS == 64
1908 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1909 {
1910 pVCpu->hm.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
1911 pVCpu->hm.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
1912 pVCpu->hm.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
1913 pVCpu->hm.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1914 }
1915#endif
1916 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1917 }
1918}
1919
1920
1921/**
1922 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1923 * lazily while leaving VT-x.
1924 *
1925 * @returns true if it does, false otherwise.
1926 * @param pVCpu The cross context virtual CPU structure.
1927 * @param idMsr The MSR to check.
1928 */
1929static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t idMsr)
1930{
1931 NOREF(pVCpu);
1932#if HC_ARCH_BITS == 64
1933 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1934 {
1935 switch (idMsr)
1936 {
1937 case MSR_K8_LSTAR:
1938 case MSR_K6_STAR:
1939 case MSR_K8_SF_MASK:
1940 case MSR_K8_KERNEL_GS_BASE:
1941 return true;
1942 }
1943 }
1944#else
1945 RT_NOREF(pVCpu, idMsr);
1946#endif
1947 return false;
1948}
1949
1950
1951/**
1952 * Loads a set of guests MSRs to allow read/passthru to the guest.
1953 *
1954 * The name of this function is slightly confusing. This function does NOT
1955 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1956 * common prefix for functions dealing with "lazy restoration" of the shared
1957 * MSRs.
1958 *
1959 * @param pVCpu The cross context virtual CPU structure.
1960 *
1961 * @remarks No-long-jump zone!!!
1962 */
1963static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1964{
1965 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1966 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1967
1968 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1969#if HC_ARCH_BITS == 64
1970 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1971 {
1972 /*
1973 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1974 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1975 * we can skip a few MSR writes.
1976 *
1977 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1978 * guest MSR values in the guest-CPU context might be different to what's currently
1979 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1980 * CPU, see @bugref{8728}.
1981 */
1982 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1983 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1984 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostMsrKernelGsBase
1985 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostMsrLStar
1986 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostMsrStar
1987 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostMsrSfMask)
1988 {
1989#ifdef VBOX_STRICT
1990 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1991 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1992 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1993 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1994#endif
1995 }
1996 else
1997 {
1998 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1999 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
2000 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
2001 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
2002 }
2003 }
2004#endif
2005 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
2006}
2007
2008
2009/**
2010 * Performs lazy restoration of the set of host MSRs if they were previously
2011 * loaded with guest MSR values.
2012 *
2013 * @param pVCpu The cross context virtual CPU structure.
2014 *
2015 * @remarks No-long-jump zone!!!
2016 * @remarks The guest MSRs should have been saved back into the guest-CPU
2017 * context by hmR0VmxImportGuestState()!!!
2018 */
2019static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
2020{
2021 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2022 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2023
2024 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2025 {
2026 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2027#if HC_ARCH_BITS == 64
2028 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2029 {
2030 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostMsrLStar);
2031 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostMsrStar);
2032 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostMsrSfMask);
2033 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostMsrKernelGsBase);
2034 }
2035#endif
2036 }
2037 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
2038}
2039
2040
2041/**
2042 * Verifies that our cached values of the VMCS fields are all consistent with
2043 * what's actually present in the VMCS.
2044 *
2045 * @returns VBox status code.
2046 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
2047 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
2048 * VMCS content. HMCPU error-field is
2049 * updated, see VMX_VCI_XXX.
2050 * @param pVCpu The cross context virtual CPU structure.
2051 * @param pVmcsInfo The VMCS info. object.
2052 */
2053static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2054{
2055 uint32_t u32Val;
2056 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
2057 AssertRCReturn(rc, rc);
2058 AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
2059 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32EntryCtls, u32Val),
2060 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
2061 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2062
2063 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
2064 AssertRCReturn(rc, rc);
2065 AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
2066 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ExitCtls, u32Val),
2067 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
2068 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2069
2070 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
2071 AssertRCReturn(rc, rc);
2072 AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
2073 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32PinCtls, u32Val),
2074 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
2075 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2076
2077 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
2078 AssertRCReturn(rc, rc);
2079 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
2080 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls, u32Val),
2081 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
2082 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2083
2084 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2085 {
2086 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
2087 AssertRCReturn(rc, rc);
2088 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
2089 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls2, u32Val),
2090 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
2091 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2092 }
2093
2094 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
2095 AssertRCReturn(rc, rc);
2096 AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
2097 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32XcptBitmap, u32Val),
2098 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
2099 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2100
2101 uint64_t u64Val;
2102 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
2103 AssertRCReturn(rc, rc);
2104 AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
2105 ("Cache=%#RX64 VMCS=%#RX64\n", pVmcsInfo->u64TscOffset, u64Val),
2106 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
2107 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2108
2109 return VINF_SUCCESS;
2110}
2111
2112
2113#ifdef VBOX_STRICT
2114/**
2115 * Verifies that our cached host EFER MSR value has not changed since we cached it.
2116 *
2117 * @param pVCpu The cross context virtual CPU structure.
2118 * @param pVmcsInfo The VMCS info. object.
2119 */
2120static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2121{
2122 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2123
2124 if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2125 {
2126 uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
2127 uint64_t const uHostEferMsrCache = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2128 uint64_t uVmcsEferMsrVmcs;
2129 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
2130 AssertRC(rc);
2131
2132 AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
2133 ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
2134 AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
2135 ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
2136 }
2137}
2138
2139
2140/**
2141 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
2142 * VMCS are correct.
2143 *
2144 * @param pVCpu The cross context virtual CPU structure.
2145 * @param pVmcsInfo The VMCS info. object.
2146 */
2147static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2148{
2149 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2150
2151 /* Verify MSR counts in the VMCS are what we think it should be. */
2152 uint32_t cMsrs;
2153 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs);
2154 AssertRC(rc);
2155 Assert(cMsrs == pVmcsInfo->cEntryMsrLoad);
2156
2157 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs);
2158 AssertRC(rc);
2159 Assert(cMsrs == pVmcsInfo->cExitMsrStore);
2160
2161 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs);
2162 AssertRC(rc);
2163 Assert(cMsrs == pVmcsInfo->cExitMsrLoad);
2164
2165 /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
2166 Assert(cMsrs < VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc));
2167
2168 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2169 PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2170 PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2171 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
2172 for (uint32_t i = 0; i < cMsrs; i++)
2173 {
2174 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
2175 if (fSeparateExitMsrStorePage)
2176 {
2177 AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
2178 ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
2179 pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
2180 }
2181
2182 AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
2183 ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
2184 pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
2185
2186 uint64_t const u64Msr = ASMRdMsr(pHostMsrLoad->u32Msr);
2187 AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64Msr,
2188 ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2189 pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64Msr, cMsrs));
2190
2191 /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
2192 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2193 {
2194 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
2195 if (pGuestMsrLoad->u32Msr == MSR_K6_EFER)
2196 {
2197 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
2198 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
2199 }
2200 else
2201 {
2202 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR,
2203 ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
2204 }
2205 }
2206
2207 /* Move to the next MSR. */
2208 pHostMsrLoad++;
2209 pGuestMsrLoad++;
2210 pGuestMsrStore++;
2211 }
2212}
2213#endif /* VBOX_STRICT */
2214
2215
2216/**
2217 * Flushes the TLB using EPT.
2218 *
2219 * @returns VBox status code.
2220 * @param pVCpu The cross context virtual CPU structure of the calling
2221 * EMT. Can be NULL depending on @a enmTlbFlush.
2222 * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
2223 * enmTlbFlush.
2224 * @param enmTlbFlush Type of flush.
2225 *
2226 * @remarks Caller is responsible for making sure this function is called only
2227 * when NestedPaging is supported and providing @a enmTlbFlush that is
2228 * supported by the CPU.
2229 * @remarks Can be called with interrupts disabled.
2230 */
2231static void hmR0VmxFlushEpt(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
2232{
2233 uint64_t au64Descriptor[2];
2234 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
2235 au64Descriptor[0] = 0;
2236 else
2237 {
2238 Assert(pVCpu);
2239 Assert(pVmcsInfo);
2240 au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
2241 }
2242 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
2243
2244 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
2245 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
2246
2247 if ( RT_SUCCESS(rc)
2248 && pVCpu)
2249 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
2250}
2251
2252
2253/**
2254 * Flushes the TLB using VPID.
2255 *
2256 * @returns VBox status code.
2257 * @param pVCpu The cross context virtual CPU structure of the calling
2258 * EMT. Can be NULL depending on @a enmTlbFlush.
2259 * @param enmTlbFlush Type of flush.
2260 * @param GCPtr Virtual address of the page to flush (can be 0 depending
2261 * on @a enmTlbFlush).
2262 *
2263 * @remarks Can be called with interrupts disabled.
2264 */
2265static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
2266{
2267 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
2268
2269 uint64_t au64Descriptor[2];
2270 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2271 {
2272 au64Descriptor[0] = 0;
2273 au64Descriptor[1] = 0;
2274 }
2275 else
2276 {
2277 AssertPtr(pVCpu);
2278 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2279 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2280 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
2281 au64Descriptor[1] = GCPtr;
2282 }
2283
2284 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
2285 AssertMsg(rc == VINF_SUCCESS,
2286 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
2287
2288 if ( RT_SUCCESS(rc)
2289 && pVCpu)
2290 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
2291 NOREF(rc);
2292}
2293
2294
2295/**
2296 * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
2297 * otherwise there is nothing really to invalidate.
2298 *
2299 * @returns VBox status code.
2300 * @param pVCpu The cross context virtual CPU structure.
2301 * @param GCVirt Guest virtual address of the page to invalidate.
2302 */
2303VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
2304{
2305 AssertPtr(pVCpu);
2306 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
2307
2308 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
2309 {
2310 /*
2311 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
2312 * the EPT case. See @bugref{6043} and @bugref{6177}.
2313 *
2314 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
2315 * as this function maybe called in a loop with individual addresses.
2316 */
2317 PVM pVM = pVCpu->CTX_SUFF(pVM);
2318 if (pVM->hm.s.vmx.fVpid)
2319 {
2320 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
2321
2322#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
2323 /*
2324 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
2325 * where executing INVVPID outside 64-bit mode does not flush translations of
2326 * 64-bit linear addresses, see @bugref{6208#c72}.
2327 */
2328 if (RT_HI_U32(GCVirt))
2329 fVpidFlush = false;
2330#endif
2331
2332 if (fVpidFlush)
2333 {
2334 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
2335 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
2336 }
2337 else
2338 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2339 }
2340 else if (pVM->hm.s.fNestedPaging)
2341 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2342 }
2343
2344 return VINF_SUCCESS;
2345}
2346
2347
2348/**
2349 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
2350 * case where neither EPT nor VPID is supported by the CPU.
2351 *
2352 * @param pHostCpu The HM physical-CPU structure.
2353 * @param pVCpu The cross context virtual CPU structure.
2354 *
2355 * @remarks Called with interrupts disabled.
2356 */
2357static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2358{
2359 AssertPtr(pVCpu);
2360 AssertPtr(pHostCpu);
2361
2362 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2363
2364 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2365 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2366 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2367 pVCpu->hm.s.fForceTLBFlush = false;
2368 return;
2369}
2370
2371
2372/**
2373 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
2374 *
2375 * @param pHostCpu The HM physical-CPU structure.
2376 * @param pVCpu The cross context virtual CPU structure.
2377 * @param pVmcsInfo The VMCS info. object.
2378 *
2379 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
2380 * nomenclature. The reason is, to avoid confusion in compare statements
2381 * since the host-CPU copies are named "ASID".
2382 *
2383 * @remarks Called with interrupts disabled.
2384 */
2385static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2386{
2387#ifdef VBOX_WITH_STATISTICS
2388 bool fTlbFlushed = false;
2389# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
2390# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
2391 if (!fTlbFlushed) \
2392 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
2393 } while (0)
2394#else
2395# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
2396# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
2397#endif
2398
2399 AssertPtr(pVCpu);
2400 AssertPtr(pHostCpu);
2401 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2402
2403 PVM pVM = pVCpu->CTX_SUFF(pVM);
2404 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
2405 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
2406 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
2407
2408 /*
2409 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
2410 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2411 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2412 * cannot reuse the current ASID anymore.
2413 */
2414 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2415 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2416 {
2417 ++pHostCpu->uCurrentAsid;
2418 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2419 {
2420 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
2421 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2422 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2423 }
2424
2425 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2426 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2427 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2428
2429 /*
2430 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
2431 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
2432 */
2433 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
2434 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2435 HMVMX_SET_TAGGED_TLB_FLUSHED();
2436 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2437 }
2438 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
2439 {
2440 /*
2441 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
2442 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
2443 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
2444 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
2445 * mappings, see @bugref{6568}.
2446 *
2447 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
2448 */
2449 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
2450 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2451 HMVMX_SET_TAGGED_TLB_FLUSHED();
2452 }
2453
2454 pVCpu->hm.s.fForceTLBFlush = false;
2455 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2456
2457 Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
2458 Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
2459 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2460 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2461 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2462 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2463 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2464 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2465 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2466
2467 /* Update VMCS with the VPID. */
2468 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2469 AssertRC(rc);
2470
2471#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2472}
2473
2474
2475/**
2476 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2477 *
2478 * @param pHostCpu The HM physical-CPU structure.
2479 * @param pVCpu The cross context virtual CPU structure.
2480 * @param pVmcsInfo The VMCS info. object.
2481 *
2482 * @remarks Called with interrupts disabled.
2483 */
2484static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2485{
2486 AssertPtr(pVCpu);
2487 AssertPtr(pHostCpu);
2488 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2489 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2490 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2491
2492 /*
2493 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2494 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2495 */
2496 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2497 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2498 {
2499 pVCpu->hm.s.fForceTLBFlush = true;
2500 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2501 }
2502
2503 /* Check for explicit TLB flushes. */
2504 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2505 {
2506 pVCpu->hm.s.fForceTLBFlush = true;
2507 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2508 }
2509
2510 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2511 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2512
2513 if (pVCpu->hm.s.fForceTLBFlush)
2514 {
2515 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2516 pVCpu->hm.s.fForceTLBFlush = false;
2517 }
2518}
2519
2520
2521/**
2522 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2523 *
2524 * @param pHostCpu The HM physical-CPU structure.
2525 * @param pVCpu The cross context virtual CPU structure.
2526 *
2527 * @remarks Called with interrupts disabled.
2528 */
2529static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2530{
2531 AssertPtr(pVCpu);
2532 AssertPtr(pHostCpu);
2533 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2534 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2535 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2536
2537 /*
2538 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2539 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2540 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2541 * cannot reuse the current ASID anymore.
2542 */
2543 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2544 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2545 {
2546 pVCpu->hm.s.fForceTLBFlush = true;
2547 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2548 }
2549
2550 /* Check for explicit TLB flushes. */
2551 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2552 {
2553 /*
2554 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2555 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2556 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
2557 * include fExplicitFlush's too) - an obscure corner case.
2558 */
2559 pVCpu->hm.s.fForceTLBFlush = true;
2560 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2561 }
2562
2563 PVM pVM = pVCpu->CTX_SUFF(pVM);
2564 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2565 if (pVCpu->hm.s.fForceTLBFlush)
2566 {
2567 ++pHostCpu->uCurrentAsid;
2568 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2569 {
2570 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2571 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2572 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2573 }
2574
2575 pVCpu->hm.s.fForceTLBFlush = false;
2576 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2577 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2578 if (pHostCpu->fFlushAsidBeforeUse)
2579 {
2580 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2581 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2582 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2583 {
2584 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2585 pHostCpu->fFlushAsidBeforeUse = false;
2586 }
2587 else
2588 {
2589 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2590 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2591 }
2592 }
2593 }
2594
2595 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2596 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2597 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2598 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2599 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2600 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2601 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2602
2603 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2604 AssertRC(rc);
2605}
2606
2607
2608/**
2609 * Flushes the guest TLB entry based on CPU capabilities.
2610 *
2611 * @param pHostCpu The HM physical-CPU structure.
2612 * @param pVCpu The cross context virtual CPU structure.
2613 * @param pVmcsInfo The VMCS info. object.
2614 *
2615 * @remarks Called with interrupts disabled.
2616 */
2617static void hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2618{
2619#ifdef HMVMX_ALWAYS_FLUSH_TLB
2620 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2621#endif
2622 PVM pVM = pVCpu->CTX_SUFF(pVM);
2623 switch (pVM->hm.s.vmx.enmTlbFlushType)
2624 {
2625 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
2626 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
2627 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
2628 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
2629 default:
2630 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2631 break;
2632 }
2633 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2634}
2635
2636
2637/**
2638 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2639 * TLB entries from the host TLB before VM-entry.
2640 *
2641 * @returns VBox status code.
2642 * @param pVM The cross context VM structure.
2643 */
2644static int hmR0VmxSetupTaggedTlb(PVM pVM)
2645{
2646 /*
2647 * Determine optimal flush type for nested paging.
2648 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
2649 * unrestricted guest execution (see hmR3InitFinalizeR0()).
2650 */
2651 if (pVM->hm.s.fNestedPaging)
2652 {
2653 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2654 {
2655 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2656 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2657 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2658 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2659 else
2660 {
2661 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2662 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2663 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2664 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2665 }
2666
2667 /* Make sure the write-back cacheable memory type for EPT is supported. */
2668 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2669 {
2670 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2671 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2672 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2673 }
2674
2675 /* EPT requires a page-walk length of 4. */
2676 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2677 {
2678 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2679 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2680 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2681 }
2682 }
2683 else
2684 {
2685 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2686 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2687 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2688 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2689 }
2690 }
2691
2692 /*
2693 * Determine optimal flush type for VPID.
2694 */
2695 if (pVM->hm.s.vmx.fVpid)
2696 {
2697 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2698 {
2699 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2700 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2701 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2702 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2703 else
2704 {
2705 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2706 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2707 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2708 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2709 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2710 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2711 pVM->hm.s.vmx.fVpid = false;
2712 }
2713 }
2714 else
2715 {
2716 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2717 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2718 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2719 pVM->hm.s.vmx.fVpid = false;
2720 }
2721 }
2722
2723 /*
2724 * Setup the handler for flushing tagged-TLBs.
2725 */
2726 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2727 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2728 else if (pVM->hm.s.fNestedPaging)
2729 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2730 else if (pVM->hm.s.vmx.fVpid)
2731 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2732 else
2733 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2734 return VINF_SUCCESS;
2735}
2736
2737
2738/**
2739 * Sets up the virtual-APIC page address for the VMCS.
2740 *
2741 * @returns VBox status code.
2742 * @param pVCpu The cross context virtual CPU structure.
2743 * @param pVmcsInfo The VMCS info. object.
2744 */
2745DECLINLINE(int) hmR0VmxSetupVmcsVirtApicAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2746{
2747 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2748 RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
2749 Assert(HCPhysVirtApic != NIL_RTHCPHYS);
2750 Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2751 return VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
2752}
2753
2754
2755/**
2756 * Sets up the MSR-bitmap address for the VMCS.
2757 *
2758 * @returns VBox status code.
2759 * @param pVCpu The cross context virtual CPU structure.
2760 * @param pVmcsInfo The VMCS info. object.
2761 */
2762DECLINLINE(int) hmR0VmxSetupVmcsMsrBitmapAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2763{
2764 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2765 RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
2766 Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
2767 Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2768 return VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
2769}
2770
2771
2772/**
2773 * Sets up the APIC-access page address for the VMCS.
2774 *
2775 * @returns VBox status code.
2776 * @param pVCpu The cross context virtual CPU structure.
2777 */
2778DECLINLINE(int) hmR0VmxSetupVmcsApicAccessAddr(PVMCPU pVCpu)
2779{
2780 RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysApicAccess;
2781 Assert(HCPhysApicAccess != NIL_RTHCPHYS);
2782 Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2783 return VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
2784}
2785
2786
2787/**
2788 * Sets up the VMCS link pointer for the VMCS.
2789 *
2790 * @returns VBox status code.
2791 * @param pVCpu The cross context virtual CPU structure.
2792 * @param pVmcsInfo The VMCS info. object.
2793 */
2794DECLINLINE(int) hmR0VmxSetupVmcsLinkPtr(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2795{
2796 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2797 uint64_t const u64VmcsLinkPtr = pVmcsInfo->u64VmcsLinkPtr;
2798 Assert(u64VmcsLinkPtr == UINT64_C(0xffffffffffffffff)); /* Bits 63:0 MB1. */
2799 return VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, u64VmcsLinkPtr);
2800}
2801
2802
2803/**
2804 * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
2805 * in the VMCS.
2806 *
2807 * @returns VBox status code.
2808 * @param pVCpu The cross context virtual CPU structure.
2809 * @param pVmcsInfo The VMCS info. object.
2810 */
2811DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2812{
2813 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2814
2815 RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
2816 Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
2817 Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
2818
2819 RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
2820 Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
2821 Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
2822
2823 RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
2824 Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
2825 Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
2826
2827 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad);
2828 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore);
2829 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad);
2830 AssertRCReturn(rc, rc);
2831 return VINF_SUCCESS;
2832}
2833
2834
2835/**
2836 * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
2837 *
2838 * @param pVCpu The cross context virtual CPU structure.
2839 * @param pVmcsInfo The VMCS info. object.
2840 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2841 */
2842static void hmR0VmxSetupVmcsMsrPermissions(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2843{
2844 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
2845
2846 /*
2847 * The guest can access the following MSRs (read, write) without causing
2848 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2849 */
2850 PVM pVM = pVCpu->CTX_SUFF(pVM);
2851 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
2852 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
2853 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
2854 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
2855 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
2856
2857#ifdef VBOX_STRICT
2858 /** @todo NSTVMX: Remove this later. */
2859 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_IA32_SYSENTER_CS);
2860 Assert((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR);
2861
2862 fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K8_GS_BASE);
2863 Assert((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR);
2864#endif
2865
2866 /*
2867 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2868 * associated with then. We never need to intercept access (writes need to be
2869 * executed without causing a VM-exit, reads will #GP fault anyway).
2870 *
2871 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2872 * read/write them. We swap the the guest/host MSR value using the
2873 * auto-load/store MSR area.
2874 */
2875 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2876 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
2877 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2878 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
2879 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2880 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
2881
2882 /*
2883 * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
2884 */
2885
2886#if HC_ARCH_BITS == 64
2887 /*
2888 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2889 * required for 64-bit guests.
2890 */
2891 if (pVM->hm.s.fAllow64BitGuests)
2892 {
2893 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
2894 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
2895 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
2896 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
2897
2898# ifdef VBOX_STRICT
2899 fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K8_GS_BASE);
2900 Assert((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR);
2901# endif
2902 }
2903#endif
2904}
2905
2906
2907/**
2908 * Sets up pin-based VM-execution controls in the VMCS.
2909 *
2910 * @returns VBox status code.
2911 * @param pVCpu The cross context virtual CPU structure.
2912 * @param pVmcsInfo The VMCS info. object.
2913 */
2914static int hmR0VmxSetupVmcsPinCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2915{
2916 PVM pVM = pVCpu->CTX_SUFF(pVM);
2917 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
2918 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2919
2920 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2921 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2922
2923 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2924 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2925
2926 /* Enable the VMX-preemption timer. */
2927 if (pVM->hm.s.vmx.fUsePreemptTimer)
2928 {
2929 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2930 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2931 }
2932
2933#if 0
2934 /* Enable posted-interrupt processing. */
2935 if (pVM->hm.s.fPostedIntrs)
2936 {
2937 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2938 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2939 fVal |= VMX_PIN_CTL_POSTED_INT;
2940 }
2941#endif
2942
2943 if ((fVal & fZap) != fVal)
2944 {
2945 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2946 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
2947 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2948 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2949 }
2950
2951 /* Commit it to the VMCS and update our cache. */
2952 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2953 AssertRCReturn(rc, rc);
2954 pVmcsInfo->u32PinCtls = fVal;
2955
2956 return VINF_SUCCESS;
2957}
2958
2959
2960/**
2961 * Sets up secondary processor-based VM-execution controls in the VMCS.
2962 *
2963 * @returns VBox status code.
2964 * @param pVCpu The cross context virtual CPU structure.
2965 * @param pVmcsInfo The VMCS info. object.
2966 */
2967static int hmR0VmxSetupVmcsProcCtls2(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2968{
2969 PVM pVM = pVCpu->CTX_SUFF(pVM);
2970 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2971 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2972
2973 /* WBINVD causes a VM-exit. */
2974 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2975 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2976
2977 /* Enable EPT (aka nested-paging). */
2978 if (pVM->hm.s.fNestedPaging)
2979 fVal |= VMX_PROC_CTLS2_EPT;
2980
2981 /* Enable the INVPCID instruction if supported by the hardware and we expose
2982 it to the guest. Without this, guest executing INVPCID would cause a #UD. */
2983 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2984 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2985 fVal |= VMX_PROC_CTLS2_INVPCID;
2986
2987 /* Enable VPID. */
2988 if (pVM->hm.s.vmx.fVpid)
2989 fVal |= VMX_PROC_CTLS2_VPID;
2990
2991 /* Enable unrestricted guest execution. */
2992 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2993 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2994
2995#if 0
2996 if (pVM->hm.s.fVirtApicRegs)
2997 {
2998 /* Enable APIC-register virtualization. */
2999 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
3000 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
3001
3002 /* Enable virtual-interrupt delivery. */
3003 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
3004 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
3005 }
3006#endif
3007
3008 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
3009 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
3010 * done dynamically. */
3011 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3012 {
3013 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
3014 int rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3015 AssertRCReturn(rc, rc);
3016 }
3017
3018 /* Enable the RDTSCP instruction if supported by the hardware and we expose
3019 it to the guest. Without this, guest executing RDTSCP would cause a #UD. */
3020 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
3021 && pVM->cpum.ro.GuestFeatures.fRdTscP)
3022 fVal |= VMX_PROC_CTLS2_RDTSCP;
3023
3024 /* Enable Pause-Loop exiting. */
3025 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
3026 && pVM->hm.s.vmx.cPleGapTicks
3027 && pVM->hm.s.vmx.cPleWindowTicks)
3028 {
3029 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
3030
3031 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
3032 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
3033 AssertRCReturn(rc, rc);
3034 }
3035
3036 if ((fVal & fZap) != fVal)
3037 {
3038 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3039 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
3040 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
3041 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3042 }
3043
3044 /* Commit it to the VMCS and update our cache. */
3045 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
3046 AssertRCReturn(rc, rc);
3047 pVmcsInfo->u32ProcCtls2 = fVal;
3048
3049 return VINF_SUCCESS;
3050}
3051
3052
3053/**
3054 * Sets up processor-based VM-execution controls in the VMCS.
3055 *
3056 * @returns VBox status code.
3057 * @param pVCpu The cross context virtual CPU structure.
3058 * @param pVmcsInfo The VMCS info. object.
3059 */
3060static int hmR0VmxSetupVmcsProcCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3061{
3062 PVM pVM = pVCpu->CTX_SUFF(pVM);
3063
3064 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3065 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3066
3067 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
3068 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
3069 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
3070 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
3071 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
3072 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
3073 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
3074
3075 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
3076 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
3077 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
3078 {
3079 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
3080 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3081 }
3082
3083 /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
3084 if (!pVM->hm.s.fNestedPaging)
3085 {
3086 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
3087 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
3088 | VMX_PROC_CTLS_CR3_LOAD_EXIT
3089 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3090 }
3091
3092 /* Use TPR shadowing if supported by the CPU. */
3093 if ( PDMHasApic(pVM)
3094 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
3095 {
3096 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3097 /* CR8 writes cause a VM-exit based on TPR threshold. */
3098 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3099 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3100 int rc = hmR0VmxSetupVmcsVirtApicAddr(pVCpu, pVmcsInfo);
3101 AssertRCReturn(rc, rc);
3102 }
3103 else
3104 {
3105 /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
3106 invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
3107 if (pVM->hm.s.fAllow64BitGuests)
3108 {
3109 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3110 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3111 }
3112 }
3113
3114 /* Use MSR-bitmaps if supported by the CPU. */
3115 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3116 {
3117 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
3118 int rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVCpu, pVmcsInfo);
3119 AssertRCReturn(rc, rc);
3120 }
3121
3122 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
3123 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3124 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
3125
3126 if ((fVal & fZap) != fVal)
3127 {
3128 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3129 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
3130 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
3131 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3132 }
3133
3134 /* Commit it to the VMCS and update our cache. */
3135 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3136 AssertRCReturn(rc, rc);
3137 pVmcsInfo->u32ProcCtls = fVal;
3138
3139 /* Set up MSR permissions that don't change through the lifetime of the VM. */
3140 hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo, false /* fIsNstGstVmcs */);
3141
3142 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
3143 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3144 return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
3145
3146 /* Sanity check, should not really happen. */
3147 if (RT_LIKELY(!pVM->hm.s.vmx.fUnrestrictedGuest))
3148 { /* likely */ }
3149 else
3150 {
3151 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
3152 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3153 }
3154
3155 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
3156 return VINF_SUCCESS;
3157}
3158
3159
3160/**
3161 * Sets up miscellaneous (everything other than Pin, Processor and secondary
3162 * Processor-based VM-execution) control fields in the VMCS.
3163 *
3164 * @returns VBox status code.
3165 * @param pVCpu The cross context virtual CPU structure.
3166 * @param pVmcsInfo The VMCS info. object.
3167 */
3168static int hmR0VmxSetupVmcsMiscCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3169{
3170 /* Set the auto-load/store MSR area addresses in the VMCS. */
3171 int rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVCpu, pVmcsInfo);
3172 if (RT_SUCCESS(rc))
3173 {
3174 /* Set the VMCS link pointer in the VMCS. */
3175 rc = hmR0VmxSetupVmcsLinkPtr(pVCpu, pVmcsInfo);
3176 if (RT_SUCCESS(rc))
3177 {
3178 /* Set the CR0/CR4 guest/host mask. */
3179 uint64_t const u64Cr0Mask = hmR0VmxGetFixedCr0Mask(pVCpu);
3180 uint64_t const u64Cr4Mask = hmR0VmxGetFixedCr4Mask(pVCpu);
3181 rc = VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
3182 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
3183 if (RT_SUCCESS(rc))
3184 {
3185 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
3186 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
3187 return VINF_SUCCESS;
3188 }
3189 LogRelFunc(("Failed to initialize VMCS CR0/CR4 guest/host mask. rc=%Rrc\n", rc));
3190 }
3191 else
3192 LogRelFunc(("Failed to initialize VMCS link pointer. rc=%Rrc\n", rc));
3193 }
3194 else
3195 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
3196 return rc;
3197}
3198
3199
3200/**
3201 * Sets up the initial exception bitmap in the VMCS based on static conditions.
3202 *
3203 * We shall setup those exception intercepts that don't change during the
3204 * lifetime of the VM here. The rest are done dynamically while loading the
3205 * guest state.
3206 *
3207 * @returns VBox status code.
3208 * @param pVCpu The cross context virtual CPU structure.
3209 * @param pVmcsInfo The VMCS info. object.
3210 */
3211static int hmR0VmxSetupVmcsXcptBitmap(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3212{
3213 /*
3214 * The following exceptions are always intercepted:
3215 *
3216 * #AC - To prevent the guest from hanging the CPU.
3217 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
3218 * recursive #DBs can cause a CPU hang.
3219 * #PF - To sync our shadow page tables when nested-paging is not used.
3220 */
3221 bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
3222 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
3223 | RT_BIT(X86_XCPT_DB)
3224 | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
3225
3226 /* Commit it to the VMCS. */
3227 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3228 AssertRCReturn(rc, rc);
3229
3230 /* Update our cache of the exception bitmap. */
3231 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
3232 return VINF_SUCCESS;
3233}
3234
3235
3236#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3237/**
3238 * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
3239 *
3240 * @returns VBox status code.
3241 * @param pVCpu The cross context virtual CPU structure.
3242 * @param pVmcsInfo The VMCS info. object.
3243 */
3244static int hmR0VmxSetupVmcsCtlsNested(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3245{
3246 PVM pVM = pVCpu->CTX_SUFF(pVM);
3247 int rc = hmR0VmxSetupVmcsLinkPtr(pVCpu, pVmcsInfo);
3248 if (RT_SUCCESS(rc))
3249 {
3250 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVCpu, pVmcsInfo);
3251 if (RT_SUCCESS(rc))
3252 {
3253 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3254 rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVCpu, pVmcsInfo);
3255 if (RT_SUCCESS(rc))
3256 {
3257 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3258 rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3259 if (RT_SUCCESS(rc))
3260 return VINF_SUCCESS;
3261
3262 LogRelFunc(("Failed to set up the APIC-access address in the nested-guest VMCS. rc=%Rrc\n", rc));
3263 }
3264 else
3265 LogRelFunc(("Failed to set up the MSR-bitmap address in the nested-guest VMCS. rc=%Rrc\n", rc));
3266 }
3267 else
3268 LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
3269 }
3270 else
3271 LogRelFunc(("Failed to set up the auto-load/store MSR addresses in the nested-guest VMCS. rc=%Rrc\n", rc));
3272
3273 return rc;
3274}
3275#endif
3276
3277
3278/**
3279 * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
3280 * VMX.
3281 *
3282 * @returns VBox status code.
3283 * @param pVCpu The cross context virtual CPU structure.
3284 * @param pVmcsInfo The VMCS info. object.
3285 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
3286 */
3287static int hmR0VmxSetupVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
3288{
3289 Assert(pVmcsInfo);
3290 Assert(pVmcsInfo->pvVmcs);
3291 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3292
3293 /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
3294 PVM pVM = pVCpu->CTX_SUFF(pVM);
3295 *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
3296 const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
3297
3298 LogFlowFunc(("\n"));
3299
3300 /*
3301 * Initialize the VMCS using VMCLEAR before loading the VMCS.
3302 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
3303 */
3304 int rc = hmR0VmxClearVmcs(pVmcsInfo);
3305 if (RT_SUCCESS(rc))
3306 {
3307 rc = hmR0VmxLoadVmcs(pVmcsInfo);
3308 if (RT_SUCCESS(rc))
3309 {
3310 if (!fIsNstGstVmcs)
3311 {
3312 rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
3313 if (RT_SUCCESS(rc))
3314 {
3315 rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
3316 if (RT_SUCCESS(rc))
3317 {
3318 rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
3319 if (RT_SUCCESS(rc))
3320 {
3321 rc = hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
3322 if (RT_SUCCESS(rc))
3323 { /* likely */ }
3324 else
3325 LogRelFunc(("Failed to initialize exception bitmap. rc=%Rrc\n", rc));
3326 }
3327 else
3328 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
3329 }
3330 else
3331 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
3332 }
3333 else
3334 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
3335 }
3336 else
3337 {
3338#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3339 rc = hmR0VmxSetupVmcsCtlsNested(pVCpu, pVmcsInfo);
3340 if (RT_SUCCESS(rc))
3341 { /* likely */ }
3342 else
3343 LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
3344#else
3345 AssertFailed();
3346#endif
3347 }
3348 }
3349 else
3350 LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
3351 }
3352 else
3353 LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
3354
3355 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
3356 if (RT_SUCCESS(rc))
3357 {
3358 rc = hmR0VmxClearVmcs(pVmcsInfo);
3359 if (RT_SUCCESS(rc))
3360 { /* likely */ }
3361 else
3362 LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
3363 }
3364
3365 /*
3366 * Update the last-error record both for failures and success, so we
3367 * can propagate the status code back to ring-3 for diagnostics.
3368 */
3369 hmR0VmxUpdateErrorRecord(pVCpu, rc);
3370 NOREF(pszVmcs);
3371 return rc;
3372}
3373
3374
3375/**
3376 * Does global VT-x initialization (called during module initialization).
3377 *
3378 * @returns VBox status code.
3379 */
3380VMMR0DECL(int) VMXR0GlobalInit(void)
3381{
3382#ifdef HMVMX_USE_FUNCTION_TABLE
3383 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
3384# ifdef VBOX_STRICT
3385 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
3386 Assert(g_apfnVMExitHandlers[i]);
3387# endif
3388#endif
3389 return VINF_SUCCESS;
3390}
3391
3392
3393/**
3394 * Does global VT-x termination (called during module termination).
3395 */
3396VMMR0DECL(void) VMXR0GlobalTerm()
3397{
3398 /* Nothing to do currently. */
3399}
3400
3401
3402/**
3403 * Sets up and activates VT-x on the current CPU.
3404 *
3405 * @returns VBox status code.
3406 * @param pHostCpu The HM physical-CPU structure.
3407 * @param pVM The cross context VM structure. Can be
3408 * NULL after a host resume operation.
3409 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
3410 * fEnabledByHost is @c true).
3411 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
3412 * @a fEnabledByHost is @c true).
3413 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
3414 * enable VT-x on the host.
3415 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
3416 */
3417VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
3418 PCSUPHWVIRTMSRS pHwvirtMsrs)
3419{
3420 Assert(pHostCpu);
3421 Assert(pHwvirtMsrs);
3422 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3423
3424 /* Enable VT-x if it's not already enabled by the host. */
3425 if (!fEnabledByHost)
3426 {
3427 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
3428 if (RT_FAILURE(rc))
3429 return rc;
3430 }
3431
3432 /*
3433 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
3434 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
3435 * invalidated when flushing by VPID.
3436 */
3437 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
3438 {
3439 hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
3440 pHostCpu->fFlushAsidBeforeUse = false;
3441 }
3442 else
3443 pHostCpu->fFlushAsidBeforeUse = true;
3444
3445 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
3446 ++pHostCpu->cTlbFlushes;
3447
3448 return VINF_SUCCESS;
3449}
3450
3451
3452/**
3453 * Deactivates VT-x on the current CPU.
3454 *
3455 * @returns VBox status code.
3456 * @param pvCpuPage Pointer to the VMXON region.
3457 * @param HCPhysCpuPage Physical address of the VMXON region.
3458 *
3459 * @remarks This function should never be called when SUPR0EnableVTx() or
3460 * similar was used to enable VT-x on the host.
3461 */
3462VMMR0DECL(int) VMXR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
3463{
3464 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
3465
3466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3467 return hmR0VmxLeaveRootMode();
3468}
3469
3470
3471/**
3472 * Does per-VM VT-x initialization.
3473 *
3474 * @returns VBox status code.
3475 * @param pVM The cross context VM structure.
3476 */
3477VMMR0DECL(int) VMXR0InitVM(PVM pVM)
3478{
3479 LogFlowFunc(("pVM=%p\n", pVM));
3480
3481 int rc = hmR0VmxStructsAlloc(pVM);
3482 if (RT_FAILURE(rc))
3483 {
3484 LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
3485 return rc;
3486 }
3487
3488 return VINF_SUCCESS;
3489}
3490
3491
3492/**
3493 * Does per-VM VT-x termination.
3494 *
3495 * @returns VBox status code.
3496 * @param pVM The cross context VM structure.
3497 */
3498VMMR0DECL(int) VMXR0TermVM(PVM pVM)
3499{
3500 LogFlowFunc(("pVM=%p\n", pVM));
3501
3502#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3503 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
3504 {
3505 Assert(pVM->hm.s.vmx.pvScratch);
3506 ASMMemZero32(pVM->hm.s.vmx.pvScratch, X86_PAGE_4K_SIZE);
3507 }
3508#endif
3509 hmR0VmxStructsFree(pVM);
3510 return VINF_SUCCESS;
3511}
3512
3513
3514/**
3515 * Sets up the VM for execution using hardware-assisted VMX.
3516 * This function is only called once per-VM during initialization.
3517 *
3518 * @returns VBox status code.
3519 * @param pVM The cross context VM structure.
3520 */
3521VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
3522{
3523 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
3524 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3525
3526 LogFlowFunc(("pVM=%p\n", pVM));
3527
3528 /*
3529 * At least verify if VMX is enabled, since we can't check if we're in
3530 * VMX root mode or not without causing a #GP.
3531 */
3532 RTCCUINTREG const uHostCR4 = ASMGetCR4();
3533 if (RT_LIKELY(uHostCR4 & X86_CR4_VMXE))
3534 { /* likely */ }
3535 else
3536 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
3537
3538 /*
3539 * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
3540 * always be allocated. We no longer support the highly unlikely case of unrestricted guest
3541 * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
3542 */
3543 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
3544 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
3545 || !pVM->hm.s.vmx.pRealModeTSS))
3546 {
3547 LogRelFunc(("Invalid real-on-v86 state.\n"));
3548 return VERR_INTERNAL_ERROR;
3549 }
3550
3551 /* Initialize these always, see hmR3InitFinalizeR0().*/
3552 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
3553 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
3554
3555 /* Setup the tagged-TLB flush handlers. */
3556 int rc = hmR0VmxSetupTaggedTlb(pVM);
3557 if (RT_FAILURE(rc))
3558 {
3559 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
3560 return rc;
3561 }
3562
3563 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
3564 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
3565#if HC_ARCH_BITS == 64
3566 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
3567 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
3568 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
3569 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
3570#endif
3571
3572 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3573 {
3574 PVMCPU pVCpu = &pVM->aCpus[idCpu];
3575 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
3576
3577 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
3578 if (RT_SUCCESS(rc))
3579 {
3580#if HC_ARCH_BITS == 32
3581 hmR0VmxInitVmcsReadCache(pVCpu);
3582#endif
3583#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3584 if (pVM->cpum.ro.GuestFeatures.fVmx)
3585 {
3586 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
3587 if (RT_SUCCESS(rc))
3588 { /* likely */ }
3589 else
3590 {
3591 LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
3592 return rc;
3593 }
3594 }
3595#endif
3596 }
3597 else
3598 {
3599 LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
3600 return rc;
3601 }
3602 }
3603
3604 return VINF_SUCCESS;
3605}
3606
3607
3608#if HC_ARCH_BITS == 32
3609# ifdef VBOX_ENABLE_64_BITS_GUESTS
3610/**
3611 * Check if guest state allows safe use of 32-bit switcher again.
3612 *
3613 * Segment bases and protected mode structures must be 32-bit addressable
3614 * because the 32-bit switcher will ignore high dword when writing these VMCS
3615 * fields. See @bugref{8432} for details.
3616 *
3617 * @returns true if safe, false if must continue to use the 64-bit switcher.
3618 * @param pCtx Pointer to the guest-CPU context.
3619 *
3620 * @remarks No-long-jump zone!!!
3621 */
3622static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
3623{
3624 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
3625 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
3626 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
3627 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
3628 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
3629 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3630 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
3631 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
3632 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3633 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3634
3635 /* All good, bases are 32-bit. */
3636 return true;
3637}
3638# endif /* VBOX_ENABLE_64_BITS_GUESTS */
3639
3640# ifdef VBOX_STRICT
3641static bool hmR0VmxIsValidWriteField(uint32_t idxField)
3642{
3643 switch (idxField)
3644 {
3645 case VMX_VMCS_GUEST_RIP:
3646 case VMX_VMCS_GUEST_RSP:
3647 case VMX_VMCS_GUEST_SYSENTER_EIP:
3648 case VMX_VMCS_GUEST_SYSENTER_ESP:
3649 case VMX_VMCS_GUEST_GDTR_BASE:
3650 case VMX_VMCS_GUEST_IDTR_BASE:
3651 case VMX_VMCS_GUEST_CS_BASE:
3652 case VMX_VMCS_GUEST_DS_BASE:
3653 case VMX_VMCS_GUEST_ES_BASE:
3654 case VMX_VMCS_GUEST_FS_BASE:
3655 case VMX_VMCS_GUEST_GS_BASE:
3656 case VMX_VMCS_GUEST_SS_BASE:
3657 case VMX_VMCS_GUEST_LDTR_BASE:
3658 case VMX_VMCS_GUEST_TR_BASE:
3659 case VMX_VMCS_GUEST_CR3:
3660 return true;
3661 }
3662 return false;
3663}
3664
3665static bool hmR0VmxIsValidReadField(uint32_t idxField)
3666{
3667 switch (idxField)
3668 {
3669 /* Read-only fields. */
3670 case VMX_VMCS_RO_EXIT_QUALIFICATION:
3671 return true;
3672 }
3673 /* Remaining readable fields should also be writable. */
3674 return hmR0VmxIsValidWriteField(idxField);
3675}
3676# endif /* VBOX_STRICT */
3677
3678
3679/**
3680 * Executes the specified handler in 64-bit mode.
3681 *
3682 * @returns VBox status code (no informational status codes).
3683 * @param pVCpu The cross context virtual CPU structure.
3684 * @param enmOp The operation to perform.
3685 * @param cParams Number of parameters.
3686 * @param paParam Array of 32-bit parameters.
3687 */
3688VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
3689{
3690 PVM pVM = pVCpu->CTX_SUFF(pVM);
3691 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
3692 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
3693 Assert(pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Write.aField));
3694 Assert(pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Read.aField));
3695
3696#ifdef VBOX_STRICT
3697 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries; i++)
3698 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VmcsCache.Write.aField[i]));
3699
3700 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries; i++)
3701 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VmcsCache.Read.aField[i]));
3702#endif
3703
3704 /* Disable interrupts. */
3705 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
3706
3707#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
3708 RTCPUID idHostCpu = RTMpCpuId();
3709 CPUMR0SetLApic(pVCpu, idHostCpu);
3710#endif
3711
3712 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
3713
3714 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
3715 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
3716
3717 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
3718 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3719 hmR0VmxClearVmcs(pVmcsInfo);
3720
3721 /* Leave VMX root mode and disable VMX. */
3722 VMXDisable();
3723 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
3724
3725 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
3726 CPUMSetHyperEIP(pVCpu, enmOp);
3727 for (int i = (int)cParams - 1; i >= 0; i--)
3728 CPUMPushHyper(pVCpu, paParam[i]);
3729
3730 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
3731
3732 /* Call the switcher. */
3733 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
3734 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
3735
3736 /* Re-enable VMX to make sure the VMX instructions don't cause #UD faults. */
3737 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
3738
3739 /* Re-enter VMX root mode. */
3740 int rc2 = VMXEnable(HCPhysCpuPage);
3741 if (RT_FAILURE(rc2))
3742 {
3743 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
3744 ASMSetFlags(fOldEFlags);
3745 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
3746 return rc2;
3747 }
3748
3749 /* Restore the VMCS as the current VMCS. */
3750 rc2 = hmR0VmxLoadVmcs(pVmcsInfo);
3751 AssertRC(rc2);
3752 Assert(!(ASMGetFlags() & X86_EFL_IF));
3753 ASMSetFlags(fOldEFlags);
3754 return rc;
3755}
3756
3757
3758/**
3759 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
3760 * supporting 64-bit guests.
3761 *
3762 * @returns VBox status code.
3763 * @param fResume Whether to VMLAUNCH or VMRESUME.
3764 * @param pCtx Pointer to the guest-CPU context.
3765 * @param pCache Pointer to the VMCS batch cache.
3766 * @param pVM The cross context VM structure.
3767 * @param pVCpu The cross context virtual CPU structure.
3768 */
3769DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMXVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
3770{
3771 NOREF(fResume);
3772
3773 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3774 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
3775 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
3776
3777#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3778 pCache->uPos = 1;
3779 pCache->interPD = PGMGetInterPaeCR3(pVM);
3780 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
3781#endif
3782
3783#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
3784 pCache->TestIn.HCPhysCpuPage = 0;
3785 pCache->TestIn.HCPhysVmcs = 0;
3786 pCache->TestIn.pCache = 0;
3787 pCache->TestOut.HCPhysVmcs = 0;
3788 pCache->TestOut.pCache = 0;
3789 pCache->TestOut.pCtx = 0;
3790 pCache->TestOut.eflags = 0;
3791#else
3792 NOREF(pCache);
3793#endif
3794
3795 uint32_t aParam[10];
3796 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
3797 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
3798 aParam[2] = RT_LO_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
3799 aParam[3] = RT_HI_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
3800 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache);
3801 aParam[5] = 0;
3802 aParam[6] = VM_RC_ADDR(pVM, pVM);
3803 aParam[7] = 0;
3804 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
3805 aParam[9] = 0;
3806
3807#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3808 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
3809 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
3810#endif
3811 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
3812
3813#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3814 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
3815 Assert(pCtx->dr[4] == 10);
3816 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
3817#endif
3818
3819#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
3820 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
3821 AssertMsg(pCache->TestIn.HCPhysVmcs == pVmcsInfo->HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
3822 pVmcsInfo->HCPhysVmcs));
3823 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
3824 pCache->TestOut.HCPhysVmcs));
3825 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
3826 pCache->TestOut.pCache));
3827 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache),
3828 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache)));
3829 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
3830 pCache->TestOut.pCtx));
3831 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
3832#endif
3833 NOREF(pCtx);
3834 return rc;
3835}
3836#endif
3837
3838
3839/**
3840 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
3841 * the VMCS.
3842 *
3843 * @returns VBox status code.
3844 */
3845static int hmR0VmxExportHostControlRegs(void)
3846{
3847 RTCCUINTREG uReg = ASMGetCR0();
3848 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
3849 AssertRCReturn(rc, rc);
3850
3851 uReg = ASMGetCR3();
3852 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
3853 AssertRCReturn(rc, rc);
3854
3855 uReg = ASMGetCR4();
3856 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
3857 AssertRCReturn(rc, rc);
3858 return rc;
3859}
3860
3861
3862/**
3863 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
3864 * the host-state area in the VMCS.
3865 *
3866 * @returns VBox status code.
3867 * @param pVCpu The cross context virtual CPU structure.
3868 */
3869static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
3870{
3871#if HC_ARCH_BITS == 64
3872/**
3873 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
3874 * requirements. See hmR0VmxExportHostSegmentRegs().
3875 */
3876# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
3877 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
3878 { \
3879 bool fValidSelector = true; \
3880 if ((selValue) & X86_SEL_LDT) \
3881 { \
3882 uint32_t uAttr = ASMGetSegAttr((selValue)); \
3883 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
3884 } \
3885 if (fValidSelector) \
3886 { \
3887 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
3888 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
3889 } \
3890 (selValue) = 0; \
3891 }
3892
3893 /*
3894 * If we've executed guest code using hardware-assisted VMX, the host-state bits
3895 * will be messed up. We should -not- save the messed up state without restoring
3896 * the original host-state, see @bugref{7240}.
3897 *
3898 * This apparently can happen (most likely the FPU changes), deal with it rather than
3899 * asserting. Was observed booting Solaris 10u10 32-bit guest.
3900 */
3901 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
3902 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
3903 {
3904 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
3905 pVCpu->idCpu));
3906 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
3907 }
3908 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
3909#else
3910 RT_NOREF(pVCpu);
3911#endif
3912
3913 /*
3914 * Host DS, ES, FS and GS segment registers.
3915 */
3916#if HC_ARCH_BITS == 64
3917 RTSEL uSelDS = ASMGetDS();
3918 RTSEL uSelES = ASMGetES();
3919 RTSEL uSelFS = ASMGetFS();
3920 RTSEL uSelGS = ASMGetGS();
3921#else
3922 RTSEL uSelDS = 0;
3923 RTSEL uSelES = 0;
3924 RTSEL uSelFS = 0;
3925 RTSEL uSelGS = 0;
3926#endif
3927
3928 /*
3929 * Host CS and SS segment registers.
3930 */
3931 RTSEL uSelCS = ASMGetCS();
3932 RTSEL uSelSS = ASMGetSS();
3933
3934 /*
3935 * Host TR segment register.
3936 */
3937 RTSEL uSelTR = ASMGetTR();
3938
3939#if HC_ARCH_BITS == 64
3940 /*
3941 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
3942 * gain VM-entry and restore them before we get preempted.
3943 *
3944 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
3945 */
3946 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
3947 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
3948 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
3949 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
3950# undef VMXLOCAL_ADJUST_HOST_SEG
3951#endif
3952
3953 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
3954 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
3955 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
3956 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
3957 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
3958 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
3959 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
3960 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
3961 Assert(uSelCS);
3962 Assert(uSelTR);
3963
3964 /* Write these host selector fields into the host-state area in the VMCS. */
3965 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
3966 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
3967#if HC_ARCH_BITS == 64
3968 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
3969 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
3970 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
3971 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
3972#else
3973 NOREF(uSelDS);
3974 NOREF(uSelES);
3975 NOREF(uSelFS);
3976 NOREF(uSelGS);
3977#endif
3978 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3979 AssertRCReturn(rc, rc);
3980
3981 /*
3982 * Host GDTR and IDTR.
3983 */
3984 RTGDTR Gdtr;
3985 RTIDTR Idtr;
3986 RT_ZERO(Gdtr);
3987 RT_ZERO(Idtr);
3988 ASMGetGDTR(&Gdtr);
3989 ASMGetIDTR(&Idtr);
3990 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3991 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3992 AssertRCReturn(rc, rc);
3993
3994#if HC_ARCH_BITS == 64
3995 /*
3996 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
3997 * them to the maximum limit (0xffff) on every VM-exit.
3998 */
3999 if (Gdtr.cbGdt != 0xffff)
4000 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
4001
4002 /*
4003 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
4004 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
4005 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
4006 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
4007 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
4008 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
4009 * at 0xffff on hosts where we are sure it won't cause trouble.
4010 */
4011# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
4012 if (Idtr.cbIdt < 0x0fff)
4013# else
4014 if (Idtr.cbIdt != 0xffff)
4015# endif
4016 {
4017 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
4018 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
4019 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
4020 }
4021#endif
4022
4023 /*
4024 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
4025 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
4026 * RPL should be too in most cases.
4027 */
4028 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
4029 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
4030
4031 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
4032#if HC_ARCH_BITS == 64
4033 uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
4034
4035 /*
4036 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
4037 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
4038 * restoration if the host has something else. Task switching is not supported in 64-bit
4039 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
4040 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
4041 *
4042 * [1] See Intel spec. 3.5 "System Descriptor Types".
4043 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
4044 */
4045 PVM pVM = pVCpu->CTX_SUFF(pVM);
4046 Assert(pDesc->System.u4Type == 11);
4047 if ( pDesc->System.u16LimitLow != 0x67
4048 || pDesc->System.u4LimitHigh)
4049 {
4050 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
4051 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
4052 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
4053 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
4054 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
4055 }
4056
4057 /*
4058 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
4059 */
4060 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
4061 {
4062 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
4063 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
4064 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
4065 {
4066 /* The GDT is read-only but the writable GDT is available. */
4067 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
4068 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
4069 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
4070 AssertRCReturn(rc, rc);
4071 }
4072 }
4073#else
4074 uintptr_t const uTRBase = X86DESC_BASE(pDesc);
4075#endif
4076 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
4077 AssertRCReturn(rc, rc);
4078
4079 /*
4080 * Host FS base and GS base.
4081 */
4082#if HC_ARCH_BITS == 64
4083 uint64_t const u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
4084 uint64_t const u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
4085 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
4086 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
4087 AssertRCReturn(rc, rc);
4088
4089 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
4090 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
4091 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
4092 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
4093 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
4094#endif
4095 return VINF_SUCCESS;
4096}
4097
4098
4099/**
4100 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
4101 * host-state area of the VMCS.
4102 *
4103 * These MSRs will be automatically restored on the host after every successful
4104 * VM-exit.
4105 *
4106 * @returns VBox status code.
4107 * @param pVCpu The cross context virtual CPU structure.
4108 *
4109 * @remarks No-long-jump zone!!!
4110 */
4111static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
4112{
4113 AssertPtr(pVCpu);
4114
4115 /*
4116 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
4117 * rather than swapping them on every VM-entry.
4118 */
4119 hmR0VmxLazySaveHostMsrs(pVCpu);
4120
4121 /*
4122 * Host Sysenter MSRs.
4123 */
4124 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
4125#if HC_ARCH_BITS == 32
4126 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
4127 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
4128#else
4129 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
4130 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
4131#endif
4132 AssertRCReturn(rc, rc);
4133
4134 /*
4135 * Host EFER MSR.
4136 *
4137 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
4138 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
4139 */
4140 PVM pVM = pVCpu->CTX_SUFF(pVM);
4141 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4142 {
4143 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostMsrEfer);
4144 AssertRCReturn(rc, rc);
4145 }
4146
4147 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
4148 * hmR0VmxExportGuestEntryExitCtls(). */
4149
4150 return VINF_SUCCESS;
4151}
4152
4153
4154/**
4155 * Figures out if we need to swap the EFER MSR which is particularly expensive.
4156 *
4157 * We check all relevant bits. For now, that's everything besides LMA/LME, as
4158 * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
4159 *
4160 * @returns true if we need to load guest EFER, false otherwise.
4161 * @param pVCpu The cross context virtual CPU structure.
4162 *
4163 * @remarks Requires EFER, CR4.
4164 * @remarks No-long-jump zone!!!
4165 */
4166static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
4167{
4168#ifdef HMVMX_ALWAYS_SWAP_EFER
4169 RT_NOREF(pVCpu);
4170 return true;
4171#else
4172 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4173#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4174 /* For 32-bit hosts running 64-bit guests, we always swap EFER MSR in the world-switcher. Nothing to do here. */
4175 if (CPUMIsGuestInLongModeEx(pCtx))
4176 return false;
4177#endif
4178
4179 PVM pVM = pVCpu->CTX_SUFF(pVM);
4180 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostMsrEfer;
4181 uint64_t const u64GuestEfer = pCtx->msrEFER;
4182
4183 /*
4184 * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
4185 * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
4186 */
4187 if ( CPUMIsGuestInLongModeEx(pCtx)
4188 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
4189 return true;
4190
4191 /*
4192 * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
4193 * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
4194 *
4195 * See Intel spec. 4.5 "IA-32e Paging".
4196 * See Intel spec. 4.1.1 "Three Paging Modes".
4197 *
4198 * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
4199 * import CR4 and CR0 from the VMCS here as those bits are always up to date.
4200 */
4201 Assert(hmR0VmxGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
4202 Assert(hmR0VmxGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
4203 if ( (pCtx->cr4 & X86_CR4_PAE)
4204 && (pCtx->cr0 & X86_CR0_PG)
4205 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
4206 {
4207 /* Assert that host is NX capable. */
4208 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
4209 return true;
4210 }
4211
4212 return false;
4213#endif
4214}
4215
4216/**
4217 * Exports the guest state with appropriate VM-entry and VM-exit controls in the
4218 * VMCS.
4219 *
4220 * This is typically required when the guest changes paging mode.
4221 *
4222 * @returns VBox status code.
4223 * @param pVCpu The cross context virtual CPU structure.
4224 * @param pVmxTransient The VMX-transient structure.
4225 *
4226 * @remarks Requires EFER.
4227 * @remarks No-long-jump zone!!!
4228 */
4229static int hmR0VmxExportGuestEntryExitCtls(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4230{
4231 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
4232 {
4233 PVM pVM = pVCpu->CTX_SUFF(pVM);
4234 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4235
4236 /*
4237 * VM-entry controls.
4238 */
4239 {
4240 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4241 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4242
4243 /*
4244 * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
4245 * The first VT-x capable CPUs only supported the 1-setting of this bit.
4246 *
4247 * For nested-guests, this is a mandatory VM-entry control. It's also
4248 * required because we do not want to leak host bits to the nested-guest.
4249 */
4250 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
4251
4252 /*
4253 * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
4254 *
4255 * For nested-guests, the "IA-32e mode guest" control we initialize with what is
4256 * required to get the nested-guest working with hardware-assisted VMX execution.
4257 * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested-hypervisor
4258 * can skip intercepting changes to the EFER MSR. This is why it it needs to be done
4259 * here rather than while merging the guest VMCS controls.
4260 */
4261 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4262 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
4263 else
4264 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
4265
4266 /*
4267 * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
4268 *
4269 * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
4270 * regardless of whether the nested-guest VMCS specifies it because we are free to
4271 * load whatever MSRs we require and we do not need to modify the guest visible copy
4272 * of the VM-entry MSR load area.
4273 */
4274 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4275 && hmR0VmxShouldSwapEferMsr(pVCpu))
4276 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
4277 else
4278 Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
4279
4280 /*
4281 * The following should -not- be set (since we're not in SMM mode):
4282 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
4283 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
4284 */
4285
4286 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
4287 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
4288
4289 if ((fVal & fZap) == fVal)
4290 { /* likely */ }
4291 else
4292 {
4293 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
4294 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
4295 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
4296 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4297 }
4298
4299 /* Commit it to the VMCS. */
4300 if (pVmcsInfo->u32EntryCtls != fVal)
4301 {
4302 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
4303 AssertRCReturn(rc, rc);
4304 pVmcsInfo->u32EntryCtls = fVal;
4305 }
4306 }
4307
4308 /*
4309 * VM-exit controls.
4310 */
4311 {
4312 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4313 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4314
4315 /*
4316 * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
4317 * supported the 1-setting of this bit.
4318 *
4319 * For nested-guests, we set the "save debug controls" as the converse
4320 * "load debug controls" is mandatory for nested-guests anyway.
4321 */
4322 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
4323
4324 /*
4325 * Set the host long mode active (EFER.LMA) bit (which Intel calls
4326 * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
4327 * host EFER.LMA and EFER.LME bit to this value. See assertion in
4328 * hmR0VmxExportHostMsrs().
4329 *
4330 * For nested-guests, we always set this bit as we do not support 32-bit
4331 * hosts.
4332 */
4333#if HC_ARCH_BITS == 64
4334 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4335#else
4336 Assert(!pVmxTransient->fIsNestedGuest);
4337 Assert( pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64
4338 || pVmcsInfo->pfnStartVM == VMXR0StartVM32);
4339 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
4340 if (pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64)
4341 {
4342 /* The switcher returns to long mode, the EFER MSR is managed by the switcher. */
4343 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4344 }
4345 else
4346 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
4347#endif
4348
4349 /*
4350 * If the VMCS EFER MSR fields are supported by the hardware, we use it.
4351 *
4352 * For nested-guests, we should use the "save IA32_EFER" control if we also
4353 * used the "load IA32_EFER" control while exporting VM-entry controls.
4354 */
4355 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4356 && hmR0VmxShouldSwapEferMsr(pVCpu))
4357 {
4358 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
4359 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
4360 }
4361
4362 /*
4363 * Enable saving of the VMX-preemption timer value on VM-exit.
4364 * For nested-guests, currently not exposed/used.
4365 */
4366 if ( pVM->hm.s.vmx.fUsePreemptTimer
4367 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
4368 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
4369
4370 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
4371 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
4372
4373 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
4374 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
4375 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
4376
4377 if ((fVal & fZap) == fVal)
4378 { /* likely */ }
4379 else
4380 {
4381 Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
4382 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
4383 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
4384 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4385 }
4386
4387 /* Commit it to the VMCS. */
4388 if (pVmcsInfo->u32ExitCtls != fVal)
4389 {
4390 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
4391 AssertRCReturn(rc, rc);
4392 pVmcsInfo->u32ExitCtls = fVal;
4393 }
4394 }
4395
4396 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
4397 }
4398 return VINF_SUCCESS;
4399}
4400
4401
4402/**
4403 * Sets the TPR threshold in the VMCS.
4404 *
4405 * @returns VBox status code.
4406 * @param pVCpu The cross context virtual CPU structure.
4407 * @param pVmcsInfo The VMCS info. object.
4408 * @param u32TprThreshold The TPR threshold (task-priority class only).
4409 */
4410DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
4411{
4412 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
4413 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4414 RT_NOREF2(pVCpu, pVmcsInfo);
4415 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
4416}
4417
4418
4419/**
4420 * Exports the guest APIC TPR state into the VMCS.
4421 *
4422 * @returns VBox status code.
4423 * @param pVCpu The cross context virtual CPU structure.
4424 * @param pVmxTransient The VMX-transient structure.
4425 *
4426 * @remarks No-long-jump zone!!!
4427 */
4428static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4429{
4430 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
4431 {
4432 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
4433
4434 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4435 if (!pVmxTransient->fIsNestedGuest)
4436 {
4437 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
4438 && APICIsEnabled(pVCpu))
4439 {
4440 /*
4441 * Setup TPR shadowing.
4442 */
4443 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4444 {
4445 bool fPendingIntr = false;
4446 uint8_t u8Tpr = 0;
4447 uint8_t u8PendingIntr = 0;
4448 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
4449 AssertRCReturn(rc, rc);
4450
4451 /*
4452 * If there are interrupts pending but masked by the TPR, instruct VT-x to
4453 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
4454 * priority of the pending interrupt so we can deliver the interrupt. If there
4455 * are no interrupts pending, set threshold to 0 to not cause any
4456 * TPR-below-threshold VM-exits.
4457 */
4458 Assert(pVmcsInfo->pbVirtApic);
4459 pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
4460 uint32_t u32TprThreshold = 0;
4461 if (fPendingIntr)
4462 {
4463 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
4464 (which is the Task-Priority Class). */
4465 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
4466 const uint8_t u8TprPriority = u8Tpr >> 4;
4467 if (u8PendingPriority <= u8TprPriority)
4468 u32TprThreshold = u8PendingPriority;
4469 }
4470
4471 rc = hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u32TprThreshold);
4472 AssertRCReturn(rc, rc);
4473 }
4474 }
4475 }
4476 /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
4477 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
4478 }
4479 return VINF_SUCCESS;
4480}
4481
4482
4483/**
4484 * Gets the guest interruptibility-state.
4485 *
4486 * @returns Guest's interruptibility-state.
4487 * @param pVCpu The cross context virtual CPU structure.
4488 * @param pVmcsInfo The VMCS info. object.
4489 *
4490 * @remarks No-long-jump zone!!!
4491 */
4492static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
4493{
4494 /*
4495 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
4496 */
4497 uint32_t fIntrState = 0;
4498 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
4499 {
4500 /* If inhibition is active, RIP and RFLAGS should've been updated
4501 (i.e. read previously from the VMCS or from ring-3). */
4502 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4503#ifdef VBOX_STRICT
4504 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
4505 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4506 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
4507#endif
4508 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
4509 {
4510 if (pCtx->eflags.Bits.u1IF)
4511 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
4512 else
4513 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
4514 }
4515 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
4516 {
4517 /*
4518 * We can clear the inhibit force flag as even if we go back to the recompiler
4519 * without executing guest code in VT-x, the flag's condition to be cleared is
4520 * met and thus the cleared state is correct.
4521 */
4522 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
4523 }
4524 }
4525
4526 /*
4527 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
4528 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
4529 * setting this would block host-NMIs and IRET will not clear the blocking.
4530 *
4531 * We always set NMI-exiting so when the host receives an NMI we get a VM-exit.
4532 *
4533 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
4534 */
4535 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
4536 && CPUMIsGuestNmiBlocking(pVCpu))
4537 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
4538
4539 return fIntrState;
4540}
4541
4542
4543/**
4544 * Exports the exception intercepts required for guest execution in the VMCS.
4545 *
4546 * @returns VBox status code.
4547 * @param pVCpu The cross context virtual CPU structure.
4548 * @param pVmxTransient The VMX-transient structure.
4549 *
4550 * @remarks No-long-jump zone!!!
4551 */
4552static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4553{
4554 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
4555 {
4556 /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
4557 if ( !pVmxTransient->fIsNestedGuest
4558 && pVCpu->hm.s.fGIMTrapXcptUD)
4559 hmR0VmxAddXcptIntercept(pVmxTransient, X86_XCPT_UD);
4560 else
4561 hmR0VmxRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
4562
4563 /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
4564 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
4565 }
4566 return VINF_SUCCESS;
4567}
4568
4569
4570/**
4571 * Exports the guest's RIP into the guest-state area in the VMCS.
4572 *
4573 * @returns VBox status code.
4574 * @param pVCpu The cross context virtual CPU structure.
4575 *
4576 * @remarks No-long-jump zone!!!
4577 */
4578static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
4579{
4580 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
4581 {
4582 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
4583
4584 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
4585 AssertRCReturn(rc, rc);
4586
4587 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
4588 Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
4589 }
4590 return VINF_SUCCESS;
4591}
4592
4593
4594/**
4595 * Exports the guest's RSP into the guest-state area in the VMCS.
4596 *
4597 * @returns VBox status code.
4598 * @param pVCpu The cross context virtual CPU structure.
4599 *
4600 * @remarks No-long-jump zone!!!
4601 */
4602static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
4603{
4604 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
4605 {
4606 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
4607
4608 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
4609 AssertRCReturn(rc, rc);
4610
4611 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
4612 }
4613 return VINF_SUCCESS;
4614}
4615
4616
4617/**
4618 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
4619 *
4620 * @returns VBox status code.
4621 * @param pVCpu The cross context virtual CPU structure.
4622 * @param pVmxTransient The VMX-transient structure.
4623 *
4624 * @remarks No-long-jump zone!!!
4625 */
4626static int hmR0VmxExportGuestRflags(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4627{
4628 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
4629 {
4630 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
4631
4632 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
4633 Let us assert it as such and use 32-bit VMWRITE. */
4634 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
4635 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
4636 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
4637 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
4638
4639 /*
4640 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
4641 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
4642 * can run the real-mode guest code under Virtual 8086 mode.
4643 */
4644 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4645 if (pVmcsInfo->RealMode.fRealOnV86Active)
4646 {
4647 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4648 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4649 Assert(!pVmxTransient->fIsNestedGuest);
4650 pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
4651 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
4652 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
4653 }
4654
4655 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
4656 AssertRCReturn(rc, rc);
4657
4658 /*
4659 * Setup pending debug exceptions if the guest is single-stepping using EFLAGS.TF.
4660 *
4661 * We must avoid setting any automatic debug exceptions delivery when single-stepping
4662 * through the hypervisor debugger using EFLAGS.TF.
4663 */
4664 if ( !pVmxTransient->fIsNestedGuest
4665 && !pVCpu->hm.s.fSingleInstruction
4666 && fEFlags.Bits.u1TF)
4667 {
4668 /** @todo r=ramshankar: Warning!! We ASSUME EFLAGS.TF will not cleared on
4669 * premature trips to ring-3 esp since IEM does not yet handle it. */
4670 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
4671 AssertRCReturn(rc, rc);
4672 }
4673 /** @todo NSTVMX: Handling copying of VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS from
4674 * nested-guest VMCS. */
4675
4676 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
4677 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
4678 }
4679 return VINF_SUCCESS;
4680}
4681
4682
4683/**
4684 * Exports the guest CR0 control register into the guest-state area in the VMCS.
4685 *
4686 * The guest FPU state is always pre-loaded hence we don't need to bother about
4687 * sharing FPU related CR0 bits between the guest and host.
4688 *
4689 * @returns VBox status code.
4690 * @param pVCpu The cross context virtual CPU structure.
4691 * @param pVmxTransient The VMX-transient structure.
4692 *
4693 * @remarks No-long-jump zone!!!
4694 */
4695static int hmR0VmxExportGuestCR0(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4696{
4697 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
4698 {
4699 PVM pVM = pVCpu->CTX_SUFF(pVM);
4700 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4701
4702 /*
4703 * Figure out fixed CR0 bits in VMX operation.
4704 */
4705 uint64_t fSetCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
4706 uint64_t const fZapCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
4707 if (pVM->hm.s.vmx.fUnrestrictedGuest)
4708 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
4709 else
4710 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
4711
4712 if (!pVmxTransient->fIsNestedGuest)
4713 {
4714 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
4715 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
4716 uint64_t const u64ShadowCr0 = u64GuestCr0;
4717 Assert(!RT_HI_U32(u64GuestCr0));
4718
4719 /*
4720 * Setup VT-x's view of the guest CR0.
4721 */
4722 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
4723 if (pVM->hm.s.fNestedPaging)
4724 {
4725 if (CPUMIsGuestPagingEnabled(pVCpu))
4726 {
4727 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
4728 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
4729 | VMX_PROC_CTLS_CR3_STORE_EXIT);
4730 }
4731 else
4732 {
4733 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
4734 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
4735 | VMX_PROC_CTLS_CR3_STORE_EXIT;
4736 }
4737
4738 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
4739 if (pVM->hm.s.vmx.fUnrestrictedGuest)
4740 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
4741 }
4742 else
4743 {
4744 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
4745 u64GuestCr0 |= X86_CR0_WP;
4746 }
4747
4748 /*
4749 * Guest FPU bits.
4750 *
4751 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
4752 * using CR0.TS.
4753 *
4754 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
4755 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
4756 */
4757 u64GuestCr0 |= X86_CR0_NE;
4758
4759 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
4760 bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
4761
4762 /*
4763 * Update exception intercepts.
4764 */
4765 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
4766 if (pVmcsInfo->RealMode.fRealOnV86Active)
4767 {
4768 Assert(PDMVmmDevHeapIsEnabled(pVM));
4769 Assert(pVM->hm.s.vmx.pRealModeTSS);
4770 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
4771 }
4772 else
4773 {
4774 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
4775 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
4776 if (fInterceptMF)
4777 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
4778 }
4779
4780 /* Additional intercepts for debugging, define these yourself explicitly. */
4781#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
4782 uXcptBitmap |= 0
4783 | RT_BIT(X86_XCPT_BP)
4784 | RT_BIT(X86_XCPT_DE)
4785 | RT_BIT(X86_XCPT_NM)
4786 | RT_BIT(X86_XCPT_TS)
4787 | RT_BIT(X86_XCPT_UD)
4788 | RT_BIT(X86_XCPT_NP)
4789 | RT_BIT(X86_XCPT_SS)
4790 | RT_BIT(X86_XCPT_GP)
4791 | RT_BIT(X86_XCPT_PF)
4792 | RT_BIT(X86_XCPT_MF)
4793 ;
4794#elif defined(HMVMX_ALWAYS_TRAP_PF)
4795 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
4796#endif
4797 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
4798 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
4799 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
4800
4801 /* Apply the fixed CR0 bits and enable caching. */
4802 u64GuestCr0 |= fSetCr0;
4803 u64GuestCr0 &= fZapCr0;
4804 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
4805
4806 /* Commit the CR0 and related fields to the guest VMCS. */
4807 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR0, u64GuestCr0);
4808 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
4809 if (uProcCtls != pVmcsInfo->u32ProcCtls)
4810 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4811 if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
4812 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
4813 AssertRCReturn(rc, rc);
4814
4815 /* Update our caches. */
4816 pVmcsInfo->u32ProcCtls = uProcCtls;
4817 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
4818
4819 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
4820 }
4821 else
4822 {
4823 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4824 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
4825 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
4826 uint64_t const u64ShadowCr0 = pVmcsNstGst->u64Cr0ReadShadow.u;
4827 Assert(!RT_HI_U32(u64GuestCr0));
4828 Assert(u64GuestCr0 & X86_CR0_NE);
4829
4830 /* Apply the fixed CR0 bits and enable caching. */
4831 u64GuestCr0 |= fSetCr0;
4832 u64GuestCr0 &= fZapCr0;
4833 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
4834
4835 /* Commit the CR0 and CR0 read shadow to the nested-guest VMCS. */
4836 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR0, u64GuestCr0);
4837 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
4838 AssertRCReturn(rc, rc);
4839
4840 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
4841 }
4842
4843 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
4844 }
4845
4846 return VINF_SUCCESS;
4847}
4848
4849
4850/**
4851 * Exports the guest control registers (CR3, CR4) into the guest-state area
4852 * in the VMCS.
4853 *
4854 * @returns VBox strict status code.
4855 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
4856 * without unrestricted guest access and the VMMDev is not presently
4857 * mapped (e.g. EFI32).
4858 *
4859 * @param pVCpu The cross context virtual CPU structure.
4860 * @param pVmxTransient The VMX-transient structure.
4861 *
4862 * @remarks No-long-jump zone!!!
4863 */
4864static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4865{
4866 int rc = VINF_SUCCESS;
4867 PVM pVM = pVCpu->CTX_SUFF(pVM);
4868
4869 /*
4870 * Guest CR2.
4871 * It's always loaded in the assembler code. Nothing to do here.
4872 */
4873
4874 /*
4875 * Guest CR3.
4876 */
4877 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
4878 {
4879 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
4880
4881 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
4882 if (pVM->hm.s.fNestedPaging)
4883 {
4884 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4885 pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
4886
4887 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
4888 Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
4889 Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
4890 Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
4891
4892 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
4893 pVmcsInfo->HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
4894 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
4895
4896 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
4897 AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
4898 && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
4899 ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
4900 AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
4901 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
4902 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
4903
4904 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
4905 AssertRCReturn(rc, rc);
4906
4907 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4908 if ( pVM->hm.s.vmx.fUnrestrictedGuest
4909 || CPUMIsGuestPagingEnabledEx(pCtx))
4910 {
4911 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
4912 if (CPUMIsGuestInPAEModeEx(pCtx))
4913 {
4914 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
4915 AssertRCReturn(rc, rc);
4916 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
4917 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
4918 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
4919 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
4920 AssertRCReturn(rc, rc);
4921 }
4922
4923 /*
4924 * The guest's view of its CR3 is unblemished with nested paging when the
4925 * guest is using paging or we have unrestricted guest execution to handle
4926 * the guest when it's not using paging.
4927 */
4928 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
4929 GCPhysGuestCR3 = pCtx->cr3;
4930 }
4931 else
4932 {
4933 /*
4934 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
4935 * thinks it accesses physical memory directly, we use our identity-mapped
4936 * page table to map guest-linear to guest-physical addresses. EPT takes care
4937 * of translating it to host-physical addresses.
4938 */
4939 RTGCPHYS GCPhys;
4940 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
4941
4942 /* We obtain it here every time as the guest could have relocated this PCI region. */
4943 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
4944 if (RT_SUCCESS(rc))
4945 { /* likely */ }
4946 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
4947 {
4948 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
4949 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
4950 }
4951 else
4952 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
4953
4954 GCPhysGuestCR3 = GCPhys;
4955 }
4956
4957 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
4958 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4959 AssertRCReturn(rc, rc);
4960 }
4961 else
4962 {
4963 /* Non-nested paging case, just use the hypervisor's CR3. */
4964 RTHCPHYS const HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4965
4966 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
4967 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4968 AssertRCReturn(rc, rc);
4969 }
4970
4971 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
4972 }
4973
4974 /*
4975 * Guest CR4.
4976 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4977 */
4978 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
4979 {
4980 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4981 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4982 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4983
4984 /*
4985 * Figure out fixed CR4 bits in VMX operation.
4986 */
4987 uint64_t const fSetCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
4988 uint64_t const fZapCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
4989
4990 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
4991 uint64_t u64GuestCr4 = pCtx->cr4;
4992 uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest ? pCtx->cr4 : pVmcsNstGst->u64Cr4ReadShadow.u;
4993 Assert(!RT_HI_U32(u64GuestCr4));
4994
4995 /*
4996 * Setup VT-x's view of the guest CR4.
4997 *
4998 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
4999 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
5000 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
5001 *
5002 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
5003 */
5004 if (pVmcsInfo->RealMode.fRealOnV86Active)
5005 {
5006 Assert(pVM->hm.s.vmx.pRealModeTSS);
5007 Assert(PDMVmmDevHeapIsEnabled(pVM));
5008 u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
5009 }
5010
5011 if (pVM->hm.s.fNestedPaging)
5012 {
5013 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
5014 && !pVM->hm.s.vmx.fUnrestrictedGuest)
5015 {
5016 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
5017 u64GuestCr4 |= X86_CR4_PSE;
5018 /* Our identity mapping is a 32-bit page directory. */
5019 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5020 }
5021 /* else use guest CR4.*/
5022 }
5023 else
5024 {
5025 Assert(!pVmxTransient->fIsNestedGuest);
5026
5027 /*
5028 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
5029 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
5030 */
5031 switch (pVCpu->hm.s.enmShadowMode)
5032 {
5033 case PGMMODE_REAL: /* Real-mode. */
5034 case PGMMODE_PROTECTED: /* Protected mode without paging. */
5035 case PGMMODE_32_BIT: /* 32-bit paging. */
5036 {
5037 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5038 break;
5039 }
5040
5041 case PGMMODE_PAE: /* PAE paging. */
5042 case PGMMODE_PAE_NX: /* PAE paging with NX. */
5043 {
5044 u64GuestCr4 |= X86_CR4_PAE;
5045 break;
5046 }
5047
5048 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
5049 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
5050#ifdef VBOX_ENABLE_64_BITS_GUESTS
5051 break;
5052#endif
5053 default:
5054 AssertFailed();
5055 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5056 }
5057 }
5058
5059 /* Apply the fixed CR4 bits (mainly CR4.VMXE). */
5060 u64GuestCr4 |= fSetCr4;
5061 u64GuestCr4 &= fZapCr4;
5062
5063 /* Commit the CR4 and CR4 read shadow to the guest VMCS. */
5064 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR4, u64GuestCr4);
5065 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4);
5066 AssertRCReturn(rc, rc);
5067
5068 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
5069 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
5070
5071 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
5072
5073 Log4Func(("cr4=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
5074 }
5075 return rc;
5076}
5077
5078
5079/**
5080 * Exports the guest debug registers into the guest-state area in the VMCS.
5081 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
5082 *
5083 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
5084 *
5085 * @returns VBox status code.
5086 * @param pVCpu The cross context virtual CPU structure.
5087 * @param pVmxTransient The VMX-transient structure.
5088 *
5089 * @remarks No-long-jump zone!!!
5090 */
5091static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5092{
5093 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5094
5095 /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
5096 * stepping. */
5097 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5098 if (pVmxTransient->fIsNestedGuest)
5099 {
5100 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
5101 AssertRCReturn(rc, rc);
5102 return VINF_SUCCESS;
5103 }
5104
5105#ifdef VBOX_STRICT
5106 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
5107 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5108 {
5109 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
5110 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
5111 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
5112 }
5113#endif
5114
5115 bool fSteppingDB = false;
5116 bool fInterceptMovDRx = false;
5117 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5118 if (pVCpu->hm.s.fSingleInstruction)
5119 {
5120 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
5121 PVM pVM = pVCpu->CTX_SUFF(pVM);
5122 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
5123 {
5124 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
5125 Assert(fSteppingDB == false);
5126 }
5127 else
5128 {
5129 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
5130 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
5131 pVCpu->hm.s.fClearTrapFlag = true;
5132 fSteppingDB = true;
5133 }
5134 }
5135
5136 uint32_t u32GuestDr7;
5137 if ( fSteppingDB
5138 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
5139 {
5140 /*
5141 * Use the combined guest and host DRx values found in the hypervisor register set
5142 * because the hypervisor debugger has breakpoints active or someone is single stepping
5143 * on the host side without a monitor trap flag.
5144 *
5145 * Note! DBGF expects a clean DR6 state before executing guest code.
5146 */
5147#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5148 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
5149 && !CPUMIsHyperDebugStateActivePending(pVCpu))
5150 {
5151 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5152 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
5153 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
5154 }
5155 else
5156#endif
5157 if (!CPUMIsHyperDebugStateActive(pVCpu))
5158 {
5159 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5160 Assert(CPUMIsHyperDebugStateActive(pVCpu));
5161 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
5162 }
5163
5164 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
5165 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
5166 pVCpu->hm.s.fUsingHyperDR7 = true;
5167 fInterceptMovDRx = true;
5168 }
5169 else
5170 {
5171 /*
5172 * If the guest has enabled debug registers, we need to load them prior to
5173 * executing guest code so they'll trigger at the right time.
5174 */
5175 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
5176 {
5177#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5178 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
5179 && !CPUMIsGuestDebugStateActivePending(pVCpu))
5180 {
5181 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
5182 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
5183 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
5184 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
5185 }
5186 else
5187#endif
5188 if (!CPUMIsGuestDebugStateActive(pVCpu))
5189 {
5190 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
5191 Assert(CPUMIsGuestDebugStateActive(pVCpu));
5192 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
5193 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
5194 }
5195 Assert(!fInterceptMovDRx);
5196 }
5197 /*
5198 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
5199 * must intercept #DB in order to maintain a correct DR6 guest value, and
5200 * because we need to intercept it to prevent nested #DBs from hanging the
5201 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
5202 */
5203#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5204 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
5205 && !CPUMIsGuestDebugStateActive(pVCpu))
5206#else
5207 else if (!CPUMIsGuestDebugStateActive(pVCpu))
5208#endif
5209 {
5210 fInterceptMovDRx = true;
5211 }
5212
5213 /* Update DR7 with the actual guest value. */
5214 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
5215 pVCpu->hm.s.fUsingHyperDR7 = false;
5216 }
5217
5218 if (fInterceptMovDRx)
5219 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
5220 else
5221 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
5222
5223 /*
5224 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
5225 * monitor-trap flag and update our cache.
5226 */
5227 if (uProcCtls != pVmcsInfo->u32ProcCtls)
5228 {
5229 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5230 AssertRCReturn(rc2, rc2);
5231 pVmcsInfo->u32ProcCtls = uProcCtls;
5232 }
5233
5234 /*
5235 * Update guest DR7.
5236 */
5237 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
5238 AssertRCReturn(rc, rc);
5239
5240 /*
5241 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
5242 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
5243 *
5244 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5245 */
5246 if (fSteppingDB)
5247 {
5248 Assert(pVCpu->hm.s.fSingleInstruction);
5249 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
5250
5251 uint32_t fIntrState = 0;
5252 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
5253 AssertRCReturn(rc, rc);
5254
5255 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5256 {
5257 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
5258 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
5259 AssertRCReturn(rc, rc);
5260 }
5261 }
5262
5263 return VINF_SUCCESS;
5264}
5265
5266
5267#ifdef VBOX_STRICT
5268/**
5269 * Strict function to validate segment registers.
5270 *
5271 * @param pVCpu The cross context virtual CPU structure.
5272 * @param pVmcsInfo The VMCS info. object.
5273 *
5274 * @remarks Will import guest CR0 on strict builds during validation of
5275 * segments.
5276 */
5277static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
5278{
5279 /*
5280 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
5281 *
5282 * The reason we check for attribute value 0 in this function and not just the unusable bit is
5283 * because hmR0VmxExportGuestSegReg() only updates the VMCS' copy of the value with the
5284 * unusable bit and doesn't change the guest-context value.
5285 */
5286 PVM pVM = pVCpu->CTX_SUFF(pVM);
5287 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5288 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
5289 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
5290 && ( !CPUMIsGuestInRealModeEx(pCtx)
5291 && !CPUMIsGuestInV86ModeEx(pCtx)))
5292 {
5293 /* Protected mode checks */
5294 /* CS */
5295 Assert(pCtx->cs.Attr.n.u1Present);
5296 Assert(!(pCtx->cs.Attr.u & 0xf00));
5297 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
5298 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
5299 || !(pCtx->cs.Attr.n.u1Granularity));
5300 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
5301 || (pCtx->cs.Attr.n.u1Granularity));
5302 /* CS cannot be loaded with NULL in protected mode. */
5303 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
5304 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
5305 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
5306 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
5307 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
5308 else
5309 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
5310 /* SS */
5311 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
5312 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
5313 if ( !(pCtx->cr0 & X86_CR0_PE)
5314 || pCtx->cs.Attr.n.u4Type == 3)
5315 {
5316 Assert(!pCtx->ss.Attr.n.u2Dpl);
5317 }
5318 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
5319 {
5320 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
5321 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
5322 Assert(pCtx->ss.Attr.n.u1Present);
5323 Assert(!(pCtx->ss.Attr.u & 0xf00));
5324 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
5325 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
5326 || !(pCtx->ss.Attr.n.u1Granularity));
5327 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
5328 || (pCtx->ss.Attr.n.u1Granularity));
5329 }
5330 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegReg(). */
5331 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
5332 {
5333 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5334 Assert(pCtx->ds.Attr.n.u1Present);
5335 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
5336 Assert(!(pCtx->ds.Attr.u & 0xf00));
5337 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
5338 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
5339 || !(pCtx->ds.Attr.n.u1Granularity));
5340 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
5341 || (pCtx->ds.Attr.n.u1Granularity));
5342 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5343 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
5344 }
5345 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
5346 {
5347 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5348 Assert(pCtx->es.Attr.n.u1Present);
5349 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
5350 Assert(!(pCtx->es.Attr.u & 0xf00));
5351 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
5352 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
5353 || !(pCtx->es.Attr.n.u1Granularity));
5354 Assert( !(pCtx->es.u32Limit & 0xfff00000)
5355 || (pCtx->es.Attr.n.u1Granularity));
5356 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5357 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
5358 }
5359 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
5360 {
5361 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5362 Assert(pCtx->fs.Attr.n.u1Present);
5363 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
5364 Assert(!(pCtx->fs.Attr.u & 0xf00));
5365 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
5366 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
5367 || !(pCtx->fs.Attr.n.u1Granularity));
5368 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
5369 || (pCtx->fs.Attr.n.u1Granularity));
5370 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5371 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
5372 }
5373 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
5374 {
5375 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5376 Assert(pCtx->gs.Attr.n.u1Present);
5377 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
5378 Assert(!(pCtx->gs.Attr.u & 0xf00));
5379 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
5380 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
5381 || !(pCtx->gs.Attr.n.u1Granularity));
5382 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
5383 || (pCtx->gs.Attr.n.u1Granularity));
5384 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5385 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
5386 }
5387 /* 64-bit capable CPUs. */
5388# if HC_ARCH_BITS == 64
5389 Assert(!RT_HI_U32(pCtx->cs.u64Base));
5390 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
5391 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
5392 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
5393# endif
5394 }
5395 else if ( CPUMIsGuestInV86ModeEx(pCtx)
5396 || ( CPUMIsGuestInRealModeEx(pCtx)
5397 && !pVM->hm.s.vmx.fUnrestrictedGuest))
5398 {
5399 /* Real and v86 mode checks. */
5400 /* hmR0VmxExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
5401 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
5402 if (pVmcsInfo->RealMode.fRealOnV86Active)
5403 {
5404 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
5405 u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
5406 }
5407 else
5408 {
5409 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
5410 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
5411 }
5412
5413 /* CS */
5414 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
5415 Assert(pCtx->cs.u32Limit == 0xffff);
5416 Assert(u32CSAttr == 0xf3);
5417 /* SS */
5418 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
5419 Assert(pCtx->ss.u32Limit == 0xffff);
5420 Assert(u32SSAttr == 0xf3);
5421 /* DS */
5422 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
5423 Assert(pCtx->ds.u32Limit == 0xffff);
5424 Assert(u32DSAttr == 0xf3);
5425 /* ES */
5426 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
5427 Assert(pCtx->es.u32Limit == 0xffff);
5428 Assert(u32ESAttr == 0xf3);
5429 /* FS */
5430 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
5431 Assert(pCtx->fs.u32Limit == 0xffff);
5432 Assert(u32FSAttr == 0xf3);
5433 /* GS */
5434 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
5435 Assert(pCtx->gs.u32Limit == 0xffff);
5436 Assert(u32GSAttr == 0xf3);
5437 /* 64-bit capable CPUs. */
5438# if HC_ARCH_BITS == 64
5439 Assert(!RT_HI_U32(pCtx->cs.u64Base));
5440 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
5441 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
5442 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
5443# endif
5444 }
5445}
5446#endif /* VBOX_STRICT */
5447
5448
5449/**
5450 * Exports a guest segment register into the guest-state area in the VMCS.
5451 *
5452 * @returns VBox status code.
5453 * @param pVCpu The cross context virtual CPU structure.
5454 * @param pVmcsInfo The VMCS info. object.
5455 * @param iSegReg The segment register number (X86_SREG_XXX).
5456 * @param pSelReg Pointer to the segment selector.
5457 *
5458 * @remarks No-long-jump zone!!!
5459 */
5460static int hmR0VmxExportGuestSegReg(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint8_t iSegReg, PCCPUMSELREG pSelReg)
5461{
5462 Assert(iSegReg < X86_SREG_COUNT);
5463 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
5464 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
5465 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
5466 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
5467
5468 uint32_t u32Access = pSelReg->Attr.u;
5469 if (pVmcsInfo->RealMode.fRealOnV86Active)
5470 {
5471 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
5472 u32Access = 0xf3;
5473 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5474 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
5475 RT_NOREF_PV(pVCpu);
5476 }
5477 else
5478 {
5479 /*
5480 * The way to differentiate between whether this is really a null selector or was just
5481 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
5482 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
5483 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
5484 * NULL selectors loaded in protected-mode have their attribute as 0.
5485 */
5486 if (!u32Access)
5487 u32Access = X86DESCATTR_UNUSABLE;
5488 }
5489
5490 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
5491 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
5492 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
5493
5494 /*
5495 * Commit it to the VMCS.
5496 */
5497 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel);
5498 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit);
5499 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base);
5500 rc |= VMXWriteVmcs32(idxAttr, u32Access);
5501 AssertRCReturn(rc, rc);
5502 return rc;
5503}
5504
5505
5506/**
5507 * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
5508 * area in the VMCS.
5509 *
5510 * @returns VBox status code.
5511 * @param pVCpu The cross context virtual CPU structure.
5512 * @param pVmxTransient The VMX-transient structure.
5513 *
5514 * @remarks Will import guest CR0 on strict builds during validation of
5515 * segments.
5516 * @remarks No-long-jump zone!!!
5517 */
5518static int hmR0VmxExportGuestSegRegsXdtr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5519{
5520 int rc = VERR_INTERNAL_ERROR_5;
5521 PVM pVM = pVCpu->CTX_SUFF(pVM);
5522 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5523 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5524
5525 /*
5526 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
5527 */
5528 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
5529 {
5530#ifdef VBOX_WITH_REM
5531 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
5532 {
5533 Assert(!pVmxTransient->fIsNestedGuest);
5534 Assert(pVM->hm.s.vmx.pRealModeTSS);
5535 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
5536 if ( pVmcsInfo->fWasInRealMode
5537 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
5538 {
5539 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
5540 in real-mode (e.g. OpenBSD 4.0) */
5541 REMFlushTBs(pVM);
5542 Log4Func(("Switch to protected mode detected!\n"));
5543 pVmcsInfo->fWasInRealMode = false;
5544 }
5545 }
5546#endif
5547 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
5548 {
5549 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
5550 if (pVmcsInfo->RealMode.fRealOnV86Active)
5551 pVmcsInfo->RealMode.AttrCS.u = pCtx->cs.Attr.u;
5552 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
5553 AssertRCReturn(rc, rc);
5554 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
5555 }
5556
5557 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
5558 {
5559 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
5560 if (pVmcsInfo->RealMode.fRealOnV86Active)
5561 pVmcsInfo->RealMode.AttrSS.u = pCtx->ss.Attr.u;
5562 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
5563 AssertRCReturn(rc, rc);
5564 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
5565 }
5566
5567 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
5568 {
5569 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
5570 if (pVmcsInfo->RealMode.fRealOnV86Active)
5571 pVmcsInfo->RealMode.AttrDS.u = pCtx->ds.Attr.u;
5572 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
5573 AssertRCReturn(rc, rc);
5574 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
5575 }
5576
5577 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
5578 {
5579 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
5580 if (pVmcsInfo->RealMode.fRealOnV86Active)
5581 pVmcsInfo->RealMode.AttrES.u = pCtx->es.Attr.u;
5582 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
5583 AssertRCReturn(rc, rc);
5584 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
5585 }
5586
5587 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
5588 {
5589 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
5590 if (pVmcsInfo->RealMode.fRealOnV86Active)
5591 pVmcsInfo->RealMode.AttrFS.u = pCtx->fs.Attr.u;
5592 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
5593 AssertRCReturn(rc, rc);
5594 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
5595 }
5596
5597 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
5598 {
5599 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
5600 if (pVmcsInfo->RealMode.fRealOnV86Active)
5601 pVmcsInfo->RealMode.AttrGS.u = pCtx->gs.Attr.u;
5602 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
5603 AssertRCReturn(rc, rc);
5604 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
5605 }
5606
5607#ifdef VBOX_STRICT
5608 hmR0VmxValidateSegmentRegs(pVCpu, pVmcsInfo);
5609#endif
5610 Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
5611 pCtx->cs.Attr.u));
5612 }
5613
5614 /*
5615 * Guest TR.
5616 */
5617 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
5618 {
5619 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
5620
5621 /*
5622 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
5623 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
5624 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
5625 */
5626 uint16_t u16Sel;
5627 uint32_t u32Limit;
5628 uint64_t u64Base;
5629 uint32_t u32AccessRights;
5630 if (!pVmcsInfo->RealMode.fRealOnV86Active)
5631 {
5632 u16Sel = pCtx->tr.Sel;
5633 u32Limit = pCtx->tr.u32Limit;
5634 u64Base = pCtx->tr.u64Base;
5635 u32AccessRights = pCtx->tr.Attr.u;
5636 }
5637 else
5638 {
5639 Assert(!pVmxTransient->fIsNestedGuest);
5640 Assert(pVM->hm.s.vmx.pRealModeTSS);
5641 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
5642
5643 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
5644 RTGCPHYS GCPhys;
5645 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
5646 AssertRCReturn(rc, rc);
5647
5648 X86DESCATTR DescAttr;
5649 DescAttr.u = 0;
5650 DescAttr.n.u1Present = 1;
5651 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
5652
5653 u16Sel = 0;
5654 u32Limit = HM_VTX_TSS_SIZE;
5655 u64Base = GCPhys;
5656 u32AccessRights = DescAttr.u;
5657 }
5658
5659 /* Validate. */
5660 Assert(!(u16Sel & RT_BIT(2)));
5661 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
5662 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
5663 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
5664 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
5665 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
5666 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
5667 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
5668 Assert( (u32Limit & 0xfff) == 0xfff
5669 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
5670 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
5671 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
5672
5673 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
5674 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
5675 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
5676 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
5677 AssertRCReturn(rc, rc);
5678
5679 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
5680 Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
5681 }
5682
5683 /*
5684 * Guest GDTR.
5685 */
5686 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
5687 {
5688 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
5689
5690 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
5691 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
5692 AssertRCReturn(rc, rc);
5693
5694 /* Validate. */
5695 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
5696
5697 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
5698 Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
5699 }
5700
5701 /*
5702 * Guest LDTR.
5703 */
5704 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
5705 {
5706 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
5707
5708 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
5709 uint32_t u32Access;
5710 if ( !pVmxTransient->fIsNestedGuest
5711 && !pCtx->ldtr.Attr.u)
5712 u32Access = X86DESCATTR_UNUSABLE;
5713 else
5714 u32Access = pCtx->ldtr.Attr.u;
5715
5716 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
5717 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
5718 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
5719 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
5720 AssertRCReturn(rc, rc);
5721
5722 /* Validate. */
5723 if (!(u32Access & X86DESCATTR_UNUSABLE))
5724 {
5725 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
5726 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
5727 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
5728 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
5729 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
5730 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
5731 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
5732 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
5733 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
5734 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
5735 }
5736
5737 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
5738 Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
5739 }
5740
5741 /*
5742 * Guest IDTR.
5743 */
5744 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
5745 {
5746 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
5747
5748 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
5749 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
5750 AssertRCReturn(rc, rc);
5751
5752 /* Validate. */
5753 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
5754
5755 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
5756 Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
5757 }
5758
5759 return VINF_SUCCESS;
5760}
5761
5762
5763/**
5764 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
5765 * areas.
5766 *
5767 * These MSRs will automatically be loaded to the host CPU on every successful
5768 * VM-entry and stored from the host CPU on every successful VM-exit.
5769 *
5770 * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
5771 * actual host MSR values are not- updated here for performance reasons. See
5772 * hmR0VmxExportHostMsrs().
5773 *
5774 * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
5775 *
5776 * @returns VBox status code.
5777 * @param pVCpu The cross context virtual CPU structure.
5778 * @param pVmxTransient The VMX-transient structure.
5779 *
5780 * @remarks No-long-jump zone!!!
5781 */
5782static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5783{
5784 AssertPtr(pVCpu);
5785 AssertPtr(pVmxTransient);
5786
5787 PVM pVM = pVCpu->CTX_SUFF(pVM);
5788 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5789
5790 /*
5791 * MSRs that we use the auto-load/store MSR area in the VMCS.
5792 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
5793 * The host MSR values are updated when it's safe in hmR0VmxLazySaveHostMsrs().
5794 *
5795 * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
5796 * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
5797 * emulation, nothing to do here.
5798 */
5799 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
5800 {
5801 if ( !pVmxTransient->fIsNestedGuest
5802 && pVM->hm.s.fAllow64BitGuests)
5803 {
5804#if HC_ARCH_BITS == 32
5805 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
5806 Assert(!pVmxTransient->fIsNestedGuest);
5807
5808 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_LSTAR, pCtx->msrLSTAR, true, false);
5809 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_STAR, pCtx->msrSTAR, true, false);
5810 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_SF_MASK, pCtx->msrSFMASK, true, false);
5811 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, true, false);
5812 AssertRCReturn(rc, rc);
5813#endif
5814 }
5815 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
5816 }
5817
5818 /*
5819 * Guest Sysenter MSRs.
5820 */
5821 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
5822 {
5823 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
5824
5825 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
5826 {
5827 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
5828 AssertRCReturn(rc, rc);
5829 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
5830 }
5831
5832 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
5833 {
5834 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
5835 AssertRCReturn(rc, rc);
5836 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
5837 }
5838
5839 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
5840 {
5841 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
5842 AssertRCReturn(rc, rc);
5843 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
5844 }
5845 }
5846
5847 /*
5848 * Guest/host EFER MSR.
5849 */
5850 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
5851 {
5852 /* Whether we are using the VMCS to swap the EFER MSR must have been
5853 determined earlier while exporting VM-entry/VM-exit controls. */
5854 Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
5855 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
5856
5857 if (hmR0VmxShouldSwapEferMsr(pVCpu))
5858 {
5859 /*
5860 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
5861 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
5862 */
5863 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
5864 {
5865 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
5866 AssertRCReturn(rc, rc);
5867 }
5868 else
5869 {
5870 /*
5871 * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
5872 * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
5873 */
5874 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, pCtx->msrEFER,
5875 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
5876 AssertRCReturn(rc, rc);
5877 }
5878 }
5879 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
5880 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
5881
5882 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
5883 }
5884
5885 /*
5886 * Other MSRs.
5887 * Speculation Control (R/W).
5888 */
5889 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
5890 {
5891 HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
5892 if (pVM->cpum.ro.GuestFeatures.fIbrs)
5893 {
5894 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
5895 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
5896 AssertRCReturn(rc, rc);
5897 }
5898 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
5899 }
5900
5901 return VINF_SUCCESS;
5902}
5903
5904
5905/**
5906 * Selects up the appropriate function to run guest code.
5907 *
5908 * @returns VBox status code.
5909 * @param pVCpu The cross context virtual CPU structure.
5910 * @param pVmxTransient The VMX-transient structure.
5911 *
5912 * @remarks No-long-jump zone!!!
5913 */
5914static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5915{
5916 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5917 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5918
5919 if (CPUMIsGuestInLongModeEx(pCtx))
5920 {
5921#ifndef VBOX_ENABLE_64_BITS_GUESTS
5922 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5923#endif
5924 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
5925#if HC_ARCH_BITS == 32
5926 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
5927 if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
5928 {
5929#ifdef VBOX_STRICT
5930 if (pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
5931 {
5932 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
5933 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
5934 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
5935 AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
5936 ("fCtxChanged=%#RX64\n", fCtxChanged));
5937 }
5938#endif
5939 pVmcsInfo->pfnStartVM = VMXR0SwitcherStartVM64;
5940
5941 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
5942 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
5943 pVmcsInfo->fSwitchedTo64on32 = true;
5944 Log4Func(("Selected 64-bit switcher\n"));
5945 }
5946#else
5947 /* 64-bit host. */
5948 pVmcsInfo->pfnStartVM = VMXR0StartVM64;
5949#endif
5950 }
5951 else
5952 {
5953 /* Guest is not in long mode, use the 32-bit handler. */
5954#if HC_ARCH_BITS == 32
5955 if ( pVmcsInfo->pfnStartVM != VMXR0StartVM32
5956 && !pVmcsInfo->fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
5957 && pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
5958 {
5959# ifdef VBOX_STRICT
5960 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
5961 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
5962 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
5963 AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
5964 ("fCtxChanged=%#RX64\n", fCtxChanged));
5965# endif
5966 }
5967# ifdef VBOX_ENABLE_64_BITS_GUESTS
5968 /*
5969 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
5970 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
5971 * switcher flag now because we know the guest is in a sane state where it's safe
5972 * to use the 32-bit switcher. Otherwise, check the guest state if it's safe to use
5973 * the much faster 32-bit switcher again.
5974 */
5975 if (!pVmcsInfo->fSwitchedTo64on32)
5976 {
5977 if (pVmcsInfo->pfnStartVM != VMXR0StartVM32)
5978 Log4Func(("Selected 32-bit switcher\n"));
5979 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5980 }
5981 else
5982 {
5983 Assert(pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64);
5984 if ( pVmcsInfo->RealMode.fRealOnV86Active
5985 || hmR0VmxIs32BitSwitcherSafe(pCtx))
5986 {
5987 pVmcsInfo->fSwitchedTo64on32 = false;
5988 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5989 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
5990 | HM_CHANGED_VMX_ENTRY_EXIT_CTLS
5991 | HM_CHANGED_HOST_CONTEXT);
5992 Log4Func(("Selected 32-bit switcher (safe)\n"));
5993 }
5994 }
5995# else
5996 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5997# endif
5998#else
5999 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
6000#endif
6001 }
6002 Assert(pVmcsInfo->pfnStartVM);
6003 return VINF_SUCCESS;
6004}
6005
6006
6007/**
6008 * Wrapper for running the guest code in VT-x.
6009 *
6010 * @returns VBox status code, no informational status codes.
6011 * @param pVCpu The cross context virtual CPU structure.
6012 * @param pVmxTransient The VMX-transient structure.
6013 *
6014 * @remarks No-long-jump zone!!!
6015 */
6016DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6017{
6018 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
6019 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6020 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
6021
6022 /** @todo Add stats for VMRESUME vs VMLAUNCH. */
6023
6024 /*
6025 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
6026 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
6027 * callee-saved and thus the need for this XMM wrapper.
6028 *
6029 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
6030 */
6031 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6032 bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
6033 PVM pVM = pVCpu->CTX_SUFF(pVM);
6034#ifdef VBOX_WITH_KERNEL_USING_XMM
6035 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu, pVmcsInfo->pfnStartVM);
6036#else
6037 int rc = pVmcsInfo->pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu);
6038#endif
6039 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
6040 return rc;
6041}
6042
6043
6044/**
6045 * Reports world-switch error and dumps some useful debug info.
6046 *
6047 * @param pVCpu The cross context virtual CPU structure.
6048 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
6049 * @param pVmxTransient The VMX-transient structure (only
6050 * exitReason updated).
6051 */
6052static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
6053{
6054 Assert(pVCpu);
6055 Assert(pVmxTransient);
6056 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
6057
6058 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
6059 switch (rcVMRun)
6060 {
6061 case VERR_VMX_INVALID_VMXON_PTR:
6062 AssertFailed();
6063 break;
6064 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
6065 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
6066 {
6067 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
6068 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
6069 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
6070 AssertRC(rc);
6071
6072 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6073 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
6074 Cannot do it here as we may have been long preempted. */
6075
6076#ifdef VBOX_STRICT
6077 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6078 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
6079 pVmxTransient->uExitReason));
6080 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
6081 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
6082 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
6083 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
6084 else
6085 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
6086 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
6087 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
6088
6089 /* VMX control bits. */
6090 uint32_t u32Val;
6091 uint64_t u64Val;
6092 RTHCUINTREG uHCReg;
6093 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
6094 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
6095 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
6096 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
6097 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6098 {
6099 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
6100 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
6101 }
6102 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
6103 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
6104 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
6105 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
6106 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
6107 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
6108 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
6109 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
6110 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
6111 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
6112 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
6113 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
6114 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
6115 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
6116 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
6117 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
6118 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
6119 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
6120 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
6121 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
6122 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
6123 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
6124 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
6125 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
6126 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
6127 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
6128 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
6129 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
6130 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
6131 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
6132 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
6133 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
6134 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
6135 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
6136 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
6137 {
6138 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
6139 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
6140 }
6141
6142 /* Guest bits. */
6143 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
6144 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
6145 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
6146 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
6147 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
6148 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
6149 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
6150 {
6151 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
6152 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
6153 }
6154
6155 /* Host bits. */
6156 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
6157 Log4(("Host CR0 %#RHr\n", uHCReg));
6158 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
6159 Log4(("Host CR3 %#RHr\n", uHCReg));
6160 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
6161 Log4(("Host CR4 %#RHr\n", uHCReg));
6162
6163 RTGDTR HostGdtr;
6164 PCX86DESCHC pDesc;
6165 ASMGetGDTR(&HostGdtr);
6166 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
6167 Log4(("Host CS %#08x\n", u32Val));
6168 if (u32Val < HostGdtr.cbGdt)
6169 {
6170 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6171 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
6172 }
6173
6174 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
6175 Log4(("Host DS %#08x\n", u32Val));
6176 if (u32Val < HostGdtr.cbGdt)
6177 {
6178 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6179 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
6180 }
6181
6182 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
6183 Log4(("Host ES %#08x\n", u32Val));
6184 if (u32Val < HostGdtr.cbGdt)
6185 {
6186 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6187 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
6188 }
6189
6190 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
6191 Log4(("Host FS %#08x\n", u32Val));
6192 if (u32Val < HostGdtr.cbGdt)
6193 {
6194 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6195 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
6196 }
6197
6198 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
6199 Log4(("Host GS %#08x\n", u32Val));
6200 if (u32Val < HostGdtr.cbGdt)
6201 {
6202 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6203 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
6204 }
6205
6206 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
6207 Log4(("Host SS %#08x\n", u32Val));
6208 if (u32Val < HostGdtr.cbGdt)
6209 {
6210 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6211 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
6212 }
6213
6214 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
6215 Log4(("Host TR %#08x\n", u32Val));
6216 if (u32Val < HostGdtr.cbGdt)
6217 {
6218 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6219 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
6220 }
6221
6222 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
6223 Log4(("Host TR Base %#RHv\n", uHCReg));
6224 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
6225 Log4(("Host GDTR Base %#RHv\n", uHCReg));
6226 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
6227 Log4(("Host IDTR Base %#RHv\n", uHCReg));
6228 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
6229 Log4(("Host SYSENTER CS %#08x\n", u32Val));
6230 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
6231 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
6232 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
6233 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
6234 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
6235 Log4(("Host RSP %#RHv\n", uHCReg));
6236 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
6237 Log4(("Host RIP %#RHv\n", uHCReg));
6238# if HC_ARCH_BITS == 64
6239 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
6240 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
6241 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
6242 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
6243 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
6244 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
6245# endif
6246#endif /* VBOX_STRICT */
6247 break;
6248 }
6249
6250 default:
6251 /* Impossible */
6252 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
6253 break;
6254 }
6255}
6256
6257
6258#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
6259# ifndef VMX_USE_CACHED_VMCS_ACCESSES
6260# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
6261# endif
6262
6263/**
6264 * Initialize the VMCS-Read cache.
6265 *
6266 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
6267 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
6268 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
6269 * (those that have a 32-bit FULL & HIGH part).
6270 *
6271 * @param pVCpu The cross context virtual CPU structure.
6272 */
6273static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
6274{
6275#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
6276 do { \
6277 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
6278 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
6279 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
6280 ++cReadFields; \
6281 } while (0)
6282
6283 PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
6284 uint32_t cReadFields = 0;
6285
6286 /*
6287 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
6288 * and serve to indicate exceptions to the rules.
6289 */
6290
6291 /* Guest-natural selector base fields. */
6292#if 0
6293 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
6294 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
6295 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
6296#endif
6297 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
6298 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
6299 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
6300 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
6301 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
6302 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
6303 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
6304 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
6305 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
6306 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
6307 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
6308 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
6309#if 0
6310 /* Unused natural width guest-state fields. */
6311 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS);
6312 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in nested paging case */
6313#endif
6314 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
6315 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
6316
6317 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
6318 these 64-bit fields (using "FULL" and "HIGH" fields). */
6319#if 0
6320 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
6321 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
6322 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
6323 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
6324 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
6325 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
6326 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
6327 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
6328 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
6329#endif
6330
6331 /* Natural width guest-state fields. */
6332 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
6333 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_GUEST_LINEAR_ADDR);
6334
6335 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
6336 {
6337 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
6338 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
6339 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
6340 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
6341 }
6342 else
6343 {
6344 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
6345 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
6346 }
6347
6348#undef VMXLOCAL_INIT_READ_CACHE_FIELD
6349}
6350
6351
6352/**
6353 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
6354 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
6355 * darwin, running 64-bit guests).
6356 *
6357 * @returns VBox status code.
6358 * @param pVCpu The cross context virtual CPU structure.
6359 * @param idxField The VMCS field encoding.
6360 * @param u64Val 16, 32 or 64-bit value.
6361 */
6362VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
6363{
6364 int rc;
6365 switch (idxField)
6366 {
6367 /*
6368 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
6369 */
6370 /* 64-bit Control fields. */
6371 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
6372 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
6373 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
6374 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
6375 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
6376 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
6377 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
6378 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
6379 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
6380 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
6381 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
6382 case VMX_VMCS64_CTRL_EPTP_FULL:
6383 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
6384 /* 64-bit Guest-state fields. */
6385 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
6386 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
6387 case VMX_VMCS64_GUEST_PAT_FULL:
6388 case VMX_VMCS64_GUEST_EFER_FULL:
6389 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
6390 case VMX_VMCS64_GUEST_PDPTE0_FULL:
6391 case VMX_VMCS64_GUEST_PDPTE1_FULL:
6392 case VMX_VMCS64_GUEST_PDPTE2_FULL:
6393 case VMX_VMCS64_GUEST_PDPTE3_FULL:
6394 /* 64-bit Host-state fields. */
6395 case VMX_VMCS64_HOST_PAT_FULL:
6396 case VMX_VMCS64_HOST_EFER_FULL:
6397 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
6398 {
6399 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
6400 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
6401 break;
6402 }
6403
6404 /*
6405 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
6406 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
6407 */
6408 /* Natural-width Guest-state fields. */
6409 case VMX_VMCS_GUEST_CR3:
6410 case VMX_VMCS_GUEST_ES_BASE:
6411 case VMX_VMCS_GUEST_CS_BASE:
6412 case VMX_VMCS_GUEST_SS_BASE:
6413 case VMX_VMCS_GUEST_DS_BASE:
6414 case VMX_VMCS_GUEST_FS_BASE:
6415 case VMX_VMCS_GUEST_GS_BASE:
6416 case VMX_VMCS_GUEST_LDTR_BASE:
6417 case VMX_VMCS_GUEST_TR_BASE:
6418 case VMX_VMCS_GUEST_GDTR_BASE:
6419 case VMX_VMCS_GUEST_IDTR_BASE:
6420 case VMX_VMCS_GUEST_RSP:
6421 case VMX_VMCS_GUEST_RIP:
6422 case VMX_VMCS_GUEST_SYSENTER_ESP:
6423 case VMX_VMCS_GUEST_SYSENTER_EIP:
6424 {
6425 if (!(RT_HI_U32(u64Val)))
6426 {
6427 /* If this field is 64-bit, VT-x will zero out the top bits. */
6428 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
6429 }
6430 else
6431 {
6432 /* Assert that only the 32->64 switcher case should ever come here. */
6433 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
6434 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
6435 }
6436 break;
6437 }
6438
6439 default:
6440 {
6441 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
6442 rc = VERR_INVALID_PARAMETER;
6443 break;
6444 }
6445 }
6446 AssertRCReturn(rc, rc);
6447 return rc;
6448}
6449
6450
6451/**
6452 * Queue up a VMWRITE by using the VMCS write cache.
6453 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
6454 *
6455 * @param pVCpu The cross context virtual CPU structure.
6456 * @param idxField The VMCS field encoding.
6457 * @param u64Val 16, 32 or 64-bit value.
6458 */
6459VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
6460{
6461 AssertPtr(pVCpu);
6462 PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
6463
6464 AssertMsgReturn(pCache->Write.cValidEntries < VMX_VMCS_CACHE_MAX_ENTRY - 1,
6465 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
6466
6467 /* Make sure there are no duplicates. */
6468 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
6469 {
6470 if (pCache->Write.aField[i] == idxField)
6471 {
6472 pCache->Write.aFieldVal[i] = u64Val;
6473 return VINF_SUCCESS;
6474 }
6475 }
6476
6477 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
6478 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
6479 pCache->Write.cValidEntries++;
6480 return VINF_SUCCESS;
6481}
6482#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
6483
6484
6485/**
6486 * Sets up the usage of TSC-offsetting and updates the VMCS.
6487 *
6488 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
6489 * VMX-preemption timer.
6490 *
6491 * @returns VBox status code.
6492 * @param pVCpu The cross context virtual CPU structure.
6493 * @param pVmxTransient The VMX-transient structure.
6494 *
6495 * @remarks No-long-jump zone!!!
6496 */
6497static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6498{
6499 bool fOffsettedTsc;
6500 bool fParavirtTsc;
6501 uint64_t uTscOffset;
6502 PVM pVM = pVCpu->CTX_SUFF(pVM);
6503 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);;
6504
6505 if (pVM->hm.s.vmx.fUsePreemptTimer)
6506 {
6507 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
6508
6509 /* Make sure the returned values have sane upper and lower boundaries. */
6510 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
6511 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
6512 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
6513 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
6514
6515 /** @todo r=ramshankar: We need to find a way to integrate nested-guest
6516 * preemption timers here. We probably need to clamp the preemption timer,
6517 * after converting the timer value to the host. */
6518 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
6519 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
6520 AssertRC(rc);
6521 }
6522 else
6523 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
6524
6525 if (fParavirtTsc)
6526 {
6527 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
6528 information before every VM-entry, hence disable it for performance sake. */
6529#if 0
6530 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
6531 AssertRC(rc);
6532#endif
6533 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
6534 }
6535
6536 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
6537 if ( fOffsettedTsc
6538 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
6539 {
6540 if (pVmxTransient->fIsNestedGuest)
6541 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
6542 if (pVmcsInfo->u64TscOffset != uTscOffset)
6543 {
6544 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
6545 AssertRC(rc);
6546 pVmcsInfo->u64TscOffset = uTscOffset;
6547 }
6548
6549 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
6550 {
6551 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
6552 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6553 AssertRC(rc);
6554 pVmcsInfo->u32ProcCtls = uProcCtls;
6555 }
6556 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
6557 }
6558 else
6559 {
6560 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
6561 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
6562 {
6563 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
6564 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6565 AssertRC(rc);
6566 pVmcsInfo->u32ProcCtls = uProcCtls;
6567 }
6568 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
6569 }
6570}
6571
6572
6573/**
6574 * Gets the IEM exception flags for the specified vector and IDT vectoring /
6575 * VM-exit interruption info type.
6576 *
6577 * @returns The IEM exception flags.
6578 * @param uVector The event vector.
6579 * @param uVmxEventType The VMX event type.
6580 *
6581 * @remarks This function currently only constructs flags required for
6582 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
6583 * and CR2 aspects of an exception are not included).
6584 */
6585static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
6586{
6587 uint32_t fIemXcptFlags;
6588 switch (uVmxEventType)
6589 {
6590 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
6591 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
6592 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
6593 break;
6594
6595 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
6596 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
6597 break;
6598
6599 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
6600 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
6601 break;
6602
6603 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
6604 {
6605 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
6606 if (uVector == X86_XCPT_BP)
6607 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
6608 else if (uVector == X86_XCPT_OF)
6609 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
6610 else
6611 {
6612 fIemXcptFlags = 0;
6613 AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
6614 }
6615 break;
6616 }
6617
6618 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
6619 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
6620 break;
6621
6622 default:
6623 fIemXcptFlags = 0;
6624 AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
6625 break;
6626 }
6627 return fIemXcptFlags;
6628}
6629
6630
6631/**
6632 * Sets an event as a pending event to be injected into the guest.
6633 *
6634 * @param pVCpu The cross context virtual CPU structure.
6635 * @param u32IntInfo The VM-entry interruption-information field.
6636 * @param cbInstr The VM-entry instruction length in bytes (for software
6637 * interrupts, exceptions and privileged software
6638 * exceptions).
6639 * @param u32ErrCode The VM-entry exception error code.
6640 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
6641 * page-fault.
6642 */
6643DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
6644 RTGCUINTPTR GCPtrFaultAddress)
6645{
6646 Assert(!pVCpu->hm.s.Event.fPending);
6647 pVCpu->hm.s.Event.fPending = true;
6648 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
6649 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
6650 pVCpu->hm.s.Event.cbInstr = cbInstr;
6651 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
6652}
6653
6654
6655/**
6656 * Sets an external interrupt as pending-for-injection into the VM.
6657 *
6658 * @param pVCpu The cross context virtual CPU structure.
6659 * @param u8Interrupt The external interrupt vector.
6660 */
6661DECLINLINE(void) hmR0VmxSetPendingExtInt(PVMCPU pVCpu, uint8_t u8Interrupt)
6662{
6663 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
6664 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
6665 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6666 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6667 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6668}
6669
6670
6671/**
6672 * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
6673 *
6674 * @param pVCpu The cross context virtual CPU structure.
6675 */
6676DECLINLINE(void) hmR0VmxSetPendingXcptNmi(PVMCPU pVCpu)
6677{
6678 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
6679 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
6680 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6681 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6682 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6683}
6684
6685
6686/**
6687 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
6688 *
6689 * @param pVCpu The cross context virtual CPU structure.
6690 */
6691DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
6692{
6693 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
6694 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6695 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6696 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6697 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6698}
6699
6700
6701/**
6702 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
6703 *
6704 * @param pVCpu The cross context virtual CPU structure.
6705 */
6706DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
6707{
6708 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
6709 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6710 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6711 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6712 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6713}
6714
6715
6716/**
6717 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
6718 *
6719 * @param pVCpu The cross context virtual CPU structure.
6720 */
6721DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
6722{
6723 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
6724 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6725 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6726 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6727 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6728}
6729
6730
6731#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6732/**
6733 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
6734 *
6735 * @param pVCpu The cross context virtual CPU structure.
6736 * @param u32ErrCode The error code for the general-protection exception.
6737 */
6738DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
6739{
6740 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
6741 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6742 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6743 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6744 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
6745}
6746
6747
6748/**
6749 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
6750 *
6751 * @param pVCpu The cross context virtual CPU structure.
6752 * @param u32ErrCode The error code for the stack exception.
6753 */
6754DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
6755{
6756 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
6757 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6758 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6759 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6760 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
6761}
6762
6763
6764/**
6765 * Decodes the memory operand of an instruction that caused a VM-exit.
6766 *
6767 * The VM-exit qualification field provides the displacement field for memory
6768 * operand instructions, if any.
6769 *
6770 * @returns Strict VBox status code (i.e. informational status codes too).
6771 * @retval VINF_SUCCESS if the operand was successfully decoded.
6772 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
6773 * operand.
6774 * @param pVCpu The cross context virtual CPU structure.
6775 * @param uExitInstrInfo The VM-exit instruction information field.
6776 * @param enmMemAccess The memory operand's access type (read or write).
6777 * @param GCPtrDisp The instruction displacement field, if any. For
6778 * RIP-relative addressing pass RIP + displacement here.
6779 * @param pGCPtrMem Where to store the effective destination memory address.
6780 */
6781static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
6782 PRTGCPTR pGCPtrMem)
6783{
6784 Assert(pGCPtrMem);
6785 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
6786 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
6787 | CPUMCTX_EXTRN_CR0);
6788
6789 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
6790 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
6791 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
6792
6793 VMXEXITINSTRINFO ExitInstrInfo;
6794 ExitInstrInfo.u = uExitInstrInfo;
6795 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
6796 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
6797 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
6798 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
6799 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
6800 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
6801 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
6802 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
6803 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
6804
6805 /*
6806 * Validate instruction information.
6807 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
6808 */
6809 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
6810 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
6811 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
6812 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
6813 AssertLogRelMsgReturn(fIsMemOperand,
6814 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
6815
6816 /*
6817 * Compute the complete effective address.
6818 *
6819 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
6820 * See AMD spec. 4.5.2 "Segment Registers".
6821 */
6822 RTGCPTR GCPtrMem = GCPtrDisp;
6823 if (fBaseRegValid)
6824 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
6825 if (fIdxRegValid)
6826 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
6827
6828 RTGCPTR const GCPtrOff = GCPtrMem;
6829 if ( !fIsLongMode
6830 || iSegReg >= X86_SREG_FS)
6831 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
6832 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
6833
6834 /*
6835 * Validate effective address.
6836 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
6837 */
6838 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
6839 Assert(cbAccess > 0);
6840 if (fIsLongMode)
6841 {
6842 if (X86_IS_CANONICAL(GCPtrMem))
6843 {
6844 *pGCPtrMem = GCPtrMem;
6845 return VINF_SUCCESS;
6846 }
6847
6848 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
6849 * "Data Limit Checks in 64-bit Mode". */
6850 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
6851 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6852 return VINF_HM_PENDING_XCPT;
6853 }
6854
6855 /*
6856 * This is a watered down version of iemMemApplySegment().
6857 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
6858 * and segment CPL/DPL checks are skipped.
6859 */
6860 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
6861 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
6862 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6863
6864 /* Check if the segment is present and usable. */
6865 if ( pSel->Attr.n.u1Present
6866 && !pSel->Attr.n.u1Unusable)
6867 {
6868 Assert(pSel->Attr.n.u1DescType);
6869 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
6870 {
6871 /* Check permissions for the data segment. */
6872 if ( enmMemAccess == VMXMEMACCESS_WRITE
6873 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
6874 {
6875 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6876 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
6877 return VINF_HM_PENDING_XCPT;
6878 }
6879
6880 /* Check limits if it's a normal data segment. */
6881 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
6882 {
6883 if ( GCPtrFirst32 > pSel->u32Limit
6884 || GCPtrLast32 > pSel->u32Limit)
6885 {
6886 Log4Func(("Data segment limit exceeded."
6887 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6888 GCPtrLast32, pSel->u32Limit));
6889 if (iSegReg == X86_SREG_SS)
6890 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6891 else
6892 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6893 return VINF_HM_PENDING_XCPT;
6894 }
6895 }
6896 else
6897 {
6898 /* Check limits if it's an expand-down data segment.
6899 Note! The upper boundary is defined by the B bit, not the G bit! */
6900 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
6901 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
6902 {
6903 Log4Func(("Expand-down data segment limit exceeded."
6904 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6905 GCPtrLast32, pSel->u32Limit));
6906 if (iSegReg == X86_SREG_SS)
6907 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6908 else
6909 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6910 return VINF_HM_PENDING_XCPT;
6911 }
6912 }
6913 }
6914 else
6915 {
6916 /* Check permissions for the code segment. */
6917 if ( enmMemAccess == VMXMEMACCESS_WRITE
6918 || ( enmMemAccess == VMXMEMACCESS_READ
6919 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
6920 {
6921 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6922 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6923 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6924 return VINF_HM_PENDING_XCPT;
6925 }
6926
6927 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6928 if ( GCPtrFirst32 > pSel->u32Limit
6929 || GCPtrLast32 > pSel->u32Limit)
6930 {
6931 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6932 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6933 if (iSegReg == X86_SREG_SS)
6934 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6935 else
6936 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6937 return VINF_HM_PENDING_XCPT;
6938 }
6939 }
6940 }
6941 else
6942 {
6943 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6944 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6945 return VINF_HM_PENDING_XCPT;
6946 }
6947
6948 *pGCPtrMem = GCPtrMem;
6949 return VINF_SUCCESS;
6950}
6951
6952
6953/**
6954 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6955 * guest attempting to execute a VMX instruction.
6956 *
6957 * @returns Strict VBox status code (i.e. informational status codes too).
6958 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6959 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6960 *
6961 * @param pVCpu The cross context virtual CPU structure.
6962 * @param uExitReason The VM-exit reason.
6963 *
6964 * @todo NSTVMX: Document other error codes when VM-exit is implemented.
6965 * @remarks No-long-jump zone!!!
6966 */
6967static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
6968{
6969 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6970 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
6971
6972 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6973 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6974 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6975 {
6976 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6977 hmR0VmxSetPendingXcptUD(pVCpu);
6978 return VINF_HM_PENDING_XCPT;
6979 }
6980
6981 if (uExitReason == VMX_EXIT_VMXON)
6982 {
6983 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6984
6985 /*
6986 * We check CR4.VMXE because it is required to be always set while in VMX operation
6987 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6988 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6989 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6990 */
6991 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6992 {
6993 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6994 hmR0VmxSetPendingXcptUD(pVCpu);
6995 return VINF_HM_PENDING_XCPT;
6996 }
6997 }
6998 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6999 {
7000 /*
7001 * The guest has not entered VMX operation but attempted to execute a VMX instruction
7002 * (other than VMXON), we need to raise a #UD.
7003 */
7004 Log4Func(("Not in VMX root mode -> #UD\n"));
7005 hmR0VmxSetPendingXcptUD(pVCpu);
7006 return VINF_HM_PENDING_XCPT;
7007 }
7008
7009 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
7010 {
7011 /*
7012 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
7013 * the guest hypervisor deal with it.
7014 */
7015 /** @todo NSTVMX: Trigger a VM-exit */
7016 }
7017
7018 /*
7019 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
7020 * (above) takes preceedence over the CPL check.
7021 */
7022 if (CPUMGetGuestCPL(pVCpu) > 0)
7023 {
7024 Log4Func(("CPL > 0 -> #GP(0)\n"));
7025 hmR0VmxSetPendingXcptGP(pVCpu, 0);
7026 return VINF_HM_PENDING_XCPT;
7027 }
7028
7029 return VINF_SUCCESS;
7030}
7031#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
7032
7033
7034static void hmR0VmxFixUnusableSegRegAttr(PVMCPU pVCpu, PCPUMSELREG pSelReg, uint32_t idxSel)
7035{
7036 Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
7037
7038 /*
7039 * If VT-x marks the segment as unusable, most other bits remain undefined:
7040 * - For CS the L, D and G bits have meaning.
7041 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
7042 * - For the remaining data segments no bits are defined.
7043 *
7044 * The present bit and the unusable bit has been observed to be set at the
7045 * same time (the selector was supposed to be invalid as we started executing
7046 * a V8086 interrupt in ring-0).
7047 *
7048 * What should be important for the rest of the VBox code, is that the P bit is
7049 * cleared. Some of the other VBox code recognizes the unusable bit, but
7050 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
7051 * safe side here, we'll strip off P and other bits we don't care about. If
7052 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
7053 *
7054 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
7055 */
7056#ifdef VBOX_STRICT
7057 uint32_t const uAttr = pSelReg->Attr.u;
7058#endif
7059
7060 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
7061 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
7062 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
7063
7064#ifdef VBOX_STRICT
7065 VMMRZCallRing3Disable(pVCpu);
7066 Log4Func(("Unusable %#x: sel=%#x attr=%#x -> %#x\n", idxSel, pSelReg->Sel, uAttr, pSelReg->Attr.u));
7067# ifdef DEBUG_bird
7068 AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
7069 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
7070 idxSel, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
7071# endif
7072 VMMRZCallRing3Enable(pVCpu);
7073 NOREF(uAttr);
7074#endif
7075 RT_NOREF2(pVCpu, idxSel);
7076}
7077
7078
7079/**
7080 * Imports a guest segment register from the current VMCS into the guest-CPU
7081 * context.
7082 *
7083 * @returns VBox status code.
7084 * @param pVCpu The cross context virtual CPU structure.
7085 * @param iSegReg The segment register number (X86_SREG_XXX).
7086 *
7087 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7088 * do not log!
7089 */
7090static int hmR0VmxImportGuestSegReg(PVMCPU pVCpu, uint8_t iSegReg)
7091{
7092 Assert(iSegReg < X86_SREG_COUNT);
7093
7094 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
7095 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
7096 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
7097#ifdef VMX_USE_CACHED_VMCS_ACCESSES
7098 uint32_t const idxBase = g_aVmcsCacheSegBase[iSegReg];
7099#else
7100 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
7101#endif
7102 uint64_t u64Base;
7103 uint32_t u32Sel, u32Limit, u32Attr;
7104 int rc = VMXReadVmcs32(idxSel, &u32Sel);
7105 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
7106 rc |= VMXReadVmcs32(idxAttr, &u32Attr);
7107 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
7108 if (RT_SUCCESS(rc))
7109 {
7110 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
7111 pSelReg->Sel = u32Sel;
7112 pSelReg->ValidSel = u32Sel;
7113 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
7114 pSelReg->u32Limit = u32Limit;
7115 pSelReg->u64Base = u64Base;
7116 pSelReg->Attr.u = u32Attr;
7117 if (u32Attr & X86DESCATTR_UNUSABLE)
7118 hmR0VmxFixUnusableSegRegAttr(pVCpu, pSelReg, idxSel);
7119 }
7120 return rc;
7121}
7122
7123
7124/**
7125 * Imports the guest LDTR from the current VMCS into the guest-CPU context.
7126 *
7127 * @returns VBox status code.
7128 * @param pVCpu The cross context virtual CPU structure.
7129 *
7130 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7131 * do not log!
7132 */
7133static int hmR0VmxImportGuestLdtr(PVMCPU pVCpu)
7134{
7135 uint64_t u64Base;
7136 uint32_t u32Sel, u32Limit, u32Attr;
7137 int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, &u32Sel);
7138 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit);
7139 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr);
7140 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, &u64Base);
7141 if (RT_SUCCESS(rc))
7142 {
7143 pVCpu->cpum.GstCtx.ldtr.Sel = u32Sel;
7144 pVCpu->cpum.GstCtx.ldtr.ValidSel = u32Sel;
7145 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
7146 pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
7147 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
7148 pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
7149 if (u32Attr & X86DESCATTR_UNUSABLE)
7150 hmR0VmxFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, VMX_VMCS16_GUEST_LDTR_SEL);
7151 }
7152 return rc;
7153}
7154
7155
7156/**
7157 * Imports the guest TR from the current VMCS into the guest-CPU context.
7158 *
7159 * @returns VBox status code.
7160 * @param pVCpu The cross context virtual CPU structure.
7161 *
7162 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7163 * do not log!
7164 */
7165static int hmR0VmxImportGuestTr(PVMCPU pVCpu)
7166{
7167 uint32_t u32Sel, u32Limit, u32Attr;
7168 uint64_t u64Base;
7169 int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_TR_SEL, &u32Sel);
7170 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit);
7171 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr);
7172 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_TR_BASE, &u64Base);
7173 AssertRCReturn(rc, rc);
7174
7175 pVCpu->cpum.GstCtx.tr.Sel = u32Sel;
7176 pVCpu->cpum.GstCtx.tr.ValidSel = u32Sel;
7177 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
7178 pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
7179 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
7180 pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
7181 /* TR is the only selector that can never be unusable. */
7182 Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
7183 return VINF_SUCCESS;
7184}
7185
7186
7187/**
7188 * Imports the guest RIP from the VMCS back into the guest-CPU context.
7189 *
7190 * @returns VBox status code.
7191 * @param pVCpu The cross context virtual CPU structure.
7192 *
7193 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7194 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7195 * instead!!!
7196 */
7197static int hmR0VmxImportGuestRip(PVMCPU pVCpu)
7198{
7199 uint64_t u64Val;
7200 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7201 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
7202 {
7203 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
7204 if (RT_SUCCESS(rc))
7205 {
7206 pCtx->rip = u64Val;
7207 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
7208 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
7209 }
7210 return rc;
7211 }
7212 return VINF_SUCCESS;
7213}
7214
7215
7216/**
7217 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
7218 *
7219 * @returns VBox status code.
7220 * @param pVCpu The cross context virtual CPU structure.
7221 * @param pVmcsInfo The VMCS info. object.
7222 *
7223 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7224 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7225 * instead!!!
7226 */
7227static int hmR0VmxImportGuestRFlags(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
7228{
7229 uint32_t u32Val;
7230 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7231 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
7232 {
7233 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
7234 if (RT_SUCCESS(rc))
7235 {
7236 pCtx->eflags.u32 = u32Val;
7237
7238 /* Restore eflags for real-on-v86-mode hack. */
7239 if (pVmcsInfo->RealMode.fRealOnV86Active)
7240 {
7241 pCtx->eflags.Bits.u1VM = 0;
7242 pCtx->eflags.Bits.u2IOPL = pVmcsInfo->RealMode.Eflags.Bits.u2IOPL;
7243 }
7244 }
7245 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
7246 return rc;
7247 }
7248 return VINF_SUCCESS;
7249}
7250
7251
7252/**
7253 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
7254 * context.
7255 *
7256 * @returns VBox status code.
7257 * @param pVCpu The cross context virtual CPU structure.
7258 * @param pVmcsInfo The VMCS info. object.
7259 *
7260 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7261 * do not log!
7262 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7263 * instead!!!
7264 */
7265static int hmR0VmxImportGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
7266{
7267 uint32_t u32Val;
7268 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
7269 if (RT_SUCCESS(rc))
7270 {
7271 if (!u32Val)
7272 {
7273 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7274 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7275
7276 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7277 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7278 }
7279 else
7280 {
7281 /*
7282 * We must import RIP here to set our EM interrupt-inhibited state.
7283 * We also import RFLAGS as our code that evaluates pending interrupts
7284 * before VM-entry requires it.
7285 */
7286 rc = hmR0VmxImportGuestRip(pVCpu);
7287 rc |= hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7288 if (RT_SUCCESS(rc))
7289 {
7290 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
7291 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
7292 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7293 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7294 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7295
7296 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
7297 {
7298 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7299 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
7300 }
7301 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7302 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7303 }
7304 }
7305 }
7306 return rc;
7307}
7308
7309
7310/**
7311 * Worker for VMXR0ImportStateOnDemand.
7312 *
7313 * @returns VBox status code.
7314 * @param pVCpu The cross context virtual CPU structure.
7315 * @param pVmcsInfo The VMCS info. object.
7316 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7317 */
7318static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
7319{
7320#define VMXLOCAL_BREAK_RC(a_rc) \
7321 if (RT_SUCCESS(a_rc)) \
7322 { } \
7323 else \
7324 break
7325
7326 int rc = VINF_SUCCESS;
7327 PVM pVM = pVCpu->CTX_SUFF(pVM);
7328 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7329 uint64_t u64Val;
7330 uint32_t u32Val;
7331
7332 STAM_PROFILE_ADV_START(& pVCpu->hm.s.StatImportGuestState, x);
7333
7334 /*
7335 * We disable interrupts to make the updating of the state and in particular
7336 * the fExtrn modification atomic wrt to preemption hooks.
7337 */
7338 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
7339
7340 fWhat &= pCtx->fExtrn;
7341 if (fWhat)
7342 {
7343 do
7344 {
7345 if (fWhat & CPUMCTX_EXTRN_RIP)
7346 {
7347 rc = hmR0VmxImportGuestRip(pVCpu);
7348 VMXLOCAL_BREAK_RC(rc);
7349 }
7350
7351 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
7352 {
7353 rc = hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7354 VMXLOCAL_BREAK_RC(rc);
7355 }
7356
7357 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
7358 {
7359 rc = hmR0VmxImportGuestIntrState(pVCpu, pVmcsInfo);
7360 VMXLOCAL_BREAK_RC(rc);
7361 }
7362
7363 if (fWhat & CPUMCTX_EXTRN_RSP)
7364 {
7365 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
7366 VMXLOCAL_BREAK_RC(rc);
7367 pCtx->rsp = u64Val;
7368 }
7369
7370 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
7371 {
7372 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
7373 if (fWhat & CPUMCTX_EXTRN_CS)
7374 {
7375 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_CS);
7376 rc |= hmR0VmxImportGuestRip(pVCpu);
7377 if (fRealOnV86Active)
7378 pCtx->cs.Attr.u = pVmcsInfo->RealMode.AttrCS.u;
7379 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
7380 }
7381 if (fWhat & CPUMCTX_EXTRN_SS)
7382 {
7383 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_SS);
7384 if (fRealOnV86Active)
7385 pCtx->ss.Attr.u = pVmcsInfo->RealMode.AttrSS.u;
7386 }
7387 if (fWhat & CPUMCTX_EXTRN_DS)
7388 {
7389 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_DS);
7390 if (fRealOnV86Active)
7391 pCtx->ds.Attr.u = pVmcsInfo->RealMode.AttrDS.u;
7392 }
7393 if (fWhat & CPUMCTX_EXTRN_ES)
7394 {
7395 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_ES);
7396 if (fRealOnV86Active)
7397 pCtx->es.Attr.u = pVmcsInfo->RealMode.AttrES.u;
7398 }
7399 if (fWhat & CPUMCTX_EXTRN_FS)
7400 {
7401 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_FS);
7402 if (fRealOnV86Active)
7403 pCtx->fs.Attr.u = pVmcsInfo->RealMode.AttrFS.u;
7404 }
7405 if (fWhat & CPUMCTX_EXTRN_GS)
7406 {
7407 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_GS);
7408 if (fRealOnV86Active)
7409 pCtx->gs.Attr.u = pVmcsInfo->RealMode.AttrGS.u;
7410 }
7411 VMXLOCAL_BREAK_RC(rc);
7412 }
7413
7414 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
7415 {
7416 if (fWhat & CPUMCTX_EXTRN_LDTR)
7417 rc |= hmR0VmxImportGuestLdtr(pVCpu);
7418
7419 if (fWhat & CPUMCTX_EXTRN_GDTR)
7420 {
7421 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
7422 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
7423 pCtx->gdtr.pGdt = u64Val;
7424 pCtx->gdtr.cbGdt = u32Val;
7425 }
7426
7427 /* Guest IDTR. */
7428 if (fWhat & CPUMCTX_EXTRN_IDTR)
7429 {
7430 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
7431 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
7432 pCtx->idtr.pIdt = u64Val;
7433 pCtx->idtr.cbIdt = u32Val;
7434 }
7435
7436 /* Guest TR. */
7437 if (fWhat & CPUMCTX_EXTRN_TR)
7438 {
7439 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
7440 don't need to import that one. */
7441 if (!pVmcsInfo->RealMode.fRealOnV86Active)
7442 rc |= hmR0VmxImportGuestTr(pVCpu);
7443 }
7444 VMXLOCAL_BREAK_RC(rc);
7445 }
7446
7447 if (fWhat & CPUMCTX_EXTRN_DR7)
7448 {
7449 if (!pVCpu->hm.s.fUsingHyperDR7)
7450 {
7451 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
7452 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
7453 VMXLOCAL_BREAK_RC(rc);
7454 pCtx->dr[7] = u32Val;
7455 }
7456 }
7457
7458 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
7459 {
7460 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
7461 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
7462 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
7463 pCtx->SysEnter.cs = u32Val;
7464 VMXLOCAL_BREAK_RC(rc);
7465 }
7466
7467#if HC_ARCH_BITS == 64
7468 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
7469 {
7470 if ( pVM->hm.s.fAllow64BitGuests
7471 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7472 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
7473 }
7474
7475 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
7476 {
7477 if ( pVM->hm.s.fAllow64BitGuests
7478 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7479 {
7480 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
7481 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
7482 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
7483 }
7484 }
7485#endif
7486
7487 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
7488#if HC_ARCH_BITS == 32
7489 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
7490#endif
7491 )
7492 {
7493 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
7494 uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
7495 Assert(cMsrs == 0 || pMsr != NULL);
7496 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
7497 {
7498 switch (pMsr->u32Msr)
7499 {
7500#if HC_ARCH_BITS == 32
7501 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
7502 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
7503 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
7504 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
7505#endif
7506 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
7507 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
7508 case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
7509
7510 default:
7511 {
7512 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
7513 ASMSetFlags(fEFlags);
7514 AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
7515 cMsrs));
7516 return VERR_HM_UNEXPECTED_LD_ST_MSR;
7517 }
7518 }
7519 }
7520 }
7521
7522 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
7523 {
7524 uint64_t u64Shadow;
7525 if (fWhat & CPUMCTX_EXTRN_CR0)
7526 {
7527 /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
7528 * remove when we drop 32-bit host w/ 64-bit host support, see
7529 * @bugref{9180#c39}. */
7530 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
7531#if HC_ARCH_BITS == 32
7532 uint32_t u32Shadow;
7533 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
7534 u64Shadow = u32Shadow;
7535#else
7536 rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow);
7537#endif
7538 VMXLOCAL_BREAK_RC(rc);
7539 u64Val = u32Val;
7540 u64Val = (u64Val & ~pVmcsInfo->u64Cr0Mask)
7541 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7542 VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
7543 CPUMSetGuestCR0(pVCpu, u64Val);
7544 VMMRZCallRing3Enable(pVCpu);
7545 }
7546
7547 if (fWhat & CPUMCTX_EXTRN_CR4)
7548 {
7549 /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
7550 * remove when we drop 32-bit host w/ 64-bit host support, see
7551 * @bugref{9180#c39}. */
7552 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
7553#if HC_ARCH_BITS == 32
7554 uint32_t u32Shadow;
7555 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
7556 u64Shadow = u32Shadow;
7557#else
7558 rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow);
7559#endif
7560 VMXLOCAL_BREAK_RC(rc);
7561 u64Val = u32Val;
7562 u64Val = (u64Val & ~pVmcsInfo->u64Cr4Mask)
7563 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7564 pCtx->cr4 = u64Val;
7565 }
7566
7567 if (fWhat & CPUMCTX_EXTRN_CR3)
7568 {
7569 /* CR0.PG bit changes are always intercepted, so it's up to date. */
7570 if ( pVM->hm.s.vmx.fUnrestrictedGuest
7571 || ( pVM->hm.s.fNestedPaging
7572 && CPUMIsGuestPagingEnabledEx(pCtx)))
7573 {
7574 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
7575 if (pCtx->cr3 != u64Val)
7576 {
7577 pCtx->cr3 = u64Val;
7578 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
7579 }
7580
7581 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
7582 Note: CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. */
7583 if (CPUMIsGuestInPAEModeEx(pCtx))
7584 {
7585 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
7586 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
7587 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
7588 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
7589 VMXLOCAL_BREAK_RC(rc);
7590 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
7591 }
7592 }
7593 }
7594 }
7595 } while (0);
7596
7597 if (RT_SUCCESS(rc))
7598 {
7599 /* Update fExtrn. */
7600 pCtx->fExtrn &= ~fWhat;
7601
7602 /* If everything has been imported, clear the HM keeper bit. */
7603 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
7604 {
7605 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
7606 Assert(!pCtx->fExtrn);
7607 }
7608 }
7609 }
7610 else
7611 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
7612
7613 ASMSetFlags(fEFlags);
7614
7615 STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
7616
7617 if (RT_SUCCESS(rc))
7618 { /* likely */ }
7619 else
7620 return rc;
7621
7622 /*
7623 * Honor any pending CR3 updates.
7624 *
7625 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
7626 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
7627 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
7628 *
7629 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
7630 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
7631 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
7632 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
7633 *
7634 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
7635 */
7636 if (VMMRZCallRing3IsEnabled(pVCpu))
7637 {
7638 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7639 {
7640 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
7641 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
7642 }
7643
7644 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7645 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7646
7647 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7648 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7649 }
7650
7651 return VINF_SUCCESS;
7652#undef VMXLOCAL_BREAK_RC
7653}
7654
7655
7656/**
7657 * Saves the guest state from the VMCS into the guest-CPU context.
7658 *
7659 * @returns VBox status code.
7660 * @param pVCpu The cross context virtual CPU structure.
7661 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7662 */
7663VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
7664{
7665 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
7666 return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
7667}
7668
7669
7670/**
7671 * Check per-VM and per-VCPU force flag actions that require us to go back to
7672 * ring-3 for one reason or another.
7673 *
7674 * @returns Strict VBox status code (i.e. informational status codes too)
7675 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7676 * ring-3.
7677 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7678 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7679 * interrupts)
7680 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7681 * all EMTs to be in ring-3.
7682 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7683 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7684 * to the EM loop.
7685 *
7686 * @param pVCpu The cross context virtual CPU structure.
7687 * @param fStepping Whether we are single-stepping the guest using the
7688 * hypervisor debugger.
7689 */
7690static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
7691{
7692 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7693
7694 /*
7695 * Update pending interrupts into the APIC's IRR.
7696 */
7697 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7698 APICUpdatePendingInterrupts(pVCpu);
7699
7700 /*
7701 * Anything pending? Should be more likely than not if we're doing a good job.
7702 */
7703 PVM pVM = pVCpu->CTX_SUFF(pVM);
7704 if ( !fStepping
7705 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7706 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7707 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7708 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7709 return VINF_SUCCESS;
7710
7711 /* Pending PGM C3 sync. */
7712 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7713 {
7714 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7715 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
7716 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
7717 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7718 if (rcStrict2 != VINF_SUCCESS)
7719 {
7720 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
7721 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
7722 return rcStrict2;
7723 }
7724 }
7725
7726 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7727 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
7728 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7729 {
7730 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7731 int rc2 = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
7732 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
7733 return rc2;
7734 }
7735
7736 /* Pending VM request packets, such as hardware interrupts. */
7737 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
7738 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
7739 {
7740 Log4Func(("Pending VM request forcing us back to ring-3\n"));
7741 return VINF_EM_PENDING_REQUEST;
7742 }
7743
7744 /* Pending PGM pool flushes. */
7745 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7746 {
7747 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
7748 return VINF_PGM_POOL_FLUSH_PENDING;
7749 }
7750
7751 /* Pending DMA requests. */
7752 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
7753 {
7754 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
7755 return VINF_EM_RAW_TO_R3;
7756 }
7757
7758 return VINF_SUCCESS;
7759}
7760
7761
7762/**
7763 * Converts any TRPM trap into a pending HM event. This is typically used when
7764 * entering from ring-3 (not longjmp returns).
7765 *
7766 * @param pVCpu The cross context virtual CPU structure.
7767 */
7768static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
7769{
7770 Assert(TRPMHasTrap(pVCpu));
7771 Assert(!pVCpu->hm.s.Event.fPending);
7772
7773 uint8_t uVector;
7774 TRPMEVENT enmTrpmEvent;
7775 RTGCUINT uErrCode;
7776 RTGCUINTPTR GCPtrFaultAddress;
7777 uint8_t cbInstr;
7778
7779 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7780 AssertRC(rc);
7781
7782 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7783 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
7784 if (enmTrpmEvent == TRPM_TRAP)
7785 {
7786 /** @todo r=ramshankar: TRPM currently offers no way to determine a \#DB that was
7787 * generated using INT1 (ICEBP). */
7788 switch (uVector)
7789 {
7790 case X86_XCPT_NMI:
7791 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7792 break;
7793
7794 case X86_XCPT_BP:
7795 case X86_XCPT_OF:
7796 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7797 break;
7798
7799 case X86_XCPT_PF:
7800 case X86_XCPT_DF:
7801 case X86_XCPT_TS:
7802 case X86_XCPT_NP:
7803 case X86_XCPT_SS:
7804 case X86_XCPT_GP:
7805 case X86_XCPT_AC:
7806 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7807 RT_FALL_THRU();
7808 default:
7809 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7810 break;
7811 }
7812 }
7813 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7814 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7815 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7816 {
7817 switch (uVector)
7818 {
7819 case X86_XCPT_BP:
7820 case X86_XCPT_OF:
7821 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7822 break;
7823
7824 default:
7825 Assert(uVector == X86_XCPT_DB);
7826 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7827 break;
7828 }
7829 }
7830 else
7831 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7832
7833 rc = TRPMResetTrap(pVCpu);
7834 AssertRC(rc);
7835 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7836 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7837
7838 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7839}
7840
7841
7842/**
7843 * Converts the pending HM event into a TRPM trap.
7844 *
7845 * @param pVCpu The cross context virtual CPU structure.
7846 */
7847static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7848{
7849 Assert(pVCpu->hm.s.Event.fPending);
7850
7851 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7852 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7853 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7854 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7855
7856 /* If a trap was already pending, we did something wrong! */
7857 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7858
7859 /** @todo Use HMVmxEventToTrpmEventType() later. */
7860 TRPMEVENT enmTrapType;
7861 switch (uVectorType)
7862 {
7863 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7864 enmTrapType = TRPM_HARDWARE_INT;
7865 break;
7866
7867 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7868 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7869 enmTrapType = TRPM_TRAP;
7870 break;
7871
7872 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT: /* #DB (INT1/ICEBP). */
7873 Assert(uVector == X86_XCPT_DB);
7874 enmTrapType = TRPM_SOFTWARE_INT;
7875 break;
7876
7877 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP (INT3) and #OF (INTO) */
7878 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7879 enmTrapType = TRPM_SOFTWARE_INT;
7880 break;
7881
7882 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7883 enmTrapType = TRPM_SOFTWARE_INT;
7884 break;
7885
7886 default:
7887 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7888 enmTrapType = TRPM_32BIT_HACK;
7889 break;
7890 }
7891
7892 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7893
7894 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7895 AssertRC(rc);
7896
7897 if (fErrorCodeValid)
7898 TRPMSetErrorCode(pVCpu, uErrorCode);
7899
7900 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7901 && uVector == X86_XCPT_PF)
7902 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7903 else if (enmTrapType == TRPM_SOFTWARE_INT)
7904 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7905
7906 /* We're now done converting the pending event. */
7907 pVCpu->hm.s.Event.fPending = false;
7908}
7909
7910
7911/**
7912 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7913 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7914 *
7915 * @param pVCpu The cross context virtual CPU structure.
7916 * @param pVmcsInfo The VMCS info. object.
7917 */
7918static void hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
7919{
7920 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7921 {
7922 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7923 {
7924 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7925 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7926 AssertRC(rc);
7927 }
7928 } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
7929}
7930
7931
7932/**
7933 * Clears the interrupt-window exiting control in the VMCS.
7934 *
7935 * @param pVmcsInfo The VMCS info. object.
7936 */
7937DECLINLINE(int) hmR0VmxClearIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
7938{
7939 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7940 {
7941 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7942 return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7943 }
7944 return VINF_SUCCESS;
7945}
7946
7947
7948/**
7949 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7950 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7951 *
7952 * @param pVCpu The cross context virtual CPU structure.
7953 * @param pVmcsInfo The VMCS info. object.
7954 */
7955static void hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
7956{
7957 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7958 {
7959 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7960 {
7961 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7962 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7963 AssertRC(rc);
7964 Log4Func(("Setup NMI-window exiting\n"));
7965 }
7966 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7967}
7968
7969
7970/**
7971 * Clears the NMI-window exiting control in the VMCS.
7972 *
7973 * @param pVmcsInfo The VMCS info. object.
7974 */
7975DECLINLINE(int) hmR0VmxClearNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
7976{
7977 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7978 {
7979 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7980 return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7981 }
7982 return VINF_SUCCESS;
7983}
7984
7985
7986/**
7987 * Does the necessary state syncing before returning to ring-3 for any reason
7988 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7989 *
7990 * @returns VBox status code.
7991 * @param pVCpu The cross context virtual CPU structure.
7992 * @param fImportState Whether to import the guest state from the VMCS back
7993 * to the guest-CPU context.
7994 *
7995 * @remarks No-long-jmp zone!!!
7996 */
7997static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7998{
7999 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8000 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8001
8002 RTCPUID idCpu = RTMpCpuId();
8003 Log4Func(("HostCpuId=%u\n", idCpu));
8004
8005 /*
8006 * !!! IMPORTANT !!!
8007 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
8008 */
8009
8010 /* Save the guest state if necessary. */
8011 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8012 if (fImportState)
8013 {
8014 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8015 AssertRCReturn(rc, rc);
8016 }
8017
8018 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
8019 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8020 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
8021
8022 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
8023#ifdef VBOX_STRICT
8024 if (CPUMIsHyperDebugStateActive(pVCpu))
8025 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
8026#endif
8027 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8028 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
8029 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
8030
8031#if HC_ARCH_BITS == 64
8032 /* Restore host-state bits that VT-x only restores partially. */
8033 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8034 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8035 {
8036 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
8037 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8038 }
8039 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8040#endif
8041
8042 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8043 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8044 {
8045 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
8046 if (!fImportState)
8047 {
8048 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
8049 AssertRCReturn(rc, rc);
8050 }
8051 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8052 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
8053 }
8054 else
8055 pVCpu->hm.s.vmx.fLazyMsrs = 0;
8056
8057 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8058 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8059
8060 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
8061 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
8062 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
8063 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
8064 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
8065 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
8066 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
8067 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
8068 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8069
8070 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8071
8072 /** @todo This partially defeats the purpose of having preemption hooks.
8073 * The problem is, deregistering the hooks should be moved to a place that
8074 * lasts until the EMT is about to be destroyed not everytime while leaving HM
8075 * context.
8076 */
8077 int rc = hmR0VmxClearVmcs(pVmcsInfo);
8078 AssertRCReturn(rc, rc);
8079
8080 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
8081 NOREF(idCpu);
8082 return VINF_SUCCESS;
8083}
8084
8085
8086/**
8087 * Leaves the VT-x session.
8088 *
8089 * @returns VBox status code.
8090 * @param pVCpu The cross context virtual CPU structure.
8091 *
8092 * @remarks No-long-jmp zone!!!
8093 */
8094static int hmR0VmxLeaveSession(PVMCPU pVCpu)
8095{
8096 HM_DISABLE_PREEMPT(pVCpu);
8097 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8098 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8099 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8100
8101 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
8102 and done this from the VMXR0ThreadCtxCallback(). */
8103 if (!pVCpu->hm.s.fLeaveDone)
8104 {
8105 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
8106 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
8107 pVCpu->hm.s.fLeaveDone = true;
8108 }
8109 Assert(!pVCpu->cpum.GstCtx.fExtrn);
8110
8111 /*
8112 * !!! IMPORTANT !!!
8113 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
8114 */
8115
8116 /* Deregister hook now that we've left HM context before re-enabling preemption. */
8117 /** @todo Deregistering here means we need to VMCLEAR always
8118 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
8119 * for calling VMMR0ThreadCtxHookDisable here! */
8120 VMMR0ThreadCtxHookDisable(pVCpu);
8121
8122 /* Leave HM context. This takes care of local init (term). */
8123 int rc = HMR0LeaveCpu(pVCpu);
8124
8125 HM_RESTORE_PREEMPT();
8126 return rc;
8127}
8128
8129
8130/**
8131 * Does the necessary state syncing before doing a longjmp to ring-3.
8132 *
8133 * @returns VBox status code.
8134 * @param pVCpu The cross context virtual CPU structure.
8135 *
8136 * @remarks No-long-jmp zone!!!
8137 */
8138DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
8139{
8140 return hmR0VmxLeaveSession(pVCpu);
8141}
8142
8143
8144/**
8145 * Take necessary actions before going back to ring-3.
8146 *
8147 * An action requires us to go back to ring-3. This function does the necessary
8148 * steps before we can safely return to ring-3. This is not the same as longjmps
8149 * to ring-3, this is voluntary and prepares the guest so it may continue
8150 * executing outside HM (recompiler/IEM).
8151 *
8152 * @returns VBox status code.
8153 * @param pVCpu The cross context virtual CPU structure.
8154 * @param rcExit The reason for exiting to ring-3. Can be
8155 * VINF_VMM_UNKNOWN_RING3_CALL.
8156 */
8157static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
8158{
8159 Assert(pVCpu);
8160 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8161
8162 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8163 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
8164 {
8165 VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
8166 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
8167 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
8168 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
8169 }
8170
8171 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
8172 VMMRZCallRing3Disable(pVCpu);
8173 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
8174
8175 /*
8176 * Convert any pending HM events back to TRPM due to premature exits to ring-3.
8177 * We need to do this only on returns to ring-3 and not for longjmps to ring3.
8178 *
8179 * This is because execution may continue from ring-3 and we would need to inject
8180 * the event from there (hence place it back in TRPM).
8181 */
8182 if (pVCpu->hm.s.Event.fPending)
8183 {
8184 hmR0VmxPendingEventToTrpmTrap(pVCpu);
8185 Assert(!pVCpu->hm.s.Event.fPending);
8186
8187 /* Clear the events from the VMCS. */
8188 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
8189 AssertRCReturn(rc, rc);
8190 }
8191#ifdef VBOX_STRICT
8192 else
8193 {
8194 /*
8195 * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
8196 * This can be pretty hard to debug otherwise, interrupts might get injected twice
8197 * occasionally, see @bugref{9180#c42}.
8198 */
8199 uint32_t uEntryIntInfo;
8200 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
8201 AssertRC(rc);
8202 Assert(!VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
8203 }
8204#endif
8205
8206 /*
8207 * Clear the interrupt-window and NMI-window VMCS controls as we could have got
8208 * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
8209 * (e.g. TPR below threshold).
8210 */
8211 int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
8212 rc |= hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
8213 AssertRCReturn(rc, rc);
8214
8215 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
8216 and if we're injecting an event we should have a TRPM trap pending. */
8217 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8218#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
8219 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8220#endif
8221
8222 /* Save guest state and restore host state bits. */
8223 rc = hmR0VmxLeaveSession(pVCpu);
8224 AssertRCReturn(rc, rc);
8225 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8226
8227 /* Thread-context hooks are unregistered at this point!!! */
8228
8229 /* Sync recompiler state. */
8230 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
8231 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
8232 | CPUM_CHANGED_LDTR
8233 | CPUM_CHANGED_GDTR
8234 | CPUM_CHANGED_IDTR
8235 | CPUM_CHANGED_TR
8236 | CPUM_CHANGED_HIDDEN_SEL_REGS);
8237 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
8238 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
8239 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
8240
8241 Assert(!pVCpu->hm.s.fClearTrapFlag);
8242
8243 /* Update the exit-to-ring 3 reason. */
8244 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
8245
8246 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
8247 if ( rcExit != VINF_EM_RAW_INTERRUPT
8248 || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8249 {
8250 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
8251 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8252 }
8253
8254 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
8255
8256 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
8257 VMMRZCallRing3RemoveNotification(pVCpu);
8258 VMMRZCallRing3Enable(pVCpu);
8259
8260 return rc;
8261}
8262
8263
8264/**
8265 * VMMRZCallRing3() callback wrapper which saves the guest state before we
8266 * longjump to ring-3 and possibly get preempted.
8267 *
8268 * @returns VBox status code.
8269 * @param pVCpu The cross context virtual CPU structure.
8270 * @param enmOperation The operation causing the ring-3 longjump.
8271 * @param pvUser User argument, currently unused, NULL.
8272 */
8273static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
8274{
8275 RT_NOREF(pvUser);
8276 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
8277 {
8278 /*
8279 * !!! IMPORTANT !!!
8280 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
8281 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
8282 */
8283 VMMRZCallRing3RemoveNotification(pVCpu);
8284 VMMRZCallRing3Disable(pVCpu);
8285 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
8286 RTThreadPreemptDisable(&PreemptState);
8287
8288 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8289 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8290 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8291 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8292
8293#if HC_ARCH_BITS == 64
8294 /* Restore host-state bits that VT-x only restores partially. */
8295 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8296 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8297 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8298 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8299#endif
8300
8301 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8302 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8303 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8304
8305 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8306 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8307 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8308
8309 /* Clear the current VMCS data back to memory. */
8310 hmR0VmxClearVmcs(pVmcsInfo);
8311
8312 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
8313 VMMR0ThreadCtxHookDisable(pVCpu);
8314 HMR0LeaveCpu(pVCpu);
8315 RTThreadPreemptRestore(&PreemptState);
8316 return VINF_SUCCESS;
8317 }
8318
8319 Assert(pVCpu);
8320 Assert(pvUser);
8321 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8322 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8323
8324 VMMRZCallRing3Disable(pVCpu);
8325 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8326
8327 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
8328
8329 int rc = hmR0VmxLongJmpToRing3(pVCpu);
8330 AssertRCReturn(rc, rc);
8331
8332 VMMRZCallRing3Enable(pVCpu);
8333 return VINF_SUCCESS;
8334}
8335
8336
8337/**
8338 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8339 * stack.
8340 *
8341 * @returns Strict VBox status code (i.e. informational status codes too).
8342 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8343 * @param pVCpu The cross context virtual CPU structure.
8344 * @param uValue The value to push to the guest stack.
8345 */
8346static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
8347{
8348 /*
8349 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8350 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8351 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8352 */
8353 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8354 if (pCtx->sp == 1)
8355 return VINF_EM_RESET;
8356 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8357 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
8358 AssertRC(rc);
8359 return rc;
8360}
8361
8362
8363/**
8364 * Injects an event into the guest upon VM-entry by updating the relevant fields
8365 * in the VM-entry area in the VMCS.
8366 *
8367 * @returns Strict VBox status code (i.e. informational status codes too).
8368 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8369 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8370 *
8371 * @param pVCpu The cross context virtual CPU structure.
8372 * @param pVmxTransient The VMX-transient structure.
8373 * @param pEvent The event being injected.
8374 * @param pfIntrState Pointer to the VT-x guest-interruptibility-state.
8375 * This will be updated if necessary. This cannot not
8376 * be NULL.
8377 * @param fStepping Whether we're single-stepping guest execution and
8378 * should return VINF_EM_DBG_STEPPED if the event is
8379 * injected directly (registers modified by us, not by
8380 * hardware on VM-entry).
8381 */
8382static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCHMEVENT pEvent, bool fStepping,
8383 uint32_t *pfIntrState)
8384{
8385 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8386 AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
8387 Assert(pfIntrState);
8388
8389 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8390 uint32_t u32IntInfo = pEvent->u64IntInfo;
8391 uint32_t const u32ErrCode = pEvent->u32ErrCode;
8392 uint32_t const cbInstr = pEvent->cbInstr;
8393 RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
8394 uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
8395 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
8396
8397#ifdef VBOX_STRICT
8398 /*
8399 * Validate the error-code-valid bit for hardware exceptions.
8400 * No error codes for exceptions in real-mode.
8401 *
8402 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8403 */
8404 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8405 && !CPUMIsGuestInRealModeEx(pCtx))
8406 {
8407 switch (uVector)
8408 {
8409 case X86_XCPT_PF:
8410 case X86_XCPT_DF:
8411 case X86_XCPT_TS:
8412 case X86_XCPT_NP:
8413 case X86_XCPT_SS:
8414 case X86_XCPT_GP:
8415 case X86_XCPT_AC:
8416 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
8417 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8418 RT_FALL_THRU();
8419 default:
8420 break;
8421 }
8422 }
8423
8424 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8425 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
8426 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
8427#endif
8428
8429 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8430
8431 /*
8432 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
8433 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
8434 * interrupt handler in the (real-mode) guest.
8435 *
8436 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
8437 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8438 */
8439 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
8440 {
8441 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
8442 {
8443 /*
8444 * For CPUs with unrestricted guest execution enabled and with the guest
8445 * in real-mode, we must not set the deliver-error-code bit.
8446 *
8447 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8448 */
8449 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
8450 }
8451 else
8452 {
8453 PVM pVM = pVCpu->CTX_SUFF(pVM);
8454 Assert(PDMVmmDevHeapIsEnabled(pVM));
8455 Assert(pVM->hm.s.vmx.pRealModeTSS);
8456 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
8457
8458 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
8459 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8460 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
8461 | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
8462 AssertRCReturn(rc2, rc2);
8463
8464 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8465 size_t const cbIdtEntry = sizeof(X86IDTR16);
8466 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
8467 {
8468 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8469 if (uVector == X86_XCPT_DF)
8470 return VINF_EM_RESET;
8471
8472 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
8473 No error codes for exceptions in real-mode. */
8474 if (uVector == X86_XCPT_GP)
8475 {
8476 uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
8477 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8478 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8479 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8480 HMEVENT EventXcptDf;
8481 RT_ZERO(EventXcptDf);
8482 EventXcptDf.u64IntInfo = uXcptDfInfo;
8483 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptDf, fStepping, pfIntrState);
8484 }
8485
8486 /*
8487 * If we're injecting an event with no valid IDT entry, inject a #GP.
8488 * No error codes for exceptions in real-mode.
8489 *
8490 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8491 */
8492 uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
8493 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8494 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8495 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8496 HMEVENT EventXcptGp;
8497 RT_ZERO(EventXcptGp);
8498 EventXcptGp.u64IntInfo = uXcptGpInfo;
8499 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptGp, fStepping, pfIntrState);
8500 }
8501
8502 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8503 uint16_t uGuestIp = pCtx->ip;
8504 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
8505 {
8506 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8507 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8508 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8509 }
8510 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
8511 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8512
8513 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8514 X86IDTR16 IdtEntry;
8515 RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
8516 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8517 AssertRCReturn(rc2, rc2);
8518
8519 /* Construct the stack frame for the interrupt/exception handler. */
8520 VBOXSTRICTRC rcStrict;
8521 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
8522 if (rcStrict == VINF_SUCCESS)
8523 {
8524 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
8525 if (rcStrict == VINF_SUCCESS)
8526 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
8527 }
8528
8529 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8530 if (rcStrict == VINF_SUCCESS)
8531 {
8532 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8533 pCtx->rip = IdtEntry.offSel;
8534 pCtx->cs.Sel = IdtEntry.uSel;
8535 pCtx->cs.ValidSel = IdtEntry.uSel;
8536 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8537 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
8538 && uVector == X86_XCPT_PF)
8539 pCtx->cr2 = GCPtrFault;
8540
8541 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
8542 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
8543 | HM_CHANGED_GUEST_RSP);
8544
8545 /*
8546 * If we delivered a hardware exception (other than an NMI) and if there was
8547 * block-by-STI in effect, we should clear it.
8548 */
8549 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
8550 {
8551 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
8552 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
8553 Log4Func(("Clearing inhibition due to STI\n"));
8554 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
8555 }
8556
8557 Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8558 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
8559
8560 /*
8561 * The event has been truly dispatched to the guest. Mark it as no longer pending so
8562 * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
8563 */
8564 pVCpu->hm.s.Event.fPending = false;
8565
8566 /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
8567 if (fStepping)
8568 rcStrict = VINF_EM_DBG_STEPPED;
8569 }
8570 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8571 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8572 return rcStrict;
8573 }
8574 }
8575
8576 /*
8577 * Validate.
8578 */
8579 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8580 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
8581
8582 /*
8583 * Inject the event into the VMCS.
8584 */
8585 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8586 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8587 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8588 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8589 AssertRCReturn(rc, rc);
8590
8591 /*
8592 * Update guest CR2 if this is a page-fault.
8593 */
8594 if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8595 && uVector == X86_XCPT_PF)
8596 pCtx->cr2 = GCPtrFault;
8597
8598 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8599 return VINF_SUCCESS;
8600}
8601
8602
8603/**
8604 * Evaluates the event to be delivered to the guest and sets it as the pending
8605 * event.
8606 *
8607 * @returns Strict VBox status code (i.e. informational status codes too).
8608 * @param pVCpu The cross context virtual CPU structure.
8609 * @param pVmxTransient The VMX-transient structure.
8610 * @param pfIntrState Where to store the VT-x guest-interruptibility state.
8611 */
8612static VBOXSTRICTRC hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t *pfIntrState)
8613{
8614 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8615 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8616
8617 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
8618 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu, pVmcsInfo);
8619 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8620 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8621 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
8622
8623 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8624 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8625 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8626 Assert(!TRPMHasTrap(pVCpu));
8627 Assert(pfIntrState);
8628
8629 *pfIntrState = fIntrState;
8630
8631 /*
8632 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
8633 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
8634 */
8635 /** @todo SMI. SMIs take priority over NMIs. */
8636 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
8637 {
8638 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
8639 if ( !pVCpu->hm.s.Event.fPending
8640 && !fBlockNmi
8641 && !fBlockSti
8642 && !fBlockMovSS)
8643 {
8644#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8645 if ( pVmxTransient->fIsNestedGuest
8646 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_NMI_EXIT))
8647 return IEMExecVmxVmexitNmi(pVCpu);
8648#endif
8649 hmR0VmxSetPendingXcptNmi(pVCpu);
8650 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
8651 Log4Func(("Pending NMI\n"));
8652 }
8653 else
8654 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8655 }
8656 /*
8657 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
8658 * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
8659 */
8660 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8661 && !pVCpu->hm.s.fSingleInstruction)
8662 {
8663 Assert(!DBGFIsStepping(pVCpu));
8664 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
8665 AssertRCReturn(rc, rc);
8666 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
8667 if ( !pVCpu->hm.s.Event.fPending
8668 && !fBlockInt
8669 && !fBlockSti
8670 && !fBlockMovSS)
8671 {
8672#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8673 if ( pVmxTransient->fIsNestedGuest
8674 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
8675 {
8676 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0/* uVector */, true /* fIntPending */);
8677 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8678 return rcStrict;
8679 }
8680#endif
8681 uint8_t u8Interrupt;
8682 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
8683 if (RT_SUCCESS(rc))
8684 {
8685#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8686 if ( pVmxTransient->fIsNestedGuest
8687 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8688 && CPUMIsGuestVmxExitCtlsSet(pVCpu, pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8689 {
8690 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
8691 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8692 return rcStrict;
8693 }
8694#endif
8695 hmR0VmxSetPendingExtInt(pVCpu, u8Interrupt);
8696 Log4Func(("Pending external interrupt vector %#x\n", u8Interrupt));
8697 }
8698 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
8699 {
8700 if ( !pVmxTransient->fIsNestedGuest
8701 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
8702 hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u8Interrupt >> 4);
8703 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
8704
8705 /*
8706 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
8707 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
8708 * need to re-set this force-flag here.
8709 */
8710 }
8711 else
8712 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
8713 }
8714 else
8715 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8716 }
8717
8718 return VINF_SUCCESS;
8719}
8720
8721
8722/**
8723 * Injects any pending events into the guest if the guest is in a state to
8724 * receive them.
8725 *
8726 * @returns Strict VBox status code (i.e. informational status codes too).
8727 * @param pVCpu The cross context virtual CPU structure.
8728 * @param pVmxTransient The VMX-transient structure.
8729 * @param fIntrState The VT-x guest-interruptibility state.
8730 * @param fStepping Whether we are single-stepping the guest using the
8731 * hypervisor debugger and should return
8732 * VINF_EM_DBG_STEPPED if the event was dispatched
8733 * directly.
8734 */
8735static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t fIntrState, bool fStepping)
8736{
8737 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8738 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8739
8740 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8741 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8742
8743 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8744 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8745 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8746 Assert(!TRPMHasTrap(pVCpu));
8747
8748 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8749 if (pVCpu->hm.s.Event.fPending)
8750 {
8751 /*
8752 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
8753 * pending even while injecting an event and in this case, we want a VM-exit as soon as
8754 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
8755 *
8756 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
8757 */
8758 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
8759#ifdef VBOX_STRICT
8760 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
8761 {
8762 bool const fBlockInt = !(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
8763 Assert(!fBlockInt);
8764 Assert(!fBlockSti);
8765 Assert(!fBlockMovSS);
8766 }
8767 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
8768 {
8769 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
8770 Assert(!fBlockSti);
8771 Assert(!fBlockMovSS);
8772 Assert(!fBlockNmi);
8773 }
8774#endif
8775 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
8776 uIntType));
8777
8778 /*
8779 * Inject the event and get any changes to the guest-interruptibility state.
8780 *
8781 * The guest-interruptibility state may need to be updated if we inject the event
8782 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
8783 */
8784 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &pVCpu->hm.s.Event, fStepping, &fIntrState);
8785 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
8786
8787 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
8788 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
8789 else
8790 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
8791 }
8792
8793 /*
8794 * Update the guest-interruptibility state.
8795 *
8796 * This is required for the real-on-v86 software interrupt injection case above, as well as
8797 * updates to the guest state from ring-3 or IEM/REM.
8798 */
8799 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
8800 AssertRCReturn(rc, rc);
8801
8802 /*
8803 * There's no need to clear the VM-entry interruption-information field here if we're not
8804 * injecting anything. VT-x clears the valid bit on every VM-exit.
8805 *
8806 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
8807 */
8808
8809 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
8810 NOREF(fBlockMovSS); NOREF(fBlockSti);
8811 return rcStrict;
8812}
8813
8814
8815/**
8816 * Enters the VT-x session.
8817 *
8818 * @returns VBox status code.
8819 * @param pVCpu The cross context virtual CPU structure.
8820 */
8821VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu)
8822{
8823 AssertPtr(pVCpu);
8824 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8825 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8826
8827 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8828 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8829 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8830
8831#ifdef VBOX_STRICT
8832 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8833 RTCCUINTREG uHostCR4 = ASMGetCR4();
8834 if (!(uHostCR4 & X86_CR4_VMXE))
8835 {
8836 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8837 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8838 }
8839#endif
8840
8841 /*
8842 * Load the appropriate VMCS as the current and active one.
8843 */
8844 PVMXVMCSINFO pVmcsInfo;
8845 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
8846 if (!fInNestedGuestMode)
8847 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
8848 else
8849 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
8850 int rc = hmR0VmxLoadVmcs(pVmcsInfo);
8851 if (RT_SUCCESS(rc))
8852 {
8853 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
8854 pVCpu->hm.s.fLeaveDone = false;
8855 Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8856
8857 /*
8858 * Do the EMT scheduled L1D flush here if needed.
8859 */
8860 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8861 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8862 }
8863 return rc;
8864}
8865
8866
8867/**
8868 * The thread-context callback (only on platforms which support it).
8869 *
8870 * @param enmEvent The thread-context event.
8871 * @param pVCpu The cross context virtual CPU structure.
8872 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8873 * @thread EMT(pVCpu)
8874 */
8875VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8876{
8877 NOREF(fGlobalInit);
8878
8879 switch (enmEvent)
8880 {
8881 case RTTHREADCTXEVENT_OUT:
8882 {
8883 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8884 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8885 VMCPU_ASSERT_EMT(pVCpu);
8886
8887 /* No longjmps (logger flushes, locks) in this fragile context. */
8888 VMMRZCallRing3Disable(pVCpu);
8889 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8890
8891 /* Restore host-state (FPU, debug etc.) */
8892 if (!pVCpu->hm.s.fLeaveDone)
8893 {
8894 /*
8895 * Do -not- import the guest-state here as we might already be in the middle of importing
8896 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8897 */
8898 hmR0VmxLeave(pVCpu, false /* fImportState */);
8899 pVCpu->hm.s.fLeaveDone = true;
8900 }
8901
8902 /* Leave HM context, takes care of local init (term). */
8903 int rc = HMR0LeaveCpu(pVCpu);
8904 AssertRC(rc);
8905
8906 /* Restore longjmp state. */
8907 VMMRZCallRing3Enable(pVCpu);
8908 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8909 break;
8910 }
8911
8912 case RTTHREADCTXEVENT_IN:
8913 {
8914 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8915 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8916 VMCPU_ASSERT_EMT(pVCpu);
8917
8918 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8919 VMMRZCallRing3Disable(pVCpu);
8920 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8921
8922 /* Initialize the bare minimum state required for HM. This takes care of
8923 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8924 int rc = hmR0EnterCpu(pVCpu);
8925 AssertRC(rc);
8926 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8927 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8928
8929 /* Load the active VMCS as the current one. */
8930 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8931 rc = hmR0VmxLoadVmcs(pVmcsInfo);
8932 AssertRC(rc);
8933 Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8934 pVCpu->hm.s.fLeaveDone = false;
8935
8936 /* Do the EMT scheduled L1D flush if needed. */
8937 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8938 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8939
8940 /* Restore longjmp state. */
8941 VMMRZCallRing3Enable(pVCpu);
8942 break;
8943 }
8944
8945 default:
8946 break;
8947 }
8948}
8949
8950
8951/**
8952 * Exports the host state into the VMCS host-state area.
8953 * Sets up the VM-exit MSR-load area.
8954 *
8955 * The CPU state will be loaded from these fields on every successful VM-exit.
8956 *
8957 * @returns VBox status code.
8958 * @param pVCpu The cross context virtual CPU structure.
8959 *
8960 * @remarks No-long-jump zone!!!
8961 */
8962static int hmR0VmxExportHostState(PVMCPU pVCpu)
8963{
8964 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8965
8966 int rc = VINF_SUCCESS;
8967 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8968 {
8969 rc = hmR0VmxExportHostControlRegs();
8970 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8971
8972 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8973 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8974
8975 rc = hmR0VmxExportHostMsrs(pVCpu);
8976 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8977
8978 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8979 }
8980 return rc;
8981}
8982
8983
8984/**
8985 * Saves the host state in the VMCS host-state.
8986 *
8987 * @returns VBox status code.
8988 * @param pVCpu The cross context virtual CPU structure.
8989 *
8990 * @remarks No-long-jump zone!!!
8991 */
8992VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8993{
8994 AssertPtr(pVCpu);
8995 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8996
8997 /*
8998 * Export the host state here while entering HM context.
8999 * When thread-context hooks are used, we might get preempted and have to re-save the host
9000 * state but most of the time we won't be, so do it here before we disable interrupts.
9001 */
9002 return hmR0VmxExportHostState(pVCpu);
9003}
9004
9005
9006/**
9007 * Exports the guest state into the VMCS guest-state area.
9008 *
9009 * The will typically be done before VM-entry when the guest-CPU state and the
9010 * VMCS state may potentially be out of sync.
9011 *
9012 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
9013 * VM-entry controls.
9014 * Sets up the appropriate VMX non-root function to execute guest code based on
9015 * the guest CPU mode.
9016 *
9017 * @returns VBox strict status code.
9018 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9019 * without unrestricted guest execution and the VMMDev is not presently
9020 * mapped (e.g. EFI32).
9021 *
9022 * @param pVCpu The cross context virtual CPU structure.
9023 * @param pVmxTransient The VMX-transient structure.
9024 *
9025 * @remarks No-long-jump zone!!!
9026 */
9027static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9028{
9029 AssertPtr(pVCpu);
9030 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9031 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9032
9033 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
9034
9035 /*
9036 * Determine real-on-v86 mode.
9037 * Used when the guest is in real-mode and unrestricted guest execution is not used.
9038 */
9039 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
9040 if ( pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
9041 || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
9042 pVmcsInfo->RealMode. fRealOnV86Active = false;
9043 else
9044 {
9045 Assert(!pVmxTransient->fIsNestedGuest);
9046 pVmcsInfo->RealMode.fRealOnV86Active = true;
9047 }
9048
9049 /*
9050 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
9051 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
9052 */
9053 /** @todo r=ramshankar: Move hmR0VmxSelectVMRunHandler inside
9054 * hmR0VmxExportGuestEntryExitCtls and do it conditionally. There shouldn't
9055 * be a need to evaluate this everytime since I'm pretty sure we intercept
9056 * all guest paging mode changes. */
9057 int rc = hmR0VmxSelectVMRunHandler(pVCpu, pVmxTransient);
9058 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9059
9060 rc = hmR0VmxExportGuestEntryExitCtls(pVCpu, pVmxTransient);
9061 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9062
9063 rc = hmR0VmxExportGuestCR0(pVCpu, pVmxTransient);
9064 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9065
9066 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu, pVmxTransient);
9067 if (rcStrict == VINF_SUCCESS)
9068 { /* likely */ }
9069 else
9070 {
9071 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
9072 return rcStrict;
9073 }
9074
9075 rc = hmR0VmxExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
9076 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9077
9078 rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
9079 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9080
9081 rc = hmR0VmxExportGuestApicTpr(pVCpu, pVmxTransient);
9082 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9083
9084 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu, pVmxTransient);
9085 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9086
9087 rc = hmR0VmxExportGuestRip(pVCpu);
9088 rc |= hmR0VmxExportGuestRsp(pVCpu);
9089 rc |= hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9090 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9091
9092 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
9093 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
9094 | HM_CHANGED_GUEST_CR2
9095 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
9096 | HM_CHANGED_GUEST_X87
9097 | HM_CHANGED_GUEST_SSE_AVX
9098 | HM_CHANGED_GUEST_OTHER_XSAVE
9099 | HM_CHANGED_GUEST_XCRx
9100 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
9101 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
9102 | HM_CHANGED_GUEST_TSC_AUX
9103 | HM_CHANGED_GUEST_OTHER_MSRS
9104 | HM_CHANGED_GUEST_HWVIRT /* More accurate PLE handling someday? */
9105 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
9106
9107 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
9108 return rc;
9109}
9110
9111
9112/**
9113 * Exports the state shared between the host and guest into the VMCS.
9114 *
9115 * @param pVCpu The cross context virtual CPU structure.
9116 * @param pVmxTransient The VMX-transient structure.
9117 *
9118 * @remarks No-long-jump zone!!!
9119 */
9120static void hmR0VmxExportSharedState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9121{
9122 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9123 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9124
9125 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
9126 {
9127 int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
9128 AssertRC(rc);
9129 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
9130
9131 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
9132 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
9133 {
9134 rc = hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9135 AssertRC(rc);
9136 }
9137 }
9138
9139 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
9140 {
9141 hmR0VmxLazyLoadGuestMsrs(pVCpu);
9142 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
9143 }
9144
9145 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
9146 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
9147}
9148
9149
9150/**
9151 * Worker for loading the guest-state bits in the inner VT-x execution loop.
9152 *
9153 * @returns Strict VBox status code (i.e. informational status codes too).
9154 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9155 * without unrestricted guest execution and the VMMDev is not presently
9156 * mapped (e.g. EFI32).
9157 *
9158 * @param pVCpu The cross context virtual CPU structure.
9159 * @param pVmxTransient The VMX-transient structure.
9160 *
9161 * @remarks No-long-jump zone!!!
9162 */
9163static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9164{
9165 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9166 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9167 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9168
9169#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
9170 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
9171#endif
9172
9173 /*
9174 * For many exits it's only RIP that changes and hence try to export it first
9175 * without going through a lot of change flag checks.
9176 */
9177 VBOXSTRICTRC rcStrict;
9178 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9179 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
9180 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
9181 {
9182 rcStrict = hmR0VmxExportGuestRip(pVCpu);
9183 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9184 { /* likely */}
9185 else
9186 AssertMsgFailedReturn(("Failed to export guest RIP! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
9187 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
9188 }
9189 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9190 {
9191 rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
9192 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9193 { /* likely */}
9194 else
9195 {
9196 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
9197 VBOXSTRICTRC_VAL(rcStrict)));
9198 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9199 return rcStrict;
9200 }
9201 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
9202 }
9203 else
9204 rcStrict = VINF_SUCCESS;
9205
9206#ifdef VBOX_STRICT
9207 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
9208 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9209 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
9210 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
9211 ("fCtxChanged=%#RX64\n", fCtxChanged));
9212#endif
9213 return rcStrict;
9214}
9215
9216
9217/**
9218 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9219 * and update error record fields accordingly.
9220 *
9221 * @return VMX_IGS_* return codes.
9222 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9223 * wrong with the guest state.
9224 *
9225 * @param pVCpu The cross context virtual CPU structure.
9226 * @param pVmcsInfo The VMCS info. object.
9227 *
9228 * @remarks This function assumes our cache of the VMCS controls
9229 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
9230 */
9231static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
9232{
9233#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9234#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
9235 uError = (err); \
9236 break; \
9237 } else do { } while (0)
9238
9239 int rc;
9240 PVM pVM = pVCpu->CTX_SUFF(pVM);
9241 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9242 uint32_t uError = VMX_IGS_ERROR;
9243 uint32_t u32Val;
9244 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
9245
9246 do
9247 {
9248 /*
9249 * CR0.
9250 */
9251 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9252 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9253 /* Exceptions for unrestricted guest execution for fixed CR0 bits (PE, PG).
9254 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9255 if (fUnrestrictedGuest)
9256 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
9257
9258 uint32_t u32GuestCr0;
9259 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
9260 AssertRCBreak(rc);
9261 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
9262 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
9263 if ( !fUnrestrictedGuest
9264 && (u32GuestCr0 & X86_CR0_PG)
9265 && !(u32GuestCr0 & X86_CR0_PE))
9266 {
9267 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9268 }
9269
9270 /*
9271 * CR4.
9272 */
9273 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9274 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9275
9276 uint32_t u32GuestCr4;
9277 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
9278 AssertRCBreak(rc);
9279 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
9280 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
9281
9282 /*
9283 * IA32_DEBUGCTL MSR.
9284 */
9285 uint64_t u64Val;
9286 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9287 AssertRCBreak(rc);
9288 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9289 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9290 {
9291 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9292 }
9293 uint64_t u64DebugCtlMsr = u64Val;
9294
9295#ifdef VBOX_STRICT
9296 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9297 AssertRCBreak(rc);
9298 Assert(u32Val == pVmcsInfo->u32EntryCtls);
9299#endif
9300 bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
9301
9302 /*
9303 * RIP and RFLAGS.
9304 */
9305 uint32_t u32Eflags;
9306#if HC_ARCH_BITS == 64
9307 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
9308 AssertRCBreak(rc);
9309 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9310 if ( !fLongModeGuest
9311 || !pCtx->cs.Attr.n.u1Long)
9312 {
9313 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9314 }
9315 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9316 * must be identical if the "IA-32e mode guest" VM-entry
9317 * control is 1 and CS.L is 1. No check applies if the
9318 * CPU supports 64 linear-address bits. */
9319
9320 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9321 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9322 AssertRCBreak(rc);
9323 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9324 VMX_IGS_RFLAGS_RESERVED);
9325 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9326 u32Eflags = u64Val;
9327#else
9328 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
9329 AssertRCBreak(rc);
9330 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
9331 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9332#endif
9333
9334 if ( fLongModeGuest
9335 || ( fUnrestrictedGuest
9336 && !(u32GuestCr0 & X86_CR0_PE)))
9337 {
9338 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9339 }
9340
9341 uint32_t u32EntryInfo;
9342 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9343 AssertRCBreak(rc);
9344 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
9345 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
9346 {
9347 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9348 }
9349
9350 /*
9351 * 64-bit checks.
9352 */
9353#if HC_ARCH_BITS == 64
9354 if (fLongModeGuest)
9355 {
9356 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9357 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9358 }
9359
9360 if ( !fLongModeGuest
9361 && (u32GuestCr4 & X86_CR4_PCIDE))
9362 {
9363 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9364 }
9365
9366 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9367 * 51:32 beyond the processor's physical-address width are 0. */
9368
9369 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9370 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9371 {
9372 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9373 }
9374
9375 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9376 AssertRCBreak(rc);
9377 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9378
9379 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9380 AssertRCBreak(rc);
9381 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9382#endif
9383
9384 /*
9385 * PERF_GLOBAL MSR.
9386 */
9387 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
9388 {
9389 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9390 AssertRCBreak(rc);
9391 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9392 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9393 }
9394
9395 /*
9396 * PAT MSR.
9397 */
9398 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
9399 {
9400 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9401 AssertRCBreak(rc);
9402 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9403 for (unsigned i = 0; i < 8; i++)
9404 {
9405 uint8_t u8Val = (u64Val & 0xff);
9406 if ( u8Val != 0 /* UC */
9407 && u8Val != 1 /* WC */
9408 && u8Val != 4 /* WT */
9409 && u8Val != 5 /* WP */
9410 && u8Val != 6 /* WB */
9411 && u8Val != 7 /* UC- */)
9412 {
9413 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9414 }
9415 u64Val >>= 8;
9416 }
9417 }
9418
9419 /*
9420 * EFER MSR.
9421 */
9422 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
9423 {
9424 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
9425 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9426 AssertRCBreak(rc);
9427 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9428 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9429 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
9430 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
9431 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9432 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
9433 * iemVmxVmentryCheckGuestState(). */
9434 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9435 || !(u32GuestCr0 & X86_CR0_PG)
9436 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9437 VMX_IGS_EFER_LMA_LME_MISMATCH);
9438 }
9439
9440 /*
9441 * Segment registers.
9442 */
9443 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9444 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9445 if (!(u32Eflags & X86_EFL_VM))
9446 {
9447 /* CS */
9448 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9449 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9450 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9451 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9452 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9453 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9454 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9455 /* CS cannot be loaded with NULL in protected mode. */
9456 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9457 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9458 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9459 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9460 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9461 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9462 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9463 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9464 else
9465 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9466
9467 /* SS */
9468 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9469 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9470 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9471 if ( !(pCtx->cr0 & X86_CR0_PE)
9472 || pCtx->cs.Attr.n.u4Type == 3)
9473 {
9474 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9475 }
9476 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9477 {
9478 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9479 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9480 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9481 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9482 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9483 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9484 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9485 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9486 }
9487
9488 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSReg(). */
9489 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9490 {
9491 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9492 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9493 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9494 || pCtx->ds.Attr.n.u4Type > 11
9495 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9496 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9497 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9498 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9499 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9500 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9501 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9502 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9503 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9504 }
9505 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9506 {
9507 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9508 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9509 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9510 || pCtx->es.Attr.n.u4Type > 11
9511 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9512 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9513 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9514 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9515 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9516 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9517 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9518 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9519 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9520 }
9521 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9522 {
9523 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
9524 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
9525 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9526 || pCtx->fs.Attr.n.u4Type > 11
9527 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
9528 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
9529 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
9530 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
9531 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9532 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
9533 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9534 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9535 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
9536 }
9537 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
9538 {
9539 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
9540 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
9541 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9542 || pCtx->gs.Attr.n.u4Type > 11
9543 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
9544 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
9545 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
9546 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
9547 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9548 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
9549 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9550 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9551 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
9552 }
9553 /* 64-bit capable CPUs. */
9554#if HC_ARCH_BITS == 64
9555 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9556 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9557 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9558 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9559 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9560 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9561 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9562 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9563 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9564 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9565 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9566#endif
9567 }
9568 else
9569 {
9570 /* V86 mode checks. */
9571 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
9572 if (pVmcsInfo->RealMode.fRealOnV86Active)
9573 {
9574 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
9575 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
9576 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
9577 }
9578 else
9579 {
9580 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
9581 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
9582 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
9583 }
9584
9585 /* CS */
9586 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9587 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9588 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9589 /* SS */
9590 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9591 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9592 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9593 /* DS */
9594 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9595 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9596 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9597 /* ES */
9598 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9599 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9600 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9601 /* FS */
9602 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9603 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9604 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9605 /* GS */
9606 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9607 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9608 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9609 /* 64-bit capable CPUs. */
9610#if HC_ARCH_BITS == 64
9611 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9612 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9613 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9614 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9615 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9616 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9617 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9618 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9619 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9620 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9621 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9622#endif
9623 }
9624
9625 /*
9626 * TR.
9627 */
9628 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9629 /* 64-bit capable CPUs. */
9630#if HC_ARCH_BITS == 64
9631 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9632#endif
9633 if (fLongModeGuest)
9634 {
9635 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9636 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9637 }
9638 else
9639 {
9640 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9641 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9642 VMX_IGS_TR_ATTR_TYPE_INVALID);
9643 }
9644 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9645 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9646 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9647 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9648 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9649 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9650 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9651 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9652
9653 /*
9654 * GDTR and IDTR.
9655 */
9656#if HC_ARCH_BITS == 64
9657 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9658 AssertRCBreak(rc);
9659 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9660
9661 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9662 AssertRCBreak(rc);
9663 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9664#endif
9665
9666 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9667 AssertRCBreak(rc);
9668 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9669
9670 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9671 AssertRCBreak(rc);
9672 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9673
9674 /*
9675 * Guest Non-Register State.
9676 */
9677 /* Activity State. */
9678 uint32_t u32ActivityState;
9679 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9680 AssertRCBreak(rc);
9681 HMVMX_CHECK_BREAK( !u32ActivityState
9682 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
9683 VMX_IGS_ACTIVITY_STATE_INVALID);
9684 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9685 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9686 uint32_t u32IntrState;
9687 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
9688 AssertRCBreak(rc);
9689 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
9690 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9691 {
9692 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9693 }
9694
9695 /** @todo Activity state and injecting interrupts. Left as a todo since we
9696 * currently don't use activity states but ACTIVE. */
9697
9698 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9699 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9700
9701 /* Guest interruptibility-state. */
9702 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9703 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9704 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9705 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9706 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9707 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9708 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9709 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
9710 {
9711 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
9712 {
9713 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9714 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9715 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9716 }
9717 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
9718 {
9719 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9720 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9721 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9722 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9723 }
9724 }
9725 /** @todo Assumes the processor is not in SMM. */
9726 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9727 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9728 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9729 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9730 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9731 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
9732 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
9733 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
9734 {
9735 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
9736 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9737 }
9738
9739 /* Pending debug exceptions. */
9740#if HC_ARCH_BITS == 64
9741 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
9742 AssertRCBreak(rc);
9743 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9744 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9745 u32Val = u64Val; /* For pending debug exceptions checks below. */
9746#else
9747 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
9748 AssertRCBreak(rc);
9749 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
9750 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
9751#endif
9752
9753 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9754 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
9755 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9756 {
9757 if ( (u32Eflags & X86_EFL_TF)
9758 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9759 {
9760 /* Bit 14 is PendingDebug.BS. */
9761 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9762 }
9763 if ( !(u32Eflags & X86_EFL_TF)
9764 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9765 {
9766 /* Bit 14 is PendingDebug.BS. */
9767 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
9768 }
9769 }
9770
9771 /* VMCS link pointer. */
9772 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
9773 AssertRCBreak(rc);
9774 if (u64Val != UINT64_C(0xffffffffffffffff))
9775 {
9776 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
9777 /** @todo Bits beyond the processor's physical-address width MBZ. */
9778 /** @todo 32-bit located in memory referenced by value of this field (as a
9779 * physical address) must contain the processor's VMCS revision ID. */
9780 /** @todo SMM checks. */
9781 }
9782
9783 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
9784 * not using nested paging? */
9785 if ( pVM->hm.s.fNestedPaging
9786 && !fLongModeGuest
9787 && CPUMIsGuestInPAEModeEx(pCtx))
9788 {
9789 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
9790 AssertRCBreak(rc);
9791 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9792
9793 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
9794 AssertRCBreak(rc);
9795 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9796
9797 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
9798 AssertRCBreak(rc);
9799 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9800
9801 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
9802 AssertRCBreak(rc);
9803 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9804 }
9805
9806 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
9807 if (uError == VMX_IGS_ERROR)
9808 uError = VMX_IGS_REASON_NOT_FOUND;
9809 } while (0);
9810
9811 pVCpu->hm.s.u32HMError = uError;
9812 return uError;
9813
9814#undef HMVMX_ERROR_BREAK
9815#undef HMVMX_CHECK_BREAK
9816}
9817
9818
9819/**
9820 * Setup the APIC-access page for virtualizing APIC access.
9821 *
9822 * This can cause a longjumps to R3 due to the acquisition of the PGM lock, hence
9823 * this not done as part of exporting guest state, see @bugref{8721}.
9824 *
9825 * @returns VBox status code.
9826 * @param pVCpu The cross context virtual CPU structure.
9827 */
9828static int hmR0VmxMapHCApicAccessPage(PVMCPU pVCpu)
9829{
9830 PVM pVM = pVCpu->CTX_SUFF(pVM);
9831 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
9832
9833 Assert(PDMHasApic(pVM));
9834 Assert(u64MsrApicBase);
9835
9836 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
9837 Log4Func(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
9838
9839 /* Unalias any existing mapping. */
9840 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
9841 AssertRCReturn(rc, rc);
9842
9843 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
9844 Assert(pVM->hm.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
9845 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
9846 AssertRCReturn(rc, rc);
9847
9848 /* Update the per-VCPU cache of the APIC base MSR. */
9849 pVCpu->hm.s.vmx.u64GstMsrApicBase = u64MsrApicBase;
9850 return VINF_SUCCESS;
9851}
9852
9853
9854#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9855/**
9856 * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
9857 * nested-guest using hardware-assisted VMX.
9858 *
9859 * @param pVCpu The cross context virtual CPU structure.
9860 * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
9861 * @param pVmcsInfoGst The guest VMCS info. object.
9862 */
9863static void hmR0VmxMergeMsrBitmapNested(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
9864{
9865 uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
9866 uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
9867 uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
9868 Assert(pu64MsrBitmapNstGst);
9869 Assert(pu64MsrBitmapGst);
9870 Assert(pu64MsrBitmap);
9871
9872 /*
9873 * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
9874 * MSR that is intercepted by the guest is also intercepted while executing the
9875 * nested-guest using hardware-assisted VMX.
9876 */
9877 uint32_t const cbFrag = sizeof(uint64_t);
9878 uint32_t const cFrags = X86_PAGE_4K_SIZE / cbFrag;
9879 for (uint32_t i = 0; i <= cFrags; i++)
9880 pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
9881}
9882
9883
9884/**
9885 * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
9886 * hardware-assisted VMX execution of the nested-guest.
9887 *
9888 * For a guest, we don't modify these controls once we set up the VMCS.
9889 *
9890 * For nested-guests since the guest hypervisor provides these controls on every
9891 * nested-guest VM-entry and could potentially change them everytime we need to
9892 * merge them before every nested-guest VM-entry.
9893 *
9894 * @returns VBox status code.
9895 * @param pVCpu The cross context virtual CPU structure.
9896 */
9897static int hmR0VmxMergeVmcsNested(PVMCPU pVCpu)
9898{
9899 PVM pVM = pVCpu->CTX_SUFF(pVM);
9900 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
9901 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
9902 Assert(pVmcsNstGst);
9903
9904 /*
9905 * Merge the controls with the requirements of the guest VMCS.
9906 *
9907 * We do not need to validate the nested-guest VMX features specified in the
9908 * nested-guest VMCS with the features supported by the physical CPU as it's
9909 * already done by the VMLAUNCH/VMRESUME instruction emulation.
9910 *
9911 * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the
9912 * guest are derived from the VMX features supported by the physical CPU.
9913 */
9914
9915 /* Pin-based VM-execution controls. */
9916 uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
9917
9918 /* Processor-based VM-execution controls. */
9919 uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
9920 | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
9921 | VMX_PROC_CTLS_NMI_WINDOW_EXIT
9922 | VMX_PROC_CTLS_USE_TPR_SHADOW
9923 | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
9924
9925 /* Secondary processor-based VM-execution controls. */
9926 uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
9927 | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
9928 | VMX_PROC_CTLS2_INVPCID
9929 | VMX_PROC_CTLS2_RDTSCP
9930 | VMX_PROC_CTLS2_XSAVES_XRSTORS
9931 | VMX_PROC_CTLS2_APIC_REG_VIRT
9932 | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
9933 | VMX_PROC_CTLS2_VMFUNC));
9934
9935 /*
9936 * VM-entry controls:
9937 * These controls contains state that depends on the nested-guest state (primarily
9938 * EFER MSR) and is thus not constant through VMLAUNCH/VMRESUME and the nested-guest
9939 * VM-exit. Although the nested-hypervisor cannot change it, we need to in order to
9940 * properly continue executing the nested-guest if the EFER MSR changes but does not
9941 * cause a nested-guest VM-exits.
9942 *
9943 * VM-exit controls:
9944 * These controls specify the host state on return. We cannot use the controls from
9945 * the nested-hypervisor state as is as it would contain the guest state rather than
9946 * the host state. Since the host state is subject to change (e.g. preemption, trips
9947 * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
9948 * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
9949 *
9950 * VM-entry MSR-load:
9951 * The guest MSRs from the VM-entry MSR-load area are already loaded into the
9952 * guest-CPU context by the VMLAUNCH/VMRESUME instruction emulation.
9953 *
9954 * VM-exit MSR-store:
9955 * The VM-exit emulation will take care of populating the MSRs from the guest-CPU
9956 * context back into the VM-exit MSR-store area.
9957 *
9958 * VM-exit MSR-load areas:
9959 * This must contain the real host MSRs with hardware-assisted VMX execution. Hence,
9960 * we can entirely ignore what the nested-hypervisor wants to load here.
9961 */
9962
9963 /*
9964 * Exception bitmap.
9965 *
9966 * We could remove #UD from the guest bitmap and merge it with the nested-guest
9967 * bitmap here (and avoid doing anything while exporting nested-guest state), but to
9968 * keep the code more flexible if intercepting exceptions become more dynamic in
9969 * the future we do it as part of exporting the nested-guest state.
9970 */
9971 uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
9972
9973 /*
9974 * CR0/CR4 guest/host mask.
9975 *
9976 * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest
9977 * must cause VM-exits, so we need to merge them here.
9978 */
9979 uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
9980 uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
9981
9982 /*
9983 * Page-fault error-code mask and match.
9984 *
9985 * Although we require unrestricted guest execution (and thereby nested-paging) for
9986 * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
9987 * normally intercept #PFs, it might intercept them for debugging purposes.
9988 *
9989 * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF
9990 * filters. If the outer guest is intercepting #PFs we must intercept all #PFs.
9991 */
9992 uint32_t u32XcptPFMask;
9993 uint32_t u32XcptPFMatch;
9994 if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
9995 {
9996 u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
9997 u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
9998 }
9999 else
10000 {
10001 u32XcptPFMask = 0;
10002 u32XcptPFMatch = 0;
10003 }
10004
10005 /*
10006 * Pause-Loop exiting.
10007 */
10008 uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
10009 uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
10010
10011 /*
10012 * I/O Bitmap.
10013 *
10014 * We do not use the I/O bitmap that may be provided by the guest hypervisor as we
10015 * always intercept all I/O port accesses.
10016 */
10017 Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
10018
10019 /*
10020 * APIC-access page.
10021 *
10022 * The APIC-access page address has already been initialized while setting up the
10023 * nested-guest VMCS. In theory, even if the guest-physical address is invalid, it
10024 * should not be on any consequence to the host or to the guest for that matter, but
10025 * we only accept valid addresses verified by the VMLAUNCH/VMRESUME instruction
10026 * emulation to keep it simple.
10027 */
10028
10029 /*
10030 * Virtual-APIC page and TPR threshold.
10031 *
10032 * We shall use the host-physical address of the virtual-APIC page in guest memory directly.
10033 * For this reason, we can access the virtual-APIC page of the nested-guest only using
10034 * PGM physical handlers as we must not assume a kernel virtual-address mapping exists and
10035 * requesting PGM for a mapping could be expensive/resource intensive (PGM mapping cache).
10036 */
10037 RTHCPHYS HCPhysVirtApic = NIL_RTHCPHYS;
10038 uint32_t const u32TprThreshold = pVmcsNstGst->u32TprThreshold;
10039 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10040 {
10041 int rc = PGMPhysGCPhys2HCPhys(pVM, pVmcsNstGst->u64AddrVirtApic.u, &HCPhysVirtApic);
10042
10043 /*
10044 * If the guest hypervisor has loaded crap into the virtual-APIC page field
10045 * we would fail to obtain a valid host-physical address for its guest-physical
10046 * address.
10047 *
10048 * We currently do not support this scenario. Maybe in the future if there is a
10049 * pressing need we can explore making this particular set of conditions work.
10050 * Right now we just cause a VM-entry failure.
10051 *
10052 * This has already been checked by VMLAUNCH/VMRESUME instruction emulation,
10053 * so should not really failure at the moment.
10054 */
10055 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
10056 }
10057 else
10058 {
10059 /*
10060 * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
10061 * used by the guest hypervisor. Preventing MMIO accesses to the physical APIC will
10062 * be taken care of by EPT/shadow paging.
10063 */
10064 if (pVM->hm.s.fAllow64BitGuests)
10065 {
10066 u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
10067 | VMX_PROC_CTLS_CR8_LOAD_EXIT;
10068 }
10069 }
10070
10071 /*
10072 * Validate basic assumptions.
10073 */
10074 PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10075 Assert(pVM->hm.s.vmx.fAllowUnrestricted);
10076 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
10077 Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
10078
10079 /*
10080 * Commit it to the nested-guest VMCS.
10081 */
10082 int rc = VINF_SUCCESS;
10083 if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
10084 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
10085 if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
10086 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
10087 if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
10088 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
10089 if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
10090 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
10091 if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
10092 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
10093 if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
10094 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
10095 if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
10096 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
10097 if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
10098 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
10099 if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
10100 && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
10101 {
10102 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
10103 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
10104 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
10105 }
10106 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10107 {
10108 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
10109 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
10110 }
10111 AssertRCReturn(rc, rc);
10112
10113 /*
10114 * Update the nested-guest VMCS cache.
10115 */
10116 pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
10117 pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
10118 pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
10119 pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
10120 pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
10121 pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
10122 pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
10123 pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
10124 pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
10125
10126 /*
10127 * MSR bitmap.
10128 *
10129 * The MSR bitmap address has already been initialized while setting up the
10130 * nested-guest VMCS, here we need to merge the MSR bitmaps.
10131 */
10132 if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10133 hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
10134
10135 return VINF_SUCCESS;
10136}
10137#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10138
10139
10140/**
10141 * Does the preparations before executing guest code in VT-x.
10142 *
10143 * This may cause longjmps to ring-3 and may even result in rescheduling to the
10144 * recompiler/IEM. We must be cautious what we do here regarding committing
10145 * guest-state information into the VMCS assuming we assuredly execute the
10146 * guest in VT-x mode.
10147 *
10148 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
10149 * the common-state (TRPM/forceflags), we must undo those changes so that the
10150 * recompiler/IEM can (and should) use them when it resumes guest execution.
10151 * Otherwise such operations must be done when we can no longer exit to ring-3.
10152 *
10153 * @returns Strict VBox status code (i.e. informational status codes too).
10154 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
10155 * have been disabled.
10156 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
10157 * double-fault into the guest.
10158 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
10159 * dispatched directly.
10160 * @retval VINF_* scheduling changes, we have to go back to ring-3.
10161 *
10162 * @param pVCpu The cross context virtual CPU structure.
10163 * @param pVmxTransient The VMX-transient structure.
10164 * @param fStepping Whether we are single-stepping the guest in the
10165 * hypervisor debugger. Makes us ignore some of the reasons
10166 * for returning to ring-3, and return VINF_EM_DBG_STEPPED
10167 * if event dispatching took place.
10168 */
10169static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
10170{
10171 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10172
10173#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
10174 if (pVmxTransient->fIsNestedGuest)
10175 {
10176 RT_NOREF2(pVCpu, fStepping);
10177 Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
10178 return VINF_EM_RESCHEDULE_REM;
10179 }
10180#endif
10181
10182#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
10183 PGMRZDynMapFlushAutoSet(pVCpu);
10184#endif
10185
10186 /*
10187 * Check and process force flag actions, some of which might require us to go back to ring-3.
10188 */
10189 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
10190 if (rcStrict == VINF_SUCCESS)
10191 { /* FFs don't get set all the time. */ }
10192 else
10193 return rcStrict;
10194
10195#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10196 /*
10197 * Switch to the nested-guest VMCS as we may have transitioned into executing
10198 * the nested-guest without leaving ring-0. Otherwise, if we came from ring-3
10199 * we would load the nested-guest VMCS while entering the VMX ring-0 session.
10200 *
10201 * We do this as late as possible to minimize (though not completely remove)
10202 * clearing/loading VMCS again due to premature trips to ring-3 above.
10203 */
10204 if (pVmxTransient->fIsNestedGuest)
10205 {
10206 if (!pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
10207 {
10208 /*
10209 * Ensure we have synced everything from the guest VMCS and also flag that
10210 * that we need to export the full (nested) guest-CPU context to the
10211 * nested-guest VMCS.
10212 */
10213 HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
10214 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
10215
10216 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
10217 int rc = hmR0VmxSwitchVmcs(&pVCpu->hm.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
10218 if (RT_LIKELY(rc == VINF_SUCCESS))
10219 {
10220 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = true;
10221 ASMSetFlags(fEFlags);
10222 pVmxTransient->pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10223
10224 /*
10225 * We use a different VM-exit MSR-store area for the nested-guest. Hence,
10226 * flag that we need to update the host MSR values there. Even if we decide
10227 * in the future to share the VM-exit MSR-store area page with the guest,
10228 * if its content differs, we would have to update the host MSRs anyway.
10229 */
10230 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
10231 Assert(!pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer); /** @todo NSTVMX: Paranoia remove later. */
10232 }
10233 else
10234 {
10235 ASMSetFlags(fEFlags);
10236 return rc;
10237 }
10238 }
10239
10240 /*
10241 * Merge guest VMCS controls with the nested-guest VMCS controls.
10242 *
10243 * Even if we have not executed the guest prior to this (e.g. when resuming
10244 * from a saved state), we should be okay with merging controls as we
10245 * initialize the guest VMCS controls as part of VM setup phase.
10246 */
10247 if (!pVCpu->hm.s.vmx.fMergedNstGstCtls)
10248 {
10249 int rc = hmR0VmxMergeVmcsNested(pVCpu);
10250 AssertRCReturn(rc, rc);
10251 pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
10252 }
10253 }
10254#endif
10255
10256 /*
10257 * Virtualize memory-mapped accesses to the physical APIC (may take locks).
10258 * We look at the guest VMCS control here as we always set it when supported by
10259 * the physical CPU. Looking at the nested-guest control here would not be
10260 * possible because they are not merged yet.
10261 */
10262 PVM pVM = pVCpu->CTX_SUFF(pVM);
10263 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10264 if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
10265 && (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10266 && PDMHasApic(pVM))
10267 {
10268 int rc = hmR0VmxMapHCApicAccessPage(pVCpu);
10269 AssertRCReturn(rc, rc);
10270 }
10271
10272 /*
10273 * Evaluate events to be injected into the guest.
10274 *
10275 * Events in TRPM can be injected without inspecting the guest state.
10276 * If any new events (interrupts/NMI) are pending currently, we try to set up the
10277 * guest to cause a VM-exit the next time they are ready to receive the event.
10278 */
10279 if (TRPMHasTrap(pVCpu))
10280 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
10281
10282 uint32_t fIntrState;
10283 rcStrict = hmR0VmxEvaluatePendingEvent(pVCpu, pVmxTransient, &fIntrState);
10284
10285#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10286 /*
10287 * While evaluating pending events if something failed (unlikely) or if we were
10288 * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
10289 */
10290 if ( rcStrict != VINF_SUCCESS
10291 || ( pVmxTransient->fIsNestedGuest
10292 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)))
10293 return rcStrict;
10294#endif
10295
10296 /*
10297 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
10298 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
10299 * also result in triple-faulting the VM.
10300 *
10301 * The above does not apply when executing a nested-guest (since unrestricted guest execution
10302 * is a requirement) regardless doing it avoid duplicating code elsewhere.
10303 */
10304 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pVmxTransient, fIntrState, fStepping);
10305 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10306 { /* likely */ }
10307 else
10308 {
10309 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
10310 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10311 return rcStrict;
10312 }
10313
10314 /*
10315 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
10316 * import CR3 themselves. We will need to update them here, as even as late as the above
10317 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
10318 * the below force flags to be set.
10319 */
10320 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
10321 {
10322 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
10323 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
10324 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
10325 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
10326 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10327 }
10328 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
10329 {
10330 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
10331 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10332 }
10333
10334#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10335 /* Paranoia. */
10336 Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10337#endif
10338
10339 /*
10340 * No longjmps to ring-3 from this point on!!!
10341 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
10342 * This also disables flushing of the R0-logger instance (if any).
10343 */
10344 VMMRZCallRing3Disable(pVCpu);
10345
10346 /*
10347 * Export the guest state bits.
10348 *
10349 * We cannot perform longjmps while loading the guest state because we do not preserve the
10350 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
10351 * CPU migration.
10352 *
10353 * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
10354 * registers. Hence, loading of the guest state needs to be done -after- injection of events.
10355 */
10356 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
10357 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10358 { /* likely */ }
10359 else
10360 {
10361 VMMRZCallRing3Enable(pVCpu);
10362 return rcStrict;
10363 }
10364
10365 /*
10366 * We disable interrupts so that we don't miss any interrupts that would flag preemption
10367 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
10368 * preemption disabled for a while. Since this is purely to aid the
10369 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
10370 * disable interrupt on NT.
10371 *
10372 * We need to check for force-flags that could've possible been altered since we last
10373 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
10374 * see @bugref{6398}).
10375 *
10376 * We also check a couple of other force-flags as a last opportunity to get the EMT back
10377 * to ring-3 before executing guest code.
10378 */
10379 pVmxTransient->fEFlags = ASMIntDisableFlags();
10380
10381 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
10382 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
10383 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
10384 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
10385 {
10386 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
10387 {
10388 pVCpu->hm.s.Event.fPending = false;
10389
10390 /*
10391 * We've injected any pending events. This is really the point of no return (to ring-3).
10392 *
10393 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
10394 * returns from this function, so don't enable them here.
10395 */
10396 return VINF_SUCCESS;
10397 }
10398
10399 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
10400 rcStrict = VINF_EM_RAW_INTERRUPT;
10401 }
10402 else
10403 {
10404 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
10405 rcStrict = VINF_EM_RAW_TO_R3;
10406 }
10407
10408 ASMSetFlags(pVmxTransient->fEFlags);
10409 VMMRZCallRing3Enable(pVCpu);
10410
10411 return rcStrict;
10412}
10413
10414
10415/**
10416 * Final preparations before executing guest code using hardware-assisted VMX.
10417 *
10418 * We can no longer get preempted to a different host CPU and there are no returns
10419 * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
10420 * failures), this function is not intended to fail sans unrecoverable hardware
10421 * errors.
10422 *
10423 * @param pVCpu The cross context virtual CPU structure.
10424 * @param pVmxTransient The VMX-transient structure.
10425 *
10426 * @remarks Called with preemption disabled.
10427 * @remarks No-long-jump zone!!!
10428 */
10429static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10430{
10431 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10432 Assert(VMMR0IsLogFlushDisabled(pVCpu));
10433 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
10434 Assert(!pVCpu->hm.s.Event.fPending);
10435
10436 /*
10437 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
10438 */
10439 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10440 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
10441
10442 PVM pVM = pVCpu->CTX_SUFF(pVM);
10443 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10444
10445 if (!CPUMIsGuestFPUStateActive(pVCpu))
10446 {
10447 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10448 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
10449 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
10450 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10451 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
10452 }
10453
10454 /*
10455 * Re-save the host state bits as we may've been preempted (only happens when
10456 * thread-context hooks are used or when the VM start function changes).
10457 * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
10458 * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
10459 * see @bugref{8432}.
10460 *
10461 * This may also happen when switching to/from a nested-guest VMCS without leaving
10462 * ring-0.
10463 */
10464 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
10465 {
10466 int rc = hmR0VmxExportHostState(pVCpu);
10467 AssertRC(rc);
10468 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
10469 }
10470 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
10471
10472 /*
10473 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
10474 */
10475 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
10476 hmR0VmxExportSharedState(pVCpu, pVmxTransient);
10477 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
10478
10479 /*
10480 * Store status of the shared guest/host debug state at the time of VM-entry.
10481 */
10482#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
10483 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
10484 {
10485 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
10486 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
10487 }
10488 else
10489#endif
10490 {
10491 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
10492 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
10493 }
10494
10495 /*
10496 * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
10497 * more than one conditional check. The post-run side of our code shall determine
10498 * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
10499 */
10500 if (pVmcsInfo->pbVirtApic)
10501 pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
10502
10503 /*
10504 * Update the host MSRs values in the VM-exit MSR-load area.
10505 */
10506 if (!pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs)
10507 {
10508 if (pVmcsInfo->cExitMsrLoad > 0)
10509 hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
10510 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = true;
10511 }
10512
10513 /*
10514 * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
10515 * VMX-preemption timer based on the next virtual sync clock deadline.
10516 */
10517 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
10518 RTCPUID const idCurrentCpu = pHostCpu->idCpu;
10519 if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
10520 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
10521 {
10522 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient);
10523 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
10524 }
10525
10526 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
10527 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
10528 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
10529 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
10530
10531 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
10532
10533 TMNotifyStartOfExecution(pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
10534 as we're about to start executing the guest . */
10535
10536 /*
10537 * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
10538 *
10539 * This is done this late as updating the TSC offsetting/preemption timer above
10540 * figures out if we can skip intercepting RDTSCP by calculating the number of
10541 * host CPU ticks till the next virtual sync deadline (for the dynamic case).
10542 */
10543 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
10544 {
10545 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10546 {
10547 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
10548 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
10549 true /* fSetReadWrite */, true /* fUpdateHostMsr */);
10550 AssertRC(rc);
10551 }
10552 else
10553 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
10554 }
10555
10556#ifdef VBOX_STRICT
10557 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo);
10558 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo);
10559 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo));
10560#endif
10561
10562#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
10563 /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
10564 * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs. */
10565 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
10566 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
10567 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
10568#endif
10569}
10570
10571
10572/**
10573 * First C routine invoked after running guest code using hardware-assisted VMX.
10574 *
10575 * @param pVCpu The cross context virtual CPU structure.
10576 * @param pVmxTransient The VMX-transient structure.
10577 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
10578 *
10579 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
10580 *
10581 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
10582 * unconditionally when it is safe to do so.
10583 */
10584static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
10585{
10586 uint64_t const uHostTsc = ASMReadTSC(); /** @todo We can do a lot better here, see @bugref{9180#c38}. */
10587
10588 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
10589 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
10590 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
10591 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
10592 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
10593 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
10594
10595 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10596 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10597 {
10598 uint64_t uGstTsc;
10599 if (!pVmxTransient->fIsNestedGuest)
10600 uGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10601 else
10602 {
10603 uint64_t const uNstGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10604 uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
10605 }
10606 TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
10607 }
10608
10609 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
10610 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
10611 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10612
10613#if HC_ARCH_BITS == 64
10614 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
10615#endif
10616#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
10617 /* The 64-on-32 switcher maintains VMCS-launch state on its own
10618 and we need to leave it alone here. */
10619 if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
10620 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10621#else
10622 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10623#endif
10624#ifdef VBOX_STRICT
10625 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
10626#endif
10627 Assert(!ASMIntAreEnabled());
10628 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
10629 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10630
10631 /*
10632 * Save the basic VM-exit reason and check if the VM-entry failed.
10633 * See Intel spec. 24.9.1 "Basic VM-exit Information".
10634 */
10635 uint32_t uExitReason;
10636 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
10637 AssertRC(rc);
10638 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
10639 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
10640
10641 /*
10642 * Check if VMLAUNCH/VMRESUME succeeded.
10643 * If this failed, we cause a guru meditation and cease further execution.
10644 */
10645 if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
10646 {
10647 /*
10648 * Update the VM-exit history array here even if the VM-entry failed due to:
10649 * - Invalid guest state.
10650 * - MSR loading.
10651 * - Machine-check event.
10652 *
10653 * In any of the above cases we will still have a "valid" VM-exit reason
10654 * despite @a fVMEntryFailed being false.
10655 *
10656 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
10657 *
10658 * Note! We don't have CS or RIP at this point. Will probably address that later
10659 * by amending the history entry added here.
10660 */
10661 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
10662 UINT64_MAX, uHostTsc);
10663
10664 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
10665 {
10666 VMMRZCallRing3Enable(pVCpu);
10667
10668 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10669 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10670
10671#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
10672 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
10673 AssertRC(rc);
10674#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
10675 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_RFLAGS);
10676 AssertRC(rc);
10677#else
10678 /*
10679 * Import the guest-interruptibility state always as we need it while evaluating
10680 * injecting events on re-entry.
10681 *
10682 * We don't import CR0 (when unrestricted guest execution is unavailable) despite
10683 * checking for real-mode while exporting the state because all bits that cause
10684 * mode changes wrt CR0 are intercepted.
10685 */
10686 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
10687 AssertRC(rc);
10688#endif
10689
10690 /*
10691 * Sync the TPR shadow with our APIC state.
10692 */
10693 if ( !pVmxTransient->fIsNestedGuest
10694 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
10695 {
10696 Assert(pVmcsInfo->pbVirtApic);
10697 if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
10698 {
10699 rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
10700 AssertRC(rc);
10701 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
10702 }
10703 }
10704
10705 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10706 return;
10707 }
10708 }
10709 else
10710 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
10711
10712 VMMRZCallRing3Enable(pVCpu);
10713}
10714
10715
10716/**
10717 * Runs the guest code using hardware-assisted VMX the normal way.
10718 *
10719 * @returns VBox status code.
10720 * @param pVCpu The cross context virtual CPU structure.
10721 * @param pcLoops Pointer to the number of executed loops.
10722 */
10723static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
10724{
10725 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
10726 Assert(pcLoops);
10727 Assert(*pcLoops <= cMaxResumeLoops);
10728
10729 VMXTRANSIENT VmxTransient;
10730 RT_ZERO(VmxTransient);
10731 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10732
10733 /* Paranoia. */
10734 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfo);
10735 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10736
10737 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10738 for (;;)
10739 {
10740 Assert(!HMR0SuspendPending());
10741 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10742 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10743
10744 /*
10745 * Preparatory work for running nested-guest code, this may force us to
10746 * return to ring-3.
10747 *
10748 * Warning! This bugger disables interrupts on VINF_SUCCESS!
10749 */
10750 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
10751 if (rcStrict != VINF_SUCCESS)
10752 break;
10753
10754 /* Interrupts are disabled at this point! */
10755 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10756 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
10757 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10758 /* Interrupts are re-enabled at this point! */
10759
10760 /*
10761 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
10762 */
10763 if (RT_SUCCESS(rcRun))
10764 { /* very likely */ }
10765 else
10766 {
10767 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10768 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10769 return rcRun;
10770 }
10771
10772 /*
10773 * Profile the VM-exit.
10774 */
10775 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10776 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10777 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10778 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10779 HMVMX_START_EXIT_DISPATCH_PROF();
10780
10781 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10782
10783 /*
10784 * Handle the VM-exit.
10785 */
10786#ifdef HMVMX_USE_FUNCTION_TABLE
10787 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
10788#else
10789 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
10790#endif
10791 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10792 if (rcStrict == VINF_SUCCESS)
10793 {
10794 if (++(*pcLoops) <= cMaxResumeLoops)
10795 continue;
10796 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10797 rcStrict = VINF_EM_RAW_INTERRUPT;
10798 }
10799 break;
10800 }
10801
10802 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10803 return rcStrict;
10804}
10805
10806#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10807/**
10808 * Runs the nested-guest code using hardware-assisted VMX.
10809 *
10810 * @returns VBox status code.
10811 * @param pVCpu The cross context virtual CPU structure.
10812 * @param pcLoops Pointer to the number of executed loops.
10813 *
10814 * @sa hmR0VmxRunGuestCodeNormal().
10815 */
10816static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
10817{
10818 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
10819 Assert(pcLoops);
10820 Assert(*pcLoops <= cMaxResumeLoops);
10821
10822 VMXTRANSIENT VmxTransient;
10823 RT_ZERO(VmxTransient);
10824 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10825 VmxTransient.fIsNestedGuest = true;
10826
10827 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10828 for (;;)
10829 {
10830 Assert(!HMR0SuspendPending());
10831 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10832 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10833
10834 /*
10835 * Preparatory work for running guest code, this may force us to
10836 * return to ring-3.
10837 *
10838 * Warning! This bugger disables interrupts on VINF_SUCCESS!
10839 */
10840 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
10841 if (rcStrict != VINF_SUCCESS)
10842 break;
10843
10844 /* Interrupts are disabled at this point! */
10845 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10846 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
10847 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10848 /* Interrupts are re-enabled at this point! */
10849
10850 /*
10851 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
10852 */
10853 if (RT_SUCCESS(rcRun))
10854 { /* very likely */ }
10855 else
10856 {
10857 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10858 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10859 return rcRun;
10860 }
10861
10862 /*
10863 * Profile the VM-exit.
10864 */
10865 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10866 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10867 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10868 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10869 HMVMX_START_EXIT_DISPATCH_PROF();
10870
10871 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10872
10873 /*
10874 * Handle the VM-exit.
10875 */
10876 rcStrict = hmR0VmxHandleExitNested(pVCpu, &VmxTransient);
10877 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10878 if ( rcStrict == VINF_SUCCESS
10879 && CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10880 {
10881 if (++(*pcLoops) <= cMaxResumeLoops)
10882 continue;
10883 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10884 rcStrict = VINF_EM_RAW_INTERRUPT;
10885 }
10886 break;
10887 }
10888
10889 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10890 return rcStrict;
10891}
10892#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10893
10894
10895/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
10896 * probes.
10897 *
10898 * The following few functions and associated structure contains the bloat
10899 * necessary for providing detailed debug events and dtrace probes as well as
10900 * reliable host side single stepping. This works on the principle of
10901 * "subclassing" the normal execution loop and workers. We replace the loop
10902 * method completely and override selected helpers to add necessary adjustments
10903 * to their core operation.
10904 *
10905 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
10906 * any performance for debug and analysis features.
10907 *
10908 * @{
10909 */
10910
10911/**
10912 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
10913 * the debug run loop.
10914 */
10915typedef struct VMXRUNDBGSTATE
10916{
10917 /** The RIP we started executing at. This is for detecting that we stepped. */
10918 uint64_t uRipStart;
10919 /** The CS we started executing with. */
10920 uint16_t uCsStart;
10921
10922 /** Whether we've actually modified the 1st execution control field. */
10923 bool fModifiedProcCtls : 1;
10924 /** Whether we've actually modified the 2nd execution control field. */
10925 bool fModifiedProcCtls2 : 1;
10926 /** Whether we've actually modified the exception bitmap. */
10927 bool fModifiedXcptBitmap : 1;
10928
10929 /** We desire the modified the CR0 mask to be cleared. */
10930 bool fClearCr0Mask : 1;
10931 /** We desire the modified the CR4 mask to be cleared. */
10932 bool fClearCr4Mask : 1;
10933 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
10934 uint32_t fCpe1Extra;
10935 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
10936 uint32_t fCpe1Unwanted;
10937 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
10938 uint32_t fCpe2Extra;
10939 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
10940 uint32_t bmXcptExtra;
10941 /** The sequence number of the Dtrace provider settings the state was
10942 * configured against. */
10943 uint32_t uDtraceSettingsSeqNo;
10944 /** VM-exits to check (one bit per VM-exit). */
10945 uint32_t bmExitsToCheck[3];
10946
10947 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
10948 uint32_t fProcCtlsInitial;
10949 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
10950 uint32_t fProcCtls2Initial;
10951 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
10952 uint32_t bmXcptInitial;
10953} VMXRUNDBGSTATE;
10954AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
10955typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
10956
10957
10958/**
10959 * Initializes the VMXRUNDBGSTATE structure.
10960 *
10961 * @param pVCpu The cross context virtual CPU structure of the
10962 * calling EMT.
10963 * @param pVmxTransient The VMX-transient structure.
10964 * @param pDbgState The debug state to initialize.
10965 */
10966static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
10967{
10968 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
10969 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
10970
10971 pDbgState->fModifiedProcCtls = false;
10972 pDbgState->fModifiedProcCtls2 = false;
10973 pDbgState->fModifiedXcptBitmap = false;
10974 pDbgState->fClearCr0Mask = false;
10975 pDbgState->fClearCr4Mask = false;
10976 pDbgState->fCpe1Extra = 0;
10977 pDbgState->fCpe1Unwanted = 0;
10978 pDbgState->fCpe2Extra = 0;
10979 pDbgState->bmXcptExtra = 0;
10980 pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls;
10981 pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2;
10982 pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap;
10983}
10984
10985
10986/**
10987 * Updates the VMSC fields with changes requested by @a pDbgState.
10988 *
10989 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
10990 * immediately before executing guest code, i.e. when interrupts are disabled.
10991 * We don't check status codes here as we cannot easily assert or return in the
10992 * latter case.
10993 *
10994 * @param pVCpu The cross context virtual CPU structure.
10995 * @param pVmxTransient The VMX-transient structure.
10996 * @param pDbgState The debug state.
10997 */
10998static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
10999{
11000 /*
11001 * Ensure desired flags in VMCS control fields are set.
11002 * (Ignoring write failure here, as we're committed and it's just debug extras.)
11003 *
11004 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
11005 * there should be no stale data in pCtx at this point.
11006 */
11007 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11008 if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
11009 || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
11010 {
11011 pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
11012 pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
11013 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
11014 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
11015 pDbgState->fModifiedProcCtls = true;
11016 }
11017
11018 if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
11019 {
11020 pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra;
11021 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
11022 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
11023 pDbgState->fModifiedProcCtls2 = true;
11024 }
11025
11026 if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
11027 {
11028 pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
11029 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
11030 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
11031 pDbgState->fModifiedXcptBitmap = true;
11032 }
11033
11034 if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
11035 {
11036 pVmcsInfo->u64Cr0Mask = 0;
11037 VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, 0);
11038 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
11039 }
11040
11041 if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
11042 {
11043 pVmcsInfo->u64Cr4Mask = 0;
11044 VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, 0);
11045 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
11046 }
11047
11048 NOREF(pVCpu);
11049}
11050
11051
11052/**
11053 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
11054 * re-entry next time around.
11055 *
11056 * @returns Strict VBox status code (i.e. informational status codes too).
11057 * @param pVCpu The cross context virtual CPU structure.
11058 * @param pVmxTransient The VMX-transient structure.
11059 * @param pDbgState The debug state.
11060 * @param rcStrict The return code from executing the guest using single
11061 * stepping.
11062 */
11063static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
11064 VBOXSTRICTRC rcStrict)
11065{
11066 /*
11067 * Restore VM-exit control settings as we may not reenter this function the
11068 * next time around.
11069 */
11070 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11071
11072 /* We reload the initial value, trigger what we can of recalculations the
11073 next time around. From the looks of things, that's all that's required atm. */
11074 if (pDbgState->fModifiedProcCtls)
11075 {
11076 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
11077 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
11078 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
11079 AssertRCReturn(rc2, rc2);
11080 pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
11081 }
11082
11083 /* We're currently the only ones messing with this one, so just restore the
11084 cached value and reload the field. */
11085 if ( pDbgState->fModifiedProcCtls2
11086 && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
11087 {
11088 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
11089 AssertRCReturn(rc2, rc2);
11090 pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
11091 }
11092
11093 /* If we've modified the exception bitmap, we restore it and trigger
11094 reloading and partial recalculation the next time around. */
11095 if (pDbgState->fModifiedXcptBitmap)
11096 pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
11097
11098 return rcStrict;
11099}
11100
11101
11102/**
11103 * Configures VM-exit controls for current DBGF and DTrace settings.
11104 *
11105 * This updates @a pDbgState and the VMCS execution control fields to reflect
11106 * the necessary VM-exits demanded by DBGF and DTrace.
11107 *
11108 * @param pVCpu The cross context virtual CPU structure.
11109 * @param pVmxTransient The VMX-transient structure. May update
11110 * fUpdatedTscOffsettingAndPreemptTimer.
11111 * @param pDbgState The debug state.
11112 */
11113static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11114{
11115 /*
11116 * Take down the dtrace serial number so we can spot changes.
11117 */
11118 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
11119 ASMCompilerBarrier();
11120
11121 /*
11122 * We'll rebuild most of the middle block of data members (holding the
11123 * current settings) as we go along here, so start by clearing it all.
11124 */
11125 pDbgState->bmXcptExtra = 0;
11126 pDbgState->fCpe1Extra = 0;
11127 pDbgState->fCpe1Unwanted = 0;
11128 pDbgState->fCpe2Extra = 0;
11129 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
11130 pDbgState->bmExitsToCheck[i] = 0;
11131
11132 /*
11133 * Software interrupts (INT XXh) - no idea how to trigger these...
11134 */
11135 PVM pVM = pVCpu->CTX_SUFF(pVM);
11136 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
11137 || VBOXVMM_INT_SOFTWARE_ENABLED())
11138 {
11139 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11140 }
11141
11142 /*
11143 * INT3 breakpoints - triggered by #BP exceptions.
11144 */
11145 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
11146 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11147
11148 /*
11149 * Exception bitmap and XCPT events+probes.
11150 */
11151 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
11152 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
11153 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
11154
11155 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
11156 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
11157 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11158 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
11159 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
11160 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
11161 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
11162 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
11163 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
11164 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
11165 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
11166 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
11167 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
11168 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
11169 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
11170 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
11171 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
11172 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
11173
11174 if (pDbgState->bmXcptExtra)
11175 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11176
11177 /*
11178 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
11179 *
11180 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
11181 * So, when adding/changing/removing please don't forget to update it.
11182 *
11183 * Some of the macros are picking up local variables to save horizontal space,
11184 * (being able to see it in a table is the lesser evil here).
11185 */
11186#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
11187 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
11188 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
11189#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
11190 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11191 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11192 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11193 } else do { } while (0)
11194#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
11195 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11196 { \
11197 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
11198 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11199 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11200 } else do { } while (0)
11201#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
11202 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11203 { \
11204 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
11205 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11206 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11207 } else do { } while (0)
11208#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
11209 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11210 { \
11211 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
11212 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11213 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11214 } else do { } while (0)
11215
11216 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
11217 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
11218 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
11219 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
11220 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
11221
11222 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
11223 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
11224 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
11225 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
11226 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
11227 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
11228 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
11229 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
11230 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
11231 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
11232 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
11233 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
11234 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
11235 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
11236 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
11237 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
11238 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
11239 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
11240 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
11241 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
11242 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
11243 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
11244 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
11245 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
11246 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
11247 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
11248 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
11249 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
11250 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
11251 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
11252 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
11253 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
11254 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
11255 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
11256 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
11257 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
11258
11259 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
11260 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11261 {
11262 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4
11263 | CPUMCTX_EXTRN_APIC_TPR);
11264 AssertRC(rc);
11265
11266#if 0 /** @todo fix me */
11267 pDbgState->fClearCr0Mask = true;
11268 pDbgState->fClearCr4Mask = true;
11269#endif
11270 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
11271 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
11272 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11273 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
11274 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
11275 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
11276 require clearing here and in the loop if we start using it. */
11277 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
11278 }
11279 else
11280 {
11281 if (pDbgState->fClearCr0Mask)
11282 {
11283 pDbgState->fClearCr0Mask = false;
11284 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
11285 }
11286 if (pDbgState->fClearCr4Mask)
11287 {
11288 pDbgState->fClearCr4Mask = false;
11289 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
11290 }
11291 }
11292 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
11293 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
11294
11295 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
11296 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
11297 {
11298 /** @todo later, need to fix handler as it assumes this won't usually happen. */
11299 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
11300 }
11301 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
11302 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
11303
11304 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
11305 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
11306 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
11307 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
11308 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
11309 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
11310 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
11311 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
11312#if 0 /** @todo too slow, fix handler. */
11313 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
11314#endif
11315 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
11316
11317 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
11318 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
11319 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
11320 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
11321 {
11322 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11323 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
11324 }
11325 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11326 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11327 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11328 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11329
11330 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
11331 || IS_EITHER_ENABLED(pVM, INSTR_STR)
11332 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
11333 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
11334 {
11335 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11336 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
11337 }
11338 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
11339 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
11340 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
11341 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
11342
11343 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
11344 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
11345 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
11346 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
11347 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
11348 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
11349 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
11350 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
11351 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
11352 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
11353 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
11354 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
11355 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
11356 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
11357 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
11358 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
11359 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
11360 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
11361 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
11362 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
11363 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
11364 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
11365
11366#undef IS_EITHER_ENABLED
11367#undef SET_ONLY_XBM_IF_EITHER_EN
11368#undef SET_CPE1_XBM_IF_EITHER_EN
11369#undef SET_CPEU_XBM_IF_EITHER_EN
11370#undef SET_CPE2_XBM_IF_EITHER_EN
11371
11372 /*
11373 * Sanitize the control stuff.
11374 */
11375 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
11376 if (pDbgState->fCpe2Extra)
11377 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
11378 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
11379 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
11380 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
11381 {
11382 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
11383 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
11384 }
11385
11386 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
11387 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
11388 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
11389 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
11390}
11391
11392
11393/**
11394 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
11395 * appropriate.
11396 *
11397 * The caller has checked the VM-exit against the
11398 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
11399 * already, so we don't have to do that either.
11400 *
11401 * @returns Strict VBox status code (i.e. informational status codes too).
11402 * @param pVCpu The cross context virtual CPU structure.
11403 * @param pVmxTransient The VMX-transient structure.
11404 * @param uExitReason The VM-exit reason.
11405 *
11406 * @remarks The name of this function is displayed by dtrace, so keep it short
11407 * and to the point. No longer than 33 chars long, please.
11408 */
11409static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
11410{
11411 /*
11412 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
11413 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
11414 *
11415 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
11416 * does. Must add/change/remove both places. Same ordering, please.
11417 *
11418 * Added/removed events must also be reflected in the next section
11419 * where we dispatch dtrace events.
11420 */
11421 bool fDtrace1 = false;
11422 bool fDtrace2 = false;
11423 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
11424 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
11425 uint32_t uEventArg = 0;
11426#define SET_EXIT(a_EventSubName) \
11427 do { \
11428 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11429 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11430 } while (0)
11431#define SET_BOTH(a_EventSubName) \
11432 do { \
11433 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
11434 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11435 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
11436 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11437 } while (0)
11438 switch (uExitReason)
11439 {
11440 case VMX_EXIT_MTF:
11441 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11442
11443 case VMX_EXIT_XCPT_OR_NMI:
11444 {
11445 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
11446 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
11447 {
11448 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11449 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
11450 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
11451 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
11452 {
11453 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
11454 {
11455 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11456 uEventArg = pVmxTransient->uExitIntErrorCode;
11457 }
11458 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
11459 switch (enmEvent1)
11460 {
11461 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
11462 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
11463 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
11464 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
11465 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
11466 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
11467 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
11468 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
11469 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
11470 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
11471 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
11472 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
11473 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
11474 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
11475 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
11476 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
11477 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
11478 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
11479 default: break;
11480 }
11481 }
11482 else
11483 AssertFailed();
11484 break;
11485
11486 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
11487 uEventArg = idxVector;
11488 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
11489 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
11490 break;
11491 }
11492 break;
11493 }
11494
11495 case VMX_EXIT_TRIPLE_FAULT:
11496 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
11497 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
11498 break;
11499 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
11500 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
11501 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
11502 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
11503 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
11504
11505 /* Instruction specific VM-exits: */
11506 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
11507 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
11508 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
11509 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
11510 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
11511 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
11512 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
11513 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
11514 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
11515 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
11516 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
11517 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
11518 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
11519 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
11520 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
11521 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
11522 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
11523 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
11524 case VMX_EXIT_MOV_CRX:
11525 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11526 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
11527 SET_BOTH(CRX_READ);
11528 else
11529 SET_BOTH(CRX_WRITE);
11530 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
11531 break;
11532 case VMX_EXIT_MOV_DRX:
11533 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11534 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
11535 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
11536 SET_BOTH(DRX_READ);
11537 else
11538 SET_BOTH(DRX_WRITE);
11539 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
11540 break;
11541 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
11542 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
11543 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
11544 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
11545 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
11546 case VMX_EXIT_GDTR_IDTR_ACCESS:
11547 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11548 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
11549 {
11550 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
11551 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
11552 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
11553 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
11554 }
11555 break;
11556
11557 case VMX_EXIT_LDTR_TR_ACCESS:
11558 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11559 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
11560 {
11561 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
11562 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
11563 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
11564 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
11565 }
11566 break;
11567
11568 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
11569 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
11570 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
11571 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
11572 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
11573 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
11574 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
11575 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
11576 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
11577 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
11578 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
11579
11580 /* Events that aren't relevant at this point. */
11581 case VMX_EXIT_EXT_INT:
11582 case VMX_EXIT_INT_WINDOW:
11583 case VMX_EXIT_NMI_WINDOW:
11584 case VMX_EXIT_TPR_BELOW_THRESHOLD:
11585 case VMX_EXIT_PREEMPT_TIMER:
11586 case VMX_EXIT_IO_INSTR:
11587 break;
11588
11589 /* Errors and unexpected events. */
11590 case VMX_EXIT_INIT_SIGNAL:
11591 case VMX_EXIT_SIPI:
11592 case VMX_EXIT_IO_SMI:
11593 case VMX_EXIT_SMI:
11594 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
11595 case VMX_EXIT_ERR_MSR_LOAD:
11596 case VMX_EXIT_ERR_MACHINE_CHECK:
11597 break;
11598
11599 default:
11600 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
11601 break;
11602 }
11603#undef SET_BOTH
11604#undef SET_EXIT
11605
11606 /*
11607 * Dtrace tracepoints go first. We do them here at once so we don't
11608 * have to copy the guest state saving and stuff a few dozen times.
11609 * Down side is that we've got to repeat the switch, though this time
11610 * we use enmEvent since the probes are a subset of what DBGF does.
11611 */
11612 if (fDtrace1 || fDtrace2)
11613 {
11614 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11615 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
11616 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11617 switch (enmEvent1)
11618 {
11619 /** @todo consider which extra parameters would be helpful for each probe. */
11620 case DBGFEVENT_END: break;
11621 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
11622 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
11623 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
11624 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
11625 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
11626 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
11627 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
11628 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
11629 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
11630 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
11631 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
11632 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
11633 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
11634 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
11635 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
11636 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
11637 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
11638 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
11639 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11640 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
11641 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
11642 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
11643 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
11644 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
11645 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
11646 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
11647 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
11648 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11649 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11650 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11651 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11652 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
11653 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
11654 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
11655 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
11656 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
11657 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
11658 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
11659 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
11660 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
11661 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
11662 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
11663 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
11664 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
11665 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
11666 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
11667 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
11668 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
11669 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
11670 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
11671 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
11672 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
11673 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
11674 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
11675 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
11676 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
11677 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
11678 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
11679 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
11680 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
11681 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
11682 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
11683 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
11684 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
11685 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
11686 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
11687 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
11688 }
11689 switch (enmEvent2)
11690 {
11691 /** @todo consider which extra parameters would be helpful for each probe. */
11692 case DBGFEVENT_END: break;
11693 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
11694 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
11695 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
11696 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
11697 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
11698 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
11699 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
11700 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
11701 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
11702 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11703 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11704 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11705 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11706 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
11707 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
11708 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
11709 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
11710 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
11711 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
11712 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
11713 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
11714 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
11715 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
11716 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
11717 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
11718 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
11719 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
11720 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
11721 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
11722 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
11723 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
11724 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
11725 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
11726 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
11727 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
11728 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
11729 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
11730 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
11731 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
11732 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
11733 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
11734 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
11735 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
11736 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
11737 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
11738 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
11739 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
11740 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
11741 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
11742 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
11743 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
11744 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
11745 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
11746 }
11747 }
11748
11749 /*
11750 * Fire of the DBGF event, if enabled (our check here is just a quick one,
11751 * the DBGF call will do a full check).
11752 *
11753 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
11754 * Note! If we have to events, we prioritize the first, i.e. the instruction
11755 * one, in order to avoid event nesting.
11756 */
11757 PVM pVM = pVCpu->CTX_SUFF(pVM);
11758 if ( enmEvent1 != DBGFEVENT_END
11759 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
11760 {
11761 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11762 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
11763 if (rcStrict != VINF_SUCCESS)
11764 return rcStrict;
11765 }
11766 else if ( enmEvent2 != DBGFEVENT_END
11767 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
11768 {
11769 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11770 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
11771 if (rcStrict != VINF_SUCCESS)
11772 return rcStrict;
11773 }
11774
11775 return VINF_SUCCESS;
11776}
11777
11778
11779/**
11780 * Single-stepping VM-exit filtering.
11781 *
11782 * This is preprocessing the VM-exits and deciding whether we've gotten far
11783 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
11784 * handling is performed.
11785 *
11786 * @returns Strict VBox status code (i.e. informational status codes too).
11787 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
11788 * @param pVmxTransient The VMX-transient structure.
11789 * @param pDbgState The debug state.
11790 */
11791DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11792{
11793 /*
11794 * Expensive (saves context) generic dtrace VM-exit probe.
11795 */
11796 uint32_t const uExitReason = pVmxTransient->uExitReason;
11797 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
11798 { /* more likely */ }
11799 else
11800 {
11801 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11802 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
11803 AssertRC(rc);
11804 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
11805 }
11806
11807 /*
11808 * Check for host NMI, just to get that out of the way.
11809 */
11810 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
11811 { /* normally likely */ }
11812 else
11813 {
11814 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11815 AssertRCReturn(rc2, rc2);
11816 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11817 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11818 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
11819 }
11820
11821 /*
11822 * Check for single stepping event if we're stepping.
11823 */
11824 if (pVCpu->hm.s.fSingleInstruction)
11825 {
11826 switch (uExitReason)
11827 {
11828 case VMX_EXIT_MTF:
11829 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11830
11831 /* Various events: */
11832 case VMX_EXIT_XCPT_OR_NMI:
11833 case VMX_EXIT_EXT_INT:
11834 case VMX_EXIT_TRIPLE_FAULT:
11835 case VMX_EXIT_INT_WINDOW:
11836 case VMX_EXIT_NMI_WINDOW:
11837 case VMX_EXIT_TASK_SWITCH:
11838 case VMX_EXIT_TPR_BELOW_THRESHOLD:
11839 case VMX_EXIT_APIC_ACCESS:
11840 case VMX_EXIT_EPT_VIOLATION:
11841 case VMX_EXIT_EPT_MISCONFIG:
11842 case VMX_EXIT_PREEMPT_TIMER:
11843
11844 /* Instruction specific VM-exits: */
11845 case VMX_EXIT_CPUID:
11846 case VMX_EXIT_GETSEC:
11847 case VMX_EXIT_HLT:
11848 case VMX_EXIT_INVD:
11849 case VMX_EXIT_INVLPG:
11850 case VMX_EXIT_RDPMC:
11851 case VMX_EXIT_RDTSC:
11852 case VMX_EXIT_RSM:
11853 case VMX_EXIT_VMCALL:
11854 case VMX_EXIT_VMCLEAR:
11855 case VMX_EXIT_VMLAUNCH:
11856 case VMX_EXIT_VMPTRLD:
11857 case VMX_EXIT_VMPTRST:
11858 case VMX_EXIT_VMREAD:
11859 case VMX_EXIT_VMRESUME:
11860 case VMX_EXIT_VMWRITE:
11861 case VMX_EXIT_VMXOFF:
11862 case VMX_EXIT_VMXON:
11863 case VMX_EXIT_MOV_CRX:
11864 case VMX_EXIT_MOV_DRX:
11865 case VMX_EXIT_IO_INSTR:
11866 case VMX_EXIT_RDMSR:
11867 case VMX_EXIT_WRMSR:
11868 case VMX_EXIT_MWAIT:
11869 case VMX_EXIT_MONITOR:
11870 case VMX_EXIT_PAUSE:
11871 case VMX_EXIT_GDTR_IDTR_ACCESS:
11872 case VMX_EXIT_LDTR_TR_ACCESS:
11873 case VMX_EXIT_INVEPT:
11874 case VMX_EXIT_RDTSCP:
11875 case VMX_EXIT_INVVPID:
11876 case VMX_EXIT_WBINVD:
11877 case VMX_EXIT_XSETBV:
11878 case VMX_EXIT_RDRAND:
11879 case VMX_EXIT_INVPCID:
11880 case VMX_EXIT_VMFUNC:
11881 case VMX_EXIT_RDSEED:
11882 case VMX_EXIT_XSAVES:
11883 case VMX_EXIT_XRSTORS:
11884 {
11885 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11886 AssertRCReturn(rc, rc);
11887 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
11888 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
11889 return VINF_EM_DBG_STEPPED;
11890 break;
11891 }
11892
11893 /* Errors and unexpected events: */
11894 case VMX_EXIT_INIT_SIGNAL:
11895 case VMX_EXIT_SIPI:
11896 case VMX_EXIT_IO_SMI:
11897 case VMX_EXIT_SMI:
11898 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
11899 case VMX_EXIT_ERR_MSR_LOAD:
11900 case VMX_EXIT_ERR_MACHINE_CHECK:
11901 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
11902 break;
11903
11904 default:
11905 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
11906 break;
11907 }
11908 }
11909
11910 /*
11911 * Check for debugger event breakpoints and dtrace probes.
11912 */
11913 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
11914 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
11915 {
11916 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
11917 if (rcStrict != VINF_SUCCESS)
11918 return rcStrict;
11919 }
11920
11921 /*
11922 * Normal processing.
11923 */
11924#ifdef HMVMX_USE_FUNCTION_TABLE
11925 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
11926#else
11927 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
11928#endif
11929}
11930
11931
11932/**
11933 * Single steps guest code using hardware-assisted VMX.
11934 *
11935 * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
11936 * but single-stepping through the hypervisor debugger.
11937 *
11938 * @returns Strict VBox status code (i.e. informational status codes too).
11939 * @param pVCpu The cross context virtual CPU structure.
11940 * @param pcLoops Pointer to the number of executed loops.
11941 *
11942 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
11943 */
11944static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu, uint32_t *pcLoops)
11945{
11946 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11947 Assert(pcLoops);
11948 Assert(*pcLoops <= cMaxResumeLoops);
11949
11950 VMXTRANSIENT VmxTransient;
11951 RT_ZERO(VmxTransient);
11952 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11953
11954 /* Set HMCPU indicators. */
11955 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
11956 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
11957 pVCpu->hm.s.fDebugWantRdTscExit = false;
11958 pVCpu->hm.s.fUsingDebugLoop = true;
11959
11960 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
11961 VMXRUNDBGSTATE DbgState;
11962 hmR0VmxRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
11963 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
11964
11965 /*
11966 * The loop.
11967 */
11968 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11969 for (;;)
11970 {
11971 Assert(!HMR0SuspendPending());
11972 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11973 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11974 bool fStepping = pVCpu->hm.s.fSingleInstruction;
11975
11976 /* Set up VM-execution controls the next two can respond to. */
11977 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
11978
11979 /*
11980 * Preparatory work for running guest code, this may force us to
11981 * return to ring-3.
11982 *
11983 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11984 */
11985 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
11986 if (rcStrict != VINF_SUCCESS)
11987 break;
11988
11989 /* Interrupts are disabled at this point! */
11990 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11991
11992 /* Override any obnoxious code in the above two calls. */
11993 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
11994
11995 /*
11996 * Finally execute the guest.
11997 */
11998 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
11999
12000 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
12001 /* Interrupts are re-enabled at this point! */
12002
12003 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
12004 if (RT_SUCCESS(rcRun))
12005 { /* very likely */ }
12006 else
12007 {
12008 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
12009 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
12010 return rcRun;
12011 }
12012
12013 /* Profile the VM-exit. */
12014 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
12015 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
12016 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
12017 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
12018 HMVMX_START_EXIT_DISPATCH_PROF();
12019
12020 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
12021
12022 /*
12023 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
12024 */
12025 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
12026 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
12027 if (rcStrict != VINF_SUCCESS)
12028 break;
12029 if (++(*pcLoops) > cMaxResumeLoops)
12030 {
12031 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
12032 rcStrict = VINF_EM_RAW_INTERRUPT;
12033 break;
12034 }
12035
12036 /*
12037 * Stepping: Did the RIP change, if so, consider it a single step.
12038 * Otherwise, make sure one of the TFs gets set.
12039 */
12040 if (fStepping)
12041 {
12042 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12043 AssertRC(rc);
12044 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
12045 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
12046 {
12047 rcStrict = VINF_EM_DBG_STEPPED;
12048 break;
12049 }
12050 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12051 }
12052
12053 /*
12054 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
12055 */
12056 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
12057 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12058 }
12059
12060 /*
12061 * Clear the X86_EFL_TF if necessary.
12062 */
12063 if (pVCpu->hm.s.fClearTrapFlag)
12064 {
12065 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
12066 AssertRC(rc);
12067 pVCpu->hm.s.fClearTrapFlag = false;
12068 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
12069 }
12070 /** @todo there seems to be issues with the resume flag when the monitor trap
12071 * flag is pending without being used. Seen early in bios init when
12072 * accessing APIC page in protected mode. */
12073
12074 /*
12075 * Restore VM-exit control settings as we may not re-enter this function the
12076 * next time around.
12077 */
12078 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
12079
12080 /* Restore HMCPU indicators. */
12081 pVCpu->hm.s.fUsingDebugLoop = false;
12082 pVCpu->hm.s.fDebugWantRdTscExit = false;
12083 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
12084
12085 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
12086 return rcStrict;
12087}
12088
12089
12090/** @} */
12091
12092
12093/**
12094 * Checks if any expensive dtrace probes are enabled and we should go to the
12095 * debug loop.
12096 *
12097 * @returns true if we should use debug loop, false if not.
12098 */
12099static bool hmR0VmxAnyExpensiveProbesEnabled(void)
12100{
12101 /* It's probably faster to OR the raw 32-bit counter variables together.
12102 Since the variables are in an array and the probes are next to one
12103 another (more or less), we have good locality. So, better read
12104 eight-nine cache lines ever time and only have one conditional, than
12105 128+ conditionals, right? */
12106 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
12107 | VBOXVMM_XCPT_DE_ENABLED_RAW()
12108 | VBOXVMM_XCPT_DB_ENABLED_RAW()
12109 | VBOXVMM_XCPT_BP_ENABLED_RAW()
12110 | VBOXVMM_XCPT_OF_ENABLED_RAW()
12111 | VBOXVMM_XCPT_BR_ENABLED_RAW()
12112 | VBOXVMM_XCPT_UD_ENABLED_RAW()
12113 | VBOXVMM_XCPT_NM_ENABLED_RAW()
12114 | VBOXVMM_XCPT_DF_ENABLED_RAW()
12115 | VBOXVMM_XCPT_TS_ENABLED_RAW()
12116 | VBOXVMM_XCPT_NP_ENABLED_RAW()
12117 | VBOXVMM_XCPT_SS_ENABLED_RAW()
12118 | VBOXVMM_XCPT_GP_ENABLED_RAW()
12119 | VBOXVMM_XCPT_PF_ENABLED_RAW()
12120 | VBOXVMM_XCPT_MF_ENABLED_RAW()
12121 | VBOXVMM_XCPT_AC_ENABLED_RAW()
12122 | VBOXVMM_XCPT_XF_ENABLED_RAW()
12123 | VBOXVMM_XCPT_VE_ENABLED_RAW()
12124 | VBOXVMM_XCPT_SX_ENABLED_RAW()
12125 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
12126 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
12127 ) != 0
12128 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
12129 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
12130 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
12131 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
12132 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
12133 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
12134 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
12135 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
12136 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
12137 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
12138 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
12139 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
12140 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
12141 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
12142 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
12143 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
12144 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
12145 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
12146 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
12147 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
12148 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
12149 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
12150 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
12151 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
12152 | VBOXVMM_INSTR_STR_ENABLED_RAW()
12153 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
12154 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
12155 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
12156 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
12157 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
12158 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
12159 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
12160 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
12161 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
12162 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
12163 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
12164 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
12165 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
12166 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
12167 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
12168 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
12169 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
12170 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
12171 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
12172 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
12173 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
12174 ) != 0
12175 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
12176 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
12177 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
12178 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
12179 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
12180 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
12181 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
12182 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
12183 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
12184 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
12185 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
12186 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
12187 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
12188 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
12189 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
12190 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
12191 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
12192 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
12193 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
12194 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
12195 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
12196 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
12197 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
12198 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
12199 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
12200 | VBOXVMM_EXIT_STR_ENABLED_RAW()
12201 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
12202 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
12203 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
12204 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
12205 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
12206 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
12207 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
12208 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
12209 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
12210 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
12211 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
12212 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
12213 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
12214 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
12215 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
12216 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
12217 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
12218 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
12219 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
12220 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
12221 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
12222 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
12223 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
12224 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
12225 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
12226 ) != 0;
12227}
12228
12229
12230/**
12231 * Runs the guest using hardware-assisted VMX.
12232 *
12233 * @returns Strict VBox status code (i.e. informational status codes too).
12234 * @param pVCpu The cross context virtual CPU structure.
12235 */
12236VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
12237{
12238 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12239 Assert(VMMRZCallRing3IsEnabled(pVCpu));
12240 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12241 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
12242
12243 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
12244
12245 VBOXSTRICTRC rcStrict;
12246 uint32_t cLoops = 0;
12247#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12248 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
12249#else
12250 bool const fInNestedGuestMode = false;
12251#endif
12252 if (!fInNestedGuestMode)
12253 {
12254 if ( !pVCpu->hm.s.fUseDebugLoop
12255 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
12256 && !DBGFIsStepping(pVCpu)
12257 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
12258 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
12259 else
12260 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
12261 }
12262#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12263 else
12264 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
12265
12266 if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
12267 rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
12268#endif
12269
12270 if (rcStrict == VERR_EM_INTERPRETER)
12271 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12272 else if (rcStrict == VINF_EM_RESET)
12273 rcStrict = VINF_EM_TRIPLE_FAULT;
12274
12275 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
12276 if (RT_FAILURE(rc2))
12277 {
12278 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
12279 rcStrict = rc2;
12280 }
12281 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12282 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
12283 return rcStrict;
12284}
12285
12286
12287#ifndef HMVMX_USE_FUNCTION_TABLE
12288/**
12289 * Handles a guest VM-exit from hardware-assisted VMX execution.
12290 *
12291 * @returns Strict VBox status code (i.e. informational status codes too).
12292 * @param pVCpu The cross context virtual CPU structure.
12293 * @param pVmxTransient The VMX-transient structure.
12294 */
12295DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12296{
12297#ifdef DEBUG_ramshankar
12298#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
12299 do { \
12300 if (a_fSave != 0) \
12301 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
12302 VBOXSTRICTRC rcStrict = a_CallExpr; \
12303 if (a_fSave != 0) \
12304 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
12305 return rcStrict; \
12306 } while (0)
12307#else
12308# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
12309#endif
12310 uint32_t const rcReason = pVmxTransient->uExitReason;
12311 switch (rcReason)
12312 {
12313 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
12314 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
12315 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
12316 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
12317 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
12318 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
12319 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
12320 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
12321 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
12322 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
12323 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
12324 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
12325 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
12326 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
12327 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
12328 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
12329 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
12330 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
12331 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
12332 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
12333 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
12334 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
12335 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
12336 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
12337 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
12338 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
12339 case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
12340 case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
12341 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
12342 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
12343 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
12344 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
12345 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
12346 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
12347#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12348 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
12349 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
12350 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
12351 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
12352 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
12353 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
12354 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
12355 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
12356 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
12357#else
12358 case VMX_EXIT_VMCLEAR:
12359 case VMX_EXIT_VMLAUNCH:
12360 case VMX_EXIT_VMPTRLD:
12361 case VMX_EXIT_VMPTRST:
12362 case VMX_EXIT_VMREAD:
12363 case VMX_EXIT_VMRESUME:
12364 case VMX_EXIT_VMWRITE:
12365 case VMX_EXIT_VMXOFF:
12366 case VMX_EXIT_VMXON:
12367 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12368#endif
12369
12370 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
12371 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
12372 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
12373 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
12374 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
12375 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
12376 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
12377 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
12378 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
12379
12380 case VMX_EXIT_INVEPT:
12381 case VMX_EXIT_INVVPID:
12382 case VMX_EXIT_VMFUNC:
12383 case VMX_EXIT_XSAVES:
12384 case VMX_EXIT_XRSTORS:
12385 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12386
12387 case VMX_EXIT_ENCLS:
12388 case VMX_EXIT_RDSEED:
12389 case VMX_EXIT_PML_FULL:
12390 default:
12391 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
12392 }
12393#undef VMEXIT_CALL_RET
12394}
12395#endif /* !HMVMX_USE_FUNCTION_TABLE */
12396
12397
12398#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12399/**
12400 * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
12401 *
12402 * @returns Strict VBox status code (i.e. informational status codes too).
12403 * @param pVCpu The cross context virtual CPU structure.
12404 * @param pVmxTransient The VMX-transient structure.
12405 */
12406DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12407{
12408 uint32_t const rcReason = pVmxTransient->uExitReason;
12409 switch (rcReason)
12410 {
12411 case VMX_EXIT_EPT_MISCONFIG:
12412 case VMX_EXIT_EPT_VIOLATION:
12413 case VMX_EXIT_IO_INSTR:
12414 case VMX_EXIT_CPUID:
12415 case VMX_EXIT_RDTSC:
12416 case VMX_EXIT_RDTSCP:
12417 case VMX_EXIT_APIC_ACCESS:
12418 case VMX_EXIT_XCPT_OR_NMI:
12419 case VMX_EXIT_MOV_CRX:
12420 case VMX_EXIT_EXT_INT:
12421 case VMX_EXIT_INT_WINDOW:
12422 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12423 case VMX_EXIT_MWAIT:
12424 case VMX_EXIT_MONITOR:
12425 case VMX_EXIT_TASK_SWITCH:
12426 case VMX_EXIT_PREEMPT_TIMER:
12427 case VMX_EXIT_RDMSR:
12428 case VMX_EXIT_WRMSR:
12429 case VMX_EXIT_VMCALL:
12430 case VMX_EXIT_MOV_DRX:
12431 case VMX_EXIT_HLT:
12432 case VMX_EXIT_INVD:
12433 case VMX_EXIT_INVLPG:
12434 case VMX_EXIT_RSM:
12435 case VMX_EXIT_MTF:
12436 case VMX_EXIT_PAUSE:
12437 case VMX_EXIT_GDTR_IDTR_ACCESS:
12438 case VMX_EXIT_LDTR_TR_ACCESS:
12439 case VMX_EXIT_WBINVD:
12440 case VMX_EXIT_XSETBV:
12441 case VMX_EXIT_RDRAND:
12442 case VMX_EXIT_INVPCID:
12443 case VMX_EXIT_GETSEC:
12444 case VMX_EXIT_RDPMC:
12445#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12446 case VMX_EXIT_VMCLEAR:
12447 case VMX_EXIT_VMLAUNCH:
12448 case VMX_EXIT_VMPTRLD:
12449 case VMX_EXIT_VMPTRST:
12450 case VMX_EXIT_VMREAD:
12451 case VMX_EXIT_VMRESUME:
12452 case VMX_EXIT_VMWRITE:
12453 case VMX_EXIT_VMXOFF:
12454 case VMX_EXIT_VMXON:
12455#endif
12456 case VMX_EXIT_TRIPLE_FAULT:
12457 case VMX_EXIT_NMI_WINDOW:
12458 case VMX_EXIT_INIT_SIGNAL:
12459 case VMX_EXIT_SIPI:
12460 case VMX_EXIT_IO_SMI:
12461 case VMX_EXIT_SMI:
12462 case VMX_EXIT_ERR_MSR_LOAD:
12463 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12464 case VMX_EXIT_ERR_MACHINE_CHECK:
12465
12466 case VMX_EXIT_INVEPT:
12467 case VMX_EXIT_INVVPID:
12468 case VMX_EXIT_VMFUNC:
12469 case VMX_EXIT_XSAVES:
12470 case VMX_EXIT_XRSTORS:
12471
12472 case VMX_EXIT_ENCLS:
12473 case VMX_EXIT_RDSEED:
12474 case VMX_EXIT_PML_FULL:
12475 default:
12476 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
12477 }
12478#undef VMEXIT_CALL_RET
12479}
12480#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
12481
12482
12483#ifdef VBOX_STRICT
12484/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
12485# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
12486 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
12487
12488# define HMVMX_ASSERT_PREEMPT_CPUID() \
12489 do { \
12490 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
12491 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
12492 } while (0)
12493
12494# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12495 do { \
12496 AssertPtr((a_pVCpu)); \
12497 AssertPtr((a_pVmxTransient)); \
12498 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
12499 Assert((a_pVmxTransient)->pVmcsInfo); \
12500 Assert(ASMIntAreEnabled()); \
12501 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
12502 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
12503 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
12504 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
12505 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
12506 HMVMX_ASSERT_PREEMPT_CPUID(); \
12507 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
12508 } while (0)
12509
12510# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12511 do { \
12512 Log4Func(("\n")); \
12513 } while (0)
12514#else
12515# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12516 do { \
12517 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
12518 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
12519 } while (0)
12520# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
12521#endif
12522
12523
12524/**
12525 * Advances the guest RIP by the specified number of bytes.
12526 *
12527 * @param pVCpu The cross context virtual CPU structure.
12528 * @param cbInstr Number of bytes to advance the RIP by.
12529 *
12530 * @remarks No-long-jump zone!!!
12531 */
12532DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
12533{
12534 /* Advance the RIP. */
12535 pVCpu->cpum.GstCtx.rip += cbInstr;
12536 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12537
12538 /* Update interrupt inhibition. */
12539 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
12540 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
12541 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
12542}
12543
12544
12545/**
12546 * Advances the guest RIP after reading it from the VMCS.
12547 *
12548 * @returns VBox status code, no informational status codes.
12549 * @param pVCpu The cross context virtual CPU structure.
12550 * @param pVmxTransient The VMX-transient structure.
12551 *
12552 * @remarks No-long-jump zone!!!
12553 */
12554static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12555{
12556 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12557 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
12558 AssertRCReturn(rc, rc);
12559
12560 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
12561 return VINF_SUCCESS;
12562}
12563
12564
12565/**
12566 * Handle a condition that occurred while delivering an event through the guest
12567 * IDT.
12568 *
12569 * @returns Strict VBox status code (i.e. informational status codes too).
12570 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
12571 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
12572 * to continue execution of the guest which will delivery the \#DF.
12573 * @retval VINF_EM_RESET if we detected a triple-fault condition.
12574 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
12575 *
12576 * @param pVCpu The cross context virtual CPU structure.
12577 * @param pVmxTransient The VMX-transient structure.
12578 *
12579 * @remarks No-long-jump zone!!!
12580 */
12581static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12582{
12583 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
12584
12585 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12586 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12587 AssertRCReturn(rc2, rc2);
12588
12589 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
12590 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12591 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12592 {
12593 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12594 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12595
12596 /*
12597 * If the event was a software interrupt (generated with INT n) or a software exception
12598 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
12599 * can handle the VM-exit and continue guest execution which will re-execute the
12600 * instruction rather than re-injecting the exception, as that can cause premature
12601 * trips to ring-3 before injection and involve TRPM which currently has no way of
12602 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
12603 * the problem).
12604 */
12605 IEMXCPTRAISE enmRaise;
12606 IEMXCPTRAISEINFO fRaiseInfo;
12607 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
12608 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
12609 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
12610 {
12611 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
12612 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
12613 }
12614 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
12615 {
12616 uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12617 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
12618 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
12619 /** @todo Make AssertMsgReturn as just AssertMsg later. */
12620 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
12621 ("Unexpected VM-exit interruption vector type %#x!\n", uExitVectorType), VERR_VMX_IPE_5);
12622
12623 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
12624
12625 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
12626 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
12627 {
12628 pVmxTransient->fVectoringPF = true;
12629 enmRaise = IEMXCPTRAISE_PREV_EVENT;
12630 }
12631 }
12632 else
12633 {
12634 /*
12635 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
12636 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
12637 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
12638 */
12639 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12640 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
12641 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
12642 enmRaise = IEMXCPTRAISE_PREV_EVENT;
12643 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
12644 }
12645
12646 /*
12647 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
12648 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
12649 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
12650 * subsequent VM-entry would fail.
12651 *
12652 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
12653 */
12654 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
12655 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
12656 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
12657 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
12658 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
12659 {
12660 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
12661 }
12662
12663 switch (enmRaise)
12664 {
12665 case IEMXCPTRAISE_CURRENT_XCPT:
12666 {
12667 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
12668 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
12669 Assert(rcStrict == VINF_SUCCESS);
12670 break;
12671 }
12672
12673 case IEMXCPTRAISE_PREV_EVENT:
12674 {
12675 uint32_t u32ErrCode;
12676 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
12677 {
12678 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12679 AssertRCReturn(rc2, rc2);
12680 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12681 }
12682 else
12683 u32ErrCode = 0;
12684
12685 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
12686 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
12687 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12688 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
12689
12690 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
12691 pVCpu->hm.s.Event.u32ErrCode));
12692 Assert(rcStrict == VINF_SUCCESS);
12693 break;
12694 }
12695
12696 case IEMXCPTRAISE_REEXEC_INSTR:
12697 Assert(rcStrict == VINF_SUCCESS);
12698 break;
12699
12700 case IEMXCPTRAISE_DOUBLE_FAULT:
12701 {
12702 /*
12703 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
12704 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
12705 */
12706 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
12707 {
12708 pVmxTransient->fVectoringDoublePF = true;
12709 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
12710 pVCpu->cpum.GstCtx.cr2));
12711 rcStrict = VINF_SUCCESS;
12712 }
12713 else
12714 {
12715 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
12716 hmR0VmxSetPendingXcptDF(pVCpu);
12717 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
12718 uIdtVector, uExitVector));
12719 rcStrict = VINF_HM_DOUBLE_FAULT;
12720 }
12721 break;
12722 }
12723
12724 case IEMXCPTRAISE_TRIPLE_FAULT:
12725 {
12726 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
12727 rcStrict = VINF_EM_RESET;
12728 break;
12729 }
12730
12731 case IEMXCPTRAISE_CPU_HANG:
12732 {
12733 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
12734 rcStrict = VERR_EM_GUEST_CPU_HANG;
12735 break;
12736 }
12737
12738 default:
12739 {
12740 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
12741 rcStrict = VERR_VMX_IPE_2;
12742 break;
12743 }
12744 }
12745 }
12746 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
12747 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
12748 && uExitVector != X86_XCPT_DF
12749 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
12750 {
12751 /*
12752 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
12753 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
12754 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
12755 */
12756 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
12757 {
12758 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
12759 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
12760 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
12761 }
12762 }
12763
12764 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
12765 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
12766 return rcStrict;
12767}
12768
12769
12770/** @name VM-exit handlers.
12771 * @{
12772 */
12773/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12774/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12775/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12776
12777/**
12778 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
12779 */
12780HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12781{
12782 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12783 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
12784 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
12785 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
12786 return VINF_SUCCESS;
12787 return VINF_EM_RAW_INTERRUPT;
12788}
12789
12790
12791/**
12792 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
12793 */
12794HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12795{
12796 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12797 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
12798
12799 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12800 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12801 AssertRCReturn(rc, rc);
12802
12803 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12804 Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
12805 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
12806 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
12807
12808 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
12809 {
12810 /*
12811 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
12812 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
12813 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
12814 *
12815 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
12816 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
12817 */
12818 VMXDispatchHostNmi();
12819 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
12820 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12821 return VINF_SUCCESS;
12822 }
12823
12824 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12825 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12826 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
12827 { /* likely */ }
12828 else
12829 {
12830 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
12831 rcStrictRc1 = VINF_SUCCESS;
12832 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12833 return rcStrictRc1;
12834 }
12835
12836 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
12837 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
12838 switch (uIntType)
12839 {
12840 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
12841 Assert(uVector == X86_XCPT_DB);
12842 RT_FALL_THRU();
12843 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
12844 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
12845 RT_FALL_THRU();
12846 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
12847 {
12848 /*
12849 * If there's any exception caused as a result of event injection, the resulting
12850 * secondary/final execption will be pending, we shall continue guest execution
12851 * after injecting the event. The page-fault case is complicated and we manually
12852 * handle any currently pending event in hmR0VmxExitXcptPF.
12853 */
12854 if (!pVCpu->hm.s.Event.fPending)
12855 { /* likely */ }
12856 else if (uVector != X86_XCPT_PF)
12857 {
12858 rc = VINF_SUCCESS;
12859 break;
12860 }
12861
12862 switch (uVector)
12863 {
12864 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
12865 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
12866 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
12867 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
12868 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
12869 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
12870
12871 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
12872 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12873 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
12874 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12875 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
12876 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12877 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
12878 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12879 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
12880 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12881 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
12882 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12883 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
12884 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12885 default:
12886 {
12887 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
12888 if (pVmcsInfo->RealMode.fRealOnV86Active)
12889 {
12890 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
12891 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
12892 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
12893
12894 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
12895 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12896 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
12897 AssertRCReturn(rc, rc);
12898 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
12899 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
12900 0 /* GCPtrFaultAddress */);
12901 }
12902 else
12903 {
12904 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
12905 pVCpu->hm.s.u32HMError = uVector;
12906 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
12907 }
12908 break;
12909 }
12910 }
12911 break;
12912 }
12913
12914 default:
12915 {
12916 pVCpu->hm.s.u32HMError = uExitIntInfo;
12917 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
12918 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
12919 break;
12920 }
12921 }
12922 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12923 return rc;
12924}
12925
12926
12927/**
12928 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
12929 */
12930HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12931{
12932 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12933
12934 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
12935 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12936 int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
12937 AssertRCReturn(rc, rc);
12938
12939 /* Evaluate and deliver pending events and resume guest execution. */
12940 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
12941 return VINF_SUCCESS;
12942}
12943
12944
12945/**
12946 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
12947 */
12948HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12949{
12950 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12951
12952 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12953 if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
12954 {
12955 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
12956 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12957 }
12958
12959 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS));
12960
12961 /*
12962 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
12963 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
12964 */
12965 uint32_t fIntrState;
12966 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
12967 AssertRCReturn(rc, rc);
12968 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
12969 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
12970 {
12971 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
12972 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
12973
12974 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
12975 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
12976 AssertRCReturn(rc, rc);
12977 }
12978
12979 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
12980 rc = hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
12981 AssertRCReturn(rc, rc);
12982
12983 /* Evaluate and deliver pending events and resume guest execution. */
12984 return VINF_SUCCESS;
12985}
12986
12987
12988/**
12989 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
12990 */
12991HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12992{
12993 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12994 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12995}
12996
12997
12998/**
12999 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
13000 */
13001HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13002{
13003 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13004 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13005}
13006
13007
13008/**
13009 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
13010 */
13011HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13012{
13013 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13014
13015 /*
13016 * Get the state we need and update the exit history entry.
13017 */
13018 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13019 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13020 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
13021 AssertRCReturn(rc, rc);
13022
13023 VBOXSTRICTRC rcStrict;
13024 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
13025 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
13026 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
13027 if (!pExitRec)
13028 {
13029 /*
13030 * Regular CPUID instruction execution.
13031 */
13032 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
13033 if (rcStrict == VINF_SUCCESS)
13034 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13035 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13036 {
13037 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13038 rcStrict = VINF_SUCCESS;
13039 }
13040 }
13041 else
13042 {
13043 /*
13044 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
13045 */
13046 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13047 AssertRCReturn(rc2, rc2);
13048
13049 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
13050 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
13051
13052 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
13053 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13054
13055 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
13056 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
13057 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
13058 }
13059 return rcStrict;
13060}
13061
13062
13063/**
13064 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
13065 */
13066HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13067{
13068 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13069
13070 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13071 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
13072 AssertRCReturn(rc, rc);
13073
13074 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
13075 return VINF_EM_RAW_EMULATE_INSTR;
13076
13077 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
13078 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13079}
13080
13081
13082/**
13083 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
13084 */
13085HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13086{
13087 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13088
13089 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13090 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13091 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13092 AssertRCReturn(rc, rc);
13093
13094 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
13095 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13096 {
13097 /* If we get a spurious VM-exit when TSC offsetting is enabled,
13098 we must reset offsetting on VM-entry. See @bugref{6634}. */
13099 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
13100 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13101 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13102 }
13103 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13104 {
13105 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13106 rcStrict = VINF_SUCCESS;
13107 }
13108 return rcStrict;
13109}
13110
13111
13112/**
13113 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
13114 */
13115HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13116{
13117 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13118
13119 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13120 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
13121 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13122 AssertRCReturn(rc, rc);
13123
13124 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
13125 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13126 {
13127 /* If we get a spurious VM-exit when TSC offsetting is enabled,
13128 we must reset offsetting on VM-reentry. See @bugref{6634}. */
13129 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
13130 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13131 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13132 }
13133 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13134 {
13135 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13136 rcStrict = VINF_SUCCESS;
13137 }
13138 return rcStrict;
13139}
13140
13141
13142/**
13143 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
13144 */
13145HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13146{
13147 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13148
13149 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13150 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
13151 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13152 AssertRCReturn(rc, rc);
13153
13154 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13155 rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13156 if (RT_LIKELY(rc == VINF_SUCCESS))
13157 {
13158 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13159 Assert(pVmxTransient->cbInstr == 2);
13160 }
13161 else
13162 {
13163 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
13164 rc = VERR_EM_INTERPRETER;
13165 }
13166 return rc;
13167}
13168
13169
13170/**
13171 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
13172 */
13173HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13174{
13175 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13176
13177 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
13178 if (EMAreHypercallInstructionsEnabled(pVCpu))
13179 {
13180 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13181 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
13182 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
13183 AssertRCReturn(rc, rc);
13184
13185 /* Perform the hypercall. */
13186 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
13187 if (rcStrict == VINF_SUCCESS)
13188 {
13189 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13190 AssertRCReturn(rc, rc);
13191 }
13192 else
13193 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
13194 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
13195 || RT_FAILURE(rcStrict));
13196
13197 /* If the hypercall changes anything other than guest's general-purpose registers,
13198 we would need to reload the guest changed bits here before VM-entry. */
13199 }
13200 else
13201 Log4Func(("Hypercalls not enabled\n"));
13202
13203 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
13204 if (RT_FAILURE(rcStrict))
13205 {
13206 hmR0VmxSetPendingXcptUD(pVCpu);
13207 rcStrict = VINF_SUCCESS;
13208 }
13209
13210 return rcStrict;
13211}
13212
13213
13214/**
13215 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
13216 */
13217HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13218{
13219 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13220 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
13221
13222 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13223 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13224 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13225 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13226 AssertRCReturn(rc, rc);
13227
13228 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
13229
13230 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
13231 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13232 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13233 {
13234 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13235 rcStrict = VINF_SUCCESS;
13236 }
13237 else
13238 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
13239 VBOXSTRICTRC_VAL(rcStrict)));
13240 return rcStrict;
13241}
13242
13243
13244/**
13245 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
13246 */
13247HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13248{
13249 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13250
13251 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13252 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13253 AssertRCReturn(rc, rc);
13254
13255 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13256 rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13257 if (RT_LIKELY(rc == VINF_SUCCESS))
13258 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13259 else
13260 {
13261 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
13262 rc = VERR_EM_INTERPRETER;
13263 }
13264 return rc;
13265}
13266
13267
13268/**
13269 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
13270 */
13271HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13272{
13273 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13274
13275 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13276 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13277 AssertRCReturn(rc, rc);
13278
13279 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13280 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13281 rc = VBOXSTRICTRC_VAL(rc2);
13282 if (RT_LIKELY( rc == VINF_SUCCESS
13283 || rc == VINF_EM_HALT))
13284 {
13285 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13286 AssertRCReturn(rc3, rc3);
13287
13288 if ( rc == VINF_EM_HALT
13289 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
13290 rc = VINF_SUCCESS;
13291 }
13292 else
13293 {
13294 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
13295 rc = VERR_EM_INTERPRETER;
13296 }
13297 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
13298 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
13299 return rc;
13300}
13301
13302
13303/**
13304 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
13305 */
13306HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13307{
13308 /*
13309 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
13310 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
13311 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
13312 * VMX root operation. If we get here, something funny is going on.
13313 *
13314 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
13315 */
13316 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13317 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
13318 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13319}
13320
13321
13322/**
13323 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
13324 */
13325HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13326{
13327 /*
13328 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
13329 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
13330 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
13331 * an SMI. If we get here, something funny is going on.
13332 *
13333 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
13334 * See Intel spec. 25.3 "Other Causes of VM-Exits"
13335 */
13336 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13337 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
13338 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13339}
13340
13341
13342/**
13343 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
13344 */
13345HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13346{
13347 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
13348 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13349 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
13350 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13351}
13352
13353
13354/**
13355 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
13356 */
13357HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13358{
13359 /*
13360 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
13361 * We don't make use of it as our guests don't have direct access to the host LAPIC.
13362 * See Intel spec. 25.3 "Other Causes of VM-exits".
13363 */
13364 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13365 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
13366 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13367}
13368
13369
13370/**
13371 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
13372 * VM-exit.
13373 */
13374HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13375{
13376 /*
13377 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
13378 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
13379 *
13380 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
13381 * See Intel spec. "23.8 Restrictions on VMX operation".
13382 */
13383 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13384 return VINF_SUCCESS;
13385}
13386
13387
13388/**
13389 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
13390 * VM-exit.
13391 */
13392HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13393{
13394 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13395 return VINF_EM_RESET;
13396}
13397
13398
13399/**
13400 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
13401 */
13402HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13403{
13404 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13405
13406 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13407 AssertRCReturn(rc, rc);
13408
13409 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
13410 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
13411 rc = VINF_SUCCESS;
13412 else
13413 rc = VINF_EM_HALT;
13414
13415 if (rc != VINF_SUCCESS)
13416 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
13417 return rc;
13418}
13419
13420
13421/**
13422 * VM-exit handler for instructions that result in a \#UD exception delivered to
13423 * the guest.
13424 */
13425HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13426{
13427 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13428 hmR0VmxSetPendingXcptUD(pVCpu);
13429 return VINF_SUCCESS;
13430}
13431
13432
13433/**
13434 * VM-exit handler for expiry of the VMX-preemption timer.
13435 */
13436HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13437{
13438 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13439
13440 /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
13441 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13442
13443 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
13444 PVM pVM = pVCpu->CTX_SUFF(pVM);
13445 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
13446 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
13447 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
13448}
13449
13450
13451/**
13452 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
13453 */
13454HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13455{
13456 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13457
13458 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13459 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13460 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
13461 AssertRCReturn(rc, rc);
13462
13463 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
13464 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
13465 : HM_CHANGED_RAISED_XCPT_MASK);
13466
13467 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13468 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
13469
13470 return rcStrict;
13471}
13472
13473
13474/**
13475 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
13476 */
13477HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13478{
13479 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13480 /** @todo Use VM-exit instruction information. */
13481 return VERR_EM_INTERPRETER;
13482}
13483
13484
13485/**
13486 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
13487 * Error VM-exit.
13488 */
13489HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13490{
13491 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13492 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13493 AssertRCReturn(rc, rc);
13494
13495 rc = hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo);
13496 if (RT_FAILURE(rc))
13497 return rc;
13498
13499 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
13500 NOREF(uInvalidReason);
13501
13502#ifdef VBOX_STRICT
13503 uint32_t fIntrState;
13504 RTHCUINTREG uHCReg;
13505 uint64_t u64Val;
13506 uint32_t u32Val;
13507 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
13508 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
13509 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
13510 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
13511 AssertRCReturn(rc, rc);
13512
13513 Log4(("uInvalidReason %u\n", uInvalidReason));
13514 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
13515 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
13516 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
13517 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
13518
13519 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
13520 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
13521 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
13522 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
13523 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
13524 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
13525 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
13526 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
13527 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
13528 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
13529 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
13530 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
13531
13532 hmR0DumpRegs(pVCpu);
13533#endif
13534
13535 return VERR_VMX_INVALID_GUEST_STATE;
13536}
13537
13538
13539/**
13540 * VM-exit handler for VM-entry failure due to an MSR-load
13541 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
13542 */
13543HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13544{
13545 AssertMsgFailed(("Unexpected MSR-load exit\n"));
13546 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13547}
13548
13549
13550/**
13551 * VM-exit handler for VM-entry failure due to a machine-check event
13552 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
13553 */
13554HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13555{
13556 AssertMsgFailed(("Unexpected machine-check event exit\n"));
13557 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13558}
13559
13560
13561/**
13562 * VM-exit handler for all undefined reasons. Should never ever happen.. in
13563 * theory.
13564 */
13565HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13566{
13567 RT_NOREF2(pVCpu, pVmxTransient);
13568 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
13569 return VERR_VMX_UNDEFINED_EXIT_CODE;
13570}
13571
13572
13573/**
13574 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
13575 * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
13576 * Conditional VM-exit.
13577 */
13578HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13579{
13580 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13581
13582 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
13583 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
13584 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13585 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
13586 return VERR_EM_INTERPRETER;
13587 AssertMsgFailed(("Unexpected XDTR access\n"));
13588 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13589}
13590
13591
13592/**
13593 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
13594 */
13595HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13596{
13597 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13598
13599 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
13600 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13601 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
13602 return VERR_EM_INTERPRETER;
13603 AssertMsgFailed(("Unexpected RDRAND exit\n"));
13604 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13605}
13606
13607
13608/**
13609 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
13610 */
13611HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13612{
13613 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13614
13615 /** @todo Optimize this: We currently drag in in the whole MSR state
13616 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
13617 * MSRs required. That would require changes to IEM and possibly CPUM too.
13618 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
13619 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13620 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
13621 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
13622 switch (idMsr)
13623 {
13624 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
13625 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
13626 }
13627
13628 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13629 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
13630 AssertRCReturn(rc, rc);
13631
13632 Log4Func(("ecx=%#RX32\n", idMsr));
13633
13634#ifdef VBOX_STRICT
13635 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
13636 {
13637 if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
13638 && idMsr != MSR_K6_EFER)
13639 {
13640 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
13641 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13642 }
13643 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13644 {
13645 Assert(pVmcsInfo->pvMsrBitmap);
13646 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
13647 if (fMsrpm & VMXMSRPM_ALLOW_RD)
13648 {
13649 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
13650 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13651 }
13652 }
13653 }
13654#endif
13655
13656 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
13657 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
13658 if (rcStrict == VINF_SUCCESS)
13659 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
13660 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
13661 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13662 {
13663 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13664 rcStrict = VINF_SUCCESS;
13665 }
13666 else
13667 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
13668
13669 return rcStrict;
13670}
13671
13672
13673/**
13674 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
13675 */
13676HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13677{
13678 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13679
13680 /** @todo Optimize this: We currently drag in in the whole MSR state
13681 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
13682 * MSRs required. That would require changes to IEM and possibly CPUM too.
13683 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
13684 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
13685 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
13686
13687 /*
13688 * The FS and GS base MSRs are not part of the above all-MSRs mask.
13689 * Although we don't need to fetch the base as it will be overwritten shortly, while
13690 * loading guest-state we would also load the entire segment register including limit
13691 * and attributes and thus we need to load them here.
13692 */
13693 switch (idMsr)
13694 {
13695 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
13696 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
13697 }
13698
13699 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13700 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13701 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
13702 AssertRCReturn(rc, rc);
13703
13704 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
13705
13706 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
13707 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
13708
13709 if (rcStrict == VINF_SUCCESS)
13710 {
13711 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13712
13713 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
13714 if ( idMsr == MSR_IA32_APICBASE
13715 || ( idMsr >= MSR_IA32_X2APIC_START
13716 && idMsr <= MSR_IA32_X2APIC_END))
13717 {
13718 /*
13719 * We've already saved the APIC related guest-state (TPR) in post-run phase.
13720 * When full APIC register virtualization is implemented we'll have to make
13721 * sure APIC state is saved from the VMCS before IEM changes it.
13722 */
13723 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
13724 }
13725 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
13726 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13727 else if (idMsr == MSR_K6_EFER)
13728 {
13729 /*
13730 * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
13731 * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
13732 * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
13733 */
13734 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
13735 }
13736
13737 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
13738 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
13739 {
13740 switch (idMsr)
13741 {
13742 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
13743 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
13744 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
13745 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
13746 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
13747 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
13748 default:
13749 {
13750 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
13751 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
13752 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13753 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
13754 break;
13755 }
13756 }
13757 }
13758#ifdef VBOX_STRICT
13759 else
13760 {
13761 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
13762 switch (idMsr)
13763 {
13764 case MSR_IA32_SYSENTER_CS:
13765 case MSR_IA32_SYSENTER_EIP:
13766 case MSR_IA32_SYSENTER_ESP:
13767 case MSR_K8_FS_BASE:
13768 case MSR_K8_GS_BASE:
13769 {
13770 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
13771 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13772 }
13773
13774 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
13775 default:
13776 {
13777 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
13778 {
13779 /* EFER MSR writes are always intercepted. */
13780 if (idMsr != MSR_K6_EFER)
13781 {
13782 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
13783 idMsr));
13784 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13785 }
13786 }
13787
13788 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13789 {
13790 Assert(pVmcsInfo->pvMsrBitmap);
13791 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
13792 if (fMsrpm & VMXMSRPM_ALLOW_WR)
13793 {
13794 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
13795 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13796 }
13797 }
13798 break;
13799 }
13800 }
13801 }
13802#endif /* VBOX_STRICT */
13803 }
13804 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13805 {
13806 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13807 rcStrict = VINF_SUCCESS;
13808 }
13809 else
13810 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
13811
13812 return rcStrict;
13813}
13814
13815
13816/**
13817 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
13818 */
13819HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13820{
13821 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13822 /** @todo The guest has likely hit a contended spinlock. We might want to
13823 * poke a schedule different guest VCPU. */
13824 return VINF_EM_RAW_INTERRUPT;
13825}
13826
13827
13828/**
13829 * VM-exit handler for when the TPR value is lowered below the specified
13830 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
13831 */
13832HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13833{
13834 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13835 Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
13836
13837 /*
13838 * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
13839 * We'll re-evaluate pending interrupts and inject them before the next VM
13840 * entry so we can just continue execution here.
13841 */
13842 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
13843 return VINF_SUCCESS;
13844}
13845
13846
13847/**
13848 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
13849 * VM-exit.
13850 *
13851 * @retval VINF_SUCCESS when guest execution can continue.
13852 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
13853 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
13854 * interpreter.
13855 */
13856HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13857{
13858 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13859 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
13860
13861 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13862 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13863 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13864 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13865 AssertRCReturn(rc, rc);
13866
13867 VBOXSTRICTRC rcStrict;
13868 PVM pVM = pVCpu->CTX_SUFF(pVM);
13869 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
13870 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
13871 switch (uAccessType)
13872 {
13873 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
13874 {
13875 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
13876 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
13877 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
13878 AssertMsg( rcStrict == VINF_SUCCESS
13879 || rcStrict == VINF_IEM_RAISED_XCPT
13880 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13881
13882 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
13883 {
13884 case 0:
13885 {
13886 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13887 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13888 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
13889 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
13890
13891 /*
13892 * This is a kludge for handling switches back to real mode when we try to use
13893 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
13894 * deal with special selector values, so we have to return to ring-3 and run
13895 * there till the selector values are V86 mode compatible.
13896 *
13897 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
13898 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
13899 * at the end of this function.
13900 */
13901 if ( rc == VINF_SUCCESS
13902 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
13903 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
13904 && (uOldCr0 & X86_CR0_PE)
13905 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
13906 {
13907 /** @todo check selectors rather than returning all the time. */
13908 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
13909 rcStrict = VINF_EM_RESCHEDULE_REM;
13910 }
13911 break;
13912 }
13913
13914 case 2:
13915 {
13916 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
13917 /* Nothing to do here, CR2 it's not part of the VMCS. */
13918 break;
13919 }
13920
13921 case 3:
13922 {
13923 Assert( !pVM->hm.s.fNestedPaging
13924 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
13925 || pVCpu->hm.s.fUsingDebugLoop);
13926 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
13927 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13928 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
13929 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
13930 break;
13931 }
13932
13933 case 4:
13934 {
13935 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
13936 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13937 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
13938 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
13939 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
13940 break;
13941 }
13942
13943 case 8:
13944 {
13945 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
13946 Assert(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
13947 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13948 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
13949 break;
13950 }
13951 default:
13952 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
13953 break;
13954 }
13955 break;
13956 }
13957
13958 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
13959 {
13960 Assert( !pVM->hm.s.fNestedPaging
13961 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
13962 || pVCpu->hm.s.fUsingDebugLoop
13963 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
13964 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
13965 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
13966 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
13967
13968 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
13969 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
13970 AssertMsg( rcStrict == VINF_SUCCESS
13971 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13972#ifdef VBOX_WITH_STATISTICS
13973 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
13974 {
13975 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
13976 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
13977 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
13978 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
13979 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
13980 }
13981#endif
13982 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
13983 VBOXSTRICTRC_VAL(rcStrict)));
13984 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
13985 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
13986 else
13987 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13988 break;
13989 }
13990
13991 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
13992 {
13993 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
13994 AssertMsg( rcStrict == VINF_SUCCESS
13995 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13996
13997 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13998 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
13999 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
14000 break;
14001 }
14002
14003 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
14004 {
14005 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
14006 rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
14007 AssertRCReturn(rc, rc);
14008 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
14009 pVmxTransient->uGuestLinearAddr);
14010 AssertMsg( rcStrict == VINF_SUCCESS
14011 || rcStrict == VINF_IEM_RAISED_XCPT
14012 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14013
14014 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
14015 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
14016 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
14017 break;
14018 }
14019
14020 default:
14021 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
14022 VERR_VMX_UNEXPECTED_EXCEPTION);
14023 }
14024
14025 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
14026 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
14027 if (rcStrict == VINF_IEM_RAISED_XCPT)
14028 {
14029 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14030 rcStrict = VINF_SUCCESS;
14031 }
14032
14033 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
14034 NOREF(pVM);
14035 return rcStrict;
14036}
14037
14038
14039/**
14040 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
14041 * VM-exit.
14042 */
14043HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14044{
14045 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14046 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
14047
14048 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14049 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14050 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14051 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14052 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
14053 | CPUMCTX_EXTRN_EFER);
14054 /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
14055 AssertRCReturn(rc, rc);
14056
14057 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
14058 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
14059 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
14060 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
14061 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
14062 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
14063 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
14064 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
14065
14066 /*
14067 * Update exit history to see if this exit can be optimized.
14068 */
14069 VBOXSTRICTRC rcStrict;
14070 PCEMEXITREC pExitRec = NULL;
14071 if ( !fGstStepping
14072 && !fDbgStepping)
14073 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14074 !fIOString
14075 ? !fIOWrite
14076 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
14077 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
14078 : !fIOWrite
14079 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
14080 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
14081 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14082 if (!pExitRec)
14083 {
14084 /* I/O operation lookup arrays. */
14085 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
14086 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
14087 uint32_t const cbValue = s_aIOSizes[uIOWidth];
14088 uint32_t const cbInstr = pVmxTransient->cbInstr;
14089 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
14090 PVM pVM = pVCpu->CTX_SUFF(pVM);
14091 if (fIOString)
14092 {
14093 /*
14094 * INS/OUTS - I/O String instruction.
14095 *
14096 * Use instruction-information if available, otherwise fall back on
14097 * interpreting the instruction.
14098 */
14099 Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
14100 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
14101 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
14102 if (fInsOutsInfo)
14103 {
14104 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
14105 AssertRCReturn(rc2, rc2);
14106 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
14107 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
14108 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
14109 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
14110 if (fIOWrite)
14111 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
14112 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
14113 else
14114 {
14115 /*
14116 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
14117 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
14118 * See Intel Instruction spec. for "INS".
14119 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
14120 */
14121 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
14122 }
14123 }
14124 else
14125 rcStrict = IEMExecOne(pVCpu);
14126
14127 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
14128 fUpdateRipAlready = true;
14129 }
14130 else
14131 {
14132 /*
14133 * IN/OUT - I/O instruction.
14134 */
14135 Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
14136 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
14137 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
14138 if (fIOWrite)
14139 {
14140 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
14141 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
14142 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
14143 && !pCtx->eflags.Bits.u1TF)
14144 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
14145 }
14146 else
14147 {
14148 uint32_t u32Result = 0;
14149 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
14150 if (IOM_SUCCESS(rcStrict))
14151 {
14152 /* Save result of I/O IN instr. in AL/AX/EAX. */
14153 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
14154 }
14155 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
14156 && !pCtx->eflags.Bits.u1TF)
14157 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
14158 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
14159 }
14160 }
14161
14162 if (IOM_SUCCESS(rcStrict))
14163 {
14164 if (!fUpdateRipAlready)
14165 {
14166 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
14167 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
14168 }
14169
14170 /*
14171 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
14172 * while booting Fedora 17 64-bit guest.
14173 *
14174 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
14175 */
14176 if (fIOString)
14177 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
14178
14179 /*
14180 * If any I/O breakpoints are armed, we need to check if one triggered
14181 * and take appropriate action.
14182 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
14183 */
14184 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
14185 AssertRCReturn(rc, rc);
14186
14187 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
14188 * execution engines about whether hyper BPs and such are pending. */
14189 uint32_t const uDr7 = pCtx->dr[7];
14190 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
14191 && X86_DR7_ANY_RW_IO(uDr7)
14192 && (pCtx->cr4 & X86_CR4_DE))
14193 || DBGFBpIsHwIoArmed(pVM)))
14194 {
14195 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
14196
14197 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
14198 VMMRZCallRing3Disable(pVCpu);
14199 HM_DISABLE_PREEMPT(pVCpu);
14200
14201 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
14202
14203 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
14204 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
14205 {
14206 /* Raise #DB. */
14207 if (fIsGuestDbgActive)
14208 ASMSetDR6(pCtx->dr[6]);
14209 if (pCtx->dr[7] != uDr7)
14210 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
14211
14212 hmR0VmxSetPendingXcptDB(pVCpu);
14213 }
14214 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
14215 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
14216 else if ( rcStrict2 != VINF_SUCCESS
14217 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
14218 rcStrict = rcStrict2;
14219 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
14220
14221 HM_RESTORE_PREEMPT();
14222 VMMRZCallRing3Enable(pVCpu);
14223 }
14224 }
14225
14226#ifdef VBOX_STRICT
14227 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
14228 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
14229 Assert(!fIOWrite);
14230 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
14231 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
14232 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
14233 Assert(fIOWrite);
14234 else
14235 {
14236# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
14237 * statuses, that the VMM device and some others may return. See
14238 * IOM_SUCCESS() for guidance. */
14239 AssertMsg( RT_FAILURE(rcStrict)
14240 || rcStrict == VINF_SUCCESS
14241 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
14242 || rcStrict == VINF_EM_DBG_BREAKPOINT
14243 || rcStrict == VINF_EM_RAW_GUEST_TRAP
14244 || rcStrict == VINF_EM_RAW_TO_R3
14245 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14246# endif
14247 }
14248#endif
14249 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
14250 }
14251 else
14252 {
14253 /*
14254 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14255 */
14256 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14257 AssertRCReturn(rc2, rc2);
14258 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
14259 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
14260 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
14261 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14262 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
14263 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
14264
14265 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14266 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14267
14268 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14269 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14270 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14271 }
14272 return rcStrict;
14273}
14274
14275
14276/**
14277 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
14278 * VM-exit.
14279 */
14280HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14281{
14282 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14283
14284 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
14285 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14286 AssertRCReturn(rc, rc);
14287 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
14288 {
14289 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
14290 AssertRCReturn(rc, rc);
14291 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
14292 {
14293 uint32_t uErrCode;
14294 RTGCUINTPTR GCPtrFaultAddress;
14295 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
14296 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
14297 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
14298 if (fErrorCodeValid)
14299 {
14300 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
14301 AssertRCReturn(rc, rc);
14302 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
14303 }
14304 else
14305 uErrCode = 0;
14306
14307 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
14308 && uVector == X86_XCPT_PF)
14309 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
14310 else
14311 GCPtrFaultAddress = 0;
14312
14313 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14314 AssertRCReturn(rc, rc);
14315
14316 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
14317 pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
14318
14319 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
14320 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
14321 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14322 }
14323 }
14324
14325 /* Fall back to the interpreter to emulate the task-switch. */
14326 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
14327 return VERR_EM_INTERPRETER;
14328}
14329
14330
14331/**
14332 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
14333 */
14334HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14335{
14336 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14337
14338 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14339 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
14340 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
14341 AssertRCReturn(rc, rc);
14342 return VINF_EM_DBG_STEPPED;
14343}
14344
14345
14346/**
14347 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
14348 */
14349HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14350{
14351 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14352 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
14353
14354 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14355 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14356 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14357 {
14358 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
14359 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14360 {
14361 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
14362 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14363 }
14364 }
14365 else
14366 {
14367 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14368 rcStrict1 = VINF_SUCCESS;
14369 return rcStrict1;
14370 }
14371
14372 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
14373 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14374 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14375 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14376 AssertRCReturn(rc, rc);
14377
14378 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
14379 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
14380 VBOXSTRICTRC rcStrict2;
14381 switch (uAccessType)
14382 {
14383 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
14384 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
14385 {
14386 AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
14387 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
14388 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
14389
14390 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
14391 GCPhys &= PAGE_BASE_GC_MASK;
14392 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
14393 PVM pVM = pVCpu->CTX_SUFF(pVM);
14394 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
14395 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
14396
14397 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14398 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
14399 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
14400 CPUMCTX2CORE(pCtx), GCPhys);
14401 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
14402 if ( rcStrict2 == VINF_SUCCESS
14403 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
14404 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
14405 {
14406 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
14407 | HM_CHANGED_GUEST_APIC_TPR);
14408 rcStrict2 = VINF_SUCCESS;
14409 }
14410 break;
14411 }
14412
14413 default:
14414 Log4Func(("uAccessType=%#x\n", uAccessType));
14415 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
14416 break;
14417 }
14418
14419 if (rcStrict2 != VINF_SUCCESS)
14420 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
14421 return rcStrict2;
14422}
14423
14424
14425/**
14426 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
14427 * VM-exit.
14428 */
14429HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14430{
14431 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14432
14433 /* We should -not- get this VM-exit if the guest's debug registers were active. */
14434 if (pVmxTransient->fWasGuestDebugStateActive)
14435 {
14436 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
14437 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
14438 }
14439
14440 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14441 if ( !pVCpu->hm.s.fSingleInstruction
14442 && !pVmxTransient->fWasHyperDebugStateActive)
14443 {
14444 Assert(!DBGFIsStepping(pVCpu));
14445 Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
14446
14447 /* Don't intercept MOV DRx any more. */
14448 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
14449 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
14450 AssertRCReturn(rc, rc);
14451
14452 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
14453 VMMRZCallRing3Disable(pVCpu);
14454 HM_DISABLE_PREEMPT(pVCpu);
14455
14456 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
14457 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
14458 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
14459
14460 HM_RESTORE_PREEMPT();
14461 VMMRZCallRing3Enable(pVCpu);
14462
14463#ifdef VBOX_WITH_STATISTICS
14464 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14465 AssertRCReturn(rc, rc);
14466 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
14467 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
14468 else
14469 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
14470#endif
14471 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
14472 return VINF_SUCCESS;
14473 }
14474
14475 /*
14476 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
14477 * The EFER MSR is always up-to-date.
14478 * Update the segment registers and DR7 from the CPU.
14479 */
14480 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14481 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14482 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
14483 AssertRCReturn(rc, rc);
14484 Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
14485
14486 PVM pVM = pVCpu->CTX_SUFF(pVM);
14487 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
14488 {
14489 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
14490 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
14491 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
14492 if (RT_SUCCESS(rc))
14493 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
14494 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
14495 }
14496 else
14497 {
14498 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
14499 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
14500 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
14501 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
14502 }
14503
14504 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
14505 if (RT_SUCCESS(rc))
14506 {
14507 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14508 AssertRCReturn(rc2, rc2);
14509 return VINF_SUCCESS;
14510 }
14511 return rc;
14512}
14513
14514
14515/**
14516 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
14517 * Conditional VM-exit.
14518 */
14519HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14520{
14521 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14522 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
14523
14524 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14525 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14526 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14527 {
14528 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
14529 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
14530 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14531 {
14532 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
14533 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14534 }
14535 }
14536 else
14537 {
14538 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14539 rcStrict1 = VINF_SUCCESS;
14540 return rcStrict1;
14541 }
14542
14543 /*
14544 * Get sufficent state and update the exit history entry.
14545 */
14546 RTGCPHYS GCPhys;
14547 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14548 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
14549 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14550 AssertRCReturn(rc, rc);
14551
14552 VBOXSTRICTRC rcStrict;
14553 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14554 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
14555 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14556 if (!pExitRec)
14557 {
14558 /*
14559 * If we succeed, resume guest execution.
14560 * If we fail in interpreting the instruction because we couldn't get the guest physical address
14561 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
14562 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
14563 * weird case. See @bugref{6043}.
14564 */
14565 PVM pVM = pVCpu->CTX_SUFF(pVM);
14566 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14567 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
14568 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
14569 if ( rcStrict == VINF_SUCCESS
14570 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
14571 || rcStrict == VERR_PAGE_NOT_PRESENT)
14572 {
14573 /* Successfully handled MMIO operation. */
14574 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
14575 | HM_CHANGED_GUEST_APIC_TPR);
14576 rcStrict = VINF_SUCCESS;
14577 }
14578 }
14579 else
14580 {
14581 /*
14582 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14583 */
14584 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14585 AssertRCReturn(rc2, rc2);
14586
14587 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
14588 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
14589
14590 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14591 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14592
14593 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14594 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14595 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14596 }
14597 return VBOXSTRICTRC_TODO(rcStrict);
14598}
14599
14600
14601/**
14602 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
14603 * VM-exit.
14604 */
14605HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14606{
14607 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14608 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
14609
14610 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14611 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14612 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14613 {
14614 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
14615 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14616 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
14617 }
14618 else
14619 {
14620 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14621 rcStrict1 = VINF_SUCCESS;
14622 return rcStrict1;
14623 }
14624
14625 RTGCPHYS GCPhys;
14626 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14627 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
14628 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14629 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14630 AssertRCReturn(rc, rc);
14631
14632 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
14633 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
14634
14635 RTGCUINT uErrorCode = 0;
14636 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
14637 uErrorCode |= X86_TRAP_PF_ID;
14638 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
14639 uErrorCode |= X86_TRAP_PF_RW;
14640 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
14641 uErrorCode |= X86_TRAP_PF_P;
14642
14643 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
14644
14645
14646 /* Handle the pagefault trap for the nested shadow table. */
14647 PVM pVM = pVCpu->CTX_SUFF(pVM);
14648 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14649
14650 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x cs:rip=%#04x:%#RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
14651 pCtx->cs.Sel, pCtx->rip));
14652
14653 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
14654 TRPMResetTrap(pVCpu);
14655
14656 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
14657 if ( rcStrict2 == VINF_SUCCESS
14658 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
14659 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
14660 {
14661 /* Successfully synced our nested page tables. */
14662 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
14663 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
14664 return VINF_SUCCESS;
14665 }
14666
14667 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
14668 return rcStrict2;
14669}
14670
14671/** @} */
14672
14673/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14674/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
14675/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14676
14677/**
14678 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
14679 */
14680static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14681{
14682 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14683 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
14684
14685 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
14686 AssertRCReturn(rc, rc);
14687
14688 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
14689 {
14690 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
14691 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
14692
14693 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
14694 * provides VM-exit instruction length. If this causes problem later,
14695 * disassemble the instruction like it's done on AMD-V. */
14696 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14697 AssertRCReturn(rc2, rc2);
14698 return rc;
14699 }
14700
14701 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14702 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14703 return rc;
14704}
14705
14706
14707/**
14708 * VM-exit exception handler for \#BP (Breakpoint exception).
14709 */
14710static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14711{
14712 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14713 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
14714
14715 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14716 AssertRCReturn(rc, rc);
14717
14718 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14719 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
14720 if (rc == VINF_EM_RAW_GUEST_TRAP)
14721 {
14722 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14723 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14724 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14725 AssertRCReturn(rc, rc);
14726
14727 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14728 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14729 }
14730
14731 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
14732 return rc;
14733}
14734
14735
14736/**
14737 * VM-exit exception handler for \#AC (alignment check exception).
14738 */
14739static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14740{
14741 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14742
14743 /*
14744 * Re-inject it. We'll detect any nesting before getting here.
14745 */
14746 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14747 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14748 AssertRCReturn(rc, rc);
14749 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
14750
14751 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14752 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14753 return VINF_SUCCESS;
14754}
14755
14756
14757/**
14758 * VM-exit exception handler for \#DB (Debug exception).
14759 */
14760static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14761{
14762 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14763 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
14764
14765 /*
14766 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
14767 * for processing.
14768 */
14769 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14770
14771 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
14772 uint64_t uDR6 = X86_DR6_INIT_VAL;
14773 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
14774
14775 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14776 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
14777 Log6Func(("rc=%Rrc\n", rc));
14778 if (rc == VINF_EM_RAW_GUEST_TRAP)
14779 {
14780 /*
14781 * The exception was for the guest. Update DR6, DR7.GD and
14782 * IA32_DEBUGCTL.LBR before forwarding it.
14783 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
14784 */
14785 VMMRZCallRing3Disable(pVCpu);
14786 HM_DISABLE_PREEMPT(pVCpu);
14787
14788 pCtx->dr[6] &= ~X86_DR6_B_MASK;
14789 pCtx->dr[6] |= uDR6;
14790 if (CPUMIsGuestDebugStateActive(pVCpu))
14791 ASMSetDR6(pCtx->dr[6]);
14792
14793 HM_RESTORE_PREEMPT();
14794 VMMRZCallRing3Enable(pVCpu);
14795
14796 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
14797 AssertRCReturn(rc, rc);
14798
14799 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
14800 pCtx->dr[7] &= ~X86_DR7_GD;
14801
14802 /* Paranoia. */
14803 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
14804 pCtx->dr[7] |= X86_DR7_RA1_MASK;
14805
14806 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
14807 AssertRCReturn(rc, rc);
14808
14809 /*
14810 * Raise #DB in the guest.
14811 *
14812 * It is important to reflect exactly what the VM-exit gave us (preserving the
14813 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
14814 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
14815 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
14816 *
14817 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
14818 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
14819 */
14820 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14821 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14822 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14823 AssertRCReturn(rc, rc);
14824 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14825 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14826 return VINF_SUCCESS;
14827 }
14828
14829 /*
14830 * Not a guest trap, must be a hypervisor related debug event then.
14831 * Update DR6 in case someone is interested in it.
14832 */
14833 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
14834 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
14835 CPUMSetHyperDR6(pVCpu, uDR6);
14836
14837 return rc;
14838}
14839
14840
14841/**
14842 * Hacks its way around the lovely mesa driver's backdoor accesses.
14843 *
14844 * @sa hmR0SvmHandleMesaDrvGp
14845 */
14846static int hmR0VmxHandleMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14847{
14848 LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
14849 RT_NOREF(pCtx);
14850
14851 /* For now we'll just skip the instruction. */
14852 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14853}
14854
14855
14856/**
14857 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
14858 * backdoor logging w/o checking what it is running inside.
14859 *
14860 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
14861 * backdoor port and magic numbers loaded in registers.
14862 *
14863 * @returns true if it is, false if it isn't.
14864 * @sa hmR0SvmIsMesaDrvGp
14865 */
14866DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14867{
14868 /* 0xed: IN eAX,dx */
14869 uint8_t abInstr[1];
14870 if (pVmxTransient->cbInstr != sizeof(abInstr))
14871 return false;
14872
14873 /* Check that it is #GP(0). */
14874 if (pVmxTransient->uExitIntErrorCode != 0)
14875 return false;
14876
14877 /* Check magic and port. */
14878 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
14879 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
14880 if (pCtx->rax != UINT32_C(0x564d5868))
14881 return false;
14882 if (pCtx->dx != UINT32_C(0x5658))
14883 return false;
14884
14885 /* Flat ring-3 CS. */
14886 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
14887 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
14888 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
14889 if (pCtx->cs.Attr.n.u2Dpl != 3)
14890 return false;
14891 if (pCtx->cs.u64Base != 0)
14892 return false;
14893
14894 /* Check opcode. */
14895 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
14896 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
14897 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
14898 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
14899 if (RT_FAILURE(rc))
14900 return false;
14901 if (abInstr[0] != 0xed)
14902 return false;
14903
14904 return true;
14905}
14906
14907
14908/**
14909 * VM-exit exception handler for \#GP (General-protection exception).
14910 *
14911 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
14912 */
14913static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14914{
14915 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14916 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
14917
14918 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14919 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14920 if (pVmcsInfo->RealMode.fRealOnV86Active)
14921 { /* likely */ }
14922 else
14923 {
14924#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14925 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv);
14926#endif
14927 /* If the guest is not in real-mode or we have unrestricted guest execution support, reflect #GP to the guest. */
14928 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14929 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14930 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14931 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14932 AssertRCReturn(rc, rc);
14933 Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
14934 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
14935
14936 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
14937 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
14938 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14939 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14940 else
14941 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
14942 return rc;
14943 }
14944
14945 Assert(CPUMIsGuestInRealModeEx(pCtx));
14946 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
14947
14948 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14949 AssertRCReturn(rc, rc);
14950
14951 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
14952 if (rcStrict == VINF_SUCCESS)
14953 {
14954 if (!CPUMIsGuestInRealModeEx(pCtx))
14955 {
14956 /*
14957 * The guest is no longer in real-mode, check if we can continue executing the
14958 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
14959 */
14960 pVmcsInfo->RealMode.fRealOnV86Active = false;
14961 if (HMCanExecuteVmxGuest(pVCpu, pCtx))
14962 {
14963 Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
14964 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14965 }
14966 else
14967 {
14968 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
14969 rcStrict = VINF_EM_RESCHEDULE;
14970 }
14971 }
14972 else
14973 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14974 }
14975 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14976 {
14977 rcStrict = VINF_SUCCESS;
14978 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14979 }
14980 return VBOXSTRICTRC_VAL(rcStrict);
14981}
14982
14983
14984/**
14985 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
14986 * the exception reported in the VMX transient structure back into the VM.
14987 *
14988 * @remarks Requires uExitIntInfo in the VMX transient structure to be
14989 * up-to-date.
14990 */
14991static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14992{
14993 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14994#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14995 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14996 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVmcsInfo->RealMode.fRealOnV86Active,
14997 ("uVector=%#x u32XcptBitmap=%#X32\n",
14998 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
14999 NOREF(pVmcsInfo);
15000#endif
15001
15002 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
15003 hmR0VmxCheckExitDueToEventDelivery(). */
15004 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15005 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15006 AssertRCReturn(rc, rc);
15007 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
15008
15009#ifdef DEBUG_ramshankar
15010 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
15011 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n",
15012 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pCtx->cs.Sel, pCtx->rip));
15013#endif
15014
15015 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
15016 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
15017 return VINF_SUCCESS;
15018}
15019
15020
15021/**
15022 * VM-exit exception handler for \#PF (Page-fault exception).
15023 */
15024static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15025{
15026 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15027 PVM pVM = pVCpu->CTX_SUFF(pVM);
15028 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15029 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15030 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15031 AssertRCReturn(rc, rc);
15032
15033 if (!pVM->hm.s.fNestedPaging)
15034 { /* likely */ }
15035 else
15036 {
15037#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
15038 Assert(pVCpu->hm.s.fUsingDebugLoop);
15039#endif
15040 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
15041 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
15042 {
15043 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
15044 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
15045 }
15046 else
15047 {
15048 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
15049 hmR0VmxSetPendingXcptDF(pVCpu);
15050 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
15051 }
15052 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
15053 return rc;
15054 }
15055
15056 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
15057 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
15058 if (pVmxTransient->fVectoringPF)
15059 {
15060 Assert(pVCpu->hm.s.Event.fPending);
15061 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15062 }
15063
15064 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15065 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15066 AssertRCReturn(rc, rc);
15067
15068 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
15069 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
15070
15071 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
15072 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
15073
15074 Log4Func(("#PF: rc=%Rrc\n", rc));
15075 if (rc == VINF_SUCCESS)
15076 {
15077 /*
15078 * This is typically a shadow page table sync or a MMIO instruction. But we may have
15079 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
15080 */
15081 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15082 TRPMResetTrap(pVCpu);
15083 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
15084 return rc;
15085 }
15086
15087 if (rc == VINF_EM_RAW_GUEST_TRAP)
15088 {
15089 if (!pVmxTransient->fVectoringDoublePF)
15090 {
15091 /* It's a guest page fault and needs to be reflected to the guest. */
15092 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
15093 TRPMResetTrap(pVCpu);
15094 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
15095 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
15096 uGstErrorCode, pVmxTransient->uExitQual);
15097 }
15098 else
15099 {
15100 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
15101 TRPMResetTrap(pVCpu);
15102 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
15103 hmR0VmxSetPendingXcptDF(pVCpu);
15104 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
15105 }
15106
15107 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
15108 return VINF_SUCCESS;
15109 }
15110
15111 TRPMResetTrap(pVCpu);
15112 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
15113 return rc;
15114}
15115
15116#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
15117/** @name VMX instruction handlers.
15118 * @{
15119 */
15120/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15121/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VMX instructions VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15122/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15123
15124/**
15125 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
15126 */
15127HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15128{
15129 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15130
15131 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15132 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15133 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15134 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15135 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15136 AssertRCReturn(rc, rc);
15137
15138 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15139
15140 VMXVEXITINFO ExitInfo;
15141 RT_ZERO(ExitInfo);
15142 ExitInfo.uReason = pVmxTransient->uExitReason;
15143 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15144 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15145 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15146 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15147
15148 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
15149 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15150 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15151 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15152 {
15153 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15154 rcStrict = VINF_SUCCESS;
15155 }
15156 return rcStrict;
15157}
15158
15159
15160/**
15161 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
15162 */
15163HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15164{
15165 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15166
15167 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
15168 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
15169 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15170 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15171 AssertRCReturn(rc, rc);
15172
15173 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15174
15175 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMLAUNCH);
15176 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15177 {
15178 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
15179 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15180 }
15181 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15182 return rcStrict;
15183}
15184
15185
15186/**
15187 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
15188 */
15189HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15190{
15191 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15192
15193 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15194 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15195 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15196 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15197 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15198 AssertRCReturn(rc, rc);
15199
15200 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15201
15202 VMXVEXITINFO ExitInfo;
15203 RT_ZERO(ExitInfo);
15204 ExitInfo.uReason = pVmxTransient->uExitReason;
15205 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15206 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15207 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15208 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15209
15210 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
15211 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15212 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15213 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15214 {
15215 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15216 rcStrict = VINF_SUCCESS;
15217 }
15218 return rcStrict;
15219}
15220
15221
15222/**
15223 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
15224 */
15225HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15226{
15227 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15228
15229 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15230 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15231 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15232 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15233 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15234 AssertRCReturn(rc, rc);
15235
15236 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15237
15238 VMXVEXITINFO ExitInfo;
15239 RT_ZERO(ExitInfo);
15240 ExitInfo.uReason = pVmxTransient->uExitReason;
15241 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15242 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15243 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15244 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
15245
15246 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
15247 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15248 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15249 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15250 {
15251 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15252 rcStrict = VINF_SUCCESS;
15253 }
15254 return rcStrict;
15255}
15256
15257
15258/**
15259 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
15260 */
15261HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15262{
15263 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15264
15265 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15266 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15267 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15268 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15269 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15270 AssertRCReturn(rc, rc);
15271
15272 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15273
15274 VMXVEXITINFO ExitInfo;
15275 RT_ZERO(ExitInfo);
15276 ExitInfo.uReason = pVmxTransient->uExitReason;
15277 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15278 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15279 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15280 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
15281 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
15282
15283 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
15284 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15285 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15286 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15287 {
15288 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15289 rcStrict = VINF_SUCCESS;
15290 }
15291 return rcStrict;
15292}
15293
15294
15295/**
15296 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
15297 */
15298HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15299{
15300 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15301
15302 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
15303 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
15304 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15305 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15306 AssertRCReturn(rc, rc);
15307
15308 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15309
15310 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMRESUME);
15311 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15312 {
15313 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
15314 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15315 }
15316 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15317 return rcStrict;
15318}
15319
15320
15321/**
15322 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
15323 */
15324HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15325{
15326 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15327
15328 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15329 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15330 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15331 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15332 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15333 AssertRCReturn(rc, rc);
15334
15335 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15336
15337 VMXVEXITINFO ExitInfo;
15338 RT_ZERO(ExitInfo);
15339 ExitInfo.uReason = pVmxTransient->uExitReason;
15340 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15341 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15342 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15343 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
15344 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15345
15346 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
15347 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15348 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15349 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15350 {
15351 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15352 rcStrict = VINF_SUCCESS;
15353 }
15354 return rcStrict;
15355}
15356
15357
15358/**
15359 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
15360 */
15361HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15362{
15363 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15364
15365 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15366 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
15367 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
15368 AssertRCReturn(rc, rc);
15369
15370 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15371
15372 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
15373 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15374 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
15375 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15376 {
15377 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15378 rcStrict = VINF_SUCCESS;
15379 }
15380 return rcStrict;
15381}
15382
15383
15384/**
15385 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
15386 */
15387HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15388{
15389 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15390
15391 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15392 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15393 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15394 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15395 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15396 AssertRCReturn(rc, rc);
15397
15398 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15399
15400 VMXVEXITINFO ExitInfo;
15401 RT_ZERO(ExitInfo);
15402 ExitInfo.uReason = pVmxTransient->uExitReason;
15403 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15404 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15405 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15406 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15407
15408 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
15409 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15410 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15411 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15412 {
15413 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15414 rcStrict = VINF_SUCCESS;
15415 }
15416 return rcStrict;
15417}
15418
15419/** @} */
15420#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
15421
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette