VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 78241

Last change on this file since 78241 was 78241, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: Nested VMX: bugref:9180 Don't write 64-bits of guest CR0/CR4 because our VMCS caches (64-bit guest on 32-bit host) doesn't currently have slots for it, use 32-bit VMWRITE for now.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 641.6 KB
Line 
1/* $Id: HMVMXR0.cpp 78241 2019-04-22 09:04:39Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include <VBox/vmm/hmvmxinline.h>
43#include "HMVMXR0.h"
44#include "dtrace/VBoxVMM.h"
45
46# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
47#ifdef DEBUG_ramshankar
48# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
49# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/** @name HMVMX_READ_XXX
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82/** @} */
83
84/**
85 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
86 * guest using hardware-assisted VMX.
87 *
88 * This excludes state like GPRs (other than RSP) which are always are
89 * swapped and restored across the world-switch and also registers like EFER,
90 * MSR which cannot be modified by the guest without causing a VM-exit.
91 */
92#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
93 | CPUMCTX_EXTRN_RFLAGS \
94 | CPUMCTX_EXTRN_RSP \
95 | CPUMCTX_EXTRN_SREG_MASK \
96 | CPUMCTX_EXTRN_TABLE_MASK \
97 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
98 | CPUMCTX_EXTRN_SYSCALL_MSRS \
99 | CPUMCTX_EXTRN_SYSENTER_MSRS \
100 | CPUMCTX_EXTRN_TSC_AUX \
101 | CPUMCTX_EXTRN_OTHER_MSRS \
102 | CPUMCTX_EXTRN_CR0 \
103 | CPUMCTX_EXTRN_CR3 \
104 | CPUMCTX_EXTRN_CR4 \
105 | CPUMCTX_EXTRN_DR7 \
106 | CPUMCTX_EXTRN_HM_VMX_MASK)
107
108/**
109 * Exception bitmap mask for real-mode guests (real-on-v86).
110 *
111 * We need to intercept all exceptions manually except:
112 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
113 * due to bugs in Intel CPUs.
114 * - \#PF need not be intercepted even in real-mode if we have nested paging
115 * support.
116 */
117#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
118 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
119 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
120 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
121 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
122 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
123 | RT_BIT(X86_XCPT_XF))
124
125/** Maximum VM-instruction error number. */
126#define HMVMX_INSTR_ERROR_MAX 28
127
128/** Profiling macro. */
129#ifdef HM_PROFILE_EXIT_DISPATCH
130# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
131# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
132#else
133# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
134# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
135#endif
136
137/** Assert that preemption is disabled or covered by thread-context hooks. */
138#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
139 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
140
141/** Assert that we haven't migrated CPUs when thread-context hooks are not
142 * used. */
143#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
144 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
145 ("Illegal migration! Entered on CPU %u Current %u\n", \
146 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
147
148/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
149 * context. */
150#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
151 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
152 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
153
154/** Helper macro for VM-exit handlers called unexpectedly. */
155#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
156 do { \
157 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
158 return VERR_VMX_UNEXPECTED_EXIT; \
159 } while (0)
160
161#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
162/** Macro that does the necessary privilege checks and intercepted VM-exits for
163 * guests that attempted to execute a VMX instruction. */
164# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
165 do \
166 { \
167 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
168 if (rcStrictTmp == VINF_SUCCESS) \
169 { /* likely */ } \
170 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
171 { \
172 Assert((a_pVCpu)->hm.s.Event.fPending); \
173 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
174 return VINF_SUCCESS; \
175 } \
176 else \
177 { \
178 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
179 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
180 } \
181 } while (0)
182
183/** Macro that decodes a memory operand for an instruction VM-exit. */
184# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
185 do \
186 { \
187 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
188 (a_pGCPtrEffAddr)); \
189 if (rcStrictTmp == VINF_SUCCESS) \
190 { /* likely */ } \
191 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
192 { \
193 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
194 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
195 NOREF(uXcptTmp); \
196 return VINF_SUCCESS; \
197 } \
198 else \
199 { \
200 Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
201 return rcStrictTmp; \
202 } \
203 } while (0)
204
205#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
206
207
208/*********************************************************************************************************************************
209* Structures and Typedefs *
210*********************************************************************************************************************************/
211/**
212 * VMX transient state.
213 *
214 * A state structure for holding miscellaneous information across
215 * VMX non-root operation and restored after the transition.
216 */
217typedef struct VMXTRANSIENT
218{
219 /** The host's rflags/eflags. */
220 RTCCUINTREG fEFlags;
221#if HC_ARCH_BITS == 32
222 uint32_t u32Alignment0;
223#endif
224 /** The guest's TPR value used for TPR shadowing. */
225 uint8_t u8GuestTpr;
226 /** Alignment. */
227 uint8_t abAlignment0[7];
228
229 /** The basic VM-exit reason. */
230 uint16_t uExitReason;
231 /** Alignment. */
232 uint16_t u16Alignment0;
233 /** The VM-exit interruption error code. */
234 uint32_t uExitIntErrorCode;
235 /** The VM-exit exit code qualification. */
236 uint64_t uExitQual;
237 /** The Guest-linear address. */
238 uint64_t uGuestLinearAddr;
239
240 /** The VM-exit interruption-information field. */
241 uint32_t uExitIntInfo;
242 /** The VM-exit instruction-length field. */
243 uint32_t cbInstr;
244 /** The VM-exit instruction-information field. */
245 VMXEXITINSTRINFO ExitInstrInfo;
246 /** Whether the VM-entry failed or not. */
247 bool fVMEntryFailed;
248 /** Whether we are currently executing a nested-guest. */
249 bool fIsNestedGuest;
250 /** Alignment. */
251 uint8_t abAlignment1[2];
252
253 /** The VM-entry interruption-information field. */
254 uint32_t uEntryIntInfo;
255 /** The VM-entry exception error code field. */
256 uint32_t uEntryXcptErrorCode;
257 /** The VM-entry instruction length field. */
258 uint32_t cbEntryInstr;
259
260 /** IDT-vectoring information field. */
261 uint32_t uIdtVectoringInfo;
262 /** IDT-vectoring error code. */
263 uint32_t uIdtVectoringErrorCode;
264
265 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
266 uint32_t fVmcsFieldsRead;
267
268 /** Whether the guest debug state was active at the time of VM-exit. */
269 bool fWasGuestDebugStateActive;
270 /** Whether the hyper debug state was active at the time of VM-exit. */
271 bool fWasHyperDebugStateActive;
272 /** Whether TSC-offsetting and VMX-preemption timer was updated before VM-entry. */
273 bool fUpdatedTscOffsettingAndPreemptTimer;
274 /** Whether the VM-exit was caused by a page-fault during delivery of a
275 * contributory exception or a page-fault. */
276 bool fVectoringDoublePF;
277 /** Whether the VM-exit was caused by a page-fault during delivery of an
278 * external interrupt or NMI. */
279 bool fVectoringPF;
280 bool afAlignment0[3];
281
282 /** The VMCS info. object. */
283 PVMXVMCSINFO pVmcsInfo;
284} VMXTRANSIENT;
285AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
286AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
287AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
288AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
289AssertCompileMemberAlignment(VMXTRANSIENT, pVmcsInfo, sizeof(uint64_t));
290AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
291/** Pointer to VMX transient state. */
292typedef VMXTRANSIENT *PVMXTRANSIENT;
293
294/**
295 * Memory operand read or write access.
296 */
297typedef enum VMXMEMACCESS
298{
299 VMXMEMACCESS_READ = 0,
300 VMXMEMACCESS_WRITE = 1
301} VMXMEMACCESS;
302
303/**
304 * VMX VM-exit handler.
305 *
306 * @returns Strict VBox status code (i.e. informational status codes too).
307 * @param pVCpu The cross context virtual CPU structure.
308 * @param pVmxTransient The VMX-transient structure.
309 */
310#ifndef HMVMX_USE_FUNCTION_TABLE
311typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
312#else
313typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
314/** Pointer to VM-exit handler. */
315typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
316#endif
317
318/**
319 * VMX VM-exit handler, non-strict status code.
320 *
321 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
322 *
323 * @returns VBox status code, no informational status code returned.
324 * @param pVCpu The cross context virtual CPU structure.
325 * @param pVmxTransient The VMX-transient structure.
326 *
327 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
328 * use of that status code will be replaced with VINF_EM_SOMETHING
329 * later when switching over to IEM.
330 */
331#ifndef HMVMX_USE_FUNCTION_TABLE
332typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
333#else
334typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
335#endif
336
337
338/*********************************************************************************************************************************
339* Internal Functions *
340*********************************************************************************************************************************/
341#ifndef HMVMX_USE_FUNCTION_TABLE
342DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
343# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
344# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
345#else
346# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
347# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
348#endif
349#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
350DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
351#endif
352
353static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
354#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
355static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
356#endif
357
358/** @name VM-exit handlers.
359 * @{
360 */
361static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
362static FNVMXEXITHANDLER hmR0VmxExitExtInt;
363static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
364static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
365static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
366static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
367static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
368static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
369static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
370static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
371static FNVMXEXITHANDLER hmR0VmxExitCpuid;
372static FNVMXEXITHANDLER hmR0VmxExitGetsec;
373static FNVMXEXITHANDLER hmR0VmxExitHlt;
374static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
375static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
376static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
377static FNVMXEXITHANDLER hmR0VmxExitVmcall;
378#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
379static FNVMXEXITHANDLER hmR0VmxExitVmclear;
380static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
381static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
382static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
383static FNVMXEXITHANDLER hmR0VmxExitVmread;
384static FNVMXEXITHANDLER hmR0VmxExitVmresume;
385static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
386static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
387static FNVMXEXITHANDLER hmR0VmxExitVmxon;
388#endif
389static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
392static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
393static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
394static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
395static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
396static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
398static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
399static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
400static FNVMXEXITHANDLER hmR0VmxExitMwait;
401static FNVMXEXITHANDLER hmR0VmxExitMtf;
402static FNVMXEXITHANDLER hmR0VmxExitMonitor;
403static FNVMXEXITHANDLER hmR0VmxExitPause;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
405static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
406static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
407static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
408static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
409static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
410static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
411static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
413static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
414static FNVMXEXITHANDLER hmR0VmxExitRdrand;
415static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
416/** @} */
417
418/** @name Helpers for hardware exceptions VM-exit handlers.
419 * @{
420 */
421static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
422static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
423static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
424static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
425static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
426static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
427static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
428/** @} */
429
430
431/*********************************************************************************************************************************
432* Global Variables *
433*********************************************************************************************************************************/
434#ifdef VMX_USE_CACHED_VMCS_ACCESSES
435static const uint32_t g_aVmcsCacheSegBase[] =
436{
437 VMX_VMCS_GUEST_ES_BASE_CACHE_IDX,
438 VMX_VMCS_GUEST_CS_BASE_CACHE_IDX,
439 VMX_VMCS_GUEST_SS_BASE_CACHE_IDX,
440 VMX_VMCS_GUEST_DS_BASE_CACHE_IDX,
441 VMX_VMCS_GUEST_FS_BASE_CACHE_IDX,
442 VMX_VMCS_GUEST_GS_BASE_CACHE_IDX
443};
444AssertCompile(RT_ELEMENTS(g_aVmcsCacheSegBase) == X86_SREG_COUNT);
445#endif
446static const uint32_t g_aVmcsSegBase[] =
447{
448 VMX_VMCS_GUEST_ES_BASE,
449 VMX_VMCS_GUEST_CS_BASE,
450 VMX_VMCS_GUEST_SS_BASE,
451 VMX_VMCS_GUEST_DS_BASE,
452 VMX_VMCS_GUEST_FS_BASE,
453 VMX_VMCS_GUEST_GS_BASE
454};
455static const uint32_t g_aVmcsSegSel[] =
456{
457 VMX_VMCS16_GUEST_ES_SEL,
458 VMX_VMCS16_GUEST_CS_SEL,
459 VMX_VMCS16_GUEST_SS_SEL,
460 VMX_VMCS16_GUEST_DS_SEL,
461 VMX_VMCS16_GUEST_FS_SEL,
462 VMX_VMCS16_GUEST_GS_SEL
463};
464static const uint32_t g_aVmcsSegLimit[] =
465{
466 VMX_VMCS32_GUEST_ES_LIMIT,
467 VMX_VMCS32_GUEST_CS_LIMIT,
468 VMX_VMCS32_GUEST_SS_LIMIT,
469 VMX_VMCS32_GUEST_DS_LIMIT,
470 VMX_VMCS32_GUEST_FS_LIMIT,
471 VMX_VMCS32_GUEST_GS_LIMIT
472};
473static const uint32_t g_aVmcsSegAttr[] =
474{
475 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
476 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
477 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
478 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
479 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
480 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
481};
482AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
483AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
484AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
485AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
486
487#ifdef HMVMX_USE_FUNCTION_TABLE
488/**
489 * VMX_EXIT dispatch table.
490 */
491static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
492{
493 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
494 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
495 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
496 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
497 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
498 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
499 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
500 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
501 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
502 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
503 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
504 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
505 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
506 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
507 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
508 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
509 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
510 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
511 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
512#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
513 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
514 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
515 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
516 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
517 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
518 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
519 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
520 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
521 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
522#else
523 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
524 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
525 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
526 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
527 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
528 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
529 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
530 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
531 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
532#endif
533 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
534 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
535 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
536 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
537 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
538 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
539 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
540 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
541 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
542 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
543 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
544 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
545 /* 40 UNDEFINED */ hmR0VmxExitPause,
546 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
547 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
548 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
549 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
550 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
551 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
552 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
553 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
554 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
555 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
556 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
557 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
558 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
559 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
560 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
561 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
562 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
563 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
564 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
565 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
566 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
567 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
568 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
569 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
570};
571#endif /* HMVMX_USE_FUNCTION_TABLE */
572
573#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
574static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
575{
576 /* 0 */ "(Not Used)",
577 /* 1 */ "VMCALL executed in VMX root operation.",
578 /* 2 */ "VMCLEAR with invalid physical address.",
579 /* 3 */ "VMCLEAR with VMXON pointer.",
580 /* 4 */ "VMLAUNCH with non-clear VMCS.",
581 /* 5 */ "VMRESUME with non-launched VMCS.",
582 /* 6 */ "VMRESUME after VMXOFF",
583 /* 7 */ "VM-entry with invalid control fields.",
584 /* 8 */ "VM-entry with invalid host state fields.",
585 /* 9 */ "VMPTRLD with invalid physical address.",
586 /* 10 */ "VMPTRLD with VMXON pointer.",
587 /* 11 */ "VMPTRLD with incorrect revision identifier.",
588 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
589 /* 13 */ "VMWRITE to read-only VMCS component.",
590 /* 14 */ "(Not Used)",
591 /* 15 */ "VMXON executed in VMX root operation.",
592 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
593 /* 17 */ "VM-entry with non-launched executing VMCS.",
594 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
595 /* 19 */ "VMCALL with non-clear VMCS.",
596 /* 20 */ "VMCALL with invalid VM-exit control fields.",
597 /* 21 */ "(Not Used)",
598 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
599 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
600 /* 24 */ "VMCALL with invalid SMM-monitor features.",
601 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
602 /* 26 */ "VM-entry with events blocked by MOV SS.",
603 /* 27 */ "(Not Used)",
604 /* 28 */ "Invalid operand to INVEPT/INVVPID."
605};
606#endif /* VBOX_STRICT */
607
608
609/**
610 * Get the CR0 guest/host mask that does not change through the lifetime of a VM.
611 *
612 * Any bit set in this mask is owned by the host/hypervisor and would cause a
613 * VM-exit when modified by the guest.
614 *
615 * @returns The static CR0 guest/host mask.
616 * @param pVCpu The cross context virtual CPU structure.
617 */
618DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr0Mask(PCVMCPU pVCpu)
619{
620 /*
621 * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
622 * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
623 */
624 /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
625 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
626 * and @bugref{6944}. */
627 PVM pVM = pVCpu->CTX_SUFF(pVM);
628 return ( X86_CR0_PE
629 | X86_CR0_NE
630 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
631 | X86_CR0_PG
632 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
633 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
634 | X86_CR0_NW); /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
635}
636
637
638/**
639 * Gets the CR4 guest/host mask that does not change through the lifetime of a VM.
640 *
641 * Any bit set in this mask is owned by the host/hypervisor and would cause a
642 * VM-exit when modified by the guest.
643 *
644 * @returns The static CR4 guest/host mask.
645 * @param pVCpu The cross context virtual CPU structure.
646 */
647DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr4Mask(PCVMCPU pVCpu)
648{
649 /*
650 * We need to look at the host features here (for e.g. OSXSAVE, PCID) because
651 * these bits are reserved on hardware that does not support them. Since the
652 * CPU cannot refer to our virtual CPUID, we need to intercept CR4 changes to
653 * these bits and handle it depending on whether we expose them to the guest.
654 */
655 PVM pVM = pVCpu->CTX_SUFF(pVM);
656 bool const fXSaveRstor = pVM->cpum.ro.HostFeatures.fXSaveRstor;
657 bool const fPcid = pVM->cpum.ro.HostFeatures.fPcid;
658 return ( X86_CR4_VMXE
659 | X86_CR4_VME
660 | X86_CR4_PAE
661 | X86_CR4_PGE
662 | X86_CR4_PSE
663 | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
664 | (fPcid ? X86_CR4_PCIDE : 0));
665}
666
667
668/**
669 * Returns whether the the VM-exit MSR-store area differs from the VM-exit MSR-load
670 * area.
671 *
672 * @returns @c true if it's different, @c false otherwise.
673 * @param pVmcsInfo The VMCS info. object.
674 */
675DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
676{
677 return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
678 && pVmcsInfo->pvGuestMsrStore);
679}
680
681
682/**
683 * Adds one or more exceptions to the exception bitmap and commits it to the current
684 * VMCS.
685 *
686 * @returns VBox status code.
687 * @param pVmxTransient The VMX-transient structure.
688 * @param uXcptMask The exception(s) to add.
689 */
690static int hmR0VmxAddXcptInterceptMask(PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
691{
692 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
693 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
694 if ((uXcptBitmap & uXcptMask) != uXcptMask)
695 {
696 uXcptBitmap |= uXcptMask;
697 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
698 AssertRCReturn(rc, rc);
699 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
700 }
701 return VINF_SUCCESS;
702}
703
704
705/**
706 * Adds an exception to the exception bitmap and commits it to the current VMCS.
707 *
708 * @returns VBox status code.
709 * @param pVmxTransient The VMX-transient structure.
710 * @param uXcpt The exception to add.
711 */
712static int hmR0VmxAddXcptIntercept(PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
713{
714 Assert(uXcpt <= X86_XCPT_LAST);
715 return hmR0VmxAddXcptInterceptMask(pVmxTransient, RT_BIT_32(uXcpt));
716}
717
718
719/**
720 * Remove one or more exceptions from the exception bitmap and commits it to the
721 * current VMCS.
722 *
723 * This takes care of not removing the exception intercept if a nested-guest
724 * requires the exception to be intercepted.
725 *
726 * @returns VBox status code.
727 * @param pVCpu The cross context virtual CPU structure.
728 * @param pVmxTransient The VMX-transient structure.
729 * @param uXcptMask The exception(s) to remove.
730 */
731static int hmR0VmxRemoveXcptInterceptMask(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
732{
733 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
734 uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
735 if (u32XcptBitmap & uXcptMask)
736 {
737#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
738 if (!pVmxTransient->fIsNestedGuest)
739 { /* likely */ }
740 else
741 {
742 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
743 uXcptMask &= ~pVmcsNstGst->u32XcptBitmap;
744 }
745#endif
746#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
747 uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
748 | RT_BIT(X86_XCPT_DE)
749 | RT_BIT(X86_XCPT_NM)
750 | RT_BIT(X86_XCPT_TS)
751 | RT_BIT(X86_XCPT_UD)
752 | RT_BIT(X86_XCPT_NP)
753 | RT_BIT(X86_XCPT_SS)
754 | RT_BIT(X86_XCPT_GP)
755 | RT_BIT(X86_XCPT_PF)
756 | RT_BIT(X86_XCPT_MF));
757#elif defined(HMVMX_ALWAYS_TRAP_PF)
758 uXcptMask &= ~RT_BIT(X86_XCPT_PF);
759#endif
760 if (uXcptMask)
761 {
762 /* Validate we are not removing any essential exception intercepts. */
763 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF))); RT_NOREF(pVCpu);
764 Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
765 Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
766
767 /* Remove it from the exception bitmap. */
768 u32XcptBitmap &= ~uXcptMask;
769
770 /* Commit and update the cache if necessary. */
771 if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
772 {
773 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
774 AssertRCReturn(rc, rc);
775 pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
776 }
777 }
778 }
779 return VINF_SUCCESS;
780}
781
782
783/**
784 * Remove an exceptions from the exception bitmap and commits it to the current
785 * VMCS.
786 *
787 * @returns VBox status code.
788 * @param pVCpu The cross context virtual CPU structure.
789 * @param pVmxTransient The VMX-transient structure.
790 * @param uXcpt The exception to remove.
791 */
792static int hmR0VmxRemoveXcptIntercept(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
793{
794 return hmR0VmxRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
795}
796
797
798/**
799 * Loads the VMCS specified by the VMCS info. object.
800 *
801 * @returns VBox status code.
802 * @param pVmcsInfo The VMCS info. object.
803 */
804static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
805{
806 Assert(pVmcsInfo);
807 Assert(pVmcsInfo->HCPhysVmcs);
808 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
809
810 if (pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_CLEAR)
811 {
812 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
813 if (RT_SUCCESS(rc))
814 {
815 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
816 return VINF_SUCCESS;
817 }
818 return rc;
819 }
820 return VERR_VMX_INVALID_VMCS_LAUNCH_STATE;
821}
822
823
824/**
825 * Clears the VMCS specified by the VMCS info. object.
826 *
827 * @returns VBox status code.
828 * @param pVmcsInfo The VMCS info. object.
829 */
830static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
831{
832 Assert(pVmcsInfo);
833 Assert(pVmcsInfo->HCPhysVmcs);
834 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
835
836 int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
837 if (RT_SUCCESS(rc))
838 pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
839 return rc;
840}
841
842
843#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
844/**
845 * Switches the current VMCS to the one specified.
846 *
847 * @returns VBox status code.
848 * @param pVmcsInfoFrom The VMCS info. object we are switching from.
849 * @param pVmcsInfoTo The VMCS info. object we are switching to.
850 *
851 * @remarks Called with interrupts disabled.
852 */
853static int hmR0VmxSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
854{
855 Assert(pVmcsInfoFrom);
856 Assert(pVmcsInfoTo);
857
858 /*
859 * Clear the VMCS we are switching out if it has not already been cleared.
860 * This will sync any CPU internal data back to the VMCS.
861 */
862 if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
863 {
864 int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
865 if (RT_SUCCESS(rc))
866 { /* likely */ }
867 else
868 return rc;
869 }
870
871 /*
872 * Clear the VMCS we are switching to if it has not already been cleared.
873 * This will initialize the VMCS launch state to "clear" required for loading it.
874 *
875 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
876 */
877 if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
878 {
879 int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
880 if (RT_SUCCESS(rc))
881 { /* likely */ }
882 else
883 return rc;
884 }
885
886 /*
887 * Finally, load the VMCS we are switching to.
888 */
889 return hmR0VmxLoadVmcs(pVmcsInfoTo);
890}
891#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
892
893
894/**
895 * Updates the VM's last error record.
896 *
897 * If there was a VMX instruction error, reads the error data from the VMCS and
898 * updates VCPU's last error record as well.
899 *
900 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
901 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
902 * VERR_VMX_INVALID_VMCS_FIELD.
903 * @param rc The error code.
904 */
905static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
906{
907 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
908 || rc == VERR_VMX_UNABLE_TO_START_VM)
909 {
910 AssertPtrReturnVoid(pVCpu);
911 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
912 }
913 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
914}
915
916
917#ifdef VBOX_STRICT
918/**
919 * Reads the VM-entry interruption-information field from the VMCS into the VMX
920 * transient structure.
921 *
922 * @returns VBox status code.
923 * @param pVmxTransient The VMX-transient structure.
924 *
925 * @remarks No-long-jump zone!!!
926 */
927DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
928{
929 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
930 AssertRCReturn(rc, rc);
931 return VINF_SUCCESS;
932}
933
934
935/**
936 * Reads the VM-entry exception error code field from the VMCS into
937 * the VMX transient structure.
938 *
939 * @returns VBox status code.
940 * @param pVmxTransient The VMX-transient structure.
941 *
942 * @remarks No-long-jump zone!!!
943 */
944DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
945{
946 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
947 AssertRCReturn(rc, rc);
948 return VINF_SUCCESS;
949}
950
951
952/**
953 * Reads the VM-entry exception error code field from the VMCS into
954 * the VMX transient structure.
955 *
956 * @returns VBox status code.
957 * @param pVmxTransient The VMX-transient structure.
958 *
959 * @remarks No-long-jump zone!!!
960 */
961DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
962{
963 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
964 AssertRCReturn(rc, rc);
965 return VINF_SUCCESS;
966}
967#endif /* VBOX_STRICT */
968
969
970/**
971 * Reads the VM-exit interruption-information field from the VMCS into the VMX
972 * transient structure.
973 *
974 * @returns VBox status code.
975 * @param pVmxTransient The VMX-transient structure.
976 */
977DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
978{
979 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
980 {
981 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
982 AssertRCReturn(rc,rc);
983 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
984 }
985 return VINF_SUCCESS;
986}
987
988
989/**
990 * Reads the VM-exit interruption error code from the VMCS into the VMX
991 * transient structure.
992 *
993 * @returns VBox status code.
994 * @param pVmxTransient The VMX-transient structure.
995 */
996DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
997{
998 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
999 {
1000 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1001 AssertRCReturn(rc, rc);
1002 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
1003 }
1004 return VINF_SUCCESS;
1005}
1006
1007
1008/**
1009 * Reads the VM-exit instruction length field from the VMCS into the VMX
1010 * transient structure.
1011 *
1012 * @returns VBox status code.
1013 * @param pVmxTransient The VMX-transient structure.
1014 */
1015DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1016{
1017 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
1018 {
1019 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
1020 AssertRCReturn(rc, rc);
1021 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
1022 }
1023 return VINF_SUCCESS;
1024}
1025
1026
1027/**
1028 * Reads the VM-exit instruction-information field from the VMCS into
1029 * the VMX transient structure.
1030 *
1031 * @returns VBox status code.
1032 * @param pVmxTransient The VMX-transient structure.
1033 */
1034DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
1035{
1036 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
1037 {
1038 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1039 AssertRCReturn(rc, rc);
1040 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
1041 }
1042 return VINF_SUCCESS;
1043}
1044
1045
1046/**
1047 * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
1048 *
1049 * @returns VBox status code.
1050 * @param pVCpu The cross context virtual CPU structure of the
1051 * calling EMT. (Required for the VMCS cache case.)
1052 * @param pVmxTransient The VMX-transient structure.
1053 */
1054DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1055{
1056 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
1057 {
1058 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
1059 AssertRCReturn(rc, rc);
1060 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
1061 }
1062 return VINF_SUCCESS;
1063}
1064
1065
1066/**
1067 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
1068 *
1069 * @returns VBox status code.
1070 * @param pVCpu The cross context virtual CPU structure of the
1071 * calling EMT. (Required for the VMCS cache case.)
1072 * @param pVmxTransient The VMX-transient structure.
1073 */
1074DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1075{
1076 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
1077 {
1078 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
1079 AssertRCReturn(rc, rc);
1080 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
1081 }
1082 return VINF_SUCCESS;
1083}
1084
1085
1086/**
1087 * Reads the IDT-vectoring information field from the VMCS into the VMX
1088 * transient structure.
1089 *
1090 * @returns VBox status code.
1091 * @param pVmxTransient The VMX-transient structure.
1092 *
1093 * @remarks No-long-jump zone!!!
1094 */
1095DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
1096{
1097 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
1098 {
1099 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1100 AssertRCReturn(rc, rc);
1101 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
1102 }
1103 return VINF_SUCCESS;
1104}
1105
1106
1107/**
1108 * Reads the IDT-vectoring error code from the VMCS into the VMX
1109 * transient structure.
1110 *
1111 * @returns VBox status code.
1112 * @param pVmxTransient The VMX-transient structure.
1113 */
1114DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1115{
1116 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
1117 {
1118 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1119 AssertRCReturn(rc, rc);
1120 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
1121 }
1122 return VINF_SUCCESS;
1123}
1124
1125
1126/**
1127 * Enters VMX root mode operation on the current CPU.
1128 *
1129 * @returns VBox status code.
1130 * @param pVM The cross context VM structure. Can be
1131 * NULL, after a resume.
1132 * @param HCPhysCpuPage Physical address of the VMXON region.
1133 * @param pvCpuPage Pointer to the VMXON region.
1134 */
1135static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
1136{
1137 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
1138 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
1139 Assert(pvCpuPage);
1140 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1141
1142 if (pVM)
1143 {
1144 /* Write the VMCS revision identifier to the VMXON region. */
1145 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
1146 }
1147
1148 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
1149 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1150
1151 /* Enable the VMX bit in CR4 if necessary. */
1152 RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
1153
1154 /* Enter VMX root mode. */
1155 int rc = VMXEnable(HCPhysCpuPage);
1156 if (RT_FAILURE(rc))
1157 {
1158 if (!(uOldCr4 & X86_CR4_VMXE))
1159 SUPR0ChangeCR4(0 /* fOrMask */, ~X86_CR4_VMXE);
1160
1161 if (pVM)
1162 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
1163 }
1164
1165 /* Restore interrupts. */
1166 ASMSetFlags(fEFlags);
1167 return rc;
1168}
1169
1170
1171/**
1172 * Exits VMX root mode operation on the current CPU.
1173 *
1174 * @returns VBox status code.
1175 */
1176static int hmR0VmxLeaveRootMode(void)
1177{
1178 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1179
1180 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
1181 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1182
1183 /* If we're for some reason not in VMX root mode, then don't leave it. */
1184 RTCCUINTREG const uHostCR4 = ASMGetCR4();
1185
1186 int rc;
1187 if (uHostCR4 & X86_CR4_VMXE)
1188 {
1189 /* Exit VMX root mode and clear the VMX bit in CR4. */
1190 VMXDisable();
1191 SUPR0ChangeCR4(0 /* fOrMask */, ~X86_CR4_VMXE);
1192 rc = VINF_SUCCESS;
1193 }
1194 else
1195 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
1196
1197 /* Restore interrupts. */
1198 ASMSetFlags(fEFlags);
1199 return rc;
1200}
1201
1202
1203/**
1204 * Allocates and maps a physically contiguous page. The allocated page is
1205 * zero'd out (used by various VT-x structures).
1206 *
1207 * @returns IPRT status code.
1208 * @param pMemObj Pointer to the ring-0 memory object.
1209 * @param ppVirt Where to store the virtual address of the
1210 * allocation.
1211 * @param pHCPhys Where to store the physical address of the
1212 * allocation.
1213 */
1214static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
1215{
1216 AssertPtr(pMemObj);
1217 AssertPtr(ppVirt);
1218 AssertPtr(pHCPhys);
1219 int rc = RTR0MemObjAllocCont(pMemObj, X86_PAGE_4K_SIZE, false /* fExecutable */);
1220 if (RT_FAILURE(rc))
1221 return rc;
1222 *ppVirt = RTR0MemObjAddress(*pMemObj);
1223 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
1224 ASMMemZero32(*ppVirt, X86_PAGE_4K_SIZE);
1225 return VINF_SUCCESS;
1226}
1227
1228
1229/**
1230 * Frees and unmaps an allocated, physical page.
1231 *
1232 * @param pMemObj Pointer to the ring-0 memory object.
1233 * @param ppVirt Where to re-initialize the virtual address of
1234 * allocation as 0.
1235 * @param pHCPhys Where to re-initialize the physical address of the
1236 * allocation as 0.
1237 */
1238static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
1239{
1240 AssertPtr(pMemObj);
1241 AssertPtr(ppVirt);
1242 AssertPtr(pHCPhys);
1243 /* NULL is valid, accepted and ignored by the free function below. */
1244 RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
1245 *pMemObj = NIL_RTR0MEMOBJ;
1246 *ppVirt = NULL;
1247 *pHCPhys = NIL_RTHCPHYS;
1248}
1249
1250
1251/**
1252 * Initializes a VMCS info. object.
1253 *
1254 * @param pVmcsInfo The VMCS info. object.
1255 */
1256static void hmR0VmxInitVmcsInfo(PVMXVMCSINFO pVmcsInfo)
1257{
1258 RT_ZERO(*pVmcsInfo);
1259
1260 Assert(pVmcsInfo->hMemObjVmcs == NIL_RTR0MEMOBJ);
1261 Assert(pVmcsInfo->hMemObjMsrBitmap == NIL_RTR0MEMOBJ);
1262 Assert(pVmcsInfo->hMemObjGuestMsrLoad == NIL_RTR0MEMOBJ);
1263 Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
1264 Assert(pVmcsInfo->hMemObjHostMsrLoad == NIL_RTR0MEMOBJ);
1265 pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
1266 pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
1267 pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
1268 pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
1269 pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
1270 pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
1271 pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
1272 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
1273}
1274
1275
1276/**
1277 * Frees the VT-x structures for a VMCS info. object.
1278 *
1279 * @param pVM The cross context VM structure.
1280 * @param pVmcsInfo The VMCS info. object.
1281 */
1282static void hmR0VmxFreeVmcsInfo(PVM pVM, PVMXVMCSINFO pVmcsInfo)
1283{
1284 hmR0VmxPageFree(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
1285
1286 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1287 hmR0VmxPageFree(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
1288
1289 hmR0VmxPageFree(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad, &pVmcsInfo->HCPhysHostMsrLoad);
1290 hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad, &pVmcsInfo->HCPhysGuestMsrLoad);
1291 hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrStore, &pVmcsInfo->pvGuestMsrStore, &pVmcsInfo->HCPhysGuestMsrStore);
1292
1293 hmR0VmxInitVmcsInfo(pVmcsInfo);
1294}
1295
1296
1297/**
1298 * Allocates the VT-x structures for a VMCS info. object.
1299 *
1300 * @returns VBox status code.
1301 * @param pVCpu The cross context virtual CPU structure.
1302 * @param pVmcsInfo The VMCS info. object.
1303 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1304 */
1305static int hmR0VmxAllocVmcsInfo(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
1306{
1307 PVM pVM = pVCpu->CTX_SUFF(pVM);
1308
1309 /* Allocate the guest VM control structure (VMCS). */
1310 int rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
1311 if (RT_SUCCESS(rc))
1312 {
1313 if (!fIsNstGstVmcs)
1314 {
1315 /* Get the allocated virtual-APIC page from the virtual APIC device. */
1316 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
1317 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
1318 {
1319 rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic,
1320 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1321 }
1322 }
1323 else
1324 {
1325 Assert(pVmcsInfo->HCPhysVirtApic == NIL_RTHCPHYS);
1326 Assert(!pVmcsInfo->pbVirtApic);
1327 }
1328
1329 if (RT_SUCCESS(rc))
1330 {
1331 /*
1332 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1333 * transparent accesses of specific MSRs.
1334 *
1335 * If the condition for enabling MSR bitmaps changes here, don't forget to
1336 * update HMIsMsrBitmapActive().
1337 *
1338 * We don't share MSR bitmaps between the guest and nested-guest as we then
1339 * don't need to care about carefully restoring the guest MSR bitmap.
1340 * The guest visible nested-guest MSR bitmap needs to remain unchanged.
1341 * Hence, allocate a separate MSR bitmap for the guest and nested-guest.
1342 */
1343 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1344 {
1345 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
1346 if (RT_SUCCESS(rc))
1347 ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
1348 }
1349
1350 if (RT_SUCCESS(rc))
1351 {
1352 /*
1353 * Allocate the VM-entry MSR-load area for the guest MSRs.
1354 *
1355 * Similar to MSR-bitmaps, we do not share the auto MSR-load/store are between
1356 * the guest and nested-guest.
1357 */
1358 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad,
1359 &pVmcsInfo->HCPhysGuestMsrLoad);
1360 if (RT_SUCCESS(rc))
1361 {
1362 /*
1363 * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
1364 * These contain the guest MSRs to load on VM-entry and store on VM-exit.
1365 */
1366 Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
1367 pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
1368 pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
1369
1370 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1371 rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad,
1372 &pVmcsInfo->HCPhysHostMsrLoad);
1373 }
1374 }
1375 }
1376 }
1377
1378 return rc;
1379}
1380
1381
1382/**
1383 * Free all VT-x structures for the VM.
1384 *
1385 * @returns IPRT status code.
1386 * @param pVM The cross context VM structure.
1387 */
1388static void hmR0VmxStructsFree(PVM pVM)
1389{
1390#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1391 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1392#endif
1393 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
1394
1395 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1396 {
1397 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1398 PVMXVMCSINFO pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
1399 hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
1400#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1401 if (pVM->cpum.ro.GuestFeatures.fVmx)
1402 {
1403 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1404 hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
1405 }
1406#endif
1407 }
1408}
1409
1410
1411/**
1412 * Allocate all VT-x structures for the VM.
1413 *
1414 * @returns IPRT status code.
1415 * @param pVM The cross context VM structure.
1416 */
1417static int hmR0VmxStructsAlloc(PVM pVM)
1418{
1419 /*
1420 * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
1421 * The VMCS size cannot be more than 4096 bytes.
1422 *
1423 * See Intel spec. Appendix A.1 "Basic VMX Information".
1424 */
1425 uint32_t const cbVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
1426 if (cbVmcs <= X86_PAGE_4K_SIZE)
1427 { /* likely */ }
1428 else
1429 {
1430 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
1431 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1432 }
1433
1434 /*
1435 * Initialize/check members up-front so we can cleanup en masse on allocation failures.
1436 */
1437#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1438 Assert(pVM->hm.s.vmx.hMemObjScratch == NIL_RTR0MEMOBJ);
1439 Assert(pVM->hm.s.vmx.pbScratch == NULL);
1440 pVM->hm.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
1441#endif
1442
1443 Assert(pVM->hm.s.vmx.hMemObjApicAccess == NIL_RTR0MEMOBJ);
1444 Assert(pVM->hm.s.vmx.pbApicAccess == NULL);
1445 pVM->hm.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
1446
1447 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1448 {
1449 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1450 hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfo);
1451 hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
1452 }
1453
1454 /*
1455 * Allocate per-VM VT-x structures.
1456 */
1457 int rc = VINF_SUCCESS;
1458#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1459 /* Allocate crash-dump magic scratch page. */
1460 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1461 if (RT_FAILURE(rc))
1462 {
1463 hmR0VmxStructsFree(pVM);
1464 return rc;
1465 }
1466 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
1467 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
1468#endif
1469
1470 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
1471 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
1472 {
1473 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
1474 &pVM->hm.s.vmx.HCPhysApicAccess);
1475 if (RT_FAILURE(rc))
1476 {
1477 hmR0VmxStructsFree(pVM);
1478 return rc;
1479 }
1480 }
1481
1482 /*
1483 * Initialize per-VCPU VT-x structures.
1484 */
1485 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1486 {
1487 /* Allocate the guest VMCS structures. */
1488 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1489 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
1490 if (RT_SUCCESS(rc))
1491 {
1492#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1493 /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
1494 if (pVM->cpum.ro.GuestFeatures.fVmx)
1495 {
1496 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
1497 if (RT_SUCCESS(rc))
1498 { /* likely */ }
1499 else
1500 break;
1501 }
1502#endif
1503 }
1504 else
1505 break;
1506 }
1507
1508 if (RT_FAILURE(rc))
1509 {
1510 hmR0VmxStructsFree(pVM);
1511 return rc;
1512 }
1513
1514 return VINF_SUCCESS;
1515}
1516
1517
1518#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1519/**
1520 * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
1521 *
1522 * @returns @c true if the MSR is intercepted, @c false otherwise.
1523 * @param pvMsrBitmap The MSR bitmap.
1524 * @param offMsr The MSR byte offset.
1525 * @param iBit The bit offset from the byte offset.
1526 */
1527DECLINLINE(bool) hmR0VmxIsMsrBitSet(const void *pvMsrBitmap, uint16_t offMsr, int32_t iBit)
1528{
1529 uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
1530 Assert(pbMsrBitmap);
1531 Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
1532 return ASMBitTest(pbMsrBitmap + offMsr, iBit);
1533}
1534#endif
1535
1536
1537/**
1538 * Sets the permission bits for the specified MSR in the given MSR bitmap.
1539 *
1540 * If the passed VMCS is a nested-guest VMCS, this function ensures that the
1541 * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
1542 * VMX execution of the nested-guest, only if nested-guest is also not intercepting
1543 * the read/write access of this MSR.
1544 *
1545 * @param pVCpu The cross context virtual CPU structure.
1546 * @param pVmcsInfo The VMCS info. object.
1547 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1548 * @param idMsr The MSR value.
1549 * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
1550 * include both a read -and- a write permission!
1551 *
1552 * @sa HMGetVmxMsrPermission.
1553 */
1554static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
1555{
1556 uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
1557 Assert(pbMsrBitmap);
1558 Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
1559
1560 /*
1561 * MSR-bitmap Layout:
1562 * Byte index MSR range Interpreted as
1563 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
1564 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
1565 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
1566 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
1567 *
1568 * A bit corresponding to an MSR within the above range causes a VM-exit
1569 * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
1570 * the MSR range, it always cause a VM-exit.
1571 *
1572 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
1573 */
1574 uint16_t const offBitmapRead = 0;
1575 uint16_t const offBitmapWrite = 0x800;
1576 uint16_t offMsr;
1577 int32_t iBit;
1578 if (idMsr <= UINT32_C(0x00001fff))
1579 {
1580 offMsr = 0;
1581 iBit = idMsr;
1582 }
1583 else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1584 {
1585 offMsr = 0x400;
1586 iBit = idMsr - UINT32_C(0xc0000000);
1587 }
1588 else
1589 AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
1590
1591 /*
1592 * Set the MSR read permission.
1593 */
1594 uint16_t const offMsrRead = offBitmapRead + offMsr;
1595 Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
1596 if (fMsrpm & VMXMSRPM_ALLOW_RD)
1597 {
1598#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1599 bool const fClear = !fIsNstGstVmcs ? true
1600 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrRead, iBit);
1601#else
1602 RT_NOREF2(pVCpu, fIsNstGstVmcs);
1603 bool const fClear = true;
1604#endif
1605 if (fClear)
1606 ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
1607 }
1608 else
1609 ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
1610
1611 /*
1612 * Set the MSR write permission.
1613 */
1614 uint16_t const offMsrWrite = offBitmapWrite + offMsr;
1615 Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
1616 if (fMsrpm & VMXMSRPM_ALLOW_WR)
1617 {
1618#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1619 bool const fClear = !fIsNstGstVmcs ? true
1620 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrWrite, iBit);
1621#else
1622 RT_NOREF2(pVCpu, fIsNstGstVmcs);
1623 bool const fClear = true;
1624#endif
1625 if (fClear)
1626 ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
1627 }
1628 else
1629 ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
1630}
1631
1632
1633/**
1634 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1635 * area.
1636 *
1637 * @returns VBox status code.
1638 * @param pVCpu The cross context virtual CPU structure.
1639 * @param pVmcsInfo The VMCS info. object.
1640 * @param cMsrs The number of MSRs.
1641 */
1642static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
1643{
1644 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1645 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1646 if (RT_UNLIKELY(cMsrs >= cMaxSupportedMsrs))
1647 {
1648 LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1649 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1650 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1651 }
1652
1653 /* Commit the MSR counts to the VMCS and update the cache. */
1654 int rc = VINF_SUCCESS;
1655 if (pVmcsInfo->cEntryMsrLoad != cMsrs)
1656 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1657 if (pVmcsInfo->cExitMsrStore != cMsrs)
1658 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1659 if (pVmcsInfo->cExitMsrLoad != cMsrs)
1660 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1661 AssertRCReturn(rc, rc);
1662
1663 pVmcsInfo->cEntryMsrLoad = cMsrs;
1664 pVmcsInfo->cExitMsrStore = cMsrs;
1665 pVmcsInfo->cExitMsrLoad = cMsrs;
1666
1667 return VINF_SUCCESS;
1668}
1669
1670
1671/**
1672 * Adds a new (or updates the value of an existing) guest/host MSR
1673 * pair to be swapped during the world-switch as part of the
1674 * auto-load/store MSR area in the VMCS.
1675 *
1676 * @returns VBox status code.
1677 * @param pVCpu The cross context virtual CPU structure.
1678 * @param pVmxTransient The VMX-transient structure.
1679 * @param idMsr The MSR.
1680 * @param uGuestMsrValue Value of the guest MSR.
1681 * @param fSetReadWrite Whether to set the guest read/write access of this
1682 * MSR (thus not causing a VM-exit).
1683 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1684 * necessary.
1685 */
1686static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
1687 bool fSetReadWrite, bool fUpdateHostMsr)
1688{
1689 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1690 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
1691 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1692 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
1693 uint32_t i;
1694
1695 /* Paranoia. */
1696 Assert(pGuestMsrLoad);
1697
1698 /* Check if the MSR already exists in the VM-entry MSR-load area. */
1699 for (i = 0; i < cMsrs; i++)
1700 {
1701 if (pGuestMsrLoad->u32Msr == idMsr)
1702 break;
1703 pGuestMsrLoad++;
1704 }
1705
1706 bool fAdded = false;
1707 if (i == cMsrs)
1708 {
1709 /* The MSR does not exist, bump the MSR coun to make room for the new MSR. */
1710 ++cMsrs;
1711 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
1712 AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
1713
1714 /* Set the guest to read/write this MSR without causing VM-exits. */
1715 if ( fSetReadWrite
1716 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
1717 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
1718
1719 fAdded = true;
1720 }
1721
1722 /* Update the MSR value for the newly added or already existing MSR. */
1723 pGuestMsrLoad->u32Msr = idMsr;
1724 pGuestMsrLoad->u64Value = uGuestMsrValue;
1725
1726 /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
1727 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
1728 {
1729 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1730 pGuestMsrStore += i;
1731 pGuestMsrStore->u32Msr = idMsr;
1732 pGuestMsrStore->u64Value = 0;
1733 }
1734
1735 /* Update the corresponding slot in the host MSR area. */
1736 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1737 Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad && pHostMsr != pVmcsInfo->pvGuestMsrStore);
1738 pHostMsr += i;
1739 pHostMsr->u32Msr = idMsr;
1740
1741 /*
1742 * Only if the caller requests to update the host MSR value AND we've newly added the
1743 * MSR to the host MSR area do we actually update the value. Otherwise, it will be
1744 * updated by hmR0VmxUpdateAutoLoadHostMsrs().
1745 *
1746 * We do this for performance reasons since reading MSRs may be quite expensive.
1747 */
1748 if ( fAdded
1749 && fUpdateHostMsr)
1750 {
1751 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1752 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1753 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1754 }
1755 return VINF_SUCCESS;
1756}
1757
1758
1759/**
1760 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1761 * auto-load/store MSR area in the VMCS.
1762 *
1763 * @returns VBox status code.
1764 * @param pVCpu The cross context virtual CPU structure.
1765 * @param pVmxTransient The VMX-transient structure.
1766 * @param idMsr The MSR.
1767 */
1768static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr)
1769{
1770 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1771 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
1772 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1773 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
1774
1775 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
1776 for (uint32_t i = 0; i < cMsrs; i++)
1777 {
1778 /* Find the MSR. */
1779 if (pGuestMsrLoad->u32Msr == idMsr)
1780 {
1781 /* If it's the last MSR, simply reduce the count. */
1782 if (i == cMsrs - 1)
1783 {
1784 --cMsrs;
1785 break;
1786 }
1787
1788 /* Remove it by copying the last MSR in place of it, and reducing the count. */
1789 PVMXAUTOMSR pLastGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1790 pLastGuestMsrLoad += cMsrs - 1;
1791 pGuestMsrLoad->u32Msr = pLastGuestMsrLoad->u32Msr;
1792 pGuestMsrLoad->u64Value = pLastGuestMsrLoad->u64Value;
1793
1794 /* Remove it from the VM-exit MSR-store area if we are using a different page. */
1795 if (fSeparateExitMsrStorePage)
1796 {
1797 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1798 PVMXAUTOMSR pLastGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
1799 pGuestMsrStore += i;
1800 pLastGuestMsrStore += cMsrs - 1;
1801 Assert(pGuestMsrStore->u32Msr == idMsr);
1802 pGuestMsrStore->u32Msr = pLastGuestMsrStore->u32Msr;
1803 pGuestMsrStore->u64Value = pLastGuestMsrStore->u64Value;
1804 }
1805
1806 /* Remove it from the VM-exit MSR-load area. */
1807 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1808 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1809 pHostMsr += i;
1810 pLastHostMsr += cMsrs - 1;
1811 Assert(pHostMsr->u32Msr == idMsr);
1812 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1813 pHostMsr->u64Value = pLastHostMsr->u64Value;
1814 --cMsrs;
1815 break;
1816 }
1817 pGuestMsrLoad++;
1818 }
1819
1820 /* Update the VMCS if the count changed (meaning the MSR was found). */
1821 if (cMsrs != pVmcsInfo->cEntryMsrLoad)
1822 {
1823 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
1824 AssertRCReturn(rc, rc);
1825
1826 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1827 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1828 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
1829
1830 Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
1831 return VINF_SUCCESS;
1832 }
1833
1834 return VERR_NOT_FOUND;
1835}
1836
1837
1838/**
1839 * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
1840 *
1841 * @returns @c true if found, @c false otherwise.
1842 * @param pVmcsInfo The VMCS info. object.
1843 * @param idMsr The MSR to find.
1844 */
1845static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
1846{
1847 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
1848 uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
1849 for (uint32_t i = 0; i < cMsrs; i++)
1850 {
1851 if (pGuestMsrLoad->u32Msr == idMsr)
1852 return true;
1853 pGuestMsrLoad++;
1854 }
1855 return false;
1856}
1857
1858
1859/**
1860 * Updates the value of all host MSRs in the VM-exit MSR-load area.
1861 *
1862 * @param pVCpu The cross context virtual CPU structure.
1863 * @param pVmcsInfo The VMCS info. object.
1864 *
1865 * @remarks No-long-jump zone!!!
1866 */
1867static void hmR0VmxUpdateAutoLoadHostMsrs(PCVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
1868{
1869 PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
1870 uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
1871
1872 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1873 Assert(pHostMsrLoad);
1874
1875 for (uint32_t i = 0; i < cMsrs; i++, pHostMsrLoad++)
1876 {
1877 /*
1878 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1879 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1880 */
1881 if (pHostMsrLoad->u32Msr == MSR_K6_EFER)
1882 pHostMsrLoad->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
1883 else
1884 pHostMsrLoad->u64Value = ASMRdMsr(pHostMsrLoad->u32Msr);
1885 }
1886}
1887
1888
1889/**
1890 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1891 * perform lazy restoration of the host MSRs while leaving VT-x.
1892 *
1893 * @param pVCpu The cross context virtual CPU structure.
1894 *
1895 * @remarks No-long-jump zone!!!
1896 */
1897static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1898{
1899 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1900
1901 /*
1902 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
1903 */
1904 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1905 {
1906 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1907#if HC_ARCH_BITS == 64
1908 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1909 {
1910 pVCpu->hm.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
1911 pVCpu->hm.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
1912 pVCpu->hm.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
1913 pVCpu->hm.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1914 }
1915#endif
1916 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1917 }
1918}
1919
1920
1921/**
1922 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1923 * lazily while leaving VT-x.
1924 *
1925 * @returns true if it does, false otherwise.
1926 * @param pVCpu The cross context virtual CPU structure.
1927 * @param idMsr The MSR to check.
1928 */
1929static bool hmR0VmxIsLazyGuestMsr(PCVMCPU pVCpu, uint32_t idMsr)
1930{
1931 NOREF(pVCpu);
1932#if HC_ARCH_BITS == 64
1933 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1934 {
1935 switch (idMsr)
1936 {
1937 case MSR_K8_LSTAR:
1938 case MSR_K6_STAR:
1939 case MSR_K8_SF_MASK:
1940 case MSR_K8_KERNEL_GS_BASE:
1941 return true;
1942 }
1943 }
1944#else
1945 RT_NOREF(pVCpu, idMsr);
1946#endif
1947 return false;
1948}
1949
1950
1951/**
1952 * Loads a set of guests MSRs to allow read/passthru to the guest.
1953 *
1954 * The name of this function is slightly confusing. This function does NOT
1955 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1956 * common prefix for functions dealing with "lazy restoration" of the shared
1957 * MSRs.
1958 *
1959 * @param pVCpu The cross context virtual CPU structure.
1960 *
1961 * @remarks No-long-jump zone!!!
1962 */
1963static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1964{
1965 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1966 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1967
1968 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1969#if HC_ARCH_BITS == 64
1970 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1971 {
1972 /*
1973 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1974 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1975 * we can skip a few MSR writes.
1976 *
1977 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1978 * guest MSR values in the guest-CPU context might be different to what's currently
1979 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1980 * CPU, see @bugref{8728}.
1981 */
1982 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1983 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1984 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostMsrKernelGsBase
1985 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostMsrLStar
1986 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostMsrStar
1987 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostMsrSfMask)
1988 {
1989#ifdef VBOX_STRICT
1990 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1991 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1992 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1993 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1994#endif
1995 }
1996 else
1997 {
1998 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1999 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
2000 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
2001 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
2002 }
2003 }
2004#endif
2005 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
2006}
2007
2008
2009/**
2010 * Performs lazy restoration of the set of host MSRs if they were previously
2011 * loaded with guest MSR values.
2012 *
2013 * @param pVCpu The cross context virtual CPU structure.
2014 *
2015 * @remarks No-long-jump zone!!!
2016 * @remarks The guest MSRs should have been saved back into the guest-CPU
2017 * context by hmR0VmxImportGuestState()!!!
2018 */
2019static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
2020{
2021 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2022 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2023
2024 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2025 {
2026 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2027#if HC_ARCH_BITS == 64
2028 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2029 {
2030 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostMsrLStar);
2031 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostMsrStar);
2032 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostMsrSfMask);
2033 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostMsrKernelGsBase);
2034 }
2035#endif
2036 }
2037 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
2038}
2039
2040
2041/**
2042 * Verifies that our cached values of the VMCS fields are all consistent with
2043 * what's actually present in the VMCS.
2044 *
2045 * @returns VBox status code.
2046 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
2047 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
2048 * VMCS content. HMCPU error-field is
2049 * updated, see VMX_VCI_XXX.
2050 * @param pVCpu The cross context virtual CPU structure.
2051 * @param pVmcsInfo The VMCS info. object.
2052 */
2053static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2054{
2055 uint32_t u32Val;
2056 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
2057 AssertRCReturn(rc, rc);
2058 AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
2059 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32EntryCtls, u32Val),
2060 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
2061 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2062
2063 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
2064 AssertRCReturn(rc, rc);
2065 AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
2066 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ExitCtls, u32Val),
2067 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
2068 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2069
2070 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
2071 AssertRCReturn(rc, rc);
2072 AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
2073 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32PinCtls, u32Val),
2074 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
2075 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2076
2077 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
2078 AssertRCReturn(rc, rc);
2079 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
2080 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls, u32Val),
2081 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
2082 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2083
2084 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2085 {
2086 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
2087 AssertRCReturn(rc, rc);
2088 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
2089 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls2, u32Val),
2090 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
2091 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2092 }
2093
2094 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
2095 AssertRCReturn(rc, rc);
2096 AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
2097 ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32XcptBitmap, u32Val),
2098 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
2099 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2100
2101 uint64_t u64Val;
2102 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
2103 AssertRCReturn(rc, rc);
2104 AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
2105 ("Cache=%#RX64 VMCS=%#RX64\n", pVmcsInfo->u64TscOffset, u64Val),
2106 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
2107 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2108
2109 return VINF_SUCCESS;
2110}
2111
2112
2113#ifdef VBOX_STRICT
2114/**
2115 * Verifies that our cached host EFER MSR value has not changed since we cached it.
2116 *
2117 * @param pVCpu The cross context virtual CPU structure.
2118 * @param pVmcsInfo The VMCS info. object.
2119 */
2120static void hmR0VmxCheckHostEferMsr(PCVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2121{
2122 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2123
2124 if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2125 {
2126 uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
2127 uint64_t const uHostEferMsrCache = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2128 uint64_t uVmcsEferMsrVmcs;
2129 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
2130 AssertRC(rc);
2131
2132 AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
2133 ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
2134 AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
2135 ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
2136 }
2137}
2138
2139
2140/**
2141 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
2142 * VMCS are correct.
2143 *
2144 * @param pVCpu The cross context virtual CPU structure.
2145 * @param pVmcsInfo The VMCS info. object.
2146 */
2147static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2148{
2149 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2150
2151 /* Verify MSR counts in the VMCS are what we think it should be. */
2152 uint32_t cMsrs;
2153 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs);
2154 AssertRC(rc);
2155 Assert(cMsrs == pVmcsInfo->cEntryMsrLoad);
2156
2157 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs);
2158 AssertRC(rc);
2159 Assert(cMsrs == pVmcsInfo->cExitMsrStore);
2160
2161 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs);
2162 AssertRC(rc);
2163 Assert(cMsrs == pVmcsInfo->cExitMsrLoad);
2164
2165 /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
2166 Assert(cMsrs < VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc));
2167
2168 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2169 PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2170 PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2171 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
2172 for (uint32_t i = 0; i < cMsrs; i++)
2173 {
2174 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
2175 if (fSeparateExitMsrStorePage)
2176 {
2177 AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
2178 ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
2179 pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
2180 }
2181
2182 AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
2183 ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
2184 pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
2185
2186 uint64_t const u64Msr = ASMRdMsr(pHostMsrLoad->u32Msr);
2187 AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64Msr,
2188 ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2189 pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64Msr, cMsrs));
2190
2191 /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
2192 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2193 {
2194 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
2195 if (pGuestMsrLoad->u32Msr == MSR_K6_EFER)
2196 {
2197 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
2198 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
2199 }
2200 else
2201 {
2202 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR,
2203 ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
2204 }
2205 }
2206
2207 /* Move to the next MSR. */
2208 pHostMsrLoad++;
2209 pGuestMsrLoad++;
2210 pGuestMsrStore++;
2211 }
2212}
2213#endif /* VBOX_STRICT */
2214
2215
2216/**
2217 * Flushes the TLB using EPT.
2218 *
2219 * @returns VBox status code.
2220 * @param pVCpu The cross context virtual CPU structure of the calling
2221 * EMT. Can be NULL depending on @a enmTlbFlush.
2222 * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
2223 * enmTlbFlush.
2224 * @param enmTlbFlush Type of flush.
2225 *
2226 * @remarks Caller is responsible for making sure this function is called only
2227 * when NestedPaging is supported and providing @a enmTlbFlush that is
2228 * supported by the CPU.
2229 * @remarks Can be called with interrupts disabled.
2230 */
2231static void hmR0VmxFlushEpt(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
2232{
2233 uint64_t au64Descriptor[2];
2234 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
2235 au64Descriptor[0] = 0;
2236 else
2237 {
2238 Assert(pVCpu);
2239 Assert(pVmcsInfo);
2240 au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
2241 }
2242 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
2243
2244 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
2245 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
2246
2247 if ( RT_SUCCESS(rc)
2248 && pVCpu)
2249 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
2250}
2251
2252
2253/**
2254 * Flushes the TLB using VPID.
2255 *
2256 * @returns VBox status code.
2257 * @param pVCpu The cross context virtual CPU structure of the calling
2258 * EMT. Can be NULL depending on @a enmTlbFlush.
2259 * @param enmTlbFlush Type of flush.
2260 * @param GCPtr Virtual address of the page to flush (can be 0 depending
2261 * on @a enmTlbFlush).
2262 *
2263 * @remarks Can be called with interrupts disabled.
2264 */
2265static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
2266{
2267 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
2268
2269 uint64_t au64Descriptor[2];
2270 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2271 {
2272 au64Descriptor[0] = 0;
2273 au64Descriptor[1] = 0;
2274 }
2275 else
2276 {
2277 AssertPtr(pVCpu);
2278 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2279 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2280 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
2281 au64Descriptor[1] = GCPtr;
2282 }
2283
2284 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
2285 AssertMsg(rc == VINF_SUCCESS,
2286 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
2287
2288 if ( RT_SUCCESS(rc)
2289 && pVCpu)
2290 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
2291 NOREF(rc);
2292}
2293
2294
2295/**
2296 * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
2297 * otherwise there is nothing really to invalidate.
2298 *
2299 * @returns VBox status code.
2300 * @param pVCpu The cross context virtual CPU structure.
2301 * @param GCVirt Guest virtual address of the page to invalidate.
2302 */
2303VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
2304{
2305 AssertPtr(pVCpu);
2306 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
2307
2308 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
2309 {
2310 /*
2311 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
2312 * the EPT case. See @bugref{6043} and @bugref{6177}.
2313 *
2314 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
2315 * as this function maybe called in a loop with individual addresses.
2316 */
2317 PVM pVM = pVCpu->CTX_SUFF(pVM);
2318 if (pVM->hm.s.vmx.fVpid)
2319 {
2320 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
2321
2322#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
2323 /*
2324 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
2325 * where executing INVVPID outside 64-bit mode does not flush translations of
2326 * 64-bit linear addresses, see @bugref{6208#c72}.
2327 */
2328 if (RT_HI_U32(GCVirt))
2329 fVpidFlush = false;
2330#endif
2331
2332 if (fVpidFlush)
2333 {
2334 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
2335 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
2336 }
2337 else
2338 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2339 }
2340 else if (pVM->hm.s.fNestedPaging)
2341 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2342 }
2343
2344 return VINF_SUCCESS;
2345}
2346
2347
2348/**
2349 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
2350 * case where neither EPT nor VPID is supported by the CPU.
2351 *
2352 * @param pHostCpu The HM physical-CPU structure.
2353 * @param pVCpu The cross context virtual CPU structure.
2354 *
2355 * @remarks Called with interrupts disabled.
2356 */
2357static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2358{
2359 AssertPtr(pVCpu);
2360 AssertPtr(pHostCpu);
2361
2362 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2363
2364 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2365 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2366 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2367 pVCpu->hm.s.fForceTLBFlush = false;
2368 return;
2369}
2370
2371
2372/**
2373 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
2374 *
2375 * @param pHostCpu The HM physical-CPU structure.
2376 * @param pVCpu The cross context virtual CPU structure.
2377 * @param pVmcsInfo The VMCS info. object.
2378 *
2379 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
2380 * nomenclature. The reason is, to avoid confusion in compare statements
2381 * since the host-CPU copies are named "ASID".
2382 *
2383 * @remarks Called with interrupts disabled.
2384 */
2385static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2386{
2387#ifdef VBOX_WITH_STATISTICS
2388 bool fTlbFlushed = false;
2389# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
2390# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
2391 if (!fTlbFlushed) \
2392 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
2393 } while (0)
2394#else
2395# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
2396# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
2397#endif
2398
2399 AssertPtr(pVCpu);
2400 AssertPtr(pHostCpu);
2401 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2402
2403 PVM pVM = pVCpu->CTX_SUFF(pVM);
2404 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
2405 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
2406 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
2407
2408 /*
2409 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
2410 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2411 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2412 * cannot reuse the current ASID anymore.
2413 */
2414 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2415 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2416 {
2417 ++pHostCpu->uCurrentAsid;
2418 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2419 {
2420 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
2421 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2422 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2423 }
2424
2425 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2426 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2427 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2428
2429 /*
2430 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
2431 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
2432 */
2433 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
2434 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2435 HMVMX_SET_TAGGED_TLB_FLUSHED();
2436 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2437 }
2438 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
2439 {
2440 /*
2441 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
2442 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
2443 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
2444 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
2445 * mappings, see @bugref{6568}.
2446 *
2447 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
2448 */
2449 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
2450 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2451 HMVMX_SET_TAGGED_TLB_FLUSHED();
2452 }
2453
2454 pVCpu->hm.s.fForceTLBFlush = false;
2455 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2456
2457 Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
2458 Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
2459 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2460 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2461 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2462 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2463 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2464 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2465 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2466
2467 /* Update VMCS with the VPID. */
2468 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2469 AssertRC(rc);
2470
2471#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2472}
2473
2474
2475/**
2476 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2477 *
2478 * @param pHostCpu The HM physical-CPU structure.
2479 * @param pVCpu The cross context virtual CPU structure.
2480 * @param pVmcsInfo The VMCS info. object.
2481 *
2482 * @remarks Called with interrupts disabled.
2483 */
2484static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2485{
2486 AssertPtr(pVCpu);
2487 AssertPtr(pHostCpu);
2488 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2489 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2490 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2491
2492 /*
2493 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2494 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2495 */
2496 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2497 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2498 {
2499 pVCpu->hm.s.fForceTLBFlush = true;
2500 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2501 }
2502
2503 /* Check for explicit TLB flushes. */
2504 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2505 {
2506 pVCpu->hm.s.fForceTLBFlush = true;
2507 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2508 }
2509
2510 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2511 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2512
2513 if (pVCpu->hm.s.fForceTLBFlush)
2514 {
2515 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2516 pVCpu->hm.s.fForceTLBFlush = false;
2517 }
2518}
2519
2520
2521/**
2522 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2523 *
2524 * @param pHostCpu The HM physical-CPU structure.
2525 * @param pVCpu The cross context virtual CPU structure.
2526 *
2527 * @remarks Called with interrupts disabled.
2528 */
2529static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2530{
2531 AssertPtr(pVCpu);
2532 AssertPtr(pHostCpu);
2533 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2534 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2535 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2536
2537 /*
2538 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2539 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2540 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2541 * cannot reuse the current ASID anymore.
2542 */
2543 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2544 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2545 {
2546 pVCpu->hm.s.fForceTLBFlush = true;
2547 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2548 }
2549
2550 /* Check for explicit TLB flushes. */
2551 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2552 {
2553 /*
2554 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2555 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2556 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
2557 * include fExplicitFlush's too) - an obscure corner case.
2558 */
2559 pVCpu->hm.s.fForceTLBFlush = true;
2560 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2561 }
2562
2563 PVM pVM = pVCpu->CTX_SUFF(pVM);
2564 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2565 if (pVCpu->hm.s.fForceTLBFlush)
2566 {
2567 ++pHostCpu->uCurrentAsid;
2568 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2569 {
2570 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2571 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2572 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2573 }
2574
2575 pVCpu->hm.s.fForceTLBFlush = false;
2576 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2577 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2578 if (pHostCpu->fFlushAsidBeforeUse)
2579 {
2580 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2581 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2582 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2583 {
2584 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2585 pHostCpu->fFlushAsidBeforeUse = false;
2586 }
2587 else
2588 {
2589 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2590 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2591 }
2592 }
2593 }
2594
2595 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2596 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2597 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2598 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2599 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2600 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2601 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2602
2603 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2604 AssertRC(rc);
2605}
2606
2607
2608/**
2609 * Flushes the guest TLB entry based on CPU capabilities.
2610 *
2611 * @param pHostCpu The HM physical-CPU structure.
2612 * @param pVCpu The cross context virtual CPU structure.
2613 * @param pVmcsInfo The VMCS info. object.
2614 *
2615 * @remarks Called with interrupts disabled.
2616 */
2617static void hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2618{
2619#ifdef HMVMX_ALWAYS_FLUSH_TLB
2620 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2621#endif
2622 PVM pVM = pVCpu->CTX_SUFF(pVM);
2623 switch (pVM->hm.s.vmx.enmTlbFlushType)
2624 {
2625 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
2626 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
2627 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
2628 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
2629 default:
2630 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2631 break;
2632 }
2633 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2634}
2635
2636
2637/**
2638 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2639 * TLB entries from the host TLB before VM-entry.
2640 *
2641 * @returns VBox status code.
2642 * @param pVM The cross context VM structure.
2643 */
2644static int hmR0VmxSetupTaggedTlb(PVM pVM)
2645{
2646 /*
2647 * Determine optimal flush type for nested paging.
2648 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
2649 * unrestricted guest execution (see hmR3InitFinalizeR0()).
2650 */
2651 if (pVM->hm.s.fNestedPaging)
2652 {
2653 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2654 {
2655 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2656 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2657 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2658 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2659 else
2660 {
2661 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2662 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2663 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2664 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2665 }
2666
2667 /* Make sure the write-back cacheable memory type for EPT is supported. */
2668 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2669 {
2670 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2671 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2672 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2673 }
2674
2675 /* EPT requires a page-walk length of 4. */
2676 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2677 {
2678 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2679 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2680 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2681 }
2682 }
2683 else
2684 {
2685 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2686 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2687 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2688 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2689 }
2690 }
2691
2692 /*
2693 * Determine optimal flush type for VPID.
2694 */
2695 if (pVM->hm.s.vmx.fVpid)
2696 {
2697 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2698 {
2699 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2700 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2701 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2702 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2703 else
2704 {
2705 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2706 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2707 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2708 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2709 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2710 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2711 pVM->hm.s.vmx.fVpid = false;
2712 }
2713 }
2714 else
2715 {
2716 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2717 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2718 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2719 pVM->hm.s.vmx.fVpid = false;
2720 }
2721 }
2722
2723 /*
2724 * Setup the handler for flushing tagged-TLBs.
2725 */
2726 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2727 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2728 else if (pVM->hm.s.fNestedPaging)
2729 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2730 else if (pVM->hm.s.vmx.fVpid)
2731 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2732 else
2733 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2734 return VINF_SUCCESS;
2735}
2736
2737
2738/**
2739 * Sets up the virtual-APIC page address for the VMCS.
2740 *
2741 * @returns VBox status code.
2742 * @param pVCpu The cross context virtual CPU structure.
2743 * @param pVmcsInfo The VMCS info. object.
2744 */
2745DECLINLINE(int) hmR0VmxSetupVmcsVirtApicAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2746{
2747 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2748 RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
2749 Assert(HCPhysVirtApic != NIL_RTHCPHYS);
2750 Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2751 return VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
2752}
2753
2754
2755/**
2756 * Sets up the MSR-bitmap address for the VMCS.
2757 *
2758 * @returns VBox status code.
2759 * @param pVCpu The cross context virtual CPU structure.
2760 * @param pVmcsInfo The VMCS info. object.
2761 */
2762DECLINLINE(int) hmR0VmxSetupVmcsMsrBitmapAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
2763{
2764 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2765 RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
2766 Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
2767 Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2768 return VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
2769}
2770
2771
2772/**
2773 * Sets up the APIC-access page address for the VMCS.
2774 *
2775 * @returns VBox status code.
2776 * @param pVCpu The cross context virtual CPU structure.
2777 */
2778DECLINLINE(int) hmR0VmxSetupVmcsApicAccessAddr(PVMCPU pVCpu)
2779{
2780 RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysApicAccess;
2781 Assert(HCPhysApicAccess != NIL_RTHCPHYS);
2782 Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2783 return VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
2784}
2785
2786
2787/**
2788 * Sets up the VMCS link pointer for the VMCS.
2789 *
2790 * @returns VBox status code.
2791 * @param pVCpu The cross context virtual CPU structure.
2792 * @param pVmcsInfo The VMCS info. object.
2793 */
2794DECLINLINE(int) hmR0VmxSetupVmcsLinkPtr(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2795{
2796 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2797 uint64_t const u64VmcsLinkPtr = pVmcsInfo->u64VmcsLinkPtr;
2798 Assert(u64VmcsLinkPtr == UINT64_C(0xffffffffffffffff)); /* Bits 63:0 MB1. */
2799 return VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, u64VmcsLinkPtr);
2800}
2801
2802
2803/**
2804 * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
2805 * in the VMCS.
2806 *
2807 * @returns VBox status code.
2808 * @param pVCpu The cross context virtual CPU structure.
2809 * @param pVmcsInfo The VMCS info. object.
2810 */
2811DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2812{
2813 NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
2814
2815 RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
2816 Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
2817 Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
2818
2819 RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
2820 Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
2821 Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
2822
2823 RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
2824 Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
2825 Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
2826
2827 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad);
2828 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore);
2829 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad);
2830 AssertRCReturn(rc, rc);
2831 return VINF_SUCCESS;
2832}
2833
2834
2835/**
2836 * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
2837 *
2838 * @param pVCpu The cross context virtual CPU structure.
2839 * @param pVmcsInfo The VMCS info. object.
2840 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2841 */
2842static void hmR0VmxSetupVmcsMsrPermissions(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2843{
2844 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
2845
2846 /*
2847 * The guest can access the following MSRs (read, write) without causing
2848 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2849 */
2850 PVM pVM = pVCpu->CTX_SUFF(pVM);
2851 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
2852 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
2853 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
2854 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
2855 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
2856
2857#ifdef VBOX_STRICT
2858 /** @todo NSTVMX: Remove this later. */
2859 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_IA32_SYSENTER_CS);
2860 Assert((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR);
2861
2862 fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K8_GS_BASE);
2863 Assert((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR);
2864#endif
2865
2866 /*
2867 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2868 * associated with then. We never need to intercept access (writes need to be
2869 * executed without causing a VM-exit, reads will #GP fault anyway).
2870 *
2871 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2872 * read/write them. We swap the the guest/host MSR value using the
2873 * auto-load/store MSR area.
2874 */
2875 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2876 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
2877 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2878 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
2879 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2880 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
2881
2882 /*
2883 * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
2884 */
2885
2886#if HC_ARCH_BITS == 64
2887 /*
2888 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2889 * required for 64-bit guests.
2890 */
2891 if (pVM->hm.s.fAllow64BitGuests)
2892 {
2893 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
2894 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
2895 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
2896 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
2897
2898# ifdef VBOX_STRICT
2899 fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K8_GS_BASE);
2900 Assert((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR);
2901# endif
2902 }
2903#endif
2904}
2905
2906
2907/**
2908 * Sets up pin-based VM-execution controls in the VMCS.
2909 *
2910 * @returns VBox status code.
2911 * @param pVCpu The cross context virtual CPU structure.
2912 * @param pVmcsInfo The VMCS info. object.
2913 */
2914static int hmR0VmxSetupVmcsPinCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2915{
2916 PVM pVM = pVCpu->CTX_SUFF(pVM);
2917 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
2918 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2919
2920 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2921 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2922
2923 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2924 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2925
2926 /* Enable the VMX-preemption timer. */
2927 if (pVM->hm.s.vmx.fUsePreemptTimer)
2928 {
2929 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2930 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2931 }
2932
2933#if 0
2934 /* Enable posted-interrupt processing. */
2935 if (pVM->hm.s.fPostedIntrs)
2936 {
2937 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2938 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2939 fVal |= VMX_PIN_CTL_POSTED_INT;
2940 }
2941#endif
2942
2943 if ((fVal & fZap) != fVal)
2944 {
2945 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2946 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
2947 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2948 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2949 }
2950
2951 /* Commit it to the VMCS and update our cache. */
2952 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2953 AssertRCReturn(rc, rc);
2954 pVmcsInfo->u32PinCtls = fVal;
2955
2956 return VINF_SUCCESS;
2957}
2958
2959
2960/**
2961 * Sets up secondary processor-based VM-execution controls in the VMCS.
2962 *
2963 * @returns VBox status code.
2964 * @param pVCpu The cross context virtual CPU structure.
2965 * @param pVmcsInfo The VMCS info. object.
2966 */
2967static int hmR0VmxSetupVmcsProcCtls2(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
2968{
2969 PVM pVM = pVCpu->CTX_SUFF(pVM);
2970 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2971 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2972
2973 /* WBINVD causes a VM-exit. */
2974 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2975 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2976
2977 /* Enable EPT (aka nested-paging). */
2978 if (pVM->hm.s.fNestedPaging)
2979 fVal |= VMX_PROC_CTLS2_EPT;
2980
2981 /* Enable the INVPCID instruction if supported by the hardware and we expose
2982 it to the guest. Without this, guest executing INVPCID would cause a #UD. */
2983 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2984 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2985 fVal |= VMX_PROC_CTLS2_INVPCID;
2986
2987 /* Enable VPID. */
2988 if (pVM->hm.s.vmx.fVpid)
2989 fVal |= VMX_PROC_CTLS2_VPID;
2990
2991 /* Enable unrestricted guest execution. */
2992 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2993 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2994
2995#if 0
2996 if (pVM->hm.s.fVirtApicRegs)
2997 {
2998 /* Enable APIC-register virtualization. */
2999 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
3000 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
3001
3002 /* Enable virtual-interrupt delivery. */
3003 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
3004 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
3005 }
3006#endif
3007
3008 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
3009 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
3010 * done dynamically. */
3011 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3012 {
3013 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
3014 int rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3015 AssertRCReturn(rc, rc);
3016 }
3017
3018 /* Enable the RDTSCP instruction if supported by the hardware and we expose
3019 it to the guest. Without this, guest executing RDTSCP would cause a #UD. */
3020 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
3021 && pVM->cpum.ro.GuestFeatures.fRdTscP)
3022 fVal |= VMX_PROC_CTLS2_RDTSCP;
3023
3024 /* Enable Pause-Loop exiting. */
3025 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
3026 && pVM->hm.s.vmx.cPleGapTicks
3027 && pVM->hm.s.vmx.cPleWindowTicks)
3028 {
3029 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
3030
3031 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
3032 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
3033 AssertRCReturn(rc, rc);
3034 }
3035
3036 if ((fVal & fZap) != fVal)
3037 {
3038 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3039 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
3040 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
3041 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3042 }
3043
3044 /* Commit it to the VMCS and update our cache. */
3045 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
3046 AssertRCReturn(rc, rc);
3047 pVmcsInfo->u32ProcCtls2 = fVal;
3048
3049 return VINF_SUCCESS;
3050}
3051
3052
3053/**
3054 * Sets up processor-based VM-execution controls in the VMCS.
3055 *
3056 * @returns VBox status code.
3057 * @param pVCpu The cross context virtual CPU structure.
3058 * @param pVmcsInfo The VMCS info. object.
3059 */
3060static int hmR0VmxSetupVmcsProcCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3061{
3062 PVM pVM = pVCpu->CTX_SUFF(pVM);
3063
3064 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3065 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3066
3067 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
3068 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
3069 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
3070 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
3071 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
3072 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
3073 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
3074
3075 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
3076 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
3077 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
3078 {
3079 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
3080 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3081 }
3082
3083 /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
3084 if (!pVM->hm.s.fNestedPaging)
3085 {
3086 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
3087 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
3088 | VMX_PROC_CTLS_CR3_LOAD_EXIT
3089 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3090 }
3091
3092 /* Use TPR shadowing if supported by the CPU. */
3093 if ( PDMHasApic(pVM)
3094 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
3095 {
3096 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3097 /* CR8 writes cause a VM-exit based on TPR threshold. */
3098 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3099 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3100 int rc = hmR0VmxSetupVmcsVirtApicAddr(pVCpu, pVmcsInfo);
3101 AssertRCReturn(rc, rc);
3102 }
3103 else
3104 {
3105 /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
3106 invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
3107 if (pVM->hm.s.fAllow64BitGuests)
3108 {
3109 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3110 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3111 }
3112 }
3113
3114 /* Use MSR-bitmaps if supported by the CPU. */
3115 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3116 {
3117 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
3118 int rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVCpu, pVmcsInfo);
3119 AssertRCReturn(rc, rc);
3120 }
3121
3122 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
3123 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3124 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
3125
3126 if ((fVal & fZap) != fVal)
3127 {
3128 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3129 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
3130 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
3131 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3132 }
3133
3134 /* Commit it to the VMCS and update our cache. */
3135 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3136 AssertRCReturn(rc, rc);
3137 pVmcsInfo->u32ProcCtls = fVal;
3138
3139 /* Set up MSR permissions that don't change through the lifetime of the VM. */
3140 hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo, false /* fIsNstGstVmcs */);
3141
3142 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
3143 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3144 return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
3145
3146 /* Sanity check, should not really happen. */
3147 if (RT_LIKELY(!pVM->hm.s.vmx.fUnrestrictedGuest))
3148 { /* likely */ }
3149 else
3150 {
3151 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
3152 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3153 }
3154
3155 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
3156 return VINF_SUCCESS;
3157}
3158
3159
3160/**
3161 * Sets up miscellaneous (everything other than Pin, Processor and secondary
3162 * Processor-based VM-execution) control fields in the VMCS.
3163 *
3164 * @returns VBox status code.
3165 * @param pVCpu The cross context virtual CPU structure.
3166 * @param pVmcsInfo The VMCS info. object.
3167 */
3168static int hmR0VmxSetupVmcsMiscCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3169{
3170 /* Set the auto-load/store MSR area addresses in the VMCS. */
3171 int rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVCpu, pVmcsInfo);
3172 if (RT_SUCCESS(rc))
3173 {
3174 /* Set the VMCS link pointer in the VMCS. */
3175 rc = hmR0VmxSetupVmcsLinkPtr(pVCpu, pVmcsInfo);
3176 if (RT_SUCCESS(rc))
3177 {
3178 /* Set the CR0/CR4 guest/host mask. */
3179 uint64_t const u64Cr0Mask = hmR0VmxGetFixedCr0Mask(pVCpu);
3180 uint64_t const u64Cr4Mask = hmR0VmxGetFixedCr4Mask(pVCpu);
3181 rc = VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
3182 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
3183 if (RT_SUCCESS(rc))
3184 {
3185 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
3186 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
3187 return VINF_SUCCESS;
3188 }
3189 LogRelFunc(("Failed to initialize VMCS CR0/CR4 guest/host mask. rc=%Rrc\n", rc));
3190 }
3191 else
3192 LogRelFunc(("Failed to initialize VMCS link pointer. rc=%Rrc\n", rc));
3193 }
3194 else
3195 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
3196 return rc;
3197}
3198
3199
3200/**
3201 * Sets up the initial exception bitmap in the VMCS based on static conditions.
3202 *
3203 * We shall setup those exception intercepts that don't change during the
3204 * lifetime of the VM here. The rest are done dynamically while loading the
3205 * guest state.
3206 *
3207 * @returns VBox status code.
3208 * @param pVCpu The cross context virtual CPU structure.
3209 * @param pVmcsInfo The VMCS info. object.
3210 */
3211static int hmR0VmxSetupVmcsXcptBitmap(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3212{
3213 /*
3214 * The following exceptions are always intercepted:
3215 *
3216 * #AC - To prevent the guest from hanging the CPU.
3217 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
3218 * recursive #DBs can cause a CPU hang.
3219 * #PF - To sync our shadow page tables when nested-paging is not used.
3220 */
3221 bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
3222 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
3223 | RT_BIT(X86_XCPT_DB)
3224 | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
3225
3226 /* Commit it to the VMCS. */
3227 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3228 AssertRCReturn(rc, rc);
3229
3230 /* Update our cache of the exception bitmap. */
3231 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
3232 return VINF_SUCCESS;
3233}
3234
3235
3236#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3237/**
3238 * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
3239 *
3240 * @returns VBox status code.
3241 * @param pVCpu The cross context virtual CPU structure.
3242 * @param pVmcsInfo The VMCS info. object.
3243 */
3244static int hmR0VmxSetupVmcsCtlsNested(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
3245{
3246 PVM pVM = pVCpu->CTX_SUFF(pVM);
3247 int rc = hmR0VmxSetupVmcsLinkPtr(pVCpu, pVmcsInfo);
3248 if (RT_SUCCESS(rc))
3249 {
3250 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVCpu, pVmcsInfo);
3251 if (RT_SUCCESS(rc))
3252 {
3253 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3254 rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVCpu, pVmcsInfo);
3255 if (RT_SUCCESS(rc))
3256 {
3257 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3258 rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3259 if (RT_SUCCESS(rc))
3260 return VINF_SUCCESS;
3261
3262 LogRelFunc(("Failed to set up the APIC-access address in the nested-guest VMCS. rc=%Rrc\n", rc));
3263 }
3264 else
3265 LogRelFunc(("Failed to set up the MSR-bitmap address in the nested-guest VMCS. rc=%Rrc\n", rc));
3266 }
3267 else
3268 LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
3269 }
3270 else
3271 LogRelFunc(("Failed to set up the auto-load/store MSR addresses in the nested-guest VMCS. rc=%Rrc\n", rc));
3272
3273 return rc;
3274}
3275#endif
3276
3277
3278/**
3279 * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
3280 * VMX.
3281 *
3282 * @returns VBox status code.
3283 * @param pVCpu The cross context virtual CPU structure.
3284 * @param pVmcsInfo The VMCS info. object.
3285 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
3286 */
3287static int hmR0VmxSetupVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
3288{
3289 Assert(pVmcsInfo);
3290 Assert(pVmcsInfo->pvVmcs);
3291 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3292
3293 /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
3294 PVM pVM = pVCpu->CTX_SUFF(pVM);
3295 *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
3296 const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
3297
3298 LogFlowFunc(("\n"));
3299
3300 /*
3301 * Initialize the VMCS using VMCLEAR before loading the VMCS.
3302 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
3303 */
3304 int rc = hmR0VmxClearVmcs(pVmcsInfo);
3305 if (RT_SUCCESS(rc))
3306 {
3307 rc = hmR0VmxLoadVmcs(pVmcsInfo);
3308 if (RT_SUCCESS(rc))
3309 {
3310 if (!fIsNstGstVmcs)
3311 {
3312 rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
3313 if (RT_SUCCESS(rc))
3314 {
3315 rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
3316 if (RT_SUCCESS(rc))
3317 {
3318 rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
3319 if (RT_SUCCESS(rc))
3320 {
3321 rc = hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
3322 if (RT_SUCCESS(rc))
3323 { /* likely */ }
3324 else
3325 LogRelFunc(("Failed to initialize exception bitmap. rc=%Rrc\n", rc));
3326 }
3327 else
3328 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
3329 }
3330 else
3331 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
3332 }
3333 else
3334 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
3335 }
3336 else
3337 {
3338#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3339 rc = hmR0VmxSetupVmcsCtlsNested(pVCpu, pVmcsInfo);
3340 if (RT_SUCCESS(rc))
3341 { /* likely */ }
3342 else
3343 LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
3344#else
3345 AssertFailed();
3346#endif
3347 }
3348 }
3349 else
3350 LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
3351 }
3352 else
3353 LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
3354
3355 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
3356 if (RT_SUCCESS(rc))
3357 {
3358 rc = hmR0VmxClearVmcs(pVmcsInfo);
3359 if (RT_SUCCESS(rc))
3360 { /* likely */ }
3361 else
3362 LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
3363 }
3364
3365 /*
3366 * Update the last-error record both for failures and success, so we
3367 * can propagate the status code back to ring-3 for diagnostics.
3368 */
3369 hmR0VmxUpdateErrorRecord(pVCpu, rc);
3370 NOREF(pszVmcs);
3371 return rc;
3372}
3373
3374
3375/**
3376 * Does global VT-x initialization (called during module initialization).
3377 *
3378 * @returns VBox status code.
3379 */
3380VMMR0DECL(int) VMXR0GlobalInit(void)
3381{
3382#ifdef HMVMX_USE_FUNCTION_TABLE
3383 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
3384# ifdef VBOX_STRICT
3385 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
3386 Assert(g_apfnVMExitHandlers[i]);
3387# endif
3388#endif
3389 return VINF_SUCCESS;
3390}
3391
3392
3393/**
3394 * Does global VT-x termination (called during module termination).
3395 */
3396VMMR0DECL(void) VMXR0GlobalTerm()
3397{
3398 /* Nothing to do currently. */
3399}
3400
3401
3402/**
3403 * Sets up and activates VT-x on the current CPU.
3404 *
3405 * @returns VBox status code.
3406 * @param pHostCpu The HM physical-CPU structure.
3407 * @param pVM The cross context VM structure. Can be
3408 * NULL after a host resume operation.
3409 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
3410 * fEnabledByHost is @c true).
3411 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
3412 * @a fEnabledByHost is @c true).
3413 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
3414 * enable VT-x on the host.
3415 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
3416 */
3417VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
3418 PCSUPHWVIRTMSRS pHwvirtMsrs)
3419{
3420 Assert(pHostCpu);
3421 Assert(pHwvirtMsrs);
3422 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3423
3424 /* Enable VT-x if it's not already enabled by the host. */
3425 if (!fEnabledByHost)
3426 {
3427 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
3428 if (RT_FAILURE(rc))
3429 return rc;
3430 }
3431
3432 /*
3433 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
3434 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
3435 * invalidated when flushing by VPID.
3436 */
3437 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
3438 {
3439 hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
3440 pHostCpu->fFlushAsidBeforeUse = false;
3441 }
3442 else
3443 pHostCpu->fFlushAsidBeforeUse = true;
3444
3445 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
3446 ++pHostCpu->cTlbFlushes;
3447
3448 return VINF_SUCCESS;
3449}
3450
3451
3452/**
3453 * Deactivates VT-x on the current CPU.
3454 *
3455 * @returns VBox status code.
3456 * @param pvCpuPage Pointer to the VMXON region.
3457 * @param HCPhysCpuPage Physical address of the VMXON region.
3458 *
3459 * @remarks This function should never be called when SUPR0EnableVTx() or
3460 * similar was used to enable VT-x on the host.
3461 */
3462VMMR0DECL(int) VMXR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
3463{
3464 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
3465
3466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3467 return hmR0VmxLeaveRootMode();
3468}
3469
3470
3471/**
3472 * Does per-VM VT-x initialization.
3473 *
3474 * @returns VBox status code.
3475 * @param pVM The cross context VM structure.
3476 */
3477VMMR0DECL(int) VMXR0InitVM(PVM pVM)
3478{
3479 LogFlowFunc(("pVM=%p\n", pVM));
3480
3481 int rc = hmR0VmxStructsAlloc(pVM);
3482 if (RT_FAILURE(rc))
3483 {
3484 LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
3485 return rc;
3486 }
3487
3488 return VINF_SUCCESS;
3489}
3490
3491
3492/**
3493 * Does per-VM VT-x termination.
3494 *
3495 * @returns VBox status code.
3496 * @param pVM The cross context VM structure.
3497 */
3498VMMR0DECL(int) VMXR0TermVM(PVM pVM)
3499{
3500 LogFlowFunc(("pVM=%p\n", pVM));
3501
3502#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3503 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
3504 {
3505 Assert(pVM->hm.s.vmx.pvScratch);
3506 ASMMemZero32(pVM->hm.s.vmx.pvScratch, X86_PAGE_4K_SIZE);
3507 }
3508#endif
3509 hmR0VmxStructsFree(pVM);
3510 return VINF_SUCCESS;
3511}
3512
3513
3514/**
3515 * Sets up the VM for execution using hardware-assisted VMX.
3516 * This function is only called once per-VM during initialization.
3517 *
3518 * @returns VBox status code.
3519 * @param pVM The cross context VM structure.
3520 */
3521VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
3522{
3523 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
3524 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3525
3526 LogFlowFunc(("pVM=%p\n", pVM));
3527
3528 /*
3529 * At least verify if VMX is enabled, since we can't check if we're in
3530 * VMX root mode or not without causing a #GP.
3531 */
3532 RTCCUINTREG const uHostCR4 = ASMGetCR4();
3533 if (RT_LIKELY(uHostCR4 & X86_CR4_VMXE))
3534 { /* likely */ }
3535 else
3536 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
3537
3538 /*
3539 * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
3540 * always be allocated. We no longer support the highly unlikely case of unrestricted guest
3541 * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
3542 */
3543 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
3544 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
3545 || !pVM->hm.s.vmx.pRealModeTSS))
3546 {
3547 LogRelFunc(("Invalid real-on-v86 state.\n"));
3548 return VERR_INTERNAL_ERROR;
3549 }
3550
3551 /* Initialize these always, see hmR3InitFinalizeR0().*/
3552 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
3553 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
3554
3555 /* Setup the tagged-TLB flush handlers. */
3556 int rc = hmR0VmxSetupTaggedTlb(pVM);
3557 if (RT_FAILURE(rc))
3558 {
3559 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
3560 return rc;
3561 }
3562
3563 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
3564 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
3565#if HC_ARCH_BITS == 64
3566 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
3567 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
3568 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
3569 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
3570#endif
3571
3572 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3573 {
3574 PVMCPU pVCpu = &pVM->aCpus[idCpu];
3575 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
3576
3577 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
3578 if (RT_SUCCESS(rc))
3579 {
3580#if HC_ARCH_BITS == 32
3581 hmR0VmxInitVmcsReadCache(pVCpu);
3582#endif
3583#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3584 if (pVM->cpum.ro.GuestFeatures.fVmx)
3585 {
3586 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
3587 if (RT_SUCCESS(rc))
3588 { /* likely */ }
3589 else
3590 {
3591 LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
3592 return rc;
3593 }
3594 }
3595#endif
3596 }
3597 else
3598 {
3599 LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
3600 return rc;
3601 }
3602 }
3603
3604 return VINF_SUCCESS;
3605}
3606
3607
3608#if HC_ARCH_BITS == 32
3609# ifdef VBOX_ENABLE_64_BITS_GUESTS
3610/**
3611 * Check if guest state allows safe use of 32-bit switcher again.
3612 *
3613 * Segment bases and protected mode structures must be 32-bit addressable
3614 * because the 32-bit switcher will ignore high dword when writing these VMCS
3615 * fields. See @bugref{8432} for details.
3616 *
3617 * @returns true if safe, false if must continue to use the 64-bit switcher.
3618 * @param pCtx Pointer to the guest-CPU context.
3619 *
3620 * @remarks No-long-jump zone!!!
3621 */
3622static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
3623{
3624 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
3625 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
3626 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
3627 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
3628 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
3629 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3630 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
3631 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
3632 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3633 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
3634
3635 /* All good, bases are 32-bit. */
3636 return true;
3637}
3638# endif /* VBOX_ENABLE_64_BITS_GUESTS */
3639
3640# ifdef VBOX_STRICT
3641static bool hmR0VmxIsValidWriteField(uint32_t idxField)
3642{
3643 switch (idxField)
3644 {
3645 case VMX_VMCS_GUEST_RIP:
3646 case VMX_VMCS_GUEST_RSP:
3647 case VMX_VMCS_GUEST_SYSENTER_EIP:
3648 case VMX_VMCS_GUEST_SYSENTER_ESP:
3649 case VMX_VMCS_GUEST_GDTR_BASE:
3650 case VMX_VMCS_GUEST_IDTR_BASE:
3651 case VMX_VMCS_GUEST_CS_BASE:
3652 case VMX_VMCS_GUEST_DS_BASE:
3653 case VMX_VMCS_GUEST_ES_BASE:
3654 case VMX_VMCS_GUEST_FS_BASE:
3655 case VMX_VMCS_GUEST_GS_BASE:
3656 case VMX_VMCS_GUEST_SS_BASE:
3657 case VMX_VMCS_GUEST_LDTR_BASE:
3658 case VMX_VMCS_GUEST_TR_BASE:
3659 case VMX_VMCS_GUEST_CR3:
3660 return true;
3661 }
3662 return false;
3663}
3664
3665static bool hmR0VmxIsValidReadField(uint32_t idxField)
3666{
3667 switch (idxField)
3668 {
3669 /* Read-only fields. */
3670 case VMX_VMCS_RO_EXIT_QUALIFICATION:
3671 return true;
3672 }
3673 /* Remaining readable fields should also be writable. */
3674 return hmR0VmxIsValidWriteField(idxField);
3675}
3676# endif /* VBOX_STRICT */
3677
3678
3679/**
3680 * Executes the specified handler in 64-bit mode.
3681 *
3682 * @returns VBox status code (no informational status codes).
3683 * @param pVCpu The cross context virtual CPU structure.
3684 * @param enmOp The operation to perform.
3685 * @param cParams Number of parameters.
3686 * @param paParam Array of 32-bit parameters.
3687 */
3688VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
3689{
3690 PVM pVM = pVCpu->CTX_SUFF(pVM);
3691 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
3692 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
3693 Assert(pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Write.aField));
3694 Assert(pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Read.aField));
3695
3696#ifdef VBOX_STRICT
3697 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries; i++)
3698 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VmcsCache.Write.aField[i]));
3699
3700 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries; i++)
3701 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VmcsCache.Read.aField[i]));
3702#endif
3703
3704 /* Disable interrupts. */
3705 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
3706
3707#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
3708 RTCPUID idHostCpu = RTMpCpuId();
3709 CPUMR0SetLApic(pVCpu, idHostCpu);
3710#endif
3711
3712 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
3713
3714 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
3715 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
3716
3717 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
3718 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3719 hmR0VmxClearVmcs(pVmcsInfo);
3720
3721 /* Leave VMX root mode and disable VMX. */
3722 VMXDisable();
3723 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
3724
3725 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
3726 CPUMSetHyperEIP(pVCpu, enmOp);
3727 for (int i = (int)cParams - 1; i >= 0; i--)
3728 CPUMPushHyper(pVCpu, paParam[i]);
3729
3730 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
3731
3732 /* Call the switcher. */
3733 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
3734 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
3735
3736 /* Re-enable VMX to make sure the VMX instructions don't cause #UD faults. */
3737 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
3738
3739 /* Re-enter VMX root mode. */
3740 int rc2 = VMXEnable(HCPhysCpuPage);
3741 if (RT_FAILURE(rc2))
3742 {
3743 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
3744 ASMSetFlags(fOldEFlags);
3745 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
3746 return rc2;
3747 }
3748
3749 /* Restore the VMCS as the current VMCS. */
3750 rc2 = hmR0VmxLoadVmcs(pVmcsInfo);
3751 AssertRC(rc2);
3752 Assert(!(ASMGetFlags() & X86_EFL_IF));
3753 ASMSetFlags(fOldEFlags);
3754 return rc;
3755}
3756
3757
3758/**
3759 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
3760 * supporting 64-bit guests.
3761 *
3762 * @returns VBox status code.
3763 * @param fResume Whether to VMLAUNCH or VMRESUME.
3764 * @param pCtx Pointer to the guest-CPU context.
3765 * @param pCache Pointer to the VMCS batch cache.
3766 * @param pVM The cross context VM structure.
3767 * @param pVCpu The cross context virtual CPU structure.
3768 */
3769DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMXVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
3770{
3771 NOREF(fResume);
3772
3773 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3774 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
3775 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
3776
3777#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3778 pCache->uPos = 1;
3779 pCache->interPD = PGMGetInterPaeCR3(pVM);
3780 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
3781#endif
3782
3783#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
3784 pCache->TestIn.HCPhysCpuPage = 0;
3785 pCache->TestIn.HCPhysVmcs = 0;
3786 pCache->TestIn.pCache = 0;
3787 pCache->TestOut.HCPhysVmcs = 0;
3788 pCache->TestOut.pCache = 0;
3789 pCache->TestOut.pCtx = 0;
3790 pCache->TestOut.eflags = 0;
3791#else
3792 NOREF(pCache);
3793#endif
3794
3795 uint32_t aParam[10];
3796 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
3797 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
3798 aParam[2] = RT_LO_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
3799 aParam[3] = RT_HI_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
3800 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache);
3801 aParam[5] = 0;
3802 aParam[6] = VM_RC_ADDR(pVM, pVM);
3803 aParam[7] = 0;
3804 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
3805 aParam[9] = 0;
3806
3807#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3808 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
3809 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
3810#endif
3811 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
3812
3813#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3814 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
3815 Assert(pCtx->dr[4] == 10);
3816 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
3817#endif
3818
3819#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
3820 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
3821 AssertMsg(pCache->TestIn.HCPhysVmcs == pVmcsInfo->HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
3822 pVmcsInfo->HCPhysVmcs));
3823 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
3824 pCache->TestOut.HCPhysVmcs));
3825 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
3826 pCache->TestOut.pCache));
3827 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache),
3828 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache)));
3829 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
3830 pCache->TestOut.pCtx));
3831 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
3832#endif
3833 NOREF(pCtx);
3834 return rc;
3835}
3836#endif
3837
3838
3839/**
3840 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
3841 * the VMCS.
3842 *
3843 * @returns VBox status code.
3844 */
3845static int hmR0VmxExportHostControlRegs(void)
3846{
3847 RTCCUINTREG uReg = ASMGetCR0();
3848 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
3849 AssertRCReturn(rc, rc);
3850
3851 uReg = ASMGetCR3();
3852 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
3853 AssertRCReturn(rc, rc);
3854
3855 uReg = ASMGetCR4();
3856 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
3857 AssertRCReturn(rc, rc);
3858 return rc;
3859}
3860
3861
3862/**
3863 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
3864 * the host-state area in the VMCS.
3865 *
3866 * @returns VBox status code.
3867 * @param pVCpu The cross context virtual CPU structure.
3868 */
3869static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
3870{
3871#if HC_ARCH_BITS == 64
3872/**
3873 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
3874 * requirements. See hmR0VmxExportHostSegmentRegs().
3875 */
3876# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
3877 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
3878 { \
3879 bool fValidSelector = true; \
3880 if ((selValue) & X86_SEL_LDT) \
3881 { \
3882 uint32_t uAttr = ASMGetSegAttr((selValue)); \
3883 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
3884 } \
3885 if (fValidSelector) \
3886 { \
3887 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
3888 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
3889 } \
3890 (selValue) = 0; \
3891 }
3892
3893 /*
3894 * If we've executed guest code using hardware-assisted VMX, the host-state bits
3895 * will be messed up. We should -not- save the messed up state without restoring
3896 * the original host-state, see @bugref{7240}.
3897 *
3898 * This apparently can happen (most likely the FPU changes), deal with it rather than
3899 * asserting. Was observed booting Solaris 10u10 32-bit guest.
3900 */
3901 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
3902 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
3903 {
3904 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
3905 pVCpu->idCpu));
3906 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
3907 }
3908 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
3909#else
3910 RT_NOREF(pVCpu);
3911#endif
3912
3913 /*
3914 * Host DS, ES, FS and GS segment registers.
3915 */
3916#if HC_ARCH_BITS == 64
3917 RTSEL uSelDS = ASMGetDS();
3918 RTSEL uSelES = ASMGetES();
3919 RTSEL uSelFS = ASMGetFS();
3920 RTSEL uSelGS = ASMGetGS();
3921#else
3922 RTSEL uSelDS = 0;
3923 RTSEL uSelES = 0;
3924 RTSEL uSelFS = 0;
3925 RTSEL uSelGS = 0;
3926#endif
3927
3928 /*
3929 * Host CS and SS segment registers.
3930 */
3931 RTSEL uSelCS = ASMGetCS();
3932 RTSEL uSelSS = ASMGetSS();
3933
3934 /*
3935 * Host TR segment register.
3936 */
3937 RTSEL uSelTR = ASMGetTR();
3938
3939#if HC_ARCH_BITS == 64
3940 /*
3941 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
3942 * gain VM-entry and restore them before we get preempted.
3943 *
3944 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
3945 */
3946 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
3947 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
3948 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
3949 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
3950# undef VMXLOCAL_ADJUST_HOST_SEG
3951#endif
3952
3953 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
3954 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
3955 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
3956 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
3957 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
3958 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
3959 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
3960 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
3961 Assert(uSelCS);
3962 Assert(uSelTR);
3963
3964 /* Write these host selector fields into the host-state area in the VMCS. */
3965 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
3966 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
3967#if HC_ARCH_BITS == 64
3968 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
3969 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
3970 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
3971 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
3972#else
3973 NOREF(uSelDS);
3974 NOREF(uSelES);
3975 NOREF(uSelFS);
3976 NOREF(uSelGS);
3977#endif
3978 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3979 AssertRCReturn(rc, rc);
3980
3981 /*
3982 * Host GDTR and IDTR.
3983 */
3984 RTGDTR Gdtr;
3985 RTIDTR Idtr;
3986 RT_ZERO(Gdtr);
3987 RT_ZERO(Idtr);
3988 ASMGetGDTR(&Gdtr);
3989 ASMGetIDTR(&Idtr);
3990 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3991 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3992 AssertRCReturn(rc, rc);
3993
3994#if HC_ARCH_BITS == 64
3995 /*
3996 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
3997 * them to the maximum limit (0xffff) on every VM-exit.
3998 */
3999 if (Gdtr.cbGdt != 0xffff)
4000 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
4001
4002 /*
4003 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
4004 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
4005 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
4006 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
4007 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
4008 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
4009 * at 0xffff on hosts where we are sure it won't cause trouble.
4010 */
4011# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
4012 if (Idtr.cbIdt < 0x0fff)
4013# else
4014 if (Idtr.cbIdt != 0xffff)
4015# endif
4016 {
4017 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
4018 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
4019 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
4020 }
4021#endif
4022
4023 /*
4024 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
4025 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
4026 * RPL should be too in most cases.
4027 */
4028 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
4029 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
4030
4031 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
4032#if HC_ARCH_BITS == 64
4033 uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
4034
4035 /*
4036 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
4037 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
4038 * restoration if the host has something else. Task switching is not supported in 64-bit
4039 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
4040 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
4041 *
4042 * [1] See Intel spec. 3.5 "System Descriptor Types".
4043 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
4044 */
4045 PVM pVM = pVCpu->CTX_SUFF(pVM);
4046 Assert(pDesc->System.u4Type == 11);
4047 if ( pDesc->System.u16LimitLow != 0x67
4048 || pDesc->System.u4LimitHigh)
4049 {
4050 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
4051 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
4052 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
4053 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
4054 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
4055 }
4056
4057 /*
4058 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
4059 */
4060 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
4061 {
4062 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
4063 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
4064 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
4065 {
4066 /* The GDT is read-only but the writable GDT is available. */
4067 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
4068 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
4069 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
4070 AssertRCReturn(rc, rc);
4071 }
4072 }
4073#else
4074 uintptr_t const uTRBase = X86DESC_BASE(pDesc);
4075#endif
4076 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
4077 AssertRCReturn(rc, rc);
4078
4079 /*
4080 * Host FS base and GS base.
4081 */
4082#if HC_ARCH_BITS == 64
4083 uint64_t const u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
4084 uint64_t const u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
4085 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
4086 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
4087 AssertRCReturn(rc, rc);
4088
4089 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
4090 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
4091 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
4092 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
4093 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
4094#endif
4095 return VINF_SUCCESS;
4096}
4097
4098
4099/**
4100 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
4101 * host-state area of the VMCS.
4102 *
4103 * These MSRs will be automatically restored on the host after every successful
4104 * VM-exit.
4105 *
4106 * @returns VBox status code.
4107 * @param pVCpu The cross context virtual CPU structure.
4108 *
4109 * @remarks No-long-jump zone!!!
4110 */
4111static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
4112{
4113 AssertPtr(pVCpu);
4114
4115 /*
4116 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
4117 * rather than swapping them on every VM-entry.
4118 */
4119 hmR0VmxLazySaveHostMsrs(pVCpu);
4120
4121 /*
4122 * Host Sysenter MSRs.
4123 */
4124 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
4125#if HC_ARCH_BITS == 32
4126 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
4127 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
4128#else
4129 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
4130 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
4131#endif
4132 AssertRCReturn(rc, rc);
4133
4134 /*
4135 * Host EFER MSR.
4136 *
4137 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
4138 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
4139 */
4140 PVM pVM = pVCpu->CTX_SUFF(pVM);
4141 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4142 {
4143 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostMsrEfer);
4144 AssertRCReturn(rc, rc);
4145 }
4146
4147 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
4148 * hmR0VmxExportGuestEntryExitCtls(). */
4149
4150 return VINF_SUCCESS;
4151}
4152
4153
4154/**
4155 * Figures out if we need to swap the EFER MSR which is particularly expensive.
4156 *
4157 * We check all relevant bits. For now, that's everything besides LMA/LME, as
4158 * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
4159 *
4160 * @returns true if we need to load guest EFER, false otherwise.
4161 * @param pVCpu The cross context virtual CPU structure.
4162 *
4163 * @remarks Requires EFER, CR4.
4164 * @remarks No-long-jump zone!!!
4165 */
4166static bool hmR0VmxShouldSwapEferMsr(PCVMCPU pVCpu)
4167{
4168#ifdef HMVMX_ALWAYS_SWAP_EFER
4169 RT_NOREF(pVCpu);
4170 return true;
4171#else
4172 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4173#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4174 /* For 32-bit hosts running 64-bit guests, we always swap EFER MSR in the world-switcher. Nothing to do here. */
4175 if (CPUMIsGuestInLongModeEx(pCtx))
4176 return false;
4177#endif
4178
4179 PVM pVM = pVCpu->CTX_SUFF(pVM);
4180 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostMsrEfer;
4181 uint64_t const u64GuestEfer = pCtx->msrEFER;
4182
4183 /*
4184 * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
4185 * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
4186 */
4187 if ( CPUMIsGuestInLongModeEx(pCtx)
4188 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
4189 return true;
4190
4191 /*
4192 * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
4193 * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
4194 *
4195 * See Intel spec. 4.5 "IA-32e Paging".
4196 * See Intel spec. 4.1.1 "Three Paging Modes".
4197 *
4198 * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
4199 * import CR4 and CR0 from the VMCS here as those bits are always up to date.
4200 */
4201 Assert(hmR0VmxGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
4202 Assert(hmR0VmxGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
4203 if ( (pCtx->cr4 & X86_CR4_PAE)
4204 && (pCtx->cr0 & X86_CR0_PG)
4205 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
4206 {
4207 /* Assert that host is NX capable. */
4208 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
4209 return true;
4210 }
4211
4212 return false;
4213#endif
4214}
4215
4216/**
4217 * Exports the guest state with appropriate VM-entry and VM-exit controls in the
4218 * VMCS.
4219 *
4220 * This is typically required when the guest changes paging mode.
4221 *
4222 * @returns VBox status code.
4223 * @param pVCpu The cross context virtual CPU structure.
4224 * @param pVmxTransient The VMX-transient structure.
4225 *
4226 * @remarks Requires EFER.
4227 * @remarks No-long-jump zone!!!
4228 */
4229static int hmR0VmxExportGuestEntryExitCtls(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4230{
4231 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
4232 {
4233 PVM pVM = pVCpu->CTX_SUFF(pVM);
4234 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4235
4236 /*
4237 * VM-entry controls.
4238 */
4239 {
4240 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4241 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4242
4243 /*
4244 * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
4245 * The first VT-x capable CPUs only supported the 1-setting of this bit.
4246 *
4247 * For nested-guests, this is a mandatory VM-entry control. It's also
4248 * required because we do not want to leak host bits to the nested-guest.
4249 */
4250 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
4251
4252 /*
4253 * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
4254 *
4255 * For nested-guests, the "IA-32e mode guest" control we initialize with what is
4256 * required to get the nested-guest working with hardware-assisted VMX execution.
4257 * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested-hypervisor
4258 * can skip intercepting changes to the EFER MSR. This is why it it needs to be done
4259 * here rather than while merging the guest VMCS controls.
4260 */
4261 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
4262 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
4263 else
4264 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
4265
4266 /*
4267 * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
4268 *
4269 * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
4270 * regardless of whether the nested-guest VMCS specifies it because we are free to
4271 * load whatever MSRs we require and we do not need to modify the guest visible copy
4272 * of the VM-entry MSR load area.
4273 */
4274 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4275 && hmR0VmxShouldSwapEferMsr(pVCpu))
4276 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
4277 else
4278 Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
4279
4280 /*
4281 * The following should -not- be set (since we're not in SMM mode):
4282 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
4283 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
4284 */
4285
4286 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
4287 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
4288
4289 if ((fVal & fZap) == fVal)
4290 { /* likely */ }
4291 else
4292 {
4293 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
4294 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
4295 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
4296 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4297 }
4298
4299 /* Commit it to the VMCS. */
4300 if (pVmcsInfo->u32EntryCtls != fVal)
4301 {
4302 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
4303 AssertRCReturn(rc, rc);
4304 pVmcsInfo->u32EntryCtls = fVal;
4305 }
4306 }
4307
4308 /*
4309 * VM-exit controls.
4310 */
4311 {
4312 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4313 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4314
4315 /*
4316 * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
4317 * supported the 1-setting of this bit.
4318 *
4319 * For nested-guests, we set the "save debug controls" as the converse
4320 * "load debug controls" is mandatory for nested-guests anyway.
4321 */
4322 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
4323
4324 /*
4325 * Set the host long mode active (EFER.LMA) bit (which Intel calls
4326 * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
4327 * host EFER.LMA and EFER.LME bit to this value. See assertion in
4328 * hmR0VmxExportHostMsrs().
4329 *
4330 * For nested-guests, we always set this bit as we do not support 32-bit
4331 * hosts.
4332 */
4333#if HC_ARCH_BITS == 64
4334 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4335#else
4336 Assert(!pVmxTransient->fIsNestedGuest);
4337 Assert( pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64
4338 || pVmcsInfo->pfnStartVM == VMXR0StartVM32);
4339 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
4340 if (pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64)
4341 {
4342 /* The switcher returns to long mode, the EFER MSR is managed by the switcher. */
4343 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4344 }
4345 else
4346 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
4347#endif
4348
4349 /*
4350 * If the VMCS EFER MSR fields are supported by the hardware, we use it.
4351 *
4352 * For nested-guests, we should use the "save IA32_EFER" control if we also
4353 * used the "load IA32_EFER" control while exporting VM-entry controls.
4354 */
4355 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4356 && hmR0VmxShouldSwapEferMsr(pVCpu))
4357 {
4358 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
4359 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
4360 }
4361
4362 /*
4363 * Enable saving of the VMX-preemption timer value on VM-exit.
4364 * For nested-guests, currently not exposed/used.
4365 */
4366 if ( pVM->hm.s.vmx.fUsePreemptTimer
4367 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
4368 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
4369
4370 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
4371 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
4372
4373 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
4374 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
4375 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
4376
4377 if ((fVal & fZap) == fVal)
4378 { /* likely */ }
4379 else
4380 {
4381 Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
4382 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
4383 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
4384 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4385 }
4386
4387 /* Commit it to the VMCS. */
4388 if (pVmcsInfo->u32ExitCtls != fVal)
4389 {
4390 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
4391 AssertRCReturn(rc, rc);
4392 pVmcsInfo->u32ExitCtls = fVal;
4393 }
4394 }
4395
4396 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
4397 }
4398 return VINF_SUCCESS;
4399}
4400
4401
4402/**
4403 * Sets the TPR threshold in the VMCS.
4404 *
4405 * @returns VBox status code.
4406 * @param pVCpu The cross context virtual CPU structure.
4407 * @param pVmcsInfo The VMCS info. object.
4408 * @param u32TprThreshold The TPR threshold (task-priority class only).
4409 */
4410DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
4411{
4412 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
4413 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4414 RT_NOREF2(pVCpu, pVmcsInfo);
4415 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
4416}
4417
4418
4419/**
4420 * Exports the guest APIC TPR state into the VMCS.
4421 *
4422 * @returns VBox status code.
4423 * @param pVCpu The cross context virtual CPU structure.
4424 * @param pVmxTransient The VMX-transient structure.
4425 *
4426 * @remarks No-long-jump zone!!!
4427 */
4428static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4429{
4430 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
4431 {
4432 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
4433
4434 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4435 if (!pVmxTransient->fIsNestedGuest)
4436 {
4437 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
4438 && APICIsEnabled(pVCpu))
4439 {
4440 /*
4441 * Setup TPR shadowing.
4442 */
4443 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4444 {
4445 bool fPendingIntr = false;
4446 uint8_t u8Tpr = 0;
4447 uint8_t u8PendingIntr = 0;
4448 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
4449 AssertRCReturn(rc, rc);
4450
4451 /*
4452 * If there are interrupts pending but masked by the TPR, instruct VT-x to
4453 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
4454 * priority of the pending interrupt so we can deliver the interrupt. If there
4455 * are no interrupts pending, set threshold to 0 to not cause any
4456 * TPR-below-threshold VM-exits.
4457 */
4458 Assert(pVmcsInfo->pbVirtApic);
4459 pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
4460 uint32_t u32TprThreshold = 0;
4461 if (fPendingIntr)
4462 {
4463 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
4464 (which is the Task-Priority Class). */
4465 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
4466 const uint8_t u8TprPriority = u8Tpr >> 4;
4467 if (u8PendingPriority <= u8TprPriority)
4468 u32TprThreshold = u8PendingPriority;
4469 }
4470
4471 rc = hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u32TprThreshold);
4472 AssertRCReturn(rc, rc);
4473 }
4474 }
4475 }
4476 /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
4477 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
4478 }
4479 return VINF_SUCCESS;
4480}
4481
4482
4483/**
4484 * Gets the guest interruptibility-state.
4485 *
4486 * @returns Guest's interruptibility-state.
4487 * @param pVCpu The cross context virtual CPU structure.
4488 * @param pVmcsInfo The VMCS info. object.
4489 *
4490 * @remarks No-long-jump zone!!!
4491 */
4492static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
4493{
4494 /*
4495 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
4496 */
4497 uint32_t fIntrState = 0;
4498 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
4499 {
4500 /* If inhibition is active, RIP and RFLAGS should've been updated
4501 (i.e. read previously from the VMCS or from ring-3). */
4502 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4503#ifdef VBOX_STRICT
4504 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
4505 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4506 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
4507#endif
4508 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
4509 {
4510 if (pCtx->eflags.Bits.u1IF)
4511 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
4512 else
4513 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
4514 }
4515 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
4516 {
4517 /*
4518 * We can clear the inhibit force flag as even if we go back to the recompiler
4519 * without executing guest code in VT-x, the flag's condition to be cleared is
4520 * met and thus the cleared state is correct.
4521 */
4522 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
4523 }
4524 }
4525
4526 /*
4527 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
4528 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
4529 * setting this would block host-NMIs and IRET will not clear the blocking.
4530 *
4531 * We always set NMI-exiting so when the host receives an NMI we get a VM-exit.
4532 *
4533 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
4534 */
4535 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
4536 && CPUMIsGuestNmiBlocking(pVCpu))
4537 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
4538
4539 return fIntrState;
4540}
4541
4542
4543/**
4544 * Exports the exception intercepts required for guest execution in the VMCS.
4545 *
4546 * @returns VBox status code.
4547 * @param pVCpu The cross context virtual CPU structure.
4548 * @param pVmxTransient The VMX-transient structure.
4549 *
4550 * @remarks No-long-jump zone!!!
4551 */
4552static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4553{
4554 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
4555 {
4556 /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
4557 if ( !pVmxTransient->fIsNestedGuest
4558 && pVCpu->hm.s.fGIMTrapXcptUD)
4559 hmR0VmxAddXcptIntercept(pVmxTransient, X86_XCPT_UD);
4560 else
4561 hmR0VmxRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
4562
4563 /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
4564 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
4565 }
4566 return VINF_SUCCESS;
4567}
4568
4569
4570/**
4571 * Exports the guest's RIP into the guest-state area in the VMCS.
4572 *
4573 * @returns VBox status code.
4574 * @param pVCpu The cross context virtual CPU structure.
4575 *
4576 * @remarks No-long-jump zone!!!
4577 */
4578static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
4579{
4580 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
4581 {
4582 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
4583
4584 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
4585 AssertRCReturn(rc, rc);
4586
4587 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
4588 Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
4589 }
4590 return VINF_SUCCESS;
4591}
4592
4593
4594/**
4595 * Exports the guest's RSP into the guest-state area in the VMCS.
4596 *
4597 * @returns VBox status code.
4598 * @param pVCpu The cross context virtual CPU structure.
4599 *
4600 * @remarks No-long-jump zone!!!
4601 */
4602static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
4603{
4604 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
4605 {
4606 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
4607
4608 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
4609 AssertRCReturn(rc, rc);
4610
4611 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
4612 }
4613 return VINF_SUCCESS;
4614}
4615
4616
4617/**
4618 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
4619 *
4620 * @returns VBox status code.
4621 * @param pVCpu The cross context virtual CPU structure.
4622 * @param pVmxTransient The VMX-transient structure.
4623 *
4624 * @remarks No-long-jump zone!!!
4625 */
4626static int hmR0VmxExportGuestRflags(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4627{
4628 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
4629 {
4630 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
4631
4632 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
4633 Let us assert it as such and use 32-bit VMWRITE. */
4634 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
4635 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
4636 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
4637 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
4638
4639 /*
4640 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
4641 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
4642 * can run the real-mode guest code under Virtual 8086 mode.
4643 */
4644 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4645 if (pVmcsInfo->RealMode.fRealOnV86Active)
4646 {
4647 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4648 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4649 Assert(!pVmxTransient->fIsNestedGuest);
4650 pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
4651 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
4652 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
4653 }
4654
4655 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
4656 AssertRCReturn(rc, rc);
4657
4658 /*
4659 * Setup pending debug exceptions if the guest is single-stepping using EFLAGS.TF.
4660 *
4661 * We must avoid setting any automatic debug exceptions delivery when single-stepping
4662 * through the hypervisor debugger using EFLAGS.TF.
4663 */
4664 if ( !pVmxTransient->fIsNestedGuest
4665 && !pVCpu->hm.s.fSingleInstruction
4666 && fEFlags.Bits.u1TF)
4667 {
4668 /** @todo r=ramshankar: Warning!! We ASSUME EFLAGS.TF will not cleared on
4669 * premature trips to ring-3 esp since IEM does not yet handle it. */
4670 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
4671 AssertRCReturn(rc, rc);
4672 }
4673 /** @todo NSTVMX: Handling copying of VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS from
4674 * nested-guest VMCS. */
4675
4676 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
4677 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
4678 }
4679 return VINF_SUCCESS;
4680}
4681
4682
4683/**
4684 * Exports the guest CR0 control register into the guest-state area in the VMCS.
4685 *
4686 * The guest FPU state is always pre-loaded hence we don't need to bother about
4687 * sharing FPU related CR0 bits between the guest and host.
4688 *
4689 * @returns VBox status code.
4690 * @param pVCpu The cross context virtual CPU structure.
4691 * @param pVmxTransient The VMX-transient structure.
4692 *
4693 * @remarks No-long-jump zone!!!
4694 */
4695static int hmR0VmxExportGuestCR0(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4696{
4697 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
4698 {
4699 PVM pVM = pVCpu->CTX_SUFF(pVM);
4700 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4701
4702 /*
4703 * Figure out fixed CR0 bits in VMX operation.
4704 */
4705 uint64_t fSetCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
4706 uint64_t const fZapCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
4707 if (pVM->hm.s.vmx.fUnrestrictedGuest)
4708 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
4709 else
4710 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
4711
4712 if (!pVmxTransient->fIsNestedGuest)
4713 {
4714 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
4715 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
4716 uint64_t const u64ShadowCr0 = u64GuestCr0;
4717 Assert(!RT_HI_U32(u64GuestCr0));
4718
4719 /*
4720 * Setup VT-x's view of the guest CR0.
4721 */
4722 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
4723 if (pVM->hm.s.fNestedPaging)
4724 {
4725 if (CPUMIsGuestPagingEnabled(pVCpu))
4726 {
4727 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
4728 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
4729 | VMX_PROC_CTLS_CR3_STORE_EXIT);
4730 }
4731 else
4732 {
4733 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
4734 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
4735 | VMX_PROC_CTLS_CR3_STORE_EXIT;
4736 }
4737
4738 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
4739 if (pVM->hm.s.vmx.fUnrestrictedGuest)
4740 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
4741 }
4742 else
4743 {
4744 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
4745 u64GuestCr0 |= X86_CR0_WP;
4746 }
4747
4748 /*
4749 * Guest FPU bits.
4750 *
4751 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
4752 * using CR0.TS.
4753 *
4754 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
4755 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
4756 */
4757 u64GuestCr0 |= X86_CR0_NE;
4758
4759 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
4760 bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
4761
4762 /*
4763 * Update exception intercepts.
4764 */
4765 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
4766 if (pVmcsInfo->RealMode.fRealOnV86Active)
4767 {
4768 Assert(PDMVmmDevHeapIsEnabled(pVM));
4769 Assert(pVM->hm.s.vmx.pRealModeTSS);
4770 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
4771 }
4772 else
4773 {
4774 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
4775 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
4776 if (fInterceptMF)
4777 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
4778 }
4779
4780 /* Additional intercepts for debugging, define these yourself explicitly. */
4781#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
4782 uXcptBitmap |= 0
4783 | RT_BIT(X86_XCPT_BP)
4784 | RT_BIT(X86_XCPT_DE)
4785 | RT_BIT(X86_XCPT_NM)
4786 | RT_BIT(X86_XCPT_TS)
4787 | RT_BIT(X86_XCPT_UD)
4788 | RT_BIT(X86_XCPT_NP)
4789 | RT_BIT(X86_XCPT_SS)
4790 | RT_BIT(X86_XCPT_GP)
4791 | RT_BIT(X86_XCPT_PF)
4792 | RT_BIT(X86_XCPT_MF)
4793 ;
4794#elif defined(HMVMX_ALWAYS_TRAP_PF)
4795 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
4796#endif
4797 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
4798 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
4799 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
4800
4801 /* Apply the fixed CR0 bits and enable caching. */
4802 u64GuestCr0 |= fSetCr0;
4803 u64GuestCr0 &= fZapCr0;
4804 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
4805
4806 /* Commit the CR0 and related fields to the guest VMCS. */
4807 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u64GuestCr0); /** @todo Fix to 64-bit when we drop 32-bit. */
4808 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
4809 if (uProcCtls != pVmcsInfo->u32ProcCtls)
4810 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4811 if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
4812 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
4813 AssertRCReturn(rc, rc);
4814
4815 /* Update our caches. */
4816 pVmcsInfo->u32ProcCtls = uProcCtls;
4817 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
4818
4819 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
4820 }
4821 else
4822 {
4823 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4824 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
4825 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
4826 uint64_t const u64ShadowCr0 = pVmcsNstGst->u64Cr0ReadShadow.u;
4827 Assert(!RT_HI_U32(u64GuestCr0));
4828 Assert(u64GuestCr0 & X86_CR0_NE);
4829
4830 /* Apply the fixed CR0 bits and enable caching. */
4831 u64GuestCr0 |= fSetCr0;
4832 u64GuestCr0 &= fZapCr0;
4833 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
4834
4835 /* Commit the CR0 and CR0 read shadow to the nested-guest VMCS. */
4836 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u64GuestCr0); /** @todo NSTVMX: Fix to 64-bit when we drop 32-bit. */
4837 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
4838 AssertRCReturn(rc, rc);
4839
4840 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
4841 }
4842
4843 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
4844 }
4845
4846 return VINF_SUCCESS;
4847}
4848
4849
4850/**
4851 * Exports the guest control registers (CR3, CR4) into the guest-state area
4852 * in the VMCS.
4853 *
4854 * @returns VBox strict status code.
4855 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
4856 * without unrestricted guest access and the VMMDev is not presently
4857 * mapped (e.g. EFI32).
4858 *
4859 * @param pVCpu The cross context virtual CPU structure.
4860 * @param pVmxTransient The VMX-transient structure.
4861 *
4862 * @remarks No-long-jump zone!!!
4863 */
4864static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
4865{
4866 int rc = VINF_SUCCESS;
4867 PVM pVM = pVCpu->CTX_SUFF(pVM);
4868
4869 /*
4870 * Guest CR2.
4871 * It's always loaded in the assembler code. Nothing to do here.
4872 */
4873
4874 /*
4875 * Guest CR3.
4876 */
4877 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
4878 {
4879 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
4880
4881 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
4882 if (pVM->hm.s.fNestedPaging)
4883 {
4884 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4885 pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
4886
4887 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
4888 Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
4889 Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
4890 Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
4891
4892 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
4893 pVmcsInfo->HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
4894 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
4895
4896 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
4897 AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
4898 && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
4899 ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
4900 AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
4901 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
4902 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
4903
4904 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
4905 AssertRCReturn(rc, rc);
4906
4907 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4908 if ( pVM->hm.s.vmx.fUnrestrictedGuest
4909 || CPUMIsGuestPagingEnabledEx(pCtx))
4910 {
4911 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
4912 if (CPUMIsGuestInPAEModeEx(pCtx))
4913 {
4914 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
4915 AssertRCReturn(rc, rc);
4916 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
4917 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
4918 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
4919 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
4920 AssertRCReturn(rc, rc);
4921 }
4922
4923 /*
4924 * The guest's view of its CR3 is unblemished with nested paging when the
4925 * guest is using paging or we have unrestricted guest execution to handle
4926 * the guest when it's not using paging.
4927 */
4928 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
4929 GCPhysGuestCR3 = pCtx->cr3;
4930 }
4931 else
4932 {
4933 /*
4934 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
4935 * thinks it accesses physical memory directly, we use our identity-mapped
4936 * page table to map guest-linear to guest-physical addresses. EPT takes care
4937 * of translating it to host-physical addresses.
4938 */
4939 RTGCPHYS GCPhys;
4940 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
4941
4942 /* We obtain it here every time as the guest could have relocated this PCI region. */
4943 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
4944 if (RT_SUCCESS(rc))
4945 { /* likely */ }
4946 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
4947 {
4948 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
4949 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
4950 }
4951 else
4952 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
4953
4954 GCPhysGuestCR3 = GCPhys;
4955 }
4956
4957 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
4958 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4959 AssertRCReturn(rc, rc);
4960 }
4961 else
4962 {
4963 /* Non-nested paging case, just use the hypervisor's CR3. */
4964 RTHCPHYS const HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4965
4966 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
4967 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4968 AssertRCReturn(rc, rc);
4969 }
4970
4971 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
4972 }
4973
4974 /*
4975 * Guest CR4.
4976 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4977 */
4978 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
4979 {
4980 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4981 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4982 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
4983
4984 /*
4985 * Figure out fixed CR4 bits in VMX operation.
4986 */
4987 uint64_t const fSetCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
4988 uint64_t const fZapCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
4989
4990 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
4991 uint64_t u64GuestCr4 = pCtx->cr4;
4992 uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest ? pCtx->cr4 : pVmcsNstGst->u64Cr4ReadShadow.u;
4993 Assert(!RT_HI_U32(u64GuestCr4));
4994
4995 /*
4996 * Setup VT-x's view of the guest CR4.
4997 *
4998 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
4999 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
5000 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
5001 *
5002 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
5003 */
5004 if (pVmcsInfo->RealMode.fRealOnV86Active)
5005 {
5006 Assert(pVM->hm.s.vmx.pRealModeTSS);
5007 Assert(PDMVmmDevHeapIsEnabled(pVM));
5008 u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
5009 }
5010
5011 if (pVM->hm.s.fNestedPaging)
5012 {
5013 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
5014 && !pVM->hm.s.vmx.fUnrestrictedGuest)
5015 {
5016 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
5017 u64GuestCr4 |= X86_CR4_PSE;
5018 /* Our identity mapping is a 32-bit page directory. */
5019 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5020 }
5021 /* else use guest CR4.*/
5022 }
5023 else
5024 {
5025 Assert(!pVmxTransient->fIsNestedGuest);
5026
5027 /*
5028 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
5029 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
5030 */
5031 switch (pVCpu->hm.s.enmShadowMode)
5032 {
5033 case PGMMODE_REAL: /* Real-mode. */
5034 case PGMMODE_PROTECTED: /* Protected mode without paging. */
5035 case PGMMODE_32_BIT: /* 32-bit paging. */
5036 {
5037 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5038 break;
5039 }
5040
5041 case PGMMODE_PAE: /* PAE paging. */
5042 case PGMMODE_PAE_NX: /* PAE paging with NX. */
5043 {
5044 u64GuestCr4 |= X86_CR4_PAE;
5045 break;
5046 }
5047
5048 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
5049 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
5050#ifdef VBOX_ENABLE_64_BITS_GUESTS
5051 break;
5052#endif
5053 default:
5054 AssertFailed();
5055 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5056 }
5057 }
5058
5059 /* Apply the fixed CR4 bits (mainly CR4.VMXE). */
5060 u64GuestCr4 |= fSetCr4;
5061 u64GuestCr4 &= fZapCr4;
5062
5063 /* Commit the CR4 and CR4 read shadow to the guest VMCS. */
5064 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u64GuestCr4); /** @todo Fix to 64-bit when we drop 32-bit. */
5065 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4);
5066 AssertRCReturn(rc, rc);
5067
5068 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
5069 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
5070
5071 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
5072
5073 Log4Func(("cr4=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
5074 }
5075 return rc;
5076}
5077
5078
5079/**
5080 * Exports the guest debug registers into the guest-state area in the VMCS.
5081 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
5082 *
5083 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
5084 *
5085 * @returns VBox status code.
5086 * @param pVCpu The cross context virtual CPU structure.
5087 * @param pVmxTransient The VMX-transient structure.
5088 *
5089 * @remarks No-long-jump zone!!!
5090 */
5091static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5092{
5093 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5094
5095 /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
5096 * stepping. */
5097 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5098 if (pVmxTransient->fIsNestedGuest)
5099 {
5100 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
5101 AssertRCReturn(rc, rc);
5102 return VINF_SUCCESS;
5103 }
5104
5105#ifdef VBOX_STRICT
5106 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
5107 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5108 {
5109 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
5110 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
5111 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
5112 }
5113#endif
5114
5115 bool fSteppingDB = false;
5116 bool fInterceptMovDRx = false;
5117 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5118 if (pVCpu->hm.s.fSingleInstruction)
5119 {
5120 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
5121 PVM pVM = pVCpu->CTX_SUFF(pVM);
5122 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
5123 {
5124 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
5125 Assert(fSteppingDB == false);
5126 }
5127 else
5128 {
5129 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
5130 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
5131 pVCpu->hm.s.fClearTrapFlag = true;
5132 fSteppingDB = true;
5133 }
5134 }
5135
5136 uint32_t u32GuestDr7;
5137 if ( fSteppingDB
5138 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
5139 {
5140 /*
5141 * Use the combined guest and host DRx values found in the hypervisor register set
5142 * because the hypervisor debugger has breakpoints active or someone is single stepping
5143 * on the host side without a monitor trap flag.
5144 *
5145 * Note! DBGF expects a clean DR6 state before executing guest code.
5146 */
5147#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5148 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
5149 && !CPUMIsHyperDebugStateActivePending(pVCpu))
5150 {
5151 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5152 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
5153 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
5154 }
5155 else
5156#endif
5157 if (!CPUMIsHyperDebugStateActive(pVCpu))
5158 {
5159 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5160 Assert(CPUMIsHyperDebugStateActive(pVCpu));
5161 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
5162 }
5163
5164 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
5165 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
5166 pVCpu->hm.s.fUsingHyperDR7 = true;
5167 fInterceptMovDRx = true;
5168 }
5169 else
5170 {
5171 /*
5172 * If the guest has enabled debug registers, we need to load them prior to
5173 * executing guest code so they'll trigger at the right time.
5174 */
5175 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
5176 {
5177#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5178 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
5179 && !CPUMIsGuestDebugStateActivePending(pVCpu))
5180 {
5181 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
5182 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
5183 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
5184 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
5185 }
5186 else
5187#endif
5188 if (!CPUMIsGuestDebugStateActive(pVCpu))
5189 {
5190 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
5191 Assert(CPUMIsGuestDebugStateActive(pVCpu));
5192 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
5193 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
5194 }
5195 Assert(!fInterceptMovDRx);
5196 }
5197 /*
5198 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
5199 * must intercept #DB in order to maintain a correct DR6 guest value, and
5200 * because we need to intercept it to prevent nested #DBs from hanging the
5201 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
5202 */
5203#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
5204 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
5205 && !CPUMIsGuestDebugStateActive(pVCpu))
5206#else
5207 else if (!CPUMIsGuestDebugStateActive(pVCpu))
5208#endif
5209 {
5210 fInterceptMovDRx = true;
5211 }
5212
5213 /* Update DR7 with the actual guest value. */
5214 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
5215 pVCpu->hm.s.fUsingHyperDR7 = false;
5216 }
5217
5218 if (fInterceptMovDRx)
5219 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
5220 else
5221 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
5222
5223 /*
5224 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
5225 * monitor-trap flag and update our cache.
5226 */
5227 if (uProcCtls != pVmcsInfo->u32ProcCtls)
5228 {
5229 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5230 AssertRCReturn(rc2, rc2);
5231 pVmcsInfo->u32ProcCtls = uProcCtls;
5232 }
5233
5234 /*
5235 * Update guest DR7.
5236 */
5237 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
5238 AssertRCReturn(rc, rc);
5239
5240 /*
5241 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
5242 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
5243 *
5244 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5245 */
5246 if (fSteppingDB)
5247 {
5248 Assert(pVCpu->hm.s.fSingleInstruction);
5249 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
5250
5251 uint32_t fIntrState = 0;
5252 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
5253 AssertRCReturn(rc, rc);
5254
5255 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5256 {
5257 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
5258 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
5259 AssertRCReturn(rc, rc);
5260 }
5261 }
5262
5263 return VINF_SUCCESS;
5264}
5265
5266
5267#ifdef VBOX_STRICT
5268/**
5269 * Strict function to validate segment registers.
5270 *
5271 * @param pVCpu The cross context virtual CPU structure.
5272 * @param pVmcsInfo The VMCS info. object.
5273 *
5274 * @remarks Will import guest CR0 on strict builds during validation of
5275 * segments.
5276 */
5277static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
5278{
5279 /*
5280 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
5281 *
5282 * The reason we check for attribute value 0 in this function and not just the unusable bit is
5283 * because hmR0VmxExportGuestSegReg() only updates the VMCS' copy of the value with the
5284 * unusable bit and doesn't change the guest-context value.
5285 */
5286 PVM pVM = pVCpu->CTX_SUFF(pVM);
5287 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5288 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
5289 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
5290 && ( !CPUMIsGuestInRealModeEx(pCtx)
5291 && !CPUMIsGuestInV86ModeEx(pCtx)))
5292 {
5293 /* Protected mode checks */
5294 /* CS */
5295 Assert(pCtx->cs.Attr.n.u1Present);
5296 Assert(!(pCtx->cs.Attr.u & 0xf00));
5297 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
5298 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
5299 || !(pCtx->cs.Attr.n.u1Granularity));
5300 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
5301 || (pCtx->cs.Attr.n.u1Granularity));
5302 /* CS cannot be loaded with NULL in protected mode. */
5303 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
5304 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
5305 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
5306 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
5307 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
5308 else
5309 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
5310 /* SS */
5311 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
5312 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
5313 if ( !(pCtx->cr0 & X86_CR0_PE)
5314 || pCtx->cs.Attr.n.u4Type == 3)
5315 {
5316 Assert(!pCtx->ss.Attr.n.u2Dpl);
5317 }
5318 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
5319 {
5320 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
5321 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
5322 Assert(pCtx->ss.Attr.n.u1Present);
5323 Assert(!(pCtx->ss.Attr.u & 0xf00));
5324 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
5325 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
5326 || !(pCtx->ss.Attr.n.u1Granularity));
5327 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
5328 || (pCtx->ss.Attr.n.u1Granularity));
5329 }
5330 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegReg(). */
5331 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
5332 {
5333 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5334 Assert(pCtx->ds.Attr.n.u1Present);
5335 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
5336 Assert(!(pCtx->ds.Attr.u & 0xf00));
5337 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
5338 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
5339 || !(pCtx->ds.Attr.n.u1Granularity));
5340 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
5341 || (pCtx->ds.Attr.n.u1Granularity));
5342 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5343 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
5344 }
5345 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
5346 {
5347 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5348 Assert(pCtx->es.Attr.n.u1Present);
5349 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
5350 Assert(!(pCtx->es.Attr.u & 0xf00));
5351 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
5352 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
5353 || !(pCtx->es.Attr.n.u1Granularity));
5354 Assert( !(pCtx->es.u32Limit & 0xfff00000)
5355 || (pCtx->es.Attr.n.u1Granularity));
5356 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5357 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
5358 }
5359 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
5360 {
5361 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5362 Assert(pCtx->fs.Attr.n.u1Present);
5363 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
5364 Assert(!(pCtx->fs.Attr.u & 0xf00));
5365 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
5366 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
5367 || !(pCtx->fs.Attr.n.u1Granularity));
5368 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
5369 || (pCtx->fs.Attr.n.u1Granularity));
5370 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5371 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
5372 }
5373 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
5374 {
5375 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
5376 Assert(pCtx->gs.Attr.n.u1Present);
5377 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
5378 Assert(!(pCtx->gs.Attr.u & 0xf00));
5379 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
5380 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
5381 || !(pCtx->gs.Attr.n.u1Granularity));
5382 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
5383 || (pCtx->gs.Attr.n.u1Granularity));
5384 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
5385 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
5386 }
5387 /* 64-bit capable CPUs. */
5388# if HC_ARCH_BITS == 64
5389 Assert(!RT_HI_U32(pCtx->cs.u64Base));
5390 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
5391 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
5392 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
5393# endif
5394 }
5395 else if ( CPUMIsGuestInV86ModeEx(pCtx)
5396 || ( CPUMIsGuestInRealModeEx(pCtx)
5397 && !pVM->hm.s.vmx.fUnrestrictedGuest))
5398 {
5399 /* Real and v86 mode checks. */
5400 /* hmR0VmxExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
5401 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
5402 if (pVmcsInfo->RealMode.fRealOnV86Active)
5403 {
5404 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
5405 u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
5406 }
5407 else
5408 {
5409 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
5410 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
5411 }
5412
5413 /* CS */
5414 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
5415 Assert(pCtx->cs.u32Limit == 0xffff);
5416 Assert(u32CSAttr == 0xf3);
5417 /* SS */
5418 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
5419 Assert(pCtx->ss.u32Limit == 0xffff);
5420 Assert(u32SSAttr == 0xf3);
5421 /* DS */
5422 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
5423 Assert(pCtx->ds.u32Limit == 0xffff);
5424 Assert(u32DSAttr == 0xf3);
5425 /* ES */
5426 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
5427 Assert(pCtx->es.u32Limit == 0xffff);
5428 Assert(u32ESAttr == 0xf3);
5429 /* FS */
5430 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
5431 Assert(pCtx->fs.u32Limit == 0xffff);
5432 Assert(u32FSAttr == 0xf3);
5433 /* GS */
5434 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
5435 Assert(pCtx->gs.u32Limit == 0xffff);
5436 Assert(u32GSAttr == 0xf3);
5437 /* 64-bit capable CPUs. */
5438# if HC_ARCH_BITS == 64
5439 Assert(!RT_HI_U32(pCtx->cs.u64Base));
5440 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
5441 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
5442 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
5443# endif
5444 }
5445}
5446#endif /* VBOX_STRICT */
5447
5448
5449/**
5450 * Exports a guest segment register into the guest-state area in the VMCS.
5451 *
5452 * @returns VBox status code.
5453 * @param pVCpu The cross context virtual CPU structure.
5454 * @param pVmcsInfo The VMCS info. object.
5455 * @param iSegReg The segment register number (X86_SREG_XXX).
5456 * @param pSelReg Pointer to the segment selector.
5457 *
5458 * @remarks No-long-jump zone!!!
5459 */
5460static int hmR0VmxExportGuestSegReg(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint8_t iSegReg, PCCPUMSELREG pSelReg)
5461{
5462 Assert(iSegReg < X86_SREG_COUNT);
5463 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
5464 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
5465 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
5466 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
5467
5468 uint32_t u32Access = pSelReg->Attr.u;
5469 if (pVmcsInfo->RealMode.fRealOnV86Active)
5470 {
5471 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
5472 u32Access = 0xf3;
5473 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5474 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
5475 RT_NOREF_PV(pVCpu);
5476 }
5477 else
5478 {
5479 /*
5480 * The way to differentiate between whether this is really a null selector or was just
5481 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
5482 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
5483 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
5484 * NULL selectors loaded in protected-mode have their attribute as 0.
5485 */
5486 if (!u32Access)
5487 u32Access = X86DESCATTR_UNUSABLE;
5488 }
5489
5490 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
5491 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
5492 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
5493
5494 /*
5495 * Commit it to the VMCS.
5496 */
5497 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel);
5498 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit);
5499 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base);
5500 rc |= VMXWriteVmcs32(idxAttr, u32Access);
5501 AssertRCReturn(rc, rc);
5502 return rc;
5503}
5504
5505
5506/**
5507 * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
5508 * area in the VMCS.
5509 *
5510 * @returns VBox status code.
5511 * @param pVCpu The cross context virtual CPU structure.
5512 * @param pVmxTransient The VMX-transient structure.
5513 *
5514 * @remarks Will import guest CR0 on strict builds during validation of
5515 * segments.
5516 * @remarks No-long-jump zone!!!
5517 */
5518static int hmR0VmxExportGuestSegRegsXdtr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5519{
5520 int rc = VERR_INTERNAL_ERROR_5;
5521 PVM pVM = pVCpu->CTX_SUFF(pVM);
5522 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5523 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5524
5525 /*
5526 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
5527 */
5528 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
5529 {
5530#ifdef VBOX_WITH_REM
5531 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
5532 {
5533 Assert(!pVmxTransient->fIsNestedGuest);
5534 Assert(pVM->hm.s.vmx.pRealModeTSS);
5535 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
5536 if ( pVmcsInfo->fWasInRealMode
5537 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
5538 {
5539 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
5540 in real-mode (e.g. OpenBSD 4.0) */
5541 REMFlushTBs(pVM);
5542 Log4Func(("Switch to protected mode detected!\n"));
5543 pVmcsInfo->fWasInRealMode = false;
5544 }
5545 }
5546#endif
5547 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
5548 {
5549 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
5550 if (pVmcsInfo->RealMode.fRealOnV86Active)
5551 pVmcsInfo->RealMode.AttrCS.u = pCtx->cs.Attr.u;
5552 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
5553 AssertRCReturn(rc, rc);
5554 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
5555 }
5556
5557 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
5558 {
5559 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
5560 if (pVmcsInfo->RealMode.fRealOnV86Active)
5561 pVmcsInfo->RealMode.AttrSS.u = pCtx->ss.Attr.u;
5562 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
5563 AssertRCReturn(rc, rc);
5564 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
5565 }
5566
5567 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
5568 {
5569 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
5570 if (pVmcsInfo->RealMode.fRealOnV86Active)
5571 pVmcsInfo->RealMode.AttrDS.u = pCtx->ds.Attr.u;
5572 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
5573 AssertRCReturn(rc, rc);
5574 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
5575 }
5576
5577 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
5578 {
5579 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
5580 if (pVmcsInfo->RealMode.fRealOnV86Active)
5581 pVmcsInfo->RealMode.AttrES.u = pCtx->es.Attr.u;
5582 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
5583 AssertRCReturn(rc, rc);
5584 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
5585 }
5586
5587 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
5588 {
5589 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
5590 if (pVmcsInfo->RealMode.fRealOnV86Active)
5591 pVmcsInfo->RealMode.AttrFS.u = pCtx->fs.Attr.u;
5592 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
5593 AssertRCReturn(rc, rc);
5594 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
5595 }
5596
5597 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
5598 {
5599 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
5600 if (pVmcsInfo->RealMode.fRealOnV86Active)
5601 pVmcsInfo->RealMode.AttrGS.u = pCtx->gs.Attr.u;
5602 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
5603 AssertRCReturn(rc, rc);
5604 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
5605 }
5606
5607#ifdef VBOX_STRICT
5608 hmR0VmxValidateSegmentRegs(pVCpu, pVmcsInfo);
5609#endif
5610 Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
5611 pCtx->cs.Attr.u));
5612 }
5613
5614 /*
5615 * Guest TR.
5616 */
5617 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
5618 {
5619 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
5620
5621 /*
5622 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
5623 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
5624 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
5625 */
5626 uint16_t u16Sel;
5627 uint32_t u32Limit;
5628 uint64_t u64Base;
5629 uint32_t u32AccessRights;
5630 if (!pVmcsInfo->RealMode.fRealOnV86Active)
5631 {
5632 u16Sel = pCtx->tr.Sel;
5633 u32Limit = pCtx->tr.u32Limit;
5634 u64Base = pCtx->tr.u64Base;
5635 u32AccessRights = pCtx->tr.Attr.u;
5636 }
5637 else
5638 {
5639 Assert(!pVmxTransient->fIsNestedGuest);
5640 Assert(pVM->hm.s.vmx.pRealModeTSS);
5641 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
5642
5643 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
5644 RTGCPHYS GCPhys;
5645 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
5646 AssertRCReturn(rc, rc);
5647
5648 X86DESCATTR DescAttr;
5649 DescAttr.u = 0;
5650 DescAttr.n.u1Present = 1;
5651 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
5652
5653 u16Sel = 0;
5654 u32Limit = HM_VTX_TSS_SIZE;
5655 u64Base = GCPhys;
5656 u32AccessRights = DescAttr.u;
5657 }
5658
5659 /* Validate. */
5660 Assert(!(u16Sel & RT_BIT(2)));
5661 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
5662 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
5663 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
5664 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
5665 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
5666 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
5667 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
5668 Assert( (u32Limit & 0xfff) == 0xfff
5669 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
5670 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
5671 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
5672
5673 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
5674 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
5675 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
5676 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
5677 AssertRCReturn(rc, rc);
5678
5679 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
5680 Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
5681 }
5682
5683 /*
5684 * Guest GDTR.
5685 */
5686 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
5687 {
5688 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
5689
5690 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
5691 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
5692 AssertRCReturn(rc, rc);
5693
5694 /* Validate. */
5695 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
5696
5697 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
5698 Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
5699 }
5700
5701 /*
5702 * Guest LDTR.
5703 */
5704 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
5705 {
5706 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
5707
5708 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
5709 uint32_t u32Access;
5710 if ( !pVmxTransient->fIsNestedGuest
5711 && !pCtx->ldtr.Attr.u)
5712 u32Access = X86DESCATTR_UNUSABLE;
5713 else
5714 u32Access = pCtx->ldtr.Attr.u;
5715
5716 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
5717 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
5718 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
5719 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
5720 AssertRCReturn(rc, rc);
5721
5722 /* Validate. */
5723 if (!(u32Access & X86DESCATTR_UNUSABLE))
5724 {
5725 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
5726 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
5727 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
5728 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
5729 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
5730 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
5731 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
5732 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
5733 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
5734 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
5735 }
5736
5737 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
5738 Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
5739 }
5740
5741 /*
5742 * Guest IDTR.
5743 */
5744 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
5745 {
5746 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
5747
5748 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
5749 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
5750 AssertRCReturn(rc, rc);
5751
5752 /* Validate. */
5753 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
5754
5755 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
5756 Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
5757 }
5758
5759 return VINF_SUCCESS;
5760}
5761
5762
5763/**
5764 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
5765 * areas.
5766 *
5767 * These MSRs will automatically be loaded to the host CPU on every successful
5768 * VM-entry and stored from the host CPU on every successful VM-exit.
5769 *
5770 * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
5771 * actual host MSR values are not- updated here for performance reasons. See
5772 * hmR0VmxExportHostMsrs().
5773 *
5774 * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
5775 *
5776 * @returns VBox status code.
5777 * @param pVCpu The cross context virtual CPU structure.
5778 * @param pVmxTransient The VMX-transient structure.
5779 *
5780 * @remarks No-long-jump zone!!!
5781 */
5782static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5783{
5784 AssertPtr(pVCpu);
5785 AssertPtr(pVmxTransient);
5786
5787 PVM pVM = pVCpu->CTX_SUFF(pVM);
5788 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5789
5790 /*
5791 * MSRs that we use the auto-load/store MSR area in the VMCS.
5792 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
5793 * The host MSR values are updated when it's safe in hmR0VmxLazySaveHostMsrs().
5794 *
5795 * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
5796 * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
5797 * emulation, nothing to do here.
5798 */
5799 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
5800 {
5801 if ( !pVmxTransient->fIsNestedGuest
5802 && pVM->hm.s.fAllow64BitGuests)
5803 {
5804#if HC_ARCH_BITS == 32
5805 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
5806 Assert(!pVmxTransient->fIsNestedGuest);
5807
5808 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_LSTAR, pCtx->msrLSTAR, true, false);
5809 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_STAR, pCtx->msrSTAR, true, false);
5810 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_SF_MASK, pCtx->msrSFMASK, true, false);
5811 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, true, false);
5812 AssertRCReturn(rc, rc);
5813#endif
5814 }
5815 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
5816 }
5817
5818 /*
5819 * Guest Sysenter MSRs.
5820 */
5821 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
5822 {
5823 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
5824
5825 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
5826 {
5827 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
5828 AssertRCReturn(rc, rc);
5829 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
5830 }
5831
5832 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
5833 {
5834 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
5835 AssertRCReturn(rc, rc);
5836 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
5837 }
5838
5839 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
5840 {
5841 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
5842 AssertRCReturn(rc, rc);
5843 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
5844 }
5845 }
5846
5847 /*
5848 * Guest/host EFER MSR.
5849 */
5850 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
5851 {
5852 /* Whether we are using the VMCS to swap the EFER MSR must have been
5853 determined earlier while exporting VM-entry/VM-exit controls. */
5854 Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
5855 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
5856
5857 if (hmR0VmxShouldSwapEferMsr(pVCpu))
5858 {
5859 /*
5860 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
5861 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
5862 */
5863 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
5864 {
5865 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
5866 AssertRCReturn(rc, rc);
5867 }
5868 else
5869 {
5870 /*
5871 * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
5872 * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
5873 */
5874 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, pCtx->msrEFER,
5875 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
5876 AssertRCReturn(rc, rc);
5877 }
5878 }
5879 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
5880 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
5881
5882 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
5883 }
5884
5885 /*
5886 * Other MSRs.
5887 * Speculation Control (R/W).
5888 */
5889 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
5890 {
5891 HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
5892 if (pVM->cpum.ro.GuestFeatures.fIbrs)
5893 {
5894 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
5895 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
5896 AssertRCReturn(rc, rc);
5897 }
5898 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
5899 }
5900
5901 return VINF_SUCCESS;
5902}
5903
5904
5905/**
5906 * Selects up the appropriate function to run guest code.
5907 *
5908 * @returns VBox status code.
5909 * @param pVCpu The cross context virtual CPU structure.
5910 * @param pVmxTransient The VMX-transient structure.
5911 *
5912 * @remarks No-long-jump zone!!!
5913 */
5914static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
5915{
5916 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5917 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5918
5919 if (CPUMIsGuestInLongModeEx(pCtx))
5920 {
5921#ifndef VBOX_ENABLE_64_BITS_GUESTS
5922 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5923#endif
5924 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
5925#if HC_ARCH_BITS == 32
5926 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
5927 if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
5928 {
5929#ifdef VBOX_STRICT
5930 if (pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
5931 {
5932 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
5933 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
5934 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
5935 AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
5936 ("fCtxChanged=%#RX64\n", fCtxChanged));
5937 }
5938#endif
5939 pVmcsInfo->pfnStartVM = VMXR0SwitcherStartVM64;
5940
5941 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
5942 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
5943 pVmcsInfo->fSwitchedTo64on32 = true;
5944 Log4Func(("Selected 64-bit switcher\n"));
5945 }
5946#else
5947 /* 64-bit host. */
5948 pVmcsInfo->pfnStartVM = VMXR0StartVM64;
5949#endif
5950 }
5951 else
5952 {
5953 /* Guest is not in long mode, use the 32-bit handler. */
5954#if HC_ARCH_BITS == 32
5955 if ( pVmcsInfo->pfnStartVM != VMXR0StartVM32
5956 && !pVmcsInfo->fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
5957 && pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
5958 {
5959# ifdef VBOX_STRICT
5960 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
5961 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
5962 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
5963 AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
5964 ("fCtxChanged=%#RX64\n", fCtxChanged));
5965# endif
5966 }
5967# ifdef VBOX_ENABLE_64_BITS_GUESTS
5968 /*
5969 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
5970 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
5971 * switcher flag now because we know the guest is in a sane state where it's safe
5972 * to use the 32-bit switcher. Otherwise, check the guest state if it's safe to use
5973 * the much faster 32-bit switcher again.
5974 */
5975 if (!pVmcsInfo->fSwitchedTo64on32)
5976 {
5977 if (pVmcsInfo->pfnStartVM != VMXR0StartVM32)
5978 Log4Func(("Selected 32-bit switcher\n"));
5979 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5980 }
5981 else
5982 {
5983 Assert(pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64);
5984 if ( pVmcsInfo->RealMode.fRealOnV86Active
5985 || hmR0VmxIs32BitSwitcherSafe(pCtx))
5986 {
5987 pVmcsInfo->fSwitchedTo64on32 = false;
5988 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5989 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
5990 | HM_CHANGED_VMX_ENTRY_EXIT_CTLS
5991 | HM_CHANGED_HOST_CONTEXT);
5992 Log4Func(("Selected 32-bit switcher (safe)\n"));
5993 }
5994 }
5995# else
5996 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
5997# endif
5998#else
5999 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
6000#endif
6001 }
6002 Assert(pVmcsInfo->pfnStartVM);
6003 return VINF_SUCCESS;
6004}
6005
6006
6007/**
6008 * Wrapper for running the guest code in VT-x.
6009 *
6010 * @returns VBox status code, no informational status codes.
6011 * @param pVCpu The cross context virtual CPU structure.
6012 * @param pVmxTransient The VMX-transient structure.
6013 *
6014 * @remarks No-long-jump zone!!!
6015 */
6016DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6017{
6018 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
6019 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6020 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
6021
6022 /** @todo Add stats for VMRESUME vs VMLAUNCH. */
6023
6024 /*
6025 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
6026 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
6027 * callee-saved and thus the need for this XMM wrapper.
6028 *
6029 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
6030 */
6031 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6032 bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
6033 PVM pVM = pVCpu->CTX_SUFF(pVM);
6034#ifdef VBOX_WITH_KERNEL_USING_XMM
6035 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu, pVmcsInfo->pfnStartVM);
6036#else
6037 int rc = pVmcsInfo->pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu);
6038#endif
6039 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
6040 return rc;
6041}
6042
6043
6044/**
6045 * Reports world-switch error and dumps some useful debug info.
6046 *
6047 * @param pVCpu The cross context virtual CPU structure.
6048 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
6049 * @param pVmxTransient The VMX-transient structure (only
6050 * exitReason updated).
6051 */
6052static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
6053{
6054 Assert(pVCpu);
6055 Assert(pVmxTransient);
6056 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
6057
6058 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
6059 switch (rcVMRun)
6060 {
6061 case VERR_VMX_INVALID_VMXON_PTR:
6062 AssertFailed();
6063 break;
6064 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
6065 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
6066 {
6067 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
6068 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
6069 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
6070 AssertRC(rc);
6071
6072 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6073 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
6074 Cannot do it here as we may have been long preempted. */
6075
6076#ifdef VBOX_STRICT
6077 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6078 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
6079 pVmxTransient->uExitReason));
6080 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
6081 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
6082 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
6083 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
6084 else
6085 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
6086 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
6087 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
6088
6089 /* VMX control bits. */
6090 uint32_t u32Val;
6091 uint64_t u64Val;
6092 RTHCUINTREG uHCReg;
6093 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
6094 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
6095 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
6096 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
6097 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6098 {
6099 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
6100 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
6101 }
6102 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
6103 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
6104 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
6105 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
6106 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
6107 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
6108 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
6109 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
6110 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
6111 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
6112 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
6113 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
6114 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
6115 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
6116 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
6117 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
6118 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
6119 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
6120 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
6121 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
6122 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
6123 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
6124 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
6125 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
6126 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
6127 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
6128 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
6129 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
6130 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
6131 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
6132 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
6133 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
6134 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
6135 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
6136 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
6137 {
6138 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
6139 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
6140 }
6141
6142 /* Guest bits. */
6143 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
6144 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
6145 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
6146 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
6147 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
6148 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
6149 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
6150 {
6151 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
6152 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
6153 }
6154
6155 /* Host bits. */
6156 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
6157 Log4(("Host CR0 %#RHr\n", uHCReg));
6158 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
6159 Log4(("Host CR3 %#RHr\n", uHCReg));
6160 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
6161 Log4(("Host CR4 %#RHr\n", uHCReg));
6162
6163 RTGDTR HostGdtr;
6164 PCX86DESCHC pDesc;
6165 ASMGetGDTR(&HostGdtr);
6166 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
6167 Log4(("Host CS %#08x\n", u32Val));
6168 if (u32Val < HostGdtr.cbGdt)
6169 {
6170 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6171 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
6172 }
6173
6174 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
6175 Log4(("Host DS %#08x\n", u32Val));
6176 if (u32Val < HostGdtr.cbGdt)
6177 {
6178 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6179 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
6180 }
6181
6182 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
6183 Log4(("Host ES %#08x\n", u32Val));
6184 if (u32Val < HostGdtr.cbGdt)
6185 {
6186 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6187 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
6188 }
6189
6190 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
6191 Log4(("Host FS %#08x\n", u32Val));
6192 if (u32Val < HostGdtr.cbGdt)
6193 {
6194 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6195 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
6196 }
6197
6198 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
6199 Log4(("Host GS %#08x\n", u32Val));
6200 if (u32Val < HostGdtr.cbGdt)
6201 {
6202 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6203 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
6204 }
6205
6206 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
6207 Log4(("Host SS %#08x\n", u32Val));
6208 if (u32Val < HostGdtr.cbGdt)
6209 {
6210 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6211 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
6212 }
6213
6214 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
6215 Log4(("Host TR %#08x\n", u32Val));
6216 if (u32Val < HostGdtr.cbGdt)
6217 {
6218 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
6219 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
6220 }
6221
6222 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
6223 Log4(("Host TR Base %#RHv\n", uHCReg));
6224 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
6225 Log4(("Host GDTR Base %#RHv\n", uHCReg));
6226 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
6227 Log4(("Host IDTR Base %#RHv\n", uHCReg));
6228 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
6229 Log4(("Host SYSENTER CS %#08x\n", u32Val));
6230 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
6231 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
6232 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
6233 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
6234 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
6235 Log4(("Host RSP %#RHv\n", uHCReg));
6236 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
6237 Log4(("Host RIP %#RHv\n", uHCReg));
6238# if HC_ARCH_BITS == 64
6239 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
6240 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
6241 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
6242 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
6243 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
6244 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
6245# endif
6246#endif /* VBOX_STRICT */
6247 break;
6248 }
6249
6250 default:
6251 /* Impossible */
6252 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
6253 break;
6254 }
6255}
6256
6257
6258#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
6259# ifndef VMX_USE_CACHED_VMCS_ACCESSES
6260# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
6261# endif
6262
6263/**
6264 * Initialize the VMCS-Read cache.
6265 *
6266 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
6267 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
6268 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
6269 * (those that have a 32-bit FULL & HIGH part).
6270 *
6271 * @param pVCpu The cross context virtual CPU structure.
6272 */
6273static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
6274{
6275#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
6276 do { \
6277 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
6278 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
6279 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
6280 ++cReadFields; \
6281 } while (0)
6282
6283 PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
6284 uint32_t cReadFields = 0;
6285
6286 /*
6287 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
6288 * and serve to indicate exceptions to the rules.
6289 */
6290
6291 /* Guest-natural selector base fields. */
6292#if 0
6293 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
6294 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
6295 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
6296#endif
6297 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
6298 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
6299 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
6300 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
6301 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
6302 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
6303 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
6304 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
6305 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
6306 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
6307 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
6308 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
6309#if 0
6310 /* Unused natural width guest-state fields. */
6311 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS);
6312 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in nested paging case */
6313#endif
6314 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
6315 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
6316
6317 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
6318 these 64-bit fields (using "FULL" and "HIGH" fields). */
6319#if 0
6320 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
6321 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
6322 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
6323 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
6324 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
6325 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
6326 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
6327 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
6328 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
6329#endif
6330
6331 /* Natural width guest-state fields. */
6332 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
6333 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_GUEST_LINEAR_ADDR);
6334
6335 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
6336 {
6337 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
6338 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
6339 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
6340 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
6341 }
6342 else
6343 {
6344 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
6345 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
6346 }
6347
6348#undef VMXLOCAL_INIT_READ_CACHE_FIELD
6349}
6350
6351
6352/**
6353 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
6354 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
6355 * darwin, running 64-bit guests).
6356 *
6357 * @returns VBox status code.
6358 * @param pVCpu The cross context virtual CPU structure.
6359 * @param idxField The VMCS field encoding.
6360 * @param u64Val 16, 32 or 64-bit value.
6361 */
6362VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
6363{
6364 int rc;
6365 switch (idxField)
6366 {
6367 /*
6368 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
6369 */
6370 /* 64-bit Control fields. */
6371 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
6372 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
6373 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
6374 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
6375 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
6376 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
6377 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
6378 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
6379 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
6380 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
6381 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
6382 case VMX_VMCS64_CTRL_EPTP_FULL:
6383 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
6384 /* 64-bit Guest-state fields. */
6385 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
6386 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
6387 case VMX_VMCS64_GUEST_PAT_FULL:
6388 case VMX_VMCS64_GUEST_EFER_FULL:
6389 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
6390 case VMX_VMCS64_GUEST_PDPTE0_FULL:
6391 case VMX_VMCS64_GUEST_PDPTE1_FULL:
6392 case VMX_VMCS64_GUEST_PDPTE2_FULL:
6393 case VMX_VMCS64_GUEST_PDPTE3_FULL:
6394 /* 64-bit Host-state fields. */
6395 case VMX_VMCS64_HOST_PAT_FULL:
6396 case VMX_VMCS64_HOST_EFER_FULL:
6397 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
6398 {
6399 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
6400 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
6401 break;
6402 }
6403
6404 /*
6405 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
6406 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
6407 */
6408 /* Natural-width Guest-state fields. */
6409 case VMX_VMCS_GUEST_CR3:
6410 case VMX_VMCS_GUEST_ES_BASE:
6411 case VMX_VMCS_GUEST_CS_BASE:
6412 case VMX_VMCS_GUEST_SS_BASE:
6413 case VMX_VMCS_GUEST_DS_BASE:
6414 case VMX_VMCS_GUEST_FS_BASE:
6415 case VMX_VMCS_GUEST_GS_BASE:
6416 case VMX_VMCS_GUEST_LDTR_BASE:
6417 case VMX_VMCS_GUEST_TR_BASE:
6418 case VMX_VMCS_GUEST_GDTR_BASE:
6419 case VMX_VMCS_GUEST_IDTR_BASE:
6420 case VMX_VMCS_GUEST_RSP:
6421 case VMX_VMCS_GUEST_RIP:
6422 case VMX_VMCS_GUEST_SYSENTER_ESP:
6423 case VMX_VMCS_GUEST_SYSENTER_EIP:
6424 {
6425 if (!(RT_HI_U32(u64Val)))
6426 {
6427 /* If this field is 64-bit, VT-x will zero out the top bits. */
6428 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
6429 }
6430 else
6431 {
6432 /* Assert that only the 32->64 switcher case should ever come here. */
6433 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
6434 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
6435 }
6436 break;
6437 }
6438
6439 default:
6440 {
6441 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
6442 pVCpu->hm.s.u32HMError = idxField;
6443 rc = VERR_INVALID_PARAMETER;
6444 break;
6445 }
6446 }
6447 AssertRCReturn(rc, rc);
6448 return rc;
6449}
6450
6451
6452/**
6453 * Queue up a VMWRITE by using the VMCS write cache.
6454 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
6455 *
6456 * @param pVCpu The cross context virtual CPU structure.
6457 * @param idxField The VMCS field encoding.
6458 * @param u64Val 16, 32 or 64-bit value.
6459 */
6460VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
6461{
6462 AssertPtr(pVCpu);
6463 PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
6464
6465 AssertMsgReturn(pCache->Write.cValidEntries < VMX_VMCS_CACHE_MAX_ENTRY - 1,
6466 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
6467
6468 /* Make sure there are no duplicates. */
6469 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
6470 {
6471 if (pCache->Write.aField[i] == idxField)
6472 {
6473 pCache->Write.aFieldVal[i] = u64Val;
6474 return VINF_SUCCESS;
6475 }
6476 }
6477
6478 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
6479 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
6480 pCache->Write.cValidEntries++;
6481 return VINF_SUCCESS;
6482}
6483#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
6484
6485
6486/**
6487 * Sets up the usage of TSC-offsetting and updates the VMCS.
6488 *
6489 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
6490 * VMX-preemption timer.
6491 *
6492 * @returns VBox status code.
6493 * @param pVCpu The cross context virtual CPU structure.
6494 * @param pVmxTransient The VMX-transient structure.
6495 *
6496 * @remarks No-long-jump zone!!!
6497 */
6498static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6499{
6500 bool fOffsettedTsc;
6501 bool fParavirtTsc;
6502 uint64_t uTscOffset;
6503 PVM pVM = pVCpu->CTX_SUFF(pVM);
6504 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6505
6506 if (pVM->hm.s.vmx.fUsePreemptTimer)
6507 {
6508 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
6509
6510 /* Make sure the returned values have sane upper and lower boundaries. */
6511 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
6512 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
6513 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
6514 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
6515
6516 /** @todo r=ramshankar: We need to find a way to integrate nested-guest
6517 * preemption timers here. We probably need to clamp the preemption timer,
6518 * after converting the timer value to the host. */
6519 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
6520 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
6521 AssertRC(rc);
6522 }
6523 else
6524 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
6525
6526 if (fParavirtTsc)
6527 {
6528 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
6529 information before every VM-entry, hence disable it for performance sake. */
6530#if 0
6531 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
6532 AssertRC(rc);
6533#endif
6534 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
6535 }
6536
6537 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
6538 if ( fOffsettedTsc
6539 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
6540 {
6541 if (pVmxTransient->fIsNestedGuest)
6542 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
6543 if (pVmcsInfo->u64TscOffset != uTscOffset)
6544 {
6545 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
6546 AssertRC(rc);
6547 pVmcsInfo->u64TscOffset = uTscOffset;
6548 }
6549
6550 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
6551 {
6552 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
6553 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6554 AssertRC(rc);
6555 pVmcsInfo->u32ProcCtls = uProcCtls;
6556 }
6557 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
6558 }
6559 else
6560 {
6561 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
6562 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
6563 {
6564 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
6565 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6566 AssertRC(rc);
6567 pVmcsInfo->u32ProcCtls = uProcCtls;
6568 }
6569 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
6570 }
6571}
6572
6573
6574/**
6575 * Gets the IEM exception flags for the specified vector and IDT vectoring /
6576 * VM-exit interruption info type.
6577 *
6578 * @returns The IEM exception flags.
6579 * @param uVector The event vector.
6580 * @param uVmxEventType The VMX event type.
6581 *
6582 * @remarks This function currently only constructs flags required for
6583 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
6584 * and CR2 aspects of an exception are not included).
6585 */
6586static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
6587{
6588 uint32_t fIemXcptFlags;
6589 switch (uVmxEventType)
6590 {
6591 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
6592 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
6593 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
6594 break;
6595
6596 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
6597 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
6598 break;
6599
6600 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
6601 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
6602 break;
6603
6604 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
6605 {
6606 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
6607 if (uVector == X86_XCPT_BP)
6608 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
6609 else if (uVector == X86_XCPT_OF)
6610 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
6611 else
6612 {
6613 fIemXcptFlags = 0;
6614 AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
6615 }
6616 break;
6617 }
6618
6619 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
6620 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
6621 break;
6622
6623 default:
6624 fIemXcptFlags = 0;
6625 AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
6626 break;
6627 }
6628 return fIemXcptFlags;
6629}
6630
6631
6632/**
6633 * Sets an event as a pending event to be injected into the guest.
6634 *
6635 * @param pVCpu The cross context virtual CPU structure.
6636 * @param u32IntInfo The VM-entry interruption-information field.
6637 * @param cbInstr The VM-entry instruction length in bytes (for software
6638 * interrupts, exceptions and privileged software
6639 * exceptions).
6640 * @param u32ErrCode The VM-entry exception error code.
6641 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
6642 * page-fault.
6643 */
6644DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
6645 RTGCUINTPTR GCPtrFaultAddress)
6646{
6647 Assert(!pVCpu->hm.s.Event.fPending);
6648 pVCpu->hm.s.Event.fPending = true;
6649 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
6650 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
6651 pVCpu->hm.s.Event.cbInstr = cbInstr;
6652 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
6653}
6654
6655
6656/**
6657 * Sets an external interrupt as pending-for-injection into the VM.
6658 *
6659 * @param pVCpu The cross context virtual CPU structure.
6660 * @param u8Interrupt The external interrupt vector.
6661 */
6662DECLINLINE(void) hmR0VmxSetPendingExtInt(PVMCPU pVCpu, uint8_t u8Interrupt)
6663{
6664 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
6665 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
6666 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6667 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6668 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6669}
6670
6671
6672/**
6673 * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
6674 *
6675 * @param pVCpu The cross context virtual CPU structure.
6676 */
6677DECLINLINE(void) hmR0VmxSetPendingXcptNmi(PVMCPU pVCpu)
6678{
6679 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
6680 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
6681 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6682 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6683 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6684}
6685
6686
6687/**
6688 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
6689 *
6690 * @param pVCpu The cross context virtual CPU structure.
6691 */
6692DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
6693{
6694 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
6695 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6696 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6697 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6698 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6699}
6700
6701
6702/**
6703 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
6704 *
6705 * @param pVCpu The cross context virtual CPU structure.
6706 */
6707DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
6708{
6709 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
6710 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6711 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6712 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6713 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6714}
6715
6716
6717/**
6718 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
6719 *
6720 * @param pVCpu The cross context virtual CPU structure.
6721 */
6722DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
6723{
6724 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
6725 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6726 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
6727 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6728 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
6729}
6730
6731
6732#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6733/**
6734 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
6735 *
6736 * @param pVCpu The cross context virtual CPU structure.
6737 * @param u32ErrCode The error code for the general-protection exception.
6738 */
6739DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
6740{
6741 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
6742 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6743 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6744 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6745 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
6746}
6747
6748
6749/**
6750 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
6751 *
6752 * @param pVCpu The cross context virtual CPU structure.
6753 * @param u32ErrCode The error code for the stack exception.
6754 */
6755DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
6756{
6757 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
6758 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
6759 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
6760 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
6761 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
6762}
6763
6764
6765/**
6766 * Decodes the memory operand of an instruction that caused a VM-exit.
6767 *
6768 * The VM-exit qualification field provides the displacement field for memory
6769 * operand instructions, if any.
6770 *
6771 * @returns Strict VBox status code (i.e. informational status codes too).
6772 * @retval VINF_SUCCESS if the operand was successfully decoded.
6773 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
6774 * operand.
6775 * @param pVCpu The cross context virtual CPU structure.
6776 * @param uExitInstrInfo The VM-exit instruction information field.
6777 * @param enmMemAccess The memory operand's access type (read or write).
6778 * @param GCPtrDisp The instruction displacement field, if any. For
6779 * RIP-relative addressing pass RIP + displacement here.
6780 * @param pGCPtrMem Where to store the effective destination memory address.
6781 */
6782static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
6783 PRTGCPTR pGCPtrMem)
6784{
6785 Assert(pGCPtrMem);
6786 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
6787 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
6788 | CPUMCTX_EXTRN_CR0);
6789
6790 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
6791 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
6792 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
6793
6794 VMXEXITINSTRINFO ExitInstrInfo;
6795 ExitInstrInfo.u = uExitInstrInfo;
6796 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
6797 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
6798 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
6799 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
6800 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
6801 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
6802 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
6803 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
6804 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
6805
6806 /*
6807 * Validate instruction information.
6808 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
6809 */
6810 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
6811 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
6812 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
6813 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
6814 AssertLogRelMsgReturn(fIsMemOperand,
6815 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
6816
6817 /*
6818 * Compute the complete effective address.
6819 *
6820 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
6821 * See AMD spec. 4.5.2 "Segment Registers".
6822 */
6823 RTGCPTR GCPtrMem = GCPtrDisp;
6824 if (fBaseRegValid)
6825 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
6826 if (fIdxRegValid)
6827 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
6828
6829 RTGCPTR const GCPtrOff = GCPtrMem;
6830 if ( !fIsLongMode
6831 || iSegReg >= X86_SREG_FS)
6832 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
6833 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
6834
6835 /*
6836 * Validate effective address.
6837 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
6838 */
6839 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
6840 Assert(cbAccess > 0);
6841 if (fIsLongMode)
6842 {
6843 if (X86_IS_CANONICAL(GCPtrMem))
6844 {
6845 *pGCPtrMem = GCPtrMem;
6846 return VINF_SUCCESS;
6847 }
6848
6849 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
6850 * "Data Limit Checks in 64-bit Mode". */
6851 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
6852 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6853 return VINF_HM_PENDING_XCPT;
6854 }
6855
6856 /*
6857 * This is a watered down version of iemMemApplySegment().
6858 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
6859 * and segment CPL/DPL checks are skipped.
6860 */
6861 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
6862 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
6863 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6864
6865 /* Check if the segment is present and usable. */
6866 if ( pSel->Attr.n.u1Present
6867 && !pSel->Attr.n.u1Unusable)
6868 {
6869 Assert(pSel->Attr.n.u1DescType);
6870 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
6871 {
6872 /* Check permissions for the data segment. */
6873 if ( enmMemAccess == VMXMEMACCESS_WRITE
6874 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
6875 {
6876 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6877 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
6878 return VINF_HM_PENDING_XCPT;
6879 }
6880
6881 /* Check limits if it's a normal data segment. */
6882 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
6883 {
6884 if ( GCPtrFirst32 > pSel->u32Limit
6885 || GCPtrLast32 > pSel->u32Limit)
6886 {
6887 Log4Func(("Data segment limit exceeded."
6888 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6889 GCPtrLast32, pSel->u32Limit));
6890 if (iSegReg == X86_SREG_SS)
6891 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6892 else
6893 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6894 return VINF_HM_PENDING_XCPT;
6895 }
6896 }
6897 else
6898 {
6899 /* Check limits if it's an expand-down data segment.
6900 Note! The upper boundary is defined by the B bit, not the G bit! */
6901 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
6902 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
6903 {
6904 Log4Func(("Expand-down data segment limit exceeded."
6905 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6906 GCPtrLast32, pSel->u32Limit));
6907 if (iSegReg == X86_SREG_SS)
6908 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6909 else
6910 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6911 return VINF_HM_PENDING_XCPT;
6912 }
6913 }
6914 }
6915 else
6916 {
6917 /* Check permissions for the code segment. */
6918 if ( enmMemAccess == VMXMEMACCESS_WRITE
6919 || ( enmMemAccess == VMXMEMACCESS_READ
6920 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
6921 {
6922 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6923 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6924 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6925 return VINF_HM_PENDING_XCPT;
6926 }
6927
6928 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6929 if ( GCPtrFirst32 > pSel->u32Limit
6930 || GCPtrLast32 > pSel->u32Limit)
6931 {
6932 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6933 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6934 if (iSegReg == X86_SREG_SS)
6935 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6936 else
6937 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6938 return VINF_HM_PENDING_XCPT;
6939 }
6940 }
6941 }
6942 else
6943 {
6944 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6945 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6946 return VINF_HM_PENDING_XCPT;
6947 }
6948
6949 *pGCPtrMem = GCPtrMem;
6950 return VINF_SUCCESS;
6951}
6952
6953
6954/**
6955 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6956 * guest attempting to execute a VMX instruction.
6957 *
6958 * @returns Strict VBox status code (i.e. informational status codes too).
6959 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6960 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6961 *
6962 * @param pVCpu The cross context virtual CPU structure.
6963 * @param uExitReason The VM-exit reason.
6964 *
6965 * @todo NSTVMX: Document other error codes when VM-exit is implemented.
6966 * @remarks No-long-jump zone!!!
6967 */
6968static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
6969{
6970 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6971 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
6972
6973 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6974 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6975 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6976 {
6977 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6978 hmR0VmxSetPendingXcptUD(pVCpu);
6979 return VINF_HM_PENDING_XCPT;
6980 }
6981
6982 if (uExitReason == VMX_EXIT_VMXON)
6983 {
6984 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
6985
6986 /*
6987 * We check CR4.VMXE because it is required to be always set while in VMX operation
6988 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6989 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6990 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6991 */
6992 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6993 {
6994 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6995 hmR0VmxSetPendingXcptUD(pVCpu);
6996 return VINF_HM_PENDING_XCPT;
6997 }
6998 }
6999 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
7000 {
7001 /*
7002 * The guest has not entered VMX operation but attempted to execute a VMX instruction
7003 * (other than VMXON), we need to raise a #UD.
7004 */
7005 Log4Func(("Not in VMX root mode -> #UD\n"));
7006 hmR0VmxSetPendingXcptUD(pVCpu);
7007 return VINF_HM_PENDING_XCPT;
7008 }
7009
7010 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
7011 {
7012 /*
7013 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
7014 * the guest hypervisor deal with it.
7015 */
7016 /** @todo NSTVMX: Trigger a VM-exit */
7017 }
7018
7019 /*
7020 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
7021 * (above) takes preceedence over the CPL check.
7022 */
7023 if (CPUMGetGuestCPL(pVCpu) > 0)
7024 {
7025 Log4Func(("CPL > 0 -> #GP(0)\n"));
7026 hmR0VmxSetPendingXcptGP(pVCpu, 0);
7027 return VINF_HM_PENDING_XCPT;
7028 }
7029
7030 return VINF_SUCCESS;
7031}
7032#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
7033
7034
7035static void hmR0VmxFixUnusableSegRegAttr(PVMCPU pVCpu, PCPUMSELREG pSelReg, uint32_t idxSel)
7036{
7037 Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
7038
7039 /*
7040 * If VT-x marks the segment as unusable, most other bits remain undefined:
7041 * - For CS the L, D and G bits have meaning.
7042 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
7043 * - For the remaining data segments no bits are defined.
7044 *
7045 * The present bit and the unusable bit has been observed to be set at the
7046 * same time (the selector was supposed to be invalid as we started executing
7047 * a V8086 interrupt in ring-0).
7048 *
7049 * What should be important for the rest of the VBox code, is that the P bit is
7050 * cleared. Some of the other VBox code recognizes the unusable bit, but
7051 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
7052 * safe side here, we'll strip off P and other bits we don't care about. If
7053 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
7054 *
7055 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
7056 */
7057#ifdef VBOX_STRICT
7058 uint32_t const uAttr = pSelReg->Attr.u;
7059#endif
7060
7061 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
7062 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
7063 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
7064
7065#ifdef VBOX_STRICT
7066 VMMRZCallRing3Disable(pVCpu);
7067 Log4Func(("Unusable %#x: sel=%#x attr=%#x -> %#x\n", idxSel, pSelReg->Sel, uAttr, pSelReg->Attr.u));
7068# ifdef DEBUG_bird
7069 AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
7070 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
7071 idxSel, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
7072# endif
7073 VMMRZCallRing3Enable(pVCpu);
7074 NOREF(uAttr);
7075#endif
7076 RT_NOREF2(pVCpu, idxSel);
7077}
7078
7079
7080/**
7081 * Imports a guest segment register from the current VMCS into the guest-CPU
7082 * context.
7083 *
7084 * @returns VBox status code.
7085 * @param pVCpu The cross context virtual CPU structure.
7086 * @param iSegReg The segment register number (X86_SREG_XXX).
7087 *
7088 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7089 * do not log!
7090 */
7091static int hmR0VmxImportGuestSegReg(PVMCPU pVCpu, uint8_t iSegReg)
7092{
7093 Assert(iSegReg < X86_SREG_COUNT);
7094
7095 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
7096 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
7097 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
7098#ifdef VMX_USE_CACHED_VMCS_ACCESSES
7099 uint32_t const idxBase = g_aVmcsCacheSegBase[iSegReg];
7100#else
7101 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
7102#endif
7103 uint64_t u64Base;
7104 uint32_t u32Sel, u32Limit, u32Attr;
7105 int rc = VMXReadVmcs32(idxSel, &u32Sel);
7106 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
7107 rc |= VMXReadVmcs32(idxAttr, &u32Attr);
7108 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
7109 if (RT_SUCCESS(rc))
7110 {
7111 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
7112 pSelReg->Sel = u32Sel;
7113 pSelReg->ValidSel = u32Sel;
7114 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
7115 pSelReg->u32Limit = u32Limit;
7116 pSelReg->u64Base = u64Base;
7117 pSelReg->Attr.u = u32Attr;
7118 if (u32Attr & X86DESCATTR_UNUSABLE)
7119 hmR0VmxFixUnusableSegRegAttr(pVCpu, pSelReg, idxSel);
7120 }
7121 return rc;
7122}
7123
7124
7125/**
7126 * Imports the guest LDTR from the current VMCS into the guest-CPU context.
7127 *
7128 * @returns VBox status code.
7129 * @param pVCpu The cross context virtual CPU structure.
7130 *
7131 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7132 * do not log!
7133 */
7134static int hmR0VmxImportGuestLdtr(PVMCPU pVCpu)
7135{
7136 uint64_t u64Base;
7137 uint32_t u32Sel, u32Limit, u32Attr;
7138 int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, &u32Sel);
7139 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit);
7140 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr);
7141 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, &u64Base);
7142 if (RT_SUCCESS(rc))
7143 {
7144 pVCpu->cpum.GstCtx.ldtr.Sel = u32Sel;
7145 pVCpu->cpum.GstCtx.ldtr.ValidSel = u32Sel;
7146 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
7147 pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
7148 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
7149 pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
7150 if (u32Attr & X86DESCATTR_UNUSABLE)
7151 hmR0VmxFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, VMX_VMCS16_GUEST_LDTR_SEL);
7152 }
7153 return rc;
7154}
7155
7156
7157/**
7158 * Imports the guest TR from the current VMCS into the guest-CPU context.
7159 *
7160 * @returns VBox status code.
7161 * @param pVCpu The cross context virtual CPU structure.
7162 *
7163 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7164 * do not log!
7165 */
7166static int hmR0VmxImportGuestTr(PVMCPU pVCpu)
7167{
7168 uint32_t u32Sel, u32Limit, u32Attr;
7169 uint64_t u64Base;
7170 int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_TR_SEL, &u32Sel);
7171 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit);
7172 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr);
7173 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_TR_BASE, &u64Base);
7174 AssertRCReturn(rc, rc);
7175
7176 pVCpu->cpum.GstCtx.tr.Sel = u32Sel;
7177 pVCpu->cpum.GstCtx.tr.ValidSel = u32Sel;
7178 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
7179 pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
7180 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
7181 pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
7182 /* TR is the only selector that can never be unusable. */
7183 Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
7184 return VINF_SUCCESS;
7185}
7186
7187
7188/**
7189 * Imports the guest RIP from the VMCS back into the guest-CPU context.
7190 *
7191 * @returns VBox status code.
7192 * @param pVCpu The cross context virtual CPU structure.
7193 *
7194 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7195 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7196 * instead!!!
7197 */
7198static int hmR0VmxImportGuestRip(PVMCPU pVCpu)
7199{
7200 uint64_t u64Val;
7201 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7202 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
7203 {
7204 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
7205 if (RT_SUCCESS(rc))
7206 {
7207 pCtx->rip = u64Val;
7208 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
7209 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
7210 }
7211 return rc;
7212 }
7213 return VINF_SUCCESS;
7214}
7215
7216
7217/**
7218 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
7219 *
7220 * @returns VBox status code.
7221 * @param pVCpu The cross context virtual CPU structure.
7222 * @param pVmcsInfo The VMCS info. object.
7223 *
7224 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7225 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7226 * instead!!!
7227 */
7228static int hmR0VmxImportGuestRFlags(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
7229{
7230 uint32_t u32Val;
7231 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7232 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
7233 {
7234 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
7235 if (RT_SUCCESS(rc))
7236 {
7237 pCtx->eflags.u32 = u32Val;
7238
7239 /* Restore eflags for real-on-v86-mode hack. */
7240 if (pVmcsInfo->RealMode.fRealOnV86Active)
7241 {
7242 pCtx->eflags.Bits.u1VM = 0;
7243 pCtx->eflags.Bits.u2IOPL = pVmcsInfo->RealMode.Eflags.Bits.u2IOPL;
7244 }
7245 }
7246 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
7247 return rc;
7248 }
7249 return VINF_SUCCESS;
7250}
7251
7252
7253/**
7254 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
7255 * context.
7256 *
7257 * @returns VBox status code.
7258 * @param pVCpu The cross context virtual CPU structure.
7259 * @param pVmcsInfo The VMCS info. object.
7260 *
7261 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7262 * do not log!
7263 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7264 * instead!!!
7265 */
7266static int hmR0VmxImportGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
7267{
7268 uint32_t u32Val;
7269 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
7270 if (RT_SUCCESS(rc))
7271 {
7272 if (!u32Val)
7273 {
7274 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7275 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7276
7277 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7278 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7279 }
7280 else
7281 {
7282 /*
7283 * We must import RIP here to set our EM interrupt-inhibited state.
7284 * We also import RFLAGS as our code that evaluates pending interrupts
7285 * before VM-entry requires it.
7286 */
7287 rc = hmR0VmxImportGuestRip(pVCpu);
7288 rc |= hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7289 if (RT_SUCCESS(rc))
7290 {
7291 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
7292 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
7293 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7294 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7295 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7296
7297 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
7298 {
7299 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7300 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
7301 }
7302 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
7303 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
7304 }
7305 }
7306 }
7307 return rc;
7308}
7309
7310
7311/**
7312 * Worker for VMXR0ImportStateOnDemand.
7313 *
7314 * @returns VBox status code.
7315 * @param pVCpu The cross context virtual CPU structure.
7316 * @param pVmcsInfo The VMCS info. object.
7317 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7318 */
7319static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
7320{
7321#define VMXLOCAL_BREAK_RC(a_rc) \
7322 if (RT_SUCCESS(a_rc)) \
7323 { } \
7324 else \
7325 break
7326
7327 int rc = VINF_SUCCESS;
7328 PVM pVM = pVCpu->CTX_SUFF(pVM);
7329 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7330 uint64_t u64Val;
7331 uint32_t u32Val;
7332
7333 STAM_PROFILE_ADV_START(& pVCpu->hm.s.StatImportGuestState, x);
7334
7335 /*
7336 * We disable interrupts to make the updating of the state and in particular
7337 * the fExtrn modification atomic wrt to preemption hooks.
7338 */
7339 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
7340
7341 fWhat &= pCtx->fExtrn;
7342 if (fWhat)
7343 {
7344 do
7345 {
7346 if (fWhat & CPUMCTX_EXTRN_RIP)
7347 {
7348 rc = hmR0VmxImportGuestRip(pVCpu);
7349 VMXLOCAL_BREAK_RC(rc);
7350 }
7351
7352 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
7353 {
7354 rc = hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7355 VMXLOCAL_BREAK_RC(rc);
7356 }
7357
7358 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
7359 {
7360 rc = hmR0VmxImportGuestIntrState(pVCpu, pVmcsInfo);
7361 VMXLOCAL_BREAK_RC(rc);
7362 }
7363
7364 if (fWhat & CPUMCTX_EXTRN_RSP)
7365 {
7366 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
7367 VMXLOCAL_BREAK_RC(rc);
7368 pCtx->rsp = u64Val;
7369 }
7370
7371 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
7372 {
7373 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
7374 if (fWhat & CPUMCTX_EXTRN_CS)
7375 {
7376 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_CS);
7377 rc |= hmR0VmxImportGuestRip(pVCpu);
7378 if (fRealOnV86Active)
7379 pCtx->cs.Attr.u = pVmcsInfo->RealMode.AttrCS.u;
7380 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
7381 }
7382 if (fWhat & CPUMCTX_EXTRN_SS)
7383 {
7384 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_SS);
7385 if (fRealOnV86Active)
7386 pCtx->ss.Attr.u = pVmcsInfo->RealMode.AttrSS.u;
7387 }
7388 if (fWhat & CPUMCTX_EXTRN_DS)
7389 {
7390 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_DS);
7391 if (fRealOnV86Active)
7392 pCtx->ds.Attr.u = pVmcsInfo->RealMode.AttrDS.u;
7393 }
7394 if (fWhat & CPUMCTX_EXTRN_ES)
7395 {
7396 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_ES);
7397 if (fRealOnV86Active)
7398 pCtx->es.Attr.u = pVmcsInfo->RealMode.AttrES.u;
7399 }
7400 if (fWhat & CPUMCTX_EXTRN_FS)
7401 {
7402 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_FS);
7403 if (fRealOnV86Active)
7404 pCtx->fs.Attr.u = pVmcsInfo->RealMode.AttrFS.u;
7405 }
7406 if (fWhat & CPUMCTX_EXTRN_GS)
7407 {
7408 rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_GS);
7409 if (fRealOnV86Active)
7410 pCtx->gs.Attr.u = pVmcsInfo->RealMode.AttrGS.u;
7411 }
7412 VMXLOCAL_BREAK_RC(rc);
7413 }
7414
7415 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
7416 {
7417 if (fWhat & CPUMCTX_EXTRN_LDTR)
7418 rc |= hmR0VmxImportGuestLdtr(pVCpu);
7419
7420 if (fWhat & CPUMCTX_EXTRN_GDTR)
7421 {
7422 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
7423 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
7424 pCtx->gdtr.pGdt = u64Val;
7425 pCtx->gdtr.cbGdt = u32Val;
7426 }
7427
7428 /* Guest IDTR. */
7429 if (fWhat & CPUMCTX_EXTRN_IDTR)
7430 {
7431 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
7432 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
7433 pCtx->idtr.pIdt = u64Val;
7434 pCtx->idtr.cbIdt = u32Val;
7435 }
7436
7437 /* Guest TR. */
7438 if (fWhat & CPUMCTX_EXTRN_TR)
7439 {
7440 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
7441 don't need to import that one. */
7442 if (!pVmcsInfo->RealMode.fRealOnV86Active)
7443 rc |= hmR0VmxImportGuestTr(pVCpu);
7444 }
7445 VMXLOCAL_BREAK_RC(rc);
7446 }
7447
7448 if (fWhat & CPUMCTX_EXTRN_DR7)
7449 {
7450 if (!pVCpu->hm.s.fUsingHyperDR7)
7451 {
7452 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
7453 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
7454 VMXLOCAL_BREAK_RC(rc);
7455 pCtx->dr[7] = u32Val;
7456 }
7457 }
7458
7459 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
7460 {
7461 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
7462 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
7463 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
7464 pCtx->SysEnter.cs = u32Val;
7465 VMXLOCAL_BREAK_RC(rc);
7466 }
7467
7468#if HC_ARCH_BITS == 64
7469 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
7470 {
7471 if ( pVM->hm.s.fAllow64BitGuests
7472 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7473 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
7474 }
7475
7476 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
7477 {
7478 if ( pVM->hm.s.fAllow64BitGuests
7479 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7480 {
7481 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
7482 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
7483 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
7484 }
7485 }
7486#endif
7487
7488 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
7489#if HC_ARCH_BITS == 32
7490 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
7491#endif
7492 )
7493 {
7494 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
7495 uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
7496 Assert(cMsrs == 0 || pMsr != NULL);
7497 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
7498 {
7499 switch (pMsr->u32Msr)
7500 {
7501#if HC_ARCH_BITS == 32
7502 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
7503 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
7504 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
7505 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
7506#endif
7507 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
7508 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
7509 case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
7510
7511 default:
7512 {
7513 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
7514 ASMSetFlags(fEFlags);
7515 AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
7516 cMsrs));
7517 return VERR_HM_UNEXPECTED_LD_ST_MSR;
7518 }
7519 }
7520 }
7521 }
7522
7523 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
7524 {
7525 uint64_t u64Shadow;
7526 if (fWhat & CPUMCTX_EXTRN_CR0)
7527 {
7528 /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
7529 * remove when we drop 32-bit host w/ 64-bit host support, see
7530 * @bugref{9180#c39}. */
7531 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
7532#if HC_ARCH_BITS == 32
7533 uint32_t u32Shadow;
7534 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
7535 u64Shadow = u32Shadow;
7536#else
7537 rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow);
7538#endif
7539 VMXLOCAL_BREAK_RC(rc);
7540 u64Val = u32Val;
7541 u64Val = (u64Val & ~pVmcsInfo->u64Cr0Mask)
7542 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7543 VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
7544 CPUMSetGuestCR0(pVCpu, u64Val);
7545 VMMRZCallRing3Enable(pVCpu);
7546 }
7547
7548 if (fWhat & CPUMCTX_EXTRN_CR4)
7549 {
7550 /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
7551 * remove when we drop 32-bit host w/ 64-bit host support, see
7552 * @bugref{9180#c39}. */
7553 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
7554#if HC_ARCH_BITS == 32
7555 uint32_t u32Shadow;
7556 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
7557 u64Shadow = u32Shadow;
7558#else
7559 rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow);
7560#endif
7561 VMXLOCAL_BREAK_RC(rc);
7562 u64Val = u32Val;
7563 u64Val = (u64Val & ~pVmcsInfo->u64Cr4Mask)
7564 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7565 pCtx->cr4 = u64Val;
7566 }
7567
7568 if (fWhat & CPUMCTX_EXTRN_CR3)
7569 {
7570 /* CR0.PG bit changes are always intercepted, so it's up to date. */
7571 if ( pVM->hm.s.vmx.fUnrestrictedGuest
7572 || ( pVM->hm.s.fNestedPaging
7573 && CPUMIsGuestPagingEnabledEx(pCtx)))
7574 {
7575 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
7576 if (pCtx->cr3 != u64Val)
7577 {
7578 pCtx->cr3 = u64Val;
7579 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
7580 }
7581
7582 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
7583 Note: CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. */
7584 if (CPUMIsGuestInPAEModeEx(pCtx))
7585 {
7586 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
7587 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
7588 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
7589 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
7590 VMXLOCAL_BREAK_RC(rc);
7591 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
7592 }
7593 }
7594 }
7595 }
7596 } while (0);
7597
7598 if (RT_SUCCESS(rc))
7599 {
7600 /* Update fExtrn. */
7601 pCtx->fExtrn &= ~fWhat;
7602
7603 /* If everything has been imported, clear the HM keeper bit. */
7604 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
7605 {
7606 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
7607 Assert(!pCtx->fExtrn);
7608 }
7609 }
7610 }
7611 else
7612 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
7613
7614 ASMSetFlags(fEFlags);
7615
7616 STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
7617
7618 if (RT_SUCCESS(rc))
7619 { /* likely */ }
7620 else
7621 return rc;
7622
7623 /*
7624 * Honor any pending CR3 updates.
7625 *
7626 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
7627 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
7628 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
7629 *
7630 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
7631 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
7632 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
7633 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
7634 *
7635 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
7636 */
7637 if (VMMRZCallRing3IsEnabled(pVCpu))
7638 {
7639 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7640 {
7641 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
7642 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
7643 }
7644
7645 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7646 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7647
7648 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7649 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7650 }
7651
7652 return VINF_SUCCESS;
7653#undef VMXLOCAL_BREAK_RC
7654}
7655
7656
7657/**
7658 * Saves the guest state from the VMCS into the guest-CPU context.
7659 *
7660 * @returns VBox status code.
7661 * @param pVCpu The cross context virtual CPU structure.
7662 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7663 */
7664VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
7665{
7666 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
7667 return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
7668}
7669
7670
7671/**
7672 * Check per-VM and per-VCPU force flag actions that require us to go back to
7673 * ring-3 for one reason or another.
7674 *
7675 * @returns Strict VBox status code (i.e. informational status codes too)
7676 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7677 * ring-3.
7678 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7679 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7680 * interrupts)
7681 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7682 * all EMTs to be in ring-3.
7683 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7684 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7685 * to the EM loop.
7686 *
7687 * @param pVCpu The cross context virtual CPU structure.
7688 * @param fStepping Whether we are single-stepping the guest using the
7689 * hypervisor debugger.
7690 */
7691static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
7692{
7693 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7694
7695 /*
7696 * Update pending interrupts into the APIC's IRR.
7697 */
7698 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7699 APICUpdatePendingInterrupts(pVCpu);
7700
7701 /*
7702 * Anything pending? Should be more likely than not if we're doing a good job.
7703 */
7704 PVM pVM = pVCpu->CTX_SUFF(pVM);
7705 if ( !fStepping
7706 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7707 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7708 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7709 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7710 return VINF_SUCCESS;
7711
7712 /* Pending PGM C3 sync. */
7713 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7714 {
7715 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7716 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
7717 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
7718 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7719 if (rcStrict2 != VINF_SUCCESS)
7720 {
7721 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
7722 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
7723 return rcStrict2;
7724 }
7725 }
7726
7727 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7728 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
7729 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7730 {
7731 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7732 int rc2 = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
7733 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
7734 return rc2;
7735 }
7736
7737 /* Pending VM request packets, such as hardware interrupts. */
7738 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
7739 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
7740 {
7741 Log4Func(("Pending VM request forcing us back to ring-3\n"));
7742 return VINF_EM_PENDING_REQUEST;
7743 }
7744
7745 /* Pending PGM pool flushes. */
7746 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7747 {
7748 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
7749 return VINF_PGM_POOL_FLUSH_PENDING;
7750 }
7751
7752 /* Pending DMA requests. */
7753 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
7754 {
7755 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
7756 return VINF_EM_RAW_TO_R3;
7757 }
7758
7759 return VINF_SUCCESS;
7760}
7761
7762
7763/**
7764 * Converts any TRPM trap into a pending HM event. This is typically used when
7765 * entering from ring-3 (not longjmp returns).
7766 *
7767 * @param pVCpu The cross context virtual CPU structure.
7768 */
7769static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
7770{
7771 Assert(TRPMHasTrap(pVCpu));
7772 Assert(!pVCpu->hm.s.Event.fPending);
7773
7774 uint8_t uVector;
7775 TRPMEVENT enmTrpmEvent;
7776 RTGCUINT uErrCode;
7777 RTGCUINTPTR GCPtrFaultAddress;
7778 uint8_t cbInstr;
7779
7780 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7781 AssertRC(rc);
7782
7783 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7784 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
7785 if (enmTrpmEvent == TRPM_TRAP)
7786 {
7787 /** @todo r=ramshankar: TRPM currently offers no way to determine a \#DB that was
7788 * generated using INT1 (ICEBP). */
7789 switch (uVector)
7790 {
7791 case X86_XCPT_NMI:
7792 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7793 break;
7794
7795 case X86_XCPT_BP:
7796 case X86_XCPT_OF:
7797 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7798 break;
7799
7800 case X86_XCPT_PF:
7801 case X86_XCPT_DF:
7802 case X86_XCPT_TS:
7803 case X86_XCPT_NP:
7804 case X86_XCPT_SS:
7805 case X86_XCPT_GP:
7806 case X86_XCPT_AC:
7807 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7808 RT_FALL_THRU();
7809 default:
7810 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7811 break;
7812 }
7813 }
7814 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7815 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7816 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7817 {
7818 switch (uVector)
7819 {
7820 case X86_XCPT_BP:
7821 case X86_XCPT_OF:
7822 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7823 break;
7824
7825 default:
7826 Assert(uVector == X86_XCPT_DB);
7827 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7828 break;
7829 }
7830 }
7831 else
7832 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7833
7834 rc = TRPMResetTrap(pVCpu);
7835 AssertRC(rc);
7836 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7837 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7838
7839 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7840}
7841
7842
7843/**
7844 * Converts the pending HM event into a TRPM trap.
7845 *
7846 * @param pVCpu The cross context virtual CPU structure.
7847 */
7848static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7849{
7850 Assert(pVCpu->hm.s.Event.fPending);
7851
7852 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7853 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7854 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7855 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7856
7857 /* If a trap was already pending, we did something wrong! */
7858 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7859
7860 /** @todo Use HMVmxEventToTrpmEventType() later. */
7861 TRPMEVENT enmTrapType;
7862 switch (uVectorType)
7863 {
7864 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7865 enmTrapType = TRPM_HARDWARE_INT;
7866 break;
7867
7868 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7869 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7870 enmTrapType = TRPM_TRAP;
7871 break;
7872
7873 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT: /* #DB (INT1/ICEBP). */
7874 Assert(uVector == X86_XCPT_DB);
7875 enmTrapType = TRPM_SOFTWARE_INT;
7876 break;
7877
7878 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP (INT3) and #OF (INTO) */
7879 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7880 enmTrapType = TRPM_SOFTWARE_INT;
7881 break;
7882
7883 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7884 enmTrapType = TRPM_SOFTWARE_INT;
7885 break;
7886
7887 default:
7888 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7889 enmTrapType = TRPM_32BIT_HACK;
7890 break;
7891 }
7892
7893 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7894
7895 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7896 AssertRC(rc);
7897
7898 if (fErrorCodeValid)
7899 TRPMSetErrorCode(pVCpu, uErrorCode);
7900
7901 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7902 && uVector == X86_XCPT_PF)
7903 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7904 else if (enmTrapType == TRPM_SOFTWARE_INT)
7905 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7906
7907 /* We're now done converting the pending event. */
7908 pVCpu->hm.s.Event.fPending = false;
7909}
7910
7911
7912/**
7913 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7914 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7915 *
7916 * @param pVCpu The cross context virtual CPU structure.
7917 * @param pVmcsInfo The VMCS info. object.
7918 */
7919static void hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
7920{
7921 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7922 {
7923 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7924 {
7925 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7926 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7927 AssertRC(rc);
7928 }
7929 } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
7930}
7931
7932
7933/**
7934 * Clears the interrupt-window exiting control in the VMCS.
7935 *
7936 * @param pVmcsInfo The VMCS info. object.
7937 */
7938DECLINLINE(int) hmR0VmxClearIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
7939{
7940 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7941 {
7942 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7943 return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7944 }
7945 return VINF_SUCCESS;
7946}
7947
7948
7949/**
7950 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7951 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7952 *
7953 * @param pVCpu The cross context virtual CPU structure.
7954 * @param pVmcsInfo The VMCS info. object.
7955 */
7956static void hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
7957{
7958 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7959 {
7960 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7961 {
7962 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7963 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7964 AssertRC(rc);
7965 Log4Func(("Setup NMI-window exiting\n"));
7966 }
7967 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7968}
7969
7970
7971/**
7972 * Clears the NMI-window exiting control in the VMCS.
7973 *
7974 * @param pVmcsInfo The VMCS info. object.
7975 */
7976DECLINLINE(int) hmR0VmxClearNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
7977{
7978 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7979 {
7980 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7981 return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
7982 }
7983 return VINF_SUCCESS;
7984}
7985
7986
7987/**
7988 * Does the necessary state syncing before returning to ring-3 for any reason
7989 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7990 *
7991 * @returns VBox status code.
7992 * @param pVCpu The cross context virtual CPU structure.
7993 * @param fImportState Whether to import the guest state from the VMCS back
7994 * to the guest-CPU context.
7995 *
7996 * @remarks No-long-jmp zone!!!
7997 */
7998static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7999{
8000 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8001 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8002
8003 RTCPUID idCpu = RTMpCpuId();
8004 Log4Func(("HostCpuId=%u\n", idCpu));
8005
8006 /*
8007 * !!! IMPORTANT !!!
8008 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
8009 */
8010
8011 /* Save the guest state if necessary. */
8012 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8013 if (fImportState)
8014 {
8015 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8016 AssertRCReturn(rc, rc);
8017 }
8018
8019 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
8020 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8021 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
8022
8023 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
8024#ifdef VBOX_STRICT
8025 if (CPUMIsHyperDebugStateActive(pVCpu))
8026 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
8027#endif
8028 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8029 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
8030 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
8031
8032#if HC_ARCH_BITS == 64
8033 /* Restore host-state bits that VT-x only restores partially. */
8034 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8035 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8036 {
8037 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
8038 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8039 }
8040 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8041#endif
8042
8043 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8044 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8045 {
8046 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
8047 if (!fImportState)
8048 {
8049 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
8050 AssertRCReturn(rc, rc);
8051 }
8052 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8053 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
8054 }
8055 else
8056 pVCpu->hm.s.vmx.fLazyMsrs = 0;
8057
8058 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8059 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8060
8061 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
8062 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
8063 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
8064 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
8065 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
8066 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
8067 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
8068 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
8069 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8070
8071 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8072
8073 /** @todo This partially defeats the purpose of having preemption hooks.
8074 * The problem is, deregistering the hooks should be moved to a place that
8075 * lasts until the EMT is about to be destroyed not everytime while leaving HM
8076 * context.
8077 */
8078 int rc = hmR0VmxClearVmcs(pVmcsInfo);
8079 AssertRCReturn(rc, rc);
8080
8081 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
8082 NOREF(idCpu);
8083 return VINF_SUCCESS;
8084}
8085
8086
8087/**
8088 * Leaves the VT-x session.
8089 *
8090 * @returns VBox status code.
8091 * @param pVCpu The cross context virtual CPU structure.
8092 *
8093 * @remarks No-long-jmp zone!!!
8094 */
8095static int hmR0VmxLeaveSession(PVMCPU pVCpu)
8096{
8097 HM_DISABLE_PREEMPT(pVCpu);
8098 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8099 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8100 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8101
8102 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
8103 and done this from the VMXR0ThreadCtxCallback(). */
8104 if (!pVCpu->hm.s.fLeaveDone)
8105 {
8106 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
8107 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
8108 pVCpu->hm.s.fLeaveDone = true;
8109 }
8110 Assert(!pVCpu->cpum.GstCtx.fExtrn);
8111
8112 /*
8113 * !!! IMPORTANT !!!
8114 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
8115 */
8116
8117 /* Deregister hook now that we've left HM context before re-enabling preemption. */
8118 /** @todo Deregistering here means we need to VMCLEAR always
8119 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
8120 * for calling VMMR0ThreadCtxHookDisable here! */
8121 VMMR0ThreadCtxHookDisable(pVCpu);
8122
8123 /* Leave HM context. This takes care of local init (term). */
8124 int rc = HMR0LeaveCpu(pVCpu);
8125
8126 HM_RESTORE_PREEMPT();
8127 return rc;
8128}
8129
8130
8131/**
8132 * Does the necessary state syncing before doing a longjmp to ring-3.
8133 *
8134 * @returns VBox status code.
8135 * @param pVCpu The cross context virtual CPU structure.
8136 *
8137 * @remarks No-long-jmp zone!!!
8138 */
8139DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
8140{
8141 return hmR0VmxLeaveSession(pVCpu);
8142}
8143
8144
8145/**
8146 * Take necessary actions before going back to ring-3.
8147 *
8148 * An action requires us to go back to ring-3. This function does the necessary
8149 * steps before we can safely return to ring-3. This is not the same as longjmps
8150 * to ring-3, this is voluntary and prepares the guest so it may continue
8151 * executing outside HM (recompiler/IEM).
8152 *
8153 * @returns VBox status code.
8154 * @param pVCpu The cross context virtual CPU structure.
8155 * @param rcExit The reason for exiting to ring-3. Can be
8156 * VINF_VMM_UNKNOWN_RING3_CALL.
8157 */
8158static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
8159{
8160 Assert(pVCpu);
8161 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8162
8163 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8164 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
8165 {
8166 VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
8167 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
8168 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
8169 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
8170 }
8171
8172 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
8173 VMMRZCallRing3Disable(pVCpu);
8174 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
8175
8176 /*
8177 * Convert any pending HM events back to TRPM due to premature exits to ring-3.
8178 * We need to do this only on returns to ring-3 and not for longjmps to ring3.
8179 *
8180 * This is because execution may continue from ring-3 and we would need to inject
8181 * the event from there (hence place it back in TRPM).
8182 */
8183 if (pVCpu->hm.s.Event.fPending)
8184 {
8185 hmR0VmxPendingEventToTrpmTrap(pVCpu);
8186 Assert(!pVCpu->hm.s.Event.fPending);
8187
8188 /* Clear the events from the VMCS. */
8189 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
8190 AssertRCReturn(rc, rc);
8191 }
8192#ifdef VBOX_STRICT
8193 else
8194 {
8195 /*
8196 * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
8197 * This can be pretty hard to debug otherwise, interrupts might get injected twice
8198 * occasionally, see @bugref{9180#c42}.
8199 */
8200 uint32_t uEntryIntInfo;
8201 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
8202 AssertRC(rc);
8203 Assert(!VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
8204 }
8205#endif
8206
8207 /*
8208 * Clear the interrupt-window and NMI-window VMCS controls as we could have got
8209 * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
8210 * (e.g. TPR below threshold).
8211 */
8212 int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
8213 rc |= hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
8214 AssertRCReturn(rc, rc);
8215
8216 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
8217 and if we're injecting an event we should have a TRPM trap pending. */
8218 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8219#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
8220 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8221#endif
8222
8223 /* Save guest state and restore host state bits. */
8224 rc = hmR0VmxLeaveSession(pVCpu);
8225 AssertRCReturn(rc, rc);
8226 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8227
8228 /* Thread-context hooks are unregistered at this point!!! */
8229
8230 /* Sync recompiler state. */
8231 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
8232 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
8233 | CPUM_CHANGED_LDTR
8234 | CPUM_CHANGED_GDTR
8235 | CPUM_CHANGED_IDTR
8236 | CPUM_CHANGED_TR
8237 | CPUM_CHANGED_HIDDEN_SEL_REGS);
8238 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
8239 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
8240 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
8241
8242 Assert(!pVCpu->hm.s.fClearTrapFlag);
8243
8244 /* Update the exit-to-ring 3 reason. */
8245 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
8246
8247 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
8248 if ( rcExit != VINF_EM_RAW_INTERRUPT
8249 || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8250 {
8251 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
8252 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8253 }
8254
8255 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
8256
8257 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
8258 VMMRZCallRing3RemoveNotification(pVCpu);
8259 VMMRZCallRing3Enable(pVCpu);
8260
8261 return rc;
8262}
8263
8264
8265/**
8266 * VMMRZCallRing3() callback wrapper which saves the guest state before we
8267 * longjump to ring-3 and possibly get preempted.
8268 *
8269 * @returns VBox status code.
8270 * @param pVCpu The cross context virtual CPU structure.
8271 * @param enmOperation The operation causing the ring-3 longjump.
8272 * @param pvUser User argument, currently unused, NULL.
8273 */
8274static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
8275{
8276 RT_NOREF(pvUser);
8277 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
8278 {
8279 /*
8280 * !!! IMPORTANT !!!
8281 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
8282 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
8283 */
8284 VMMRZCallRing3RemoveNotification(pVCpu);
8285 VMMRZCallRing3Disable(pVCpu);
8286 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
8287 RTThreadPreemptDisable(&PreemptState);
8288
8289 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8290 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8291 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8292 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8293
8294#if HC_ARCH_BITS == 64
8295 /* Restore host-state bits that VT-x only restores partially. */
8296 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8297 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8298 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8299 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8300#endif
8301
8302 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8303 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8304 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8305
8306 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8307 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8308 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8309
8310 /* Clear the current VMCS data back to memory. */
8311 hmR0VmxClearVmcs(pVmcsInfo);
8312
8313 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
8314 VMMR0ThreadCtxHookDisable(pVCpu);
8315 HMR0LeaveCpu(pVCpu);
8316 RTThreadPreemptRestore(&PreemptState);
8317 return VINF_SUCCESS;
8318 }
8319
8320 Assert(pVCpu);
8321 Assert(pvUser);
8322 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8323 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8324
8325 VMMRZCallRing3Disable(pVCpu);
8326 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8327
8328 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
8329
8330 int rc = hmR0VmxLongJmpToRing3(pVCpu);
8331 AssertRCReturn(rc, rc);
8332
8333 VMMRZCallRing3Enable(pVCpu);
8334 return VINF_SUCCESS;
8335}
8336
8337
8338/**
8339 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8340 * stack.
8341 *
8342 * @returns Strict VBox status code (i.e. informational status codes too).
8343 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8344 * @param pVCpu The cross context virtual CPU structure.
8345 * @param uValue The value to push to the guest stack.
8346 */
8347static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
8348{
8349 /*
8350 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8351 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8352 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8353 */
8354 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8355 if (pCtx->sp == 1)
8356 return VINF_EM_RESET;
8357 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8358 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
8359 AssertRC(rc);
8360 return rc;
8361}
8362
8363
8364/**
8365 * Injects an event into the guest upon VM-entry by updating the relevant fields
8366 * in the VM-entry area in the VMCS.
8367 *
8368 * @returns Strict VBox status code (i.e. informational status codes too).
8369 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8370 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8371 *
8372 * @param pVCpu The cross context virtual CPU structure.
8373 * @param pVmxTransient The VMX-transient structure.
8374 * @param pEvent The event being injected.
8375 * @param pfIntrState Pointer to the VT-x guest-interruptibility-state.
8376 * This will be updated if necessary. This cannot not
8377 * be NULL.
8378 * @param fStepping Whether we're single-stepping guest execution and
8379 * should return VINF_EM_DBG_STEPPED if the event is
8380 * injected directly (registers modified by us, not by
8381 * hardware on VM-entry).
8382 */
8383static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCHMEVENT pEvent, bool fStepping,
8384 uint32_t *pfIntrState)
8385{
8386 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8387 AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
8388 Assert(pfIntrState);
8389
8390 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8391 uint32_t u32IntInfo = pEvent->u64IntInfo;
8392 uint32_t const u32ErrCode = pEvent->u32ErrCode;
8393 uint32_t const cbInstr = pEvent->cbInstr;
8394 RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
8395 uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
8396 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
8397
8398#ifdef VBOX_STRICT
8399 /*
8400 * Validate the error-code-valid bit for hardware exceptions.
8401 * No error codes for exceptions in real-mode.
8402 *
8403 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8404 */
8405 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8406 && !CPUMIsGuestInRealModeEx(pCtx))
8407 {
8408 switch (uVector)
8409 {
8410 case X86_XCPT_PF:
8411 case X86_XCPT_DF:
8412 case X86_XCPT_TS:
8413 case X86_XCPT_NP:
8414 case X86_XCPT_SS:
8415 case X86_XCPT_GP:
8416 case X86_XCPT_AC:
8417 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
8418 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8419 RT_FALL_THRU();
8420 default:
8421 break;
8422 }
8423 }
8424
8425 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8426 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
8427 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
8428#endif
8429
8430 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8431
8432 /*
8433 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
8434 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
8435 * interrupt handler in the (real-mode) guest.
8436 *
8437 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
8438 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8439 */
8440 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
8441 {
8442 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
8443 {
8444 /*
8445 * For CPUs with unrestricted guest execution enabled and with the guest
8446 * in real-mode, we must not set the deliver-error-code bit.
8447 *
8448 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8449 */
8450 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
8451 }
8452 else
8453 {
8454 PVM pVM = pVCpu->CTX_SUFF(pVM);
8455 Assert(PDMVmmDevHeapIsEnabled(pVM));
8456 Assert(pVM->hm.s.vmx.pRealModeTSS);
8457 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
8458
8459 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
8460 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8461 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
8462 | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
8463 AssertRCReturn(rc2, rc2);
8464
8465 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8466 size_t const cbIdtEntry = sizeof(X86IDTR16);
8467 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
8468 {
8469 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8470 if (uVector == X86_XCPT_DF)
8471 return VINF_EM_RESET;
8472
8473 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
8474 No error codes for exceptions in real-mode. */
8475 if (uVector == X86_XCPT_GP)
8476 {
8477 uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
8478 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8479 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8480 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8481 HMEVENT EventXcptDf;
8482 RT_ZERO(EventXcptDf);
8483 EventXcptDf.u64IntInfo = uXcptDfInfo;
8484 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptDf, fStepping, pfIntrState);
8485 }
8486
8487 /*
8488 * If we're injecting an event with no valid IDT entry, inject a #GP.
8489 * No error codes for exceptions in real-mode.
8490 *
8491 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8492 */
8493 uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
8494 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8495 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8496 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8497 HMEVENT EventXcptGp;
8498 RT_ZERO(EventXcptGp);
8499 EventXcptGp.u64IntInfo = uXcptGpInfo;
8500 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptGp, fStepping, pfIntrState);
8501 }
8502
8503 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8504 uint16_t uGuestIp = pCtx->ip;
8505 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
8506 {
8507 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8508 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8509 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8510 }
8511 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
8512 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8513
8514 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8515 X86IDTR16 IdtEntry;
8516 RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
8517 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8518 AssertRCReturn(rc2, rc2);
8519
8520 /* Construct the stack frame for the interrupt/exception handler. */
8521 VBOXSTRICTRC rcStrict;
8522 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
8523 if (rcStrict == VINF_SUCCESS)
8524 {
8525 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
8526 if (rcStrict == VINF_SUCCESS)
8527 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
8528 }
8529
8530 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8531 if (rcStrict == VINF_SUCCESS)
8532 {
8533 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8534 pCtx->rip = IdtEntry.offSel;
8535 pCtx->cs.Sel = IdtEntry.uSel;
8536 pCtx->cs.ValidSel = IdtEntry.uSel;
8537 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8538 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
8539 && uVector == X86_XCPT_PF)
8540 pCtx->cr2 = GCPtrFault;
8541
8542 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
8543 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
8544 | HM_CHANGED_GUEST_RSP);
8545
8546 /*
8547 * If we delivered a hardware exception (other than an NMI) and if there was
8548 * block-by-STI in effect, we should clear it.
8549 */
8550 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
8551 {
8552 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
8553 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
8554 Log4Func(("Clearing inhibition due to STI\n"));
8555 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
8556 }
8557
8558 Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8559 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
8560
8561 /*
8562 * The event has been truly dispatched to the guest. Mark it as no longer pending so
8563 * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
8564 */
8565 pVCpu->hm.s.Event.fPending = false;
8566
8567 /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
8568 if (fStepping)
8569 rcStrict = VINF_EM_DBG_STEPPED;
8570 }
8571 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8572 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8573 return rcStrict;
8574 }
8575 }
8576
8577 /*
8578 * Validate.
8579 */
8580 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8581 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
8582
8583 /*
8584 * Inject the event into the VMCS.
8585 */
8586 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8587 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8588 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8589 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8590 AssertRCReturn(rc, rc);
8591
8592 /*
8593 * Update guest CR2 if this is a page-fault.
8594 */
8595 if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8596 && uVector == X86_XCPT_PF)
8597 pCtx->cr2 = GCPtrFault;
8598
8599 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8600 return VINF_SUCCESS;
8601}
8602
8603
8604/**
8605 * Evaluates the event to be delivered to the guest and sets it as the pending
8606 * event.
8607 *
8608 * @returns Strict VBox status code (i.e. informational status codes too).
8609 * @param pVCpu The cross context virtual CPU structure.
8610 * @param pVmxTransient The VMX-transient structure.
8611 * @param pfIntrState Where to store the VT-x guest-interruptibility state.
8612 */
8613static VBOXSTRICTRC hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t *pfIntrState)
8614{
8615 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8616 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8617
8618 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
8619 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu, pVmcsInfo);
8620 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8621 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8622 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
8623
8624 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8625 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8626 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8627 Assert(!TRPMHasTrap(pVCpu));
8628 Assert(pfIntrState);
8629
8630 *pfIntrState = fIntrState;
8631
8632 /*
8633 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
8634 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
8635 */
8636 /** @todo SMI. SMIs take priority over NMIs. */
8637 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
8638 {
8639 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
8640 if ( !pVCpu->hm.s.Event.fPending
8641 && !fBlockNmi
8642 && !fBlockSti
8643 && !fBlockMovSS)
8644 {
8645#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8646 if ( pVmxTransient->fIsNestedGuest
8647 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_NMI_EXIT))
8648 return IEMExecVmxVmexitNmi(pVCpu);
8649#endif
8650 hmR0VmxSetPendingXcptNmi(pVCpu);
8651 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
8652 Log4Func(("Pending NMI\n"));
8653 }
8654 else
8655 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8656 }
8657 /*
8658 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
8659 * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
8660 */
8661 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8662 && !pVCpu->hm.s.fSingleInstruction)
8663 {
8664 Assert(!DBGFIsStepping(pVCpu));
8665 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
8666 AssertRCReturn(rc, rc);
8667 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
8668 if ( !pVCpu->hm.s.Event.fPending
8669 && !fBlockInt
8670 && !fBlockSti
8671 && !fBlockMovSS)
8672 {
8673#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8674 if ( pVmxTransient->fIsNestedGuest
8675 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
8676 {
8677 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0/* uVector */, true /* fIntPending */);
8678 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8679 return rcStrict;
8680 }
8681#endif
8682 uint8_t u8Interrupt;
8683 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
8684 if (RT_SUCCESS(rc))
8685 {
8686#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8687 if ( pVmxTransient->fIsNestedGuest
8688 && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8689 && CPUMIsGuestVmxExitCtlsSet(pVCpu, pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8690 {
8691 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
8692 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
8693 return rcStrict;
8694 }
8695#endif
8696 hmR0VmxSetPendingExtInt(pVCpu, u8Interrupt);
8697 Log4Func(("Pending external interrupt vector %#x\n", u8Interrupt));
8698 }
8699 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
8700 {
8701 if ( !pVmxTransient->fIsNestedGuest
8702 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
8703 hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u8Interrupt >> 4);
8704 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
8705
8706 /*
8707 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
8708 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
8709 * need to re-set this force-flag here.
8710 */
8711 }
8712 else
8713 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
8714 }
8715 else
8716 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8717 }
8718
8719 return VINF_SUCCESS;
8720}
8721
8722
8723/**
8724 * Injects any pending events into the guest if the guest is in a state to
8725 * receive them.
8726 *
8727 * @returns Strict VBox status code (i.e. informational status codes too).
8728 * @param pVCpu The cross context virtual CPU structure.
8729 * @param pVmxTransient The VMX-transient structure.
8730 * @param fIntrState The VT-x guest-interruptibility state.
8731 * @param fStepping Whether we are single-stepping the guest using the
8732 * hypervisor debugger and should return
8733 * VINF_EM_DBG_STEPPED if the event was dispatched
8734 * directly.
8735 */
8736static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t fIntrState, bool fStepping)
8737{
8738 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8739 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8740
8741 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8742 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8743
8744 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8745 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8746 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8747 Assert(!TRPMHasTrap(pVCpu));
8748
8749 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8750 if (pVCpu->hm.s.Event.fPending)
8751 {
8752 /*
8753 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
8754 * pending even while injecting an event and in this case, we want a VM-exit as soon as
8755 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
8756 *
8757 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
8758 */
8759 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
8760#ifdef VBOX_STRICT
8761 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
8762 {
8763 bool const fBlockInt = !(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
8764 Assert(!fBlockInt);
8765 Assert(!fBlockSti);
8766 Assert(!fBlockMovSS);
8767 }
8768 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
8769 {
8770 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
8771 Assert(!fBlockSti);
8772 Assert(!fBlockMovSS);
8773 Assert(!fBlockNmi);
8774 }
8775#endif
8776 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
8777 uIntType));
8778
8779 /*
8780 * Inject the event and get any changes to the guest-interruptibility state.
8781 *
8782 * The guest-interruptibility state may need to be updated if we inject the event
8783 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
8784 */
8785 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &pVCpu->hm.s.Event, fStepping, &fIntrState);
8786 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
8787
8788 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
8789 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
8790 else
8791 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
8792 }
8793
8794 /*
8795 * Update the guest-interruptibility state.
8796 *
8797 * This is required for the real-on-v86 software interrupt injection case above, as well as
8798 * updates to the guest state from ring-3 or IEM/REM.
8799 */
8800 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
8801 AssertRCReturn(rc, rc);
8802
8803 /*
8804 * There's no need to clear the VM-entry interruption-information field here if we're not
8805 * injecting anything. VT-x clears the valid bit on every VM-exit.
8806 *
8807 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
8808 */
8809
8810 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
8811 NOREF(fBlockMovSS); NOREF(fBlockSti);
8812 return rcStrict;
8813}
8814
8815
8816/**
8817 * Enters the VT-x session.
8818 *
8819 * @returns VBox status code.
8820 * @param pVCpu The cross context virtual CPU structure.
8821 */
8822VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu)
8823{
8824 AssertPtr(pVCpu);
8825 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8826 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8827
8828 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8829 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8830 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8831
8832#ifdef VBOX_STRICT
8833 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8834 RTCCUINTREG uHostCR4 = ASMGetCR4();
8835 if (!(uHostCR4 & X86_CR4_VMXE))
8836 {
8837 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8838 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8839 }
8840#endif
8841
8842 /*
8843 * Load the appropriate VMCS as the current and active one.
8844 */
8845 PVMXVMCSINFO pVmcsInfo;
8846 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
8847 if (!fInNestedGuestMode)
8848 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
8849 else
8850 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
8851 int rc = hmR0VmxLoadVmcs(pVmcsInfo);
8852 if (RT_SUCCESS(rc))
8853 {
8854 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
8855 pVCpu->hm.s.fLeaveDone = false;
8856 Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8857
8858 /*
8859 * Do the EMT scheduled L1D flush here if needed.
8860 */
8861 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8862 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8863 }
8864 return rc;
8865}
8866
8867
8868/**
8869 * The thread-context callback (only on platforms which support it).
8870 *
8871 * @param enmEvent The thread-context event.
8872 * @param pVCpu The cross context virtual CPU structure.
8873 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8874 * @thread EMT(pVCpu)
8875 */
8876VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8877{
8878 NOREF(fGlobalInit);
8879
8880 switch (enmEvent)
8881 {
8882 case RTTHREADCTXEVENT_OUT:
8883 {
8884 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8885 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8886 VMCPU_ASSERT_EMT(pVCpu);
8887
8888 /* No longjmps (logger flushes, locks) in this fragile context. */
8889 VMMRZCallRing3Disable(pVCpu);
8890 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8891
8892 /* Restore host-state (FPU, debug etc.) */
8893 if (!pVCpu->hm.s.fLeaveDone)
8894 {
8895 /*
8896 * Do -not- import the guest-state here as we might already be in the middle of importing
8897 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8898 */
8899 hmR0VmxLeave(pVCpu, false /* fImportState */);
8900 pVCpu->hm.s.fLeaveDone = true;
8901 }
8902
8903 /* Leave HM context, takes care of local init (term). */
8904 int rc = HMR0LeaveCpu(pVCpu);
8905 AssertRC(rc);
8906
8907 /* Restore longjmp state. */
8908 VMMRZCallRing3Enable(pVCpu);
8909 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8910 break;
8911 }
8912
8913 case RTTHREADCTXEVENT_IN:
8914 {
8915 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8916 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8917 VMCPU_ASSERT_EMT(pVCpu);
8918
8919 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8920 VMMRZCallRing3Disable(pVCpu);
8921 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8922
8923 /* Initialize the bare minimum state required for HM. This takes care of
8924 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8925 int rc = hmR0EnterCpu(pVCpu);
8926 AssertRC(rc);
8927 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8928 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8929
8930 /* Load the active VMCS as the current one. */
8931 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8932 rc = hmR0VmxLoadVmcs(pVmcsInfo);
8933 AssertRC(rc);
8934 Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8935 pVCpu->hm.s.fLeaveDone = false;
8936
8937 /* Do the EMT scheduled L1D flush if needed. */
8938 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8939 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8940
8941 /* Restore longjmp state. */
8942 VMMRZCallRing3Enable(pVCpu);
8943 break;
8944 }
8945
8946 default:
8947 break;
8948 }
8949}
8950
8951
8952/**
8953 * Exports the host state into the VMCS host-state area.
8954 * Sets up the VM-exit MSR-load area.
8955 *
8956 * The CPU state will be loaded from these fields on every successful VM-exit.
8957 *
8958 * @returns VBox status code.
8959 * @param pVCpu The cross context virtual CPU structure.
8960 *
8961 * @remarks No-long-jump zone!!!
8962 */
8963static int hmR0VmxExportHostState(PVMCPU pVCpu)
8964{
8965 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8966
8967 int rc = VINF_SUCCESS;
8968 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8969 {
8970 rc = hmR0VmxExportHostControlRegs();
8971 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8972
8973 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8974 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8975
8976 rc = hmR0VmxExportHostMsrs(pVCpu);
8977 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8978
8979 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8980 }
8981 return rc;
8982}
8983
8984
8985/**
8986 * Saves the host state in the VMCS host-state.
8987 *
8988 * @returns VBox status code.
8989 * @param pVCpu The cross context virtual CPU structure.
8990 *
8991 * @remarks No-long-jump zone!!!
8992 */
8993VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8994{
8995 AssertPtr(pVCpu);
8996 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8997
8998 /*
8999 * Export the host state here while entering HM context.
9000 * When thread-context hooks are used, we might get preempted and have to re-save the host
9001 * state but most of the time we won't be, so do it here before we disable interrupts.
9002 */
9003 return hmR0VmxExportHostState(pVCpu);
9004}
9005
9006
9007/**
9008 * Exports the guest state into the VMCS guest-state area.
9009 *
9010 * The will typically be done before VM-entry when the guest-CPU state and the
9011 * VMCS state may potentially be out of sync.
9012 *
9013 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
9014 * VM-entry controls.
9015 * Sets up the appropriate VMX non-root function to execute guest code based on
9016 * the guest CPU mode.
9017 *
9018 * @returns VBox strict status code.
9019 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9020 * without unrestricted guest execution and the VMMDev is not presently
9021 * mapped (e.g. EFI32).
9022 *
9023 * @param pVCpu The cross context virtual CPU structure.
9024 * @param pVmxTransient The VMX-transient structure.
9025 *
9026 * @remarks No-long-jump zone!!!
9027 */
9028static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9029{
9030 AssertPtr(pVCpu);
9031 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9032 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9033
9034 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
9035
9036 /*
9037 * Determine real-on-v86 mode.
9038 * Used when the guest is in real-mode and unrestricted guest execution is not used.
9039 */
9040 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
9041 if ( pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
9042 || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
9043 pVmcsInfo->RealMode. fRealOnV86Active = false;
9044 else
9045 {
9046 Assert(!pVmxTransient->fIsNestedGuest);
9047 pVmcsInfo->RealMode.fRealOnV86Active = true;
9048 }
9049
9050 /*
9051 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
9052 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
9053 */
9054 /** @todo r=ramshankar: Move hmR0VmxSelectVMRunHandler inside
9055 * hmR0VmxExportGuestEntryExitCtls and do it conditionally. There shouldn't
9056 * be a need to evaluate this everytime since I'm pretty sure we intercept
9057 * all guest paging mode changes. */
9058 int rc = hmR0VmxSelectVMRunHandler(pVCpu, pVmxTransient);
9059 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9060
9061 rc = hmR0VmxExportGuestEntryExitCtls(pVCpu, pVmxTransient);
9062 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9063
9064 rc = hmR0VmxExportGuestCR0(pVCpu, pVmxTransient);
9065 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9066
9067 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu, pVmxTransient);
9068 if (rcStrict == VINF_SUCCESS)
9069 { /* likely */ }
9070 else
9071 {
9072 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
9073 return rcStrict;
9074 }
9075
9076 rc = hmR0VmxExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
9077 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9078
9079 rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
9080 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9081
9082 rc = hmR0VmxExportGuestApicTpr(pVCpu, pVmxTransient);
9083 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9084
9085 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu, pVmxTransient);
9086 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9087
9088 rc = hmR0VmxExportGuestRip(pVCpu);
9089 rc |= hmR0VmxExportGuestRsp(pVCpu);
9090 rc |= hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9091 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9092
9093 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
9094 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
9095 | HM_CHANGED_GUEST_CR2
9096 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
9097 | HM_CHANGED_GUEST_X87
9098 | HM_CHANGED_GUEST_SSE_AVX
9099 | HM_CHANGED_GUEST_OTHER_XSAVE
9100 | HM_CHANGED_GUEST_XCRx
9101 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
9102 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
9103 | HM_CHANGED_GUEST_TSC_AUX
9104 | HM_CHANGED_GUEST_OTHER_MSRS
9105 | HM_CHANGED_GUEST_HWVIRT /* More accurate PLE handling someday? */
9106 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
9107
9108 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
9109 return rc;
9110}
9111
9112
9113/**
9114 * Exports the state shared between the host and guest into the VMCS.
9115 *
9116 * @param pVCpu The cross context virtual CPU structure.
9117 * @param pVmxTransient The VMX-transient structure.
9118 *
9119 * @remarks No-long-jump zone!!!
9120 */
9121static void hmR0VmxExportSharedState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9122{
9123 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9124 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9125
9126 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
9127 {
9128 int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
9129 AssertRC(rc);
9130 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
9131
9132 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
9133 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
9134 {
9135 rc = hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9136 AssertRC(rc);
9137 }
9138 }
9139
9140 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
9141 {
9142 hmR0VmxLazyLoadGuestMsrs(pVCpu);
9143 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
9144 }
9145
9146 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
9147 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
9148}
9149
9150
9151/**
9152 * Worker for loading the guest-state bits in the inner VT-x execution loop.
9153 *
9154 * @returns Strict VBox status code (i.e. informational status codes too).
9155 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9156 * without unrestricted guest execution and the VMMDev is not presently
9157 * mapped (e.g. EFI32).
9158 *
9159 * @param pVCpu The cross context virtual CPU structure.
9160 * @param pVmxTransient The VMX-transient structure.
9161 *
9162 * @remarks No-long-jump zone!!!
9163 */
9164static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
9165{
9166 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9167 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9168 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9169
9170#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
9171 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
9172#endif
9173
9174 /*
9175 * For many exits it's only RIP that changes and hence try to export it first
9176 * without going through a lot of change flag checks.
9177 */
9178 VBOXSTRICTRC rcStrict;
9179 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9180 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
9181 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
9182 {
9183 rcStrict = hmR0VmxExportGuestRip(pVCpu);
9184 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9185 { /* likely */}
9186 else
9187 AssertMsgFailedReturn(("Failed to export guest RIP! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
9188 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
9189 }
9190 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9191 {
9192 rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
9193 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9194 { /* likely */}
9195 else
9196 {
9197 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
9198 VBOXSTRICTRC_VAL(rcStrict)));
9199 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9200 return rcStrict;
9201 }
9202 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
9203 }
9204 else
9205 rcStrict = VINF_SUCCESS;
9206
9207#ifdef VBOX_STRICT
9208 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
9209 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9210 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
9211 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
9212 ("fCtxChanged=%#RX64\n", fCtxChanged));
9213#endif
9214 return rcStrict;
9215}
9216
9217
9218/**
9219 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9220 * and update error record fields accordingly.
9221 *
9222 * @return VMX_IGS_* return codes.
9223 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9224 * wrong with the guest state.
9225 *
9226 * @param pVCpu The cross context virtual CPU structure.
9227 * @param pVmcsInfo The VMCS info. object.
9228 *
9229 * @remarks This function assumes our cache of the VMCS controls
9230 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
9231 */
9232static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
9233{
9234#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9235#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
9236 uError = (err); \
9237 break; \
9238 } else do { } while (0)
9239
9240 int rc;
9241 PVM pVM = pVCpu->CTX_SUFF(pVM);
9242 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9243 uint32_t uError = VMX_IGS_ERROR;
9244 uint32_t u32Val;
9245 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
9246
9247 do
9248 {
9249 /*
9250 * CR0.
9251 */
9252 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9253 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9254 /* Exceptions for unrestricted guest execution for fixed CR0 bits (PE, PG).
9255 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9256 if (fUnrestrictedGuest)
9257 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
9258
9259 uint32_t u32GuestCr0;
9260 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
9261 AssertRCBreak(rc);
9262 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
9263 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
9264 if ( !fUnrestrictedGuest
9265 && (u32GuestCr0 & X86_CR0_PG)
9266 && !(u32GuestCr0 & X86_CR0_PE))
9267 {
9268 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9269 }
9270
9271 /*
9272 * CR4.
9273 */
9274 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9275 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9276
9277 uint32_t u32GuestCr4;
9278 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
9279 AssertRCBreak(rc);
9280 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
9281 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
9282
9283 /*
9284 * IA32_DEBUGCTL MSR.
9285 */
9286 uint64_t u64Val;
9287 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9288 AssertRCBreak(rc);
9289 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9290 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9291 {
9292 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9293 }
9294 uint64_t u64DebugCtlMsr = u64Val;
9295
9296#ifdef VBOX_STRICT
9297 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9298 AssertRCBreak(rc);
9299 Assert(u32Val == pVmcsInfo->u32EntryCtls);
9300#endif
9301 bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
9302
9303 /*
9304 * RIP and RFLAGS.
9305 */
9306 uint32_t u32Eflags;
9307#if HC_ARCH_BITS == 64
9308 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
9309 AssertRCBreak(rc);
9310 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9311 if ( !fLongModeGuest
9312 || !pCtx->cs.Attr.n.u1Long)
9313 {
9314 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9315 }
9316 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9317 * must be identical if the "IA-32e mode guest" VM-entry
9318 * control is 1 and CS.L is 1. No check applies if the
9319 * CPU supports 64 linear-address bits. */
9320
9321 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9322 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9323 AssertRCBreak(rc);
9324 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9325 VMX_IGS_RFLAGS_RESERVED);
9326 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9327 u32Eflags = u64Val;
9328#else
9329 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
9330 AssertRCBreak(rc);
9331 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
9332 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9333#endif
9334
9335 if ( fLongModeGuest
9336 || ( fUnrestrictedGuest
9337 && !(u32GuestCr0 & X86_CR0_PE)))
9338 {
9339 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9340 }
9341
9342 uint32_t u32EntryInfo;
9343 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9344 AssertRCBreak(rc);
9345 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
9346 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
9347 {
9348 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9349 }
9350
9351 /*
9352 * 64-bit checks.
9353 */
9354#if HC_ARCH_BITS == 64
9355 if (fLongModeGuest)
9356 {
9357 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9358 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9359 }
9360
9361 if ( !fLongModeGuest
9362 && (u32GuestCr4 & X86_CR4_PCIDE))
9363 {
9364 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9365 }
9366
9367 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9368 * 51:32 beyond the processor's physical-address width are 0. */
9369
9370 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9371 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9372 {
9373 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9374 }
9375
9376 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9377 AssertRCBreak(rc);
9378 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9379
9380 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9381 AssertRCBreak(rc);
9382 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9383#endif
9384
9385 /*
9386 * PERF_GLOBAL MSR.
9387 */
9388 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
9389 {
9390 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9391 AssertRCBreak(rc);
9392 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9393 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9394 }
9395
9396 /*
9397 * PAT MSR.
9398 */
9399 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
9400 {
9401 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9402 AssertRCBreak(rc);
9403 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9404 for (unsigned i = 0; i < 8; i++)
9405 {
9406 uint8_t u8Val = (u64Val & 0xff);
9407 if ( u8Val != 0 /* UC */
9408 && u8Val != 1 /* WC */
9409 && u8Val != 4 /* WT */
9410 && u8Val != 5 /* WP */
9411 && u8Val != 6 /* WB */
9412 && u8Val != 7 /* UC- */)
9413 {
9414 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9415 }
9416 u64Val >>= 8;
9417 }
9418 }
9419
9420 /*
9421 * EFER MSR.
9422 */
9423 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
9424 {
9425 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
9426 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9427 AssertRCBreak(rc);
9428 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9429 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9430 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
9431 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
9432 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9433 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
9434 * iemVmxVmentryCheckGuestState(). */
9435 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9436 || !(u32GuestCr0 & X86_CR0_PG)
9437 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9438 VMX_IGS_EFER_LMA_LME_MISMATCH);
9439 }
9440
9441 /*
9442 * Segment registers.
9443 */
9444 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9445 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9446 if (!(u32Eflags & X86_EFL_VM))
9447 {
9448 /* CS */
9449 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9450 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9451 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9452 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9453 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9454 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9455 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9456 /* CS cannot be loaded with NULL in protected mode. */
9457 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9458 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9459 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9460 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9461 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9462 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9463 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9464 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9465 else
9466 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9467
9468 /* SS */
9469 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9470 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9471 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9472 if ( !(pCtx->cr0 & X86_CR0_PE)
9473 || pCtx->cs.Attr.n.u4Type == 3)
9474 {
9475 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9476 }
9477 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9478 {
9479 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9480 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9481 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9482 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9483 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9484 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9485 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9486 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9487 }
9488
9489 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSReg(). */
9490 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9491 {
9492 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9493 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9494 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9495 || pCtx->ds.Attr.n.u4Type > 11
9496 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9497 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9498 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9499 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9500 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9501 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9502 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9503 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9504 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9505 }
9506 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9507 {
9508 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9509 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9510 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9511 || pCtx->es.Attr.n.u4Type > 11
9512 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9513 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9514 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9515 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9516 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9517 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9518 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9519 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9520 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9521 }
9522 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9523 {
9524 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
9525 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
9526 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9527 || pCtx->fs.Attr.n.u4Type > 11
9528 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
9529 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
9530 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
9531 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
9532 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9533 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
9534 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9535 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9536 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
9537 }
9538 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
9539 {
9540 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
9541 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
9542 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9543 || pCtx->gs.Attr.n.u4Type > 11
9544 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
9545 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
9546 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
9547 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
9548 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9549 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
9550 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9551 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9552 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
9553 }
9554 /* 64-bit capable CPUs. */
9555#if HC_ARCH_BITS == 64
9556 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9557 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9558 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9559 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9560 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9561 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9562 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9563 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9564 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9565 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9566 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9567#endif
9568 }
9569 else
9570 {
9571 /* V86 mode checks. */
9572 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
9573 if (pVmcsInfo->RealMode.fRealOnV86Active)
9574 {
9575 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
9576 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
9577 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
9578 }
9579 else
9580 {
9581 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
9582 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
9583 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
9584 }
9585
9586 /* CS */
9587 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9588 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9589 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9590 /* SS */
9591 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9592 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9593 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9594 /* DS */
9595 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9596 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9597 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9598 /* ES */
9599 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9600 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9601 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9602 /* FS */
9603 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9604 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9605 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9606 /* GS */
9607 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9608 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9609 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9610 /* 64-bit capable CPUs. */
9611#if HC_ARCH_BITS == 64
9612 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9613 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9614 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9615 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9616 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9617 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9618 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9619 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9620 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9621 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9622 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9623#endif
9624 }
9625
9626 /*
9627 * TR.
9628 */
9629 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9630 /* 64-bit capable CPUs. */
9631#if HC_ARCH_BITS == 64
9632 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9633#endif
9634 if (fLongModeGuest)
9635 {
9636 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9637 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9638 }
9639 else
9640 {
9641 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9642 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9643 VMX_IGS_TR_ATTR_TYPE_INVALID);
9644 }
9645 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9646 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9647 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9648 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9649 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9650 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9651 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9652 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9653
9654 /*
9655 * GDTR and IDTR.
9656 */
9657#if HC_ARCH_BITS == 64
9658 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9659 AssertRCBreak(rc);
9660 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9661
9662 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9663 AssertRCBreak(rc);
9664 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9665#endif
9666
9667 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9668 AssertRCBreak(rc);
9669 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9670
9671 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9672 AssertRCBreak(rc);
9673 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9674
9675 /*
9676 * Guest Non-Register State.
9677 */
9678 /* Activity State. */
9679 uint32_t u32ActivityState;
9680 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9681 AssertRCBreak(rc);
9682 HMVMX_CHECK_BREAK( !u32ActivityState
9683 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
9684 VMX_IGS_ACTIVITY_STATE_INVALID);
9685 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9686 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9687 uint32_t u32IntrState;
9688 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
9689 AssertRCBreak(rc);
9690 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
9691 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9692 {
9693 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9694 }
9695
9696 /** @todo Activity state and injecting interrupts. Left as a todo since we
9697 * currently don't use activity states but ACTIVE. */
9698
9699 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9700 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9701
9702 /* Guest interruptibility-state. */
9703 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9704 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9705 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9706 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9707 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9708 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9709 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9710 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
9711 {
9712 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
9713 {
9714 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9715 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9716 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9717 }
9718 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
9719 {
9720 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9721 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9722 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9723 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9724 }
9725 }
9726 /** @todo Assumes the processor is not in SMM. */
9727 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9728 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9729 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9730 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9731 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9732 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
9733 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
9734 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
9735 {
9736 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
9737 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9738 }
9739
9740 /* Pending debug exceptions. */
9741#if HC_ARCH_BITS == 64
9742 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
9743 AssertRCBreak(rc);
9744 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9745 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9746 u32Val = u64Val; /* For pending debug exceptions checks below. */
9747#else
9748 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
9749 AssertRCBreak(rc);
9750 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
9751 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
9752#endif
9753
9754 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9755 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
9756 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9757 {
9758 if ( (u32Eflags & X86_EFL_TF)
9759 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9760 {
9761 /* Bit 14 is PendingDebug.BS. */
9762 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9763 }
9764 if ( !(u32Eflags & X86_EFL_TF)
9765 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9766 {
9767 /* Bit 14 is PendingDebug.BS. */
9768 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
9769 }
9770 }
9771
9772 /* VMCS link pointer. */
9773 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
9774 AssertRCBreak(rc);
9775 if (u64Val != UINT64_C(0xffffffffffffffff))
9776 {
9777 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
9778 /** @todo Bits beyond the processor's physical-address width MBZ. */
9779 /** @todo 32-bit located in memory referenced by value of this field (as a
9780 * physical address) must contain the processor's VMCS revision ID. */
9781 /** @todo SMM checks. */
9782 }
9783
9784 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
9785 * not using nested paging? */
9786 if ( pVM->hm.s.fNestedPaging
9787 && !fLongModeGuest
9788 && CPUMIsGuestInPAEModeEx(pCtx))
9789 {
9790 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
9791 AssertRCBreak(rc);
9792 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9793
9794 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
9795 AssertRCBreak(rc);
9796 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9797
9798 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
9799 AssertRCBreak(rc);
9800 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9801
9802 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
9803 AssertRCBreak(rc);
9804 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
9805 }
9806
9807 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
9808 if (uError == VMX_IGS_ERROR)
9809 uError = VMX_IGS_REASON_NOT_FOUND;
9810 } while (0);
9811
9812 pVCpu->hm.s.u32HMError = uError;
9813 return uError;
9814
9815#undef HMVMX_ERROR_BREAK
9816#undef HMVMX_CHECK_BREAK
9817}
9818
9819
9820/**
9821 * Setup the APIC-access page for virtualizing APIC access.
9822 *
9823 * This can cause a longjumps to R3 due to the acquisition of the PGM lock, hence
9824 * this not done as part of exporting guest state, see @bugref{8721}.
9825 *
9826 * @returns VBox status code.
9827 * @param pVCpu The cross context virtual CPU structure.
9828 */
9829static int hmR0VmxMapHCApicAccessPage(PVMCPU pVCpu)
9830{
9831 PVM pVM = pVCpu->CTX_SUFF(pVM);
9832 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
9833
9834 Assert(PDMHasApic(pVM));
9835 Assert(u64MsrApicBase);
9836
9837 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
9838 Log4Func(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
9839
9840 /* Unalias any existing mapping. */
9841 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
9842 AssertRCReturn(rc, rc);
9843
9844 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
9845 Assert(pVM->hm.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
9846 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
9847 AssertRCReturn(rc, rc);
9848
9849 /* Update the per-VCPU cache of the APIC base MSR. */
9850 pVCpu->hm.s.vmx.u64GstMsrApicBase = u64MsrApicBase;
9851 return VINF_SUCCESS;
9852}
9853
9854
9855#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9856/**
9857 * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
9858 * nested-guest using hardware-assisted VMX.
9859 *
9860 * @param pVCpu The cross context virtual CPU structure.
9861 * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
9862 * @param pVmcsInfoGst The guest VMCS info. object.
9863 */
9864static void hmR0VmxMergeMsrBitmapNested(PCVMCPU pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
9865{
9866 uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
9867 uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
9868 uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
9869 Assert(pu64MsrBitmapNstGst);
9870 Assert(pu64MsrBitmapGst);
9871 Assert(pu64MsrBitmap);
9872
9873 /*
9874 * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
9875 * MSR that is intercepted by the guest is also intercepted while executing the
9876 * nested-guest using hardware-assisted VMX.
9877 */
9878 uint32_t const cbFrag = sizeof(uint64_t);
9879 uint32_t const cFrags = X86_PAGE_4K_SIZE / cbFrag;
9880 for (uint32_t i = 0; i <= cFrags; i++)
9881 pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
9882}
9883
9884
9885/**
9886 * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
9887 * hardware-assisted VMX execution of the nested-guest.
9888 *
9889 * For a guest, we don't modify these controls once we set up the VMCS.
9890 *
9891 * For nested-guests since the guest hypervisor provides these controls on every
9892 * nested-guest VM-entry and could potentially change them everytime we need to
9893 * merge them before every nested-guest VM-entry.
9894 *
9895 * @returns VBox status code.
9896 * @param pVCpu The cross context virtual CPU structure.
9897 */
9898static int hmR0VmxMergeVmcsNested(PVMCPU pVCpu)
9899{
9900 PVM pVM = pVCpu->CTX_SUFF(pVM);
9901 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
9902 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
9903 Assert(pVmcsNstGst);
9904
9905 /*
9906 * Merge the controls with the requirements of the guest VMCS.
9907 *
9908 * We do not need to validate the nested-guest VMX features specified in the
9909 * nested-guest VMCS with the features supported by the physical CPU as it's
9910 * already done by the VMLAUNCH/VMRESUME instruction emulation.
9911 *
9912 * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the
9913 * guest are derived from the VMX features supported by the physical CPU.
9914 */
9915
9916 /* Pin-based VM-execution controls. */
9917 uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
9918
9919 /* Processor-based VM-execution controls. */
9920 uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
9921 | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
9922 | VMX_PROC_CTLS_NMI_WINDOW_EXIT
9923 | VMX_PROC_CTLS_USE_TPR_SHADOW
9924 | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
9925
9926 /* Secondary processor-based VM-execution controls. */
9927 uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
9928 | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
9929 | VMX_PROC_CTLS2_INVPCID
9930 | VMX_PROC_CTLS2_RDTSCP
9931 | VMX_PROC_CTLS2_XSAVES_XRSTORS
9932 | VMX_PROC_CTLS2_APIC_REG_VIRT
9933 | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
9934 | VMX_PROC_CTLS2_VMFUNC));
9935
9936 /*
9937 * VM-entry controls:
9938 * These controls contains state that depends on the nested-guest state (primarily
9939 * EFER MSR) and is thus not constant through VMLAUNCH/VMRESUME and the nested-guest
9940 * VM-exit. Although the nested-hypervisor cannot change it, we need to in order to
9941 * properly continue executing the nested-guest if the EFER MSR changes but does not
9942 * cause a nested-guest VM-exits.
9943 *
9944 * VM-exit controls:
9945 * These controls specify the host state on return. We cannot use the controls from
9946 * the nested-hypervisor state as is as it would contain the guest state rather than
9947 * the host state. Since the host state is subject to change (e.g. preemption, trips
9948 * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
9949 * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
9950 *
9951 * VM-entry MSR-load:
9952 * The guest MSRs from the VM-entry MSR-load area are already loaded into the
9953 * guest-CPU context by the VMLAUNCH/VMRESUME instruction emulation.
9954 *
9955 * VM-exit MSR-store:
9956 * The VM-exit emulation will take care of populating the MSRs from the guest-CPU
9957 * context back into the VM-exit MSR-store area.
9958 *
9959 * VM-exit MSR-load areas:
9960 * This must contain the real host MSRs with hardware-assisted VMX execution. Hence,
9961 * we can entirely ignore what the nested-hypervisor wants to load here.
9962 */
9963
9964 /*
9965 * Exception bitmap.
9966 *
9967 * We could remove #UD from the guest bitmap and merge it with the nested-guest
9968 * bitmap here (and avoid doing anything while exporting nested-guest state), but to
9969 * keep the code more flexible if intercepting exceptions become more dynamic in
9970 * the future we do it as part of exporting the nested-guest state.
9971 */
9972 uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
9973
9974 /*
9975 * CR0/CR4 guest/host mask.
9976 *
9977 * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest
9978 * must cause VM-exits, so we need to merge them here.
9979 */
9980 uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
9981 uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
9982
9983 /*
9984 * Page-fault error-code mask and match.
9985 *
9986 * Although we require unrestricted guest execution (and thereby nested-paging) for
9987 * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
9988 * normally intercept #PFs, it might intercept them for debugging purposes.
9989 *
9990 * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF
9991 * filters. If the outer guest is intercepting #PFs we must intercept all #PFs.
9992 */
9993 uint32_t u32XcptPFMask;
9994 uint32_t u32XcptPFMatch;
9995 if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
9996 {
9997 u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
9998 u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
9999 }
10000 else
10001 {
10002 u32XcptPFMask = 0;
10003 u32XcptPFMatch = 0;
10004 }
10005
10006 /*
10007 * Pause-Loop exiting.
10008 */
10009 uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
10010 uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
10011
10012 /*
10013 * I/O Bitmap.
10014 *
10015 * We do not use the I/O bitmap that may be provided by the guest hypervisor as we
10016 * always intercept all I/O port accesses.
10017 */
10018 Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
10019
10020 /*
10021 * APIC-access page.
10022 *
10023 * The APIC-access page address has already been initialized while setting up the
10024 * nested-guest VMCS. In theory, even if the guest-physical address is invalid, it
10025 * should not be on any consequence to the host or to the guest for that matter, but
10026 * we only accept valid addresses verified by the VMLAUNCH/VMRESUME instruction
10027 * emulation to keep it simple.
10028 */
10029
10030 /*
10031 * Virtual-APIC page and TPR threshold.
10032 *
10033 * We shall use the host-physical address of the virtual-APIC page in guest memory directly.
10034 * For this reason, we can access the virtual-APIC page of the nested-guest only using
10035 * PGM physical handlers as we must not assume a kernel virtual-address mapping exists and
10036 * requesting PGM for a mapping could be expensive/resource intensive (PGM mapping cache).
10037 */
10038 RTHCPHYS HCPhysVirtApic = NIL_RTHCPHYS;
10039 uint32_t const u32TprThreshold = pVmcsNstGst->u32TprThreshold;
10040 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10041 {
10042 int rc = PGMPhysGCPhys2HCPhys(pVM, pVmcsNstGst->u64AddrVirtApic.u, &HCPhysVirtApic);
10043
10044 /*
10045 * If the guest hypervisor has loaded crap into the virtual-APIC page field
10046 * we would fail to obtain a valid host-physical address for its guest-physical
10047 * address.
10048 *
10049 * We currently do not support this scenario. Maybe in the future if there is a
10050 * pressing need we can explore making this particular set of conditions work.
10051 * Right now we just cause a VM-entry failure.
10052 *
10053 * This has already been checked by VMLAUNCH/VMRESUME instruction emulation,
10054 * so should not really failure at the moment.
10055 */
10056 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
10057 }
10058 else
10059 {
10060 /*
10061 * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
10062 * used by the guest hypervisor. Preventing MMIO accesses to the physical APIC will
10063 * be taken care of by EPT/shadow paging.
10064 */
10065 if (pVM->hm.s.fAllow64BitGuests)
10066 {
10067 u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
10068 | VMX_PROC_CTLS_CR8_LOAD_EXIT;
10069 }
10070 }
10071
10072 /*
10073 * Validate basic assumptions.
10074 */
10075 PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10076 Assert(pVM->hm.s.vmx.fAllowUnrestricted);
10077 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
10078 Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
10079
10080 /*
10081 * Commit it to the nested-guest VMCS.
10082 */
10083 int rc = VINF_SUCCESS;
10084 if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
10085 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
10086 if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
10087 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
10088 if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
10089 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
10090 if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
10091 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
10092 if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
10093 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
10094 if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
10095 rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
10096 if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
10097 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
10098 if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
10099 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
10100 if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
10101 && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
10102 {
10103 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
10104 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
10105 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
10106 }
10107 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10108 {
10109 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
10110 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
10111 }
10112 AssertRCReturn(rc, rc);
10113
10114 /*
10115 * Update the nested-guest VMCS cache.
10116 */
10117 pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
10118 pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
10119 pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
10120 pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
10121 pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
10122 pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
10123 pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
10124 pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
10125 pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
10126
10127 /*
10128 * MSR bitmap.
10129 *
10130 * The MSR bitmap address has already been initialized while setting up the
10131 * nested-guest VMCS, here we need to merge the MSR bitmaps.
10132 */
10133 if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10134 hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
10135
10136 return VINF_SUCCESS;
10137}
10138#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10139
10140
10141/**
10142 * Does the preparations before executing guest code in VT-x.
10143 *
10144 * This may cause longjmps to ring-3 and may even result in rescheduling to the
10145 * recompiler/IEM. We must be cautious what we do here regarding committing
10146 * guest-state information into the VMCS assuming we assuredly execute the
10147 * guest in VT-x mode.
10148 *
10149 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
10150 * the common-state (TRPM/forceflags), we must undo those changes so that the
10151 * recompiler/IEM can (and should) use them when it resumes guest execution.
10152 * Otherwise such operations must be done when we can no longer exit to ring-3.
10153 *
10154 * @returns Strict VBox status code (i.e. informational status codes too).
10155 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
10156 * have been disabled.
10157 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
10158 * double-fault into the guest.
10159 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
10160 * dispatched directly.
10161 * @retval VINF_* scheduling changes, we have to go back to ring-3.
10162 *
10163 * @param pVCpu The cross context virtual CPU structure.
10164 * @param pVmxTransient The VMX-transient structure.
10165 * @param fStepping Whether we are single-stepping the guest in the
10166 * hypervisor debugger. Makes us ignore some of the reasons
10167 * for returning to ring-3, and return VINF_EM_DBG_STEPPED
10168 * if event dispatching took place.
10169 */
10170static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
10171{
10172 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10173
10174#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
10175 if (pVmxTransient->fIsNestedGuest)
10176 {
10177 RT_NOREF2(pVCpu, fStepping);
10178 Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
10179 return VINF_EM_RESCHEDULE_REM;
10180 }
10181#endif
10182
10183#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
10184 PGMRZDynMapFlushAutoSet(pVCpu);
10185#endif
10186
10187 /*
10188 * Check and process force flag actions, some of which might require us to go back to ring-3.
10189 */
10190 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
10191 if (rcStrict == VINF_SUCCESS)
10192 { /* FFs don't get set all the time. */ }
10193 else
10194 return rcStrict;
10195
10196#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10197 /*
10198 * Switch to the nested-guest VMCS as we may have transitioned into executing
10199 * the nested-guest without leaving ring-0. Otherwise, if we came from ring-3
10200 * we would load the nested-guest VMCS while entering the VMX ring-0 session.
10201 *
10202 * We do this as late as possible to minimize (though not completely remove)
10203 * clearing/loading VMCS again due to premature trips to ring-3 above.
10204 */
10205 if (pVmxTransient->fIsNestedGuest)
10206 {
10207 if (!pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
10208 {
10209 /*
10210 * Ensure we have synced everything from the guest VMCS and also flag that
10211 * that we need to export the full (nested) guest-CPU context to the
10212 * nested-guest VMCS.
10213 */
10214 HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
10215 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
10216
10217 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
10218 int rc = hmR0VmxSwitchVmcs(&pVCpu->hm.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
10219 if (RT_LIKELY(rc == VINF_SUCCESS))
10220 {
10221 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = true;
10222 ASMSetFlags(fEFlags);
10223 pVmxTransient->pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10224
10225 /*
10226 * We use a different VM-exit MSR-store area for the nested-guest. Hence,
10227 * flag that we need to update the host MSR values there. Even if we decide
10228 * in the future to share the VM-exit MSR-store area page with the guest,
10229 * if its content differs, we would have to update the host MSRs anyway.
10230 */
10231 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
10232 Assert(!pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer); /** @todo NSTVMX: Paranoia remove later. */
10233 }
10234 else
10235 {
10236 ASMSetFlags(fEFlags);
10237 return rc;
10238 }
10239 }
10240
10241 /*
10242 * Merge guest VMCS controls with the nested-guest VMCS controls.
10243 *
10244 * Even if we have not executed the guest prior to this (e.g. when resuming
10245 * from a saved state), we should be okay with merging controls as we
10246 * initialize the guest VMCS controls as part of VM setup phase.
10247 */
10248 if (!pVCpu->hm.s.vmx.fMergedNstGstCtls)
10249 {
10250 int rc = hmR0VmxMergeVmcsNested(pVCpu);
10251 AssertRCReturn(rc, rc);
10252 pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
10253 }
10254 }
10255#endif
10256
10257 /*
10258 * Virtualize memory-mapped accesses to the physical APIC (may take locks).
10259 * We look at the guest VMCS control here as we always set it when supported by
10260 * the physical CPU. Looking at the nested-guest control here would not be
10261 * possible because they are not merged yet.
10262 */
10263 PVM pVM = pVCpu->CTX_SUFF(pVM);
10264 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10265 if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
10266 && (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10267 && PDMHasApic(pVM))
10268 {
10269 int rc = hmR0VmxMapHCApicAccessPage(pVCpu);
10270 AssertRCReturn(rc, rc);
10271 }
10272
10273 /*
10274 * Evaluate events to be injected into the guest.
10275 *
10276 * Events in TRPM can be injected without inspecting the guest state.
10277 * If any new events (interrupts/NMI) are pending currently, we try to set up the
10278 * guest to cause a VM-exit the next time they are ready to receive the event.
10279 */
10280 if (TRPMHasTrap(pVCpu))
10281 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
10282
10283 uint32_t fIntrState;
10284 rcStrict = hmR0VmxEvaluatePendingEvent(pVCpu, pVmxTransient, &fIntrState);
10285
10286#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10287 /*
10288 * While evaluating pending events if something failed (unlikely) or if we were
10289 * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
10290 */
10291 if ( rcStrict != VINF_SUCCESS
10292 || ( pVmxTransient->fIsNestedGuest
10293 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)))
10294 return rcStrict;
10295#endif
10296
10297 /*
10298 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
10299 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
10300 * also result in triple-faulting the VM.
10301 *
10302 * The above does not apply when executing a nested-guest (since unrestricted guest execution
10303 * is a requirement) regardless doing it avoid duplicating code elsewhere.
10304 */
10305 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pVmxTransient, fIntrState, fStepping);
10306 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10307 { /* likely */ }
10308 else
10309 {
10310 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
10311 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10312 return rcStrict;
10313 }
10314
10315 /*
10316 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
10317 * import CR3 themselves. We will need to update them here, as even as late as the above
10318 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
10319 * the below force flags to be set.
10320 */
10321 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
10322 {
10323 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
10324 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
10325 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
10326 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
10327 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10328 }
10329 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
10330 {
10331 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
10332 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10333 }
10334
10335#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10336 /* Paranoia. */
10337 Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10338#endif
10339
10340 /*
10341 * No longjmps to ring-3 from this point on!!!
10342 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
10343 * This also disables flushing of the R0-logger instance (if any).
10344 */
10345 VMMRZCallRing3Disable(pVCpu);
10346
10347 /*
10348 * Export the guest state bits.
10349 *
10350 * We cannot perform longjmps while loading the guest state because we do not preserve the
10351 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
10352 * CPU migration.
10353 *
10354 * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
10355 * registers. Hence, loading of the guest state needs to be done -after- injection of events.
10356 */
10357 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
10358 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10359 { /* likely */ }
10360 else
10361 {
10362 VMMRZCallRing3Enable(pVCpu);
10363 return rcStrict;
10364 }
10365
10366 /*
10367 * We disable interrupts so that we don't miss any interrupts that would flag preemption
10368 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
10369 * preemption disabled for a while. Since this is purely to aid the
10370 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
10371 * disable interrupt on NT.
10372 *
10373 * We need to check for force-flags that could've possible been altered since we last
10374 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
10375 * see @bugref{6398}).
10376 *
10377 * We also check a couple of other force-flags as a last opportunity to get the EMT back
10378 * to ring-3 before executing guest code.
10379 */
10380 pVmxTransient->fEFlags = ASMIntDisableFlags();
10381
10382 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
10383 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
10384 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
10385 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
10386 {
10387 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
10388 {
10389 pVCpu->hm.s.Event.fPending = false;
10390
10391 /*
10392 * We've injected any pending events. This is really the point of no return (to ring-3).
10393 *
10394 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
10395 * returns from this function, so don't enable them here.
10396 */
10397 return VINF_SUCCESS;
10398 }
10399
10400 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
10401 rcStrict = VINF_EM_RAW_INTERRUPT;
10402 }
10403 else
10404 {
10405 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
10406 rcStrict = VINF_EM_RAW_TO_R3;
10407 }
10408
10409 ASMSetFlags(pVmxTransient->fEFlags);
10410 VMMRZCallRing3Enable(pVCpu);
10411
10412 return rcStrict;
10413}
10414
10415
10416/**
10417 * Final preparations before executing guest code using hardware-assisted VMX.
10418 *
10419 * We can no longer get preempted to a different host CPU and there are no returns
10420 * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
10421 * failures), this function is not intended to fail sans unrecoverable hardware
10422 * errors.
10423 *
10424 * @param pVCpu The cross context virtual CPU structure.
10425 * @param pVmxTransient The VMX-transient structure.
10426 *
10427 * @remarks Called with preemption disabled.
10428 * @remarks No-long-jump zone!!!
10429 */
10430static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10431{
10432 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10433 Assert(VMMR0IsLogFlushDisabled(pVCpu));
10434 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
10435 Assert(!pVCpu->hm.s.Event.fPending);
10436
10437 /*
10438 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
10439 */
10440 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10441 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
10442
10443 PVM pVM = pVCpu->CTX_SUFF(pVM);
10444 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10445
10446 if (!CPUMIsGuestFPUStateActive(pVCpu))
10447 {
10448 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10449 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
10450 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
10451 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10452 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
10453 }
10454
10455 /*
10456 * Re-save the host state bits as we may've been preempted (only happens when
10457 * thread-context hooks are used or when the VM start function changes).
10458 * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
10459 * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
10460 * see @bugref{8432}.
10461 *
10462 * This may also happen when switching to/from a nested-guest VMCS without leaving
10463 * ring-0.
10464 */
10465 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
10466 {
10467 int rc = hmR0VmxExportHostState(pVCpu);
10468 AssertRC(rc);
10469 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
10470 }
10471 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
10472
10473 /*
10474 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
10475 */
10476 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
10477 hmR0VmxExportSharedState(pVCpu, pVmxTransient);
10478 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
10479
10480 /*
10481 * Store status of the shared guest/host debug state at the time of VM-entry.
10482 */
10483#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
10484 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
10485 {
10486 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
10487 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
10488 }
10489 else
10490#endif
10491 {
10492 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
10493 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
10494 }
10495
10496 /*
10497 * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
10498 * more than one conditional check. The post-run side of our code shall determine
10499 * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
10500 */
10501 if (pVmcsInfo->pbVirtApic)
10502 pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
10503
10504 /*
10505 * Update the host MSRs values in the VM-exit MSR-load area.
10506 */
10507 if (!pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs)
10508 {
10509 if (pVmcsInfo->cExitMsrLoad > 0)
10510 hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
10511 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = true;
10512 }
10513
10514 /*
10515 * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
10516 * VMX-preemption timer based on the next virtual sync clock deadline.
10517 */
10518 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
10519 RTCPUID const idCurrentCpu = pHostCpu->idCpu;
10520 if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
10521 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
10522 {
10523 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient);
10524 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
10525 }
10526
10527 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
10528 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
10529 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
10530 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
10531
10532 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
10533
10534 TMNotifyStartOfExecution(pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
10535 as we're about to start executing the guest . */
10536
10537 /*
10538 * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
10539 *
10540 * This is done this late as updating the TSC offsetting/preemption timer above
10541 * figures out if we can skip intercepting RDTSCP by calculating the number of
10542 * host CPU ticks till the next virtual sync deadline (for the dynamic case).
10543 */
10544 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
10545 {
10546 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10547 {
10548 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
10549 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
10550 true /* fSetReadWrite */, true /* fUpdateHostMsr */);
10551 AssertRC(rc);
10552 }
10553 else
10554 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
10555 }
10556
10557#ifdef VBOX_STRICT
10558 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo);
10559 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo);
10560 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo));
10561#endif
10562
10563#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
10564 /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
10565 * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs. */
10566 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
10567 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
10568 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
10569#endif
10570}
10571
10572
10573/**
10574 * First C routine invoked after running guest code using hardware-assisted VMX.
10575 *
10576 * @param pVCpu The cross context virtual CPU structure.
10577 * @param pVmxTransient The VMX-transient structure.
10578 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
10579 *
10580 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
10581 *
10582 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
10583 * unconditionally when it is safe to do so.
10584 */
10585static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
10586{
10587 uint64_t const uHostTsc = ASMReadTSC(); /** @todo We can do a lot better here, see @bugref{9180#c38}. */
10588
10589 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
10590 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
10591 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
10592 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
10593 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
10594 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
10595
10596 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10597 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10598 {
10599 uint64_t uGstTsc;
10600 if (!pVmxTransient->fIsNestedGuest)
10601 uGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10602 else
10603 {
10604 uint64_t const uNstGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10605 uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
10606 }
10607 TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
10608 }
10609
10610 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
10611 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
10612 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10613
10614#if HC_ARCH_BITS == 64
10615 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
10616#endif
10617#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
10618 /* The 64-on-32 switcher maintains VMCS-launch state on its own
10619 and we need to leave it alone here. */
10620 if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
10621 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10622#else
10623 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10624#endif
10625#ifdef VBOX_STRICT
10626 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
10627#endif
10628 Assert(!ASMIntAreEnabled());
10629 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
10630 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10631
10632 /*
10633 * Save the basic VM-exit reason and check if the VM-entry failed.
10634 * See Intel spec. 24.9.1 "Basic VM-exit Information".
10635 */
10636 uint32_t uExitReason;
10637 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
10638 AssertRC(rc);
10639 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
10640 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
10641
10642 /*
10643 * Check if VMLAUNCH/VMRESUME succeeded.
10644 * If this failed, we cause a guru meditation and cease further execution.
10645 */
10646 if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
10647 {
10648 /*
10649 * Update the VM-exit history array here even if the VM-entry failed due to:
10650 * - Invalid guest state.
10651 * - MSR loading.
10652 * - Machine-check event.
10653 *
10654 * In any of the above cases we will still have a "valid" VM-exit reason
10655 * despite @a fVMEntryFailed being false.
10656 *
10657 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
10658 *
10659 * Note! We don't have CS or RIP at this point. Will probably address that later
10660 * by amending the history entry added here.
10661 */
10662 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
10663 UINT64_MAX, uHostTsc);
10664
10665 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
10666 {
10667 VMMRZCallRing3Enable(pVCpu);
10668
10669 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10670 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10671
10672#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
10673 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
10674 AssertRC(rc);
10675#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
10676 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_RFLAGS);
10677 AssertRC(rc);
10678#else
10679 /*
10680 * Import the guest-interruptibility state always as we need it while evaluating
10681 * injecting events on re-entry.
10682 *
10683 * We don't import CR0 (when unrestricted guest execution is unavailable) despite
10684 * checking for real-mode while exporting the state because all bits that cause
10685 * mode changes wrt CR0 are intercepted.
10686 */
10687 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
10688 AssertRC(rc);
10689#endif
10690
10691 /*
10692 * Sync the TPR shadow with our APIC state.
10693 */
10694 if ( !pVmxTransient->fIsNestedGuest
10695 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
10696 {
10697 Assert(pVmcsInfo->pbVirtApic);
10698 if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
10699 {
10700 rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
10701 AssertRC(rc);
10702 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
10703 }
10704 }
10705
10706 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10707 return;
10708 }
10709 }
10710 else
10711 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
10712
10713 VMMRZCallRing3Enable(pVCpu);
10714}
10715
10716
10717/**
10718 * Runs the guest code using hardware-assisted VMX the normal way.
10719 *
10720 * @returns VBox status code.
10721 * @param pVCpu The cross context virtual CPU structure.
10722 * @param pcLoops Pointer to the number of executed loops.
10723 */
10724static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
10725{
10726 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
10727 Assert(pcLoops);
10728 Assert(*pcLoops <= cMaxResumeLoops);
10729
10730 VMXTRANSIENT VmxTransient;
10731 RT_ZERO(VmxTransient);
10732 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10733
10734 /* Paranoia. */
10735 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfo);
10736 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10737
10738 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10739 for (;;)
10740 {
10741 Assert(!HMR0SuspendPending());
10742 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10743 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10744
10745 /*
10746 * Preparatory work for running nested-guest code, this may force us to
10747 * return to ring-3.
10748 *
10749 * Warning! This bugger disables interrupts on VINF_SUCCESS!
10750 */
10751 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
10752 if (rcStrict != VINF_SUCCESS)
10753 break;
10754
10755 /* Interrupts are disabled at this point! */
10756 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10757 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
10758 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10759 /* Interrupts are re-enabled at this point! */
10760
10761 /*
10762 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
10763 */
10764 if (RT_SUCCESS(rcRun))
10765 { /* very likely */ }
10766 else
10767 {
10768 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10769 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10770 return rcRun;
10771 }
10772
10773 /*
10774 * Profile the VM-exit.
10775 */
10776 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10777 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10778 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10779 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10780 HMVMX_START_EXIT_DISPATCH_PROF();
10781
10782 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10783
10784 /*
10785 * Handle the VM-exit.
10786 */
10787#ifdef HMVMX_USE_FUNCTION_TABLE
10788 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
10789#else
10790 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
10791#endif
10792 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10793 if (rcStrict == VINF_SUCCESS)
10794 {
10795 if (++(*pcLoops) <= cMaxResumeLoops)
10796 continue;
10797 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10798 rcStrict = VINF_EM_RAW_INTERRUPT;
10799 }
10800 break;
10801 }
10802
10803 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10804 return rcStrict;
10805}
10806
10807#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10808/**
10809 * Runs the nested-guest code using hardware-assisted VMX.
10810 *
10811 * @returns VBox status code.
10812 * @param pVCpu The cross context virtual CPU structure.
10813 * @param pcLoops Pointer to the number of executed loops.
10814 *
10815 * @sa hmR0VmxRunGuestCodeNormal().
10816 */
10817static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
10818{
10819 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
10820 Assert(pcLoops);
10821 Assert(*pcLoops <= cMaxResumeLoops);
10822
10823 VMXTRANSIENT VmxTransient;
10824 RT_ZERO(VmxTransient);
10825 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
10826 VmxTransient.fIsNestedGuest = true;
10827
10828 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10829 for (;;)
10830 {
10831 Assert(!HMR0SuspendPending());
10832 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10833 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10834
10835 /*
10836 * Preparatory work for running guest code, this may force us to
10837 * return to ring-3.
10838 *
10839 * Warning! This bugger disables interrupts on VINF_SUCCESS!
10840 */
10841 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
10842 if (rcStrict != VINF_SUCCESS)
10843 break;
10844
10845 /* Interrupts are disabled at this point! */
10846 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10847 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
10848 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10849 /* Interrupts are re-enabled at this point! */
10850
10851 /*
10852 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
10853 */
10854 if (RT_SUCCESS(rcRun))
10855 { /* very likely */ }
10856 else
10857 {
10858 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10859 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10860 return rcRun;
10861 }
10862
10863 /*
10864 * Profile the VM-exit.
10865 */
10866 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10867 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10868 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10869 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10870 HMVMX_START_EXIT_DISPATCH_PROF();
10871
10872 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10873
10874 /*
10875 * Handle the VM-exit.
10876 */
10877 rcStrict = hmR0VmxHandleExitNested(pVCpu, &VmxTransient);
10878 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10879 if ( rcStrict == VINF_SUCCESS
10880 && CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10881 {
10882 if (++(*pcLoops) <= cMaxResumeLoops)
10883 continue;
10884 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10885 rcStrict = VINF_EM_RAW_INTERRUPT;
10886 }
10887 break;
10888 }
10889
10890 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10891 return rcStrict;
10892}
10893#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10894
10895
10896/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
10897 * probes.
10898 *
10899 * The following few functions and associated structure contains the bloat
10900 * necessary for providing detailed debug events and dtrace probes as well as
10901 * reliable host side single stepping. This works on the principle of
10902 * "subclassing" the normal execution loop and workers. We replace the loop
10903 * method completely and override selected helpers to add necessary adjustments
10904 * to their core operation.
10905 *
10906 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
10907 * any performance for debug and analysis features.
10908 *
10909 * @{
10910 */
10911
10912/**
10913 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
10914 * the debug run loop.
10915 */
10916typedef struct VMXRUNDBGSTATE
10917{
10918 /** The RIP we started executing at. This is for detecting that we stepped. */
10919 uint64_t uRipStart;
10920 /** The CS we started executing with. */
10921 uint16_t uCsStart;
10922
10923 /** Whether we've actually modified the 1st execution control field. */
10924 bool fModifiedProcCtls : 1;
10925 /** Whether we've actually modified the 2nd execution control field. */
10926 bool fModifiedProcCtls2 : 1;
10927 /** Whether we've actually modified the exception bitmap. */
10928 bool fModifiedXcptBitmap : 1;
10929
10930 /** We desire the modified the CR0 mask to be cleared. */
10931 bool fClearCr0Mask : 1;
10932 /** We desire the modified the CR4 mask to be cleared. */
10933 bool fClearCr4Mask : 1;
10934 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
10935 uint32_t fCpe1Extra;
10936 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
10937 uint32_t fCpe1Unwanted;
10938 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
10939 uint32_t fCpe2Extra;
10940 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
10941 uint32_t bmXcptExtra;
10942 /** The sequence number of the Dtrace provider settings the state was
10943 * configured against. */
10944 uint32_t uDtraceSettingsSeqNo;
10945 /** VM-exits to check (one bit per VM-exit). */
10946 uint32_t bmExitsToCheck[3];
10947
10948 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
10949 uint32_t fProcCtlsInitial;
10950 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
10951 uint32_t fProcCtls2Initial;
10952 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
10953 uint32_t bmXcptInitial;
10954} VMXRUNDBGSTATE;
10955AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
10956typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
10957
10958
10959/**
10960 * Initializes the VMXRUNDBGSTATE structure.
10961 *
10962 * @param pVCpu The cross context virtual CPU structure of the
10963 * calling EMT.
10964 * @param pVmxTransient The VMX-transient structure.
10965 * @param pDbgState The debug state to initialize.
10966 */
10967static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
10968{
10969 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
10970 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
10971
10972 pDbgState->fModifiedProcCtls = false;
10973 pDbgState->fModifiedProcCtls2 = false;
10974 pDbgState->fModifiedXcptBitmap = false;
10975 pDbgState->fClearCr0Mask = false;
10976 pDbgState->fClearCr4Mask = false;
10977 pDbgState->fCpe1Extra = 0;
10978 pDbgState->fCpe1Unwanted = 0;
10979 pDbgState->fCpe2Extra = 0;
10980 pDbgState->bmXcptExtra = 0;
10981 pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls;
10982 pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2;
10983 pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap;
10984}
10985
10986
10987/**
10988 * Updates the VMSC fields with changes requested by @a pDbgState.
10989 *
10990 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
10991 * immediately before executing guest code, i.e. when interrupts are disabled.
10992 * We don't check status codes here as we cannot easily assert or return in the
10993 * latter case.
10994 *
10995 * @param pVCpu The cross context virtual CPU structure.
10996 * @param pVmxTransient The VMX-transient structure.
10997 * @param pDbgState The debug state.
10998 */
10999static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11000{
11001 /*
11002 * Ensure desired flags in VMCS control fields are set.
11003 * (Ignoring write failure here, as we're committed and it's just debug extras.)
11004 *
11005 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
11006 * there should be no stale data in pCtx at this point.
11007 */
11008 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11009 if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
11010 || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
11011 {
11012 pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
11013 pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
11014 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
11015 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
11016 pDbgState->fModifiedProcCtls = true;
11017 }
11018
11019 if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
11020 {
11021 pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra;
11022 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
11023 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
11024 pDbgState->fModifiedProcCtls2 = true;
11025 }
11026
11027 if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
11028 {
11029 pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
11030 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
11031 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
11032 pDbgState->fModifiedXcptBitmap = true;
11033 }
11034
11035 if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
11036 {
11037 pVmcsInfo->u64Cr0Mask = 0;
11038 VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, 0);
11039 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
11040 }
11041
11042 if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
11043 {
11044 pVmcsInfo->u64Cr4Mask = 0;
11045 VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, 0);
11046 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
11047 }
11048
11049 NOREF(pVCpu);
11050}
11051
11052
11053/**
11054 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
11055 * re-entry next time around.
11056 *
11057 * @returns Strict VBox status code (i.e. informational status codes too).
11058 * @param pVCpu The cross context virtual CPU structure.
11059 * @param pVmxTransient The VMX-transient structure.
11060 * @param pDbgState The debug state.
11061 * @param rcStrict The return code from executing the guest using single
11062 * stepping.
11063 */
11064static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
11065 VBOXSTRICTRC rcStrict)
11066{
11067 /*
11068 * Restore VM-exit control settings as we may not reenter this function the
11069 * next time around.
11070 */
11071 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11072
11073 /* We reload the initial value, trigger what we can of recalculations the
11074 next time around. From the looks of things, that's all that's required atm. */
11075 if (pDbgState->fModifiedProcCtls)
11076 {
11077 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
11078 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
11079 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
11080 AssertRCReturn(rc2, rc2);
11081 pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
11082 }
11083
11084 /* We're currently the only ones messing with this one, so just restore the
11085 cached value and reload the field. */
11086 if ( pDbgState->fModifiedProcCtls2
11087 && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
11088 {
11089 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
11090 AssertRCReturn(rc2, rc2);
11091 pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
11092 }
11093
11094 /* If we've modified the exception bitmap, we restore it and trigger
11095 reloading and partial recalculation the next time around. */
11096 if (pDbgState->fModifiedXcptBitmap)
11097 pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
11098
11099 return rcStrict;
11100}
11101
11102
11103/**
11104 * Configures VM-exit controls for current DBGF and DTrace settings.
11105 *
11106 * This updates @a pDbgState and the VMCS execution control fields to reflect
11107 * the necessary VM-exits demanded by DBGF and DTrace.
11108 *
11109 * @param pVCpu The cross context virtual CPU structure.
11110 * @param pVmxTransient The VMX-transient structure. May update
11111 * fUpdatedTscOffsettingAndPreemptTimer.
11112 * @param pDbgState The debug state.
11113 */
11114static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11115{
11116 /*
11117 * Take down the dtrace serial number so we can spot changes.
11118 */
11119 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
11120 ASMCompilerBarrier();
11121
11122 /*
11123 * We'll rebuild most of the middle block of data members (holding the
11124 * current settings) as we go along here, so start by clearing it all.
11125 */
11126 pDbgState->bmXcptExtra = 0;
11127 pDbgState->fCpe1Extra = 0;
11128 pDbgState->fCpe1Unwanted = 0;
11129 pDbgState->fCpe2Extra = 0;
11130 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
11131 pDbgState->bmExitsToCheck[i] = 0;
11132
11133 /*
11134 * Software interrupts (INT XXh) - no idea how to trigger these...
11135 */
11136 PVM pVM = pVCpu->CTX_SUFF(pVM);
11137 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
11138 || VBOXVMM_INT_SOFTWARE_ENABLED())
11139 {
11140 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11141 }
11142
11143 /*
11144 * INT3 breakpoints - triggered by #BP exceptions.
11145 */
11146 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
11147 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11148
11149 /*
11150 * Exception bitmap and XCPT events+probes.
11151 */
11152 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
11153 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
11154 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
11155
11156 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
11157 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
11158 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11159 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
11160 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
11161 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
11162 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
11163 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
11164 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
11165 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
11166 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
11167 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
11168 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
11169 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
11170 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
11171 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
11172 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
11173 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
11174
11175 if (pDbgState->bmXcptExtra)
11176 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11177
11178 /*
11179 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
11180 *
11181 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
11182 * So, when adding/changing/removing please don't forget to update it.
11183 *
11184 * Some of the macros are picking up local variables to save horizontal space,
11185 * (being able to see it in a table is the lesser evil here).
11186 */
11187#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
11188 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
11189 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
11190#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
11191 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11192 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11193 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11194 } else do { } while (0)
11195#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
11196 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11197 { \
11198 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
11199 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11200 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11201 } else do { } while (0)
11202#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
11203 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11204 { \
11205 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
11206 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11207 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11208 } else do { } while (0)
11209#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
11210 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11211 { \
11212 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
11213 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11214 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11215 } else do { } while (0)
11216
11217 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
11218 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
11219 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
11220 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
11221 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
11222
11223 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
11224 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
11225 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
11226 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
11227 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
11228 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
11229 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
11230 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
11231 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
11232 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
11233 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
11234 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
11235 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
11236 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
11237 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
11238 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
11239 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
11240 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
11241 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
11242 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
11243 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
11244 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
11245 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
11246 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
11247 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
11248 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
11249 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
11250 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
11251 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
11252 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
11253 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
11254 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
11255 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
11256 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
11257 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
11258 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
11259
11260 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
11261 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11262 {
11263 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4
11264 | CPUMCTX_EXTRN_APIC_TPR);
11265 AssertRC(rc);
11266
11267#if 0 /** @todo fix me */
11268 pDbgState->fClearCr0Mask = true;
11269 pDbgState->fClearCr4Mask = true;
11270#endif
11271 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
11272 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
11273 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11274 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
11275 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
11276 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
11277 require clearing here and in the loop if we start using it. */
11278 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
11279 }
11280 else
11281 {
11282 if (pDbgState->fClearCr0Mask)
11283 {
11284 pDbgState->fClearCr0Mask = false;
11285 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
11286 }
11287 if (pDbgState->fClearCr4Mask)
11288 {
11289 pDbgState->fClearCr4Mask = false;
11290 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
11291 }
11292 }
11293 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
11294 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
11295
11296 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
11297 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
11298 {
11299 /** @todo later, need to fix handler as it assumes this won't usually happen. */
11300 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
11301 }
11302 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
11303 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
11304
11305 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
11306 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
11307 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
11308 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
11309 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
11310 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
11311 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
11312 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
11313#if 0 /** @todo too slow, fix handler. */
11314 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
11315#endif
11316 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
11317
11318 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
11319 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
11320 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
11321 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
11322 {
11323 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11324 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
11325 }
11326 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11327 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11328 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11329 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11330
11331 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
11332 || IS_EITHER_ENABLED(pVM, INSTR_STR)
11333 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
11334 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
11335 {
11336 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11337 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
11338 }
11339 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
11340 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
11341 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
11342 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
11343
11344 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
11345 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
11346 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
11347 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
11348 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
11349 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
11350 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
11351 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
11352 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
11353 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
11354 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
11355 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
11356 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
11357 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
11358 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
11359 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
11360 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
11361 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
11362 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
11363 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
11364 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
11365 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
11366
11367#undef IS_EITHER_ENABLED
11368#undef SET_ONLY_XBM_IF_EITHER_EN
11369#undef SET_CPE1_XBM_IF_EITHER_EN
11370#undef SET_CPEU_XBM_IF_EITHER_EN
11371#undef SET_CPE2_XBM_IF_EITHER_EN
11372
11373 /*
11374 * Sanitize the control stuff.
11375 */
11376 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
11377 if (pDbgState->fCpe2Extra)
11378 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
11379 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
11380 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
11381 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
11382 {
11383 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
11384 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
11385 }
11386
11387 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
11388 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
11389 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
11390 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
11391}
11392
11393
11394/**
11395 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
11396 * appropriate.
11397 *
11398 * The caller has checked the VM-exit against the
11399 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
11400 * already, so we don't have to do that either.
11401 *
11402 * @returns Strict VBox status code (i.e. informational status codes too).
11403 * @param pVCpu The cross context virtual CPU structure.
11404 * @param pVmxTransient The VMX-transient structure.
11405 * @param uExitReason The VM-exit reason.
11406 *
11407 * @remarks The name of this function is displayed by dtrace, so keep it short
11408 * and to the point. No longer than 33 chars long, please.
11409 */
11410static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
11411{
11412 /*
11413 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
11414 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
11415 *
11416 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
11417 * does. Must add/change/remove both places. Same ordering, please.
11418 *
11419 * Added/removed events must also be reflected in the next section
11420 * where we dispatch dtrace events.
11421 */
11422 bool fDtrace1 = false;
11423 bool fDtrace2 = false;
11424 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
11425 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
11426 uint32_t uEventArg = 0;
11427#define SET_EXIT(a_EventSubName) \
11428 do { \
11429 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11430 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11431 } while (0)
11432#define SET_BOTH(a_EventSubName) \
11433 do { \
11434 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
11435 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11436 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
11437 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11438 } while (0)
11439 switch (uExitReason)
11440 {
11441 case VMX_EXIT_MTF:
11442 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11443
11444 case VMX_EXIT_XCPT_OR_NMI:
11445 {
11446 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
11447 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
11448 {
11449 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11450 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
11451 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
11452 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
11453 {
11454 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
11455 {
11456 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11457 uEventArg = pVmxTransient->uExitIntErrorCode;
11458 }
11459 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
11460 switch (enmEvent1)
11461 {
11462 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
11463 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
11464 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
11465 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
11466 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
11467 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
11468 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
11469 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
11470 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
11471 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
11472 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
11473 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
11474 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
11475 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
11476 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
11477 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
11478 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
11479 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
11480 default: break;
11481 }
11482 }
11483 else
11484 AssertFailed();
11485 break;
11486
11487 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
11488 uEventArg = idxVector;
11489 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
11490 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
11491 break;
11492 }
11493 break;
11494 }
11495
11496 case VMX_EXIT_TRIPLE_FAULT:
11497 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
11498 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
11499 break;
11500 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
11501 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
11502 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
11503 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
11504 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
11505
11506 /* Instruction specific VM-exits: */
11507 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
11508 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
11509 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
11510 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
11511 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
11512 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
11513 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
11514 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
11515 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
11516 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
11517 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
11518 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
11519 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
11520 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
11521 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
11522 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
11523 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
11524 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
11525 case VMX_EXIT_MOV_CRX:
11526 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11527 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
11528 SET_BOTH(CRX_READ);
11529 else
11530 SET_BOTH(CRX_WRITE);
11531 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
11532 break;
11533 case VMX_EXIT_MOV_DRX:
11534 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11535 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
11536 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
11537 SET_BOTH(DRX_READ);
11538 else
11539 SET_BOTH(DRX_WRITE);
11540 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
11541 break;
11542 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
11543 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
11544 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
11545 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
11546 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
11547 case VMX_EXIT_GDTR_IDTR_ACCESS:
11548 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11549 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
11550 {
11551 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
11552 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
11553 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
11554 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
11555 }
11556 break;
11557
11558 case VMX_EXIT_LDTR_TR_ACCESS:
11559 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
11560 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
11561 {
11562 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
11563 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
11564 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
11565 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
11566 }
11567 break;
11568
11569 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
11570 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
11571 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
11572 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
11573 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
11574 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
11575 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
11576 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
11577 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
11578 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
11579 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
11580
11581 /* Events that aren't relevant at this point. */
11582 case VMX_EXIT_EXT_INT:
11583 case VMX_EXIT_INT_WINDOW:
11584 case VMX_EXIT_NMI_WINDOW:
11585 case VMX_EXIT_TPR_BELOW_THRESHOLD:
11586 case VMX_EXIT_PREEMPT_TIMER:
11587 case VMX_EXIT_IO_INSTR:
11588 break;
11589
11590 /* Errors and unexpected events. */
11591 case VMX_EXIT_INIT_SIGNAL:
11592 case VMX_EXIT_SIPI:
11593 case VMX_EXIT_IO_SMI:
11594 case VMX_EXIT_SMI:
11595 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
11596 case VMX_EXIT_ERR_MSR_LOAD:
11597 case VMX_EXIT_ERR_MACHINE_CHECK:
11598 break;
11599
11600 default:
11601 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
11602 break;
11603 }
11604#undef SET_BOTH
11605#undef SET_EXIT
11606
11607 /*
11608 * Dtrace tracepoints go first. We do them here at once so we don't
11609 * have to copy the guest state saving and stuff a few dozen times.
11610 * Down side is that we've got to repeat the switch, though this time
11611 * we use enmEvent since the probes are a subset of what DBGF does.
11612 */
11613 if (fDtrace1 || fDtrace2)
11614 {
11615 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11616 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
11617 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11618 switch (enmEvent1)
11619 {
11620 /** @todo consider which extra parameters would be helpful for each probe. */
11621 case DBGFEVENT_END: break;
11622 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
11623 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
11624 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
11625 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
11626 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
11627 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
11628 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
11629 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
11630 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
11631 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
11632 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
11633 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
11634 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
11635 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
11636 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
11637 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
11638 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
11639 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
11640 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11641 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
11642 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
11643 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
11644 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
11645 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
11646 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
11647 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
11648 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
11649 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11650 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11651 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11652 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11653 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
11654 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
11655 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
11656 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
11657 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
11658 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
11659 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
11660 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
11661 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
11662 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
11663 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
11664 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
11665 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
11666 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
11667 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
11668 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
11669 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
11670 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
11671 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
11672 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
11673 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
11674 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
11675 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
11676 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
11677 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
11678 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
11679 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
11680 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
11681 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
11682 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
11683 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
11684 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
11685 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
11686 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
11687 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
11688 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
11689 }
11690 switch (enmEvent2)
11691 {
11692 /** @todo consider which extra parameters would be helpful for each probe. */
11693 case DBGFEVENT_END: break;
11694 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
11695 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
11696 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
11697 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
11698 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
11699 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
11700 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
11701 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
11702 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
11703 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11704 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11705 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
11706 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
11707 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
11708 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
11709 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
11710 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
11711 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
11712 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
11713 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
11714 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
11715 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
11716 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
11717 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
11718 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
11719 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
11720 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
11721 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
11722 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
11723 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
11724 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
11725 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
11726 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
11727 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
11728 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
11729 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
11730 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
11731 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
11732 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
11733 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
11734 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
11735 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
11736 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
11737 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
11738 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
11739 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
11740 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
11741 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
11742 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
11743 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
11744 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
11745 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
11746 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
11747 }
11748 }
11749
11750 /*
11751 * Fire of the DBGF event, if enabled (our check here is just a quick one,
11752 * the DBGF call will do a full check).
11753 *
11754 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
11755 * Note! If we have to events, we prioritize the first, i.e. the instruction
11756 * one, in order to avoid event nesting.
11757 */
11758 PVM pVM = pVCpu->CTX_SUFF(pVM);
11759 if ( enmEvent1 != DBGFEVENT_END
11760 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
11761 {
11762 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11763 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
11764 if (rcStrict != VINF_SUCCESS)
11765 return rcStrict;
11766 }
11767 else if ( enmEvent2 != DBGFEVENT_END
11768 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
11769 {
11770 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11771 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
11772 if (rcStrict != VINF_SUCCESS)
11773 return rcStrict;
11774 }
11775
11776 return VINF_SUCCESS;
11777}
11778
11779
11780/**
11781 * Single-stepping VM-exit filtering.
11782 *
11783 * This is preprocessing the VM-exits and deciding whether we've gotten far
11784 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
11785 * handling is performed.
11786 *
11787 * @returns Strict VBox status code (i.e. informational status codes too).
11788 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
11789 * @param pVmxTransient The VMX-transient structure.
11790 * @param pDbgState The debug state.
11791 */
11792DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11793{
11794 /*
11795 * Expensive (saves context) generic dtrace VM-exit probe.
11796 */
11797 uint32_t const uExitReason = pVmxTransient->uExitReason;
11798 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
11799 { /* more likely */ }
11800 else
11801 {
11802 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11803 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
11804 AssertRC(rc);
11805 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
11806 }
11807
11808 /*
11809 * Check for host NMI, just to get that out of the way.
11810 */
11811 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
11812 { /* normally likely */ }
11813 else
11814 {
11815 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11816 AssertRCReturn(rc2, rc2);
11817 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11818 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11819 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
11820 }
11821
11822 /*
11823 * Check for single stepping event if we're stepping.
11824 */
11825 if (pVCpu->hm.s.fSingleInstruction)
11826 {
11827 switch (uExitReason)
11828 {
11829 case VMX_EXIT_MTF:
11830 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11831
11832 /* Various events: */
11833 case VMX_EXIT_XCPT_OR_NMI:
11834 case VMX_EXIT_EXT_INT:
11835 case VMX_EXIT_TRIPLE_FAULT:
11836 case VMX_EXIT_INT_WINDOW:
11837 case VMX_EXIT_NMI_WINDOW:
11838 case VMX_EXIT_TASK_SWITCH:
11839 case VMX_EXIT_TPR_BELOW_THRESHOLD:
11840 case VMX_EXIT_APIC_ACCESS:
11841 case VMX_EXIT_EPT_VIOLATION:
11842 case VMX_EXIT_EPT_MISCONFIG:
11843 case VMX_EXIT_PREEMPT_TIMER:
11844
11845 /* Instruction specific VM-exits: */
11846 case VMX_EXIT_CPUID:
11847 case VMX_EXIT_GETSEC:
11848 case VMX_EXIT_HLT:
11849 case VMX_EXIT_INVD:
11850 case VMX_EXIT_INVLPG:
11851 case VMX_EXIT_RDPMC:
11852 case VMX_EXIT_RDTSC:
11853 case VMX_EXIT_RSM:
11854 case VMX_EXIT_VMCALL:
11855 case VMX_EXIT_VMCLEAR:
11856 case VMX_EXIT_VMLAUNCH:
11857 case VMX_EXIT_VMPTRLD:
11858 case VMX_EXIT_VMPTRST:
11859 case VMX_EXIT_VMREAD:
11860 case VMX_EXIT_VMRESUME:
11861 case VMX_EXIT_VMWRITE:
11862 case VMX_EXIT_VMXOFF:
11863 case VMX_EXIT_VMXON:
11864 case VMX_EXIT_MOV_CRX:
11865 case VMX_EXIT_MOV_DRX:
11866 case VMX_EXIT_IO_INSTR:
11867 case VMX_EXIT_RDMSR:
11868 case VMX_EXIT_WRMSR:
11869 case VMX_EXIT_MWAIT:
11870 case VMX_EXIT_MONITOR:
11871 case VMX_EXIT_PAUSE:
11872 case VMX_EXIT_GDTR_IDTR_ACCESS:
11873 case VMX_EXIT_LDTR_TR_ACCESS:
11874 case VMX_EXIT_INVEPT:
11875 case VMX_EXIT_RDTSCP:
11876 case VMX_EXIT_INVVPID:
11877 case VMX_EXIT_WBINVD:
11878 case VMX_EXIT_XSETBV:
11879 case VMX_EXIT_RDRAND:
11880 case VMX_EXIT_INVPCID:
11881 case VMX_EXIT_VMFUNC:
11882 case VMX_EXIT_RDSEED:
11883 case VMX_EXIT_XSAVES:
11884 case VMX_EXIT_XRSTORS:
11885 {
11886 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
11887 AssertRCReturn(rc, rc);
11888 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
11889 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
11890 return VINF_EM_DBG_STEPPED;
11891 break;
11892 }
11893
11894 /* Errors and unexpected events: */
11895 case VMX_EXIT_INIT_SIGNAL:
11896 case VMX_EXIT_SIPI:
11897 case VMX_EXIT_IO_SMI:
11898 case VMX_EXIT_SMI:
11899 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
11900 case VMX_EXIT_ERR_MSR_LOAD:
11901 case VMX_EXIT_ERR_MACHINE_CHECK:
11902 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
11903 break;
11904
11905 default:
11906 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
11907 break;
11908 }
11909 }
11910
11911 /*
11912 * Check for debugger event breakpoints and dtrace probes.
11913 */
11914 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
11915 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
11916 {
11917 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
11918 if (rcStrict != VINF_SUCCESS)
11919 return rcStrict;
11920 }
11921
11922 /*
11923 * Normal processing.
11924 */
11925#ifdef HMVMX_USE_FUNCTION_TABLE
11926 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
11927#else
11928 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
11929#endif
11930}
11931
11932
11933/**
11934 * Single steps guest code using hardware-assisted VMX.
11935 *
11936 * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
11937 * but single-stepping through the hypervisor debugger.
11938 *
11939 * @returns Strict VBox status code (i.e. informational status codes too).
11940 * @param pVCpu The cross context virtual CPU structure.
11941 * @param pcLoops Pointer to the number of executed loops.
11942 *
11943 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
11944 */
11945static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu, uint32_t *pcLoops)
11946{
11947 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11948 Assert(pcLoops);
11949 Assert(*pcLoops <= cMaxResumeLoops);
11950
11951 VMXTRANSIENT VmxTransient;
11952 RT_ZERO(VmxTransient);
11953 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11954
11955 /* Set HMCPU indicators. */
11956 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
11957 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
11958 pVCpu->hm.s.fDebugWantRdTscExit = false;
11959 pVCpu->hm.s.fUsingDebugLoop = true;
11960
11961 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
11962 VMXRUNDBGSTATE DbgState;
11963 hmR0VmxRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
11964 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
11965
11966 /*
11967 * The loop.
11968 */
11969 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11970 for (;;)
11971 {
11972 Assert(!HMR0SuspendPending());
11973 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11974 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11975 bool fStepping = pVCpu->hm.s.fSingleInstruction;
11976
11977 /* Set up VM-execution controls the next two can respond to. */
11978 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
11979
11980 /*
11981 * Preparatory work for running guest code, this may force us to
11982 * return to ring-3.
11983 *
11984 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11985 */
11986 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
11987 if (rcStrict != VINF_SUCCESS)
11988 break;
11989
11990 /* Interrupts are disabled at this point! */
11991 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11992
11993 /* Override any obnoxious code in the above two calls. */
11994 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
11995
11996 /*
11997 * Finally execute the guest.
11998 */
11999 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
12000
12001 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
12002 /* Interrupts are re-enabled at this point! */
12003
12004 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
12005 if (RT_SUCCESS(rcRun))
12006 { /* very likely */ }
12007 else
12008 {
12009 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
12010 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
12011 return rcRun;
12012 }
12013
12014 /* Profile the VM-exit. */
12015 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
12016 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
12017 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
12018 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
12019 HMVMX_START_EXIT_DISPATCH_PROF();
12020
12021 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
12022
12023 /*
12024 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
12025 */
12026 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
12027 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
12028 if (rcStrict != VINF_SUCCESS)
12029 break;
12030 if (++(*pcLoops) > cMaxResumeLoops)
12031 {
12032 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
12033 rcStrict = VINF_EM_RAW_INTERRUPT;
12034 break;
12035 }
12036
12037 /*
12038 * Stepping: Did the RIP change, if so, consider it a single step.
12039 * Otherwise, make sure one of the TFs gets set.
12040 */
12041 if (fStepping)
12042 {
12043 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12044 AssertRC(rc);
12045 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
12046 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
12047 {
12048 rcStrict = VINF_EM_DBG_STEPPED;
12049 break;
12050 }
12051 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12052 }
12053
12054 /*
12055 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
12056 */
12057 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
12058 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12059 }
12060
12061 /*
12062 * Clear the X86_EFL_TF if necessary.
12063 */
12064 if (pVCpu->hm.s.fClearTrapFlag)
12065 {
12066 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
12067 AssertRC(rc);
12068 pVCpu->hm.s.fClearTrapFlag = false;
12069 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
12070 }
12071 /** @todo there seems to be issues with the resume flag when the monitor trap
12072 * flag is pending without being used. Seen early in bios init when
12073 * accessing APIC page in protected mode. */
12074
12075 /*
12076 * Restore VM-exit control settings as we may not re-enter this function the
12077 * next time around.
12078 */
12079 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
12080
12081 /* Restore HMCPU indicators. */
12082 pVCpu->hm.s.fUsingDebugLoop = false;
12083 pVCpu->hm.s.fDebugWantRdTscExit = false;
12084 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
12085
12086 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
12087 return rcStrict;
12088}
12089
12090
12091/** @} */
12092
12093
12094/**
12095 * Checks if any expensive dtrace probes are enabled and we should go to the
12096 * debug loop.
12097 *
12098 * @returns true if we should use debug loop, false if not.
12099 */
12100static bool hmR0VmxAnyExpensiveProbesEnabled(void)
12101{
12102 /* It's probably faster to OR the raw 32-bit counter variables together.
12103 Since the variables are in an array and the probes are next to one
12104 another (more or less), we have good locality. So, better read
12105 eight-nine cache lines ever time and only have one conditional, than
12106 128+ conditionals, right? */
12107 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
12108 | VBOXVMM_XCPT_DE_ENABLED_RAW()
12109 | VBOXVMM_XCPT_DB_ENABLED_RAW()
12110 | VBOXVMM_XCPT_BP_ENABLED_RAW()
12111 | VBOXVMM_XCPT_OF_ENABLED_RAW()
12112 | VBOXVMM_XCPT_BR_ENABLED_RAW()
12113 | VBOXVMM_XCPT_UD_ENABLED_RAW()
12114 | VBOXVMM_XCPT_NM_ENABLED_RAW()
12115 | VBOXVMM_XCPT_DF_ENABLED_RAW()
12116 | VBOXVMM_XCPT_TS_ENABLED_RAW()
12117 | VBOXVMM_XCPT_NP_ENABLED_RAW()
12118 | VBOXVMM_XCPT_SS_ENABLED_RAW()
12119 | VBOXVMM_XCPT_GP_ENABLED_RAW()
12120 | VBOXVMM_XCPT_PF_ENABLED_RAW()
12121 | VBOXVMM_XCPT_MF_ENABLED_RAW()
12122 | VBOXVMM_XCPT_AC_ENABLED_RAW()
12123 | VBOXVMM_XCPT_XF_ENABLED_RAW()
12124 | VBOXVMM_XCPT_VE_ENABLED_RAW()
12125 | VBOXVMM_XCPT_SX_ENABLED_RAW()
12126 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
12127 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
12128 ) != 0
12129 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
12130 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
12131 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
12132 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
12133 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
12134 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
12135 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
12136 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
12137 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
12138 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
12139 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
12140 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
12141 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
12142 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
12143 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
12144 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
12145 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
12146 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
12147 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
12148 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
12149 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
12150 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
12151 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
12152 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
12153 | VBOXVMM_INSTR_STR_ENABLED_RAW()
12154 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
12155 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
12156 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
12157 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
12158 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
12159 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
12160 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
12161 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
12162 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
12163 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
12164 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
12165 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
12166 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
12167 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
12168 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
12169 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
12170 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
12171 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
12172 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
12173 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
12174 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
12175 ) != 0
12176 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
12177 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
12178 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
12179 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
12180 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
12181 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
12182 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
12183 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
12184 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
12185 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
12186 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
12187 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
12188 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
12189 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
12190 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
12191 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
12192 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
12193 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
12194 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
12195 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
12196 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
12197 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
12198 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
12199 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
12200 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
12201 | VBOXVMM_EXIT_STR_ENABLED_RAW()
12202 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
12203 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
12204 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
12205 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
12206 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
12207 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
12208 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
12209 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
12210 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
12211 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
12212 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
12213 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
12214 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
12215 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
12216 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
12217 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
12218 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
12219 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
12220 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
12221 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
12222 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
12223 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
12224 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
12225 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
12226 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
12227 ) != 0;
12228}
12229
12230
12231/**
12232 * Runs the guest using hardware-assisted VMX.
12233 *
12234 * @returns Strict VBox status code (i.e. informational status codes too).
12235 * @param pVCpu The cross context virtual CPU structure.
12236 */
12237VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
12238{
12239 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12240 Assert(VMMRZCallRing3IsEnabled(pVCpu));
12241 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12242 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
12243
12244 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
12245
12246 VBOXSTRICTRC rcStrict;
12247 uint32_t cLoops = 0;
12248#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12249 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
12250#else
12251 bool const fInNestedGuestMode = false;
12252#endif
12253 if (!fInNestedGuestMode)
12254 {
12255 if ( !pVCpu->hm.s.fUseDebugLoop
12256 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
12257 && !DBGFIsStepping(pVCpu)
12258 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
12259 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
12260 else
12261 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
12262 }
12263#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12264 else
12265 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
12266
12267 if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
12268 rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
12269#endif
12270
12271 if (rcStrict == VERR_EM_INTERPRETER)
12272 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12273 else if (rcStrict == VINF_EM_RESET)
12274 rcStrict = VINF_EM_TRIPLE_FAULT;
12275
12276 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
12277 if (RT_FAILURE(rc2))
12278 {
12279 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
12280 rcStrict = rc2;
12281 }
12282 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12283 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
12284 return rcStrict;
12285}
12286
12287
12288#ifndef HMVMX_USE_FUNCTION_TABLE
12289/**
12290 * Handles a guest VM-exit from hardware-assisted VMX execution.
12291 *
12292 * @returns Strict VBox status code (i.e. informational status codes too).
12293 * @param pVCpu The cross context virtual CPU structure.
12294 * @param pVmxTransient The VMX-transient structure.
12295 */
12296DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12297{
12298#ifdef DEBUG_ramshankar
12299#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
12300 do { \
12301 if (a_fSave != 0) \
12302 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
12303 VBOXSTRICTRC rcStrict = a_CallExpr; \
12304 if (a_fSave != 0) \
12305 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
12306 return rcStrict; \
12307 } while (0)
12308#else
12309# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
12310#endif
12311 uint32_t const rcReason = pVmxTransient->uExitReason;
12312 switch (rcReason)
12313 {
12314 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
12315 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
12316 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
12317 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
12318 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
12319 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
12320 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
12321 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
12322 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
12323 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
12324 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
12325 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
12326 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
12327 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
12328 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
12329 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
12330 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
12331 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
12332 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
12333 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
12334 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
12335 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
12336 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
12337 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
12338 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
12339 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
12340 case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
12341 case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
12342 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
12343 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
12344 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
12345 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
12346 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
12347 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
12348#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12349 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
12350 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
12351 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
12352 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
12353 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
12354 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
12355 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
12356 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
12357 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
12358#else
12359 case VMX_EXIT_VMCLEAR:
12360 case VMX_EXIT_VMLAUNCH:
12361 case VMX_EXIT_VMPTRLD:
12362 case VMX_EXIT_VMPTRST:
12363 case VMX_EXIT_VMREAD:
12364 case VMX_EXIT_VMRESUME:
12365 case VMX_EXIT_VMWRITE:
12366 case VMX_EXIT_VMXOFF:
12367 case VMX_EXIT_VMXON:
12368 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12369#endif
12370
12371 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
12372 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
12373 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
12374 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
12375 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
12376 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
12377 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
12378 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
12379 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
12380
12381 case VMX_EXIT_INVEPT:
12382 case VMX_EXIT_INVVPID:
12383 case VMX_EXIT_VMFUNC:
12384 case VMX_EXIT_XSAVES:
12385 case VMX_EXIT_XRSTORS:
12386 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12387
12388 case VMX_EXIT_ENCLS:
12389 case VMX_EXIT_RDSEED:
12390 case VMX_EXIT_PML_FULL:
12391 default:
12392 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
12393 }
12394#undef VMEXIT_CALL_RET
12395}
12396#endif /* !HMVMX_USE_FUNCTION_TABLE */
12397
12398
12399#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12400/**
12401 * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
12402 *
12403 * @returns Strict VBox status code (i.e. informational status codes too).
12404 * @param pVCpu The cross context virtual CPU structure.
12405 * @param pVmxTransient The VMX-transient structure.
12406 */
12407DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12408{
12409 uint32_t const rcReason = pVmxTransient->uExitReason;
12410 switch (rcReason)
12411 {
12412 case VMX_EXIT_EPT_MISCONFIG:
12413 case VMX_EXIT_EPT_VIOLATION:
12414 case VMX_EXIT_IO_INSTR:
12415 case VMX_EXIT_CPUID:
12416 case VMX_EXIT_RDTSC:
12417 case VMX_EXIT_RDTSCP:
12418 case VMX_EXIT_APIC_ACCESS:
12419 case VMX_EXIT_XCPT_OR_NMI:
12420 case VMX_EXIT_MOV_CRX:
12421 case VMX_EXIT_EXT_INT:
12422 case VMX_EXIT_INT_WINDOW:
12423 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12424 case VMX_EXIT_MWAIT:
12425 case VMX_EXIT_MONITOR:
12426 case VMX_EXIT_TASK_SWITCH:
12427 case VMX_EXIT_PREEMPT_TIMER:
12428 case VMX_EXIT_RDMSR:
12429 case VMX_EXIT_WRMSR:
12430 case VMX_EXIT_VMCALL:
12431 case VMX_EXIT_MOV_DRX:
12432 case VMX_EXIT_HLT:
12433 case VMX_EXIT_INVD:
12434 case VMX_EXIT_INVLPG:
12435 case VMX_EXIT_RSM:
12436 case VMX_EXIT_MTF:
12437 case VMX_EXIT_PAUSE:
12438 case VMX_EXIT_GDTR_IDTR_ACCESS:
12439 case VMX_EXIT_LDTR_TR_ACCESS:
12440 case VMX_EXIT_WBINVD:
12441 case VMX_EXIT_XSETBV:
12442 case VMX_EXIT_RDRAND:
12443 case VMX_EXIT_INVPCID:
12444 case VMX_EXIT_GETSEC:
12445 case VMX_EXIT_RDPMC:
12446#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12447 case VMX_EXIT_VMCLEAR:
12448 case VMX_EXIT_VMLAUNCH:
12449 case VMX_EXIT_VMPTRLD:
12450 case VMX_EXIT_VMPTRST:
12451 case VMX_EXIT_VMREAD:
12452 case VMX_EXIT_VMRESUME:
12453 case VMX_EXIT_VMWRITE:
12454 case VMX_EXIT_VMXOFF:
12455 case VMX_EXIT_VMXON:
12456#endif
12457 case VMX_EXIT_TRIPLE_FAULT:
12458 case VMX_EXIT_NMI_WINDOW:
12459 case VMX_EXIT_INIT_SIGNAL:
12460 case VMX_EXIT_SIPI:
12461 case VMX_EXIT_IO_SMI:
12462 case VMX_EXIT_SMI:
12463 case VMX_EXIT_ERR_MSR_LOAD:
12464 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12465 case VMX_EXIT_ERR_MACHINE_CHECK:
12466
12467 case VMX_EXIT_INVEPT:
12468 case VMX_EXIT_INVVPID:
12469 case VMX_EXIT_VMFUNC:
12470 case VMX_EXIT_XSAVES:
12471 case VMX_EXIT_XRSTORS:
12472
12473 case VMX_EXIT_ENCLS:
12474 case VMX_EXIT_RDSEED:
12475 case VMX_EXIT_PML_FULL:
12476 default:
12477 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
12478 }
12479#undef VMEXIT_CALL_RET
12480}
12481#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
12482
12483
12484#ifdef VBOX_STRICT
12485/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
12486# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
12487 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
12488
12489# define HMVMX_ASSERT_PREEMPT_CPUID() \
12490 do { \
12491 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
12492 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
12493 } while (0)
12494
12495# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12496 do { \
12497 AssertPtr((a_pVCpu)); \
12498 AssertPtr((a_pVmxTransient)); \
12499 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
12500 Assert((a_pVmxTransient)->pVmcsInfo); \
12501 Assert(ASMIntAreEnabled()); \
12502 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
12503 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
12504 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
12505 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
12506 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
12507 HMVMX_ASSERT_PREEMPT_CPUID(); \
12508 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
12509 } while (0)
12510
12511# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12512 do { \
12513 Log4Func(("\n")); \
12514 } while (0)
12515#else
12516# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
12517 do { \
12518 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
12519 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
12520 } while (0)
12521# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
12522#endif
12523
12524
12525/**
12526 * Advances the guest RIP by the specified number of bytes.
12527 *
12528 * @param pVCpu The cross context virtual CPU structure.
12529 * @param cbInstr Number of bytes to advance the RIP by.
12530 *
12531 * @remarks No-long-jump zone!!!
12532 */
12533DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
12534{
12535 /* Advance the RIP. */
12536 pVCpu->cpum.GstCtx.rip += cbInstr;
12537 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12538
12539 /* Update interrupt inhibition. */
12540 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
12541 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
12542 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
12543}
12544
12545
12546/**
12547 * Advances the guest RIP after reading it from the VMCS.
12548 *
12549 * @returns VBox status code, no informational status codes.
12550 * @param pVCpu The cross context virtual CPU structure.
12551 * @param pVmxTransient The VMX-transient structure.
12552 *
12553 * @remarks No-long-jump zone!!!
12554 */
12555static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12556{
12557 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12558 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
12559 AssertRCReturn(rc, rc);
12560
12561 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
12562 return VINF_SUCCESS;
12563}
12564
12565
12566/**
12567 * Handle a condition that occurred while delivering an event through the guest
12568 * IDT.
12569 *
12570 * @returns Strict VBox status code (i.e. informational status codes too).
12571 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
12572 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
12573 * to continue execution of the guest which will delivery the \#DF.
12574 * @retval VINF_EM_RESET if we detected a triple-fault condition.
12575 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
12576 *
12577 * @param pVCpu The cross context virtual CPU structure.
12578 * @param pVmxTransient The VMX-transient structure.
12579 *
12580 * @remarks No-long-jump zone!!!
12581 */
12582static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12583{
12584 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
12585
12586 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12587 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12588 AssertRCReturn(rc2, rc2);
12589
12590 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
12591 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12592 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12593 {
12594 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12595 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12596
12597 /*
12598 * If the event was a software interrupt (generated with INT n) or a software exception
12599 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
12600 * can handle the VM-exit and continue guest execution which will re-execute the
12601 * instruction rather than re-injecting the exception, as that can cause premature
12602 * trips to ring-3 before injection and involve TRPM which currently has no way of
12603 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
12604 * the problem).
12605 */
12606 IEMXCPTRAISE enmRaise;
12607 IEMXCPTRAISEINFO fRaiseInfo;
12608 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
12609 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
12610 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
12611 {
12612 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
12613 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
12614 }
12615 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
12616 {
12617 uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12618 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
12619 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
12620 /** @todo Make AssertMsgReturn as just AssertMsg later. */
12621 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
12622 ("Unexpected VM-exit interruption vector type %#x!\n", uExitVectorType), VERR_VMX_IPE_5);
12623
12624 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
12625
12626 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
12627 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
12628 {
12629 pVmxTransient->fVectoringPF = true;
12630 enmRaise = IEMXCPTRAISE_PREV_EVENT;
12631 }
12632 }
12633 else
12634 {
12635 /*
12636 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
12637 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
12638 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
12639 */
12640 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12641 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
12642 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
12643 enmRaise = IEMXCPTRAISE_PREV_EVENT;
12644 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
12645 }
12646
12647 /*
12648 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
12649 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
12650 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
12651 * subsequent VM-entry would fail.
12652 *
12653 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
12654 */
12655 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
12656 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
12657 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
12658 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
12659 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
12660 {
12661 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
12662 }
12663
12664 switch (enmRaise)
12665 {
12666 case IEMXCPTRAISE_CURRENT_XCPT:
12667 {
12668 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
12669 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
12670 Assert(rcStrict == VINF_SUCCESS);
12671 break;
12672 }
12673
12674 case IEMXCPTRAISE_PREV_EVENT:
12675 {
12676 uint32_t u32ErrCode;
12677 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
12678 {
12679 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12680 AssertRCReturn(rc2, rc2);
12681 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12682 }
12683 else
12684 u32ErrCode = 0;
12685
12686 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
12687 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
12688 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12689 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
12690
12691 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
12692 pVCpu->hm.s.Event.u32ErrCode));
12693 Assert(rcStrict == VINF_SUCCESS);
12694 break;
12695 }
12696
12697 case IEMXCPTRAISE_REEXEC_INSTR:
12698 Assert(rcStrict == VINF_SUCCESS);
12699 break;
12700
12701 case IEMXCPTRAISE_DOUBLE_FAULT:
12702 {
12703 /*
12704 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
12705 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
12706 */
12707 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
12708 {
12709 pVmxTransient->fVectoringDoublePF = true;
12710 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
12711 pVCpu->cpum.GstCtx.cr2));
12712 rcStrict = VINF_SUCCESS;
12713 }
12714 else
12715 {
12716 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
12717 hmR0VmxSetPendingXcptDF(pVCpu);
12718 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
12719 uIdtVector, uExitVector));
12720 rcStrict = VINF_HM_DOUBLE_FAULT;
12721 }
12722 break;
12723 }
12724
12725 case IEMXCPTRAISE_TRIPLE_FAULT:
12726 {
12727 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
12728 rcStrict = VINF_EM_RESET;
12729 break;
12730 }
12731
12732 case IEMXCPTRAISE_CPU_HANG:
12733 {
12734 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
12735 rcStrict = VERR_EM_GUEST_CPU_HANG;
12736 break;
12737 }
12738
12739 default:
12740 {
12741 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
12742 rcStrict = VERR_VMX_IPE_2;
12743 break;
12744 }
12745 }
12746 }
12747 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
12748 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
12749 && uExitVector != X86_XCPT_DF
12750 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
12751 {
12752 /*
12753 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
12754 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
12755 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
12756 */
12757 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
12758 {
12759 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
12760 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
12761 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
12762 }
12763 }
12764
12765 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
12766 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
12767 return rcStrict;
12768}
12769
12770
12771/** @name VM-exit handlers.
12772 * @{
12773 */
12774/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12775/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12776/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12777
12778/**
12779 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
12780 */
12781HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12782{
12783 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12784 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
12785 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
12786 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
12787 return VINF_SUCCESS;
12788 return VINF_EM_RAW_INTERRUPT;
12789}
12790
12791
12792/**
12793 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
12794 */
12795HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12796{
12797 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12798 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
12799
12800 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12801 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12802 AssertRCReturn(rc, rc);
12803
12804 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12805 Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
12806 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
12807 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
12808
12809 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
12810 {
12811 /*
12812 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
12813 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
12814 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
12815 *
12816 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
12817 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
12818 */
12819 VMXDispatchHostNmi();
12820 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
12821 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12822 return VINF_SUCCESS;
12823 }
12824
12825 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12826 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12827 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
12828 { /* likely */ }
12829 else
12830 {
12831 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
12832 rcStrictRc1 = VINF_SUCCESS;
12833 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12834 return rcStrictRc1;
12835 }
12836
12837 uint32_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
12838 uint32_t const uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
12839 switch (uIntType)
12840 {
12841 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
12842 Assert(uVector == X86_XCPT_DB);
12843 RT_FALL_THRU();
12844 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
12845 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
12846 RT_FALL_THRU();
12847 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
12848 {
12849 /*
12850 * If there's any exception caused as a result of event injection, the resulting
12851 * secondary/final execption will be pending, we shall continue guest execution
12852 * after injecting the event. The page-fault case is complicated and we manually
12853 * handle any currently pending event in hmR0VmxExitXcptPF.
12854 */
12855 if (!pVCpu->hm.s.Event.fPending)
12856 { /* likely */ }
12857 else if (uVector != X86_XCPT_PF)
12858 {
12859 rc = VINF_SUCCESS;
12860 break;
12861 }
12862
12863 switch (uVector)
12864 {
12865 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
12866 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
12867 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
12868 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
12869 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
12870 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
12871
12872 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
12873 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12874 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
12875 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12876 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
12877 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12878 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
12879 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12880 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
12881 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12882 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
12883 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12884 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
12885 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
12886 default:
12887 {
12888 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
12889 if (pVmcsInfo->RealMode.fRealOnV86Active)
12890 {
12891 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
12892 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
12893 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
12894
12895 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
12896 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12897 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
12898 AssertRCReturn(rc, rc);
12899 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
12900 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
12901 0 /* GCPtrFaultAddress */);
12902 }
12903 else
12904 {
12905 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
12906 pVCpu->hm.s.u32HMError = uVector;
12907 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
12908 }
12909 break;
12910 }
12911 }
12912 break;
12913 }
12914
12915 default:
12916 {
12917 pVCpu->hm.s.u32HMError = uExitIntInfo;
12918 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
12919 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
12920 break;
12921 }
12922 }
12923 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
12924 return rc;
12925}
12926
12927
12928/**
12929 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
12930 */
12931HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12932{
12933 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12934
12935 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
12936 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12937 int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
12938 AssertRCReturn(rc, rc);
12939
12940 /* Evaluate and deliver pending events and resume guest execution. */
12941 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
12942 return VINF_SUCCESS;
12943}
12944
12945
12946/**
12947 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
12948 */
12949HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12950{
12951 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12952
12953 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
12954 if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
12955 {
12956 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
12957 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12958 }
12959
12960 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS));
12961
12962 /*
12963 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
12964 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
12965 */
12966 uint32_t fIntrState;
12967 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
12968 AssertRCReturn(rc, rc);
12969 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
12970 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
12971 {
12972 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
12973 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
12974
12975 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
12976 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
12977 AssertRCReturn(rc, rc);
12978 }
12979
12980 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
12981 rc = hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
12982 AssertRCReturn(rc, rc);
12983
12984 /* Evaluate and deliver pending events and resume guest execution. */
12985 return VINF_SUCCESS;
12986}
12987
12988
12989/**
12990 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
12991 */
12992HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12993{
12994 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12995 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12996}
12997
12998
12999/**
13000 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
13001 */
13002HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13003{
13004 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13005 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13006}
13007
13008
13009/**
13010 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
13011 */
13012HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13013{
13014 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13015
13016 /*
13017 * Get the state we need and update the exit history entry.
13018 */
13019 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13020 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13021 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
13022 AssertRCReturn(rc, rc);
13023
13024 VBOXSTRICTRC rcStrict;
13025 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
13026 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
13027 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
13028 if (!pExitRec)
13029 {
13030 /*
13031 * Regular CPUID instruction execution.
13032 */
13033 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
13034 if (rcStrict == VINF_SUCCESS)
13035 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13036 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13037 {
13038 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13039 rcStrict = VINF_SUCCESS;
13040 }
13041 }
13042 else
13043 {
13044 /*
13045 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
13046 */
13047 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13048 AssertRCReturn(rc2, rc2);
13049
13050 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
13051 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
13052
13053 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
13054 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13055
13056 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
13057 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
13058 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
13059 }
13060 return rcStrict;
13061}
13062
13063
13064/**
13065 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
13066 */
13067HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13068{
13069 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13070
13071 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13072 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
13073 AssertRCReturn(rc, rc);
13074
13075 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
13076 return VINF_EM_RAW_EMULATE_INSTR;
13077
13078 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
13079 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13080}
13081
13082
13083/**
13084 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
13085 */
13086HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13087{
13088 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13089
13090 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13091 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13092 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13093 AssertRCReturn(rc, rc);
13094
13095 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
13096 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13097 {
13098 /* If we get a spurious VM-exit when TSC offsetting is enabled,
13099 we must reset offsetting on VM-entry. See @bugref{6634}. */
13100 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
13101 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13102 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13103 }
13104 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13105 {
13106 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13107 rcStrict = VINF_SUCCESS;
13108 }
13109 return rcStrict;
13110}
13111
13112
13113/**
13114 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
13115 */
13116HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13117{
13118 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13119
13120 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13121 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
13122 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13123 AssertRCReturn(rc, rc);
13124
13125 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
13126 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13127 {
13128 /* If we get a spurious VM-exit when TSC offsetting is enabled,
13129 we must reset offsetting on VM-reentry. See @bugref{6634}. */
13130 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
13131 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13132 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13133 }
13134 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13135 {
13136 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13137 rcStrict = VINF_SUCCESS;
13138 }
13139 return rcStrict;
13140}
13141
13142
13143/**
13144 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
13145 */
13146HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13147{
13148 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13149
13150 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13151 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
13152 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13153 AssertRCReturn(rc, rc);
13154
13155 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13156 rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13157 if (RT_LIKELY(rc == VINF_SUCCESS))
13158 {
13159 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13160 Assert(pVmxTransient->cbInstr == 2);
13161 }
13162 else
13163 {
13164 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
13165 rc = VERR_EM_INTERPRETER;
13166 }
13167 return rc;
13168}
13169
13170
13171/**
13172 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
13173 */
13174HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13175{
13176 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13177
13178 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
13179 if (EMAreHypercallInstructionsEnabled(pVCpu))
13180 {
13181 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13182 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
13183 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
13184 AssertRCReturn(rc, rc);
13185
13186 /* Perform the hypercall. */
13187 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
13188 if (rcStrict == VINF_SUCCESS)
13189 {
13190 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13191 AssertRCReturn(rc, rc);
13192 }
13193 else
13194 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
13195 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
13196 || RT_FAILURE(rcStrict));
13197
13198 /* If the hypercall changes anything other than guest's general-purpose registers,
13199 we would need to reload the guest changed bits here before VM-entry. */
13200 }
13201 else
13202 Log4Func(("Hypercalls not enabled\n"));
13203
13204 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
13205 if (RT_FAILURE(rcStrict))
13206 {
13207 hmR0VmxSetPendingXcptUD(pVCpu);
13208 rcStrict = VINF_SUCCESS;
13209 }
13210
13211 return rcStrict;
13212}
13213
13214
13215/**
13216 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
13217 */
13218HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13219{
13220 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13221 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
13222
13223 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13224 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13225 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13226 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13227 AssertRCReturn(rc, rc);
13228
13229 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
13230
13231 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
13232 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13233 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13234 {
13235 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13236 rcStrict = VINF_SUCCESS;
13237 }
13238 else
13239 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
13240 VBOXSTRICTRC_VAL(rcStrict)));
13241 return rcStrict;
13242}
13243
13244
13245/**
13246 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
13247 */
13248HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13249{
13250 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13251
13252 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13253 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13254 AssertRCReturn(rc, rc);
13255
13256 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13257 rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13258 if (RT_LIKELY(rc == VINF_SUCCESS))
13259 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13260 else
13261 {
13262 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
13263 rc = VERR_EM_INTERPRETER;
13264 }
13265 return rc;
13266}
13267
13268
13269/**
13270 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
13271 */
13272HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13273{
13274 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13275
13276 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13277 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
13278 AssertRCReturn(rc, rc);
13279
13280 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13281 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13282 rc = VBOXSTRICTRC_VAL(rc2);
13283 if (RT_LIKELY( rc == VINF_SUCCESS
13284 || rc == VINF_EM_HALT))
13285 {
13286 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13287 AssertRCReturn(rc3, rc3);
13288
13289 if ( rc == VINF_EM_HALT
13290 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
13291 rc = VINF_SUCCESS;
13292 }
13293 else
13294 {
13295 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
13296 rc = VERR_EM_INTERPRETER;
13297 }
13298 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
13299 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
13300 return rc;
13301}
13302
13303
13304/**
13305 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
13306 */
13307HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13308{
13309 /*
13310 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
13311 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
13312 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
13313 * VMX root operation. If we get here, something funny is going on.
13314 *
13315 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
13316 */
13317 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13318 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
13319 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13320}
13321
13322
13323/**
13324 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
13325 */
13326HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13327{
13328 /*
13329 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
13330 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
13331 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
13332 * an SMI. If we get here, something funny is going on.
13333 *
13334 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
13335 * See Intel spec. 25.3 "Other Causes of VM-Exits"
13336 */
13337 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13338 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
13339 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13340}
13341
13342
13343/**
13344 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
13345 */
13346HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13347{
13348 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
13349 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13350 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
13351 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13352}
13353
13354
13355/**
13356 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
13357 */
13358HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13359{
13360 /*
13361 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
13362 * We don't make use of it as our guests don't have direct access to the host LAPIC.
13363 * See Intel spec. 25.3 "Other Causes of VM-exits".
13364 */
13365 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13366 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
13367 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13368}
13369
13370
13371/**
13372 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
13373 * VM-exit.
13374 */
13375HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13376{
13377 /*
13378 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
13379 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
13380 *
13381 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
13382 * See Intel spec. "23.8 Restrictions on VMX operation".
13383 */
13384 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13385 return VINF_SUCCESS;
13386}
13387
13388
13389/**
13390 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
13391 * VM-exit.
13392 */
13393HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13394{
13395 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13396 return VINF_EM_RESET;
13397}
13398
13399
13400/**
13401 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
13402 */
13403HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13404{
13405 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13406
13407 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13408 AssertRCReturn(rc, rc);
13409
13410 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
13411 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
13412 rc = VINF_SUCCESS;
13413 else
13414 rc = VINF_EM_HALT;
13415
13416 if (rc != VINF_SUCCESS)
13417 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
13418 return rc;
13419}
13420
13421
13422/**
13423 * VM-exit handler for instructions that result in a \#UD exception delivered to
13424 * the guest.
13425 */
13426HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13427{
13428 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13429 hmR0VmxSetPendingXcptUD(pVCpu);
13430 return VINF_SUCCESS;
13431}
13432
13433
13434/**
13435 * VM-exit handler for expiry of the VMX-preemption timer.
13436 */
13437HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13438{
13439 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13440
13441 /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
13442 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13443
13444 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
13445 PVM pVM = pVCpu->CTX_SUFF(pVM);
13446 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
13447 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
13448 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
13449}
13450
13451
13452/**
13453 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
13454 */
13455HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13456{
13457 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13458
13459 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13460 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13461 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
13462 AssertRCReturn(rc, rc);
13463
13464 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
13465 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
13466 : HM_CHANGED_RAISED_XCPT_MASK);
13467
13468 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13469 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
13470
13471 return rcStrict;
13472}
13473
13474
13475/**
13476 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
13477 */
13478HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13479{
13480 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13481 /** @todo Use VM-exit instruction information. */
13482 return VERR_EM_INTERPRETER;
13483}
13484
13485
13486/**
13487 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
13488 * Error VM-exit.
13489 */
13490HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13491{
13492 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13493 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13494 AssertRCReturn(rc, rc);
13495
13496 rc = hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo);
13497 if (RT_FAILURE(rc))
13498 return rc;
13499
13500 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
13501 NOREF(uInvalidReason);
13502
13503#ifdef VBOX_STRICT
13504 uint32_t fIntrState;
13505 RTHCUINTREG uHCReg;
13506 uint64_t u64Val;
13507 uint32_t u32Val;
13508 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
13509 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
13510 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
13511 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
13512 AssertRCReturn(rc, rc);
13513
13514 Log4(("uInvalidReason %u\n", uInvalidReason));
13515 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
13516 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
13517 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
13518 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
13519
13520 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
13521 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
13522 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
13523 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
13524 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
13525 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
13526 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
13527 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
13528 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
13529 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
13530 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
13531 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
13532
13533 hmR0DumpRegs(pVCpu);
13534#endif
13535
13536 return VERR_VMX_INVALID_GUEST_STATE;
13537}
13538
13539
13540/**
13541 * VM-exit handler for VM-entry failure due to an MSR-load
13542 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
13543 */
13544HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13545{
13546 AssertMsgFailed(("Unexpected MSR-load exit\n"));
13547 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13548}
13549
13550
13551/**
13552 * VM-exit handler for VM-entry failure due to a machine-check event
13553 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
13554 */
13555HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13556{
13557 AssertMsgFailed(("Unexpected machine-check event exit\n"));
13558 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13559}
13560
13561
13562/**
13563 * VM-exit handler for all undefined reasons. Should never ever happen.. in
13564 * theory.
13565 */
13566HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13567{
13568 RT_NOREF2(pVCpu, pVmxTransient);
13569 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
13570 return VERR_VMX_UNDEFINED_EXIT_CODE;
13571}
13572
13573
13574/**
13575 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
13576 * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
13577 * Conditional VM-exit.
13578 */
13579HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13580{
13581 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13582
13583 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
13584 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
13585 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13586 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
13587 return VERR_EM_INTERPRETER;
13588 AssertMsgFailed(("Unexpected XDTR access\n"));
13589 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13590}
13591
13592
13593/**
13594 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
13595 */
13596HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13597{
13598 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13599
13600 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
13601 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13602 if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
13603 return VERR_EM_INTERPRETER;
13604 AssertMsgFailed(("Unexpected RDRAND exit\n"));
13605 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13606}
13607
13608
13609/**
13610 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
13611 */
13612HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13613{
13614 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13615
13616 /** @todo Optimize this: We currently drag in in the whole MSR state
13617 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
13618 * MSRs required. That would require changes to IEM and possibly CPUM too.
13619 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
13620 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13621 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
13622 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
13623 switch (idMsr)
13624 {
13625 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
13626 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
13627 }
13628
13629 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13630 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
13631 AssertRCReturn(rc, rc);
13632
13633 Log4Func(("ecx=%#RX32\n", idMsr));
13634
13635#ifdef VBOX_STRICT
13636 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
13637 {
13638 if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
13639 && idMsr != MSR_K6_EFER)
13640 {
13641 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
13642 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13643 }
13644 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13645 {
13646 Assert(pVmcsInfo->pvMsrBitmap);
13647 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
13648 if (fMsrpm & VMXMSRPM_ALLOW_RD)
13649 {
13650 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
13651 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13652 }
13653 }
13654 }
13655#endif
13656
13657 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
13658 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
13659 if (rcStrict == VINF_SUCCESS)
13660 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
13661 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
13662 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13663 {
13664 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13665 rcStrict = VINF_SUCCESS;
13666 }
13667 else
13668 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
13669
13670 return rcStrict;
13671}
13672
13673
13674/**
13675 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
13676 */
13677HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13678{
13679 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13680
13681 /** @todo Optimize this: We currently drag in in the whole MSR state
13682 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
13683 * MSRs required. That would require changes to IEM and possibly CPUM too.
13684 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
13685 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
13686 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
13687
13688 /*
13689 * The FS and GS base MSRs are not part of the above all-MSRs mask.
13690 * Although we don't need to fetch the base as it will be overwritten shortly, while
13691 * loading guest-state we would also load the entire segment register including limit
13692 * and attributes and thus we need to load them here.
13693 */
13694 switch (idMsr)
13695 {
13696 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
13697 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
13698 }
13699
13700 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13701 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13702 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
13703 AssertRCReturn(rc, rc);
13704
13705 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
13706
13707 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
13708 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
13709
13710 if (rcStrict == VINF_SUCCESS)
13711 {
13712 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13713
13714 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
13715 if ( idMsr == MSR_IA32_APICBASE
13716 || ( idMsr >= MSR_IA32_X2APIC_START
13717 && idMsr <= MSR_IA32_X2APIC_END))
13718 {
13719 /*
13720 * We've already saved the APIC related guest-state (TPR) in post-run phase.
13721 * When full APIC register virtualization is implemented we'll have to make
13722 * sure APIC state is saved from the VMCS before IEM changes it.
13723 */
13724 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
13725 }
13726 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
13727 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
13728 else if (idMsr == MSR_K6_EFER)
13729 {
13730 /*
13731 * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
13732 * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
13733 * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
13734 */
13735 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
13736 }
13737
13738 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
13739 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
13740 {
13741 switch (idMsr)
13742 {
13743 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
13744 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
13745 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
13746 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
13747 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
13748 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
13749 default:
13750 {
13751 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
13752 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
13753 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13754 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
13755 break;
13756 }
13757 }
13758 }
13759#ifdef VBOX_STRICT
13760 else
13761 {
13762 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
13763 switch (idMsr)
13764 {
13765 case MSR_IA32_SYSENTER_CS:
13766 case MSR_IA32_SYSENTER_EIP:
13767 case MSR_IA32_SYSENTER_ESP:
13768 case MSR_K8_FS_BASE:
13769 case MSR_K8_GS_BASE:
13770 {
13771 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
13772 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13773 }
13774
13775 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
13776 default:
13777 {
13778 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
13779 {
13780 /* EFER MSR writes are always intercepted. */
13781 if (idMsr != MSR_K6_EFER)
13782 {
13783 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
13784 idMsr));
13785 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13786 }
13787 }
13788
13789 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
13790 {
13791 Assert(pVmcsInfo->pvMsrBitmap);
13792 uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
13793 if (fMsrpm & VMXMSRPM_ALLOW_WR)
13794 {
13795 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
13796 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
13797 }
13798 }
13799 break;
13800 }
13801 }
13802 }
13803#endif /* VBOX_STRICT */
13804 }
13805 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13806 {
13807 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13808 rcStrict = VINF_SUCCESS;
13809 }
13810 else
13811 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
13812
13813 return rcStrict;
13814}
13815
13816
13817/**
13818 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
13819 */
13820HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13821{
13822 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13823 /** @todo The guest has likely hit a contended spinlock. We might want to
13824 * poke a schedule different guest VCPU. */
13825 return VINF_EM_RAW_INTERRUPT;
13826}
13827
13828
13829/**
13830 * VM-exit handler for when the TPR value is lowered below the specified
13831 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
13832 */
13833HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13834{
13835 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13836 Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
13837
13838 /*
13839 * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
13840 * We'll re-evaluate pending interrupts and inject them before the next VM
13841 * entry so we can just continue execution here.
13842 */
13843 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
13844 return VINF_SUCCESS;
13845}
13846
13847
13848/**
13849 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
13850 * VM-exit.
13851 *
13852 * @retval VINF_SUCCESS when guest execution can continue.
13853 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
13854 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
13855 * interpreter.
13856 */
13857HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13858{
13859 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13860 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
13861
13862 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13863 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13864 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13865 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13866 AssertRCReturn(rc, rc);
13867
13868 VBOXSTRICTRC rcStrict;
13869 PVM pVM = pVCpu->CTX_SUFF(pVM);
13870 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
13871 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
13872 switch (uAccessType)
13873 {
13874 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
13875 {
13876 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
13877 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
13878 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
13879 AssertMsg( rcStrict == VINF_SUCCESS
13880 || rcStrict == VINF_IEM_RAISED_XCPT
13881 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13882
13883 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
13884 {
13885 case 0:
13886 {
13887 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13888 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13889 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
13890 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
13891
13892 /*
13893 * This is a kludge for handling switches back to real mode when we try to use
13894 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
13895 * deal with special selector values, so we have to return to ring-3 and run
13896 * there till the selector values are V86 mode compatible.
13897 *
13898 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
13899 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
13900 * at the end of this function.
13901 */
13902 if ( rc == VINF_SUCCESS
13903 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
13904 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
13905 && (uOldCr0 & X86_CR0_PE)
13906 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
13907 {
13908 /** @todo check selectors rather than returning all the time. */
13909 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
13910 rcStrict = VINF_EM_RESCHEDULE_REM;
13911 }
13912 break;
13913 }
13914
13915 case 2:
13916 {
13917 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
13918 /* Nothing to do here, CR2 it's not part of the VMCS. */
13919 break;
13920 }
13921
13922 case 3:
13923 {
13924 Assert( !pVM->hm.s.fNestedPaging
13925 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
13926 || pVCpu->hm.s.fUsingDebugLoop);
13927 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
13928 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13929 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
13930 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
13931 break;
13932 }
13933
13934 case 4:
13935 {
13936 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
13937 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13938 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
13939 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
13940 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
13941 break;
13942 }
13943
13944 case 8:
13945 {
13946 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
13947 Assert(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
13948 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13949 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
13950 break;
13951 }
13952 default:
13953 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
13954 break;
13955 }
13956 break;
13957 }
13958
13959 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
13960 {
13961 Assert( !pVM->hm.s.fNestedPaging
13962 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
13963 || pVCpu->hm.s.fUsingDebugLoop
13964 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
13965 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
13966 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
13967 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
13968
13969 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
13970 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
13971 AssertMsg( rcStrict == VINF_SUCCESS
13972 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13973#ifdef VBOX_WITH_STATISTICS
13974 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
13975 {
13976 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
13977 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
13978 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
13979 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
13980 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
13981 }
13982#endif
13983 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
13984 VBOXSTRICTRC_VAL(rcStrict)));
13985 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
13986 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
13987 else
13988 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13989 break;
13990 }
13991
13992 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
13993 {
13994 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
13995 AssertMsg( rcStrict == VINF_SUCCESS
13996 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13997
13998 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13999 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
14000 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
14001 break;
14002 }
14003
14004 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
14005 {
14006 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
14007 rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
14008 AssertRCReturn(rc, rc);
14009 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
14010 pVmxTransient->uGuestLinearAddr);
14011 AssertMsg( rcStrict == VINF_SUCCESS
14012 || rcStrict == VINF_IEM_RAISED_XCPT
14013 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14014
14015 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
14016 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
14017 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
14018 break;
14019 }
14020
14021 default:
14022 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
14023 VERR_VMX_UNEXPECTED_EXCEPTION);
14024 }
14025
14026 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
14027 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
14028 if (rcStrict == VINF_IEM_RAISED_XCPT)
14029 {
14030 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14031 rcStrict = VINF_SUCCESS;
14032 }
14033
14034 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
14035 NOREF(pVM);
14036 return rcStrict;
14037}
14038
14039
14040/**
14041 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
14042 * VM-exit.
14043 */
14044HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14045{
14046 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14047 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
14048
14049 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14050 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14051 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14052 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14053 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
14054 | CPUMCTX_EXTRN_EFER);
14055 /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
14056 AssertRCReturn(rc, rc);
14057
14058 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
14059 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
14060 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
14061 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
14062 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
14063 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
14064 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
14065 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
14066
14067 /*
14068 * Update exit history to see if this exit can be optimized.
14069 */
14070 VBOXSTRICTRC rcStrict;
14071 PCEMEXITREC pExitRec = NULL;
14072 if ( !fGstStepping
14073 && !fDbgStepping)
14074 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14075 !fIOString
14076 ? !fIOWrite
14077 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
14078 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
14079 : !fIOWrite
14080 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
14081 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
14082 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14083 if (!pExitRec)
14084 {
14085 /* I/O operation lookup arrays. */
14086 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
14087 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
14088 uint32_t const cbValue = s_aIOSizes[uIOWidth];
14089 uint32_t const cbInstr = pVmxTransient->cbInstr;
14090 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
14091 PVM pVM = pVCpu->CTX_SUFF(pVM);
14092 if (fIOString)
14093 {
14094 /*
14095 * INS/OUTS - I/O String instruction.
14096 *
14097 * Use instruction-information if available, otherwise fall back on
14098 * interpreting the instruction.
14099 */
14100 Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
14101 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
14102 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
14103 if (fInsOutsInfo)
14104 {
14105 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
14106 AssertRCReturn(rc2, rc2);
14107 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
14108 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
14109 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
14110 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
14111 if (fIOWrite)
14112 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
14113 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
14114 else
14115 {
14116 /*
14117 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
14118 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
14119 * See Intel Instruction spec. for "INS".
14120 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
14121 */
14122 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
14123 }
14124 }
14125 else
14126 rcStrict = IEMExecOne(pVCpu);
14127
14128 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
14129 fUpdateRipAlready = true;
14130 }
14131 else
14132 {
14133 /*
14134 * IN/OUT - I/O instruction.
14135 */
14136 Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
14137 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
14138 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
14139 if (fIOWrite)
14140 {
14141 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
14142 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
14143 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
14144 && !pCtx->eflags.Bits.u1TF)
14145 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
14146 }
14147 else
14148 {
14149 uint32_t u32Result = 0;
14150 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
14151 if (IOM_SUCCESS(rcStrict))
14152 {
14153 /* Save result of I/O IN instr. in AL/AX/EAX. */
14154 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
14155 }
14156 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
14157 && !pCtx->eflags.Bits.u1TF)
14158 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
14159 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
14160 }
14161 }
14162
14163 if (IOM_SUCCESS(rcStrict))
14164 {
14165 if (!fUpdateRipAlready)
14166 {
14167 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
14168 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
14169 }
14170
14171 /*
14172 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
14173 * while booting Fedora 17 64-bit guest.
14174 *
14175 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
14176 */
14177 if (fIOString)
14178 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
14179
14180 /*
14181 * If any I/O breakpoints are armed, we need to check if one triggered
14182 * and take appropriate action.
14183 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
14184 */
14185 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
14186 AssertRCReturn(rc, rc);
14187
14188 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
14189 * execution engines about whether hyper BPs and such are pending. */
14190 uint32_t const uDr7 = pCtx->dr[7];
14191 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
14192 && X86_DR7_ANY_RW_IO(uDr7)
14193 && (pCtx->cr4 & X86_CR4_DE))
14194 || DBGFBpIsHwIoArmed(pVM)))
14195 {
14196 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
14197
14198 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
14199 VMMRZCallRing3Disable(pVCpu);
14200 HM_DISABLE_PREEMPT(pVCpu);
14201
14202 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
14203
14204 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
14205 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
14206 {
14207 /* Raise #DB. */
14208 if (fIsGuestDbgActive)
14209 ASMSetDR6(pCtx->dr[6]);
14210 if (pCtx->dr[7] != uDr7)
14211 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
14212
14213 hmR0VmxSetPendingXcptDB(pVCpu);
14214 }
14215 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
14216 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
14217 else if ( rcStrict2 != VINF_SUCCESS
14218 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
14219 rcStrict = rcStrict2;
14220 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
14221
14222 HM_RESTORE_PREEMPT();
14223 VMMRZCallRing3Enable(pVCpu);
14224 }
14225 }
14226
14227#ifdef VBOX_STRICT
14228 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
14229 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
14230 Assert(!fIOWrite);
14231 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
14232 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
14233 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
14234 Assert(fIOWrite);
14235 else
14236 {
14237# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
14238 * statuses, that the VMM device and some others may return. See
14239 * IOM_SUCCESS() for guidance. */
14240 AssertMsg( RT_FAILURE(rcStrict)
14241 || rcStrict == VINF_SUCCESS
14242 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
14243 || rcStrict == VINF_EM_DBG_BREAKPOINT
14244 || rcStrict == VINF_EM_RAW_GUEST_TRAP
14245 || rcStrict == VINF_EM_RAW_TO_R3
14246 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
14247# endif
14248 }
14249#endif
14250 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
14251 }
14252 else
14253 {
14254 /*
14255 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14256 */
14257 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14258 AssertRCReturn(rc2, rc2);
14259 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
14260 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
14261 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
14262 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14263 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
14264 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
14265
14266 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14267 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14268
14269 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14270 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14271 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14272 }
14273 return rcStrict;
14274}
14275
14276
14277/**
14278 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
14279 * VM-exit.
14280 */
14281HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14282{
14283 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14284
14285 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
14286 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14287 AssertRCReturn(rc, rc);
14288 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
14289 {
14290 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
14291 AssertRCReturn(rc, rc);
14292 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
14293 {
14294 uint32_t uErrCode;
14295 RTGCUINTPTR GCPtrFaultAddress;
14296 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
14297 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
14298 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
14299 if (fErrorCodeValid)
14300 {
14301 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
14302 AssertRCReturn(rc, rc);
14303 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
14304 }
14305 else
14306 uErrCode = 0;
14307
14308 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
14309 && uVector == X86_XCPT_PF)
14310 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
14311 else
14312 GCPtrFaultAddress = 0;
14313
14314 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14315 AssertRCReturn(rc, rc);
14316
14317 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
14318 pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
14319
14320 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
14321 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
14322 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14323 }
14324 }
14325
14326 /* Fall back to the interpreter to emulate the task-switch. */
14327 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
14328 return VERR_EM_INTERPRETER;
14329}
14330
14331
14332/**
14333 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
14334 */
14335HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14336{
14337 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14338
14339 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14340 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
14341 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
14342 AssertRCReturn(rc, rc);
14343 return VINF_EM_DBG_STEPPED;
14344}
14345
14346
14347/**
14348 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
14349 */
14350HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14351{
14352 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14353 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
14354
14355 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14356 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14357 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14358 {
14359 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
14360 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14361 {
14362 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
14363 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14364 }
14365 }
14366 else
14367 {
14368 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14369 rcStrict1 = VINF_SUCCESS;
14370 return rcStrict1;
14371 }
14372
14373 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
14374 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14375 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14376 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14377 AssertRCReturn(rc, rc);
14378
14379 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
14380 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
14381 VBOXSTRICTRC rcStrict2;
14382 switch (uAccessType)
14383 {
14384 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
14385 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
14386 {
14387 AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
14388 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
14389 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
14390
14391 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
14392 GCPhys &= PAGE_BASE_GC_MASK;
14393 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
14394 PVM pVM = pVCpu->CTX_SUFF(pVM);
14395 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
14396 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
14397
14398 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14399 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
14400 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
14401 CPUMCTX2CORE(pCtx), GCPhys);
14402 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
14403 if ( rcStrict2 == VINF_SUCCESS
14404 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
14405 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
14406 {
14407 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
14408 | HM_CHANGED_GUEST_APIC_TPR);
14409 rcStrict2 = VINF_SUCCESS;
14410 }
14411 break;
14412 }
14413
14414 default:
14415 Log4Func(("uAccessType=%#x\n", uAccessType));
14416 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
14417 break;
14418 }
14419
14420 if (rcStrict2 != VINF_SUCCESS)
14421 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
14422 return rcStrict2;
14423}
14424
14425
14426/**
14427 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
14428 * VM-exit.
14429 */
14430HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14431{
14432 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14433
14434 /* We should -not- get this VM-exit if the guest's debug registers were active. */
14435 if (pVmxTransient->fWasGuestDebugStateActive)
14436 {
14437 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
14438 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
14439 }
14440
14441 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14442 if ( !pVCpu->hm.s.fSingleInstruction
14443 && !pVmxTransient->fWasHyperDebugStateActive)
14444 {
14445 Assert(!DBGFIsStepping(pVCpu));
14446 Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
14447
14448 /* Don't intercept MOV DRx any more. */
14449 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
14450 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
14451 AssertRCReturn(rc, rc);
14452
14453 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
14454 VMMRZCallRing3Disable(pVCpu);
14455 HM_DISABLE_PREEMPT(pVCpu);
14456
14457 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
14458 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
14459 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
14460
14461 HM_RESTORE_PREEMPT();
14462 VMMRZCallRing3Enable(pVCpu);
14463
14464#ifdef VBOX_WITH_STATISTICS
14465 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14466 AssertRCReturn(rc, rc);
14467 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
14468 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
14469 else
14470 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
14471#endif
14472 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
14473 return VINF_SUCCESS;
14474 }
14475
14476 /*
14477 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
14478 * The EFER MSR is always up-to-date.
14479 * Update the segment registers and DR7 from the CPU.
14480 */
14481 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14482 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14483 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
14484 AssertRCReturn(rc, rc);
14485 Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
14486
14487 PVM pVM = pVCpu->CTX_SUFF(pVM);
14488 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
14489 {
14490 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
14491 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
14492 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
14493 if (RT_SUCCESS(rc))
14494 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
14495 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
14496 }
14497 else
14498 {
14499 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
14500 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
14501 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
14502 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
14503 }
14504
14505 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
14506 if (RT_SUCCESS(rc))
14507 {
14508 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14509 AssertRCReturn(rc2, rc2);
14510 return VINF_SUCCESS;
14511 }
14512 return rc;
14513}
14514
14515
14516/**
14517 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
14518 * Conditional VM-exit.
14519 */
14520HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14521{
14522 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14523 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
14524
14525 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14526 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14527 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14528 {
14529 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
14530 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
14531 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14532 {
14533 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
14534 return VINF_EM_RAW_INJECT_TRPM_EVENT;
14535 }
14536 }
14537 else
14538 {
14539 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14540 rcStrict1 = VINF_SUCCESS;
14541 return rcStrict1;
14542 }
14543
14544 /*
14545 * Get sufficent state and update the exit history entry.
14546 */
14547 RTGCPHYS GCPhys;
14548 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14549 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
14550 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14551 AssertRCReturn(rc, rc);
14552
14553 VBOXSTRICTRC rcStrict;
14554 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14555 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
14556 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14557 if (!pExitRec)
14558 {
14559 /*
14560 * If we succeed, resume guest execution.
14561 * If we fail in interpreting the instruction because we couldn't get the guest physical address
14562 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
14563 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
14564 * weird case. See @bugref{6043}.
14565 */
14566 PVM pVM = pVCpu->CTX_SUFF(pVM);
14567 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14568 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
14569 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
14570 if ( rcStrict == VINF_SUCCESS
14571 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
14572 || rcStrict == VERR_PAGE_NOT_PRESENT)
14573 {
14574 /* Successfully handled MMIO operation. */
14575 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
14576 | HM_CHANGED_GUEST_APIC_TPR);
14577 rcStrict = VINF_SUCCESS;
14578 }
14579 }
14580 else
14581 {
14582 /*
14583 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14584 */
14585 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14586 AssertRCReturn(rc2, rc2);
14587
14588 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
14589 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
14590
14591 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14592 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14593
14594 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14595 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14596 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14597 }
14598 return VBOXSTRICTRC_TODO(rcStrict);
14599}
14600
14601
14602/**
14603 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
14604 * VM-exit.
14605 */
14606HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14607{
14608 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14609 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
14610
14611 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
14612 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14613 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
14614 {
14615 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
14616 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
14617 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
14618 }
14619 else
14620 {
14621 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
14622 rcStrict1 = VINF_SUCCESS;
14623 return rcStrict1;
14624 }
14625
14626 RTGCPHYS GCPhys;
14627 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14628 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
14629 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14630 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14631 AssertRCReturn(rc, rc);
14632
14633 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
14634 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
14635
14636 RTGCUINT uErrorCode = 0;
14637 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
14638 uErrorCode |= X86_TRAP_PF_ID;
14639 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
14640 uErrorCode |= X86_TRAP_PF_RW;
14641 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
14642 uErrorCode |= X86_TRAP_PF_P;
14643
14644 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
14645
14646
14647 /* Handle the pagefault trap for the nested shadow table. */
14648 PVM pVM = pVCpu->CTX_SUFF(pVM);
14649 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14650
14651 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x cs:rip=%#04x:%#RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
14652 pCtx->cs.Sel, pCtx->rip));
14653
14654 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
14655 TRPMResetTrap(pVCpu);
14656
14657 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
14658 if ( rcStrict2 == VINF_SUCCESS
14659 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
14660 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
14661 {
14662 /* Successfully synced our nested page tables. */
14663 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
14664 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
14665 return VINF_SUCCESS;
14666 }
14667
14668 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
14669 return rcStrict2;
14670}
14671
14672/** @} */
14673
14674/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14675/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
14676/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14677
14678/**
14679 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
14680 */
14681static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14682{
14683 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14684 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
14685
14686 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
14687 AssertRCReturn(rc, rc);
14688
14689 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
14690 {
14691 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
14692 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
14693
14694 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
14695 * provides VM-exit instruction length. If this causes problem later,
14696 * disassemble the instruction like it's done on AMD-V. */
14697 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14698 AssertRCReturn(rc2, rc2);
14699 return rc;
14700 }
14701
14702 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14703 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14704 return rc;
14705}
14706
14707
14708/**
14709 * VM-exit exception handler for \#BP (Breakpoint exception).
14710 */
14711static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14712{
14713 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14714 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
14715
14716 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14717 AssertRCReturn(rc, rc);
14718
14719 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14720 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
14721 if (rc == VINF_EM_RAW_GUEST_TRAP)
14722 {
14723 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14724 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14725 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14726 AssertRCReturn(rc, rc);
14727
14728 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14729 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14730 }
14731
14732 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
14733 return rc;
14734}
14735
14736
14737/**
14738 * VM-exit exception handler for \#AC (alignment check exception).
14739 */
14740static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14741{
14742 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14743
14744 /*
14745 * Re-inject it. We'll detect any nesting before getting here.
14746 */
14747 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14748 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14749 AssertRCReturn(rc, rc);
14750 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
14751
14752 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14753 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14754 return VINF_SUCCESS;
14755}
14756
14757
14758/**
14759 * VM-exit exception handler for \#DB (Debug exception).
14760 */
14761static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14762{
14763 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14764 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
14765
14766 /*
14767 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
14768 * for processing.
14769 */
14770 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
14771
14772 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
14773 uint64_t const uDR6 = X86_DR6_INIT_VAL
14774 | (pVmxTransient->uExitQual & ( X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3
14775 | X86_DR6_BD | X86_DR6_BS));
14776
14777 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14778 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
14779 Log6Func(("rc=%Rrc\n", rc));
14780 if (rc == VINF_EM_RAW_GUEST_TRAP)
14781 {
14782 /*
14783 * The exception was for the guest. Update DR6, DR7.GD and
14784 * IA32_DEBUGCTL.LBR before forwarding it.
14785 * See Intel spec. 27.1 "Architectural State before a VM-Exit".
14786 */
14787 VMMRZCallRing3Disable(pVCpu);
14788 HM_DISABLE_PREEMPT(pVCpu);
14789
14790 pCtx->dr[6] &= ~X86_DR6_B_MASK;
14791 pCtx->dr[6] |= uDR6;
14792 if (CPUMIsGuestDebugStateActive(pVCpu))
14793 ASMSetDR6(pCtx->dr[6]);
14794
14795 HM_RESTORE_PREEMPT();
14796 VMMRZCallRing3Enable(pVCpu);
14797
14798 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
14799 AssertRCReturn(rc, rc);
14800
14801 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
14802 pCtx->dr[7] &= ~X86_DR7_GD;
14803
14804 /* Paranoia. */
14805 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
14806 pCtx->dr[7] |= X86_DR7_RA1_MASK;
14807
14808 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
14809 AssertRCReturn(rc, rc);
14810
14811 /*
14812 * Raise #DB in the guest.
14813 *
14814 * It is important to reflect exactly what the VM-exit gave us (preserving the
14815 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
14816 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
14817 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
14818 *
14819 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
14820 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
14821 */
14822 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14823 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14824 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14825 AssertRCReturn(rc, rc);
14826 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
14827 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14828 return VINF_SUCCESS;
14829 }
14830
14831 /*
14832 * Not a guest trap, must be a hypervisor related debug event then.
14833 * Update DR6 in case someone is interested in it.
14834 */
14835 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
14836 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
14837 CPUMSetHyperDR6(pVCpu, uDR6);
14838
14839 return rc;
14840}
14841
14842
14843/**
14844 * Hacks its way around the lovely mesa driver's backdoor accesses.
14845 *
14846 * @sa hmR0SvmHandleMesaDrvGp
14847 */
14848static int hmR0VmxHandleMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14849{
14850 LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
14851 RT_NOREF(pCtx);
14852
14853 /* For now we'll just skip the instruction. */
14854 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14855}
14856
14857
14858/**
14859 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
14860 * backdoor logging w/o checking what it is running inside.
14861 *
14862 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
14863 * backdoor port and magic numbers loaded in registers.
14864 *
14865 * @returns true if it is, false if it isn't.
14866 * @sa hmR0SvmIsMesaDrvGp
14867 */
14868DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14869{
14870 /* 0xed: IN eAX,dx */
14871 uint8_t abInstr[1];
14872 if (pVmxTransient->cbInstr != sizeof(abInstr))
14873 return false;
14874
14875 /* Check that it is #GP(0). */
14876 if (pVmxTransient->uExitIntErrorCode != 0)
14877 return false;
14878
14879 /* Check magic and port. */
14880 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
14881 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
14882 if (pCtx->rax != UINT32_C(0x564d5868))
14883 return false;
14884 if (pCtx->dx != UINT32_C(0x5658))
14885 return false;
14886
14887 /* Flat ring-3 CS. */
14888 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
14889 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
14890 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
14891 if (pCtx->cs.Attr.n.u2Dpl != 3)
14892 return false;
14893 if (pCtx->cs.u64Base != 0)
14894 return false;
14895
14896 /* Check opcode. */
14897 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
14898 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
14899 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
14900 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
14901 if (RT_FAILURE(rc))
14902 return false;
14903 if (abInstr[0] != 0xed)
14904 return false;
14905
14906 return true;
14907}
14908
14909
14910/**
14911 * VM-exit exception handler for \#GP (General-protection exception).
14912 *
14913 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
14914 */
14915static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14916{
14917 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14918 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
14919
14920 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14921 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14922 if (pVmcsInfo->RealMode.fRealOnV86Active)
14923 { /* likely */ }
14924 else
14925 {
14926#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14927 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv);
14928#endif
14929 /* If the guest is not in real-mode or we have unrestricted guest execution support, reflect #GP to the guest. */
14930 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14931 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14932 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14933 rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14934 AssertRCReturn(rc, rc);
14935 Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
14936 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
14937
14938 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
14939 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
14940 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14941 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14942 else
14943 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
14944 return rc;
14945 }
14946
14947 Assert(CPUMIsGuestInRealModeEx(pCtx));
14948 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
14949
14950 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14951 AssertRCReturn(rc, rc);
14952
14953 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
14954 if (rcStrict == VINF_SUCCESS)
14955 {
14956 if (!CPUMIsGuestInRealModeEx(pCtx))
14957 {
14958 /*
14959 * The guest is no longer in real-mode, check if we can continue executing the
14960 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
14961 */
14962 pVmcsInfo->RealMode.fRealOnV86Active = false;
14963 if (HMCanExecuteVmxGuest(pVCpu, pCtx))
14964 {
14965 Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
14966 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14967 }
14968 else
14969 {
14970 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
14971 rcStrict = VINF_EM_RESCHEDULE;
14972 }
14973 }
14974 else
14975 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14976 }
14977 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14978 {
14979 rcStrict = VINF_SUCCESS;
14980 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14981 }
14982 return VBOXSTRICTRC_VAL(rcStrict);
14983}
14984
14985
14986/**
14987 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
14988 * the exception reported in the VMX transient structure back into the VM.
14989 *
14990 * @remarks Requires uExitIntInfo in the VMX transient structure to be
14991 * up-to-date.
14992 */
14993static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
14994{
14995 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14996#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14997 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14998 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVmcsInfo->RealMode.fRealOnV86Active,
14999 ("uVector=%#x u32XcptBitmap=%#X32\n",
15000 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
15001 NOREF(pVmcsInfo);
15002#endif
15003
15004 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
15005 hmR0VmxCheckExitDueToEventDelivery(). */
15006 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15007 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15008 AssertRCReturn(rc, rc);
15009 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
15010
15011#ifdef DEBUG_ramshankar
15012 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
15013 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n",
15014 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pCtx->cs.Sel, pCtx->rip));
15015#endif
15016
15017 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
15018 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
15019 return VINF_SUCCESS;
15020}
15021
15022
15023/**
15024 * VM-exit exception handler for \#PF (Page-fault exception).
15025 */
15026static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15027{
15028 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15029 PVM pVM = pVCpu->CTX_SUFF(pVM);
15030 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15031 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15032 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15033 AssertRCReturn(rc, rc);
15034
15035 if (!pVM->hm.s.fNestedPaging)
15036 { /* likely */ }
15037 else
15038 {
15039#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
15040 Assert(pVCpu->hm.s.fUsingDebugLoop);
15041#endif
15042 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
15043 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
15044 {
15045 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
15046 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
15047 }
15048 else
15049 {
15050 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
15051 hmR0VmxSetPendingXcptDF(pVCpu);
15052 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
15053 }
15054 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
15055 return rc;
15056 }
15057
15058 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
15059 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
15060 if (pVmxTransient->fVectoringPF)
15061 {
15062 Assert(pVCpu->hm.s.Event.fPending);
15063 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15064 }
15065
15066 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15067 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15068 AssertRCReturn(rc, rc);
15069
15070 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
15071 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
15072
15073 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
15074 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
15075
15076 Log4Func(("#PF: rc=%Rrc\n", rc));
15077 if (rc == VINF_SUCCESS)
15078 {
15079 /*
15080 * This is typically a shadow page table sync or a MMIO instruction. But we may have
15081 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
15082 */
15083 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15084 TRPMResetTrap(pVCpu);
15085 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
15086 return rc;
15087 }
15088
15089 if (rc == VINF_EM_RAW_GUEST_TRAP)
15090 {
15091 if (!pVmxTransient->fVectoringDoublePF)
15092 {
15093 /* It's a guest page fault and needs to be reflected to the guest. */
15094 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
15095 TRPMResetTrap(pVCpu);
15096 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
15097 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
15098 uGstErrorCode, pVmxTransient->uExitQual);
15099 }
15100 else
15101 {
15102 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
15103 TRPMResetTrap(pVCpu);
15104 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
15105 hmR0VmxSetPendingXcptDF(pVCpu);
15106 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
15107 }
15108
15109 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
15110 return VINF_SUCCESS;
15111 }
15112
15113 TRPMResetTrap(pVCpu);
15114 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
15115 return rc;
15116}
15117
15118#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
15119/** @name VMX instruction handlers.
15120 * @{
15121 */
15122/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15123/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VMX instructions VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15124/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
15125
15126/**
15127 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
15128 */
15129HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15130{
15131 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15132
15133 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15134 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15135 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15136 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15137 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15138 AssertRCReturn(rc, rc);
15139
15140 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15141
15142 VMXVEXITINFO ExitInfo;
15143 RT_ZERO(ExitInfo);
15144 ExitInfo.uReason = pVmxTransient->uExitReason;
15145 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15146 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15147 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15148 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15149
15150 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
15151 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15152 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15153 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15154 {
15155 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15156 rcStrict = VINF_SUCCESS;
15157 }
15158 return rcStrict;
15159}
15160
15161
15162/**
15163 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
15164 */
15165HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15166{
15167 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15168
15169 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
15170 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
15171 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15172 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15173 AssertRCReturn(rc, rc);
15174
15175 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15176
15177 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMLAUNCH);
15178 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15179 {
15180 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
15181 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15182 }
15183 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15184 return rcStrict;
15185}
15186
15187
15188/**
15189 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
15190 */
15191HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15192{
15193 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15194
15195 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15196 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15197 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15198 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15199 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15200 AssertRCReturn(rc, rc);
15201
15202 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15203
15204 VMXVEXITINFO ExitInfo;
15205 RT_ZERO(ExitInfo);
15206 ExitInfo.uReason = pVmxTransient->uExitReason;
15207 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15208 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15209 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15210 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15211
15212 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
15213 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15214 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15215 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15216 {
15217 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15218 rcStrict = VINF_SUCCESS;
15219 }
15220 return rcStrict;
15221}
15222
15223
15224/**
15225 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
15226 */
15227HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15228{
15229 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15230
15231 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15232 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15233 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15234 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15235 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15236 AssertRCReturn(rc, rc);
15237
15238 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15239
15240 VMXVEXITINFO ExitInfo;
15241 RT_ZERO(ExitInfo);
15242 ExitInfo.uReason = pVmxTransient->uExitReason;
15243 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15244 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15245 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15246 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
15247
15248 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
15249 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15250 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15251 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15252 {
15253 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15254 rcStrict = VINF_SUCCESS;
15255 }
15256 return rcStrict;
15257}
15258
15259
15260/**
15261 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
15262 */
15263HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15264{
15265 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15266
15267 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15268 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15269 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15270 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15271 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15272 AssertRCReturn(rc, rc);
15273
15274 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15275
15276 VMXVEXITINFO ExitInfo;
15277 RT_ZERO(ExitInfo);
15278 ExitInfo.uReason = pVmxTransient->uExitReason;
15279 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15280 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15281 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15282 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
15283 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
15284
15285 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
15286 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15287 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15288 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15289 {
15290 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15291 rcStrict = VINF_SUCCESS;
15292 }
15293 return rcStrict;
15294}
15295
15296
15297/**
15298 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
15299 */
15300HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15301{
15302 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15303
15304 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
15305 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
15306 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15307 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15308 AssertRCReturn(rc, rc);
15309
15310 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15311
15312 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMRESUME);
15313 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15314 {
15315 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
15316 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15317 }
15318 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15319 return rcStrict;
15320}
15321
15322
15323/**
15324 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
15325 */
15326HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15327{
15328 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15329
15330 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15331 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15332 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15333 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15334 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15335 AssertRCReturn(rc, rc);
15336
15337 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15338
15339 VMXVEXITINFO ExitInfo;
15340 RT_ZERO(ExitInfo);
15341 ExitInfo.uReason = pVmxTransient->uExitReason;
15342 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15343 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15344 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15345 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
15346 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15347
15348 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
15349 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15350 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15351 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15352 {
15353 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15354 rcStrict = VINF_SUCCESS;
15355 }
15356 return rcStrict;
15357}
15358
15359
15360/**
15361 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
15362 */
15363HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15364{
15365 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15366
15367 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15368 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
15369 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
15370 AssertRCReturn(rc, rc);
15371
15372 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15373
15374 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
15375 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15376 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
15377 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15378 {
15379 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15380 rcStrict = VINF_SUCCESS;
15381 }
15382 return rcStrict;
15383}
15384
15385
15386/**
15387 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
15388 */
15389HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
15390{
15391 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15392
15393 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15394 rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
15395 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
15396 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15397 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
15398 AssertRCReturn(rc, rc);
15399
15400 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
15401
15402 VMXVEXITINFO ExitInfo;
15403 RT_ZERO(ExitInfo);
15404 ExitInfo.uReason = pVmxTransient->uExitReason;
15405 ExitInfo.u64Qual = pVmxTransient->uExitQual;
15406 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
15407 ExitInfo.cbInstr = pVmxTransient->cbInstr;
15408 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
15409
15410 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
15411 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15412 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
15413 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15414 {
15415 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15416 rcStrict = VINF_SUCCESS;
15417 }
15418 return rcStrict;
15419}
15420
15421/** @} */
15422#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
15423
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette