1 | /* $Id: HMVMXR0.cpp 78370 2019-05-03 04:42:22Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM VMX (Intel VT-x) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2012-2019 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_HM
|
---|
23 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
24 | #include <iprt/x86.h>
|
---|
25 | #include <iprt/asm-amd64-x86.h>
|
---|
26 | #include <iprt/thread.h>
|
---|
27 |
|
---|
28 | #include <VBox/vmm/pdmapi.h>
|
---|
29 | #include <VBox/vmm/dbgf.h>
|
---|
30 | #include <VBox/vmm/iem.h>
|
---|
31 | #include <VBox/vmm/iom.h>
|
---|
32 | #include <VBox/vmm/selm.h>
|
---|
33 | #include <VBox/vmm/tm.h>
|
---|
34 | #include <VBox/vmm/em.h>
|
---|
35 | #include <VBox/vmm/gim.h>
|
---|
36 | #include <VBox/vmm/apic.h>
|
---|
37 | #ifdef VBOX_WITH_REM
|
---|
38 | # include <VBox/vmm/rem.h>
|
---|
39 | #endif
|
---|
40 | #include "HMInternal.h"
|
---|
41 | #include <VBox/vmm/vm.h>
|
---|
42 | #include <VBox/vmm/hmvmxinline.h>
|
---|
43 | #include "HMVMXR0.h"
|
---|
44 | #include "dtrace/VBoxVMM.h"
|
---|
45 |
|
---|
46 | #ifdef DEBUG_ramshankar
|
---|
47 | # define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
|
---|
48 | # define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
|
---|
49 | # define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
|
---|
50 | # define HMVMX_ALWAYS_CHECK_GUEST_STATE
|
---|
51 | # define HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
52 | # define HMVMX_ALWAYS_TRAP_PF
|
---|
53 | # define HMVMX_ALWAYS_FLUSH_TLB
|
---|
54 | # define HMVMX_ALWAYS_SWAP_EFER
|
---|
55 | #endif
|
---|
56 |
|
---|
57 |
|
---|
58 | /*********************************************************************************************************************************
|
---|
59 | * Defined Constants And Macros *
|
---|
60 | *********************************************************************************************************************************/
|
---|
61 | /** Use the function table. */
|
---|
62 | #define HMVMX_USE_FUNCTION_TABLE
|
---|
63 |
|
---|
64 | /** Determine which tagged-TLB flush handler to use. */
|
---|
65 | #define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
|
---|
66 | #define HMVMX_FLUSH_TAGGED_TLB_EPT 1
|
---|
67 | #define HMVMX_FLUSH_TAGGED_TLB_VPID 2
|
---|
68 | #define HMVMX_FLUSH_TAGGED_TLB_NONE 3
|
---|
69 |
|
---|
70 | /** @name HMVMX_READ_XXX
|
---|
71 | * Flags to skip redundant reads of some common VMCS fields that are not part of
|
---|
72 | * the guest-CPU or VCPU state but are needed while handling VM-exits.
|
---|
73 | */
|
---|
74 | #define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
|
---|
75 | #define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
|
---|
76 | #define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
|
---|
77 | #define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
|
---|
78 | #define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
|
---|
79 | #define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
|
---|
80 | #define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
|
---|
81 | #define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
|
---|
82 | /** @} */
|
---|
83 |
|
---|
84 | /**
|
---|
85 | * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
|
---|
86 | * guest using hardware-assisted VMX.
|
---|
87 | *
|
---|
88 | * This excludes state like GPRs (other than RSP) which are always are
|
---|
89 | * swapped and restored across the world-switch and also registers like EFER,
|
---|
90 | * MSR which cannot be modified by the guest without causing a VM-exit.
|
---|
91 | */
|
---|
92 | #define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
|
---|
93 | | CPUMCTX_EXTRN_RFLAGS \
|
---|
94 | | CPUMCTX_EXTRN_RSP \
|
---|
95 | | CPUMCTX_EXTRN_SREG_MASK \
|
---|
96 | | CPUMCTX_EXTRN_TABLE_MASK \
|
---|
97 | | CPUMCTX_EXTRN_KERNEL_GS_BASE \
|
---|
98 | | CPUMCTX_EXTRN_SYSCALL_MSRS \
|
---|
99 | | CPUMCTX_EXTRN_SYSENTER_MSRS \
|
---|
100 | | CPUMCTX_EXTRN_TSC_AUX \
|
---|
101 | | CPUMCTX_EXTRN_OTHER_MSRS \
|
---|
102 | | CPUMCTX_EXTRN_CR0 \
|
---|
103 | | CPUMCTX_EXTRN_CR3 \
|
---|
104 | | CPUMCTX_EXTRN_CR4 \
|
---|
105 | | CPUMCTX_EXTRN_DR7 \
|
---|
106 | | CPUMCTX_EXTRN_HM_VMX_MASK)
|
---|
107 |
|
---|
108 | /**
|
---|
109 | * Exception bitmap mask for real-mode guests (real-on-v86).
|
---|
110 | *
|
---|
111 | * We need to intercept all exceptions manually except:
|
---|
112 | * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
|
---|
113 | * due to bugs in Intel CPUs.
|
---|
114 | * - \#PF need not be intercepted even in real-mode if we have nested paging
|
---|
115 | * support.
|
---|
116 | */
|
---|
117 | #define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
|
---|
118 | | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
|
---|
119 | | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
|
---|
120 | | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
|
---|
121 | | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
|
---|
122 | | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
|
---|
123 | | RT_BIT(X86_XCPT_XF))
|
---|
124 |
|
---|
125 | /** Maximum VM-instruction error number. */
|
---|
126 | #define HMVMX_INSTR_ERROR_MAX 28
|
---|
127 |
|
---|
128 | /** Profiling macro. */
|
---|
129 | #ifdef HM_PROFILE_EXIT_DISPATCH
|
---|
130 | # define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
|
---|
131 | # define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
|
---|
132 | #else
|
---|
133 | # define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
|
---|
134 | # define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
|
---|
135 | #endif
|
---|
136 |
|
---|
137 | /** Assert that preemption is disabled or covered by thread-context hooks. */
|
---|
138 | #define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
|
---|
139 | || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
|
---|
140 |
|
---|
141 | /** Assert that we haven't migrated CPUs when thread-context hooks are not
|
---|
142 | * used. */
|
---|
143 | #define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
|
---|
144 | || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
|
---|
145 | ("Illegal migration! Entered on CPU %u Current %u\n", \
|
---|
146 | (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
|
---|
147 |
|
---|
148 | /** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
|
---|
149 | * context. */
|
---|
150 | #define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
|
---|
151 | ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
|
---|
152 | (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
|
---|
153 |
|
---|
154 | /** Helper macro for VM-exit handlers called unexpectedly. */
|
---|
155 | #define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
|
---|
156 | do { \
|
---|
157 | (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
|
---|
158 | return VERR_VMX_UNEXPECTED_EXIT; \
|
---|
159 | } while (0)
|
---|
160 |
|
---|
161 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
162 | /** Macro that does the necessary privilege checks and intercepted VM-exits for
|
---|
163 | * guests that attempted to execute a VMX instruction. */
|
---|
164 | # define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
|
---|
165 | do \
|
---|
166 | { \
|
---|
167 | VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
|
---|
168 | if (rcStrictTmp == VINF_SUCCESS) \
|
---|
169 | { /* likely */ } \
|
---|
170 | else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
|
---|
171 | { \
|
---|
172 | Assert((a_pVCpu)->hm.s.Event.fPending); \
|
---|
173 | Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
|
---|
174 | return VINF_SUCCESS; \
|
---|
175 | } \
|
---|
176 | else \
|
---|
177 | { \
|
---|
178 | int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
|
---|
179 | AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
|
---|
180 | } \
|
---|
181 | } while (0)
|
---|
182 |
|
---|
183 | /** Macro that decodes a memory operand for an instruction VM-exit. */
|
---|
184 | # define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
|
---|
185 | do \
|
---|
186 | { \
|
---|
187 | VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
|
---|
188 | (a_pGCPtrEffAddr)); \
|
---|
189 | if (rcStrictTmp == VINF_SUCCESS) \
|
---|
190 | { /* likely */ } \
|
---|
191 | else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
|
---|
192 | { \
|
---|
193 | uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
|
---|
194 | Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
|
---|
195 | NOREF(uXcptTmp); \
|
---|
196 | return VINF_SUCCESS; \
|
---|
197 | } \
|
---|
198 | else \
|
---|
199 | { \
|
---|
200 | Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
|
---|
201 | return rcStrictTmp; \
|
---|
202 | } \
|
---|
203 | } while (0)
|
---|
204 |
|
---|
205 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
206 |
|
---|
207 |
|
---|
208 | /*********************************************************************************************************************************
|
---|
209 | * Structures and Typedefs *
|
---|
210 | *********************************************************************************************************************************/
|
---|
211 | /**
|
---|
212 | * VMX transient state.
|
---|
213 | *
|
---|
214 | * A state structure for holding miscellaneous information across
|
---|
215 | * VMX non-root operation and restored after the transition.
|
---|
216 | */
|
---|
217 | typedef struct VMXTRANSIENT
|
---|
218 | {
|
---|
219 | /** The host's rflags/eflags. */
|
---|
220 | RTCCUINTREG fEFlags;
|
---|
221 | #if HC_ARCH_BITS == 32
|
---|
222 | uint32_t u32Alignment0;
|
---|
223 | #endif
|
---|
224 | /** The guest's TPR value used for TPR shadowing. */
|
---|
225 | uint8_t u8GuestTpr;
|
---|
226 | /** Alignment. */
|
---|
227 | uint8_t abAlignment0[7];
|
---|
228 |
|
---|
229 | /** The basic VM-exit reason. */
|
---|
230 | uint16_t uExitReason;
|
---|
231 | /** Alignment. */
|
---|
232 | uint16_t u16Alignment0;
|
---|
233 | /** The VM-exit interruption error code. */
|
---|
234 | uint32_t uExitIntErrorCode;
|
---|
235 | /** The VM-exit exit code qualification. */
|
---|
236 | uint64_t uExitQual;
|
---|
237 | /** The Guest-linear address. */
|
---|
238 | uint64_t uGuestLinearAddr;
|
---|
239 |
|
---|
240 | /** The VM-exit interruption-information field. */
|
---|
241 | uint32_t uExitIntInfo;
|
---|
242 | /** The VM-exit instruction-length field. */
|
---|
243 | uint32_t cbInstr;
|
---|
244 | /** The VM-exit instruction-information field. */
|
---|
245 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
246 | /** Whether the VM-entry failed or not. */
|
---|
247 | bool fVMEntryFailed;
|
---|
248 | /** Whether we are currently executing a nested-guest. */
|
---|
249 | bool fIsNestedGuest;
|
---|
250 | /** Alignment. */
|
---|
251 | uint8_t abAlignment1[2];
|
---|
252 |
|
---|
253 | /** The VM-entry interruption-information field. */
|
---|
254 | uint32_t uEntryIntInfo;
|
---|
255 | /** The VM-entry exception error code field. */
|
---|
256 | uint32_t uEntryXcptErrorCode;
|
---|
257 | /** The VM-entry instruction length field. */
|
---|
258 | uint32_t cbEntryInstr;
|
---|
259 |
|
---|
260 | /** IDT-vectoring information field. */
|
---|
261 | uint32_t uIdtVectoringInfo;
|
---|
262 | /** IDT-vectoring error code. */
|
---|
263 | uint32_t uIdtVectoringErrorCode;
|
---|
264 |
|
---|
265 | /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
|
---|
266 | uint32_t fVmcsFieldsRead;
|
---|
267 |
|
---|
268 | /** Whether the guest debug state was active at the time of VM-exit. */
|
---|
269 | bool fWasGuestDebugStateActive;
|
---|
270 | /** Whether the hyper debug state was active at the time of VM-exit. */
|
---|
271 | bool fWasHyperDebugStateActive;
|
---|
272 | /** Whether TSC-offsetting and VMX-preemption timer was updated before VM-entry. */
|
---|
273 | bool fUpdatedTscOffsettingAndPreemptTimer;
|
---|
274 | /** Whether the VM-exit was caused by a page-fault during delivery of a
|
---|
275 | * contributory exception or a page-fault. */
|
---|
276 | bool fVectoringDoublePF;
|
---|
277 | /** Whether the VM-exit was caused by a page-fault during delivery of an
|
---|
278 | * external interrupt or NMI. */
|
---|
279 | bool fVectoringPF;
|
---|
280 | bool afAlignment0[3];
|
---|
281 |
|
---|
282 | /** The VMCS info. object. */
|
---|
283 | PVMXVMCSINFO pVmcsInfo;
|
---|
284 | } VMXTRANSIENT;
|
---|
285 | AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
|
---|
286 | AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
|
---|
287 | AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
|
---|
288 | AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
|
---|
289 | AssertCompileMemberAlignment(VMXTRANSIENT, pVmcsInfo, sizeof(uint64_t));
|
---|
290 | AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
|
---|
291 | /** Pointer to VMX transient state. */
|
---|
292 | typedef VMXTRANSIENT *PVMXTRANSIENT;
|
---|
293 |
|
---|
294 | /**
|
---|
295 | * Memory operand read or write access.
|
---|
296 | */
|
---|
297 | typedef enum VMXMEMACCESS
|
---|
298 | {
|
---|
299 | VMXMEMACCESS_READ = 0,
|
---|
300 | VMXMEMACCESS_WRITE = 1
|
---|
301 | } VMXMEMACCESS;
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * VMX VM-exit handler.
|
---|
305 | *
|
---|
306 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
307 | * @param pVCpu The cross context virtual CPU structure.
|
---|
308 | * @param pVmxTransient The VMX-transient structure.
|
---|
309 | */
|
---|
310 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
311 | typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
312 | #else
|
---|
313 | typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
314 | /** Pointer to VM-exit handler. */
|
---|
315 | typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
|
---|
316 | #endif
|
---|
317 |
|
---|
318 | /**
|
---|
319 | * VMX VM-exit handler, non-strict status code.
|
---|
320 | *
|
---|
321 | * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
|
---|
322 | *
|
---|
323 | * @returns VBox status code, no informational status code returned.
|
---|
324 | * @param pVCpu The cross context virtual CPU structure.
|
---|
325 | * @param pVmxTransient The VMX-transient structure.
|
---|
326 | *
|
---|
327 | * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
|
---|
328 | * use of that status code will be replaced with VINF_EM_SOMETHING
|
---|
329 | * later when switching over to IEM.
|
---|
330 | */
|
---|
331 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
332 | typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
333 | #else
|
---|
334 | typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
|
---|
335 | #endif
|
---|
336 |
|
---|
337 |
|
---|
338 | /*********************************************************************************************************************************
|
---|
339 | * Internal Functions *
|
---|
340 | *********************************************************************************************************************************/
|
---|
341 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
342 | DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
343 | # define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
|
---|
344 | # define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
|
---|
345 | #else
|
---|
346 | # define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
|
---|
347 | # define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
|
---|
348 | #endif
|
---|
349 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
350 | DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
351 | #endif
|
---|
352 |
|
---|
353 | static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
|
---|
354 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
355 | static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
|
---|
356 | #endif
|
---|
357 |
|
---|
358 | /** @name VM-exit handlers.
|
---|
359 | * @{
|
---|
360 | */
|
---|
361 | static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
|
---|
362 | static FNVMXEXITHANDLER hmR0VmxExitExtInt;
|
---|
363 | static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
|
---|
364 | static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
|
---|
365 | static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
|
---|
366 | static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
|
---|
367 | static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
|
---|
368 | static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
|
---|
369 | static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
|
---|
370 | static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
|
---|
371 | static FNVMXEXITHANDLER hmR0VmxExitCpuid;
|
---|
372 | static FNVMXEXITHANDLER hmR0VmxExitGetsec;
|
---|
373 | static FNVMXEXITHANDLER hmR0VmxExitHlt;
|
---|
374 | static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
|
---|
375 | static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
|
---|
376 | static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
|
---|
377 | static FNVMXEXITHANDLER hmR0VmxExitVmcall;
|
---|
378 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
379 | static FNVMXEXITHANDLER hmR0VmxExitVmclear;
|
---|
380 | static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
|
---|
381 | static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
|
---|
382 | static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
|
---|
383 | static FNVMXEXITHANDLER hmR0VmxExitVmread;
|
---|
384 | static FNVMXEXITHANDLER hmR0VmxExitVmresume;
|
---|
385 | static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
|
---|
386 | static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
|
---|
387 | static FNVMXEXITHANDLER hmR0VmxExitVmxon;
|
---|
388 | #endif
|
---|
389 | static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
|
---|
390 | static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
|
---|
391 | static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
|
---|
392 | static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
|
---|
393 | static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
|
---|
394 | static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
|
---|
395 | static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
|
---|
396 | static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
|
---|
397 | static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
|
---|
398 | static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
|
---|
399 | static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
|
---|
400 | static FNVMXEXITHANDLER hmR0VmxExitMwait;
|
---|
401 | static FNVMXEXITHANDLER hmR0VmxExitMtf;
|
---|
402 | static FNVMXEXITHANDLER hmR0VmxExitMonitor;
|
---|
403 | static FNVMXEXITHANDLER hmR0VmxExitPause;
|
---|
404 | static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
|
---|
405 | static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
|
---|
406 | static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
|
---|
407 | static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
|
---|
408 | static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
|
---|
409 | static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
|
---|
410 | static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
|
---|
411 | static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
|
---|
412 | static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
|
---|
413 | static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
|
---|
414 | static FNVMXEXITHANDLER hmR0VmxExitRdrand;
|
---|
415 | static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
|
---|
416 | /** @} */
|
---|
417 |
|
---|
418 | /** @name Helpers for hardware exceptions VM-exit handlers.
|
---|
419 | * @{
|
---|
420 | */
|
---|
421 | static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
422 | static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
423 | static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
424 | static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
425 | static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
426 | static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
427 | static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
428 | /** @} */
|
---|
429 |
|
---|
430 |
|
---|
431 | /*********************************************************************************************************************************
|
---|
432 | * Global Variables *
|
---|
433 | *********************************************************************************************************************************/
|
---|
434 | #ifdef VMX_USE_CACHED_VMCS_ACCESSES
|
---|
435 | static const uint32_t g_aVmcsCacheSegBase[] =
|
---|
436 | {
|
---|
437 | VMX_VMCS_GUEST_ES_BASE_CACHE_IDX,
|
---|
438 | VMX_VMCS_GUEST_CS_BASE_CACHE_IDX,
|
---|
439 | VMX_VMCS_GUEST_SS_BASE_CACHE_IDX,
|
---|
440 | VMX_VMCS_GUEST_DS_BASE_CACHE_IDX,
|
---|
441 | VMX_VMCS_GUEST_FS_BASE_CACHE_IDX,
|
---|
442 | VMX_VMCS_GUEST_GS_BASE_CACHE_IDX
|
---|
443 | };
|
---|
444 | AssertCompile(RT_ELEMENTS(g_aVmcsCacheSegBase) == X86_SREG_COUNT);
|
---|
445 | #endif
|
---|
446 | static const uint32_t g_aVmcsSegBase[] =
|
---|
447 | {
|
---|
448 | VMX_VMCS_GUEST_ES_BASE,
|
---|
449 | VMX_VMCS_GUEST_CS_BASE,
|
---|
450 | VMX_VMCS_GUEST_SS_BASE,
|
---|
451 | VMX_VMCS_GUEST_DS_BASE,
|
---|
452 | VMX_VMCS_GUEST_FS_BASE,
|
---|
453 | VMX_VMCS_GUEST_GS_BASE
|
---|
454 | };
|
---|
455 | static const uint32_t g_aVmcsSegSel[] =
|
---|
456 | {
|
---|
457 | VMX_VMCS16_GUEST_ES_SEL,
|
---|
458 | VMX_VMCS16_GUEST_CS_SEL,
|
---|
459 | VMX_VMCS16_GUEST_SS_SEL,
|
---|
460 | VMX_VMCS16_GUEST_DS_SEL,
|
---|
461 | VMX_VMCS16_GUEST_FS_SEL,
|
---|
462 | VMX_VMCS16_GUEST_GS_SEL
|
---|
463 | };
|
---|
464 | static const uint32_t g_aVmcsSegLimit[] =
|
---|
465 | {
|
---|
466 | VMX_VMCS32_GUEST_ES_LIMIT,
|
---|
467 | VMX_VMCS32_GUEST_CS_LIMIT,
|
---|
468 | VMX_VMCS32_GUEST_SS_LIMIT,
|
---|
469 | VMX_VMCS32_GUEST_DS_LIMIT,
|
---|
470 | VMX_VMCS32_GUEST_FS_LIMIT,
|
---|
471 | VMX_VMCS32_GUEST_GS_LIMIT
|
---|
472 | };
|
---|
473 | static const uint32_t g_aVmcsSegAttr[] =
|
---|
474 | {
|
---|
475 | VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
|
---|
476 | VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
|
---|
477 | VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
|
---|
478 | VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
|
---|
479 | VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
|
---|
480 | VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
|
---|
481 | };
|
---|
482 | AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
|
---|
483 | AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
|
---|
484 | AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
|
---|
485 | AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
|
---|
486 |
|
---|
487 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
488 | /**
|
---|
489 | * VMX_EXIT dispatch table.
|
---|
490 | */
|
---|
491 | static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
|
---|
492 | {
|
---|
493 | /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
|
---|
494 | /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
|
---|
495 | /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
|
---|
496 | /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
|
---|
497 | /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
|
---|
498 | /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
|
---|
499 | /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
|
---|
500 | /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
|
---|
501 | /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
|
---|
502 | /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
|
---|
503 | /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
|
---|
504 | /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
|
---|
505 | /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
|
---|
506 | /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
|
---|
507 | /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
|
---|
508 | /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
|
---|
509 | /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
|
---|
510 | /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
|
---|
511 | /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
|
---|
512 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
513 | /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
|
---|
514 | /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
|
---|
515 | /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
|
---|
516 | /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
|
---|
517 | /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
|
---|
518 | /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
|
---|
519 | /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
|
---|
520 | /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
|
---|
521 | /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
|
---|
522 | #else
|
---|
523 | /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
|
---|
524 | /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
|
---|
525 | /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
|
---|
526 | /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
|
---|
527 | /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
|
---|
528 | /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
|
---|
529 | /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
|
---|
530 | /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
|
---|
531 | /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
|
---|
532 | #endif
|
---|
533 | /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
|
---|
534 | /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
|
---|
535 | /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
|
---|
536 | /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
|
---|
537 | /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
|
---|
538 | /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
|
---|
539 | /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
|
---|
540 | /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
541 | /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
|
---|
542 | /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
|
---|
543 | /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
544 | /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
|
---|
545 | /* 40 UNDEFINED */ hmR0VmxExitPause,
|
---|
546 | /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
|
---|
547 | /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
|
---|
548 | /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
|
---|
549 | /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
|
---|
550 | /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
551 | /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
|
---|
552 | /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
|
---|
553 | /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
|
---|
554 | /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
|
---|
555 | /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
|
---|
556 | /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
|
---|
557 | /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
|
---|
558 | /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
|
---|
559 | /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
|
---|
560 | /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
|
---|
561 | /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
|
---|
562 | /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
|
---|
563 | /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
|
---|
564 | /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
|
---|
565 | /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
|
---|
566 | /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
|
---|
567 | /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
|
---|
568 | /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
|
---|
569 | /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
|
---|
570 | };
|
---|
571 | #endif /* HMVMX_USE_FUNCTION_TABLE */
|
---|
572 |
|
---|
573 | #if defined(VBOX_STRICT) && defined(LOG_ENABLED)
|
---|
574 | static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
|
---|
575 | {
|
---|
576 | /* 0 */ "(Not Used)",
|
---|
577 | /* 1 */ "VMCALL executed in VMX root operation.",
|
---|
578 | /* 2 */ "VMCLEAR with invalid physical address.",
|
---|
579 | /* 3 */ "VMCLEAR with VMXON pointer.",
|
---|
580 | /* 4 */ "VMLAUNCH with non-clear VMCS.",
|
---|
581 | /* 5 */ "VMRESUME with non-launched VMCS.",
|
---|
582 | /* 6 */ "VMRESUME after VMXOFF",
|
---|
583 | /* 7 */ "VM-entry with invalid control fields.",
|
---|
584 | /* 8 */ "VM-entry with invalid host state fields.",
|
---|
585 | /* 9 */ "VMPTRLD with invalid physical address.",
|
---|
586 | /* 10 */ "VMPTRLD with VMXON pointer.",
|
---|
587 | /* 11 */ "VMPTRLD with incorrect revision identifier.",
|
---|
588 | /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
|
---|
589 | /* 13 */ "VMWRITE to read-only VMCS component.",
|
---|
590 | /* 14 */ "(Not Used)",
|
---|
591 | /* 15 */ "VMXON executed in VMX root operation.",
|
---|
592 | /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
|
---|
593 | /* 17 */ "VM-entry with non-launched executing VMCS.",
|
---|
594 | /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
|
---|
595 | /* 19 */ "VMCALL with non-clear VMCS.",
|
---|
596 | /* 20 */ "VMCALL with invalid VM-exit control fields.",
|
---|
597 | /* 21 */ "(Not Used)",
|
---|
598 | /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
|
---|
599 | /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
|
---|
600 | /* 24 */ "VMCALL with invalid SMM-monitor features.",
|
---|
601 | /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
|
---|
602 | /* 26 */ "VM-entry with events blocked by MOV SS.",
|
---|
603 | /* 27 */ "(Not Used)",
|
---|
604 | /* 28 */ "Invalid operand to INVEPT/INVVPID."
|
---|
605 | };
|
---|
606 | #endif /* VBOX_STRICT */
|
---|
607 |
|
---|
608 |
|
---|
609 | /**
|
---|
610 | * Get the CR0 guest/host mask that does not change through the lifetime of a VM.
|
---|
611 | *
|
---|
612 | * Any bit set in this mask is owned by the host/hypervisor and would cause a
|
---|
613 | * VM-exit when modified by the guest.
|
---|
614 | *
|
---|
615 | * @returns The static CR0 guest/host mask.
|
---|
616 | * @param pVCpu The cross context virtual CPU structure.
|
---|
617 | */
|
---|
618 | DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr0Mask(PCVMCPU pVCpu)
|
---|
619 | {
|
---|
620 | /*
|
---|
621 | * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
|
---|
622 | * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
|
---|
623 | */
|
---|
624 | /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
|
---|
625 | * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
|
---|
626 | * and @bugref{6944}. */
|
---|
627 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
628 | return ( X86_CR0_PE
|
---|
629 | | X86_CR0_NE
|
---|
630 | | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
|
---|
631 | | X86_CR0_PG
|
---|
632 | | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
|
---|
633 | | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
|
---|
634 | | X86_CR0_NW); /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
|
---|
635 | }
|
---|
636 |
|
---|
637 |
|
---|
638 | /**
|
---|
639 | * Gets the CR4 guest/host mask that does not change through the lifetime of a VM.
|
---|
640 | *
|
---|
641 | * Any bit set in this mask is owned by the host/hypervisor and would cause a
|
---|
642 | * VM-exit when modified by the guest.
|
---|
643 | *
|
---|
644 | * @returns The static CR4 guest/host mask.
|
---|
645 | * @param pVCpu The cross context virtual CPU structure.
|
---|
646 | */
|
---|
647 | DECL_FORCE_INLINE(uint64_t) hmR0VmxGetFixedCr4Mask(PCVMCPU pVCpu)
|
---|
648 | {
|
---|
649 | /*
|
---|
650 | * We need to look at the host features here (for e.g. OSXSAVE, PCID) because
|
---|
651 | * these bits are reserved on hardware that does not support them. Since the
|
---|
652 | * CPU cannot refer to our virtual CPUID, we need to intercept CR4 changes to
|
---|
653 | * these bits and handle it depending on whether we expose them to the guest.
|
---|
654 | */
|
---|
655 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
656 | bool const fXSaveRstor = pVM->cpum.ro.HostFeatures.fXSaveRstor;
|
---|
657 | bool const fPcid = pVM->cpum.ro.HostFeatures.fPcid;
|
---|
658 | return ( X86_CR4_VMXE
|
---|
659 | | X86_CR4_VME
|
---|
660 | | X86_CR4_PAE
|
---|
661 | | X86_CR4_PGE
|
---|
662 | | X86_CR4_PSE
|
---|
663 | | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
|
---|
664 | | (fPcid ? X86_CR4_PCIDE : 0));
|
---|
665 | }
|
---|
666 |
|
---|
667 |
|
---|
668 | /**
|
---|
669 | * Returns whether the the VM-exit MSR-store area differs from the VM-exit MSR-load
|
---|
670 | * area.
|
---|
671 | *
|
---|
672 | * @returns @c true if it's different, @c false otherwise.
|
---|
673 | * @param pVmcsInfo The VMCS info. object.
|
---|
674 | */
|
---|
675 | DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
|
---|
676 | {
|
---|
677 | return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
|
---|
678 | && pVmcsInfo->pvGuestMsrStore);
|
---|
679 | }
|
---|
680 |
|
---|
681 |
|
---|
682 | /**
|
---|
683 | * Adds one or more exceptions to the exception bitmap and commits it to the current
|
---|
684 | * VMCS.
|
---|
685 | *
|
---|
686 | * @returns VBox status code.
|
---|
687 | * @param pVmxTransient The VMX-transient structure.
|
---|
688 | * @param uXcptMask The exception(s) to add.
|
---|
689 | */
|
---|
690 | static int hmR0VmxAddXcptInterceptMask(PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
|
---|
691 | {
|
---|
692 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
693 | uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
|
---|
694 | if ((uXcptBitmap & uXcptMask) != uXcptMask)
|
---|
695 | {
|
---|
696 | uXcptBitmap |= uXcptMask;
|
---|
697 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
|
---|
698 | AssertRCReturn(rc, rc);
|
---|
699 | pVmcsInfo->u32XcptBitmap = uXcptBitmap;
|
---|
700 | }
|
---|
701 | return VINF_SUCCESS;
|
---|
702 | }
|
---|
703 |
|
---|
704 |
|
---|
705 | /**
|
---|
706 | * Adds an exception to the exception bitmap and commits it to the current VMCS.
|
---|
707 | *
|
---|
708 | * @returns VBox status code.
|
---|
709 | * @param pVmxTransient The VMX-transient structure.
|
---|
710 | * @param uXcpt The exception to add.
|
---|
711 | */
|
---|
712 | static int hmR0VmxAddXcptIntercept(PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
|
---|
713 | {
|
---|
714 | Assert(uXcpt <= X86_XCPT_LAST);
|
---|
715 | return hmR0VmxAddXcptInterceptMask(pVmxTransient, RT_BIT_32(uXcpt));
|
---|
716 | }
|
---|
717 |
|
---|
718 |
|
---|
719 | /**
|
---|
720 | * Remove one or more exceptions from the exception bitmap and commits it to the
|
---|
721 | * current VMCS.
|
---|
722 | *
|
---|
723 | * This takes care of not removing the exception intercept if a nested-guest
|
---|
724 | * requires the exception to be intercepted.
|
---|
725 | *
|
---|
726 | * @returns VBox status code.
|
---|
727 | * @param pVCpu The cross context virtual CPU structure.
|
---|
728 | * @param pVmxTransient The VMX-transient structure.
|
---|
729 | * @param uXcptMask The exception(s) to remove.
|
---|
730 | */
|
---|
731 | static int hmR0VmxRemoveXcptInterceptMask(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
|
---|
732 | {
|
---|
733 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
734 | uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
|
---|
735 | if (u32XcptBitmap & uXcptMask)
|
---|
736 | {
|
---|
737 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
738 | if (!pVmxTransient->fIsNestedGuest)
|
---|
739 | { /* likely */ }
|
---|
740 | else
|
---|
741 | {
|
---|
742 | PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
743 | uXcptMask &= ~pVmcsNstGst->u32XcptBitmap;
|
---|
744 | }
|
---|
745 | #endif
|
---|
746 | #ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
747 | uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
|
---|
748 | | RT_BIT(X86_XCPT_DE)
|
---|
749 | | RT_BIT(X86_XCPT_NM)
|
---|
750 | | RT_BIT(X86_XCPT_TS)
|
---|
751 | | RT_BIT(X86_XCPT_UD)
|
---|
752 | | RT_BIT(X86_XCPT_NP)
|
---|
753 | | RT_BIT(X86_XCPT_SS)
|
---|
754 | | RT_BIT(X86_XCPT_GP)
|
---|
755 | | RT_BIT(X86_XCPT_PF)
|
---|
756 | | RT_BIT(X86_XCPT_MF));
|
---|
757 | #elif defined(HMVMX_ALWAYS_TRAP_PF)
|
---|
758 | uXcptMask &= ~RT_BIT(X86_XCPT_PF);
|
---|
759 | #endif
|
---|
760 | if (uXcptMask)
|
---|
761 | {
|
---|
762 | /* Validate we are not removing any essential exception intercepts. */
|
---|
763 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF))); RT_NOREF(pVCpu);
|
---|
764 | Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
|
---|
765 | Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
|
---|
766 |
|
---|
767 | /* Remove it from the exception bitmap. */
|
---|
768 | u32XcptBitmap &= ~uXcptMask;
|
---|
769 |
|
---|
770 | /* Commit and update the cache if necessary. */
|
---|
771 | if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
|
---|
772 | {
|
---|
773 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
|
---|
774 | AssertRCReturn(rc, rc);
|
---|
775 | pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
|
---|
776 | }
|
---|
777 | }
|
---|
778 | }
|
---|
779 | return VINF_SUCCESS;
|
---|
780 | }
|
---|
781 |
|
---|
782 |
|
---|
783 | /**
|
---|
784 | * Remove an exceptions from the exception bitmap and commits it to the current
|
---|
785 | * VMCS.
|
---|
786 | *
|
---|
787 | * @returns VBox status code.
|
---|
788 | * @param pVCpu The cross context virtual CPU structure.
|
---|
789 | * @param pVmxTransient The VMX-transient structure.
|
---|
790 | * @param uXcpt The exception to remove.
|
---|
791 | */
|
---|
792 | static int hmR0VmxRemoveXcptIntercept(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
|
---|
793 | {
|
---|
794 | return hmR0VmxRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
|
---|
795 | }
|
---|
796 |
|
---|
797 |
|
---|
798 | /**
|
---|
799 | * Loads the VMCS specified by the VMCS info. object.
|
---|
800 | *
|
---|
801 | * @returns VBox status code.
|
---|
802 | * @param pVmcsInfo The VMCS info. object.
|
---|
803 | */
|
---|
804 | static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
|
---|
805 | {
|
---|
806 | Assert(pVmcsInfo);
|
---|
807 | Assert(pVmcsInfo->HCPhysVmcs);
|
---|
808 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
809 |
|
---|
810 | if (pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_CLEAR)
|
---|
811 | {
|
---|
812 | int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
|
---|
813 | if (RT_SUCCESS(rc))
|
---|
814 | {
|
---|
815 | pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
|
---|
816 | return VINF_SUCCESS;
|
---|
817 | }
|
---|
818 | return rc;
|
---|
819 | }
|
---|
820 | return VERR_VMX_INVALID_VMCS_LAUNCH_STATE;
|
---|
821 | }
|
---|
822 |
|
---|
823 |
|
---|
824 | /**
|
---|
825 | * Clears the VMCS specified by the VMCS info. object.
|
---|
826 | *
|
---|
827 | * @returns VBox status code.
|
---|
828 | * @param pVmcsInfo The VMCS info. object.
|
---|
829 | */
|
---|
830 | static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
|
---|
831 | {
|
---|
832 | Assert(pVmcsInfo);
|
---|
833 | Assert(pVmcsInfo->HCPhysVmcs);
|
---|
834 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
835 |
|
---|
836 | int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
|
---|
837 | if (RT_SUCCESS(rc))
|
---|
838 | pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
|
---|
839 | return rc;
|
---|
840 | }
|
---|
841 |
|
---|
842 |
|
---|
843 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
844 | /**
|
---|
845 | * Switches the current VMCS to the one specified.
|
---|
846 | *
|
---|
847 | * @returns VBox status code.
|
---|
848 | * @param pVmcsInfoFrom The VMCS info. object we are switching from.
|
---|
849 | * @param pVmcsInfoTo The VMCS info. object we are switching to.
|
---|
850 | *
|
---|
851 | * @remarks Called with interrupts disabled.
|
---|
852 | */
|
---|
853 | static int hmR0VmxSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
|
---|
854 | {
|
---|
855 | Assert(pVmcsInfoFrom);
|
---|
856 | Assert(pVmcsInfoTo);
|
---|
857 |
|
---|
858 | /*
|
---|
859 | * Clear the VMCS we are switching out if it has not already been cleared.
|
---|
860 | * This will sync any CPU internal data back to the VMCS.
|
---|
861 | */
|
---|
862 | if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
|
---|
863 | {
|
---|
864 | int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
|
---|
865 | if (RT_SUCCESS(rc))
|
---|
866 | { /* likely */ }
|
---|
867 | else
|
---|
868 | return rc;
|
---|
869 | }
|
---|
870 |
|
---|
871 | /*
|
---|
872 | * Clear the VMCS we are switching to if it has not already been cleared.
|
---|
873 | * This will initialize the VMCS launch state to "clear" required for loading it.
|
---|
874 | *
|
---|
875 | * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
|
---|
876 | */
|
---|
877 | if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
|
---|
878 | {
|
---|
879 | int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
|
---|
880 | if (RT_SUCCESS(rc))
|
---|
881 | { /* likely */ }
|
---|
882 | else
|
---|
883 | return rc;
|
---|
884 | }
|
---|
885 |
|
---|
886 | /*
|
---|
887 | * Finally, load the VMCS we are switching to.
|
---|
888 | */
|
---|
889 | return hmR0VmxLoadVmcs(pVmcsInfoTo);
|
---|
890 | }
|
---|
891 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
892 |
|
---|
893 |
|
---|
894 | /**
|
---|
895 | * Updates the VM's last error record.
|
---|
896 | *
|
---|
897 | * If there was a VMX instruction error, reads the error data from the VMCS and
|
---|
898 | * updates VCPU's last error record as well.
|
---|
899 | *
|
---|
900 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
901 | * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
|
---|
902 | * VERR_VMX_INVALID_VMCS_FIELD.
|
---|
903 | * @param rc The error code.
|
---|
904 | */
|
---|
905 | static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
|
---|
906 | {
|
---|
907 | if ( rc == VERR_VMX_INVALID_VMCS_FIELD
|
---|
908 | || rc == VERR_VMX_UNABLE_TO_START_VM)
|
---|
909 | {
|
---|
910 | AssertPtrReturnVoid(pVCpu);
|
---|
911 | VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
|
---|
912 | }
|
---|
913 | pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
|
---|
914 | }
|
---|
915 |
|
---|
916 |
|
---|
917 | #ifdef VBOX_STRICT
|
---|
918 | /**
|
---|
919 | * Reads the VM-entry interruption-information field from the VMCS into the VMX
|
---|
920 | * transient structure.
|
---|
921 | *
|
---|
922 | * @returns VBox status code.
|
---|
923 | * @param pVmxTransient The VMX-transient structure.
|
---|
924 | *
|
---|
925 | * @remarks No-long-jump zone!!!
|
---|
926 | */
|
---|
927 | DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
928 | {
|
---|
929 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
|
---|
930 | AssertRCReturn(rc, rc);
|
---|
931 | return VINF_SUCCESS;
|
---|
932 | }
|
---|
933 |
|
---|
934 |
|
---|
935 | /**
|
---|
936 | * Reads the VM-entry exception error code field from the VMCS into
|
---|
937 | * the VMX transient structure.
|
---|
938 | *
|
---|
939 | * @returns VBox status code.
|
---|
940 | * @param pVmxTransient The VMX-transient structure.
|
---|
941 | *
|
---|
942 | * @remarks No-long-jump zone!!!
|
---|
943 | */
|
---|
944 | DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
945 | {
|
---|
946 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
|
---|
947 | AssertRCReturn(rc, rc);
|
---|
948 | return VINF_SUCCESS;
|
---|
949 | }
|
---|
950 |
|
---|
951 |
|
---|
952 | /**
|
---|
953 | * Reads the VM-entry exception error code field from the VMCS into
|
---|
954 | * the VMX transient structure.
|
---|
955 | *
|
---|
956 | * @returns VBox status code.
|
---|
957 | * @param pVmxTransient The VMX-transient structure.
|
---|
958 | *
|
---|
959 | * @remarks No-long-jump zone!!!
|
---|
960 | */
|
---|
961 | DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
962 | {
|
---|
963 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
|
---|
964 | AssertRCReturn(rc, rc);
|
---|
965 | return VINF_SUCCESS;
|
---|
966 | }
|
---|
967 | #endif /* VBOX_STRICT */
|
---|
968 |
|
---|
969 |
|
---|
970 | /**
|
---|
971 | * Reads the VM-exit interruption-information field from the VMCS into the VMX
|
---|
972 | * transient structure.
|
---|
973 | *
|
---|
974 | * @returns VBox status code.
|
---|
975 | * @param pVmxTransient The VMX-transient structure.
|
---|
976 | */
|
---|
977 | DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
978 | {
|
---|
979 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
|
---|
980 | {
|
---|
981 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
|
---|
982 | AssertRCReturn(rc,rc);
|
---|
983 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
|
---|
984 | }
|
---|
985 | return VINF_SUCCESS;
|
---|
986 | }
|
---|
987 |
|
---|
988 |
|
---|
989 | /**
|
---|
990 | * Reads the VM-exit interruption error code from the VMCS into the VMX
|
---|
991 | * transient structure.
|
---|
992 | *
|
---|
993 | * @returns VBox status code.
|
---|
994 | * @param pVmxTransient The VMX-transient structure.
|
---|
995 | */
|
---|
996 | DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
997 | {
|
---|
998 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
|
---|
999 | {
|
---|
1000 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
|
---|
1001 | AssertRCReturn(rc, rc);
|
---|
1002 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
|
---|
1003 | }
|
---|
1004 | return VINF_SUCCESS;
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 |
|
---|
1008 | /**
|
---|
1009 | * Reads the VM-exit instruction length field from the VMCS into the VMX
|
---|
1010 | * transient structure.
|
---|
1011 | *
|
---|
1012 | * @returns VBox status code.
|
---|
1013 | * @param pVmxTransient The VMX-transient structure.
|
---|
1014 | */
|
---|
1015 | DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
1016 | {
|
---|
1017 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
|
---|
1018 | {
|
---|
1019 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
|
---|
1020 | AssertRCReturn(rc, rc);
|
---|
1021 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
|
---|
1022 | }
|
---|
1023 | return VINF_SUCCESS;
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 |
|
---|
1027 | /**
|
---|
1028 | * Reads the VM-exit instruction-information field from the VMCS into
|
---|
1029 | * the VMX transient structure.
|
---|
1030 | *
|
---|
1031 | * @returns VBox status code.
|
---|
1032 | * @param pVmxTransient The VMX-transient structure.
|
---|
1033 | */
|
---|
1034 | DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
1035 | {
|
---|
1036 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
|
---|
1037 | {
|
---|
1038 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
|
---|
1039 | AssertRCReturn(rc, rc);
|
---|
1040 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
|
---|
1041 | }
|
---|
1042 | return VINF_SUCCESS;
|
---|
1043 | }
|
---|
1044 |
|
---|
1045 |
|
---|
1046 | /**
|
---|
1047 | * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
|
---|
1048 | *
|
---|
1049 | * @returns VBox status code.
|
---|
1050 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1051 | * calling EMT. (Required for the VMCS cache case.)
|
---|
1052 | * @param pVmxTransient The VMX-transient structure.
|
---|
1053 | */
|
---|
1054 | DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1055 | {
|
---|
1056 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
|
---|
1057 | {
|
---|
1058 | int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
|
---|
1059 | AssertRCReturn(rc, rc);
|
---|
1060 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
|
---|
1061 | }
|
---|
1062 | return VINF_SUCCESS;
|
---|
1063 | }
|
---|
1064 |
|
---|
1065 |
|
---|
1066 | /**
|
---|
1067 | * Reads the Guest-linear address from the VMCS into the VMX transient structure.
|
---|
1068 | *
|
---|
1069 | * @returns VBox status code.
|
---|
1070 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1071 | * calling EMT. (Required for the VMCS cache case.)
|
---|
1072 | * @param pVmxTransient The VMX-transient structure.
|
---|
1073 | */
|
---|
1074 | DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1075 | {
|
---|
1076 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
|
---|
1077 | {
|
---|
1078 | int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
|
---|
1079 | AssertRCReturn(rc, rc);
|
---|
1080 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
|
---|
1081 | }
|
---|
1082 | return VINF_SUCCESS;
|
---|
1083 | }
|
---|
1084 |
|
---|
1085 |
|
---|
1086 | /**
|
---|
1087 | * Reads the IDT-vectoring information field from the VMCS into the VMX
|
---|
1088 | * transient structure.
|
---|
1089 | *
|
---|
1090 | * @returns VBox status code.
|
---|
1091 | * @param pVmxTransient The VMX-transient structure.
|
---|
1092 | *
|
---|
1093 | * @remarks No-long-jump zone!!!
|
---|
1094 | */
|
---|
1095 | DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
1096 | {
|
---|
1097 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
|
---|
1098 | {
|
---|
1099 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
|
---|
1100 | AssertRCReturn(rc, rc);
|
---|
1101 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
|
---|
1102 | }
|
---|
1103 | return VINF_SUCCESS;
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 |
|
---|
1107 | /**
|
---|
1108 | * Reads the IDT-vectoring error code from the VMCS into the VMX
|
---|
1109 | * transient structure.
|
---|
1110 | *
|
---|
1111 | * @returns VBox status code.
|
---|
1112 | * @param pVmxTransient The VMX-transient structure.
|
---|
1113 | */
|
---|
1114 | DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
1115 | {
|
---|
1116 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
|
---|
1117 | {
|
---|
1118 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
|
---|
1119 | AssertRCReturn(rc, rc);
|
---|
1120 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
|
---|
1121 | }
|
---|
1122 | return VINF_SUCCESS;
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 |
|
---|
1126 | /**
|
---|
1127 | * Enters VMX root mode operation on the current CPU.
|
---|
1128 | *
|
---|
1129 | * @returns VBox status code.
|
---|
1130 | * @param pVM The cross context VM structure. Can be
|
---|
1131 | * NULL, after a resume.
|
---|
1132 | * @param HCPhysCpuPage Physical address of the VMXON region.
|
---|
1133 | * @param pvCpuPage Pointer to the VMXON region.
|
---|
1134 | */
|
---|
1135 | static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
|
---|
1136 | {
|
---|
1137 | Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
|
---|
1138 | Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
|
---|
1139 | Assert(pvCpuPage);
|
---|
1140 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1141 |
|
---|
1142 | if (pVM)
|
---|
1143 | {
|
---|
1144 | /* Write the VMCS revision identifier to the VMXON region. */
|
---|
1145 | *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
|
---|
1149 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
1150 |
|
---|
1151 | /* Enable the VMX bit in CR4 if necessary. */
|
---|
1152 | RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
|
---|
1153 |
|
---|
1154 | /* Enter VMX root mode. */
|
---|
1155 | int rc = VMXEnable(HCPhysCpuPage);
|
---|
1156 | if (RT_FAILURE(rc))
|
---|
1157 | {
|
---|
1158 | if (!(uOldCr4 & X86_CR4_VMXE))
|
---|
1159 | SUPR0ChangeCR4(0 /* fOrMask */, ~X86_CR4_VMXE);
|
---|
1160 |
|
---|
1161 | if (pVM)
|
---|
1162 | pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 | /* Restore interrupts. */
|
---|
1166 | ASMSetFlags(fEFlags);
|
---|
1167 | return rc;
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 |
|
---|
1171 | /**
|
---|
1172 | * Exits VMX root mode operation on the current CPU.
|
---|
1173 | *
|
---|
1174 | * @returns VBox status code.
|
---|
1175 | */
|
---|
1176 | static int hmR0VmxLeaveRootMode(void)
|
---|
1177 | {
|
---|
1178 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1179 |
|
---|
1180 | /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
|
---|
1181 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
1182 |
|
---|
1183 | /* If we're for some reason not in VMX root mode, then don't leave it. */
|
---|
1184 | RTCCUINTREG const uHostCR4 = ASMGetCR4();
|
---|
1185 |
|
---|
1186 | int rc;
|
---|
1187 | if (uHostCR4 & X86_CR4_VMXE)
|
---|
1188 | {
|
---|
1189 | /* Exit VMX root mode and clear the VMX bit in CR4. */
|
---|
1190 | VMXDisable();
|
---|
1191 | SUPR0ChangeCR4(0 /* fOrMask */, ~X86_CR4_VMXE);
|
---|
1192 | rc = VINF_SUCCESS;
|
---|
1193 | }
|
---|
1194 | else
|
---|
1195 | rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
|
---|
1196 |
|
---|
1197 | /* Restore interrupts. */
|
---|
1198 | ASMSetFlags(fEFlags);
|
---|
1199 | return rc;
|
---|
1200 | }
|
---|
1201 |
|
---|
1202 |
|
---|
1203 | /**
|
---|
1204 | * Allocates and maps a physically contiguous page. The allocated page is
|
---|
1205 | * zero'd out (used by various VT-x structures).
|
---|
1206 | *
|
---|
1207 | * @returns IPRT status code.
|
---|
1208 | * @param pMemObj Pointer to the ring-0 memory object.
|
---|
1209 | * @param ppVirt Where to store the virtual address of the
|
---|
1210 | * allocation.
|
---|
1211 | * @param pHCPhys Where to store the physical address of the
|
---|
1212 | * allocation.
|
---|
1213 | */
|
---|
1214 | static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
|
---|
1215 | {
|
---|
1216 | AssertPtr(pMemObj);
|
---|
1217 | AssertPtr(ppVirt);
|
---|
1218 | AssertPtr(pHCPhys);
|
---|
1219 | int rc = RTR0MemObjAllocCont(pMemObj, X86_PAGE_4K_SIZE, false /* fExecutable */);
|
---|
1220 | if (RT_FAILURE(rc))
|
---|
1221 | return rc;
|
---|
1222 | *ppVirt = RTR0MemObjAddress(*pMemObj);
|
---|
1223 | *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
|
---|
1224 | ASMMemZero32(*ppVirt, X86_PAGE_4K_SIZE);
|
---|
1225 | return VINF_SUCCESS;
|
---|
1226 | }
|
---|
1227 |
|
---|
1228 |
|
---|
1229 | /**
|
---|
1230 | * Frees and unmaps an allocated, physical page.
|
---|
1231 | *
|
---|
1232 | * @param pMemObj Pointer to the ring-0 memory object.
|
---|
1233 | * @param ppVirt Where to re-initialize the virtual address of
|
---|
1234 | * allocation as 0.
|
---|
1235 | * @param pHCPhys Where to re-initialize the physical address of the
|
---|
1236 | * allocation as 0.
|
---|
1237 | */
|
---|
1238 | static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
|
---|
1239 | {
|
---|
1240 | AssertPtr(pMemObj);
|
---|
1241 | AssertPtr(ppVirt);
|
---|
1242 | AssertPtr(pHCPhys);
|
---|
1243 | /* NULL is valid, accepted and ignored by the free function below. */
|
---|
1244 | RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
|
---|
1245 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
1246 | *ppVirt = NULL;
|
---|
1247 | *pHCPhys = NIL_RTHCPHYS;
|
---|
1248 | }
|
---|
1249 |
|
---|
1250 |
|
---|
1251 | /**
|
---|
1252 | * Initializes a VMCS info. object.
|
---|
1253 | *
|
---|
1254 | * @param pVmcsInfo The VMCS info. object.
|
---|
1255 | */
|
---|
1256 | static void hmR0VmxInitVmcsInfo(PVMXVMCSINFO pVmcsInfo)
|
---|
1257 | {
|
---|
1258 | memset(pVmcsInfo, 0, sizeof(*pVmcsInfo));
|
---|
1259 |
|
---|
1260 | Assert(pVmcsInfo->hMemObjVmcs == NIL_RTR0MEMOBJ);
|
---|
1261 | Assert(pVmcsInfo->hMemObjMsrBitmap == NIL_RTR0MEMOBJ);
|
---|
1262 | Assert(pVmcsInfo->hMemObjGuestMsrLoad == NIL_RTR0MEMOBJ);
|
---|
1263 | Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
|
---|
1264 | Assert(pVmcsInfo->hMemObjHostMsrLoad == NIL_RTR0MEMOBJ);
|
---|
1265 | pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
|
---|
1266 | pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
|
---|
1267 | pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
|
---|
1268 | pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
|
---|
1269 | pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
|
---|
1270 | pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
|
---|
1271 | pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
|
---|
1272 | pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
|
---|
1273 | }
|
---|
1274 |
|
---|
1275 |
|
---|
1276 | /**
|
---|
1277 | * Frees the VT-x structures for a VMCS info. object.
|
---|
1278 | *
|
---|
1279 | * @param pVM The cross context VM structure.
|
---|
1280 | * @param pVmcsInfo The VMCS info. object.
|
---|
1281 | */
|
---|
1282 | static void hmR0VmxFreeVmcsInfo(PVM pVM, PVMXVMCSINFO pVmcsInfo)
|
---|
1283 | {
|
---|
1284 | hmR0VmxPageFree(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
|
---|
1285 |
|
---|
1286 | if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
1287 | hmR0VmxPageFree(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
|
---|
1288 |
|
---|
1289 | hmR0VmxPageFree(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad, &pVmcsInfo->HCPhysHostMsrLoad);
|
---|
1290 | hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad, &pVmcsInfo->HCPhysGuestMsrLoad);
|
---|
1291 | hmR0VmxPageFree(&pVmcsInfo->hMemObjGuestMsrStore, &pVmcsInfo->pvGuestMsrStore, &pVmcsInfo->HCPhysGuestMsrStore);
|
---|
1292 |
|
---|
1293 | hmR0VmxInitVmcsInfo(pVmcsInfo);
|
---|
1294 | }
|
---|
1295 |
|
---|
1296 |
|
---|
1297 | /**
|
---|
1298 | * Allocates the VT-x structures for a VMCS info. object.
|
---|
1299 | *
|
---|
1300 | * @returns VBox status code.
|
---|
1301 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1302 | * @param pVmcsInfo The VMCS info. object.
|
---|
1303 | * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
|
---|
1304 | */
|
---|
1305 | static int hmR0VmxAllocVmcsInfo(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
|
---|
1306 | {
|
---|
1307 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1308 |
|
---|
1309 | /* Allocate the guest VM control structure (VMCS). */
|
---|
1310 | int rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjVmcs, &pVmcsInfo->pvVmcs, &pVmcsInfo->HCPhysVmcs);
|
---|
1311 | if (RT_SUCCESS(rc))
|
---|
1312 | {
|
---|
1313 | if (!fIsNstGstVmcs)
|
---|
1314 | {
|
---|
1315 | /* Get the allocated virtual-APIC page from the virtual APIC device. */
|
---|
1316 | if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
|
---|
1317 | && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
|
---|
1318 | {
|
---|
1319 | rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic,
|
---|
1320 | NULL /* pR3Ptr */, NULL /* pRCPtr */);
|
---|
1321 | }
|
---|
1322 | }
|
---|
1323 | else
|
---|
1324 | {
|
---|
1325 | Assert(pVmcsInfo->HCPhysVirtApic == NIL_RTHCPHYS);
|
---|
1326 | Assert(!pVmcsInfo->pbVirtApic);
|
---|
1327 | }
|
---|
1328 |
|
---|
1329 | if (RT_SUCCESS(rc))
|
---|
1330 | {
|
---|
1331 | /*
|
---|
1332 | * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
|
---|
1333 | * transparent accesses of specific MSRs.
|
---|
1334 | *
|
---|
1335 | * If the condition for enabling MSR bitmaps changes here, don't forget to
|
---|
1336 | * update HMIsMsrBitmapActive().
|
---|
1337 | *
|
---|
1338 | * We don't share MSR bitmaps between the guest and nested-guest as we then
|
---|
1339 | * don't need to care about carefully restoring the guest MSR bitmap.
|
---|
1340 | * The guest visible nested-guest MSR bitmap needs to remain unchanged.
|
---|
1341 | * Hence, allocate a separate MSR bitmap for the guest and nested-guest.
|
---|
1342 | */
|
---|
1343 | if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
1344 | {
|
---|
1345 | rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjMsrBitmap, &pVmcsInfo->pvMsrBitmap, &pVmcsInfo->HCPhysMsrBitmap);
|
---|
1346 | if (RT_SUCCESS(rc))
|
---|
1347 | ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
|
---|
1348 | }
|
---|
1349 |
|
---|
1350 | if (RT_SUCCESS(rc))
|
---|
1351 | {
|
---|
1352 | /*
|
---|
1353 | * Allocate the VM-entry MSR-load area for the guest MSRs.
|
---|
1354 | *
|
---|
1355 | * Similar to MSR-bitmaps, we do not share the auto MSR-load/store are between
|
---|
1356 | * the guest and nested-guest.
|
---|
1357 | */
|
---|
1358 | rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad,
|
---|
1359 | &pVmcsInfo->HCPhysGuestMsrLoad);
|
---|
1360 | if (RT_SUCCESS(rc))
|
---|
1361 | {
|
---|
1362 | /*
|
---|
1363 | * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
|
---|
1364 | * These contain the guest MSRs to load on VM-entry and store on VM-exit.
|
---|
1365 | */
|
---|
1366 | Assert(pVmcsInfo->hMemObjGuestMsrStore == NIL_RTR0MEMOBJ);
|
---|
1367 | pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
|
---|
1368 | pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
|
---|
1369 |
|
---|
1370 | /* Allocate the VM-exit MSR-load page for the host MSRs. */
|
---|
1371 | rc = hmR0VmxPageAllocZ(&pVmcsInfo->hMemObjHostMsrLoad, &pVmcsInfo->pvHostMsrLoad,
|
---|
1372 | &pVmcsInfo->HCPhysHostMsrLoad);
|
---|
1373 | }
|
---|
1374 | }
|
---|
1375 | }
|
---|
1376 | }
|
---|
1377 |
|
---|
1378 | return rc;
|
---|
1379 | }
|
---|
1380 |
|
---|
1381 |
|
---|
1382 | /**
|
---|
1383 | * Free all VT-x structures for the VM.
|
---|
1384 | *
|
---|
1385 | * @returns IPRT status code.
|
---|
1386 | * @param pVM The cross context VM structure.
|
---|
1387 | */
|
---|
1388 | static void hmR0VmxStructsFree(PVM pVM)
|
---|
1389 | {
|
---|
1390 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
1391 | hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
|
---|
1392 | #endif
|
---|
1393 | hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
1394 |
|
---|
1395 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
1396 | {
|
---|
1397 | PVMCPU pVCpu = &pVM->aCpus[idCpu];
|
---|
1398 | PVMXVMCSINFO pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
|
---|
1399 | hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
|
---|
1400 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1401 | if (pVM->cpum.ro.GuestFeatures.fVmx)
|
---|
1402 | {
|
---|
1403 | pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
|
---|
1404 | hmR0VmxFreeVmcsInfo(pVM, pVmcsInfo);
|
---|
1405 | }
|
---|
1406 | #endif
|
---|
1407 | }
|
---|
1408 | }
|
---|
1409 |
|
---|
1410 |
|
---|
1411 | /**
|
---|
1412 | * Allocate all VT-x structures for the VM.
|
---|
1413 | *
|
---|
1414 | * @returns IPRT status code.
|
---|
1415 | * @param pVM The cross context VM structure.
|
---|
1416 | */
|
---|
1417 | static int hmR0VmxStructsAlloc(PVM pVM)
|
---|
1418 | {
|
---|
1419 | /*
|
---|
1420 | * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
|
---|
1421 | * The VMCS size cannot be more than 4096 bytes.
|
---|
1422 | *
|
---|
1423 | * See Intel spec. Appendix A.1 "Basic VMX Information".
|
---|
1424 | */
|
---|
1425 | uint32_t const cbVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
|
---|
1426 | if (cbVmcs <= X86_PAGE_4K_SIZE)
|
---|
1427 | { /* likely */ }
|
---|
1428 | else
|
---|
1429 | {
|
---|
1430 | pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
|
---|
1431 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 | /*
|
---|
1435 | * Initialize/check members up-front so we can cleanup en masse on allocation failures.
|
---|
1436 | */
|
---|
1437 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
1438 | Assert(pVM->hm.s.vmx.hMemObjScratch == NIL_RTR0MEMOBJ);
|
---|
1439 | Assert(pVM->hm.s.vmx.pbScratch == NULL);
|
---|
1440 | pVM->hm.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
|
---|
1441 | #endif
|
---|
1442 |
|
---|
1443 | Assert(pVM->hm.s.vmx.hMemObjApicAccess == NIL_RTR0MEMOBJ);
|
---|
1444 | Assert(pVM->hm.s.vmx.pbApicAccess == NULL);
|
---|
1445 | pVM->hm.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
|
---|
1446 |
|
---|
1447 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
1448 | {
|
---|
1449 | PVMCPU pVCpu = &pVM->aCpus[idCpu];
|
---|
1450 | hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfo);
|
---|
1451 | hmR0VmxInitVmcsInfo(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | /*
|
---|
1455 | * Allocate per-VM VT-x structures.
|
---|
1456 | */
|
---|
1457 | int rc = VINF_SUCCESS;
|
---|
1458 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
1459 | /* Allocate crash-dump magic scratch page. */
|
---|
1460 | rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
|
---|
1461 | if (RT_FAILURE(rc))
|
---|
1462 | {
|
---|
1463 | hmR0VmxStructsFree(pVM);
|
---|
1464 | return rc;
|
---|
1465 | }
|
---|
1466 | strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
|
---|
1467 | *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
|
---|
1468 | #endif
|
---|
1469 |
|
---|
1470 | /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
|
---|
1471 | if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
1472 | {
|
---|
1473 | rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
|
---|
1474 | &pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
1475 | if (RT_FAILURE(rc))
|
---|
1476 | {
|
---|
1477 | hmR0VmxStructsFree(pVM);
|
---|
1478 | return rc;
|
---|
1479 | }
|
---|
1480 | }
|
---|
1481 |
|
---|
1482 | /*
|
---|
1483 | * Initialize per-VCPU VT-x structures.
|
---|
1484 | */
|
---|
1485 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
1486 | {
|
---|
1487 | /* Allocate the guest VMCS structures. */
|
---|
1488 | PVMCPU pVCpu = &pVM->aCpus[idCpu];
|
---|
1489 | rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
|
---|
1490 | if (RT_SUCCESS(rc))
|
---|
1491 | {
|
---|
1492 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1493 | /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
|
---|
1494 | if (pVM->cpum.ro.GuestFeatures.fVmx)
|
---|
1495 | {
|
---|
1496 | rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
|
---|
1497 | if (RT_SUCCESS(rc))
|
---|
1498 | { /* likely */ }
|
---|
1499 | else
|
---|
1500 | break;
|
---|
1501 | }
|
---|
1502 | #endif
|
---|
1503 | }
|
---|
1504 | else
|
---|
1505 | break;
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 | if (RT_FAILURE(rc))
|
---|
1509 | {
|
---|
1510 | hmR0VmxStructsFree(pVM);
|
---|
1511 | return rc;
|
---|
1512 | }
|
---|
1513 |
|
---|
1514 | return VINF_SUCCESS;
|
---|
1515 | }
|
---|
1516 |
|
---|
1517 |
|
---|
1518 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1519 | /**
|
---|
1520 | * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
|
---|
1521 | *
|
---|
1522 | * @returns @c true if the MSR is intercepted, @c false otherwise.
|
---|
1523 | * @param pvMsrBitmap The MSR bitmap.
|
---|
1524 | * @param offMsr The MSR byte offset.
|
---|
1525 | * @param iBit The bit offset from the byte offset.
|
---|
1526 | */
|
---|
1527 | DECLINLINE(bool) hmR0VmxIsMsrBitSet(const void *pvMsrBitmap, uint16_t offMsr, int32_t iBit)
|
---|
1528 | {
|
---|
1529 | uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
|
---|
1530 | Assert(pbMsrBitmap);
|
---|
1531 | Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
|
---|
1532 | return ASMBitTest(pbMsrBitmap + offMsr, iBit);
|
---|
1533 | }
|
---|
1534 | #endif
|
---|
1535 |
|
---|
1536 |
|
---|
1537 | /**
|
---|
1538 | * Sets the permission bits for the specified MSR in the given MSR bitmap.
|
---|
1539 | *
|
---|
1540 | * If the passed VMCS is a nested-guest VMCS, this function ensures that the
|
---|
1541 | * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
|
---|
1542 | * VMX execution of the nested-guest, only if nested-guest is also not intercepting
|
---|
1543 | * the read/write access of this MSR.
|
---|
1544 | *
|
---|
1545 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1546 | * @param pVmcsInfo The VMCS info. object.
|
---|
1547 | * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
|
---|
1548 | * @param idMsr The MSR value.
|
---|
1549 | * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
|
---|
1550 | * include both a read -and- a write permission!
|
---|
1551 | *
|
---|
1552 | * @sa HMGetVmxMsrPermission.
|
---|
1553 | * @remarks Can be called with interrupts disabled.
|
---|
1554 | */
|
---|
1555 | static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
|
---|
1556 | {
|
---|
1557 | uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
|
---|
1558 | Assert(pbMsrBitmap);
|
---|
1559 | Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
|
---|
1560 |
|
---|
1561 | /*
|
---|
1562 | * MSR-bitmap Layout:
|
---|
1563 | * Byte index MSR range Interpreted as
|
---|
1564 | * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
|
---|
1565 | * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
|
---|
1566 | * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
|
---|
1567 | * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
|
---|
1568 | *
|
---|
1569 | * A bit corresponding to an MSR within the above range causes a VM-exit
|
---|
1570 | * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
|
---|
1571 | * the MSR range, it always cause a VM-exit.
|
---|
1572 | *
|
---|
1573 | * See Intel spec. 24.6.9 "MSR-Bitmap Address".
|
---|
1574 | */
|
---|
1575 | uint16_t const offBitmapRead = 0;
|
---|
1576 | uint16_t const offBitmapWrite = 0x800;
|
---|
1577 | uint16_t offMsr;
|
---|
1578 | int32_t iBit;
|
---|
1579 | if (idMsr <= UINT32_C(0x00001fff))
|
---|
1580 | {
|
---|
1581 | offMsr = 0;
|
---|
1582 | iBit = idMsr;
|
---|
1583 | }
|
---|
1584 | else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
|
---|
1585 | {
|
---|
1586 | offMsr = 0x400;
|
---|
1587 | iBit = idMsr - UINT32_C(0xc0000000);
|
---|
1588 | }
|
---|
1589 | else
|
---|
1590 | AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
|
---|
1591 |
|
---|
1592 | /*
|
---|
1593 | * Set the MSR read permission.
|
---|
1594 | */
|
---|
1595 | uint16_t const offMsrRead = offBitmapRead + offMsr;
|
---|
1596 | Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
|
---|
1597 | if (fMsrpm & VMXMSRPM_ALLOW_RD)
|
---|
1598 | {
|
---|
1599 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1600 | bool const fClear = !fIsNstGstVmcs ? true
|
---|
1601 | : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrRead, iBit);
|
---|
1602 | #else
|
---|
1603 | RT_NOREF2(pVCpu, fIsNstGstVmcs);
|
---|
1604 | bool const fClear = true;
|
---|
1605 | #endif
|
---|
1606 | if (fClear)
|
---|
1607 | ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
|
---|
1608 | }
|
---|
1609 | else
|
---|
1610 | ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
|
---|
1611 |
|
---|
1612 | /*
|
---|
1613 | * Set the MSR write permission.
|
---|
1614 | */
|
---|
1615 | uint16_t const offMsrWrite = offBitmapWrite + offMsr;
|
---|
1616 | Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
|
---|
1617 | if (fMsrpm & VMXMSRPM_ALLOW_WR)
|
---|
1618 | {
|
---|
1619 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1620 | bool const fClear = !fIsNstGstVmcs ? true
|
---|
1621 | : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrWrite, iBit);
|
---|
1622 | #else
|
---|
1623 | RT_NOREF2(pVCpu, fIsNstGstVmcs);
|
---|
1624 | bool const fClear = true;
|
---|
1625 | #endif
|
---|
1626 | if (fClear)
|
---|
1627 | ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
|
---|
1628 | }
|
---|
1629 | else
|
---|
1630 | ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
|
---|
1631 | }
|
---|
1632 |
|
---|
1633 |
|
---|
1634 | /**
|
---|
1635 | * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
|
---|
1636 | * area.
|
---|
1637 | *
|
---|
1638 | * @returns VBox status code.
|
---|
1639 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1640 | * @param pVmcsInfo The VMCS info. object.
|
---|
1641 | * @param cMsrs The number of MSRs.
|
---|
1642 | */
|
---|
1643 | static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
|
---|
1644 | {
|
---|
1645 | /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
|
---|
1646 | uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
|
---|
1647 | if (RT_LIKELY(cMsrs < cMaxSupportedMsrs))
|
---|
1648 | {
|
---|
1649 | /* Commit the MSR counts to the VMCS and update the cache. */
|
---|
1650 | if (pVmcsInfo->cEntryMsrLoad != cMsrs)
|
---|
1651 | {
|
---|
1652 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
|
---|
1653 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
|
---|
1654 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
|
---|
1655 | AssertRCReturn(rc, rc);
|
---|
1656 |
|
---|
1657 | pVmcsInfo->cEntryMsrLoad = cMsrs;
|
---|
1658 | pVmcsInfo->cExitMsrStore = cMsrs;
|
---|
1659 | pVmcsInfo->cExitMsrLoad = cMsrs;
|
---|
1660 | }
|
---|
1661 | return VINF_SUCCESS;
|
---|
1662 | }
|
---|
1663 |
|
---|
1664 | LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u MaxSupported=%u\n", cMsrs, cMaxSupportedMsrs));
|
---|
1665 | pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
|
---|
1666 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1667 | }
|
---|
1668 |
|
---|
1669 |
|
---|
1670 | /**
|
---|
1671 | * Adds a new (or updates the value of an existing) guest/host MSR
|
---|
1672 | * pair to be swapped during the world-switch as part of the
|
---|
1673 | * auto-load/store MSR area in the VMCS.
|
---|
1674 | *
|
---|
1675 | * @returns VBox status code.
|
---|
1676 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1677 | * @param pVmxTransient The VMX-transient structure.
|
---|
1678 | * @param idMsr The MSR.
|
---|
1679 | * @param uGuestMsrValue Value of the guest MSR.
|
---|
1680 | * @param fSetReadWrite Whether to set the guest read/write access of this
|
---|
1681 | * MSR (thus not causing a VM-exit).
|
---|
1682 | * @param fUpdateHostMsr Whether to update the value of the host MSR if
|
---|
1683 | * necessary.
|
---|
1684 | */
|
---|
1685 | static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
|
---|
1686 | bool fSetReadWrite, bool fUpdateHostMsr)
|
---|
1687 | {
|
---|
1688 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
1689 | bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
|
---|
1690 | PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
|
---|
1691 | uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
|
---|
1692 | uint32_t i;
|
---|
1693 |
|
---|
1694 | /* Paranoia. */
|
---|
1695 | Assert(pGuestMsrLoad);
|
---|
1696 |
|
---|
1697 | LogFlowFunc(("pVCpu=%p idMsr=%#RX32 uGestMsrValue=%#RX64\n", pVCpu, idMsr, uGuestMsrValue));
|
---|
1698 |
|
---|
1699 | /* Check if the MSR already exists in the VM-entry MSR-load area. */
|
---|
1700 | for (i = 0; i < cMsrs; i++)
|
---|
1701 | {
|
---|
1702 | if (pGuestMsrLoad[i].u32Msr == idMsr)
|
---|
1703 | break;
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 | bool fAdded = false;
|
---|
1707 | if (i == cMsrs)
|
---|
1708 | {
|
---|
1709 | /* The MSR does not exist, bump the MSR count to make room for the new MSR. */
|
---|
1710 | ++cMsrs;
|
---|
1711 | int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
|
---|
1712 | AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
|
---|
1713 |
|
---|
1714 | /* Set the guest to read/write this MSR without causing VM-exits. */
|
---|
1715 | if ( fSetReadWrite
|
---|
1716 | && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
|
---|
1717 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
|
---|
1718 |
|
---|
1719 | LogFlowFunc(("MSR added, cMsrs now %u\n", cMsrs));
|
---|
1720 | fAdded = true;
|
---|
1721 | }
|
---|
1722 |
|
---|
1723 | /* Update the MSR value for the newly added or already existing MSR. */
|
---|
1724 | pGuestMsrLoad[i].u32Msr = idMsr;
|
---|
1725 | pGuestMsrLoad[i].u64Value = uGuestMsrValue;
|
---|
1726 |
|
---|
1727 | /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
|
---|
1728 | if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
|
---|
1729 | {
|
---|
1730 | PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
|
---|
1731 | pGuestMsrStore[i].u32Msr = idMsr;
|
---|
1732 | pGuestMsrStore[i].u64Value = uGuestMsrValue;
|
---|
1733 | }
|
---|
1734 |
|
---|
1735 | /* Update the corresponding slot in the host MSR area. */
|
---|
1736 | PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
|
---|
1737 | Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad);
|
---|
1738 | Assert(pHostMsr != pVmcsInfo->pvGuestMsrStore);
|
---|
1739 | pHostMsr[i].u32Msr = idMsr;
|
---|
1740 |
|
---|
1741 | /*
|
---|
1742 | * Only if the caller requests to update the host MSR value AND we've newly added the
|
---|
1743 | * MSR to the host MSR area do we actually update the value. Otherwise, it will be
|
---|
1744 | * updated by hmR0VmxUpdateAutoLoadHostMsrs().
|
---|
1745 | *
|
---|
1746 | * We do this for performance reasons since reading MSRs may be quite expensive.
|
---|
1747 | */
|
---|
1748 | if (fAdded)
|
---|
1749 | {
|
---|
1750 | if (fUpdateHostMsr)
|
---|
1751 | {
|
---|
1752 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1753 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1754 | pHostMsr[i].u64Value = ASMRdMsr(idMsr);
|
---|
1755 | }
|
---|
1756 | else
|
---|
1757 | {
|
---|
1758 | /* Someone else can do the work. */
|
---|
1759 | pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
|
---|
1760 | }
|
---|
1761 | }
|
---|
1762 | return VINF_SUCCESS;
|
---|
1763 | }
|
---|
1764 |
|
---|
1765 |
|
---|
1766 | /**
|
---|
1767 | * Removes a guest/host MSR pair to be swapped during the world-switch from the
|
---|
1768 | * auto-load/store MSR area in the VMCS.
|
---|
1769 | *
|
---|
1770 | * @returns VBox status code.
|
---|
1771 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1772 | * @param pVmxTransient The VMX-transient structure.
|
---|
1773 | * @param idMsr The MSR.
|
---|
1774 | */
|
---|
1775 | static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t idMsr)
|
---|
1776 | {
|
---|
1777 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
1778 | bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
|
---|
1779 | PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
|
---|
1780 | uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
|
---|
1781 |
|
---|
1782 | LogFlowFunc(("pVCpu=%p idMsr=%#RX32\n", pVCpu, idMsr));
|
---|
1783 |
|
---|
1784 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
1785 | {
|
---|
1786 | /* Find the MSR. */
|
---|
1787 | if (pGuestMsrLoad[i].u32Msr == idMsr)
|
---|
1788 | {
|
---|
1789 | /*
|
---|
1790 | * If it's the last MSR, we only need to reduce the MSR count.
|
---|
1791 | * If it's -not- the last MSR, copy the last MSR in place of it and reduce the MSR count.
|
---|
1792 | */
|
---|
1793 | if (i < cMsrs - 1)
|
---|
1794 | {
|
---|
1795 | /* Remove it from the VM-entry MSR-load area. */
|
---|
1796 | pGuestMsrLoad[i].u32Msr = pGuestMsrLoad[cMsrs - 1].u32Msr;
|
---|
1797 | pGuestMsrLoad[i].u64Value = pGuestMsrLoad[cMsrs - 1].u64Value;
|
---|
1798 |
|
---|
1799 | /* Remove it from the VM-exit MSR-store area if it's in a different page. */
|
---|
1800 | if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
|
---|
1801 | {
|
---|
1802 | PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
|
---|
1803 | Assert(pGuestMsrStore[i].u32Msr == idMsr);
|
---|
1804 | pGuestMsrStore[i].u32Msr = pGuestMsrStore[cMsrs - 1].u32Msr;
|
---|
1805 | pGuestMsrStore[i].u64Value = pGuestMsrStore[cMsrs - 1].u64Value;
|
---|
1806 | }
|
---|
1807 |
|
---|
1808 | /* Remove it from the VM-exit MSR-load area. */
|
---|
1809 | PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
|
---|
1810 | Assert(pHostMsr[i].u32Msr == idMsr);
|
---|
1811 | pHostMsr[i].u32Msr = pHostMsr[cMsrs - 1].u32Msr;
|
---|
1812 | pHostMsr[i].u64Value = pHostMsr[cMsrs - 1].u64Value;
|
---|
1813 | }
|
---|
1814 |
|
---|
1815 | /* Reduce the count to reflect the removed MSR and bail. */
|
---|
1816 | --cMsrs;
|
---|
1817 | break;
|
---|
1818 | }
|
---|
1819 | }
|
---|
1820 |
|
---|
1821 | /* Update the VMCS if the count changed (meaning the MSR was found and removed). */
|
---|
1822 | if (cMsrs != pVmcsInfo->cEntryMsrLoad)
|
---|
1823 | {
|
---|
1824 | int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
|
---|
1825 | AssertRCReturn(rc, rc);
|
---|
1826 |
|
---|
1827 | /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
|
---|
1828 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
1829 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
|
---|
1830 |
|
---|
1831 | Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
|
---|
1832 | return VINF_SUCCESS;
|
---|
1833 | }
|
---|
1834 |
|
---|
1835 | return VERR_NOT_FOUND;
|
---|
1836 | }
|
---|
1837 |
|
---|
1838 |
|
---|
1839 | /**
|
---|
1840 | * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
|
---|
1841 | *
|
---|
1842 | * @returns @c true if found, @c false otherwise.
|
---|
1843 | * @param pVmcsInfo The VMCS info. object.
|
---|
1844 | * @param idMsr The MSR to find.
|
---|
1845 | */
|
---|
1846 | static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
|
---|
1847 | {
|
---|
1848 | PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
|
---|
1849 | uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
|
---|
1850 | Assert(pMsrs);
|
---|
1851 | Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
|
---|
1852 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
1853 | {
|
---|
1854 | if (pMsrs[i].u32Msr == idMsr)
|
---|
1855 | return true;
|
---|
1856 | }
|
---|
1857 | return false;
|
---|
1858 | }
|
---|
1859 |
|
---|
1860 |
|
---|
1861 | /**
|
---|
1862 | * Updates the value of all host MSRs in the VM-exit MSR-load area.
|
---|
1863 | *
|
---|
1864 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1865 | * @param pVmcsInfo The VMCS info. object.
|
---|
1866 | *
|
---|
1867 | * @remarks No-long-jump zone!!!
|
---|
1868 | */
|
---|
1869 | static void hmR0VmxUpdateAutoLoadHostMsrs(PCVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
1870 | {
|
---|
1871 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1872 |
|
---|
1873 | PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
|
---|
1874 | uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
|
---|
1875 | Assert(pHostMsrLoad);
|
---|
1876 | Assert(sizeof(*pHostMsrLoad) * cMsrs <= X86_PAGE_4K_SIZE);
|
---|
1877 | LogFlowFunc(("pVCpu=%p cMsrs=%u\n", pVCpu, cMsrs));
|
---|
1878 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
1879 | {
|
---|
1880 | /*
|
---|
1881 | * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
|
---|
1882 | * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
|
---|
1883 | */
|
---|
1884 | if (pHostMsrLoad[i].u32Msr == MSR_K6_EFER)
|
---|
1885 | pHostMsrLoad[i].u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
|
---|
1886 | else
|
---|
1887 | pHostMsrLoad[i].u64Value = ASMRdMsr(pHostMsrLoad[i].u32Msr);
|
---|
1888 | }
|
---|
1889 | }
|
---|
1890 |
|
---|
1891 |
|
---|
1892 | /**
|
---|
1893 | * Saves a set of host MSRs to allow read/write passthru access to the guest and
|
---|
1894 | * perform lazy restoration of the host MSRs while leaving VT-x.
|
---|
1895 | *
|
---|
1896 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1897 | *
|
---|
1898 | * @remarks No-long-jump zone!!!
|
---|
1899 | */
|
---|
1900 | static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
|
---|
1901 | {
|
---|
1902 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1903 |
|
---|
1904 | /*
|
---|
1905 | * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
|
---|
1906 | */
|
---|
1907 | if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
|
---|
1908 | {
|
---|
1909 | Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
|
---|
1910 | #if HC_ARCH_BITS == 64
|
---|
1911 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
|
---|
1912 | {
|
---|
1913 | pVCpu->hm.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
|
---|
1914 | pVCpu->hm.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
|
---|
1915 | pVCpu->hm.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
|
---|
1916 | pVCpu->hm.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
|
---|
1917 | }
|
---|
1918 | #endif
|
---|
1919 | pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
|
---|
1920 | }
|
---|
1921 | }
|
---|
1922 |
|
---|
1923 |
|
---|
1924 | /**
|
---|
1925 | * Checks whether the MSR belongs to the set of guest MSRs that we restore
|
---|
1926 | * lazily while leaving VT-x.
|
---|
1927 | *
|
---|
1928 | * @returns true if it does, false otherwise.
|
---|
1929 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1930 | * @param idMsr The MSR to check.
|
---|
1931 | */
|
---|
1932 | static bool hmR0VmxIsLazyGuestMsr(PCVMCPU pVCpu, uint32_t idMsr)
|
---|
1933 | {
|
---|
1934 | NOREF(pVCpu);
|
---|
1935 | #if HC_ARCH_BITS == 64
|
---|
1936 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
|
---|
1937 | {
|
---|
1938 | switch (idMsr)
|
---|
1939 | {
|
---|
1940 | case MSR_K8_LSTAR:
|
---|
1941 | case MSR_K6_STAR:
|
---|
1942 | case MSR_K8_SF_MASK:
|
---|
1943 | case MSR_K8_KERNEL_GS_BASE:
|
---|
1944 | return true;
|
---|
1945 | }
|
---|
1946 | }
|
---|
1947 | #else
|
---|
1948 | RT_NOREF(pVCpu, idMsr);
|
---|
1949 | #endif
|
---|
1950 | return false;
|
---|
1951 | }
|
---|
1952 |
|
---|
1953 |
|
---|
1954 | /**
|
---|
1955 | * Loads a set of guests MSRs to allow read/passthru to the guest.
|
---|
1956 | *
|
---|
1957 | * The name of this function is slightly confusing. This function does NOT
|
---|
1958 | * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
|
---|
1959 | * common prefix for functions dealing with "lazy restoration" of the shared
|
---|
1960 | * MSRs.
|
---|
1961 | *
|
---|
1962 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1963 | *
|
---|
1964 | * @remarks No-long-jump zone!!!
|
---|
1965 | */
|
---|
1966 | static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
|
---|
1967 | {
|
---|
1968 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1969 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1970 |
|
---|
1971 | Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
|
---|
1972 | #if HC_ARCH_BITS == 64
|
---|
1973 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
|
---|
1974 | {
|
---|
1975 | /*
|
---|
1976 | * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
|
---|
1977 | * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
|
---|
1978 | * we can skip a few MSR writes.
|
---|
1979 | *
|
---|
1980 | * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
|
---|
1981 | * guest MSR values in the guest-CPU context might be different to what's currently
|
---|
1982 | * loaded in the CPU. In either case, we need to write the new guest MSR values to the
|
---|
1983 | * CPU, see @bugref{8728}.
|
---|
1984 | */
|
---|
1985 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1986 | if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
1987 | && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostMsrKernelGsBase
|
---|
1988 | && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostMsrLStar
|
---|
1989 | && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostMsrStar
|
---|
1990 | && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostMsrSfMask)
|
---|
1991 | {
|
---|
1992 | #ifdef VBOX_STRICT
|
---|
1993 | Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
|
---|
1994 | Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
|
---|
1995 | Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
|
---|
1996 | Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
|
---|
1997 | #endif
|
---|
1998 | }
|
---|
1999 | else
|
---|
2000 | {
|
---|
2001 | ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
|
---|
2002 | ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
|
---|
2003 | ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
|
---|
2004 | ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
|
---|
2005 | }
|
---|
2006 | }
|
---|
2007 | #endif
|
---|
2008 | pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
|
---|
2009 | }
|
---|
2010 |
|
---|
2011 |
|
---|
2012 | /**
|
---|
2013 | * Performs lazy restoration of the set of host MSRs if they were previously
|
---|
2014 | * loaded with guest MSR values.
|
---|
2015 | *
|
---|
2016 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2017 | *
|
---|
2018 | * @remarks No-long-jump zone!!!
|
---|
2019 | * @remarks The guest MSRs should have been saved back into the guest-CPU
|
---|
2020 | * context by hmR0VmxImportGuestState()!!!
|
---|
2021 | */
|
---|
2022 | static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
|
---|
2023 | {
|
---|
2024 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2025 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2026 |
|
---|
2027 | if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
2028 | {
|
---|
2029 | Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
|
---|
2030 | #if HC_ARCH_BITS == 64
|
---|
2031 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
|
---|
2032 | {
|
---|
2033 | ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostMsrLStar);
|
---|
2034 | ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostMsrStar);
|
---|
2035 | ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostMsrSfMask);
|
---|
2036 | ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostMsrKernelGsBase);
|
---|
2037 | }
|
---|
2038 | #endif
|
---|
2039 | }
|
---|
2040 | pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
|
---|
2041 | }
|
---|
2042 |
|
---|
2043 |
|
---|
2044 | /**
|
---|
2045 | * Verifies that our cached values of the VMCS fields are all consistent with
|
---|
2046 | * what's actually present in the VMCS.
|
---|
2047 | *
|
---|
2048 | * @returns VBox status code.
|
---|
2049 | * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
|
---|
2050 | * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
|
---|
2051 | * VMCS content. HMCPU error-field is
|
---|
2052 | * updated, see VMX_VCI_XXX.
|
---|
2053 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2054 | * @param pVmcsInfo The VMCS info. object.
|
---|
2055 | */
|
---|
2056 | static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
2057 | {
|
---|
2058 | uint32_t u32Val;
|
---|
2059 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
|
---|
2060 | AssertRCReturn(rc, rc);
|
---|
2061 | AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
|
---|
2062 | ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32EntryCtls, u32Val),
|
---|
2063 | pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
|
---|
2064 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
2065 |
|
---|
2066 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
|
---|
2067 | AssertRCReturn(rc, rc);
|
---|
2068 | AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
|
---|
2069 | ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ExitCtls, u32Val),
|
---|
2070 | pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
|
---|
2071 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
2072 |
|
---|
2073 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
|
---|
2074 | AssertRCReturn(rc, rc);
|
---|
2075 | AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
|
---|
2076 | ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32PinCtls, u32Val),
|
---|
2077 | pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
|
---|
2078 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
2079 |
|
---|
2080 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
|
---|
2081 | AssertRCReturn(rc, rc);
|
---|
2082 | AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
|
---|
2083 | ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls, u32Val),
|
---|
2084 | pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
|
---|
2085 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
2086 |
|
---|
2087 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
2088 | {
|
---|
2089 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
|
---|
2090 | AssertRCReturn(rc, rc);
|
---|
2091 | AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
|
---|
2092 | ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32ProcCtls2, u32Val),
|
---|
2093 | pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
|
---|
2094 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
2095 | }
|
---|
2096 |
|
---|
2097 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
|
---|
2098 | AssertRCReturn(rc, rc);
|
---|
2099 | AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
|
---|
2100 | ("Cache=%#RX32 VMCS=%#RX32\n", pVmcsInfo->u32XcptBitmap, u32Val),
|
---|
2101 | pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
|
---|
2102 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
2103 |
|
---|
2104 | uint64_t u64Val;
|
---|
2105 | rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
|
---|
2106 | AssertRCReturn(rc, rc);
|
---|
2107 | AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
|
---|
2108 | ("Cache=%#RX64 VMCS=%#RX64\n", pVmcsInfo->u64TscOffset, u64Val),
|
---|
2109 | pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
|
---|
2110 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
2111 |
|
---|
2112 | return VINF_SUCCESS;
|
---|
2113 | }
|
---|
2114 |
|
---|
2115 |
|
---|
2116 | #ifdef VBOX_STRICT
|
---|
2117 | /**
|
---|
2118 | * Verifies that our cached host EFER MSR value has not changed since we cached it.
|
---|
2119 | *
|
---|
2120 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2121 | * @param pVmcsInfo The VMCS info. object.
|
---|
2122 | */
|
---|
2123 | static void hmR0VmxCheckHostEferMsr(PCVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
2124 | {
|
---|
2125 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2126 |
|
---|
2127 | if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
|
---|
2128 | {
|
---|
2129 | uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
|
---|
2130 | uint64_t const uHostEferMsrCache = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
|
---|
2131 | uint64_t uVmcsEferMsrVmcs;
|
---|
2132 | int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
|
---|
2133 | AssertRC(rc);
|
---|
2134 |
|
---|
2135 | AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
|
---|
2136 | ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
|
---|
2137 | AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
|
---|
2138 | ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
|
---|
2139 | }
|
---|
2140 | }
|
---|
2141 |
|
---|
2142 |
|
---|
2143 | /**
|
---|
2144 | * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
|
---|
2145 | * VMCS are correct.
|
---|
2146 | *
|
---|
2147 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2148 | * @param pVmcsInfo The VMCS info. object.
|
---|
2149 | */
|
---|
2150 | static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
2151 | {
|
---|
2152 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2153 |
|
---|
2154 | /* Read the various MSR-area counts from the VMCS. */
|
---|
2155 | uint32_t cEntryLoadMsrs;
|
---|
2156 | uint32_t cExitStoreMsrs;
|
---|
2157 | uint32_t cExitLoadMsrs;
|
---|
2158 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cEntryLoadMsrs); AssertRC(rc);
|
---|
2159 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cExitStoreMsrs); AssertRC(rc);
|
---|
2160 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cExitLoadMsrs); AssertRC(rc);
|
---|
2161 |
|
---|
2162 | /* Verify all the MSR counts are the same. */
|
---|
2163 | Assert(cEntryLoadMsrs == cExitStoreMsrs);
|
---|
2164 | Assert(cExitStoreMsrs == cExitLoadMsrs);
|
---|
2165 | uint32_t const cMsrs = cExitLoadMsrs;
|
---|
2166 |
|
---|
2167 | /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
|
---|
2168 | Assert(cMsrs < VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc));
|
---|
2169 |
|
---|
2170 | /* Verify the MSR counts are within the allocated page size. */
|
---|
2171 | Assert(sizeof(VMXAUTOMSR) * cMsrs <= X86_PAGE_4K_SIZE);
|
---|
2172 |
|
---|
2173 | /* Verify the relevant contents of the MSR areas match. */
|
---|
2174 | PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
|
---|
2175 | PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
|
---|
2176 | PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
|
---|
2177 | bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
|
---|
2178 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
2179 | {
|
---|
2180 | /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
|
---|
2181 | if (fSeparateExitMsrStorePage)
|
---|
2182 | {
|
---|
2183 | AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
|
---|
2184 | ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
|
---|
2185 | pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
|
---|
2186 | }
|
---|
2187 |
|
---|
2188 | AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
|
---|
2189 | ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
|
---|
2190 | pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
|
---|
2191 |
|
---|
2192 | uint64_t const u64Msr = ASMRdMsr(pHostMsrLoad->u32Msr);
|
---|
2193 | AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64Msr,
|
---|
2194 | ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
|
---|
2195 | pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64Msr, cMsrs));
|
---|
2196 |
|
---|
2197 | /* Verify that cached host EFER MSR matches what's loaded the CPU. */
|
---|
2198 | bool const fIsEferMsr = RT_BOOL(pHostMsrLoad->u32Msr == MSR_K6_EFER);
|
---|
2199 | if (fIsEferMsr)
|
---|
2200 | {
|
---|
2201 | AssertMsgReturnVoid(u64Msr == pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer,
|
---|
2202 | ("Cached=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
|
---|
2203 | pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer, u64Msr, cMsrs));
|
---|
2204 | }
|
---|
2205 |
|
---|
2206 | /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
|
---|
2207 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
2208 | {
|
---|
2209 | uint32_t const fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
|
---|
2210 | if (fIsEferMsr)
|
---|
2211 | {
|
---|
2212 | AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
|
---|
2213 | AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
|
---|
2214 | }
|
---|
2215 | else
|
---|
2216 | {
|
---|
2217 | AssertMsgReturnVoid((fMsrpm & VMXMSRPM_ALLOW_RD_WR) == VMXMSRPM_ALLOW_RD_WR,
|
---|
2218 | ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
|
---|
2219 | }
|
---|
2220 | }
|
---|
2221 |
|
---|
2222 | /* Move to the next MSR. */
|
---|
2223 | pHostMsrLoad++;
|
---|
2224 | pGuestMsrLoad++;
|
---|
2225 | pGuestMsrStore++;
|
---|
2226 | }
|
---|
2227 | }
|
---|
2228 | #endif /* VBOX_STRICT */
|
---|
2229 |
|
---|
2230 |
|
---|
2231 | /**
|
---|
2232 | * Flushes the TLB using EPT.
|
---|
2233 | *
|
---|
2234 | * @returns VBox status code.
|
---|
2235 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2236 | * EMT. Can be NULL depending on @a enmTlbFlush.
|
---|
2237 | * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
|
---|
2238 | * enmTlbFlush.
|
---|
2239 | * @param enmTlbFlush Type of flush.
|
---|
2240 | *
|
---|
2241 | * @remarks Caller is responsible for making sure this function is called only
|
---|
2242 | * when NestedPaging is supported and providing @a enmTlbFlush that is
|
---|
2243 | * supported by the CPU.
|
---|
2244 | * @remarks Can be called with interrupts disabled.
|
---|
2245 | */
|
---|
2246 | static void hmR0VmxFlushEpt(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
|
---|
2247 | {
|
---|
2248 | uint64_t au64Descriptor[2];
|
---|
2249 | if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
|
---|
2250 | au64Descriptor[0] = 0;
|
---|
2251 | else
|
---|
2252 | {
|
---|
2253 | Assert(pVCpu);
|
---|
2254 | Assert(pVmcsInfo);
|
---|
2255 | au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
|
---|
2256 | }
|
---|
2257 | au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
|
---|
2258 |
|
---|
2259 | int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
|
---|
2260 | AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
|
---|
2261 |
|
---|
2262 | if ( RT_SUCCESS(rc)
|
---|
2263 | && pVCpu)
|
---|
2264 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
|
---|
2265 | }
|
---|
2266 |
|
---|
2267 |
|
---|
2268 | /**
|
---|
2269 | * Flushes the TLB using VPID.
|
---|
2270 | *
|
---|
2271 | * @returns VBox status code.
|
---|
2272 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2273 | * EMT. Can be NULL depending on @a enmTlbFlush.
|
---|
2274 | * @param enmTlbFlush Type of flush.
|
---|
2275 | * @param GCPtr Virtual address of the page to flush (can be 0 depending
|
---|
2276 | * on @a enmTlbFlush).
|
---|
2277 | *
|
---|
2278 | * @remarks Can be called with interrupts disabled.
|
---|
2279 | */
|
---|
2280 | static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
|
---|
2281 | {
|
---|
2282 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
|
---|
2283 |
|
---|
2284 | uint64_t au64Descriptor[2];
|
---|
2285 | if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
|
---|
2286 | {
|
---|
2287 | au64Descriptor[0] = 0;
|
---|
2288 | au64Descriptor[1] = 0;
|
---|
2289 | }
|
---|
2290 | else
|
---|
2291 | {
|
---|
2292 | AssertPtr(pVCpu);
|
---|
2293 | AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
|
---|
2294 | AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
|
---|
2295 | au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
|
---|
2296 | au64Descriptor[1] = GCPtr;
|
---|
2297 | }
|
---|
2298 |
|
---|
2299 | int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
|
---|
2300 | AssertMsg(rc == VINF_SUCCESS,
|
---|
2301 | ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
|
---|
2302 |
|
---|
2303 | if ( RT_SUCCESS(rc)
|
---|
2304 | && pVCpu)
|
---|
2305 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
2306 | NOREF(rc);
|
---|
2307 | }
|
---|
2308 |
|
---|
2309 |
|
---|
2310 | /**
|
---|
2311 | * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
|
---|
2312 | * otherwise there is nothing really to invalidate.
|
---|
2313 | *
|
---|
2314 | * @returns VBox status code.
|
---|
2315 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2316 | * @param GCVirt Guest virtual address of the page to invalidate.
|
---|
2317 | */
|
---|
2318 | VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
|
---|
2319 | {
|
---|
2320 | AssertPtr(pVCpu);
|
---|
2321 | LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
|
---|
2322 |
|
---|
2323 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
2324 | {
|
---|
2325 | /*
|
---|
2326 | * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
|
---|
2327 | * the EPT case. See @bugref{6043} and @bugref{6177}.
|
---|
2328 | *
|
---|
2329 | * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
|
---|
2330 | * as this function maybe called in a loop with individual addresses.
|
---|
2331 | */
|
---|
2332 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2333 | if (pVM->hm.s.vmx.fVpid)
|
---|
2334 | {
|
---|
2335 | bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
|
---|
2336 |
|
---|
2337 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
2338 | /*
|
---|
2339 | * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
|
---|
2340 | * where executing INVVPID outside 64-bit mode does not flush translations of
|
---|
2341 | * 64-bit linear addresses, see @bugref{6208#c72}.
|
---|
2342 | */
|
---|
2343 | if (RT_HI_U32(GCVirt))
|
---|
2344 | fVpidFlush = false;
|
---|
2345 | #endif
|
---|
2346 |
|
---|
2347 | if (fVpidFlush)
|
---|
2348 | {
|
---|
2349 | hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
|
---|
2350 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
|
---|
2351 | }
|
---|
2352 | else
|
---|
2353 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
2354 | }
|
---|
2355 | else if (pVM->hm.s.fNestedPaging)
|
---|
2356 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
2357 | }
|
---|
2358 |
|
---|
2359 | return VINF_SUCCESS;
|
---|
2360 | }
|
---|
2361 |
|
---|
2362 |
|
---|
2363 | /**
|
---|
2364 | * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
|
---|
2365 | * case where neither EPT nor VPID is supported by the CPU.
|
---|
2366 | *
|
---|
2367 | * @param pHostCpu The HM physical-CPU structure.
|
---|
2368 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2369 | *
|
---|
2370 | * @remarks Called with interrupts disabled.
|
---|
2371 | */
|
---|
2372 | static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
|
---|
2373 | {
|
---|
2374 | AssertPtr(pVCpu);
|
---|
2375 | AssertPtr(pHostCpu);
|
---|
2376 |
|
---|
2377 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
2378 |
|
---|
2379 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
2380 | pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
|
---|
2381 | pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
2382 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
2383 | return;
|
---|
2384 | }
|
---|
2385 |
|
---|
2386 |
|
---|
2387 | /**
|
---|
2388 | * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
|
---|
2389 | *
|
---|
2390 | * @param pHostCpu The HM physical-CPU structure.
|
---|
2391 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2392 | * @param pVmcsInfo The VMCS info. object.
|
---|
2393 | *
|
---|
2394 | * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
|
---|
2395 | * nomenclature. The reason is, to avoid confusion in compare statements
|
---|
2396 | * since the host-CPU copies are named "ASID".
|
---|
2397 | *
|
---|
2398 | * @remarks Called with interrupts disabled.
|
---|
2399 | */
|
---|
2400 | static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
2401 | {
|
---|
2402 | #ifdef VBOX_WITH_STATISTICS
|
---|
2403 | bool fTlbFlushed = false;
|
---|
2404 | # define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
|
---|
2405 | # define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
|
---|
2406 | if (!fTlbFlushed) \
|
---|
2407 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
|
---|
2408 | } while (0)
|
---|
2409 | #else
|
---|
2410 | # define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
|
---|
2411 | # define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
|
---|
2412 | #endif
|
---|
2413 |
|
---|
2414 | AssertPtr(pVCpu);
|
---|
2415 | AssertPtr(pHostCpu);
|
---|
2416 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
2417 |
|
---|
2418 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2419 | AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
|
---|
2420 | ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
|
---|
2421 | "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
|
---|
2422 |
|
---|
2423 | /*
|
---|
2424 | * Force a TLB flush for the first world-switch if the current CPU differs from the one we
|
---|
2425 | * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
|
---|
2426 | * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
|
---|
2427 | * cannot reuse the current ASID anymore.
|
---|
2428 | */
|
---|
2429 | if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
|
---|
2430 | || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
|
---|
2431 | {
|
---|
2432 | ++pHostCpu->uCurrentAsid;
|
---|
2433 | if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
2434 | {
|
---|
2435 | pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
|
---|
2436 | pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
2437 | pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
|
---|
2438 | }
|
---|
2439 |
|
---|
2440 | pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
|
---|
2441 | pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
|
---|
2442 | pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
2443 |
|
---|
2444 | /*
|
---|
2445 | * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
|
---|
2446 | * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
|
---|
2447 | */
|
---|
2448 | hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
|
---|
2449 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
2450 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
2451 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
2452 | }
|
---|
2453 | else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
|
---|
2454 | {
|
---|
2455 | /*
|
---|
2456 | * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
|
---|
2457 | * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
|
---|
2458 | * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
|
---|
2459 | * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
|
---|
2460 | * mappings, see @bugref{6568}.
|
---|
2461 | *
|
---|
2462 | * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
|
---|
2463 | */
|
---|
2464 | hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
|
---|
2465 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
2466 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
2467 | }
|
---|
2468 |
|
---|
2469 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
2470 | HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
|
---|
2471 |
|
---|
2472 | Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
|
---|
2473 | Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
|
---|
2474 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
|
---|
2475 | ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
|
---|
2476 | AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
2477 | ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
|
---|
2478 | pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
|
---|
2479 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
2480 | ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
2481 |
|
---|
2482 | /* Update VMCS with the VPID. */
|
---|
2483 | int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
|
---|
2484 | AssertRC(rc);
|
---|
2485 |
|
---|
2486 | #undef HMVMX_SET_TAGGED_TLB_FLUSHED
|
---|
2487 | }
|
---|
2488 |
|
---|
2489 |
|
---|
2490 | /**
|
---|
2491 | * Flushes the tagged-TLB entries for EPT CPUs as necessary.
|
---|
2492 | *
|
---|
2493 | * @param pHostCpu The HM physical-CPU structure.
|
---|
2494 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2495 | * @param pVmcsInfo The VMCS info. object.
|
---|
2496 | *
|
---|
2497 | * @remarks Called with interrupts disabled.
|
---|
2498 | */
|
---|
2499 | static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
2500 | {
|
---|
2501 | AssertPtr(pVCpu);
|
---|
2502 | AssertPtr(pHostCpu);
|
---|
2503 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
2504 | AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
|
---|
2505 | AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
|
---|
2506 |
|
---|
2507 | /*
|
---|
2508 | * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
|
---|
2509 | * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
|
---|
2510 | */
|
---|
2511 | if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
|
---|
2512 | || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
|
---|
2513 | {
|
---|
2514 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
2515 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
2516 | }
|
---|
2517 |
|
---|
2518 | /* Check for explicit TLB flushes. */
|
---|
2519 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
2520 | {
|
---|
2521 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
2522 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
2523 | }
|
---|
2524 |
|
---|
2525 | pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
|
---|
2526 | pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
2527 |
|
---|
2528 | if (pVCpu->hm.s.fForceTLBFlush)
|
---|
2529 | {
|
---|
2530 | hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
|
---|
2531 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
2532 | }
|
---|
2533 | }
|
---|
2534 |
|
---|
2535 |
|
---|
2536 | /**
|
---|
2537 | * Flushes the tagged-TLB entries for VPID CPUs as necessary.
|
---|
2538 | *
|
---|
2539 | * @param pHostCpu The HM physical-CPU structure.
|
---|
2540 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2541 | *
|
---|
2542 | * @remarks Called with interrupts disabled.
|
---|
2543 | */
|
---|
2544 | static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
|
---|
2545 | {
|
---|
2546 | AssertPtr(pVCpu);
|
---|
2547 | AssertPtr(pHostCpu);
|
---|
2548 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
2549 | AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
|
---|
2550 | AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
|
---|
2551 |
|
---|
2552 | /*
|
---|
2553 | * Force a TLB flush for the first world switch if the current CPU differs from the one we
|
---|
2554 | * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
|
---|
2555 | * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
|
---|
2556 | * cannot reuse the current ASID anymore.
|
---|
2557 | */
|
---|
2558 | if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
|
---|
2559 | || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
|
---|
2560 | {
|
---|
2561 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
2562 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
2563 | }
|
---|
2564 |
|
---|
2565 | /* Check for explicit TLB flushes. */
|
---|
2566 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
2567 | {
|
---|
2568 | /*
|
---|
2569 | * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
|
---|
2570 | * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
|
---|
2571 | * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
|
---|
2572 | * include fExplicitFlush's too) - an obscure corner case.
|
---|
2573 | */
|
---|
2574 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
2575 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
2576 | }
|
---|
2577 |
|
---|
2578 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2579 | pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
|
---|
2580 | if (pVCpu->hm.s.fForceTLBFlush)
|
---|
2581 | {
|
---|
2582 | ++pHostCpu->uCurrentAsid;
|
---|
2583 | if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
2584 | {
|
---|
2585 | pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
|
---|
2586 | pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
2587 | pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
|
---|
2588 | }
|
---|
2589 |
|
---|
2590 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
2591 | pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
2592 | pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
|
---|
2593 | if (pHostCpu->fFlushAsidBeforeUse)
|
---|
2594 | {
|
---|
2595 | if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
|
---|
2596 | hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
|
---|
2597 | else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
|
---|
2598 | {
|
---|
2599 | hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
|
---|
2600 | pHostCpu->fFlushAsidBeforeUse = false;
|
---|
2601 | }
|
---|
2602 | else
|
---|
2603 | {
|
---|
2604 | /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
|
---|
2605 | AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
|
---|
2606 | }
|
---|
2607 | }
|
---|
2608 | }
|
---|
2609 |
|
---|
2610 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
|
---|
2611 | ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
|
---|
2612 | AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
2613 | ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
|
---|
2614 | pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
|
---|
2615 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
2616 | ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
2617 |
|
---|
2618 | int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
|
---|
2619 | AssertRC(rc);
|
---|
2620 | }
|
---|
2621 |
|
---|
2622 |
|
---|
2623 | /**
|
---|
2624 | * Flushes the guest TLB entry based on CPU capabilities.
|
---|
2625 | *
|
---|
2626 | * @param pHostCpu The HM physical-CPU structure.
|
---|
2627 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2628 | * @param pVmcsInfo The VMCS info. object.
|
---|
2629 | *
|
---|
2630 | * @remarks Called with interrupts disabled.
|
---|
2631 | */
|
---|
2632 | static void hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2633 | {
|
---|
2634 | #ifdef HMVMX_ALWAYS_FLUSH_TLB
|
---|
2635 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
2636 | #endif
|
---|
2637 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2638 | switch (pVM->hm.s.vmx.enmTlbFlushType)
|
---|
2639 | {
|
---|
2640 | case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
|
---|
2641 | case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
|
---|
2642 | case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
|
---|
2643 | case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
|
---|
2644 | default:
|
---|
2645 | AssertMsgFailed(("Invalid flush-tag function identifier\n"));
|
---|
2646 | break;
|
---|
2647 | }
|
---|
2648 | /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
|
---|
2649 | }
|
---|
2650 |
|
---|
2651 |
|
---|
2652 | /**
|
---|
2653 | * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
|
---|
2654 | * TLB entries from the host TLB before VM-entry.
|
---|
2655 | *
|
---|
2656 | * @returns VBox status code.
|
---|
2657 | * @param pVM The cross context VM structure.
|
---|
2658 | */
|
---|
2659 | static int hmR0VmxSetupTaggedTlb(PVM pVM)
|
---|
2660 | {
|
---|
2661 | /*
|
---|
2662 | * Determine optimal flush type for nested paging.
|
---|
2663 | * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
|
---|
2664 | * unrestricted guest execution (see hmR3InitFinalizeR0()).
|
---|
2665 | */
|
---|
2666 | if (pVM->hm.s.fNestedPaging)
|
---|
2667 | {
|
---|
2668 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
|
---|
2669 | {
|
---|
2670 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
|
---|
2671 | pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
|
---|
2672 | else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
|
---|
2673 | pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
|
---|
2674 | else
|
---|
2675 | {
|
---|
2676 | /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
|
---|
2677 | pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
|
---|
2678 | pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
|
---|
2679 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2680 | }
|
---|
2681 |
|
---|
2682 | /* Make sure the write-back cacheable memory type for EPT is supported. */
|
---|
2683 | if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
|
---|
2684 | {
|
---|
2685 | pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
|
---|
2686 | pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
|
---|
2687 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2688 | }
|
---|
2689 |
|
---|
2690 | /* EPT requires a page-walk length of 4. */
|
---|
2691 | if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
|
---|
2692 | {
|
---|
2693 | pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
|
---|
2694 | pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
|
---|
2695 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2696 | }
|
---|
2697 | }
|
---|
2698 | else
|
---|
2699 | {
|
---|
2700 | /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
|
---|
2701 | pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
|
---|
2702 | pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
|
---|
2703 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2704 | }
|
---|
2705 | }
|
---|
2706 |
|
---|
2707 | /*
|
---|
2708 | * Determine optimal flush type for VPID.
|
---|
2709 | */
|
---|
2710 | if (pVM->hm.s.vmx.fVpid)
|
---|
2711 | {
|
---|
2712 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
|
---|
2713 | {
|
---|
2714 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
|
---|
2715 | pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
|
---|
2716 | else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
|
---|
2717 | pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
|
---|
2718 | else
|
---|
2719 | {
|
---|
2720 | /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
|
---|
2721 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
|
---|
2722 | LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
|
---|
2723 | if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
2724 | LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
|
---|
2725 | pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
|
---|
2726 | pVM->hm.s.vmx.fVpid = false;
|
---|
2727 | }
|
---|
2728 | }
|
---|
2729 | else
|
---|
2730 | {
|
---|
2731 | /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
|
---|
2732 | Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
|
---|
2733 | pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
|
---|
2734 | pVM->hm.s.vmx.fVpid = false;
|
---|
2735 | }
|
---|
2736 | }
|
---|
2737 |
|
---|
2738 | /*
|
---|
2739 | * Setup the handler for flushing tagged-TLBs.
|
---|
2740 | */
|
---|
2741 | if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
|
---|
2742 | pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
|
---|
2743 | else if (pVM->hm.s.fNestedPaging)
|
---|
2744 | pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
|
---|
2745 | else if (pVM->hm.s.vmx.fVpid)
|
---|
2746 | pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
|
---|
2747 | else
|
---|
2748 | pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
|
---|
2749 | return VINF_SUCCESS;
|
---|
2750 | }
|
---|
2751 |
|
---|
2752 |
|
---|
2753 | /**
|
---|
2754 | * Sets up the virtual-APIC page address for the VMCS.
|
---|
2755 | *
|
---|
2756 | * @returns VBox status code.
|
---|
2757 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2758 | * @param pVmcsInfo The VMCS info. object.
|
---|
2759 | */
|
---|
2760 | DECLINLINE(int) hmR0VmxSetupVmcsVirtApicAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
2761 | {
|
---|
2762 | NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
|
---|
2763 | RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
|
---|
2764 | Assert(HCPhysVirtApic != NIL_RTHCPHYS);
|
---|
2765 | Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2766 | return VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
|
---|
2767 | }
|
---|
2768 |
|
---|
2769 |
|
---|
2770 | /**
|
---|
2771 | * Sets up the MSR-bitmap address for the VMCS.
|
---|
2772 | *
|
---|
2773 | * @returns VBox status code.
|
---|
2774 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2775 | * @param pVmcsInfo The VMCS info. object.
|
---|
2776 | */
|
---|
2777 | DECLINLINE(int) hmR0VmxSetupVmcsMsrBitmapAddr(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
2778 | {
|
---|
2779 | NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
|
---|
2780 | RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
|
---|
2781 | Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
|
---|
2782 | Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2783 | return VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
|
---|
2784 | }
|
---|
2785 |
|
---|
2786 |
|
---|
2787 | /**
|
---|
2788 | * Sets up the APIC-access page address for the VMCS.
|
---|
2789 | *
|
---|
2790 | * @returns VBox status code.
|
---|
2791 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2792 | */
|
---|
2793 | DECLINLINE(int) hmR0VmxSetupVmcsApicAccessAddr(PVMCPU pVCpu)
|
---|
2794 | {
|
---|
2795 | RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysApicAccess;
|
---|
2796 | Assert(HCPhysApicAccess != NIL_RTHCPHYS);
|
---|
2797 | Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
2798 | return VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
|
---|
2799 | }
|
---|
2800 |
|
---|
2801 |
|
---|
2802 | /**
|
---|
2803 | * Sets up the VMCS link pointer for the VMCS.
|
---|
2804 | *
|
---|
2805 | * @returns VBox status code.
|
---|
2806 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2807 | * @param pVmcsInfo The VMCS info. object.
|
---|
2808 | */
|
---|
2809 | DECLINLINE(int) hmR0VmxSetupVmcsLinkPtr(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2810 | {
|
---|
2811 | NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
|
---|
2812 | uint64_t const u64VmcsLinkPtr = pVmcsInfo->u64VmcsLinkPtr;
|
---|
2813 | Assert(u64VmcsLinkPtr == UINT64_C(0xffffffffffffffff)); /* Bits 63:0 MB1. */
|
---|
2814 | return VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, u64VmcsLinkPtr);
|
---|
2815 | }
|
---|
2816 |
|
---|
2817 |
|
---|
2818 | /**
|
---|
2819 | * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
|
---|
2820 | * in the VMCS.
|
---|
2821 | *
|
---|
2822 | * @returns VBox status code.
|
---|
2823 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2824 | * @param pVmcsInfo The VMCS info. object.
|
---|
2825 | */
|
---|
2826 | DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2827 | {
|
---|
2828 | NOREF(pVCpu); /* Used implicitly by VMXWriteVmcs64 on 32-bit hosts. */
|
---|
2829 |
|
---|
2830 | RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
|
---|
2831 | Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
|
---|
2832 | Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
|
---|
2833 |
|
---|
2834 | RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
|
---|
2835 | Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
|
---|
2836 | Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
|
---|
2837 |
|
---|
2838 | RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
|
---|
2839 | Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
|
---|
2840 | Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
|
---|
2841 |
|
---|
2842 | int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad);
|
---|
2843 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore);
|
---|
2844 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad);
|
---|
2845 | AssertRCReturn(rc, rc);
|
---|
2846 | return VINF_SUCCESS;
|
---|
2847 | }
|
---|
2848 |
|
---|
2849 |
|
---|
2850 | /**
|
---|
2851 | * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
|
---|
2852 | *
|
---|
2853 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2854 | * @param pVmcsInfo The VMCS info. object.
|
---|
2855 | * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
|
---|
2856 | */
|
---|
2857 | static void hmR0VmxSetupVmcsMsrPermissions(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
|
---|
2858 | {
|
---|
2859 | Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
|
---|
2860 |
|
---|
2861 | /*
|
---|
2862 | * The guest can access the following MSRs (read, write) without causing
|
---|
2863 | * VM-exits; they are loaded/stored automatically using fields in the VMCS.
|
---|
2864 | */
|
---|
2865 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2866 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
|
---|
2867 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
|
---|
2868 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
|
---|
2869 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
|
---|
2870 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
|
---|
2871 |
|
---|
2872 | /*
|
---|
2873 | * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
|
---|
2874 | * associated with then. We never need to intercept access (writes need to be
|
---|
2875 | * executed without causing a VM-exit, reads will #GP fault anyway).
|
---|
2876 | *
|
---|
2877 | * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
|
---|
2878 | * read/write them. We swap the the guest/host MSR value using the
|
---|
2879 | * auto-load/store MSR area.
|
---|
2880 | */
|
---|
2881 | if (pVM->cpum.ro.GuestFeatures.fIbpb)
|
---|
2882 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
|
---|
2883 | if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
|
---|
2884 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
|
---|
2885 | if (pVM->cpum.ro.GuestFeatures.fIbrs)
|
---|
2886 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
|
---|
2887 |
|
---|
2888 | #if HC_ARCH_BITS == 64
|
---|
2889 | /*
|
---|
2890 | * Allow full read/write access for the following MSRs (mandatory for VT-x)
|
---|
2891 | * required for 64-bit guests.
|
---|
2892 | */
|
---|
2893 | if (pVM->hm.s.fAllow64BitGuests)
|
---|
2894 | {
|
---|
2895 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
|
---|
2896 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
|
---|
2897 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
|
---|
2898 | hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
|
---|
2899 | }
|
---|
2900 | #endif
|
---|
2901 |
|
---|
2902 | /*
|
---|
2903 | * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
|
---|
2904 | */
|
---|
2905 | #ifdef VBOX_STRICT
|
---|
2906 | Assert(pVmcsInfo->pvMsrBitmap);
|
---|
2907 | uint32_t const fMsrpmEfer = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K6_EFER);
|
---|
2908 | Assert(fMsrpmEfer == VMXMSRPM_EXIT_RD_WR);
|
---|
2909 | #endif
|
---|
2910 | }
|
---|
2911 |
|
---|
2912 |
|
---|
2913 | /**
|
---|
2914 | * Sets up pin-based VM-execution controls in the VMCS.
|
---|
2915 | *
|
---|
2916 | * @returns VBox status code.
|
---|
2917 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2918 | * @param pVmcsInfo The VMCS info. object.
|
---|
2919 | */
|
---|
2920 | static int hmR0VmxSetupVmcsPinCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2921 | {
|
---|
2922 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2923 | uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
|
---|
2924 | uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
|
---|
2925 |
|
---|
2926 | fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
|
---|
2927 | | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
|
---|
2928 |
|
---|
2929 | if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
|
---|
2930 | fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
|
---|
2931 |
|
---|
2932 | /* Enable the VMX-preemption timer. */
|
---|
2933 | if (pVM->hm.s.vmx.fUsePreemptTimer)
|
---|
2934 | {
|
---|
2935 | Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
|
---|
2936 | fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
|
---|
2937 | }
|
---|
2938 |
|
---|
2939 | #if 0
|
---|
2940 | /* Enable posted-interrupt processing. */
|
---|
2941 | if (pVM->hm.s.fPostedIntrs)
|
---|
2942 | {
|
---|
2943 | Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
|
---|
2944 | Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
|
---|
2945 | fVal |= VMX_PIN_CTL_POSTED_INT;
|
---|
2946 | }
|
---|
2947 | #endif
|
---|
2948 |
|
---|
2949 | if ((fVal & fZap) != fVal)
|
---|
2950 | {
|
---|
2951 | LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
|
---|
2952 | pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
|
---|
2953 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
|
---|
2954 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2955 | }
|
---|
2956 |
|
---|
2957 | /* Commit it to the VMCS and update our cache. */
|
---|
2958 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
|
---|
2959 | AssertRCReturn(rc, rc);
|
---|
2960 | pVmcsInfo->u32PinCtls = fVal;
|
---|
2961 |
|
---|
2962 | return VINF_SUCCESS;
|
---|
2963 | }
|
---|
2964 |
|
---|
2965 |
|
---|
2966 | /**
|
---|
2967 | * Sets up secondary processor-based VM-execution controls in the VMCS.
|
---|
2968 | *
|
---|
2969 | * @returns VBox status code.
|
---|
2970 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2971 | * @param pVmcsInfo The VMCS info. object.
|
---|
2972 | */
|
---|
2973 | static int hmR0VmxSetupVmcsProcCtls2(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2974 | {
|
---|
2975 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2976 | uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
|
---|
2977 | uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
2978 |
|
---|
2979 | /* WBINVD causes a VM-exit. */
|
---|
2980 | if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
|
---|
2981 | fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
|
---|
2982 |
|
---|
2983 | /* Enable EPT (aka nested-paging). */
|
---|
2984 | if (pVM->hm.s.fNestedPaging)
|
---|
2985 | fVal |= VMX_PROC_CTLS2_EPT;
|
---|
2986 |
|
---|
2987 | /* Enable the INVPCID instruction if supported by the hardware and we expose
|
---|
2988 | it to the guest. Without this, guest executing INVPCID would cause a #UD. */
|
---|
2989 | if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
|
---|
2990 | && pVM->cpum.ro.GuestFeatures.fInvpcid)
|
---|
2991 | fVal |= VMX_PROC_CTLS2_INVPCID;
|
---|
2992 |
|
---|
2993 | /* Enable VPID. */
|
---|
2994 | if (pVM->hm.s.vmx.fVpid)
|
---|
2995 | fVal |= VMX_PROC_CTLS2_VPID;
|
---|
2996 |
|
---|
2997 | /* Enable unrestricted guest execution. */
|
---|
2998 | if (pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
2999 | fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
|
---|
3000 |
|
---|
3001 | #if 0
|
---|
3002 | if (pVM->hm.s.fVirtApicRegs)
|
---|
3003 | {
|
---|
3004 | /* Enable APIC-register virtualization. */
|
---|
3005 | Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
|
---|
3006 | fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
|
---|
3007 |
|
---|
3008 | /* Enable virtual-interrupt delivery. */
|
---|
3009 | Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
|
---|
3010 | fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
|
---|
3011 | }
|
---|
3012 | #endif
|
---|
3013 |
|
---|
3014 | /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
|
---|
3015 | /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
|
---|
3016 | * done dynamically. */
|
---|
3017 | if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
3018 | {
|
---|
3019 | fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
|
---|
3020 | int rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
|
---|
3021 | AssertRCReturn(rc, rc);
|
---|
3022 | }
|
---|
3023 |
|
---|
3024 | /* Enable the RDTSCP instruction if supported by the hardware and we expose
|
---|
3025 | it to the guest. Without this, guest executing RDTSCP would cause a #UD. */
|
---|
3026 | if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
|
---|
3027 | && pVM->cpum.ro.GuestFeatures.fRdTscP)
|
---|
3028 | fVal |= VMX_PROC_CTLS2_RDTSCP;
|
---|
3029 |
|
---|
3030 | /* Enable Pause-Loop exiting. */
|
---|
3031 | if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
|
---|
3032 | && pVM->hm.s.vmx.cPleGapTicks
|
---|
3033 | && pVM->hm.s.vmx.cPleWindowTicks)
|
---|
3034 | {
|
---|
3035 | fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
|
---|
3036 |
|
---|
3037 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
|
---|
3038 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
|
---|
3039 | AssertRCReturn(rc, rc);
|
---|
3040 | }
|
---|
3041 |
|
---|
3042 | if ((fVal & fZap) != fVal)
|
---|
3043 | {
|
---|
3044 | LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
|
---|
3045 | pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
|
---|
3046 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
|
---|
3047 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
3048 | }
|
---|
3049 |
|
---|
3050 | /* Commit it to the VMCS and update our cache. */
|
---|
3051 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
|
---|
3052 | AssertRCReturn(rc, rc);
|
---|
3053 | pVmcsInfo->u32ProcCtls2 = fVal;
|
---|
3054 |
|
---|
3055 | return VINF_SUCCESS;
|
---|
3056 | }
|
---|
3057 |
|
---|
3058 |
|
---|
3059 | /**
|
---|
3060 | * Sets up processor-based VM-execution controls in the VMCS.
|
---|
3061 | *
|
---|
3062 | * @returns VBox status code.
|
---|
3063 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3064 | * @param pVmcsInfo The VMCS info. object.
|
---|
3065 | */
|
---|
3066 | static int hmR0VmxSetupVmcsProcCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
3067 | {
|
---|
3068 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3069 |
|
---|
3070 | uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
|
---|
3071 | uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
3072 |
|
---|
3073 | fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
|
---|
3074 | | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
|
---|
3075 | | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
|
---|
3076 | | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
|
---|
3077 | | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
|
---|
3078 | | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
|
---|
3079 | | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
|
---|
3080 |
|
---|
3081 | /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
|
---|
3082 | if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
|
---|
3083 | || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
|
---|
3084 | {
|
---|
3085 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
|
---|
3086 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
3087 | }
|
---|
3088 |
|
---|
3089 | /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
|
---|
3090 | if (!pVM->hm.s.fNestedPaging)
|
---|
3091 | {
|
---|
3092 | Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
|
---|
3093 | fVal |= VMX_PROC_CTLS_INVLPG_EXIT
|
---|
3094 | | VMX_PROC_CTLS_CR3_LOAD_EXIT
|
---|
3095 | | VMX_PROC_CTLS_CR3_STORE_EXIT;
|
---|
3096 | }
|
---|
3097 |
|
---|
3098 | /* Use TPR shadowing if supported by the CPU. */
|
---|
3099 | if ( PDMHasApic(pVM)
|
---|
3100 | && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
3101 | {
|
---|
3102 | fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
|
---|
3103 | /* CR8 writes cause a VM-exit based on TPR threshold. */
|
---|
3104 | Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
|
---|
3105 | Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
|
---|
3106 | int rc = hmR0VmxSetupVmcsVirtApicAddr(pVCpu, pVmcsInfo);
|
---|
3107 | AssertRCReturn(rc, rc);
|
---|
3108 | }
|
---|
3109 | else
|
---|
3110 | {
|
---|
3111 | /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
|
---|
3112 | invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
|
---|
3113 | if (pVM->hm.s.fAllow64BitGuests)
|
---|
3114 | {
|
---|
3115 | fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
|
---|
3116 | | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
|
---|
3117 | }
|
---|
3118 | }
|
---|
3119 |
|
---|
3120 | /* Use MSR-bitmaps if supported by the CPU. */
|
---|
3121 | if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
3122 | {
|
---|
3123 | fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
|
---|
3124 | int rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVCpu, pVmcsInfo);
|
---|
3125 | AssertRCReturn(rc, rc);
|
---|
3126 | }
|
---|
3127 |
|
---|
3128 | /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
|
---|
3129 | if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
3130 | fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
|
---|
3131 |
|
---|
3132 | if ((fVal & fZap) != fVal)
|
---|
3133 | {
|
---|
3134 | LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
|
---|
3135 | pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
|
---|
3136 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
|
---|
3137 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
3138 | }
|
---|
3139 |
|
---|
3140 | /* Commit it to the VMCS and update our cache. */
|
---|
3141 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
|
---|
3142 | AssertRCReturn(rc, rc);
|
---|
3143 | pVmcsInfo->u32ProcCtls = fVal;
|
---|
3144 |
|
---|
3145 | /* Set up MSR permissions that don't change through the lifetime of the VM. */
|
---|
3146 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
3147 | hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo, false /* fIsNstGstVmcs */);
|
---|
3148 |
|
---|
3149 | /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
|
---|
3150 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
3151 | return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
|
---|
3152 |
|
---|
3153 | /* Sanity check, should not really happen. */
|
---|
3154 | if (RT_LIKELY(!pVM->hm.s.vmx.fUnrestrictedGuest))
|
---|
3155 | { /* likely */ }
|
---|
3156 | else
|
---|
3157 | {
|
---|
3158 | pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
|
---|
3159 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
3160 | }
|
---|
3161 |
|
---|
3162 | /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
|
---|
3163 | return VINF_SUCCESS;
|
---|
3164 | }
|
---|
3165 |
|
---|
3166 |
|
---|
3167 | /**
|
---|
3168 | * Sets up miscellaneous (everything other than Pin, Processor and secondary
|
---|
3169 | * Processor-based VM-execution) control fields in the VMCS.
|
---|
3170 | *
|
---|
3171 | * @returns VBox status code.
|
---|
3172 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3173 | * @param pVmcsInfo The VMCS info. object.
|
---|
3174 | */
|
---|
3175 | static int hmR0VmxSetupVmcsMiscCtls(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
3176 | {
|
---|
3177 | /* Set the auto-load/store MSR area addresses in the VMCS. */
|
---|
3178 | int rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVCpu, pVmcsInfo);
|
---|
3179 | if (RT_SUCCESS(rc))
|
---|
3180 | {
|
---|
3181 | /* Set the VMCS link pointer in the VMCS. */
|
---|
3182 | rc = hmR0VmxSetupVmcsLinkPtr(pVCpu, pVmcsInfo);
|
---|
3183 | if (RT_SUCCESS(rc))
|
---|
3184 | {
|
---|
3185 | /* Set the CR0/CR4 guest/host mask. */
|
---|
3186 | uint64_t const u64Cr0Mask = hmR0VmxGetFixedCr0Mask(pVCpu);
|
---|
3187 | uint64_t const u64Cr4Mask = hmR0VmxGetFixedCr4Mask(pVCpu);
|
---|
3188 | rc = VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
|
---|
3189 | rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
|
---|
3190 | if (RT_SUCCESS(rc))
|
---|
3191 | {
|
---|
3192 | pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
|
---|
3193 | pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
|
---|
3194 | return VINF_SUCCESS;
|
---|
3195 | }
|
---|
3196 | LogRelFunc(("Failed to initialize VMCS CR0/CR4 guest/host mask. rc=%Rrc\n", rc));
|
---|
3197 | }
|
---|
3198 | else
|
---|
3199 | LogRelFunc(("Failed to initialize VMCS link pointer. rc=%Rrc\n", rc));
|
---|
3200 | }
|
---|
3201 | else
|
---|
3202 | LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
|
---|
3203 | return rc;
|
---|
3204 | }
|
---|
3205 |
|
---|
3206 |
|
---|
3207 | /**
|
---|
3208 | * Sets up the initial exception bitmap in the VMCS based on static conditions.
|
---|
3209 | *
|
---|
3210 | * We shall setup those exception intercepts that don't change during the
|
---|
3211 | * lifetime of the VM here. The rest are done dynamically while loading the
|
---|
3212 | * guest state.
|
---|
3213 | *
|
---|
3214 | * @returns VBox status code.
|
---|
3215 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3216 | * @param pVmcsInfo The VMCS info. object.
|
---|
3217 | */
|
---|
3218 | static int hmR0VmxSetupVmcsXcptBitmap(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
3219 | {
|
---|
3220 | /*
|
---|
3221 | * The following exceptions are always intercepted:
|
---|
3222 | *
|
---|
3223 | * #AC - To prevent the guest from hanging the CPU.
|
---|
3224 | * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
|
---|
3225 | * recursive #DBs can cause a CPU hang.
|
---|
3226 | * #PF - To sync our shadow page tables when nested-paging is not used.
|
---|
3227 | */
|
---|
3228 | bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
|
---|
3229 | uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
|
---|
3230 | | RT_BIT(X86_XCPT_DB)
|
---|
3231 | | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
|
---|
3232 |
|
---|
3233 | /* Commit it to the VMCS. */
|
---|
3234 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
|
---|
3235 | AssertRCReturn(rc, rc);
|
---|
3236 |
|
---|
3237 | /* Update our cache of the exception bitmap. */
|
---|
3238 | pVmcsInfo->u32XcptBitmap = uXcptBitmap;
|
---|
3239 | return VINF_SUCCESS;
|
---|
3240 | }
|
---|
3241 |
|
---|
3242 |
|
---|
3243 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3244 | /**
|
---|
3245 | * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
|
---|
3246 | *
|
---|
3247 | * @returns VBox status code.
|
---|
3248 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3249 | * @param pVmcsInfo The VMCS info. object.
|
---|
3250 | */
|
---|
3251 | static int hmR0VmxSetupVmcsCtlsNested(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
3252 | {
|
---|
3253 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3254 | int rc = hmR0VmxSetupVmcsLinkPtr(pVCpu, pVmcsInfo);
|
---|
3255 | if (RT_SUCCESS(rc))
|
---|
3256 | {
|
---|
3257 | rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVCpu, pVmcsInfo);
|
---|
3258 | if (RT_SUCCESS(rc))
|
---|
3259 | {
|
---|
3260 | if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
3261 | rc = hmR0VmxSetupVmcsMsrBitmapAddr(pVCpu, pVmcsInfo);
|
---|
3262 | if (RT_SUCCESS(rc))
|
---|
3263 | {
|
---|
3264 | if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
3265 | rc = hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
|
---|
3266 | if (RT_SUCCESS(rc))
|
---|
3267 | return VINF_SUCCESS;
|
---|
3268 |
|
---|
3269 | LogRelFunc(("Failed to set up the APIC-access address in the nested-guest VMCS. rc=%Rrc\n", rc));
|
---|
3270 | }
|
---|
3271 | else
|
---|
3272 | LogRelFunc(("Failed to set up the MSR-bitmap address in the nested-guest VMCS. rc=%Rrc\n", rc));
|
---|
3273 | }
|
---|
3274 | else
|
---|
3275 | LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
|
---|
3276 | }
|
---|
3277 | else
|
---|
3278 | LogRelFunc(("Failed to set up the auto-load/store MSR addresses in the nested-guest VMCS. rc=%Rrc\n", rc));
|
---|
3279 |
|
---|
3280 | return rc;
|
---|
3281 | }
|
---|
3282 | #endif
|
---|
3283 |
|
---|
3284 |
|
---|
3285 | /**
|
---|
3286 | * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
|
---|
3287 | * VMX.
|
---|
3288 | *
|
---|
3289 | * @returns VBox status code.
|
---|
3290 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3291 | * @param pVmcsInfo The VMCS info. object.
|
---|
3292 | * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
|
---|
3293 | */
|
---|
3294 | static int hmR0VmxSetupVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
|
---|
3295 | {
|
---|
3296 | Assert(pVmcsInfo);
|
---|
3297 | Assert(pVmcsInfo->pvVmcs);
|
---|
3298 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3299 |
|
---|
3300 | /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
|
---|
3301 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3302 | *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
|
---|
3303 | const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
|
---|
3304 |
|
---|
3305 | LogFlowFunc(("\n"));
|
---|
3306 |
|
---|
3307 | /*
|
---|
3308 | * Initialize the VMCS using VMCLEAR before loading the VMCS.
|
---|
3309 | * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
|
---|
3310 | */
|
---|
3311 | int rc = hmR0VmxClearVmcs(pVmcsInfo);
|
---|
3312 | if (RT_SUCCESS(rc))
|
---|
3313 | {
|
---|
3314 | rc = hmR0VmxLoadVmcs(pVmcsInfo);
|
---|
3315 | if (RT_SUCCESS(rc))
|
---|
3316 | {
|
---|
3317 | if (!fIsNstGstVmcs)
|
---|
3318 | {
|
---|
3319 | rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
|
---|
3320 | if (RT_SUCCESS(rc))
|
---|
3321 | {
|
---|
3322 | rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
|
---|
3323 | if (RT_SUCCESS(rc))
|
---|
3324 | {
|
---|
3325 | rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
|
---|
3326 | if (RT_SUCCESS(rc))
|
---|
3327 | {
|
---|
3328 | rc = hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
|
---|
3329 | if (RT_SUCCESS(rc))
|
---|
3330 | { /* likely */ }
|
---|
3331 | else
|
---|
3332 | LogRelFunc(("Failed to initialize exception bitmap. rc=%Rrc\n", rc));
|
---|
3333 | }
|
---|
3334 | else
|
---|
3335 | LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
|
---|
3336 | }
|
---|
3337 | else
|
---|
3338 | LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
|
---|
3339 | }
|
---|
3340 | else
|
---|
3341 | LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
|
---|
3342 | }
|
---|
3343 | else
|
---|
3344 | {
|
---|
3345 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3346 | rc = hmR0VmxSetupVmcsCtlsNested(pVCpu, pVmcsInfo);
|
---|
3347 | if (RT_SUCCESS(rc))
|
---|
3348 | { /* likely */ }
|
---|
3349 | else
|
---|
3350 | LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
|
---|
3351 | #else
|
---|
3352 | AssertFailed();
|
---|
3353 | #endif
|
---|
3354 | }
|
---|
3355 | }
|
---|
3356 | else
|
---|
3357 | LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
|
---|
3358 | }
|
---|
3359 | else
|
---|
3360 | LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
|
---|
3361 |
|
---|
3362 | /* Sync any CPU internal VMCS data back into our VMCS in memory. */
|
---|
3363 | if (RT_SUCCESS(rc))
|
---|
3364 | {
|
---|
3365 | rc = hmR0VmxClearVmcs(pVmcsInfo);
|
---|
3366 | if (RT_SUCCESS(rc))
|
---|
3367 | { /* likely */ }
|
---|
3368 | else
|
---|
3369 | LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
|
---|
3370 | }
|
---|
3371 |
|
---|
3372 | /*
|
---|
3373 | * Update the last-error record both for failures and success, so we
|
---|
3374 | * can propagate the status code back to ring-3 for diagnostics.
|
---|
3375 | */
|
---|
3376 | hmR0VmxUpdateErrorRecord(pVCpu, rc);
|
---|
3377 | NOREF(pszVmcs);
|
---|
3378 | return rc;
|
---|
3379 | }
|
---|
3380 |
|
---|
3381 |
|
---|
3382 | /**
|
---|
3383 | * Does global VT-x initialization (called during module initialization).
|
---|
3384 | *
|
---|
3385 | * @returns VBox status code.
|
---|
3386 | */
|
---|
3387 | VMMR0DECL(int) VMXR0GlobalInit(void)
|
---|
3388 | {
|
---|
3389 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
3390 | AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
|
---|
3391 | # ifdef VBOX_STRICT
|
---|
3392 | for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
|
---|
3393 | Assert(g_apfnVMExitHandlers[i]);
|
---|
3394 | # endif
|
---|
3395 | #endif
|
---|
3396 | return VINF_SUCCESS;
|
---|
3397 | }
|
---|
3398 |
|
---|
3399 |
|
---|
3400 | /**
|
---|
3401 | * Does global VT-x termination (called during module termination).
|
---|
3402 | */
|
---|
3403 | VMMR0DECL(void) VMXR0GlobalTerm()
|
---|
3404 | {
|
---|
3405 | /* Nothing to do currently. */
|
---|
3406 | }
|
---|
3407 |
|
---|
3408 |
|
---|
3409 | /**
|
---|
3410 | * Sets up and activates VT-x on the current CPU.
|
---|
3411 | *
|
---|
3412 | * @returns VBox status code.
|
---|
3413 | * @param pHostCpu The HM physical-CPU structure.
|
---|
3414 | * @param pVM The cross context VM structure. Can be
|
---|
3415 | * NULL after a host resume operation.
|
---|
3416 | * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
|
---|
3417 | * fEnabledByHost is @c true).
|
---|
3418 | * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
|
---|
3419 | * @a fEnabledByHost is @c true).
|
---|
3420 | * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
|
---|
3421 | * enable VT-x on the host.
|
---|
3422 | * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
|
---|
3423 | */
|
---|
3424 | VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
|
---|
3425 | PCSUPHWVIRTMSRS pHwvirtMsrs)
|
---|
3426 | {
|
---|
3427 | Assert(pHostCpu);
|
---|
3428 | Assert(pHwvirtMsrs);
|
---|
3429 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3430 |
|
---|
3431 | /* Enable VT-x if it's not already enabled by the host. */
|
---|
3432 | if (!fEnabledByHost)
|
---|
3433 | {
|
---|
3434 | int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
|
---|
3435 | if (RT_FAILURE(rc))
|
---|
3436 | return rc;
|
---|
3437 | }
|
---|
3438 |
|
---|
3439 | /*
|
---|
3440 | * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
|
---|
3441 | * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
|
---|
3442 | * invalidated when flushing by VPID.
|
---|
3443 | */
|
---|
3444 | if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
|
---|
3445 | {
|
---|
3446 | hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
|
---|
3447 | pHostCpu->fFlushAsidBeforeUse = false;
|
---|
3448 | }
|
---|
3449 | else
|
---|
3450 | pHostCpu->fFlushAsidBeforeUse = true;
|
---|
3451 |
|
---|
3452 | /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
|
---|
3453 | ++pHostCpu->cTlbFlushes;
|
---|
3454 |
|
---|
3455 | return VINF_SUCCESS;
|
---|
3456 | }
|
---|
3457 |
|
---|
3458 |
|
---|
3459 | /**
|
---|
3460 | * Deactivates VT-x on the current CPU.
|
---|
3461 | *
|
---|
3462 | * @returns VBox status code.
|
---|
3463 | * @param pvCpuPage Pointer to the VMXON region.
|
---|
3464 | * @param HCPhysCpuPage Physical address of the VMXON region.
|
---|
3465 | *
|
---|
3466 | * @remarks This function should never be called when SUPR0EnableVTx() or
|
---|
3467 | * similar was used to enable VT-x on the host.
|
---|
3468 | */
|
---|
3469 | VMMR0DECL(int) VMXR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
3470 | {
|
---|
3471 | RT_NOREF2(pvCpuPage, HCPhysCpuPage);
|
---|
3472 |
|
---|
3473 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3474 | return hmR0VmxLeaveRootMode();
|
---|
3475 | }
|
---|
3476 |
|
---|
3477 |
|
---|
3478 | /**
|
---|
3479 | * Does per-VM VT-x initialization.
|
---|
3480 | *
|
---|
3481 | * @returns VBox status code.
|
---|
3482 | * @param pVM The cross context VM structure.
|
---|
3483 | */
|
---|
3484 | VMMR0DECL(int) VMXR0InitVM(PVM pVM)
|
---|
3485 | {
|
---|
3486 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
3487 |
|
---|
3488 | int rc = hmR0VmxStructsAlloc(pVM);
|
---|
3489 | if (RT_FAILURE(rc))
|
---|
3490 | {
|
---|
3491 | LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
|
---|
3492 | return rc;
|
---|
3493 | }
|
---|
3494 |
|
---|
3495 | return VINF_SUCCESS;
|
---|
3496 | }
|
---|
3497 |
|
---|
3498 |
|
---|
3499 | /**
|
---|
3500 | * Does per-VM VT-x termination.
|
---|
3501 | *
|
---|
3502 | * @returns VBox status code.
|
---|
3503 | * @param pVM The cross context VM structure.
|
---|
3504 | */
|
---|
3505 | VMMR0DECL(int) VMXR0TermVM(PVM pVM)
|
---|
3506 | {
|
---|
3507 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
3508 |
|
---|
3509 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
3510 | if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
|
---|
3511 | {
|
---|
3512 | Assert(pVM->hm.s.vmx.pvScratch);
|
---|
3513 | ASMMemZero32(pVM->hm.s.vmx.pvScratch, X86_PAGE_4K_SIZE);
|
---|
3514 | }
|
---|
3515 | #endif
|
---|
3516 | hmR0VmxStructsFree(pVM);
|
---|
3517 | return VINF_SUCCESS;
|
---|
3518 | }
|
---|
3519 |
|
---|
3520 |
|
---|
3521 | /**
|
---|
3522 | * Sets up the VM for execution using hardware-assisted VMX.
|
---|
3523 | * This function is only called once per-VM during initialization.
|
---|
3524 | *
|
---|
3525 | * @returns VBox status code.
|
---|
3526 | * @param pVM The cross context VM structure.
|
---|
3527 | */
|
---|
3528 | VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
|
---|
3529 | {
|
---|
3530 | AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
3531 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3532 |
|
---|
3533 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
3534 |
|
---|
3535 | /*
|
---|
3536 | * At least verify if VMX is enabled, since we can't check if we're in
|
---|
3537 | * VMX root mode or not without causing a #GP.
|
---|
3538 | */
|
---|
3539 | RTCCUINTREG const uHostCR4 = ASMGetCR4();
|
---|
3540 | if (RT_LIKELY(uHostCR4 & X86_CR4_VMXE))
|
---|
3541 | { /* likely */ }
|
---|
3542 | else
|
---|
3543 | return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
|
---|
3544 |
|
---|
3545 | /*
|
---|
3546 | * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
|
---|
3547 | * always be allocated. We no longer support the highly unlikely case of unrestricted guest
|
---|
3548 | * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
|
---|
3549 | */
|
---|
3550 | if ( !pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
3551 | && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
|
---|
3552 | || !pVM->hm.s.vmx.pRealModeTSS))
|
---|
3553 | {
|
---|
3554 | LogRelFunc(("Invalid real-on-v86 state.\n"));
|
---|
3555 | return VERR_INTERNAL_ERROR;
|
---|
3556 | }
|
---|
3557 |
|
---|
3558 | /* Initialize these always, see hmR3InitFinalizeR0().*/
|
---|
3559 | pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
|
---|
3560 | pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
|
---|
3561 |
|
---|
3562 | /* Setup the tagged-TLB flush handlers. */
|
---|
3563 | int rc = hmR0VmxSetupTaggedTlb(pVM);
|
---|
3564 | if (RT_FAILURE(rc))
|
---|
3565 | {
|
---|
3566 | LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
|
---|
3567 | return rc;
|
---|
3568 | }
|
---|
3569 |
|
---|
3570 | /* Check if we can use the VMCS controls for swapping the EFER MSR. */
|
---|
3571 | Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
|
---|
3572 | #if HC_ARCH_BITS == 64
|
---|
3573 | if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
|
---|
3574 | && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
|
---|
3575 | && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
|
---|
3576 | pVM->hm.s.vmx.fSupportsVmcsEfer = true;
|
---|
3577 | #endif
|
---|
3578 |
|
---|
3579 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
3580 | {
|
---|
3581 | PVMCPU pVCpu = &pVM->aCpus[idCpu];
|
---|
3582 | Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
|
---|
3583 |
|
---|
3584 | rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
|
---|
3585 | if (RT_SUCCESS(rc))
|
---|
3586 | {
|
---|
3587 | #if HC_ARCH_BITS == 32
|
---|
3588 | hmR0VmxInitVmcsReadCache(pVCpu);
|
---|
3589 | #endif
|
---|
3590 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3591 | if (pVM->cpum.ro.GuestFeatures.fVmx)
|
---|
3592 | {
|
---|
3593 | rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
|
---|
3594 | if (RT_SUCCESS(rc))
|
---|
3595 | { /* likely */ }
|
---|
3596 | else
|
---|
3597 | {
|
---|
3598 | LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
|
---|
3599 | return rc;
|
---|
3600 | }
|
---|
3601 | }
|
---|
3602 | #endif
|
---|
3603 | }
|
---|
3604 | else
|
---|
3605 | {
|
---|
3606 | LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
|
---|
3607 | return rc;
|
---|
3608 | }
|
---|
3609 | }
|
---|
3610 |
|
---|
3611 | return VINF_SUCCESS;
|
---|
3612 | }
|
---|
3613 |
|
---|
3614 |
|
---|
3615 | #if HC_ARCH_BITS == 32
|
---|
3616 | # ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
3617 | /**
|
---|
3618 | * Check if guest state allows safe use of 32-bit switcher again.
|
---|
3619 | *
|
---|
3620 | * Segment bases and protected mode structures must be 32-bit addressable
|
---|
3621 | * because the 32-bit switcher will ignore high dword when writing these VMCS
|
---|
3622 | * fields. See @bugref{8432} for details.
|
---|
3623 | *
|
---|
3624 | * @returns true if safe, false if must continue to use the 64-bit switcher.
|
---|
3625 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3626 | *
|
---|
3627 | * @remarks No-long-jump zone!!!
|
---|
3628 | */
|
---|
3629 | static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
|
---|
3630 | {
|
---|
3631 | if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
|
---|
3632 | if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
|
---|
3633 | if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
|
---|
3634 | if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
|
---|
3635 | if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
|
---|
3636 | if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
|
---|
3637 | if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
|
---|
3638 | if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
|
---|
3639 | if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
|
---|
3640 | if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
|
---|
3641 |
|
---|
3642 | /* All good, bases are 32-bit. */
|
---|
3643 | return true;
|
---|
3644 | }
|
---|
3645 | # endif /* VBOX_ENABLE_64_BITS_GUESTS */
|
---|
3646 |
|
---|
3647 | # ifdef VBOX_STRICT
|
---|
3648 | static bool hmR0VmxIsValidWriteField(uint32_t idxField)
|
---|
3649 | {
|
---|
3650 | switch (idxField)
|
---|
3651 | {
|
---|
3652 | case VMX_VMCS_GUEST_RIP:
|
---|
3653 | case VMX_VMCS_GUEST_RSP:
|
---|
3654 | case VMX_VMCS_GUEST_SYSENTER_EIP:
|
---|
3655 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
3656 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
3657 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
3658 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
3659 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
3660 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
3661 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
3662 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
3663 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
3664 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
3665 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
3666 | case VMX_VMCS_GUEST_CR3:
|
---|
3667 | return true;
|
---|
3668 | }
|
---|
3669 | return false;
|
---|
3670 | }
|
---|
3671 |
|
---|
3672 | static bool hmR0VmxIsValidReadField(uint32_t idxField)
|
---|
3673 | {
|
---|
3674 | switch (idxField)
|
---|
3675 | {
|
---|
3676 | /* Read-only fields. */
|
---|
3677 | case VMX_VMCS_RO_EXIT_QUALIFICATION:
|
---|
3678 | return true;
|
---|
3679 | }
|
---|
3680 | /* Remaining readable fields should also be writable. */
|
---|
3681 | return hmR0VmxIsValidWriteField(idxField);
|
---|
3682 | }
|
---|
3683 | # endif /* VBOX_STRICT */
|
---|
3684 |
|
---|
3685 |
|
---|
3686 | /**
|
---|
3687 | * Executes the specified handler in 64-bit mode.
|
---|
3688 | *
|
---|
3689 | * @returns VBox status code (no informational status codes).
|
---|
3690 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3691 | * @param enmOp The operation to perform.
|
---|
3692 | * @param cParams Number of parameters.
|
---|
3693 | * @param paParam Array of 32-bit parameters.
|
---|
3694 | */
|
---|
3695 | VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
|
---|
3696 | {
|
---|
3697 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3698 | AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
|
---|
3699 | Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
|
---|
3700 | Assert(pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Write.aField));
|
---|
3701 | Assert(pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VmcsCache.Read.aField));
|
---|
3702 |
|
---|
3703 | #ifdef VBOX_STRICT
|
---|
3704 | for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VmcsCache.Write.cValidEntries; i++)
|
---|
3705 | Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VmcsCache.Write.aField[i]));
|
---|
3706 |
|
---|
3707 | for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VmcsCache.Read.cValidEntries; i++)
|
---|
3708 | Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VmcsCache.Read.aField[i]));
|
---|
3709 | #endif
|
---|
3710 |
|
---|
3711 | /* Disable interrupts. */
|
---|
3712 | RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
|
---|
3713 |
|
---|
3714 | #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
|
---|
3715 | RTCPUID idHostCpu = RTMpCpuId();
|
---|
3716 | CPUMR0SetLApic(pVCpu, idHostCpu);
|
---|
3717 | #endif
|
---|
3718 |
|
---|
3719 | /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
|
---|
3720 |
|
---|
3721 | PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
|
---|
3722 | RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
|
---|
3723 |
|
---|
3724 | /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
|
---|
3725 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
3726 | hmR0VmxClearVmcs(pVmcsInfo);
|
---|
3727 |
|
---|
3728 | /* Leave VMX root mode and disable VMX. */
|
---|
3729 | VMXDisable();
|
---|
3730 | SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
|
---|
3731 |
|
---|
3732 | CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
|
---|
3733 | CPUMSetHyperEIP(pVCpu, enmOp);
|
---|
3734 | for (int i = (int)cParams - 1; i >= 0; i--)
|
---|
3735 | CPUMPushHyper(pVCpu, paParam[i]);
|
---|
3736 |
|
---|
3737 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
3738 |
|
---|
3739 | /* Call the switcher. */
|
---|
3740 | int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
|
---|
3741 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
3742 |
|
---|
3743 | /* Re-enable VMX to make sure the VMX instructions don't cause #UD faults. */
|
---|
3744 | SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
|
---|
3745 |
|
---|
3746 | /* Re-enter VMX root mode. */
|
---|
3747 | int rc2 = VMXEnable(HCPhysCpuPage);
|
---|
3748 | if (RT_FAILURE(rc2))
|
---|
3749 | {
|
---|
3750 | SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
|
---|
3751 | ASMSetFlags(fOldEFlags);
|
---|
3752 | pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
|
---|
3753 | return rc2;
|
---|
3754 | }
|
---|
3755 |
|
---|
3756 | /* Restore the VMCS as the current VMCS. */
|
---|
3757 | rc2 = hmR0VmxLoadVmcs(pVmcsInfo);
|
---|
3758 | AssertRC(rc2);
|
---|
3759 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
3760 | ASMSetFlags(fOldEFlags);
|
---|
3761 | return rc;
|
---|
3762 | }
|
---|
3763 |
|
---|
3764 |
|
---|
3765 | /**
|
---|
3766 | * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
|
---|
3767 | * supporting 64-bit guests.
|
---|
3768 | *
|
---|
3769 | * @returns VBox status code.
|
---|
3770 | * @param fResume Whether to VMLAUNCH or VMRESUME.
|
---|
3771 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3772 | * @param pCache Pointer to the VMCS batch cache.
|
---|
3773 | * @param pVM The cross context VM structure.
|
---|
3774 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3775 | */
|
---|
3776 | DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMXVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
|
---|
3777 | {
|
---|
3778 | NOREF(fResume);
|
---|
3779 |
|
---|
3780 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
3781 | PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
|
---|
3782 | RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
|
---|
3783 |
|
---|
3784 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
3785 | pCache->uPos = 1;
|
---|
3786 | pCache->interPD = PGMGetInterPaeCR3(pVM);
|
---|
3787 | pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
|
---|
3788 | #endif
|
---|
3789 |
|
---|
3790 | #if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
|
---|
3791 | pCache->TestIn.HCPhysCpuPage = 0;
|
---|
3792 | pCache->TestIn.HCPhysVmcs = 0;
|
---|
3793 | pCache->TestIn.pCache = 0;
|
---|
3794 | pCache->TestOut.HCPhysVmcs = 0;
|
---|
3795 | pCache->TestOut.pCache = 0;
|
---|
3796 | pCache->TestOut.pCtx = 0;
|
---|
3797 | pCache->TestOut.eflags = 0;
|
---|
3798 | #else
|
---|
3799 | NOREF(pCache);
|
---|
3800 | #endif
|
---|
3801 |
|
---|
3802 | uint32_t aParam[10];
|
---|
3803 | aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
|
---|
3804 | aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
|
---|
3805 | aParam[2] = RT_LO_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
|
---|
3806 | aParam[3] = RT_HI_U32(pVmcsInfo->HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
|
---|
3807 | aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache);
|
---|
3808 | aParam[5] = 0;
|
---|
3809 | aParam[6] = VM_RC_ADDR(pVM, pVM);
|
---|
3810 | aParam[7] = 0;
|
---|
3811 | aParam[8] = VM_RC_ADDR(pVM, pVCpu);
|
---|
3812 | aParam[9] = 0;
|
---|
3813 |
|
---|
3814 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
3815 | pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
|
---|
3816 | *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
|
---|
3817 | #endif
|
---|
3818 | int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
|
---|
3819 |
|
---|
3820 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
3821 | Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
|
---|
3822 | Assert(pCtx->dr[4] == 10);
|
---|
3823 | *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
|
---|
3824 | #endif
|
---|
3825 |
|
---|
3826 | #if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
|
---|
3827 | AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
|
---|
3828 | AssertMsg(pCache->TestIn.HCPhysVmcs == pVmcsInfo->HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
|
---|
3829 | pVmcsInfo->HCPhysVmcs));
|
---|
3830 | AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
|
---|
3831 | pCache->TestOut.HCPhysVmcs));
|
---|
3832 | AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
|
---|
3833 | pCache->TestOut.pCache));
|
---|
3834 | AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache),
|
---|
3835 | ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VmcsCache)));
|
---|
3836 | AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
|
---|
3837 | pCache->TestOut.pCtx));
|
---|
3838 | Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
|
---|
3839 | #endif
|
---|
3840 | NOREF(pCtx);
|
---|
3841 | return rc;
|
---|
3842 | }
|
---|
3843 | #endif
|
---|
3844 |
|
---|
3845 |
|
---|
3846 | /**
|
---|
3847 | * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
|
---|
3848 | * the VMCS.
|
---|
3849 | *
|
---|
3850 | * @returns VBox status code.
|
---|
3851 | */
|
---|
3852 | static int hmR0VmxExportHostControlRegs(void)
|
---|
3853 | {
|
---|
3854 | RTCCUINTREG uReg = ASMGetCR0();
|
---|
3855 | int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
|
---|
3856 | AssertRCReturn(rc, rc);
|
---|
3857 |
|
---|
3858 | uReg = ASMGetCR3();
|
---|
3859 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
|
---|
3860 | AssertRCReturn(rc, rc);
|
---|
3861 |
|
---|
3862 | uReg = ASMGetCR4();
|
---|
3863 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
|
---|
3864 | AssertRCReturn(rc, rc);
|
---|
3865 | return rc;
|
---|
3866 | }
|
---|
3867 |
|
---|
3868 |
|
---|
3869 | /**
|
---|
3870 | * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
|
---|
3871 | * the host-state area in the VMCS.
|
---|
3872 | *
|
---|
3873 | * @returns VBox status code.
|
---|
3874 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3875 | */
|
---|
3876 | static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
|
---|
3877 | {
|
---|
3878 | #if HC_ARCH_BITS == 64
|
---|
3879 | /**
|
---|
3880 | * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
|
---|
3881 | * requirements. See hmR0VmxExportHostSegmentRegs().
|
---|
3882 | */
|
---|
3883 | # define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
|
---|
3884 | if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
|
---|
3885 | { \
|
---|
3886 | bool fValidSelector = true; \
|
---|
3887 | if ((selValue) & X86_SEL_LDT) \
|
---|
3888 | { \
|
---|
3889 | uint32_t uAttr = ASMGetSegAttr((selValue)); \
|
---|
3890 | fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
|
---|
3891 | } \
|
---|
3892 | if (fValidSelector) \
|
---|
3893 | { \
|
---|
3894 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
|
---|
3895 | pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
|
---|
3896 | } \
|
---|
3897 | (selValue) = 0; \
|
---|
3898 | }
|
---|
3899 |
|
---|
3900 | /*
|
---|
3901 | * If we've executed guest code using hardware-assisted VMX, the host-state bits
|
---|
3902 | * will be messed up. We should -not- save the messed up state without restoring
|
---|
3903 | * the original host-state, see @bugref{7240}.
|
---|
3904 | *
|
---|
3905 | * This apparently can happen (most likely the FPU changes), deal with it rather than
|
---|
3906 | * asserting. Was observed booting Solaris 10u10 32-bit guest.
|
---|
3907 | */
|
---|
3908 | if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
|
---|
3909 | && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
|
---|
3910 | {
|
---|
3911 | Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
|
---|
3912 | pVCpu->idCpu));
|
---|
3913 | VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
|
---|
3914 | }
|
---|
3915 | pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
|
---|
3916 | #else
|
---|
3917 | RT_NOREF(pVCpu);
|
---|
3918 | #endif
|
---|
3919 |
|
---|
3920 | /*
|
---|
3921 | * Host DS, ES, FS and GS segment registers.
|
---|
3922 | */
|
---|
3923 | #if HC_ARCH_BITS == 64
|
---|
3924 | RTSEL uSelDS = ASMGetDS();
|
---|
3925 | RTSEL uSelES = ASMGetES();
|
---|
3926 | RTSEL uSelFS = ASMGetFS();
|
---|
3927 | RTSEL uSelGS = ASMGetGS();
|
---|
3928 | #else
|
---|
3929 | RTSEL uSelDS = 0;
|
---|
3930 | RTSEL uSelES = 0;
|
---|
3931 | RTSEL uSelFS = 0;
|
---|
3932 | RTSEL uSelGS = 0;
|
---|
3933 | #endif
|
---|
3934 |
|
---|
3935 | /*
|
---|
3936 | * Host CS and SS segment registers.
|
---|
3937 | */
|
---|
3938 | RTSEL uSelCS = ASMGetCS();
|
---|
3939 | RTSEL uSelSS = ASMGetSS();
|
---|
3940 |
|
---|
3941 | /*
|
---|
3942 | * Host TR segment register.
|
---|
3943 | */
|
---|
3944 | RTSEL uSelTR = ASMGetTR();
|
---|
3945 |
|
---|
3946 | #if HC_ARCH_BITS == 64
|
---|
3947 | /*
|
---|
3948 | * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
|
---|
3949 | * gain VM-entry and restore them before we get preempted.
|
---|
3950 | *
|
---|
3951 | * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
|
---|
3952 | */
|
---|
3953 | VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
|
---|
3954 | VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
|
---|
3955 | VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
|
---|
3956 | VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
|
---|
3957 | # undef VMXLOCAL_ADJUST_HOST_SEG
|
---|
3958 | #endif
|
---|
3959 |
|
---|
3960 | /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
|
---|
3961 | Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
|
---|
3962 | Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
|
---|
3963 | Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
|
---|
3964 | Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
|
---|
3965 | Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
|
---|
3966 | Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
|
---|
3967 | Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
|
---|
3968 | Assert(uSelCS);
|
---|
3969 | Assert(uSelTR);
|
---|
3970 |
|
---|
3971 | /* Write these host selector fields into the host-state area in the VMCS. */
|
---|
3972 | int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
|
---|
3973 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
|
---|
3974 | #if HC_ARCH_BITS == 64
|
---|
3975 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
|
---|
3976 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
|
---|
3977 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
|
---|
3978 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
|
---|
3979 | #else
|
---|
3980 | NOREF(uSelDS);
|
---|
3981 | NOREF(uSelES);
|
---|
3982 | NOREF(uSelFS);
|
---|
3983 | NOREF(uSelGS);
|
---|
3984 | #endif
|
---|
3985 | rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
|
---|
3986 | AssertRCReturn(rc, rc);
|
---|
3987 |
|
---|
3988 | /*
|
---|
3989 | * Host GDTR and IDTR.
|
---|
3990 | */
|
---|
3991 | RTGDTR Gdtr;
|
---|
3992 | RTIDTR Idtr;
|
---|
3993 | RT_ZERO(Gdtr);
|
---|
3994 | RT_ZERO(Idtr);
|
---|
3995 | ASMGetGDTR(&Gdtr);
|
---|
3996 | ASMGetIDTR(&Idtr);
|
---|
3997 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
|
---|
3998 | rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
|
---|
3999 | AssertRCReturn(rc, rc);
|
---|
4000 |
|
---|
4001 | #if HC_ARCH_BITS == 64
|
---|
4002 | /*
|
---|
4003 | * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
|
---|
4004 | * them to the maximum limit (0xffff) on every VM-exit.
|
---|
4005 | */
|
---|
4006 | if (Gdtr.cbGdt != 0xffff)
|
---|
4007 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
|
---|
4008 |
|
---|
4009 | /*
|
---|
4010 | * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
|
---|
4011 | * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
|
---|
4012 | * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
|
---|
4013 | * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
|
---|
4014 | * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
|
---|
4015 | * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
|
---|
4016 | * at 0xffff on hosts where we are sure it won't cause trouble.
|
---|
4017 | */
|
---|
4018 | # if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
|
---|
4019 | if (Idtr.cbIdt < 0x0fff)
|
---|
4020 | # else
|
---|
4021 | if (Idtr.cbIdt != 0xffff)
|
---|
4022 | # endif
|
---|
4023 | {
|
---|
4024 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
|
---|
4025 | AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
|
---|
4026 | memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
|
---|
4027 | }
|
---|
4028 | #endif
|
---|
4029 |
|
---|
4030 | /*
|
---|
4031 | * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
|
---|
4032 | * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
|
---|
4033 | * RPL should be too in most cases.
|
---|
4034 | */
|
---|
4035 | AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
|
---|
4036 | ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
|
---|
4037 |
|
---|
4038 | PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
|
---|
4039 | #if HC_ARCH_BITS == 64
|
---|
4040 | uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
|
---|
4041 |
|
---|
4042 | /*
|
---|
4043 | * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
|
---|
4044 | * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
|
---|
4045 | * restoration if the host has something else. Task switching is not supported in 64-bit
|
---|
4046 | * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
|
---|
4047 | * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
|
---|
4048 | *
|
---|
4049 | * [1] See Intel spec. 3.5 "System Descriptor Types".
|
---|
4050 | * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
|
---|
4051 | */
|
---|
4052 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4053 | Assert(pDesc->System.u4Type == 11);
|
---|
4054 | if ( pDesc->System.u16LimitLow != 0x67
|
---|
4055 | || pDesc->System.u4LimitHigh)
|
---|
4056 | {
|
---|
4057 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
|
---|
4058 | /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
|
---|
4059 | if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
|
---|
4060 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
|
---|
4061 | pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
|
---|
4062 | }
|
---|
4063 |
|
---|
4064 | /*
|
---|
4065 | * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
|
---|
4066 | */
|
---|
4067 | if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
|
---|
4068 | {
|
---|
4069 | AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
|
---|
4070 | memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
|
---|
4071 | if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
|
---|
4072 | {
|
---|
4073 | /* The GDT is read-only but the writable GDT is available. */
|
---|
4074 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
|
---|
4075 | pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
|
---|
4076 | rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
|
---|
4077 | AssertRCReturn(rc, rc);
|
---|
4078 | }
|
---|
4079 | }
|
---|
4080 | #else
|
---|
4081 | uintptr_t const uTRBase = X86DESC_BASE(pDesc);
|
---|
4082 | #endif
|
---|
4083 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
|
---|
4084 | AssertRCReturn(rc, rc);
|
---|
4085 |
|
---|
4086 | /*
|
---|
4087 | * Host FS base and GS base.
|
---|
4088 | */
|
---|
4089 | #if HC_ARCH_BITS == 64
|
---|
4090 | uint64_t const u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
|
---|
4091 | uint64_t const u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
|
---|
4092 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
|
---|
4093 | rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
|
---|
4094 | AssertRCReturn(rc, rc);
|
---|
4095 |
|
---|
4096 | /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
|
---|
4097 | if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
|
---|
4098 | pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
|
---|
4099 | if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
|
---|
4100 | pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
|
---|
4101 | #endif
|
---|
4102 | return VINF_SUCCESS;
|
---|
4103 | }
|
---|
4104 |
|
---|
4105 |
|
---|
4106 | /**
|
---|
4107 | * Exports certain host MSRs in the VM-exit MSR-load area and some in the
|
---|
4108 | * host-state area of the VMCS.
|
---|
4109 | *
|
---|
4110 | * These MSRs will be automatically restored on the host after every successful
|
---|
4111 | * VM-exit.
|
---|
4112 | *
|
---|
4113 | * @returns VBox status code.
|
---|
4114 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4115 | *
|
---|
4116 | * @remarks No-long-jump zone!!!
|
---|
4117 | */
|
---|
4118 | static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
|
---|
4119 | {
|
---|
4120 | AssertPtr(pVCpu);
|
---|
4121 |
|
---|
4122 | /*
|
---|
4123 | * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
|
---|
4124 | * rather than swapping them on every VM-entry.
|
---|
4125 | */
|
---|
4126 | hmR0VmxLazySaveHostMsrs(pVCpu);
|
---|
4127 |
|
---|
4128 | /*
|
---|
4129 | * Host Sysenter MSRs.
|
---|
4130 | */
|
---|
4131 | int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
|
---|
4132 | #if HC_ARCH_BITS == 32
|
---|
4133 | rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
|
---|
4134 | rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
|
---|
4135 | #else
|
---|
4136 | rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
|
---|
4137 | rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
|
---|
4138 | #endif
|
---|
4139 | AssertRCReturn(rc, rc);
|
---|
4140 |
|
---|
4141 | /*
|
---|
4142 | * Host EFER MSR.
|
---|
4143 | *
|
---|
4144 | * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
|
---|
4145 | * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
|
---|
4146 | */
|
---|
4147 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4148 | if (pVM->hm.s.vmx.fSupportsVmcsEfer)
|
---|
4149 | {
|
---|
4150 | rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostMsrEfer);
|
---|
4151 | AssertRCReturn(rc, rc);
|
---|
4152 | }
|
---|
4153 |
|
---|
4154 | /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
|
---|
4155 | * hmR0VmxExportGuestEntryExitCtls(). */
|
---|
4156 |
|
---|
4157 | return VINF_SUCCESS;
|
---|
4158 | }
|
---|
4159 |
|
---|
4160 |
|
---|
4161 | /**
|
---|
4162 | * Figures out if we need to swap the EFER MSR which is particularly expensive.
|
---|
4163 | *
|
---|
4164 | * We check all relevant bits. For now, that's everything besides LMA/LME, as
|
---|
4165 | * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
|
---|
4166 | *
|
---|
4167 | * @returns true if we need to load guest EFER, false otherwise.
|
---|
4168 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4169 | *
|
---|
4170 | * @remarks Requires EFER, CR4.
|
---|
4171 | * @remarks No-long-jump zone!!!
|
---|
4172 | */
|
---|
4173 | static bool hmR0VmxShouldSwapEferMsr(PCVMCPU pVCpu)
|
---|
4174 | {
|
---|
4175 | #ifdef HMVMX_ALWAYS_SWAP_EFER
|
---|
4176 | RT_NOREF(pVCpu);
|
---|
4177 | return true;
|
---|
4178 | #else
|
---|
4179 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4180 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
4181 | /* For 32-bit hosts running 64-bit guests, we always swap EFER MSR in the world-switcher. Nothing to do here. */
|
---|
4182 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
4183 | return false;
|
---|
4184 | #endif
|
---|
4185 |
|
---|
4186 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4187 | uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostMsrEfer;
|
---|
4188 | uint64_t const u64GuestEfer = pCtx->msrEFER;
|
---|
4189 |
|
---|
4190 | /*
|
---|
4191 | * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
|
---|
4192 | * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
|
---|
4193 | */
|
---|
4194 | if ( CPUMIsGuestInLongModeEx(pCtx)
|
---|
4195 | && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
|
---|
4196 | return true;
|
---|
4197 |
|
---|
4198 | /*
|
---|
4199 | * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
|
---|
4200 | * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
|
---|
4201 | *
|
---|
4202 | * See Intel spec. 4.5 "IA-32e Paging".
|
---|
4203 | * See Intel spec. 4.1.1 "Three Paging Modes".
|
---|
4204 | *
|
---|
4205 | * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
|
---|
4206 | * import CR4 and CR0 from the VMCS here as those bits are always up to date.
|
---|
4207 | */
|
---|
4208 | Assert(hmR0VmxGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
|
---|
4209 | Assert(hmR0VmxGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
|
---|
4210 | if ( (pCtx->cr4 & X86_CR4_PAE)
|
---|
4211 | && (pCtx->cr0 & X86_CR0_PG)
|
---|
4212 | && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
|
---|
4213 | {
|
---|
4214 | /* Assert that host is NX capable. */
|
---|
4215 | Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
|
---|
4216 | return true;
|
---|
4217 | }
|
---|
4218 |
|
---|
4219 | return false;
|
---|
4220 | #endif
|
---|
4221 | }
|
---|
4222 |
|
---|
4223 | /**
|
---|
4224 | * Exports the guest state with appropriate VM-entry and VM-exit controls in the
|
---|
4225 | * VMCS.
|
---|
4226 | *
|
---|
4227 | * This is typically required when the guest changes paging mode.
|
---|
4228 | *
|
---|
4229 | * @returns VBox status code.
|
---|
4230 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4231 | * @param pVmxTransient The VMX-transient structure.
|
---|
4232 | *
|
---|
4233 | * @remarks Requires EFER.
|
---|
4234 | * @remarks No-long-jump zone!!!
|
---|
4235 | */
|
---|
4236 | static int hmR0VmxExportGuestEntryExitCtls(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
4237 | {
|
---|
4238 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
|
---|
4239 | {
|
---|
4240 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4241 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
4242 |
|
---|
4243 | /*
|
---|
4244 | * VM-entry controls.
|
---|
4245 | */
|
---|
4246 | {
|
---|
4247 | uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
|
---|
4248 | uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
4249 |
|
---|
4250 | /*
|
---|
4251 | * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
|
---|
4252 | * The first VT-x capable CPUs only supported the 1-setting of this bit.
|
---|
4253 | *
|
---|
4254 | * For nested-guests, this is a mandatory VM-entry control. It's also
|
---|
4255 | * required because we do not want to leak host bits to the nested-guest.
|
---|
4256 | */
|
---|
4257 | fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
|
---|
4258 |
|
---|
4259 | /*
|
---|
4260 | * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
|
---|
4261 | *
|
---|
4262 | * For nested-guests, the "IA-32e mode guest" control we initialize with what is
|
---|
4263 | * required to get the nested-guest working with hardware-assisted VMX execution.
|
---|
4264 | * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested-hypervisor
|
---|
4265 | * can skip intercepting changes to the EFER MSR. This is why it it needs to be done
|
---|
4266 | * here rather than while merging the guest VMCS controls.
|
---|
4267 | */
|
---|
4268 | if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
|
---|
4269 | fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
|
---|
4270 | else
|
---|
4271 | Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
|
---|
4272 |
|
---|
4273 | /*
|
---|
4274 | * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
|
---|
4275 | *
|
---|
4276 | * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
|
---|
4277 | * regardless of whether the nested-guest VMCS specifies it because we are free to
|
---|
4278 | * load whatever MSRs we require and we do not need to modify the guest visible copy
|
---|
4279 | * of the VM-entry MSR load area.
|
---|
4280 | */
|
---|
4281 | if ( pVM->hm.s.vmx.fSupportsVmcsEfer
|
---|
4282 | && hmR0VmxShouldSwapEferMsr(pVCpu))
|
---|
4283 | fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
|
---|
4284 | else
|
---|
4285 | Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
|
---|
4286 |
|
---|
4287 | /*
|
---|
4288 | * The following should -not- be set (since we're not in SMM mode):
|
---|
4289 | * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
|
---|
4290 | * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
|
---|
4291 | */
|
---|
4292 |
|
---|
4293 | /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
|
---|
4294 | * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
|
---|
4295 |
|
---|
4296 | if ((fVal & fZap) == fVal)
|
---|
4297 | { /* likely */ }
|
---|
4298 | else
|
---|
4299 | {
|
---|
4300 | Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
|
---|
4301 | pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
|
---|
4302 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
|
---|
4303 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
4304 | }
|
---|
4305 |
|
---|
4306 | /* Commit it to the VMCS. */
|
---|
4307 | if (pVmcsInfo->u32EntryCtls != fVal)
|
---|
4308 | {
|
---|
4309 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
|
---|
4310 | AssertRCReturn(rc, rc);
|
---|
4311 | pVmcsInfo->u32EntryCtls = fVal;
|
---|
4312 | }
|
---|
4313 | }
|
---|
4314 |
|
---|
4315 | /*
|
---|
4316 | * VM-exit controls.
|
---|
4317 | */
|
---|
4318 | {
|
---|
4319 | uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
|
---|
4320 | uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
4321 |
|
---|
4322 | /*
|
---|
4323 | * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
|
---|
4324 | * supported the 1-setting of this bit.
|
---|
4325 | *
|
---|
4326 | * For nested-guests, we set the "save debug controls" as the converse
|
---|
4327 | * "load debug controls" is mandatory for nested-guests anyway.
|
---|
4328 | */
|
---|
4329 | fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
|
---|
4330 |
|
---|
4331 | /*
|
---|
4332 | * Set the host long mode active (EFER.LMA) bit (which Intel calls
|
---|
4333 | * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
|
---|
4334 | * host EFER.LMA and EFER.LME bit to this value. See assertion in
|
---|
4335 | * hmR0VmxExportHostMsrs().
|
---|
4336 | *
|
---|
4337 | * For nested-guests, we always set this bit as we do not support 32-bit
|
---|
4338 | * hosts.
|
---|
4339 | */
|
---|
4340 | #if HC_ARCH_BITS == 64
|
---|
4341 | fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
|
---|
4342 | #else
|
---|
4343 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
4344 | Assert( pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64
|
---|
4345 | || pVmcsInfo->pfnStartVM == VMXR0StartVM32);
|
---|
4346 | /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
|
---|
4347 | if (pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64)
|
---|
4348 | {
|
---|
4349 | /* The switcher returns to long mode, the EFER MSR is managed by the switcher. */
|
---|
4350 | fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
|
---|
4351 | }
|
---|
4352 | else
|
---|
4353 | Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
|
---|
4354 | #endif
|
---|
4355 |
|
---|
4356 | /*
|
---|
4357 | * If the VMCS EFER MSR fields are supported by the hardware, we use it.
|
---|
4358 | *
|
---|
4359 | * For nested-guests, we should use the "save IA32_EFER" control if we also
|
---|
4360 | * used the "load IA32_EFER" control while exporting VM-entry controls.
|
---|
4361 | */
|
---|
4362 | if ( pVM->hm.s.vmx.fSupportsVmcsEfer
|
---|
4363 | && hmR0VmxShouldSwapEferMsr(pVCpu))
|
---|
4364 | {
|
---|
4365 | fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
|
---|
4366 | | VMX_EXIT_CTLS_LOAD_EFER_MSR;
|
---|
4367 | }
|
---|
4368 |
|
---|
4369 | /*
|
---|
4370 | * Enable saving of the VMX-preemption timer value on VM-exit.
|
---|
4371 | * For nested-guests, currently not exposed/used.
|
---|
4372 | */
|
---|
4373 | if ( pVM->hm.s.vmx.fUsePreemptTimer
|
---|
4374 | && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
|
---|
4375 | fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
|
---|
4376 |
|
---|
4377 | /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
|
---|
4378 | Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
|
---|
4379 |
|
---|
4380 | /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
|
---|
4381 | * VMX_EXIT_CTLS_SAVE_PAT_MSR,
|
---|
4382 | * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
|
---|
4383 |
|
---|
4384 | if ((fVal & fZap) == fVal)
|
---|
4385 | { /* likely */ }
|
---|
4386 | else
|
---|
4387 | {
|
---|
4388 | Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
|
---|
4389 | pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
|
---|
4390 | pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
|
---|
4391 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
4392 | }
|
---|
4393 |
|
---|
4394 | /* Commit it to the VMCS. */
|
---|
4395 | if (pVmcsInfo->u32ExitCtls != fVal)
|
---|
4396 | {
|
---|
4397 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
|
---|
4398 | AssertRCReturn(rc, rc);
|
---|
4399 | pVmcsInfo->u32ExitCtls = fVal;
|
---|
4400 | }
|
---|
4401 | }
|
---|
4402 |
|
---|
4403 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
|
---|
4404 | }
|
---|
4405 | return VINF_SUCCESS;
|
---|
4406 | }
|
---|
4407 |
|
---|
4408 |
|
---|
4409 | /**
|
---|
4410 | * Sets the TPR threshold in the VMCS.
|
---|
4411 | *
|
---|
4412 | * @returns VBox status code.
|
---|
4413 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4414 | * @param pVmcsInfo The VMCS info. object.
|
---|
4415 | * @param u32TprThreshold The TPR threshold (task-priority class only).
|
---|
4416 | */
|
---|
4417 | DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
|
---|
4418 | {
|
---|
4419 | Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
|
---|
4420 | Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
|
---|
4421 | RT_NOREF2(pVCpu, pVmcsInfo);
|
---|
4422 | return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
|
---|
4423 | }
|
---|
4424 |
|
---|
4425 |
|
---|
4426 | /**
|
---|
4427 | * Exports the guest APIC TPR state into the VMCS.
|
---|
4428 | *
|
---|
4429 | * @returns VBox status code.
|
---|
4430 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4431 | * @param pVmxTransient The VMX-transient structure.
|
---|
4432 | *
|
---|
4433 | * @remarks No-long-jump zone!!!
|
---|
4434 | */
|
---|
4435 | static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
4436 | {
|
---|
4437 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
|
---|
4438 | {
|
---|
4439 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
|
---|
4440 |
|
---|
4441 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
4442 | if (!pVmxTransient->fIsNestedGuest)
|
---|
4443 | {
|
---|
4444 | if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
|
---|
4445 | && APICIsEnabled(pVCpu))
|
---|
4446 | {
|
---|
4447 | /*
|
---|
4448 | * Setup TPR shadowing.
|
---|
4449 | */
|
---|
4450 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
4451 | {
|
---|
4452 | bool fPendingIntr = false;
|
---|
4453 | uint8_t u8Tpr = 0;
|
---|
4454 | uint8_t u8PendingIntr = 0;
|
---|
4455 | int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
|
---|
4456 | AssertRCReturn(rc, rc);
|
---|
4457 |
|
---|
4458 | /*
|
---|
4459 | * If there are interrupts pending but masked by the TPR, instruct VT-x to
|
---|
4460 | * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
|
---|
4461 | * priority of the pending interrupt so we can deliver the interrupt. If there
|
---|
4462 | * are no interrupts pending, set threshold to 0 to not cause any
|
---|
4463 | * TPR-below-threshold VM-exits.
|
---|
4464 | */
|
---|
4465 | Assert(pVmcsInfo->pbVirtApic);
|
---|
4466 | pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
|
---|
4467 | uint32_t u32TprThreshold = 0;
|
---|
4468 | if (fPendingIntr)
|
---|
4469 | {
|
---|
4470 | /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
|
---|
4471 | (which is the Task-Priority Class). */
|
---|
4472 | const uint8_t u8PendingPriority = u8PendingIntr >> 4;
|
---|
4473 | const uint8_t u8TprPriority = u8Tpr >> 4;
|
---|
4474 | if (u8PendingPriority <= u8TprPriority)
|
---|
4475 | u32TprThreshold = u8PendingPriority;
|
---|
4476 | }
|
---|
4477 |
|
---|
4478 | rc = hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u32TprThreshold);
|
---|
4479 | AssertRCReturn(rc, rc);
|
---|
4480 | }
|
---|
4481 | }
|
---|
4482 | }
|
---|
4483 | /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
|
---|
4484 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
|
---|
4485 | }
|
---|
4486 | return VINF_SUCCESS;
|
---|
4487 | }
|
---|
4488 |
|
---|
4489 |
|
---|
4490 | /**
|
---|
4491 | * Gets the guest interruptibility-state.
|
---|
4492 | *
|
---|
4493 | * @returns Guest's interruptibility-state.
|
---|
4494 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4495 | * @param pVmcsInfo The VMCS info. object.
|
---|
4496 | *
|
---|
4497 | * @remarks No-long-jump zone!!!
|
---|
4498 | */
|
---|
4499 | static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
4500 | {
|
---|
4501 | /*
|
---|
4502 | * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
|
---|
4503 | */
|
---|
4504 | uint32_t fIntrState = 0;
|
---|
4505 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
4506 | {
|
---|
4507 | /* If inhibition is active, RIP and RFLAGS should've been updated
|
---|
4508 | (i.e. read previously from the VMCS or from ring-3). */
|
---|
4509 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4510 | #ifdef VBOX_STRICT
|
---|
4511 | uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
|
---|
4512 | RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
|
---|
4513 | AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
|
---|
4514 | #endif
|
---|
4515 | if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
|
---|
4516 | {
|
---|
4517 | if (pCtx->eflags.Bits.u1IF)
|
---|
4518 | fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
|
---|
4519 | else
|
---|
4520 | fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
|
---|
4521 | }
|
---|
4522 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
4523 | {
|
---|
4524 | /*
|
---|
4525 | * We can clear the inhibit force flag as even if we go back to the recompiler
|
---|
4526 | * without executing guest code in VT-x, the flag's condition to be cleared is
|
---|
4527 | * met and thus the cleared state is correct.
|
---|
4528 | */
|
---|
4529 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
4530 | }
|
---|
4531 | }
|
---|
4532 |
|
---|
4533 | /*
|
---|
4534 | * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
|
---|
4535 | * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
|
---|
4536 | * setting this would block host-NMIs and IRET will not clear the blocking.
|
---|
4537 | *
|
---|
4538 | * We always set NMI-exiting so when the host receives an NMI we get a VM-exit.
|
---|
4539 | *
|
---|
4540 | * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
|
---|
4541 | */
|
---|
4542 | if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
4543 | && CPUMIsGuestNmiBlocking(pVCpu))
|
---|
4544 | fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
|
---|
4545 |
|
---|
4546 | return fIntrState;
|
---|
4547 | }
|
---|
4548 |
|
---|
4549 |
|
---|
4550 | /**
|
---|
4551 | * Exports the exception intercepts required for guest execution in the VMCS.
|
---|
4552 | *
|
---|
4553 | * @returns VBox status code.
|
---|
4554 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4555 | * @param pVmxTransient The VMX-transient structure.
|
---|
4556 | *
|
---|
4557 | * @remarks No-long-jump zone!!!
|
---|
4558 | */
|
---|
4559 | static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
4560 | {
|
---|
4561 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
|
---|
4562 | {
|
---|
4563 | /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
|
---|
4564 | if ( !pVmxTransient->fIsNestedGuest
|
---|
4565 | && pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
4566 | hmR0VmxAddXcptIntercept(pVmxTransient, X86_XCPT_UD);
|
---|
4567 | else
|
---|
4568 | hmR0VmxRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
|
---|
4569 |
|
---|
4570 | /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
|
---|
4571 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
|
---|
4572 | }
|
---|
4573 | return VINF_SUCCESS;
|
---|
4574 | }
|
---|
4575 |
|
---|
4576 |
|
---|
4577 | /**
|
---|
4578 | * Exports the guest's RIP into the guest-state area in the VMCS.
|
---|
4579 | *
|
---|
4580 | * @returns VBox status code.
|
---|
4581 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4582 | *
|
---|
4583 | * @remarks No-long-jump zone!!!
|
---|
4584 | */
|
---|
4585 | static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
|
---|
4586 | {
|
---|
4587 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
|
---|
4588 | {
|
---|
4589 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
|
---|
4590 |
|
---|
4591 | int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
|
---|
4592 | AssertRCReturn(rc, rc);
|
---|
4593 |
|
---|
4594 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
|
---|
4595 | Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
|
---|
4596 | }
|
---|
4597 | return VINF_SUCCESS;
|
---|
4598 | }
|
---|
4599 |
|
---|
4600 |
|
---|
4601 | /**
|
---|
4602 | * Exports the guest's RSP into the guest-state area in the VMCS.
|
---|
4603 | *
|
---|
4604 | * @returns VBox status code.
|
---|
4605 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4606 | *
|
---|
4607 | * @remarks No-long-jump zone!!!
|
---|
4608 | */
|
---|
4609 | static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
|
---|
4610 | {
|
---|
4611 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
|
---|
4612 | {
|
---|
4613 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
|
---|
4614 |
|
---|
4615 | int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
|
---|
4616 | AssertRCReturn(rc, rc);
|
---|
4617 |
|
---|
4618 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
|
---|
4619 | }
|
---|
4620 | return VINF_SUCCESS;
|
---|
4621 | }
|
---|
4622 |
|
---|
4623 |
|
---|
4624 | /**
|
---|
4625 | * Exports the guest's RFLAGS into the guest-state area in the VMCS.
|
---|
4626 | *
|
---|
4627 | * @returns VBox status code.
|
---|
4628 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4629 | * @param pVmxTransient The VMX-transient structure.
|
---|
4630 | *
|
---|
4631 | * @remarks No-long-jump zone!!!
|
---|
4632 | */
|
---|
4633 | static int hmR0VmxExportGuestRflags(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
4634 | {
|
---|
4635 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
|
---|
4636 | {
|
---|
4637 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
|
---|
4638 |
|
---|
4639 | /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
|
---|
4640 | Let us assert it as such and use 32-bit VMWRITE. */
|
---|
4641 | Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
|
---|
4642 | X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
|
---|
4643 | Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
|
---|
4644 | Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
|
---|
4645 |
|
---|
4646 | /*
|
---|
4647 | * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
|
---|
4648 | * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
|
---|
4649 | * can run the real-mode guest code under Virtual 8086 mode.
|
---|
4650 | */
|
---|
4651 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
4652 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
4653 | {
|
---|
4654 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
4655 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
4656 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
4657 | pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
|
---|
4658 | fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
|
---|
4659 | fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
|
---|
4660 | }
|
---|
4661 |
|
---|
4662 | int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
|
---|
4663 | AssertRCReturn(rc, rc);
|
---|
4664 |
|
---|
4665 | /*
|
---|
4666 | * Setup pending debug exceptions if the guest is single-stepping using EFLAGS.TF.
|
---|
4667 | *
|
---|
4668 | * We must avoid setting any automatic debug exceptions delivery when single-stepping
|
---|
4669 | * through the hypervisor debugger using EFLAGS.TF.
|
---|
4670 | */
|
---|
4671 | if ( !pVmxTransient->fIsNestedGuest
|
---|
4672 | && !pVCpu->hm.s.fSingleInstruction
|
---|
4673 | && fEFlags.Bits.u1TF)
|
---|
4674 | {
|
---|
4675 | /** @todo r=ramshankar: Warning!! We ASSUME EFLAGS.TF will not cleared on
|
---|
4676 | * premature trips to ring-3 esp since IEM does not yet handle it. */
|
---|
4677 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
|
---|
4678 | AssertRCReturn(rc, rc);
|
---|
4679 | }
|
---|
4680 | /** @todo NSTVMX: Handling copying of VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS from
|
---|
4681 | * nested-guest VMCS. */
|
---|
4682 |
|
---|
4683 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
|
---|
4684 | Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
|
---|
4685 | }
|
---|
4686 | return VINF_SUCCESS;
|
---|
4687 | }
|
---|
4688 |
|
---|
4689 |
|
---|
4690 | /**
|
---|
4691 | * Exports the guest CR0 control register into the guest-state area in the VMCS.
|
---|
4692 | *
|
---|
4693 | * The guest FPU state is always pre-loaded hence we don't need to bother about
|
---|
4694 | * sharing FPU related CR0 bits between the guest and host.
|
---|
4695 | *
|
---|
4696 | * @returns VBox status code.
|
---|
4697 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4698 | * @param pVmxTransient The VMX-transient structure.
|
---|
4699 | *
|
---|
4700 | * @remarks No-long-jump zone!!!
|
---|
4701 | */
|
---|
4702 | static int hmR0VmxExportGuestCR0(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
4703 | {
|
---|
4704 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
|
---|
4705 | {
|
---|
4706 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4707 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
4708 |
|
---|
4709 | /*
|
---|
4710 | * Figure out fixed CR0 bits in VMX operation.
|
---|
4711 | */
|
---|
4712 | uint64_t fSetCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
|
---|
4713 | uint64_t const fZapCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
|
---|
4714 | if (pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
4715 | fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
|
---|
4716 | else
|
---|
4717 | Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
|
---|
4718 |
|
---|
4719 | if (!pVmxTransient->fIsNestedGuest)
|
---|
4720 | {
|
---|
4721 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
4722 | uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
|
---|
4723 | uint64_t const u64ShadowCr0 = u64GuestCr0;
|
---|
4724 | Assert(!RT_HI_U32(u64GuestCr0));
|
---|
4725 |
|
---|
4726 | /*
|
---|
4727 | * Setup VT-x's view of the guest CR0.
|
---|
4728 | */
|
---|
4729 | uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
|
---|
4730 | if (pVM->hm.s.fNestedPaging)
|
---|
4731 | {
|
---|
4732 | if (CPUMIsGuestPagingEnabled(pVCpu))
|
---|
4733 | {
|
---|
4734 | /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
|
---|
4735 | uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
|
---|
4736 | | VMX_PROC_CTLS_CR3_STORE_EXIT);
|
---|
4737 | }
|
---|
4738 | else
|
---|
4739 | {
|
---|
4740 | /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
|
---|
4741 | uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
|
---|
4742 | | VMX_PROC_CTLS_CR3_STORE_EXIT;
|
---|
4743 | }
|
---|
4744 |
|
---|
4745 | /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
|
---|
4746 | if (pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
4747 | uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
|
---|
4748 | }
|
---|
4749 | else
|
---|
4750 | {
|
---|
4751 | /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
|
---|
4752 | u64GuestCr0 |= X86_CR0_WP;
|
---|
4753 | }
|
---|
4754 |
|
---|
4755 | /*
|
---|
4756 | * Guest FPU bits.
|
---|
4757 | *
|
---|
4758 | * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
|
---|
4759 | * using CR0.TS.
|
---|
4760 | *
|
---|
4761 | * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
|
---|
4762 | * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
|
---|
4763 | */
|
---|
4764 | u64GuestCr0 |= X86_CR0_NE;
|
---|
4765 |
|
---|
4766 | /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
|
---|
4767 | bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
|
---|
4768 |
|
---|
4769 | /*
|
---|
4770 | * Update exception intercepts.
|
---|
4771 | */
|
---|
4772 | uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
|
---|
4773 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
4774 | {
|
---|
4775 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
4776 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
4777 | uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
|
---|
4778 | }
|
---|
4779 | else
|
---|
4780 | {
|
---|
4781 | /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
|
---|
4782 | uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
|
---|
4783 | if (fInterceptMF)
|
---|
4784 | uXcptBitmap |= RT_BIT(X86_XCPT_MF);
|
---|
4785 | }
|
---|
4786 |
|
---|
4787 | /* Additional intercepts for debugging, define these yourself explicitly. */
|
---|
4788 | #ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
4789 | uXcptBitmap |= 0
|
---|
4790 | | RT_BIT(X86_XCPT_BP)
|
---|
4791 | | RT_BIT(X86_XCPT_DE)
|
---|
4792 | | RT_BIT(X86_XCPT_NM)
|
---|
4793 | | RT_BIT(X86_XCPT_TS)
|
---|
4794 | | RT_BIT(X86_XCPT_UD)
|
---|
4795 | | RT_BIT(X86_XCPT_NP)
|
---|
4796 | | RT_BIT(X86_XCPT_SS)
|
---|
4797 | | RT_BIT(X86_XCPT_GP)
|
---|
4798 | | RT_BIT(X86_XCPT_PF)
|
---|
4799 | | RT_BIT(X86_XCPT_MF)
|
---|
4800 | ;
|
---|
4801 | #elif defined(HMVMX_ALWAYS_TRAP_PF)
|
---|
4802 | uXcptBitmap |= RT_BIT(X86_XCPT_PF);
|
---|
4803 | #endif
|
---|
4804 | if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
|
---|
4805 | uXcptBitmap |= RT_BIT(X86_XCPT_GP);
|
---|
4806 | Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
|
---|
4807 |
|
---|
4808 | /* Apply the fixed CR0 bits and enable caching. */
|
---|
4809 | u64GuestCr0 |= fSetCr0;
|
---|
4810 | u64GuestCr0 &= fZapCr0;
|
---|
4811 | u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
|
---|
4812 |
|
---|
4813 | /* Commit the CR0 and related fields to the guest VMCS. */
|
---|
4814 | int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u64GuestCr0); /** @todo Fix to 64-bit when we drop 32-bit. */
|
---|
4815 | rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
|
---|
4816 | if (uProcCtls != pVmcsInfo->u32ProcCtls)
|
---|
4817 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
|
---|
4818 | if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
|
---|
4819 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
|
---|
4820 | AssertRCReturn(rc, rc);
|
---|
4821 |
|
---|
4822 | /* Update our caches. */
|
---|
4823 | pVmcsInfo->u32ProcCtls = uProcCtls;
|
---|
4824 | pVmcsInfo->u32XcptBitmap = uXcptBitmap;
|
---|
4825 |
|
---|
4826 | Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
|
---|
4827 | }
|
---|
4828 | else
|
---|
4829 | {
|
---|
4830 | PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4831 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
4832 | uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
|
---|
4833 | uint64_t const u64ShadowCr0 = pVmcsNstGst->u64Cr0ReadShadow.u;
|
---|
4834 | Assert(!RT_HI_U32(u64GuestCr0));
|
---|
4835 | Assert(u64GuestCr0 & X86_CR0_NE);
|
---|
4836 |
|
---|
4837 | /* Apply the fixed CR0 bits and enable caching. */
|
---|
4838 | u64GuestCr0 |= fSetCr0;
|
---|
4839 | u64GuestCr0 &= fZapCr0;
|
---|
4840 | u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
|
---|
4841 |
|
---|
4842 | /* Commit the CR0 and CR0 read shadow to the nested-guest VMCS. */
|
---|
4843 | int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u64GuestCr0); /** @todo NSTVMX: Fix to 64-bit when we drop 32-bit. */
|
---|
4844 | rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0);
|
---|
4845 | AssertRCReturn(rc, rc);
|
---|
4846 |
|
---|
4847 | Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
|
---|
4848 | }
|
---|
4849 |
|
---|
4850 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
|
---|
4851 | }
|
---|
4852 |
|
---|
4853 | return VINF_SUCCESS;
|
---|
4854 | }
|
---|
4855 |
|
---|
4856 |
|
---|
4857 | /**
|
---|
4858 | * Exports the guest control registers (CR3, CR4) into the guest-state area
|
---|
4859 | * in the VMCS.
|
---|
4860 | *
|
---|
4861 | * @returns VBox strict status code.
|
---|
4862 | * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
|
---|
4863 | * without unrestricted guest access and the VMMDev is not presently
|
---|
4864 | * mapped (e.g. EFI32).
|
---|
4865 | *
|
---|
4866 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4867 | * @param pVmxTransient The VMX-transient structure.
|
---|
4868 | *
|
---|
4869 | * @remarks No-long-jump zone!!!
|
---|
4870 | */
|
---|
4871 | static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
4872 | {
|
---|
4873 | int rc = VINF_SUCCESS;
|
---|
4874 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4875 |
|
---|
4876 | /*
|
---|
4877 | * Guest CR2.
|
---|
4878 | * It's always loaded in the assembler code. Nothing to do here.
|
---|
4879 | */
|
---|
4880 |
|
---|
4881 | /*
|
---|
4882 | * Guest CR3.
|
---|
4883 | */
|
---|
4884 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
|
---|
4885 | {
|
---|
4886 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
4887 |
|
---|
4888 | RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
|
---|
4889 | if (pVM->hm.s.fNestedPaging)
|
---|
4890 | {
|
---|
4891 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
4892 | pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
|
---|
4893 |
|
---|
4894 | /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
|
---|
4895 | Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
|
---|
4896 | Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
|
---|
4897 | Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
|
---|
4898 |
|
---|
4899 | /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
|
---|
4900 | pVmcsInfo->HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
|
---|
4901 | | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
|
---|
4902 |
|
---|
4903 | /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
|
---|
4904 | AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
|
---|
4905 | && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
|
---|
4906 | ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
|
---|
4907 | AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
|
---|
4908 | || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
|
---|
4909 | ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
|
---|
4910 |
|
---|
4911 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
|
---|
4912 | AssertRCReturn(rc, rc);
|
---|
4913 |
|
---|
4914 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4915 | if ( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
4916 | || CPUMIsGuestPagingEnabledEx(pCtx))
|
---|
4917 | {
|
---|
4918 | /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
|
---|
4919 | if (CPUMIsGuestInPAEModeEx(pCtx))
|
---|
4920 | {
|
---|
4921 | rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
4922 | AssertRCReturn(rc, rc);
|
---|
4923 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
|
---|
4924 | rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
|
---|
4925 | rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
|
---|
4926 | rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
|
---|
4927 | AssertRCReturn(rc, rc);
|
---|
4928 | }
|
---|
4929 |
|
---|
4930 | /*
|
---|
4931 | * The guest's view of its CR3 is unblemished with nested paging when the
|
---|
4932 | * guest is using paging or we have unrestricted guest execution to handle
|
---|
4933 | * the guest when it's not using paging.
|
---|
4934 | */
|
---|
4935 | GCPhysGuestCR3 = pCtx->cr3;
|
---|
4936 | }
|
---|
4937 | else
|
---|
4938 | {
|
---|
4939 | /*
|
---|
4940 | * The guest is not using paging, but the CPU (VT-x) has to. While the guest
|
---|
4941 | * thinks it accesses physical memory directly, we use our identity-mapped
|
---|
4942 | * page table to map guest-linear to guest-physical addresses. EPT takes care
|
---|
4943 | * of translating it to host-physical addresses.
|
---|
4944 | */
|
---|
4945 | RTGCPHYS GCPhys;
|
---|
4946 | Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
|
---|
4947 |
|
---|
4948 | /* We obtain it here every time as the guest could have relocated this PCI region. */
|
---|
4949 | rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
|
---|
4950 | if (RT_SUCCESS(rc))
|
---|
4951 | { /* likely */ }
|
---|
4952 | else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
|
---|
4953 | {
|
---|
4954 | Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
4955 | return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
|
---|
4956 | }
|
---|
4957 | else
|
---|
4958 | AssertMsgFailedReturn(("%Rrc\n", rc), rc);
|
---|
4959 |
|
---|
4960 | GCPhysGuestCR3 = GCPhys;
|
---|
4961 | }
|
---|
4962 |
|
---|
4963 | Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
|
---|
4964 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
|
---|
4965 | AssertRCReturn(rc, rc);
|
---|
4966 | }
|
---|
4967 | else
|
---|
4968 | {
|
---|
4969 | /* Non-nested paging case, just use the hypervisor's CR3. */
|
---|
4970 | RTHCPHYS const HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
|
---|
4971 |
|
---|
4972 | Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
|
---|
4973 | rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
|
---|
4974 | AssertRCReturn(rc, rc);
|
---|
4975 | }
|
---|
4976 |
|
---|
4977 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
|
---|
4978 | }
|
---|
4979 |
|
---|
4980 | /*
|
---|
4981 | * Guest CR4.
|
---|
4982 | * ASSUMES this is done everytime we get in from ring-3! (XCR0)
|
---|
4983 | */
|
---|
4984 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
|
---|
4985 | {
|
---|
4986 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4987 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
4988 | PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
4989 |
|
---|
4990 | /*
|
---|
4991 | * Figure out fixed CR4 bits in VMX operation.
|
---|
4992 | */
|
---|
4993 | uint64_t const fSetCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
|
---|
4994 | uint64_t const fZapCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
|
---|
4995 |
|
---|
4996 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
4997 | uint64_t u64GuestCr4 = pCtx->cr4;
|
---|
4998 | uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest ? pCtx->cr4 : pVmcsNstGst->u64Cr4ReadShadow.u;
|
---|
4999 | Assert(!RT_HI_U32(u64GuestCr4));
|
---|
5000 |
|
---|
5001 | /*
|
---|
5002 | * Setup VT-x's view of the guest CR4.
|
---|
5003 | *
|
---|
5004 | * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
|
---|
5005 | * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
|
---|
5006 | * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
|
---|
5007 | *
|
---|
5008 | * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
|
---|
5009 | */
|
---|
5010 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5011 | {
|
---|
5012 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
5013 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
5014 | u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
|
---|
5015 | }
|
---|
5016 |
|
---|
5017 | if (pVM->hm.s.fNestedPaging)
|
---|
5018 | {
|
---|
5019 | if ( !CPUMIsGuestPagingEnabledEx(pCtx)
|
---|
5020 | && !pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
5021 | {
|
---|
5022 | /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
|
---|
5023 | u64GuestCr4 |= X86_CR4_PSE;
|
---|
5024 | /* Our identity mapping is a 32-bit page directory. */
|
---|
5025 | u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
|
---|
5026 | }
|
---|
5027 | /* else use guest CR4.*/
|
---|
5028 | }
|
---|
5029 | else
|
---|
5030 | {
|
---|
5031 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
5032 |
|
---|
5033 | /*
|
---|
5034 | * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
|
---|
5035 | * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
|
---|
5036 | */
|
---|
5037 | switch (pVCpu->hm.s.enmShadowMode)
|
---|
5038 | {
|
---|
5039 | case PGMMODE_REAL: /* Real-mode. */
|
---|
5040 | case PGMMODE_PROTECTED: /* Protected mode without paging. */
|
---|
5041 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
5042 | {
|
---|
5043 | u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
|
---|
5044 | break;
|
---|
5045 | }
|
---|
5046 |
|
---|
5047 | case PGMMODE_PAE: /* PAE paging. */
|
---|
5048 | case PGMMODE_PAE_NX: /* PAE paging with NX. */
|
---|
5049 | {
|
---|
5050 | u64GuestCr4 |= X86_CR4_PAE;
|
---|
5051 | break;
|
---|
5052 | }
|
---|
5053 |
|
---|
5054 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
5055 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
5056 | #ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
5057 | break;
|
---|
5058 | #endif
|
---|
5059 | default:
|
---|
5060 | AssertFailed();
|
---|
5061 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
5062 | }
|
---|
5063 | }
|
---|
5064 |
|
---|
5065 | /* Apply the fixed CR4 bits (mainly CR4.VMXE). */
|
---|
5066 | u64GuestCr4 |= fSetCr4;
|
---|
5067 | u64GuestCr4 &= fZapCr4;
|
---|
5068 |
|
---|
5069 | /* Commit the CR4 and CR4 read shadow to the guest VMCS. */
|
---|
5070 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u64GuestCr4); /** @todo Fix to 64-bit when we drop 32-bit. */
|
---|
5071 | rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4);
|
---|
5072 | AssertRCReturn(rc, rc);
|
---|
5073 |
|
---|
5074 | /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
|
---|
5075 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
5076 |
|
---|
5077 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
|
---|
5078 |
|
---|
5079 | Log4Func(("cr4=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
|
---|
5080 | }
|
---|
5081 | return rc;
|
---|
5082 | }
|
---|
5083 |
|
---|
5084 |
|
---|
5085 | /**
|
---|
5086 | * Exports the guest debug registers into the guest-state area in the VMCS.
|
---|
5087 | * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
|
---|
5088 | *
|
---|
5089 | * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
|
---|
5090 | *
|
---|
5091 | * @returns VBox status code.
|
---|
5092 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5093 | * @param pVmxTransient The VMX-transient structure.
|
---|
5094 | *
|
---|
5095 | * @remarks No-long-jump zone!!!
|
---|
5096 | */
|
---|
5097 | static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5098 | {
|
---|
5099 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
5100 |
|
---|
5101 | /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
|
---|
5102 | * stepping. */
|
---|
5103 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
5104 | if (pVmxTransient->fIsNestedGuest)
|
---|
5105 | {
|
---|
5106 | int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
|
---|
5107 | AssertRCReturn(rc, rc);
|
---|
5108 | return VINF_SUCCESS;
|
---|
5109 | }
|
---|
5110 |
|
---|
5111 | #ifdef VBOX_STRICT
|
---|
5112 | /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
|
---|
5113 | if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
5114 | {
|
---|
5115 | /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
|
---|
5116 | Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
|
---|
5117 | Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
|
---|
5118 | }
|
---|
5119 | #endif
|
---|
5120 |
|
---|
5121 | bool fSteppingDB = false;
|
---|
5122 | bool fInterceptMovDRx = false;
|
---|
5123 | uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
|
---|
5124 | if (pVCpu->hm.s.fSingleInstruction)
|
---|
5125 | {
|
---|
5126 | /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
|
---|
5127 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5128 | if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
|
---|
5129 | {
|
---|
5130 | uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
|
---|
5131 | Assert(fSteppingDB == false);
|
---|
5132 | }
|
---|
5133 | else
|
---|
5134 | {
|
---|
5135 | pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
|
---|
5136 | pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
|
---|
5137 | pVCpu->hm.s.fClearTrapFlag = true;
|
---|
5138 | fSteppingDB = true;
|
---|
5139 | }
|
---|
5140 | }
|
---|
5141 |
|
---|
5142 | uint32_t u32GuestDr7;
|
---|
5143 | if ( fSteppingDB
|
---|
5144 | || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
|
---|
5145 | {
|
---|
5146 | /*
|
---|
5147 | * Use the combined guest and host DRx values found in the hypervisor register set
|
---|
5148 | * because the hypervisor debugger has breakpoints active or someone is single stepping
|
---|
5149 | * on the host side without a monitor trap flag.
|
---|
5150 | *
|
---|
5151 | * Note! DBGF expects a clean DR6 state before executing guest code.
|
---|
5152 | */
|
---|
5153 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
5154 | if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
|
---|
5155 | && !CPUMIsHyperDebugStateActivePending(pVCpu))
|
---|
5156 | {
|
---|
5157 | CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
|
---|
5158 | Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
5159 | Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
5160 | }
|
---|
5161 | else
|
---|
5162 | #endif
|
---|
5163 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
5164 | {
|
---|
5165 | CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
|
---|
5166 | Assert(CPUMIsHyperDebugStateActive(pVCpu));
|
---|
5167 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
5168 | }
|
---|
5169 |
|
---|
5170 | /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
|
---|
5171 | u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
|
---|
5172 | pVCpu->hm.s.fUsingHyperDR7 = true;
|
---|
5173 | fInterceptMovDRx = true;
|
---|
5174 | }
|
---|
5175 | else
|
---|
5176 | {
|
---|
5177 | /*
|
---|
5178 | * If the guest has enabled debug registers, we need to load them prior to
|
---|
5179 | * executing guest code so they'll trigger at the right time.
|
---|
5180 | */
|
---|
5181 | if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
|
---|
5182 | {
|
---|
5183 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
5184 | if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
|
---|
5185 | && !CPUMIsGuestDebugStateActivePending(pVCpu))
|
---|
5186 | {
|
---|
5187 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
5188 | Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
5189 | Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
5190 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
5191 | }
|
---|
5192 | else
|
---|
5193 | #endif
|
---|
5194 | if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
5195 | {
|
---|
5196 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
5197 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
5198 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
5199 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
5200 | }
|
---|
5201 | Assert(!fInterceptMovDRx);
|
---|
5202 | }
|
---|
5203 | /*
|
---|
5204 | * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
|
---|
5205 | * must intercept #DB in order to maintain a correct DR6 guest value, and
|
---|
5206 | * because we need to intercept it to prevent nested #DBs from hanging the
|
---|
5207 | * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
|
---|
5208 | */
|
---|
5209 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
5210 | else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
|
---|
5211 | && !CPUMIsGuestDebugStateActive(pVCpu))
|
---|
5212 | #else
|
---|
5213 | else if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
5214 | #endif
|
---|
5215 | {
|
---|
5216 | fInterceptMovDRx = true;
|
---|
5217 | }
|
---|
5218 |
|
---|
5219 | /* Update DR7 with the actual guest value. */
|
---|
5220 | u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
|
---|
5221 | pVCpu->hm.s.fUsingHyperDR7 = false;
|
---|
5222 | }
|
---|
5223 |
|
---|
5224 | if (fInterceptMovDRx)
|
---|
5225 | uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
|
---|
5226 | else
|
---|
5227 | uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
|
---|
5228 |
|
---|
5229 | /*
|
---|
5230 | * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
|
---|
5231 | * monitor-trap flag and update our cache.
|
---|
5232 | */
|
---|
5233 | if (uProcCtls != pVmcsInfo->u32ProcCtls)
|
---|
5234 | {
|
---|
5235 | int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
|
---|
5236 | AssertRCReturn(rc2, rc2);
|
---|
5237 | pVmcsInfo->u32ProcCtls = uProcCtls;
|
---|
5238 | }
|
---|
5239 |
|
---|
5240 | /*
|
---|
5241 | * Update guest DR7.
|
---|
5242 | */
|
---|
5243 | int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
|
---|
5244 | AssertRCReturn(rc, rc);
|
---|
5245 |
|
---|
5246 | /*
|
---|
5247 | * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
|
---|
5248 | * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
|
---|
5249 | *
|
---|
5250 | * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
|
---|
5251 | */
|
---|
5252 | if (fSteppingDB)
|
---|
5253 | {
|
---|
5254 | Assert(pVCpu->hm.s.fSingleInstruction);
|
---|
5255 | Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
|
---|
5256 |
|
---|
5257 | uint32_t fIntrState = 0;
|
---|
5258 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
|
---|
5259 | AssertRCReturn(rc, rc);
|
---|
5260 |
|
---|
5261 | if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
|
---|
5262 | {
|
---|
5263 | fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
|
---|
5264 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
|
---|
5265 | AssertRCReturn(rc, rc);
|
---|
5266 | }
|
---|
5267 | }
|
---|
5268 |
|
---|
5269 | return VINF_SUCCESS;
|
---|
5270 | }
|
---|
5271 |
|
---|
5272 |
|
---|
5273 | #ifdef VBOX_STRICT
|
---|
5274 | /**
|
---|
5275 | * Strict function to validate segment registers.
|
---|
5276 | *
|
---|
5277 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5278 | * @param pVmcsInfo The VMCS info. object.
|
---|
5279 | *
|
---|
5280 | * @remarks Will import guest CR0 on strict builds during validation of
|
---|
5281 | * segments.
|
---|
5282 | */
|
---|
5283 | static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
5284 | {
|
---|
5285 | /*
|
---|
5286 | * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
|
---|
5287 | *
|
---|
5288 | * The reason we check for attribute value 0 in this function and not just the unusable bit is
|
---|
5289 | * because hmR0VmxExportGuestSegReg() only updates the VMCS' copy of the value with the
|
---|
5290 | * unusable bit and doesn't change the guest-context value.
|
---|
5291 | */
|
---|
5292 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5293 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
5294 | hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
|
---|
5295 | if ( !pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
5296 | && ( !CPUMIsGuestInRealModeEx(pCtx)
|
---|
5297 | && !CPUMIsGuestInV86ModeEx(pCtx)))
|
---|
5298 | {
|
---|
5299 | /* Protected mode checks */
|
---|
5300 | /* CS */
|
---|
5301 | Assert(pCtx->cs.Attr.n.u1Present);
|
---|
5302 | Assert(!(pCtx->cs.Attr.u & 0xf00));
|
---|
5303 | Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
|
---|
5304 | Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
|
---|
5305 | || !(pCtx->cs.Attr.n.u1Granularity));
|
---|
5306 | Assert( !(pCtx->cs.u32Limit & 0xfff00000)
|
---|
5307 | || (pCtx->cs.Attr.n.u1Granularity));
|
---|
5308 | /* CS cannot be loaded with NULL in protected mode. */
|
---|
5309 | Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
|
---|
5310 | if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
|
---|
5311 | Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
|
---|
5312 | else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
|
---|
5313 | Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
|
---|
5314 | else
|
---|
5315 | AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
|
---|
5316 | /* SS */
|
---|
5317 | Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
|
---|
5318 | Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
|
---|
5319 | if ( !(pCtx->cr0 & X86_CR0_PE)
|
---|
5320 | || pCtx->cs.Attr.n.u4Type == 3)
|
---|
5321 | {
|
---|
5322 | Assert(!pCtx->ss.Attr.n.u2Dpl);
|
---|
5323 | }
|
---|
5324 | if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
5325 | {
|
---|
5326 | Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
|
---|
5327 | Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
|
---|
5328 | Assert(pCtx->ss.Attr.n.u1Present);
|
---|
5329 | Assert(!(pCtx->ss.Attr.u & 0xf00));
|
---|
5330 | Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
|
---|
5331 | Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
|
---|
5332 | || !(pCtx->ss.Attr.n.u1Granularity));
|
---|
5333 | Assert( !(pCtx->ss.u32Limit & 0xfff00000)
|
---|
5334 | || (pCtx->ss.Attr.n.u1Granularity));
|
---|
5335 | }
|
---|
5336 | /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegReg(). */
|
---|
5337 | if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
5338 | {
|
---|
5339 | Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
5340 | Assert(pCtx->ds.Attr.n.u1Present);
|
---|
5341 | Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
|
---|
5342 | Assert(!(pCtx->ds.Attr.u & 0xf00));
|
---|
5343 | Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
|
---|
5344 | Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
|
---|
5345 | || !(pCtx->ds.Attr.n.u1Granularity));
|
---|
5346 | Assert( !(pCtx->ds.u32Limit & 0xfff00000)
|
---|
5347 | || (pCtx->ds.Attr.n.u1Granularity));
|
---|
5348 | Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
5349 | || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
5350 | }
|
---|
5351 | if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
5352 | {
|
---|
5353 | Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
5354 | Assert(pCtx->es.Attr.n.u1Present);
|
---|
5355 | Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
|
---|
5356 | Assert(!(pCtx->es.Attr.u & 0xf00));
|
---|
5357 | Assert(!(pCtx->es.Attr.u & 0xfffe0000));
|
---|
5358 | Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
|
---|
5359 | || !(pCtx->es.Attr.n.u1Granularity));
|
---|
5360 | Assert( !(pCtx->es.u32Limit & 0xfff00000)
|
---|
5361 | || (pCtx->es.Attr.n.u1Granularity));
|
---|
5362 | Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
5363 | || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
5364 | }
|
---|
5365 | if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
5366 | {
|
---|
5367 | Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
5368 | Assert(pCtx->fs.Attr.n.u1Present);
|
---|
5369 | Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
|
---|
5370 | Assert(!(pCtx->fs.Attr.u & 0xf00));
|
---|
5371 | Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
|
---|
5372 | Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
|
---|
5373 | || !(pCtx->fs.Attr.n.u1Granularity));
|
---|
5374 | Assert( !(pCtx->fs.u32Limit & 0xfff00000)
|
---|
5375 | || (pCtx->fs.Attr.n.u1Granularity));
|
---|
5376 | Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
5377 | || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
5378 | }
|
---|
5379 | if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
5380 | {
|
---|
5381 | Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
5382 | Assert(pCtx->gs.Attr.n.u1Present);
|
---|
5383 | Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
|
---|
5384 | Assert(!(pCtx->gs.Attr.u & 0xf00));
|
---|
5385 | Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
|
---|
5386 | Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
|
---|
5387 | || !(pCtx->gs.Attr.n.u1Granularity));
|
---|
5388 | Assert( !(pCtx->gs.u32Limit & 0xfff00000)
|
---|
5389 | || (pCtx->gs.Attr.n.u1Granularity));
|
---|
5390 | Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
5391 | || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
5392 | }
|
---|
5393 | /* 64-bit capable CPUs. */
|
---|
5394 | # if HC_ARCH_BITS == 64
|
---|
5395 | Assert(!RT_HI_U32(pCtx->cs.u64Base));
|
---|
5396 | Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
|
---|
5397 | Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
|
---|
5398 | Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
|
---|
5399 | # endif
|
---|
5400 | }
|
---|
5401 | else if ( CPUMIsGuestInV86ModeEx(pCtx)
|
---|
5402 | || ( CPUMIsGuestInRealModeEx(pCtx)
|
---|
5403 | && !pVM->hm.s.vmx.fUnrestrictedGuest))
|
---|
5404 | {
|
---|
5405 | /* Real and v86 mode checks. */
|
---|
5406 | /* hmR0VmxExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
|
---|
5407 | uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
|
---|
5408 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5409 | {
|
---|
5410 | u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
|
---|
5411 | u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
|
---|
5412 | }
|
---|
5413 | else
|
---|
5414 | {
|
---|
5415 | u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
|
---|
5416 | u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
|
---|
5417 | }
|
---|
5418 |
|
---|
5419 | /* CS */
|
---|
5420 | AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
|
---|
5421 | Assert(pCtx->cs.u32Limit == 0xffff);
|
---|
5422 | Assert(u32CSAttr == 0xf3);
|
---|
5423 | /* SS */
|
---|
5424 | Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
|
---|
5425 | Assert(pCtx->ss.u32Limit == 0xffff);
|
---|
5426 | Assert(u32SSAttr == 0xf3);
|
---|
5427 | /* DS */
|
---|
5428 | Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
|
---|
5429 | Assert(pCtx->ds.u32Limit == 0xffff);
|
---|
5430 | Assert(u32DSAttr == 0xf3);
|
---|
5431 | /* ES */
|
---|
5432 | Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
|
---|
5433 | Assert(pCtx->es.u32Limit == 0xffff);
|
---|
5434 | Assert(u32ESAttr == 0xf3);
|
---|
5435 | /* FS */
|
---|
5436 | Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
|
---|
5437 | Assert(pCtx->fs.u32Limit == 0xffff);
|
---|
5438 | Assert(u32FSAttr == 0xf3);
|
---|
5439 | /* GS */
|
---|
5440 | Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
|
---|
5441 | Assert(pCtx->gs.u32Limit == 0xffff);
|
---|
5442 | Assert(u32GSAttr == 0xf3);
|
---|
5443 | /* 64-bit capable CPUs. */
|
---|
5444 | # if HC_ARCH_BITS == 64
|
---|
5445 | Assert(!RT_HI_U32(pCtx->cs.u64Base));
|
---|
5446 | Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
|
---|
5447 | Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
|
---|
5448 | Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
|
---|
5449 | # endif
|
---|
5450 | }
|
---|
5451 | }
|
---|
5452 | #endif /* VBOX_STRICT */
|
---|
5453 |
|
---|
5454 |
|
---|
5455 | /**
|
---|
5456 | * Exports a guest segment register into the guest-state area in the VMCS.
|
---|
5457 | *
|
---|
5458 | * @returns VBox status code.
|
---|
5459 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5460 | * @param pVmcsInfo The VMCS info. object.
|
---|
5461 | * @param iSegReg The segment register number (X86_SREG_XXX).
|
---|
5462 | * @param pSelReg Pointer to the segment selector.
|
---|
5463 | *
|
---|
5464 | * @remarks No-long-jump zone!!!
|
---|
5465 | */
|
---|
5466 | static int hmR0VmxExportGuestSegReg(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint8_t iSegReg, PCCPUMSELREG pSelReg)
|
---|
5467 | {
|
---|
5468 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
5469 | uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
|
---|
5470 | uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
|
---|
5471 | uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
|
---|
5472 | uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
|
---|
5473 |
|
---|
5474 | uint32_t u32Access = pSelReg->Attr.u;
|
---|
5475 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5476 | {
|
---|
5477 | /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
|
---|
5478 | u32Access = 0xf3;
|
---|
5479 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
5480 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
5481 | RT_NOREF_PV(pVCpu);
|
---|
5482 | }
|
---|
5483 | else
|
---|
5484 | {
|
---|
5485 | /*
|
---|
5486 | * The way to differentiate between whether this is really a null selector or was just
|
---|
5487 | * a selector loaded with 0 in real-mode is using the segment attributes. A selector
|
---|
5488 | * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
|
---|
5489 | * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
|
---|
5490 | * NULL selectors loaded in protected-mode have their attribute as 0.
|
---|
5491 | */
|
---|
5492 | if (!u32Access)
|
---|
5493 | u32Access = X86DESCATTR_UNUSABLE;
|
---|
5494 | }
|
---|
5495 |
|
---|
5496 | /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
|
---|
5497 | AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
|
---|
5498 | ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
|
---|
5499 |
|
---|
5500 | /*
|
---|
5501 | * Commit it to the VMCS.
|
---|
5502 | */
|
---|
5503 | int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel);
|
---|
5504 | rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit);
|
---|
5505 | rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base);
|
---|
5506 | rc |= VMXWriteVmcs32(idxAttr, u32Access);
|
---|
5507 | AssertRCReturn(rc, rc);
|
---|
5508 | return rc;
|
---|
5509 | }
|
---|
5510 |
|
---|
5511 |
|
---|
5512 | /**
|
---|
5513 | * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
|
---|
5514 | * area in the VMCS.
|
---|
5515 | *
|
---|
5516 | * @returns VBox status code.
|
---|
5517 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5518 | * @param pVmxTransient The VMX-transient structure.
|
---|
5519 | *
|
---|
5520 | * @remarks Will import guest CR0 on strict builds during validation of
|
---|
5521 | * segments.
|
---|
5522 | * @remarks No-long-jump zone!!!
|
---|
5523 | */
|
---|
5524 | static int hmR0VmxExportGuestSegRegsXdtr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5525 | {
|
---|
5526 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
5527 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5528 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
5529 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
5530 |
|
---|
5531 | /*
|
---|
5532 | * Guest Segment registers: CS, SS, DS, ES, FS, GS.
|
---|
5533 | */
|
---|
5534 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
|
---|
5535 | {
|
---|
5536 | #ifdef VBOX_WITH_REM
|
---|
5537 | if (!pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
5538 | {
|
---|
5539 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
5540 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
5541 | AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
|
---|
5542 | if ( pVmcsInfo->fWasInRealMode
|
---|
5543 | && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
|
---|
5544 | {
|
---|
5545 | /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
|
---|
5546 | in real-mode (e.g. OpenBSD 4.0) */
|
---|
5547 | REMFlushTBs(pVM);
|
---|
5548 | Log4Func(("Switch to protected mode detected!\n"));
|
---|
5549 | pVmcsInfo->fWasInRealMode = false;
|
---|
5550 | }
|
---|
5551 | }
|
---|
5552 | #endif
|
---|
5553 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
|
---|
5554 | {
|
---|
5555 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
|
---|
5556 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5557 | pVmcsInfo->RealMode.AttrCS.u = pCtx->cs.Attr.u;
|
---|
5558 | rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
|
---|
5559 | AssertRCReturn(rc, rc);
|
---|
5560 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
|
---|
5561 | }
|
---|
5562 |
|
---|
5563 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
|
---|
5564 | {
|
---|
5565 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
|
---|
5566 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5567 | pVmcsInfo->RealMode.AttrSS.u = pCtx->ss.Attr.u;
|
---|
5568 | rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
|
---|
5569 | AssertRCReturn(rc, rc);
|
---|
5570 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
|
---|
5571 | }
|
---|
5572 |
|
---|
5573 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
|
---|
5574 | {
|
---|
5575 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
|
---|
5576 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5577 | pVmcsInfo->RealMode.AttrDS.u = pCtx->ds.Attr.u;
|
---|
5578 | rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
|
---|
5579 | AssertRCReturn(rc, rc);
|
---|
5580 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
|
---|
5581 | }
|
---|
5582 |
|
---|
5583 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
|
---|
5584 | {
|
---|
5585 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
5586 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5587 | pVmcsInfo->RealMode.AttrES.u = pCtx->es.Attr.u;
|
---|
5588 | rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
|
---|
5589 | AssertRCReturn(rc, rc);
|
---|
5590 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
|
---|
5591 | }
|
---|
5592 |
|
---|
5593 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
|
---|
5594 | {
|
---|
5595 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
|
---|
5596 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5597 | pVmcsInfo->RealMode.AttrFS.u = pCtx->fs.Attr.u;
|
---|
5598 | rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
|
---|
5599 | AssertRCReturn(rc, rc);
|
---|
5600 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
|
---|
5601 | }
|
---|
5602 |
|
---|
5603 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
|
---|
5604 | {
|
---|
5605 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
|
---|
5606 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5607 | pVmcsInfo->RealMode.AttrGS.u = pCtx->gs.Attr.u;
|
---|
5608 | rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
|
---|
5609 | AssertRCReturn(rc, rc);
|
---|
5610 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
|
---|
5611 | }
|
---|
5612 |
|
---|
5613 | #ifdef VBOX_STRICT
|
---|
5614 | hmR0VmxValidateSegmentRegs(pVCpu, pVmcsInfo);
|
---|
5615 | #endif
|
---|
5616 | Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
|
---|
5617 | pCtx->cs.Attr.u));
|
---|
5618 | }
|
---|
5619 |
|
---|
5620 | /*
|
---|
5621 | * Guest TR.
|
---|
5622 | */
|
---|
5623 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
|
---|
5624 | {
|
---|
5625 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
|
---|
5626 |
|
---|
5627 | /*
|
---|
5628 | * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
|
---|
5629 | * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
|
---|
5630 | * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
|
---|
5631 | */
|
---|
5632 | uint16_t u16Sel;
|
---|
5633 | uint32_t u32Limit;
|
---|
5634 | uint64_t u64Base;
|
---|
5635 | uint32_t u32AccessRights;
|
---|
5636 | if (!pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
5637 | {
|
---|
5638 | u16Sel = pCtx->tr.Sel;
|
---|
5639 | u32Limit = pCtx->tr.u32Limit;
|
---|
5640 | u64Base = pCtx->tr.u64Base;
|
---|
5641 | u32AccessRights = pCtx->tr.Attr.u;
|
---|
5642 | }
|
---|
5643 | else
|
---|
5644 | {
|
---|
5645 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
5646 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
5647 | Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
|
---|
5648 |
|
---|
5649 | /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
|
---|
5650 | RTGCPHYS GCPhys;
|
---|
5651 | rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
|
---|
5652 | AssertRCReturn(rc, rc);
|
---|
5653 |
|
---|
5654 | X86DESCATTR DescAttr;
|
---|
5655 | DescAttr.u = 0;
|
---|
5656 | DescAttr.n.u1Present = 1;
|
---|
5657 | DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
5658 |
|
---|
5659 | u16Sel = 0;
|
---|
5660 | u32Limit = HM_VTX_TSS_SIZE;
|
---|
5661 | u64Base = GCPhys;
|
---|
5662 | u32AccessRights = DescAttr.u;
|
---|
5663 | }
|
---|
5664 |
|
---|
5665 | /* Validate. */
|
---|
5666 | Assert(!(u16Sel & RT_BIT(2)));
|
---|
5667 | AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
|
---|
5668 | || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
|
---|
5669 | AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
|
---|
5670 | Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
|
---|
5671 | Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
|
---|
5672 | Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
|
---|
5673 | Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
|
---|
5674 | Assert( (u32Limit & 0xfff) == 0xfff
|
---|
5675 | || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
|
---|
5676 | Assert( !(pCtx->tr.u32Limit & 0xfff00000)
|
---|
5677 | || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
|
---|
5678 |
|
---|
5679 | rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
|
---|
5680 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
|
---|
5681 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
|
---|
5682 | rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
|
---|
5683 | AssertRCReturn(rc, rc);
|
---|
5684 |
|
---|
5685 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
|
---|
5686 | Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
|
---|
5687 | }
|
---|
5688 |
|
---|
5689 | /*
|
---|
5690 | * Guest GDTR.
|
---|
5691 | */
|
---|
5692 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
|
---|
5693 | {
|
---|
5694 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
|
---|
5695 |
|
---|
5696 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
|
---|
5697 | rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
|
---|
5698 | AssertRCReturn(rc, rc);
|
---|
5699 |
|
---|
5700 | /* Validate. */
|
---|
5701 | Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
|
---|
5702 |
|
---|
5703 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
|
---|
5704 | Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
|
---|
5705 | }
|
---|
5706 |
|
---|
5707 | /*
|
---|
5708 | * Guest LDTR.
|
---|
5709 | */
|
---|
5710 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
|
---|
5711 | {
|
---|
5712 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
|
---|
5713 |
|
---|
5714 | /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
|
---|
5715 | uint32_t u32Access;
|
---|
5716 | if ( !pVmxTransient->fIsNestedGuest
|
---|
5717 | && !pCtx->ldtr.Attr.u)
|
---|
5718 | u32Access = X86DESCATTR_UNUSABLE;
|
---|
5719 | else
|
---|
5720 | u32Access = pCtx->ldtr.Attr.u;
|
---|
5721 |
|
---|
5722 | rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
|
---|
5723 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
|
---|
5724 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
|
---|
5725 | rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
|
---|
5726 | AssertRCReturn(rc, rc);
|
---|
5727 |
|
---|
5728 | /* Validate. */
|
---|
5729 | if (!(u32Access & X86DESCATTR_UNUSABLE))
|
---|
5730 | {
|
---|
5731 | Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
|
---|
5732 | Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
|
---|
5733 | Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
|
---|
5734 | Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
|
---|
5735 | Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
|
---|
5736 | Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
|
---|
5737 | Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
|
---|
5738 | || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
|
---|
5739 | Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
|
---|
5740 | || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
|
---|
5741 | }
|
---|
5742 |
|
---|
5743 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
|
---|
5744 | Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
|
---|
5745 | }
|
---|
5746 |
|
---|
5747 | /*
|
---|
5748 | * Guest IDTR.
|
---|
5749 | */
|
---|
5750 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
|
---|
5751 | {
|
---|
5752 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
|
---|
5753 |
|
---|
5754 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
|
---|
5755 | rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
|
---|
5756 | AssertRCReturn(rc, rc);
|
---|
5757 |
|
---|
5758 | /* Validate. */
|
---|
5759 | Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
|
---|
5760 |
|
---|
5761 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
|
---|
5762 | Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
|
---|
5763 | }
|
---|
5764 |
|
---|
5765 | return VINF_SUCCESS;
|
---|
5766 | }
|
---|
5767 |
|
---|
5768 |
|
---|
5769 | /**
|
---|
5770 | * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
|
---|
5771 | * areas.
|
---|
5772 | *
|
---|
5773 | * These MSRs will automatically be loaded to the host CPU on every successful
|
---|
5774 | * VM-entry and stored from the host CPU on every successful VM-exit.
|
---|
5775 | *
|
---|
5776 | * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
|
---|
5777 | * actual host MSR values are not- updated here for performance reasons. See
|
---|
5778 | * hmR0VmxExportHostMsrs().
|
---|
5779 | *
|
---|
5780 | * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
|
---|
5781 | *
|
---|
5782 | * @returns VBox status code.
|
---|
5783 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5784 | * @param pVmxTransient The VMX-transient structure.
|
---|
5785 | *
|
---|
5786 | * @remarks No-long-jump zone!!!
|
---|
5787 | */
|
---|
5788 | static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5789 | {
|
---|
5790 | AssertPtr(pVCpu);
|
---|
5791 | AssertPtr(pVmxTransient);
|
---|
5792 |
|
---|
5793 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5794 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
5795 |
|
---|
5796 | /*
|
---|
5797 | * MSRs that we use the auto-load/store MSR area in the VMCS.
|
---|
5798 | * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
|
---|
5799 | * The host MSR values are updated when it's safe in hmR0VmxLazySaveHostMsrs().
|
---|
5800 | *
|
---|
5801 | * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
|
---|
5802 | * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
|
---|
5803 | * emulation, nothing to do here.
|
---|
5804 | */
|
---|
5805 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
|
---|
5806 | {
|
---|
5807 | if ( !pVmxTransient->fIsNestedGuest
|
---|
5808 | && pVM->hm.s.fAllow64BitGuests)
|
---|
5809 | {
|
---|
5810 | #if HC_ARCH_BITS == 32
|
---|
5811 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
|
---|
5812 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
5813 |
|
---|
5814 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_LSTAR, pCtx->msrLSTAR, true, false);
|
---|
5815 | rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_STAR, pCtx->msrSTAR, true, false);
|
---|
5816 | rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_SF_MASK, pCtx->msrSFMASK, true, false);
|
---|
5817 | rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, true, false);
|
---|
5818 | AssertRCReturn(rc, rc);
|
---|
5819 | #endif
|
---|
5820 | }
|
---|
5821 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
|
---|
5822 | }
|
---|
5823 |
|
---|
5824 | /*
|
---|
5825 | * Guest Sysenter MSRs.
|
---|
5826 | */
|
---|
5827 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
|
---|
5828 | {
|
---|
5829 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
|
---|
5830 |
|
---|
5831 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
|
---|
5832 | {
|
---|
5833 | int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
|
---|
5834 | AssertRCReturn(rc, rc);
|
---|
5835 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
|
---|
5836 | }
|
---|
5837 |
|
---|
5838 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
|
---|
5839 | {
|
---|
5840 | int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
|
---|
5841 | AssertRCReturn(rc, rc);
|
---|
5842 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
|
---|
5843 | }
|
---|
5844 |
|
---|
5845 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
|
---|
5846 | {
|
---|
5847 | int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
|
---|
5848 | AssertRCReturn(rc, rc);
|
---|
5849 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
|
---|
5850 | }
|
---|
5851 | }
|
---|
5852 |
|
---|
5853 | /*
|
---|
5854 | * Guest/host EFER MSR.
|
---|
5855 | */
|
---|
5856 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
|
---|
5857 | {
|
---|
5858 | /* Whether we are using the VMCS to swap the EFER MSR must have been
|
---|
5859 | determined earlier while exporting VM-entry/VM-exit controls. */
|
---|
5860 | Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
|
---|
5861 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
5862 |
|
---|
5863 | if (hmR0VmxShouldSwapEferMsr(pVCpu))
|
---|
5864 | {
|
---|
5865 | /*
|
---|
5866 | * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
|
---|
5867 | * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
|
---|
5868 | */
|
---|
5869 | if (pVM->hm.s.vmx.fSupportsVmcsEfer)
|
---|
5870 | {
|
---|
5871 | int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
|
---|
5872 | AssertRCReturn(rc, rc);
|
---|
5873 | }
|
---|
5874 | else
|
---|
5875 | {
|
---|
5876 | /*
|
---|
5877 | * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
|
---|
5878 | * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
|
---|
5879 | */
|
---|
5880 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, pCtx->msrEFER,
|
---|
5881 | false /* fSetReadWrite */, false /* fUpdateHostMsr */);
|
---|
5882 | AssertRCReturn(rc, rc);
|
---|
5883 | }
|
---|
5884 | }
|
---|
5885 | else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
|
---|
5886 | hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
|
---|
5887 |
|
---|
5888 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
|
---|
5889 | }
|
---|
5890 |
|
---|
5891 | /*
|
---|
5892 | * Other MSRs.
|
---|
5893 | * Speculation Control (R/W).
|
---|
5894 | */
|
---|
5895 | if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
|
---|
5896 | {
|
---|
5897 | HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
|
---|
5898 | if (pVM->cpum.ro.GuestFeatures.fIbrs)
|
---|
5899 | {
|
---|
5900 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
|
---|
5901 | false /* fSetReadWrite */, false /* fUpdateHostMsr */);
|
---|
5902 | AssertRCReturn(rc, rc);
|
---|
5903 | }
|
---|
5904 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
|
---|
5905 | }
|
---|
5906 |
|
---|
5907 | return VINF_SUCCESS;
|
---|
5908 | }
|
---|
5909 |
|
---|
5910 |
|
---|
5911 | /**
|
---|
5912 | * Selects up the appropriate function to run guest code.
|
---|
5913 | *
|
---|
5914 | * @returns VBox status code.
|
---|
5915 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5916 | * @param pVmxTransient The VMX-transient structure.
|
---|
5917 | *
|
---|
5918 | * @remarks No-long-jump zone!!!
|
---|
5919 | */
|
---|
5920 | static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5921 | {
|
---|
5922 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
5923 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
5924 |
|
---|
5925 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
5926 | {
|
---|
5927 | #ifndef VBOX_ENABLE_64_BITS_GUESTS
|
---|
5928 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
5929 | #endif
|
---|
5930 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
|
---|
5931 | #if HC_ARCH_BITS == 32
|
---|
5932 | /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
|
---|
5933 | if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
|
---|
5934 | {
|
---|
5935 | #ifdef VBOX_STRICT
|
---|
5936 | if (pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
|
---|
5937 | {
|
---|
5938 | /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
|
---|
5939 | uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
|
---|
5940 | RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
|
---|
5941 | AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
|
---|
5942 | ("fCtxChanged=%#RX64\n", fCtxChanged));
|
---|
5943 | }
|
---|
5944 | #endif
|
---|
5945 | pVmcsInfo->pfnStartVM = VMXR0SwitcherStartVM64;
|
---|
5946 |
|
---|
5947 | /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
|
---|
5948 | the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
|
---|
5949 | pVmcsInfo->fSwitchedTo64on32 = true;
|
---|
5950 | Log4Func(("Selected 64-bit switcher\n"));
|
---|
5951 | }
|
---|
5952 | #else
|
---|
5953 | /* 64-bit host. */
|
---|
5954 | pVmcsInfo->pfnStartVM = VMXR0StartVM64;
|
---|
5955 | #endif
|
---|
5956 | }
|
---|
5957 | else
|
---|
5958 | {
|
---|
5959 | /* Guest is not in long mode, use the 32-bit handler. */
|
---|
5960 | #if HC_ARCH_BITS == 32
|
---|
5961 | if ( pVmcsInfo->pfnStartVM != VMXR0StartVM32
|
---|
5962 | && !pVmcsInfo->fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
|
---|
5963 | && pVmcsInfo->pfnStartVM != NULL) /* Very first VM-entry would have saved host-state already, ignore it. */
|
---|
5964 | {
|
---|
5965 | # ifdef VBOX_STRICT
|
---|
5966 | /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
|
---|
5967 | uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
|
---|
5968 | RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
|
---|
5969 | AssertMsg(fCtxChanged & (HM_CHANGED_VMX_ENTRY_EXIT_CTLS | HM_CHANGED_GUEST_EFER_MSR),
|
---|
5970 | ("fCtxChanged=%#RX64\n", fCtxChanged));
|
---|
5971 | # endif
|
---|
5972 | }
|
---|
5973 | # ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
5974 | /*
|
---|
5975 | * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
|
---|
5976 | * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
|
---|
5977 | * switcher flag now because we know the guest is in a sane state where it's safe
|
---|
5978 | * to use the 32-bit switcher. Otherwise, check the guest state if it's safe to use
|
---|
5979 | * the much faster 32-bit switcher again.
|
---|
5980 | */
|
---|
5981 | if (!pVmcsInfo->fSwitchedTo64on32)
|
---|
5982 | {
|
---|
5983 | if (pVmcsInfo->pfnStartVM != VMXR0StartVM32)
|
---|
5984 | Log4Func(("Selected 32-bit switcher\n"));
|
---|
5985 | pVmcsInfo->pfnStartVM = VMXR0StartVM32;
|
---|
5986 | }
|
---|
5987 | else
|
---|
5988 | {
|
---|
5989 | Assert(pVmcsInfo->pfnStartVM == VMXR0SwitcherStartVM64);
|
---|
5990 | if ( pVmcsInfo->RealMode.fRealOnV86Active
|
---|
5991 | || hmR0VmxIs32BitSwitcherSafe(pCtx))
|
---|
5992 | {
|
---|
5993 | pVmcsInfo->fSwitchedTo64on32 = false;
|
---|
5994 | pVmcsInfo->pfnStartVM = VMXR0StartVM32;
|
---|
5995 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
|
---|
5996 | | HM_CHANGED_VMX_ENTRY_EXIT_CTLS
|
---|
5997 | | HM_CHANGED_HOST_CONTEXT);
|
---|
5998 | Log4Func(("Selected 32-bit switcher (safe)\n"));
|
---|
5999 | }
|
---|
6000 | }
|
---|
6001 | # else
|
---|
6002 | pVmcsInfo->pfnStartVM = VMXR0StartVM32;
|
---|
6003 | # endif
|
---|
6004 | #else
|
---|
6005 | pVmcsInfo->pfnStartVM = VMXR0StartVM32;
|
---|
6006 | #endif
|
---|
6007 | }
|
---|
6008 | Assert(pVmcsInfo->pfnStartVM);
|
---|
6009 | return VINF_SUCCESS;
|
---|
6010 | }
|
---|
6011 |
|
---|
6012 |
|
---|
6013 | /**
|
---|
6014 | * Wrapper for running the guest code in VT-x.
|
---|
6015 | *
|
---|
6016 | * @returns VBox status code, no informational status codes.
|
---|
6017 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6018 | * @param pVmxTransient The VMX-transient structure.
|
---|
6019 | *
|
---|
6020 | * @remarks No-long-jump zone!!!
|
---|
6021 | */
|
---|
6022 | DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6023 | {
|
---|
6024 | /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
|
---|
6025 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
6026 | pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
|
---|
6027 |
|
---|
6028 | /** @todo Add stats for VMRESUME vs VMLAUNCH. */
|
---|
6029 |
|
---|
6030 | /*
|
---|
6031 | * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
|
---|
6032 | * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
|
---|
6033 | * callee-saved and thus the need for this XMM wrapper.
|
---|
6034 | *
|
---|
6035 | * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
|
---|
6036 | */
|
---|
6037 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
6038 | bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
|
---|
6039 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6040 | #ifdef VBOX_WITH_KERNEL_USING_XMM
|
---|
6041 | int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu, pVmcsInfo->pfnStartVM);
|
---|
6042 | #else
|
---|
6043 | int rc = pVmcsInfo->pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VmcsCache, pVM, pVCpu);
|
---|
6044 | #endif
|
---|
6045 | AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
|
---|
6046 | return rc;
|
---|
6047 | }
|
---|
6048 |
|
---|
6049 |
|
---|
6050 | /**
|
---|
6051 | * Reports world-switch error and dumps some useful debug info.
|
---|
6052 | *
|
---|
6053 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6054 | * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
|
---|
6055 | * @param pVmxTransient The VMX-transient structure (only
|
---|
6056 | * exitReason updated).
|
---|
6057 | */
|
---|
6058 | static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
|
---|
6059 | {
|
---|
6060 | Assert(pVCpu);
|
---|
6061 | Assert(pVmxTransient);
|
---|
6062 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
6063 |
|
---|
6064 | Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
|
---|
6065 | switch (rcVMRun)
|
---|
6066 | {
|
---|
6067 | case VERR_VMX_INVALID_VMXON_PTR:
|
---|
6068 | AssertFailed();
|
---|
6069 | break;
|
---|
6070 | case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
|
---|
6071 | case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
|
---|
6072 | {
|
---|
6073 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
|
---|
6074 | rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
|
---|
6075 | rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
6076 | AssertRC(rc);
|
---|
6077 |
|
---|
6078 | pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
|
---|
6079 | /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
|
---|
6080 | Cannot do it here as we may have been long preempted. */
|
---|
6081 |
|
---|
6082 | #ifdef VBOX_STRICT
|
---|
6083 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
6084 | Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
|
---|
6085 | pVmxTransient->uExitReason));
|
---|
6086 | Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
|
---|
6087 | Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
|
---|
6088 | if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
|
---|
6089 | Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
|
---|
6090 | else
|
---|
6091 | Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
|
---|
6092 | Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
|
---|
6093 | Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
|
---|
6094 |
|
---|
6095 | /* VMX control bits. */
|
---|
6096 | uint32_t u32Val;
|
---|
6097 | uint64_t u64Val;
|
---|
6098 | RTHCUINTREG uHCReg;
|
---|
6099 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
|
---|
6100 | Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
|
---|
6101 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
|
---|
6102 | Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
|
---|
6103 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
6104 | {
|
---|
6105 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
|
---|
6106 | Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
|
---|
6107 | }
|
---|
6108 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
|
---|
6109 | Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
|
---|
6110 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
|
---|
6111 | Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
|
---|
6112 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
|
---|
6113 | Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
|
---|
6114 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
|
---|
6115 | Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
|
---|
6116 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
|
---|
6117 | Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
|
---|
6118 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
|
---|
6119 | Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
|
---|
6120 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
|
---|
6121 | Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
|
---|
6122 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
|
---|
6123 | Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
|
---|
6124 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
|
---|
6125 | Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
|
---|
6126 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
|
---|
6127 | Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
|
---|
6128 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
|
---|
6129 | Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
|
---|
6130 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
|
---|
6131 | Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
|
---|
6132 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
|
---|
6133 | Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
|
---|
6134 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
|
---|
6135 | Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
|
---|
6136 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
6137 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
6138 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
|
---|
6139 | Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
|
---|
6140 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
6141 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
6142 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
|
---|
6143 | {
|
---|
6144 | rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
|
---|
6145 | Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
|
---|
6146 | }
|
---|
6147 |
|
---|
6148 | /* Guest bits. */
|
---|
6149 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
|
---|
6150 | Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
|
---|
6151 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
|
---|
6152 | Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
|
---|
6153 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
|
---|
6154 | Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
|
---|
6155 | if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
|
---|
6156 | {
|
---|
6157 | rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
|
---|
6158 | Log4(("VMX_VMCS16_VPID %u\n", u32Val));
|
---|
6159 | }
|
---|
6160 |
|
---|
6161 | /* Host bits. */
|
---|
6162 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
|
---|
6163 | Log4(("Host CR0 %#RHr\n", uHCReg));
|
---|
6164 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
|
---|
6165 | Log4(("Host CR3 %#RHr\n", uHCReg));
|
---|
6166 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
|
---|
6167 | Log4(("Host CR4 %#RHr\n", uHCReg));
|
---|
6168 |
|
---|
6169 | RTGDTR HostGdtr;
|
---|
6170 | PCX86DESCHC pDesc;
|
---|
6171 | ASMGetGDTR(&HostGdtr);
|
---|
6172 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
|
---|
6173 | Log4(("Host CS %#08x\n", u32Val));
|
---|
6174 | if (u32Val < HostGdtr.cbGdt)
|
---|
6175 | {
|
---|
6176 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
6177 | hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
|
---|
6178 | }
|
---|
6179 |
|
---|
6180 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
|
---|
6181 | Log4(("Host DS %#08x\n", u32Val));
|
---|
6182 | if (u32Val < HostGdtr.cbGdt)
|
---|
6183 | {
|
---|
6184 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
6185 | hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
|
---|
6186 | }
|
---|
6187 |
|
---|
6188 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
|
---|
6189 | Log4(("Host ES %#08x\n", u32Val));
|
---|
6190 | if (u32Val < HostGdtr.cbGdt)
|
---|
6191 | {
|
---|
6192 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
6193 | hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
|
---|
6194 | }
|
---|
6195 |
|
---|
6196 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
|
---|
6197 | Log4(("Host FS %#08x\n", u32Val));
|
---|
6198 | if (u32Val < HostGdtr.cbGdt)
|
---|
6199 | {
|
---|
6200 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
6201 | hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
|
---|
6202 | }
|
---|
6203 |
|
---|
6204 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
|
---|
6205 | Log4(("Host GS %#08x\n", u32Val));
|
---|
6206 | if (u32Val < HostGdtr.cbGdt)
|
---|
6207 | {
|
---|
6208 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
6209 | hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
|
---|
6210 | }
|
---|
6211 |
|
---|
6212 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
|
---|
6213 | Log4(("Host SS %#08x\n", u32Val));
|
---|
6214 | if (u32Val < HostGdtr.cbGdt)
|
---|
6215 | {
|
---|
6216 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
6217 | hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
|
---|
6218 | }
|
---|
6219 |
|
---|
6220 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
|
---|
6221 | Log4(("Host TR %#08x\n", u32Val));
|
---|
6222 | if (u32Val < HostGdtr.cbGdt)
|
---|
6223 | {
|
---|
6224 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
6225 | hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
|
---|
6226 | }
|
---|
6227 |
|
---|
6228 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
|
---|
6229 | Log4(("Host TR Base %#RHv\n", uHCReg));
|
---|
6230 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
|
---|
6231 | Log4(("Host GDTR Base %#RHv\n", uHCReg));
|
---|
6232 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
|
---|
6233 | Log4(("Host IDTR Base %#RHv\n", uHCReg));
|
---|
6234 | rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
|
---|
6235 | Log4(("Host SYSENTER CS %#08x\n", u32Val));
|
---|
6236 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
|
---|
6237 | Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
|
---|
6238 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
|
---|
6239 | Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
|
---|
6240 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
|
---|
6241 | Log4(("Host RSP %#RHv\n", uHCReg));
|
---|
6242 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
|
---|
6243 | Log4(("Host RIP %#RHv\n", uHCReg));
|
---|
6244 | # if HC_ARCH_BITS == 64
|
---|
6245 | Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
|
---|
6246 | Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
|
---|
6247 | Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
|
---|
6248 | Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
|
---|
6249 | Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
|
---|
6250 | Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
|
---|
6251 | # endif
|
---|
6252 | #endif /* VBOX_STRICT */
|
---|
6253 | break;
|
---|
6254 | }
|
---|
6255 |
|
---|
6256 | default:
|
---|
6257 | /* Impossible */
|
---|
6258 | AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
|
---|
6259 | break;
|
---|
6260 | }
|
---|
6261 | }
|
---|
6262 |
|
---|
6263 |
|
---|
6264 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
6265 | # ifndef VMX_USE_CACHED_VMCS_ACCESSES
|
---|
6266 | # error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
|
---|
6267 | # endif
|
---|
6268 |
|
---|
6269 | /**
|
---|
6270 | * Initialize the VMCS-Read cache.
|
---|
6271 | *
|
---|
6272 | * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
|
---|
6273 | * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
|
---|
6274 | * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
|
---|
6275 | * (those that have a 32-bit FULL & HIGH part).
|
---|
6276 | *
|
---|
6277 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6278 | */
|
---|
6279 | static void hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
|
---|
6280 | {
|
---|
6281 | #define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
|
---|
6282 | do { \
|
---|
6283 | Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
|
---|
6284 | pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
|
---|
6285 | pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
|
---|
6286 | ++cReadFields; \
|
---|
6287 | } while (0)
|
---|
6288 |
|
---|
6289 | PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
|
---|
6290 | uint32_t cReadFields = 0;
|
---|
6291 |
|
---|
6292 | /*
|
---|
6293 | * Don't remove the #if 0'd fields in this code. They're listed here for consistency
|
---|
6294 | * and serve to indicate exceptions to the rules.
|
---|
6295 | */
|
---|
6296 |
|
---|
6297 | /* Guest-natural selector base fields. */
|
---|
6298 | #if 0
|
---|
6299 | /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
|
---|
6300 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
|
---|
6301 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
|
---|
6302 | #endif
|
---|
6303 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
|
---|
6304 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
|
---|
6305 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
|
---|
6306 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
|
---|
6307 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
|
---|
6308 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
|
---|
6309 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
|
---|
6310 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
|
---|
6311 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
|
---|
6312 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
|
---|
6313 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
|
---|
6314 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
|
---|
6315 | #if 0
|
---|
6316 | /* Unused natural width guest-state fields. */
|
---|
6317 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS);
|
---|
6318 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in nested paging case */
|
---|
6319 | #endif
|
---|
6320 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
|
---|
6321 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
|
---|
6322 |
|
---|
6323 | /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
|
---|
6324 | these 64-bit fields (using "FULL" and "HIGH" fields). */
|
---|
6325 | #if 0
|
---|
6326 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
|
---|
6327 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
|
---|
6328 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
|
---|
6329 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
|
---|
6330 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
|
---|
6331 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
|
---|
6332 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
|
---|
6333 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
|
---|
6334 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
|
---|
6335 | #endif
|
---|
6336 |
|
---|
6337 | /* Natural width guest-state fields. */
|
---|
6338 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
|
---|
6339 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_GUEST_LINEAR_ADDR);
|
---|
6340 |
|
---|
6341 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
|
---|
6342 | {
|
---|
6343 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
|
---|
6344 | AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
|
---|
6345 | VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
|
---|
6346 | pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
|
---|
6347 | }
|
---|
6348 | else
|
---|
6349 | {
|
---|
6350 | AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
|
---|
6351 | pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
|
---|
6352 | }
|
---|
6353 |
|
---|
6354 | #undef VMXLOCAL_INIT_READ_CACHE_FIELD
|
---|
6355 | }
|
---|
6356 |
|
---|
6357 |
|
---|
6358 | /**
|
---|
6359 | * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
|
---|
6360 | * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
|
---|
6361 | * darwin, running 64-bit guests).
|
---|
6362 | *
|
---|
6363 | * @returns VBox status code.
|
---|
6364 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6365 | * @param idxField The VMCS field encoding.
|
---|
6366 | * @param u64Val 16, 32 or 64-bit value.
|
---|
6367 | */
|
---|
6368 | VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
|
---|
6369 | {
|
---|
6370 | int rc;
|
---|
6371 | switch (idxField)
|
---|
6372 | {
|
---|
6373 | /*
|
---|
6374 | * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
|
---|
6375 | */
|
---|
6376 | /* 64-bit Control fields. */
|
---|
6377 | case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
|
---|
6378 | case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
|
---|
6379 | case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
|
---|
6380 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
|
---|
6381 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
|
---|
6382 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
|
---|
6383 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
|
---|
6384 | case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
|
---|
6385 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
|
---|
6386 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
|
---|
6387 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
|
---|
6388 | case VMX_VMCS64_CTRL_EPTP_FULL:
|
---|
6389 | case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
|
---|
6390 | /* 64-bit Guest-state fields. */
|
---|
6391 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
|
---|
6392 | case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
|
---|
6393 | case VMX_VMCS64_GUEST_PAT_FULL:
|
---|
6394 | case VMX_VMCS64_GUEST_EFER_FULL:
|
---|
6395 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
|
---|
6396 | case VMX_VMCS64_GUEST_PDPTE0_FULL:
|
---|
6397 | case VMX_VMCS64_GUEST_PDPTE1_FULL:
|
---|
6398 | case VMX_VMCS64_GUEST_PDPTE2_FULL:
|
---|
6399 | case VMX_VMCS64_GUEST_PDPTE3_FULL:
|
---|
6400 | /* 64-bit Host-state fields. */
|
---|
6401 | case VMX_VMCS64_HOST_PAT_FULL:
|
---|
6402 | case VMX_VMCS64_HOST_EFER_FULL:
|
---|
6403 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
|
---|
6404 | {
|
---|
6405 | rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
|
---|
6406 | rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
|
---|
6407 | break;
|
---|
6408 | }
|
---|
6409 |
|
---|
6410 | /*
|
---|
6411 | * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
|
---|
6412 | * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
|
---|
6413 | */
|
---|
6414 | /* Natural-width Guest-state fields. */
|
---|
6415 | case VMX_VMCS_GUEST_CR3:
|
---|
6416 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
6417 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
6418 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
6419 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
6420 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
6421 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
6422 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
6423 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
6424 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
6425 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
6426 | case VMX_VMCS_GUEST_RSP:
|
---|
6427 | case VMX_VMCS_GUEST_RIP:
|
---|
6428 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
6429 | case VMX_VMCS_GUEST_SYSENTER_EIP:
|
---|
6430 | {
|
---|
6431 | if (!(RT_HI_U32(u64Val)))
|
---|
6432 | {
|
---|
6433 | /* If this field is 64-bit, VT-x will zero out the top bits. */
|
---|
6434 | rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
|
---|
6435 | }
|
---|
6436 | else
|
---|
6437 | {
|
---|
6438 | /* Assert that only the 32->64 switcher case should ever come here. */
|
---|
6439 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
|
---|
6440 | rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
|
---|
6441 | }
|
---|
6442 | break;
|
---|
6443 | }
|
---|
6444 |
|
---|
6445 | default:
|
---|
6446 | {
|
---|
6447 | AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
|
---|
6448 | pVCpu->hm.s.u32HMError = idxField;
|
---|
6449 | rc = VERR_INVALID_PARAMETER;
|
---|
6450 | break;
|
---|
6451 | }
|
---|
6452 | }
|
---|
6453 | AssertRCReturn(rc, rc);
|
---|
6454 | return rc;
|
---|
6455 | }
|
---|
6456 |
|
---|
6457 |
|
---|
6458 | /**
|
---|
6459 | * Queue up a VMWRITE by using the VMCS write cache.
|
---|
6460 | * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
|
---|
6461 | *
|
---|
6462 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6463 | * @param idxField The VMCS field encoding.
|
---|
6464 | * @param u64Val 16, 32 or 64-bit value.
|
---|
6465 | */
|
---|
6466 | VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
|
---|
6467 | {
|
---|
6468 | AssertPtr(pVCpu);
|
---|
6469 | PVMXVMCSCACHE pCache = &pVCpu->hm.s.vmx.VmcsCache;
|
---|
6470 |
|
---|
6471 | AssertMsgReturn(pCache->Write.cValidEntries < VMX_VMCS_CACHE_MAX_ENTRY - 1,
|
---|
6472 | ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
|
---|
6473 |
|
---|
6474 | /* Make sure there are no duplicates. */
|
---|
6475 | for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
|
---|
6476 | {
|
---|
6477 | if (pCache->Write.aField[i] == idxField)
|
---|
6478 | {
|
---|
6479 | pCache->Write.aFieldVal[i] = u64Val;
|
---|
6480 | return VINF_SUCCESS;
|
---|
6481 | }
|
---|
6482 | }
|
---|
6483 |
|
---|
6484 | pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
|
---|
6485 | pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
|
---|
6486 | pCache->Write.cValidEntries++;
|
---|
6487 | return VINF_SUCCESS;
|
---|
6488 | }
|
---|
6489 | #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
|
---|
6490 |
|
---|
6491 |
|
---|
6492 | /**
|
---|
6493 | * Sets up the usage of TSC-offsetting and updates the VMCS.
|
---|
6494 | *
|
---|
6495 | * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
|
---|
6496 | * VMX-preemption timer.
|
---|
6497 | *
|
---|
6498 | * @returns VBox status code.
|
---|
6499 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6500 | * @param pVmxTransient The VMX-transient structure.
|
---|
6501 | *
|
---|
6502 | * @remarks No-long-jump zone!!!
|
---|
6503 | */
|
---|
6504 | static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6505 | {
|
---|
6506 | bool fOffsettedTsc;
|
---|
6507 | bool fParavirtTsc;
|
---|
6508 | uint64_t uTscOffset;
|
---|
6509 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6510 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
6511 |
|
---|
6512 | if (pVM->hm.s.vmx.fUsePreemptTimer)
|
---|
6513 | {
|
---|
6514 | uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
|
---|
6515 |
|
---|
6516 | /* Make sure the returned values have sane upper and lower boundaries. */
|
---|
6517 | uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
|
---|
6518 | cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
|
---|
6519 | cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
|
---|
6520 | cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
|
---|
6521 |
|
---|
6522 | /** @todo r=ramshankar: We need to find a way to integrate nested-guest
|
---|
6523 | * preemption timers here. We probably need to clamp the preemption timer,
|
---|
6524 | * after converting the timer value to the host. */
|
---|
6525 | uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
|
---|
6526 | int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
|
---|
6527 | AssertRC(rc);
|
---|
6528 | }
|
---|
6529 | else
|
---|
6530 | fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
|
---|
6531 |
|
---|
6532 | if (fParavirtTsc)
|
---|
6533 | {
|
---|
6534 | /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
|
---|
6535 | information before every VM-entry, hence disable it for performance sake. */
|
---|
6536 | #if 0
|
---|
6537 | int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
|
---|
6538 | AssertRC(rc);
|
---|
6539 | #endif
|
---|
6540 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
|
---|
6541 | }
|
---|
6542 |
|
---|
6543 | uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
|
---|
6544 | if ( fOffsettedTsc
|
---|
6545 | && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
|
---|
6546 | {
|
---|
6547 | if (pVmxTransient->fIsNestedGuest)
|
---|
6548 | uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
|
---|
6549 | if (pVmcsInfo->u64TscOffset != uTscOffset)
|
---|
6550 | {
|
---|
6551 | int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
|
---|
6552 | AssertRC(rc);
|
---|
6553 | pVmcsInfo->u64TscOffset = uTscOffset;
|
---|
6554 | }
|
---|
6555 |
|
---|
6556 | if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
|
---|
6557 | {
|
---|
6558 | uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
|
---|
6559 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
|
---|
6560 | AssertRC(rc);
|
---|
6561 | pVmcsInfo->u32ProcCtls = uProcCtls;
|
---|
6562 | }
|
---|
6563 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
|
---|
6564 | }
|
---|
6565 | else
|
---|
6566 | {
|
---|
6567 | /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
|
---|
6568 | if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
|
---|
6569 | {
|
---|
6570 | uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
|
---|
6571 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
|
---|
6572 | AssertRC(rc);
|
---|
6573 | pVmcsInfo->u32ProcCtls = uProcCtls;
|
---|
6574 | }
|
---|
6575 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
|
---|
6576 | }
|
---|
6577 | }
|
---|
6578 |
|
---|
6579 |
|
---|
6580 | /**
|
---|
6581 | * Gets the IEM exception flags for the specified vector and IDT vectoring /
|
---|
6582 | * VM-exit interruption info type.
|
---|
6583 | *
|
---|
6584 | * @returns The IEM exception flags.
|
---|
6585 | * @param uVector The event vector.
|
---|
6586 | * @param uVmxEventType The VMX event type.
|
---|
6587 | *
|
---|
6588 | * @remarks This function currently only constructs flags required for
|
---|
6589 | * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
|
---|
6590 | * and CR2 aspects of an exception are not included).
|
---|
6591 | */
|
---|
6592 | static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
|
---|
6593 | {
|
---|
6594 | uint32_t fIemXcptFlags;
|
---|
6595 | switch (uVmxEventType)
|
---|
6596 | {
|
---|
6597 | case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
|
---|
6598 | case VMX_IDT_VECTORING_INFO_TYPE_NMI:
|
---|
6599 | fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
6600 | break;
|
---|
6601 |
|
---|
6602 | case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
|
---|
6603 | fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
6604 | break;
|
---|
6605 |
|
---|
6606 | case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
|
---|
6607 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
|
---|
6608 | break;
|
---|
6609 |
|
---|
6610 | case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
|
---|
6611 | {
|
---|
6612 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
6613 | if (uVector == X86_XCPT_BP)
|
---|
6614 | fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
|
---|
6615 | else if (uVector == X86_XCPT_OF)
|
---|
6616 | fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
|
---|
6617 | else
|
---|
6618 | {
|
---|
6619 | fIemXcptFlags = 0;
|
---|
6620 | AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
|
---|
6621 | }
|
---|
6622 | break;
|
---|
6623 | }
|
---|
6624 |
|
---|
6625 | case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
|
---|
6626 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
6627 | break;
|
---|
6628 |
|
---|
6629 | default:
|
---|
6630 | fIemXcptFlags = 0;
|
---|
6631 | AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
|
---|
6632 | break;
|
---|
6633 | }
|
---|
6634 | return fIemXcptFlags;
|
---|
6635 | }
|
---|
6636 |
|
---|
6637 |
|
---|
6638 | /**
|
---|
6639 | * Sets an event as a pending event to be injected into the guest.
|
---|
6640 | *
|
---|
6641 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6642 | * @param u32IntInfo The VM-entry interruption-information field.
|
---|
6643 | * @param cbInstr The VM-entry instruction length in bytes (for software
|
---|
6644 | * interrupts, exceptions and privileged software
|
---|
6645 | * exceptions).
|
---|
6646 | * @param u32ErrCode The VM-entry exception error code.
|
---|
6647 | * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
|
---|
6648 | * page-fault.
|
---|
6649 | */
|
---|
6650 | DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
|
---|
6651 | RTGCUINTPTR GCPtrFaultAddress)
|
---|
6652 | {
|
---|
6653 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
6654 | pVCpu->hm.s.Event.fPending = true;
|
---|
6655 | pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
|
---|
6656 | pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
|
---|
6657 | pVCpu->hm.s.Event.cbInstr = cbInstr;
|
---|
6658 | pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
|
---|
6659 | }
|
---|
6660 |
|
---|
6661 |
|
---|
6662 | /**
|
---|
6663 | * Sets an external interrupt as pending-for-injection into the VM.
|
---|
6664 | *
|
---|
6665 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6666 | * @param u8Interrupt The external interrupt vector.
|
---|
6667 | */
|
---|
6668 | DECLINLINE(void) hmR0VmxSetPendingExtInt(PVMCPU pVCpu, uint8_t u8Interrupt)
|
---|
6669 | {
|
---|
6670 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
|
---|
6671 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
|
---|
6672 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
6673 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
6674 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
6675 | }
|
---|
6676 |
|
---|
6677 |
|
---|
6678 | /**
|
---|
6679 | * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
|
---|
6680 | *
|
---|
6681 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6682 | */
|
---|
6683 | DECLINLINE(void) hmR0VmxSetPendingXcptNmi(PVMCPU pVCpu)
|
---|
6684 | {
|
---|
6685 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
|
---|
6686 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
|
---|
6687 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
6688 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
6689 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
6690 | }
|
---|
6691 |
|
---|
6692 |
|
---|
6693 | /**
|
---|
6694 | * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
|
---|
6695 | *
|
---|
6696 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6697 | */
|
---|
6698 | DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
|
---|
6699 | {
|
---|
6700 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
|
---|
6701 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
6702 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
|
---|
6703 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
6704 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
6705 | }
|
---|
6706 |
|
---|
6707 |
|
---|
6708 | /**
|
---|
6709 | * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
|
---|
6710 | *
|
---|
6711 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6712 | */
|
---|
6713 | DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
|
---|
6714 | {
|
---|
6715 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
|
---|
6716 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
6717 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
6718 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
6719 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
6720 | }
|
---|
6721 |
|
---|
6722 |
|
---|
6723 | /**
|
---|
6724 | * Sets a debug (\#DB) exception as pending-for-injection into the VM.
|
---|
6725 | *
|
---|
6726 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6727 | */
|
---|
6728 | DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
|
---|
6729 | {
|
---|
6730 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
|
---|
6731 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
6732 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
6733 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
6734 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
6735 | }
|
---|
6736 |
|
---|
6737 |
|
---|
6738 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6739 | /**
|
---|
6740 | * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
|
---|
6741 | *
|
---|
6742 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6743 | * @param u32ErrCode The error code for the general-protection exception.
|
---|
6744 | */
|
---|
6745 | DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
|
---|
6746 | {
|
---|
6747 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
|
---|
6748 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
6749 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
|
---|
6750 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
6751 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
|
---|
6752 | }
|
---|
6753 |
|
---|
6754 |
|
---|
6755 | /**
|
---|
6756 | * Sets a stack (\#SS) exception as pending-for-injection into the VM.
|
---|
6757 | *
|
---|
6758 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6759 | * @param u32ErrCode The error code for the stack exception.
|
---|
6760 | */
|
---|
6761 | DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
|
---|
6762 | {
|
---|
6763 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
|
---|
6764 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
6765 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
|
---|
6766 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
6767 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
|
---|
6768 | }
|
---|
6769 |
|
---|
6770 |
|
---|
6771 | /**
|
---|
6772 | * Decodes the memory operand of an instruction that caused a VM-exit.
|
---|
6773 | *
|
---|
6774 | * The VM-exit qualification field provides the displacement field for memory
|
---|
6775 | * operand instructions, if any.
|
---|
6776 | *
|
---|
6777 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
6778 | * @retval VINF_SUCCESS if the operand was successfully decoded.
|
---|
6779 | * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
|
---|
6780 | * operand.
|
---|
6781 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6782 | * @param uExitInstrInfo The VM-exit instruction information field.
|
---|
6783 | * @param enmMemAccess The memory operand's access type (read or write).
|
---|
6784 | * @param GCPtrDisp The instruction displacement field, if any. For
|
---|
6785 | * RIP-relative addressing pass RIP + displacement here.
|
---|
6786 | * @param pGCPtrMem Where to store the effective destination memory address.
|
---|
6787 | */
|
---|
6788 | static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
|
---|
6789 | PRTGCPTR pGCPtrMem)
|
---|
6790 | {
|
---|
6791 | Assert(pGCPtrMem);
|
---|
6792 | Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
|
---|
6793 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
|
---|
6794 | | CPUMCTX_EXTRN_CR0);
|
---|
6795 |
|
---|
6796 | static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
|
---|
6797 | static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
|
---|
6798 | AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
|
---|
6799 |
|
---|
6800 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
6801 | ExitInstrInfo.u = uExitInstrInfo;
|
---|
6802 | uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
|
---|
6803 | uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
|
---|
6804 | bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
|
---|
6805 | uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
|
---|
6806 | uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
|
---|
6807 | bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
|
---|
6808 | uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
|
---|
6809 | bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
|
---|
6810 | bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
|
---|
6811 |
|
---|
6812 | /*
|
---|
6813 | * Validate instruction information.
|
---|
6814 | * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
|
---|
6815 | */
|
---|
6816 | AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
|
---|
6817 | ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
|
---|
6818 | AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
|
---|
6819 | ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
|
---|
6820 | AssertLogRelMsgReturn(fIsMemOperand,
|
---|
6821 | ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
|
---|
6822 |
|
---|
6823 | /*
|
---|
6824 | * Compute the complete effective address.
|
---|
6825 | *
|
---|
6826 | * See AMD instruction spec. 1.4.2 "SIB Byte Format"
|
---|
6827 | * See AMD spec. 4.5.2 "Segment Registers".
|
---|
6828 | */
|
---|
6829 | RTGCPTR GCPtrMem = GCPtrDisp;
|
---|
6830 | if (fBaseRegValid)
|
---|
6831 | GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
|
---|
6832 | if (fIdxRegValid)
|
---|
6833 | GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
|
---|
6834 |
|
---|
6835 | RTGCPTR const GCPtrOff = GCPtrMem;
|
---|
6836 | if ( !fIsLongMode
|
---|
6837 | || iSegReg >= X86_SREG_FS)
|
---|
6838 | GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
|
---|
6839 | GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
|
---|
6840 |
|
---|
6841 | /*
|
---|
6842 | * Validate effective address.
|
---|
6843 | * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
|
---|
6844 | */
|
---|
6845 | uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
|
---|
6846 | Assert(cbAccess > 0);
|
---|
6847 | if (fIsLongMode)
|
---|
6848 | {
|
---|
6849 | if (X86_IS_CANONICAL(GCPtrMem))
|
---|
6850 | {
|
---|
6851 | *pGCPtrMem = GCPtrMem;
|
---|
6852 | return VINF_SUCCESS;
|
---|
6853 | }
|
---|
6854 |
|
---|
6855 | /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
|
---|
6856 | * "Data Limit Checks in 64-bit Mode". */
|
---|
6857 | Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
|
---|
6858 | hmR0VmxSetPendingXcptGP(pVCpu, 0);
|
---|
6859 | return VINF_HM_PENDING_XCPT;
|
---|
6860 | }
|
---|
6861 |
|
---|
6862 | /*
|
---|
6863 | * This is a watered down version of iemMemApplySegment().
|
---|
6864 | * Parts that are not applicable for VMX instructions like real-or-v8086 mode
|
---|
6865 | * and segment CPL/DPL checks are skipped.
|
---|
6866 | */
|
---|
6867 | RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
|
---|
6868 | RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
|
---|
6869 | PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
6870 |
|
---|
6871 | /* Check if the segment is present and usable. */
|
---|
6872 | if ( pSel->Attr.n.u1Present
|
---|
6873 | && !pSel->Attr.n.u1Unusable)
|
---|
6874 | {
|
---|
6875 | Assert(pSel->Attr.n.u1DescType);
|
---|
6876 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
|
---|
6877 | {
|
---|
6878 | /* Check permissions for the data segment. */
|
---|
6879 | if ( enmMemAccess == VMXMEMACCESS_WRITE
|
---|
6880 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
|
---|
6881 | {
|
---|
6882 | Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
|
---|
6883 | hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
|
---|
6884 | return VINF_HM_PENDING_XCPT;
|
---|
6885 | }
|
---|
6886 |
|
---|
6887 | /* Check limits if it's a normal data segment. */
|
---|
6888 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
|
---|
6889 | {
|
---|
6890 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
6891 | || GCPtrLast32 > pSel->u32Limit)
|
---|
6892 | {
|
---|
6893 | Log4Func(("Data segment limit exceeded."
|
---|
6894 | "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
|
---|
6895 | GCPtrLast32, pSel->u32Limit));
|
---|
6896 | if (iSegReg == X86_SREG_SS)
|
---|
6897 | hmR0VmxSetPendingXcptSS(pVCpu, 0);
|
---|
6898 | else
|
---|
6899 | hmR0VmxSetPendingXcptGP(pVCpu, 0);
|
---|
6900 | return VINF_HM_PENDING_XCPT;
|
---|
6901 | }
|
---|
6902 | }
|
---|
6903 | else
|
---|
6904 | {
|
---|
6905 | /* Check limits if it's an expand-down data segment.
|
---|
6906 | Note! The upper boundary is defined by the B bit, not the G bit! */
|
---|
6907 | if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
|
---|
6908 | || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
|
---|
6909 | {
|
---|
6910 | Log4Func(("Expand-down data segment limit exceeded."
|
---|
6911 | "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
|
---|
6912 | GCPtrLast32, pSel->u32Limit));
|
---|
6913 | if (iSegReg == X86_SREG_SS)
|
---|
6914 | hmR0VmxSetPendingXcptSS(pVCpu, 0);
|
---|
6915 | else
|
---|
6916 | hmR0VmxSetPendingXcptGP(pVCpu, 0);
|
---|
6917 | return VINF_HM_PENDING_XCPT;
|
---|
6918 | }
|
---|
6919 | }
|
---|
6920 | }
|
---|
6921 | else
|
---|
6922 | {
|
---|
6923 | /* Check permissions for the code segment. */
|
---|
6924 | if ( enmMemAccess == VMXMEMACCESS_WRITE
|
---|
6925 | || ( enmMemAccess == VMXMEMACCESS_READ
|
---|
6926 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
|
---|
6927 | {
|
---|
6928 | Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
|
---|
6929 | Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
|
---|
6930 | hmR0VmxSetPendingXcptGP(pVCpu, 0);
|
---|
6931 | return VINF_HM_PENDING_XCPT;
|
---|
6932 | }
|
---|
6933 |
|
---|
6934 | /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
|
---|
6935 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
6936 | || GCPtrLast32 > pSel->u32Limit)
|
---|
6937 | {
|
---|
6938 | Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
|
---|
6939 | GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
|
---|
6940 | if (iSegReg == X86_SREG_SS)
|
---|
6941 | hmR0VmxSetPendingXcptSS(pVCpu, 0);
|
---|
6942 | else
|
---|
6943 | hmR0VmxSetPendingXcptGP(pVCpu, 0);
|
---|
6944 | return VINF_HM_PENDING_XCPT;
|
---|
6945 | }
|
---|
6946 | }
|
---|
6947 | }
|
---|
6948 | else
|
---|
6949 | {
|
---|
6950 | Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
|
---|
6951 | hmR0VmxSetPendingXcptGP(pVCpu, 0);
|
---|
6952 | return VINF_HM_PENDING_XCPT;
|
---|
6953 | }
|
---|
6954 |
|
---|
6955 | *pGCPtrMem = GCPtrMem;
|
---|
6956 | return VINF_SUCCESS;
|
---|
6957 | }
|
---|
6958 |
|
---|
6959 |
|
---|
6960 | /**
|
---|
6961 | * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
|
---|
6962 | * guest attempting to execute a VMX instruction.
|
---|
6963 | *
|
---|
6964 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
6965 | * @retval VINF_SUCCESS if we should continue handling the VM-exit.
|
---|
6966 | * @retval VINF_HM_PENDING_XCPT if an exception was raised.
|
---|
6967 | *
|
---|
6968 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6969 | * @param uExitReason The VM-exit reason.
|
---|
6970 | *
|
---|
6971 | * @todo NSTVMX: Document other error codes when VM-exit is implemented.
|
---|
6972 | * @remarks No-long-jump zone!!!
|
---|
6973 | */
|
---|
6974 | static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
|
---|
6975 | {
|
---|
6976 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
|
---|
6977 | | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
6978 |
|
---|
6979 | if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
|
---|
6980 | || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
|
---|
6981 | && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
|
---|
6982 | {
|
---|
6983 | Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
|
---|
6984 | hmR0VmxSetPendingXcptUD(pVCpu);
|
---|
6985 | return VINF_HM_PENDING_XCPT;
|
---|
6986 | }
|
---|
6987 |
|
---|
6988 | if (uExitReason == VMX_EXIT_VMXON)
|
---|
6989 | {
|
---|
6990 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
6991 |
|
---|
6992 | /*
|
---|
6993 | * We check CR4.VMXE because it is required to be always set while in VMX operation
|
---|
6994 | * by physical CPUs and our CR4 read shadow is only consulted when executing specific
|
---|
6995 | * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
|
---|
6996 | * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
|
---|
6997 | */
|
---|
6998 | if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
|
---|
6999 | {
|
---|
7000 | Log4Func(("CR4.VMXE is not set -> #UD\n"));
|
---|
7001 | hmR0VmxSetPendingXcptUD(pVCpu);
|
---|
7002 | return VINF_HM_PENDING_XCPT;
|
---|
7003 | }
|
---|
7004 | }
|
---|
7005 | else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
|
---|
7006 | {
|
---|
7007 | /*
|
---|
7008 | * The guest has not entered VMX operation but attempted to execute a VMX instruction
|
---|
7009 | * (other than VMXON), we need to raise a #UD.
|
---|
7010 | */
|
---|
7011 | Log4Func(("Not in VMX root mode -> #UD\n"));
|
---|
7012 | hmR0VmxSetPendingXcptUD(pVCpu);
|
---|
7013 | return VINF_HM_PENDING_XCPT;
|
---|
7014 | }
|
---|
7015 |
|
---|
7016 | if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
7017 | {
|
---|
7018 | /*
|
---|
7019 | * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
|
---|
7020 | * the guest hypervisor deal with it.
|
---|
7021 | */
|
---|
7022 | /** @todo NSTVMX: Trigger a VM-exit */
|
---|
7023 | }
|
---|
7024 |
|
---|
7025 | /*
|
---|
7026 | * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
|
---|
7027 | * (above) takes preceedence over the CPL check.
|
---|
7028 | */
|
---|
7029 | if (CPUMGetGuestCPL(pVCpu) > 0)
|
---|
7030 | {
|
---|
7031 | Log4Func(("CPL > 0 -> #GP(0)\n"));
|
---|
7032 | hmR0VmxSetPendingXcptGP(pVCpu, 0);
|
---|
7033 | return VINF_HM_PENDING_XCPT;
|
---|
7034 | }
|
---|
7035 |
|
---|
7036 | return VINF_SUCCESS;
|
---|
7037 | }
|
---|
7038 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
7039 |
|
---|
7040 |
|
---|
7041 | static void hmR0VmxFixUnusableSegRegAttr(PVMCPU pVCpu, PCPUMSELREG pSelReg, uint32_t idxSel)
|
---|
7042 | {
|
---|
7043 | Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
|
---|
7044 |
|
---|
7045 | /*
|
---|
7046 | * If VT-x marks the segment as unusable, most other bits remain undefined:
|
---|
7047 | * - For CS the L, D and G bits have meaning.
|
---|
7048 | * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
|
---|
7049 | * - For the remaining data segments no bits are defined.
|
---|
7050 | *
|
---|
7051 | * The present bit and the unusable bit has been observed to be set at the
|
---|
7052 | * same time (the selector was supposed to be invalid as we started executing
|
---|
7053 | * a V8086 interrupt in ring-0).
|
---|
7054 | *
|
---|
7055 | * What should be important for the rest of the VBox code, is that the P bit is
|
---|
7056 | * cleared. Some of the other VBox code recognizes the unusable bit, but
|
---|
7057 | * AMD-V certainly don't, and REM doesn't really either. So, to be on the
|
---|
7058 | * safe side here, we'll strip off P and other bits we don't care about. If
|
---|
7059 | * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
|
---|
7060 | *
|
---|
7061 | * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
|
---|
7062 | */
|
---|
7063 | #ifdef VBOX_STRICT
|
---|
7064 | uint32_t const uAttr = pSelReg->Attr.u;
|
---|
7065 | #endif
|
---|
7066 |
|
---|
7067 | /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
|
---|
7068 | pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
|
---|
7069 | | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
|
---|
7070 |
|
---|
7071 | #ifdef VBOX_STRICT
|
---|
7072 | VMMRZCallRing3Disable(pVCpu);
|
---|
7073 | Log4Func(("Unusable %#x: sel=%#x attr=%#x -> %#x\n", idxSel, pSelReg->Sel, uAttr, pSelReg->Attr.u));
|
---|
7074 | # ifdef DEBUG_bird
|
---|
7075 | AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
|
---|
7076 | ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
|
---|
7077 | idxSel, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
|
---|
7078 | # endif
|
---|
7079 | VMMRZCallRing3Enable(pVCpu);
|
---|
7080 | NOREF(uAttr);
|
---|
7081 | #endif
|
---|
7082 | RT_NOREF2(pVCpu, idxSel);
|
---|
7083 | }
|
---|
7084 |
|
---|
7085 |
|
---|
7086 | /**
|
---|
7087 | * Imports a guest segment register from the current VMCS into the guest-CPU
|
---|
7088 | * context.
|
---|
7089 | *
|
---|
7090 | * @returns VBox status code.
|
---|
7091 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7092 | * @param iSegReg The segment register number (X86_SREG_XXX).
|
---|
7093 | *
|
---|
7094 | * @remarks Called with interrupts and/or preemption disabled, try not to assert and
|
---|
7095 | * do not log!
|
---|
7096 | */
|
---|
7097 | static int hmR0VmxImportGuestSegReg(PVMCPU pVCpu, uint8_t iSegReg)
|
---|
7098 | {
|
---|
7099 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
7100 |
|
---|
7101 | uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
|
---|
7102 | uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
|
---|
7103 | uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
|
---|
7104 | #ifdef VMX_USE_CACHED_VMCS_ACCESSES
|
---|
7105 | uint32_t const idxBase = g_aVmcsCacheSegBase[iSegReg];
|
---|
7106 | #else
|
---|
7107 | uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
|
---|
7108 | #endif
|
---|
7109 | uint64_t u64Base;
|
---|
7110 | uint32_t u32Sel, u32Limit, u32Attr;
|
---|
7111 | int rc = VMXReadVmcs32(idxSel, &u32Sel);
|
---|
7112 | rc |= VMXReadVmcs32(idxLimit, &u32Limit);
|
---|
7113 | rc |= VMXReadVmcs32(idxAttr, &u32Attr);
|
---|
7114 | rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
|
---|
7115 | if (RT_SUCCESS(rc))
|
---|
7116 | {
|
---|
7117 | PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
7118 | pSelReg->Sel = u32Sel;
|
---|
7119 | pSelReg->ValidSel = u32Sel;
|
---|
7120 | pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
7121 | pSelReg->u32Limit = u32Limit;
|
---|
7122 | pSelReg->u64Base = u64Base;
|
---|
7123 | pSelReg->Attr.u = u32Attr;
|
---|
7124 | if (u32Attr & X86DESCATTR_UNUSABLE)
|
---|
7125 | hmR0VmxFixUnusableSegRegAttr(pVCpu, pSelReg, idxSel);
|
---|
7126 | }
|
---|
7127 | return rc;
|
---|
7128 | }
|
---|
7129 |
|
---|
7130 |
|
---|
7131 | /**
|
---|
7132 | * Imports the guest LDTR from the current VMCS into the guest-CPU context.
|
---|
7133 | *
|
---|
7134 | * @returns VBox status code.
|
---|
7135 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7136 | *
|
---|
7137 | * @remarks Called with interrupts and/or preemption disabled, try not to assert and
|
---|
7138 | * do not log!
|
---|
7139 | */
|
---|
7140 | static int hmR0VmxImportGuestLdtr(PVMCPU pVCpu)
|
---|
7141 | {
|
---|
7142 | uint64_t u64Base;
|
---|
7143 | uint32_t u32Sel, u32Limit, u32Attr;
|
---|
7144 | int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, &u32Sel);
|
---|
7145 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit);
|
---|
7146 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr);
|
---|
7147 | rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, &u64Base);
|
---|
7148 | if (RT_SUCCESS(rc))
|
---|
7149 | {
|
---|
7150 | pVCpu->cpum.GstCtx.ldtr.Sel = u32Sel;
|
---|
7151 | pVCpu->cpum.GstCtx.ldtr.ValidSel = u32Sel;
|
---|
7152 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
7153 | pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
|
---|
7154 | pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
|
---|
7155 | pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
|
---|
7156 | if (u32Attr & X86DESCATTR_UNUSABLE)
|
---|
7157 | hmR0VmxFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, VMX_VMCS16_GUEST_LDTR_SEL);
|
---|
7158 | }
|
---|
7159 | return rc;
|
---|
7160 | }
|
---|
7161 |
|
---|
7162 |
|
---|
7163 | /**
|
---|
7164 | * Imports the guest TR from the current VMCS into the guest-CPU context.
|
---|
7165 | *
|
---|
7166 | * @returns VBox status code.
|
---|
7167 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7168 | *
|
---|
7169 | * @remarks Called with interrupts and/or preemption disabled, try not to assert and
|
---|
7170 | * do not log!
|
---|
7171 | */
|
---|
7172 | static int hmR0VmxImportGuestTr(PVMCPU pVCpu)
|
---|
7173 | {
|
---|
7174 | uint32_t u32Sel, u32Limit, u32Attr;
|
---|
7175 | uint64_t u64Base;
|
---|
7176 | int rc = VMXReadVmcs32(VMX_VMCS16_GUEST_TR_SEL, &u32Sel);
|
---|
7177 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit);
|
---|
7178 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr);
|
---|
7179 | rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_TR_BASE, &u64Base);
|
---|
7180 | AssertRCReturn(rc, rc);
|
---|
7181 |
|
---|
7182 | pVCpu->cpum.GstCtx.tr.Sel = u32Sel;
|
---|
7183 | pVCpu->cpum.GstCtx.tr.ValidSel = u32Sel;
|
---|
7184 | pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
7185 | pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
|
---|
7186 | pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
|
---|
7187 | pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
|
---|
7188 | /* TR is the only selector that can never be unusable. */
|
---|
7189 | Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
|
---|
7190 | return VINF_SUCCESS;
|
---|
7191 | }
|
---|
7192 |
|
---|
7193 |
|
---|
7194 | /**
|
---|
7195 | * Imports the guest RIP from the VMCS back into the guest-CPU context.
|
---|
7196 | *
|
---|
7197 | * @returns VBox status code.
|
---|
7198 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7199 | *
|
---|
7200 | * @remarks Called with interrupts and/or preemption disabled, should not assert!
|
---|
7201 | * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
|
---|
7202 | * instead!!!
|
---|
7203 | */
|
---|
7204 | static int hmR0VmxImportGuestRip(PVMCPU pVCpu)
|
---|
7205 | {
|
---|
7206 | uint64_t u64Val;
|
---|
7207 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
7208 | if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
|
---|
7209 | {
|
---|
7210 | int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
|
---|
7211 | if (RT_SUCCESS(rc))
|
---|
7212 | {
|
---|
7213 | pCtx->rip = u64Val;
|
---|
7214 | EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
|
---|
7215 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
|
---|
7216 | }
|
---|
7217 | return rc;
|
---|
7218 | }
|
---|
7219 | return VINF_SUCCESS;
|
---|
7220 | }
|
---|
7221 |
|
---|
7222 |
|
---|
7223 | /**
|
---|
7224 | * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
|
---|
7225 | *
|
---|
7226 | * @returns VBox status code.
|
---|
7227 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7228 | * @param pVmcsInfo The VMCS info. object.
|
---|
7229 | *
|
---|
7230 | * @remarks Called with interrupts and/or preemption disabled, should not assert!
|
---|
7231 | * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
|
---|
7232 | * instead!!!
|
---|
7233 | */
|
---|
7234 | static int hmR0VmxImportGuestRFlags(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
7235 | {
|
---|
7236 | uint32_t u32Val;
|
---|
7237 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
7238 | if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
|
---|
7239 | {
|
---|
7240 | int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
|
---|
7241 | if (RT_SUCCESS(rc))
|
---|
7242 | {
|
---|
7243 | pCtx->eflags.u32 = u32Val;
|
---|
7244 |
|
---|
7245 | /* Restore eflags for real-on-v86-mode hack. */
|
---|
7246 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
7247 | {
|
---|
7248 | pCtx->eflags.Bits.u1VM = 0;
|
---|
7249 | pCtx->eflags.Bits.u2IOPL = pVmcsInfo->RealMode.Eflags.Bits.u2IOPL;
|
---|
7250 | }
|
---|
7251 | }
|
---|
7252 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
|
---|
7253 | return rc;
|
---|
7254 | }
|
---|
7255 | return VINF_SUCCESS;
|
---|
7256 | }
|
---|
7257 |
|
---|
7258 |
|
---|
7259 | /**
|
---|
7260 | * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
|
---|
7261 | * context.
|
---|
7262 | *
|
---|
7263 | * @returns VBox status code.
|
---|
7264 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7265 | * @param pVmcsInfo The VMCS info. object.
|
---|
7266 | *
|
---|
7267 | * @remarks Called with interrupts and/or preemption disabled, try not to assert and
|
---|
7268 | * do not log!
|
---|
7269 | * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
|
---|
7270 | * instead!!!
|
---|
7271 | */
|
---|
7272 | static int hmR0VmxImportGuestIntrState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
7273 | {
|
---|
7274 | uint32_t u32Val;
|
---|
7275 | int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
|
---|
7276 | if (RT_SUCCESS(rc))
|
---|
7277 | {
|
---|
7278 | if (!u32Val)
|
---|
7279 | {
|
---|
7280 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
7281 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
7282 |
|
---|
7283 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
7284 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
7285 | }
|
---|
7286 | else
|
---|
7287 | {
|
---|
7288 | /*
|
---|
7289 | * We must import RIP here to set our EM interrupt-inhibited state.
|
---|
7290 | * We also import RFLAGS as our code that evaluates pending interrupts
|
---|
7291 | * before VM-entry requires it.
|
---|
7292 | */
|
---|
7293 | rc = hmR0VmxImportGuestRip(pVCpu);
|
---|
7294 | rc |= hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
|
---|
7295 | if (RT_SUCCESS(rc))
|
---|
7296 | {
|
---|
7297 | if (u32Val & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
7298 | EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
|
---|
7299 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
7300 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
7301 |
|
---|
7302 | if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
|
---|
7303 | {
|
---|
7304 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
7305 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
7306 | }
|
---|
7307 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
7308 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
7309 | }
|
---|
7310 | }
|
---|
7311 | }
|
---|
7312 | return rc;
|
---|
7313 | }
|
---|
7314 |
|
---|
7315 |
|
---|
7316 | /**
|
---|
7317 | * Worker for VMXR0ImportStateOnDemand.
|
---|
7318 | *
|
---|
7319 | * @returns VBox status code.
|
---|
7320 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7321 | * @param pVmcsInfo The VMCS info. object.
|
---|
7322 | * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
|
---|
7323 | */
|
---|
7324 | static int hmR0VmxImportGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
|
---|
7325 | {
|
---|
7326 | #define VMXLOCAL_BREAK_RC(a_rc) \
|
---|
7327 | if (RT_SUCCESS(a_rc)) \
|
---|
7328 | { } \
|
---|
7329 | else \
|
---|
7330 | break
|
---|
7331 |
|
---|
7332 | int rc = VINF_SUCCESS;
|
---|
7333 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7334 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
7335 | uint64_t u64Val;
|
---|
7336 | uint32_t u32Val;
|
---|
7337 |
|
---|
7338 | /*
|
---|
7339 | * Note! This is hack to workaround a mysterious BSOD observed with release builds
|
---|
7340 | * on Windows 10 64-bit hosts. Profile and debug builds are not affected and
|
---|
7341 | * neither are other host platforms.
|
---|
7342 | *
|
---|
7343 | * Committing this temporarily as it prevents BSOD.
|
---|
7344 | *
|
---|
7345 | * Update: This is very likely a compiler optimization bug, see @bugref{9180}.
|
---|
7346 | */
|
---|
7347 | #ifdef RT_OS_WINDOWS
|
---|
7348 | if (pVM == 0 || pVM == (void *)(uintptr_t)-1)
|
---|
7349 | return VERR_HM_IPE_1;
|
---|
7350 | #endif
|
---|
7351 |
|
---|
7352 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
|
---|
7353 |
|
---|
7354 | /*
|
---|
7355 | * We disable interrupts to make the updating of the state and in particular
|
---|
7356 | * the fExtrn modification atomic wrt to preemption hooks.
|
---|
7357 | */
|
---|
7358 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
7359 |
|
---|
7360 | fWhat &= pCtx->fExtrn;
|
---|
7361 | if (fWhat)
|
---|
7362 | {
|
---|
7363 | do
|
---|
7364 | {
|
---|
7365 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
7366 | {
|
---|
7367 | rc = hmR0VmxImportGuestRip(pVCpu);
|
---|
7368 | VMXLOCAL_BREAK_RC(rc);
|
---|
7369 | }
|
---|
7370 |
|
---|
7371 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
7372 | {
|
---|
7373 | rc = hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
|
---|
7374 | VMXLOCAL_BREAK_RC(rc);
|
---|
7375 | }
|
---|
7376 |
|
---|
7377 | if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
|
---|
7378 | {
|
---|
7379 | rc = hmR0VmxImportGuestIntrState(pVCpu, pVmcsInfo);
|
---|
7380 | VMXLOCAL_BREAK_RC(rc);
|
---|
7381 | }
|
---|
7382 |
|
---|
7383 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
7384 | {
|
---|
7385 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
|
---|
7386 | VMXLOCAL_BREAK_RC(rc);
|
---|
7387 | pCtx->rsp = u64Val;
|
---|
7388 | }
|
---|
7389 |
|
---|
7390 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
7391 | {
|
---|
7392 | bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
|
---|
7393 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
7394 | {
|
---|
7395 | rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_CS);
|
---|
7396 | rc |= hmR0VmxImportGuestRip(pVCpu);
|
---|
7397 | if (fRealOnV86Active)
|
---|
7398 | pCtx->cs.Attr.u = pVmcsInfo->RealMode.AttrCS.u;
|
---|
7399 | EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
|
---|
7400 | }
|
---|
7401 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
7402 | {
|
---|
7403 | rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_SS);
|
---|
7404 | if (fRealOnV86Active)
|
---|
7405 | pCtx->ss.Attr.u = pVmcsInfo->RealMode.AttrSS.u;
|
---|
7406 | }
|
---|
7407 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
7408 | {
|
---|
7409 | rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_DS);
|
---|
7410 | if (fRealOnV86Active)
|
---|
7411 | pCtx->ds.Attr.u = pVmcsInfo->RealMode.AttrDS.u;
|
---|
7412 | }
|
---|
7413 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
7414 | {
|
---|
7415 | rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_ES);
|
---|
7416 | if (fRealOnV86Active)
|
---|
7417 | pCtx->es.Attr.u = pVmcsInfo->RealMode.AttrES.u;
|
---|
7418 | }
|
---|
7419 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
7420 | {
|
---|
7421 | rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_FS);
|
---|
7422 | if (fRealOnV86Active)
|
---|
7423 | pCtx->fs.Attr.u = pVmcsInfo->RealMode.AttrFS.u;
|
---|
7424 | }
|
---|
7425 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
7426 | {
|
---|
7427 | rc |= hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_GS);
|
---|
7428 | if (fRealOnV86Active)
|
---|
7429 | pCtx->gs.Attr.u = pVmcsInfo->RealMode.AttrGS.u;
|
---|
7430 | }
|
---|
7431 | VMXLOCAL_BREAK_RC(rc);
|
---|
7432 | }
|
---|
7433 |
|
---|
7434 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
7435 | {
|
---|
7436 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
7437 | rc |= hmR0VmxImportGuestLdtr(pVCpu);
|
---|
7438 |
|
---|
7439 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
7440 | {
|
---|
7441 | rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
|
---|
7442 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
|
---|
7443 | pCtx->gdtr.pGdt = u64Val;
|
---|
7444 | pCtx->gdtr.cbGdt = u32Val;
|
---|
7445 | }
|
---|
7446 |
|
---|
7447 | /* Guest IDTR. */
|
---|
7448 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
7449 | {
|
---|
7450 | rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
|
---|
7451 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
|
---|
7452 | pCtx->idtr.pIdt = u64Val;
|
---|
7453 | pCtx->idtr.cbIdt = u32Val;
|
---|
7454 | }
|
---|
7455 |
|
---|
7456 | /* Guest TR. */
|
---|
7457 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
7458 | {
|
---|
7459 | /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
|
---|
7460 | don't need to import that one. */
|
---|
7461 | if (!pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
7462 | rc |= hmR0VmxImportGuestTr(pVCpu);
|
---|
7463 | }
|
---|
7464 | VMXLOCAL_BREAK_RC(rc);
|
---|
7465 | }
|
---|
7466 |
|
---|
7467 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
7468 | {
|
---|
7469 | if (!pVCpu->hm.s.fUsingHyperDR7)
|
---|
7470 | {
|
---|
7471 | /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
|
---|
7472 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
|
---|
7473 | VMXLOCAL_BREAK_RC(rc);
|
---|
7474 | pCtx->dr[7] = u32Val;
|
---|
7475 | }
|
---|
7476 | }
|
---|
7477 |
|
---|
7478 | if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
7479 | {
|
---|
7480 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
|
---|
7481 | rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
|
---|
7482 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
|
---|
7483 | pCtx->SysEnter.cs = u32Val;
|
---|
7484 | VMXLOCAL_BREAK_RC(rc);
|
---|
7485 | }
|
---|
7486 |
|
---|
7487 | #if HC_ARCH_BITS == 64
|
---|
7488 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
7489 | {
|
---|
7490 | if ( pVM->hm.s.fAllow64BitGuests
|
---|
7491 | && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
|
---|
7492 | pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
|
---|
7493 | }
|
---|
7494 |
|
---|
7495 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
7496 | {
|
---|
7497 | if ( pVM->hm.s.fAllow64BitGuests
|
---|
7498 | && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
|
---|
7499 | {
|
---|
7500 | pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
|
---|
7501 | pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
|
---|
7502 | pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
|
---|
7503 | }
|
---|
7504 | }
|
---|
7505 | #endif
|
---|
7506 |
|
---|
7507 | if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
|
---|
7508 | #if HC_ARCH_BITS == 32
|
---|
7509 | || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
|
---|
7510 | #endif
|
---|
7511 | )
|
---|
7512 | {
|
---|
7513 | PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
|
---|
7514 | uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
|
---|
7515 | Assert(pMsrs);
|
---|
7516 | Assert(cMsrs <= VMX_MISC_MAX_MSRS(pVM->hm.s.vmx.Msrs.u64Misc));
|
---|
7517 | Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
|
---|
7518 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
7519 | {
|
---|
7520 | uint32_t const idMsr = pMsrs[i].u32Msr;
|
---|
7521 | switch (idMsr)
|
---|
7522 | {
|
---|
7523 | case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value); break;
|
---|
7524 | case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value); break;
|
---|
7525 | case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
|
---|
7526 | #if HC_ARCH_BITS == 32
|
---|
7527 | case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsrs[i].u64Value; break;
|
---|
7528 | case MSR_K6_STAR: pCtx->msrSTAR = pMsrs[i].u64Value; break;
|
---|
7529 | case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsrs[i].u64Value; break;
|
---|
7530 | case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsrs[i].u64Value; break;
|
---|
7531 | #endif
|
---|
7532 | default:
|
---|
7533 | {
|
---|
7534 | pCtx->fExtrn = 0;
|
---|
7535 | pVCpu->hm.s.u32HMError = pMsrs->u32Msr;
|
---|
7536 | ASMSetFlags(fEFlags);
|
---|
7537 | AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs));
|
---|
7538 | return VERR_HM_UNEXPECTED_LD_ST_MSR;
|
---|
7539 | }
|
---|
7540 | }
|
---|
7541 | }
|
---|
7542 | }
|
---|
7543 |
|
---|
7544 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
7545 | {
|
---|
7546 | uint64_t u64Shadow;
|
---|
7547 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
7548 | {
|
---|
7549 | /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
|
---|
7550 | * remove when we drop 32-bit host w/ 64-bit host support, see
|
---|
7551 | * @bugref{9180#c39}. */
|
---|
7552 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
|
---|
7553 | #if HC_ARCH_BITS == 32
|
---|
7554 | uint32_t u32Shadow;
|
---|
7555 | rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
|
---|
7556 | u64Shadow = u32Shadow;
|
---|
7557 | #else
|
---|
7558 | rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow);
|
---|
7559 | #endif
|
---|
7560 | VMXLOCAL_BREAK_RC(rc);
|
---|
7561 | u64Val = u32Val;
|
---|
7562 | u64Val = (u64Val & ~pVmcsInfo->u64Cr0Mask)
|
---|
7563 | | (u64Shadow & pVmcsInfo->u64Cr0Mask);
|
---|
7564 | VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
|
---|
7565 | CPUMSetGuestCR0(pVCpu, u64Val);
|
---|
7566 | VMMRZCallRing3Enable(pVCpu);
|
---|
7567 | }
|
---|
7568 |
|
---|
7569 | if (fWhat & CPUMCTX_EXTRN_CR4)
|
---|
7570 | {
|
---|
7571 | /** @todo r=ramshankar: We only read 32-bits here for legacy/convenience reasons,
|
---|
7572 | * remove when we drop 32-bit host w/ 64-bit host support, see
|
---|
7573 | * @bugref{9180#c39}. */
|
---|
7574 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
|
---|
7575 | #if HC_ARCH_BITS == 32
|
---|
7576 | uint32_t u32Shadow;
|
---|
7577 | rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
|
---|
7578 | u64Shadow = u32Shadow;
|
---|
7579 | #else
|
---|
7580 | rc |= VMXReadVmcs64(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow);
|
---|
7581 | #endif
|
---|
7582 | VMXLOCAL_BREAK_RC(rc);
|
---|
7583 | u64Val = u32Val;
|
---|
7584 | u64Val = (u64Val & ~pVmcsInfo->u64Cr4Mask)
|
---|
7585 | | (u64Shadow & pVmcsInfo->u64Cr4Mask);
|
---|
7586 | pCtx->cr4 = u64Val;
|
---|
7587 | }
|
---|
7588 |
|
---|
7589 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
7590 | {
|
---|
7591 | /* CR0.PG bit changes are always intercepted, so it's up to date. */
|
---|
7592 | if ( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
7593 | || ( pVM->hm.s.fNestedPaging
|
---|
7594 | && CPUMIsGuestPagingEnabledEx(pCtx)))
|
---|
7595 | {
|
---|
7596 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
|
---|
7597 | VMXLOCAL_BREAK_RC(rc);
|
---|
7598 | if (pCtx->cr3 != u64Val)
|
---|
7599 | {
|
---|
7600 | pCtx->cr3 = u64Val;
|
---|
7601 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
|
---|
7602 | }
|
---|
7603 |
|
---|
7604 | /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
|
---|
7605 | Note: CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. */
|
---|
7606 | if (CPUMIsGuestInPAEModeEx(pCtx))
|
---|
7607 | {
|
---|
7608 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
|
---|
7609 | rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
|
---|
7610 | rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
|
---|
7611 | rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
|
---|
7612 | VMXLOCAL_BREAK_RC(rc);
|
---|
7613 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
|
---|
7614 | }
|
---|
7615 | }
|
---|
7616 | }
|
---|
7617 | }
|
---|
7618 | } while (0);
|
---|
7619 |
|
---|
7620 | if (RT_SUCCESS(rc))
|
---|
7621 | {
|
---|
7622 | /* Update fExtrn. */
|
---|
7623 | pCtx->fExtrn &= ~fWhat;
|
---|
7624 |
|
---|
7625 | /* If everything has been imported, clear the HM keeper bit. */
|
---|
7626 | if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
|
---|
7627 | {
|
---|
7628 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
|
---|
7629 | Assert(!pCtx->fExtrn);
|
---|
7630 | }
|
---|
7631 | }
|
---|
7632 | }
|
---|
7633 | else
|
---|
7634 | AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
|
---|
7635 |
|
---|
7636 | ASMSetFlags(fEFlags);
|
---|
7637 |
|
---|
7638 | STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
|
---|
7639 |
|
---|
7640 | if (RT_SUCCESS(rc))
|
---|
7641 | { /* likely */ }
|
---|
7642 | else
|
---|
7643 | return rc;
|
---|
7644 |
|
---|
7645 | /*
|
---|
7646 | * Honor any pending CR3 updates.
|
---|
7647 | *
|
---|
7648 | * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
|
---|
7649 | * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
|
---|
7650 | * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
|
---|
7651 | *
|
---|
7652 | * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
|
---|
7653 | * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
|
---|
7654 | * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
|
---|
7655 | * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
|
---|
7656 | *
|
---|
7657 | * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
|
---|
7658 | */
|
---|
7659 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
7660 | {
|
---|
7661 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
7662 | {
|
---|
7663 | Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
|
---|
7664 | PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
|
---|
7665 | }
|
---|
7666 |
|
---|
7667 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
|
---|
7668 | PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
7669 |
|
---|
7670 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
7671 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
7672 | }
|
---|
7673 |
|
---|
7674 | return VINF_SUCCESS;
|
---|
7675 | #undef VMXLOCAL_BREAK_RC
|
---|
7676 | }
|
---|
7677 |
|
---|
7678 |
|
---|
7679 | /**
|
---|
7680 | * Saves the guest state from the VMCS into the guest-CPU context.
|
---|
7681 | *
|
---|
7682 | * @returns VBox status code.
|
---|
7683 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7684 | * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
|
---|
7685 | */
|
---|
7686 | VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
|
---|
7687 | {
|
---|
7688 | PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
7689 | return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
|
---|
7690 | }
|
---|
7691 |
|
---|
7692 |
|
---|
7693 | /**
|
---|
7694 | * Check per-VM and per-VCPU force flag actions that require us to go back to
|
---|
7695 | * ring-3 for one reason or another.
|
---|
7696 | *
|
---|
7697 | * @returns Strict VBox status code (i.e. informational status codes too)
|
---|
7698 | * @retval VINF_SUCCESS if we don't have any actions that require going back to
|
---|
7699 | * ring-3.
|
---|
7700 | * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
|
---|
7701 | * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
|
---|
7702 | * interrupts)
|
---|
7703 | * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
|
---|
7704 | * all EMTs to be in ring-3.
|
---|
7705 | * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
|
---|
7706 | * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
|
---|
7707 | * to the EM loop.
|
---|
7708 | *
|
---|
7709 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7710 | * @param fStepping Whether we are single-stepping the guest using the
|
---|
7711 | * hypervisor debugger.
|
---|
7712 | */
|
---|
7713 | static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
|
---|
7714 | {
|
---|
7715 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7716 |
|
---|
7717 | /*
|
---|
7718 | * Update pending interrupts into the APIC's IRR.
|
---|
7719 | */
|
---|
7720 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
|
---|
7721 | APICUpdatePendingInterrupts(pVCpu);
|
---|
7722 |
|
---|
7723 | /*
|
---|
7724 | * Anything pending? Should be more likely than not if we're doing a good job.
|
---|
7725 | */
|
---|
7726 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7727 | if ( !fStepping
|
---|
7728 | ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
|
---|
7729 | && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
|
---|
7730 | : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
7731 | && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
7732 | return VINF_SUCCESS;
|
---|
7733 |
|
---|
7734 | /* Pending PGM C3 sync. */
|
---|
7735 | if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
|
---|
7736 | {
|
---|
7737 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
7738 | Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
|
---|
7739 | VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
|
---|
7740 | VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
7741 | if (rcStrict2 != VINF_SUCCESS)
|
---|
7742 | {
|
---|
7743 | AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
|
---|
7744 | Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
|
---|
7745 | return rcStrict2;
|
---|
7746 | }
|
---|
7747 | }
|
---|
7748 |
|
---|
7749 | /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
|
---|
7750 | if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
|
---|
7751 | || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
7752 | {
|
---|
7753 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
7754 | int rc2 = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
|
---|
7755 | Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
|
---|
7756 | return rc2;
|
---|
7757 | }
|
---|
7758 |
|
---|
7759 | /* Pending VM request packets, such as hardware interrupts. */
|
---|
7760 | if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
|
---|
7761 | || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
|
---|
7762 | {
|
---|
7763 | Log4Func(("Pending VM request forcing us back to ring-3\n"));
|
---|
7764 | return VINF_EM_PENDING_REQUEST;
|
---|
7765 | }
|
---|
7766 |
|
---|
7767 | /* Pending PGM pool flushes. */
|
---|
7768 | if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
|
---|
7769 | {
|
---|
7770 | Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
|
---|
7771 | return VINF_PGM_POOL_FLUSH_PENDING;
|
---|
7772 | }
|
---|
7773 |
|
---|
7774 | /* Pending DMA requests. */
|
---|
7775 | if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
|
---|
7776 | {
|
---|
7777 | Log4Func(("Pending DMA request forcing us back to ring-3\n"));
|
---|
7778 | return VINF_EM_RAW_TO_R3;
|
---|
7779 | }
|
---|
7780 |
|
---|
7781 | return VINF_SUCCESS;
|
---|
7782 | }
|
---|
7783 |
|
---|
7784 |
|
---|
7785 | /**
|
---|
7786 | * Converts any TRPM trap into a pending HM event. This is typically used when
|
---|
7787 | * entering from ring-3 (not longjmp returns).
|
---|
7788 | *
|
---|
7789 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7790 | */
|
---|
7791 | static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
|
---|
7792 | {
|
---|
7793 | Assert(TRPMHasTrap(pVCpu));
|
---|
7794 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
7795 |
|
---|
7796 | uint8_t uVector;
|
---|
7797 | TRPMEVENT enmTrpmEvent;
|
---|
7798 | RTGCUINT uErrCode;
|
---|
7799 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
7800 | uint8_t cbInstr;
|
---|
7801 |
|
---|
7802 | int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
|
---|
7803 | AssertRC(rc);
|
---|
7804 |
|
---|
7805 | /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
|
---|
7806 | uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
|
---|
7807 | if (enmTrpmEvent == TRPM_TRAP)
|
---|
7808 | {
|
---|
7809 | /** @todo r=ramshankar: TRPM currently offers no way to determine a \#DB that was
|
---|
7810 | * generated using INT1 (ICEBP). */
|
---|
7811 | switch (uVector)
|
---|
7812 | {
|
---|
7813 | case X86_XCPT_NMI:
|
---|
7814 | u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
|
---|
7815 | break;
|
---|
7816 |
|
---|
7817 | case X86_XCPT_BP:
|
---|
7818 | case X86_XCPT_OF:
|
---|
7819 | u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
|
---|
7820 | break;
|
---|
7821 |
|
---|
7822 | case X86_XCPT_PF:
|
---|
7823 | case X86_XCPT_DF:
|
---|
7824 | case X86_XCPT_TS:
|
---|
7825 | case X86_XCPT_NP:
|
---|
7826 | case X86_XCPT_SS:
|
---|
7827 | case X86_XCPT_GP:
|
---|
7828 | case X86_XCPT_AC:
|
---|
7829 | u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
|
---|
7830 | RT_FALL_THRU();
|
---|
7831 | default:
|
---|
7832 | u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
|
---|
7833 | break;
|
---|
7834 | }
|
---|
7835 | }
|
---|
7836 | else if (enmTrpmEvent == TRPM_HARDWARE_INT)
|
---|
7837 | u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
|
---|
7838 | else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
|
---|
7839 | {
|
---|
7840 | switch (uVector)
|
---|
7841 | {
|
---|
7842 | case X86_XCPT_BP:
|
---|
7843 | case X86_XCPT_OF:
|
---|
7844 | u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
|
---|
7845 | break;
|
---|
7846 |
|
---|
7847 | default:
|
---|
7848 | Assert(uVector == X86_XCPT_DB);
|
---|
7849 | u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
|
---|
7850 | break;
|
---|
7851 | }
|
---|
7852 | }
|
---|
7853 | else
|
---|
7854 | AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
|
---|
7855 |
|
---|
7856 | rc = TRPMResetTrap(pVCpu);
|
---|
7857 | AssertRC(rc);
|
---|
7858 | Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
|
---|
7859 | u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
|
---|
7860 |
|
---|
7861 | hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
|
---|
7862 | }
|
---|
7863 |
|
---|
7864 |
|
---|
7865 | /**
|
---|
7866 | * Converts the pending HM event into a TRPM trap.
|
---|
7867 | *
|
---|
7868 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7869 | */
|
---|
7870 | static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
|
---|
7871 | {
|
---|
7872 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
7873 |
|
---|
7874 | uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
|
---|
7875 | uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
|
---|
7876 | bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
|
---|
7877 | uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
|
---|
7878 |
|
---|
7879 | /* If a trap was already pending, we did something wrong! */
|
---|
7880 | Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
|
---|
7881 |
|
---|
7882 | /** @todo Use HMVmxEventToTrpmEventType() later. */
|
---|
7883 | TRPMEVENT enmTrapType;
|
---|
7884 | switch (uVectorType)
|
---|
7885 | {
|
---|
7886 | case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
|
---|
7887 | enmTrapType = TRPM_HARDWARE_INT;
|
---|
7888 | break;
|
---|
7889 |
|
---|
7890 | case VMX_IDT_VECTORING_INFO_TYPE_NMI:
|
---|
7891 | case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
|
---|
7892 | enmTrapType = TRPM_TRAP;
|
---|
7893 | break;
|
---|
7894 |
|
---|
7895 | case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT: /* #DB (INT1/ICEBP). */
|
---|
7896 | Assert(uVector == X86_XCPT_DB);
|
---|
7897 | enmTrapType = TRPM_SOFTWARE_INT;
|
---|
7898 | break;
|
---|
7899 |
|
---|
7900 | case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP (INT3) and #OF (INTO) */
|
---|
7901 | Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
|
---|
7902 | enmTrapType = TRPM_SOFTWARE_INT;
|
---|
7903 | break;
|
---|
7904 |
|
---|
7905 | case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
|
---|
7906 | enmTrapType = TRPM_SOFTWARE_INT;
|
---|
7907 | break;
|
---|
7908 |
|
---|
7909 | default:
|
---|
7910 | AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
|
---|
7911 | enmTrapType = TRPM_32BIT_HACK;
|
---|
7912 | break;
|
---|
7913 | }
|
---|
7914 |
|
---|
7915 | Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
|
---|
7916 |
|
---|
7917 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
|
---|
7918 | AssertRC(rc);
|
---|
7919 |
|
---|
7920 | if (fErrorCodeValid)
|
---|
7921 | TRPMSetErrorCode(pVCpu, uErrorCode);
|
---|
7922 |
|
---|
7923 | if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
7924 | && uVector == X86_XCPT_PF)
|
---|
7925 | TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
|
---|
7926 | else if (enmTrapType == TRPM_SOFTWARE_INT)
|
---|
7927 | TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
|
---|
7928 |
|
---|
7929 | /* We're now done converting the pending event. */
|
---|
7930 | pVCpu->hm.s.Event.fPending = false;
|
---|
7931 | }
|
---|
7932 |
|
---|
7933 |
|
---|
7934 | /**
|
---|
7935 | * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
|
---|
7936 | * cause a VM-exit as soon as the guest is in a state to receive interrupts.
|
---|
7937 | *
|
---|
7938 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7939 | * @param pVmcsInfo The VMCS info. object.
|
---|
7940 | */
|
---|
7941 | static void hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
7942 | {
|
---|
7943 | if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
|
---|
7944 | {
|
---|
7945 | if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
|
---|
7946 | {
|
---|
7947 | pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
|
---|
7948 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
7949 | AssertRC(rc);
|
---|
7950 | }
|
---|
7951 | } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
|
---|
7952 | }
|
---|
7953 |
|
---|
7954 |
|
---|
7955 | /**
|
---|
7956 | * Clears the interrupt-window exiting control in the VMCS.
|
---|
7957 | *
|
---|
7958 | * @param pVmcsInfo The VMCS info. object.
|
---|
7959 | */
|
---|
7960 | DECLINLINE(int) hmR0VmxClearIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
|
---|
7961 | {
|
---|
7962 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
|
---|
7963 | {
|
---|
7964 | pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
|
---|
7965 | return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
7966 | }
|
---|
7967 | return VINF_SUCCESS;
|
---|
7968 | }
|
---|
7969 |
|
---|
7970 |
|
---|
7971 | /**
|
---|
7972 | * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
|
---|
7973 | * cause a VM-exit as soon as the guest is in a state to receive NMIs.
|
---|
7974 | *
|
---|
7975 | * @param pVCpu The cross context virtual CPU structure.
|
---|
7976 | * @param pVmcsInfo The VMCS info. object.
|
---|
7977 | */
|
---|
7978 | static void hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
7979 | {
|
---|
7980 | if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
|
---|
7981 | {
|
---|
7982 | if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
|
---|
7983 | {
|
---|
7984 | pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
|
---|
7985 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
7986 | AssertRC(rc);
|
---|
7987 | Log4Func(("Setup NMI-window exiting\n"));
|
---|
7988 | }
|
---|
7989 | } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
|
---|
7990 | }
|
---|
7991 |
|
---|
7992 |
|
---|
7993 | /**
|
---|
7994 | * Clears the NMI-window exiting control in the VMCS.
|
---|
7995 | *
|
---|
7996 | * @param pVmcsInfo The VMCS info. object.
|
---|
7997 | */
|
---|
7998 | DECLINLINE(int) hmR0VmxClearNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
|
---|
7999 | {
|
---|
8000 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
|
---|
8001 | {
|
---|
8002 | pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
|
---|
8003 | return VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
8004 | }
|
---|
8005 | return VINF_SUCCESS;
|
---|
8006 | }
|
---|
8007 |
|
---|
8008 |
|
---|
8009 | /**
|
---|
8010 | * Does the necessary state syncing before returning to ring-3 for any reason
|
---|
8011 | * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
|
---|
8012 | *
|
---|
8013 | * @returns VBox status code.
|
---|
8014 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8015 | * @param fImportState Whether to import the guest state from the VMCS back
|
---|
8016 | * to the guest-CPU context.
|
---|
8017 | *
|
---|
8018 | * @remarks No-long-jmp zone!!!
|
---|
8019 | */
|
---|
8020 | static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
|
---|
8021 | {
|
---|
8022 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8023 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
8024 |
|
---|
8025 | RTCPUID idCpu = RTMpCpuId();
|
---|
8026 | Log4Func(("HostCpuId=%u\n", idCpu));
|
---|
8027 |
|
---|
8028 | /*
|
---|
8029 | * !!! IMPORTANT !!!
|
---|
8030 | * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
|
---|
8031 | */
|
---|
8032 |
|
---|
8033 | /* Save the guest state if necessary. */
|
---|
8034 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
8035 | if (fImportState)
|
---|
8036 | {
|
---|
8037 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
8038 | AssertRCReturn(rc, rc);
|
---|
8039 | }
|
---|
8040 |
|
---|
8041 | /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
|
---|
8042 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
8043 | Assert(!CPUMIsGuestFPUStateActive(pVCpu));
|
---|
8044 |
|
---|
8045 | /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
|
---|
8046 | #ifdef VBOX_STRICT
|
---|
8047 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
8048 | Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
|
---|
8049 | #endif
|
---|
8050 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
|
---|
8051 | Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
8052 | Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
8053 |
|
---|
8054 | #if HC_ARCH_BITS == 64
|
---|
8055 | /* Restore host-state bits that VT-x only restores partially. */
|
---|
8056 | if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
|
---|
8057 | && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
|
---|
8058 | {
|
---|
8059 | Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
|
---|
8060 | VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
|
---|
8061 | }
|
---|
8062 | pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
|
---|
8063 | #endif
|
---|
8064 |
|
---|
8065 | /* Restore the lazy host MSRs as we're leaving VT-x context. */
|
---|
8066 | if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
8067 | {
|
---|
8068 | /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
|
---|
8069 | if (!fImportState)
|
---|
8070 | {
|
---|
8071 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
|
---|
8072 | AssertRCReturn(rc, rc);
|
---|
8073 | }
|
---|
8074 | hmR0VmxLazyRestoreHostMsrs(pVCpu);
|
---|
8075 | Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
|
---|
8076 | }
|
---|
8077 | else
|
---|
8078 | pVCpu->hm.s.vmx.fLazyMsrs = 0;
|
---|
8079 |
|
---|
8080 | /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
|
---|
8081 | pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
|
---|
8082 |
|
---|
8083 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
|
---|
8084 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
|
---|
8085 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
|
---|
8086 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
|
---|
8087 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
|
---|
8088 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
|
---|
8089 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
|
---|
8090 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
|
---|
8091 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
8092 |
|
---|
8093 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
8094 |
|
---|
8095 | /** @todo This partially defeats the purpose of having preemption hooks.
|
---|
8096 | * The problem is, deregistering the hooks should be moved to a place that
|
---|
8097 | * lasts until the EMT is about to be destroyed not everytime while leaving HM
|
---|
8098 | * context.
|
---|
8099 | */
|
---|
8100 | int rc = hmR0VmxClearVmcs(pVmcsInfo);
|
---|
8101 | AssertRCReturn(rc, rc);
|
---|
8102 |
|
---|
8103 | Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
|
---|
8104 | NOREF(idCpu);
|
---|
8105 | return VINF_SUCCESS;
|
---|
8106 | }
|
---|
8107 |
|
---|
8108 |
|
---|
8109 | /**
|
---|
8110 | * Leaves the VT-x session.
|
---|
8111 | *
|
---|
8112 | * @returns VBox status code.
|
---|
8113 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8114 | *
|
---|
8115 | * @remarks No-long-jmp zone!!!
|
---|
8116 | */
|
---|
8117 | static int hmR0VmxLeaveSession(PVMCPU pVCpu)
|
---|
8118 | {
|
---|
8119 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
8120 | HMVMX_ASSERT_CPU_SAFE(pVCpu);
|
---|
8121 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
8122 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8123 |
|
---|
8124 | /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
|
---|
8125 | and done this from the VMXR0ThreadCtxCallback(). */
|
---|
8126 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
8127 | {
|
---|
8128 | int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
|
---|
8129 | AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
|
---|
8130 | pVCpu->hm.s.fLeaveDone = true;
|
---|
8131 | }
|
---|
8132 | Assert(!pVCpu->cpum.GstCtx.fExtrn);
|
---|
8133 |
|
---|
8134 | /*
|
---|
8135 | * !!! IMPORTANT !!!
|
---|
8136 | * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
|
---|
8137 | */
|
---|
8138 |
|
---|
8139 | /* Deregister hook now that we've left HM context before re-enabling preemption. */
|
---|
8140 | /** @todo Deregistering here means we need to VMCLEAR always
|
---|
8141 | * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
|
---|
8142 | * for calling VMMR0ThreadCtxHookDisable here! */
|
---|
8143 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
8144 |
|
---|
8145 | /* Leave HM context. This takes care of local init (term). */
|
---|
8146 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
8147 |
|
---|
8148 | HM_RESTORE_PREEMPT();
|
---|
8149 | return rc;
|
---|
8150 | }
|
---|
8151 |
|
---|
8152 |
|
---|
8153 | /**
|
---|
8154 | * Does the necessary state syncing before doing a longjmp to ring-3.
|
---|
8155 | *
|
---|
8156 | * @returns VBox status code.
|
---|
8157 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8158 | *
|
---|
8159 | * @remarks No-long-jmp zone!!!
|
---|
8160 | */
|
---|
8161 | DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
|
---|
8162 | {
|
---|
8163 | return hmR0VmxLeaveSession(pVCpu);
|
---|
8164 | }
|
---|
8165 |
|
---|
8166 |
|
---|
8167 | /**
|
---|
8168 | * Take necessary actions before going back to ring-3.
|
---|
8169 | *
|
---|
8170 | * An action requires us to go back to ring-3. This function does the necessary
|
---|
8171 | * steps before we can safely return to ring-3. This is not the same as longjmps
|
---|
8172 | * to ring-3, this is voluntary and prepares the guest so it may continue
|
---|
8173 | * executing outside HM (recompiler/IEM).
|
---|
8174 | *
|
---|
8175 | * @returns VBox status code.
|
---|
8176 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8177 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
8178 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
8179 | */
|
---|
8180 | static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
|
---|
8181 | {
|
---|
8182 | Assert(pVCpu);
|
---|
8183 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
8184 |
|
---|
8185 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
8186 | if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
|
---|
8187 | {
|
---|
8188 | VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
|
---|
8189 | pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
|
---|
8190 | pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
|
---|
8191 | /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
|
---|
8192 | }
|
---|
8193 |
|
---|
8194 | /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
|
---|
8195 | VMMRZCallRing3Disable(pVCpu);
|
---|
8196 | Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
|
---|
8197 |
|
---|
8198 | /*
|
---|
8199 | * Convert any pending HM events back to TRPM due to premature exits to ring-3.
|
---|
8200 | * We need to do this only on returns to ring-3 and not for longjmps to ring3.
|
---|
8201 | *
|
---|
8202 | * This is because execution may continue from ring-3 and we would need to inject
|
---|
8203 | * the event from there (hence place it back in TRPM).
|
---|
8204 | */
|
---|
8205 | if (pVCpu->hm.s.Event.fPending)
|
---|
8206 | {
|
---|
8207 | hmR0VmxPendingEventToTrpmTrap(pVCpu);
|
---|
8208 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
8209 |
|
---|
8210 | /* Clear the events from the VMCS. */
|
---|
8211 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
|
---|
8212 | AssertRCReturn(rc, rc);
|
---|
8213 | }
|
---|
8214 | #ifdef VBOX_STRICT
|
---|
8215 | else
|
---|
8216 | {
|
---|
8217 | /*
|
---|
8218 | * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
|
---|
8219 | * This can be pretty hard to debug otherwise, interrupts might get injected twice
|
---|
8220 | * occasionally, see @bugref{9180#c42}.
|
---|
8221 | */
|
---|
8222 | uint32_t uEntryIntInfo;
|
---|
8223 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
|
---|
8224 | AssertRC(rc);
|
---|
8225 | Assert(!VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
|
---|
8226 | }
|
---|
8227 | #endif
|
---|
8228 |
|
---|
8229 | /*
|
---|
8230 | * Clear the interrupt-window and NMI-window VMCS controls as we could have got
|
---|
8231 | * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
|
---|
8232 | * (e.g. TPR below threshold).
|
---|
8233 | */
|
---|
8234 | int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
|
---|
8235 | rc |= hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
|
---|
8236 | AssertRCReturn(rc, rc);
|
---|
8237 |
|
---|
8238 | /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
|
---|
8239 | and if we're injecting an event we should have a TRPM trap pending. */
|
---|
8240 | AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
|
---|
8241 | #ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
|
---|
8242 | AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
|
---|
8243 | #endif
|
---|
8244 |
|
---|
8245 | /* Save guest state and restore host state bits. */
|
---|
8246 | rc = hmR0VmxLeaveSession(pVCpu);
|
---|
8247 | AssertRCReturn(rc, rc);
|
---|
8248 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
8249 |
|
---|
8250 | /* Thread-context hooks are unregistered at this point!!! */
|
---|
8251 |
|
---|
8252 | /* Sync recompiler state. */
|
---|
8253 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
|
---|
8254 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
|
---|
8255 | | CPUM_CHANGED_LDTR
|
---|
8256 | | CPUM_CHANGED_GDTR
|
---|
8257 | | CPUM_CHANGED_IDTR
|
---|
8258 | | CPUM_CHANGED_TR
|
---|
8259 | | CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
8260 | if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
|
---|
8261 | && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
|
---|
8262 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
8263 |
|
---|
8264 | Assert(!pVCpu->hm.s.fClearTrapFlag);
|
---|
8265 |
|
---|
8266 | /* Update the exit-to-ring 3 reason. */
|
---|
8267 | pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
|
---|
8268 |
|
---|
8269 | /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
|
---|
8270 | if ( rcExit != VINF_EM_RAW_INTERRUPT
|
---|
8271 | || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
8272 | {
|
---|
8273 | Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
|
---|
8274 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
8275 | }
|
---|
8276 |
|
---|
8277 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
|
---|
8278 |
|
---|
8279 | /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
|
---|
8280 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
8281 | VMMRZCallRing3Enable(pVCpu);
|
---|
8282 |
|
---|
8283 | return rc;
|
---|
8284 | }
|
---|
8285 |
|
---|
8286 |
|
---|
8287 | /**
|
---|
8288 | * VMMRZCallRing3() callback wrapper which saves the guest state before we
|
---|
8289 | * longjump to ring-3 and possibly get preempted.
|
---|
8290 | *
|
---|
8291 | * @returns VBox status code.
|
---|
8292 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8293 | * @param enmOperation The operation causing the ring-3 longjump.
|
---|
8294 | * @param pvUser User argument, currently unused, NULL.
|
---|
8295 | */
|
---|
8296 | static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
|
---|
8297 | {
|
---|
8298 | RT_NOREF(pvUser);
|
---|
8299 | if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
|
---|
8300 | {
|
---|
8301 | /*
|
---|
8302 | * !!! IMPORTANT !!!
|
---|
8303 | * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
|
---|
8304 | * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
|
---|
8305 | */
|
---|
8306 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
8307 | VMMRZCallRing3Disable(pVCpu);
|
---|
8308 | RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
|
---|
8309 | RTThreadPreemptDisable(&PreemptState);
|
---|
8310 |
|
---|
8311 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
8312 | hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
8313 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
8314 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
|
---|
8315 |
|
---|
8316 | #if HC_ARCH_BITS == 64
|
---|
8317 | /* Restore host-state bits that VT-x only restores partially. */
|
---|
8318 | if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
|
---|
8319 | && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
|
---|
8320 | VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
|
---|
8321 | pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
|
---|
8322 | #endif
|
---|
8323 |
|
---|
8324 | /* Restore the lazy host MSRs as we're leaving VT-x context. */
|
---|
8325 | if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
|
---|
8326 | hmR0VmxLazyRestoreHostMsrs(pVCpu);
|
---|
8327 |
|
---|
8328 | /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
|
---|
8329 | pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
|
---|
8330 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
8331 |
|
---|
8332 | /* Clear the current VMCS data back to memory. */
|
---|
8333 | hmR0VmxClearVmcs(pVmcsInfo);
|
---|
8334 |
|
---|
8335 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
8336 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
8337 | HMR0LeaveCpu(pVCpu);
|
---|
8338 | RTThreadPreemptRestore(&PreemptState);
|
---|
8339 | return VINF_SUCCESS;
|
---|
8340 | }
|
---|
8341 |
|
---|
8342 | Assert(pVCpu);
|
---|
8343 | Assert(pvUser);
|
---|
8344 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
8345 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
8346 |
|
---|
8347 | VMMRZCallRing3Disable(pVCpu);
|
---|
8348 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
8349 |
|
---|
8350 | Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
|
---|
8351 |
|
---|
8352 | int rc = hmR0VmxLongJmpToRing3(pVCpu);
|
---|
8353 | AssertRCReturn(rc, rc);
|
---|
8354 |
|
---|
8355 | VMMRZCallRing3Enable(pVCpu);
|
---|
8356 | return VINF_SUCCESS;
|
---|
8357 | }
|
---|
8358 |
|
---|
8359 |
|
---|
8360 | /**
|
---|
8361 | * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
|
---|
8362 | * stack.
|
---|
8363 | *
|
---|
8364 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8365 | * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
|
---|
8366 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8367 | * @param uValue The value to push to the guest stack.
|
---|
8368 | */
|
---|
8369 | static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
|
---|
8370 | {
|
---|
8371 | /*
|
---|
8372 | * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
|
---|
8373 | * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
|
---|
8374 | * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
|
---|
8375 | */
|
---|
8376 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
8377 | if (pCtx->sp == 1)
|
---|
8378 | return VINF_EM_RESET;
|
---|
8379 | pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
|
---|
8380 | int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
|
---|
8381 | AssertRC(rc);
|
---|
8382 | return rc;
|
---|
8383 | }
|
---|
8384 |
|
---|
8385 |
|
---|
8386 | /**
|
---|
8387 | * Injects an event into the guest upon VM-entry by updating the relevant fields
|
---|
8388 | * in the VM-entry area in the VMCS.
|
---|
8389 | *
|
---|
8390 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8391 | * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
|
---|
8392 | * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
|
---|
8393 | *
|
---|
8394 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8395 | * @param pVmxTransient The VMX-transient structure.
|
---|
8396 | * @param pEvent The event being injected.
|
---|
8397 | * @param pfIntrState Pointer to the VT-x guest-interruptibility-state.
|
---|
8398 | * This will be updated if necessary. This cannot not
|
---|
8399 | * be NULL.
|
---|
8400 | * @param fStepping Whether we're single-stepping guest execution and
|
---|
8401 | * should return VINF_EM_DBG_STEPPED if the event is
|
---|
8402 | * injected directly (registers modified by us, not by
|
---|
8403 | * hardware on VM-entry).
|
---|
8404 | */
|
---|
8405 | static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCHMEVENT pEvent, bool fStepping,
|
---|
8406 | uint32_t *pfIntrState)
|
---|
8407 | {
|
---|
8408 | /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
|
---|
8409 | AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
|
---|
8410 | Assert(pfIntrState);
|
---|
8411 |
|
---|
8412 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
8413 | uint32_t u32IntInfo = pEvent->u64IntInfo;
|
---|
8414 | uint32_t const u32ErrCode = pEvent->u32ErrCode;
|
---|
8415 | uint32_t const cbInstr = pEvent->cbInstr;
|
---|
8416 | RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
|
---|
8417 | uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
|
---|
8418 | uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
|
---|
8419 |
|
---|
8420 | #ifdef VBOX_STRICT
|
---|
8421 | /*
|
---|
8422 | * Validate the error-code-valid bit for hardware exceptions.
|
---|
8423 | * No error codes for exceptions in real-mode.
|
---|
8424 | *
|
---|
8425 | * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
|
---|
8426 | */
|
---|
8427 | if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
|
---|
8428 | && !CPUMIsGuestInRealModeEx(pCtx))
|
---|
8429 | {
|
---|
8430 | switch (uVector)
|
---|
8431 | {
|
---|
8432 | case X86_XCPT_PF:
|
---|
8433 | case X86_XCPT_DF:
|
---|
8434 | case X86_XCPT_TS:
|
---|
8435 | case X86_XCPT_NP:
|
---|
8436 | case X86_XCPT_SS:
|
---|
8437 | case X86_XCPT_GP:
|
---|
8438 | case X86_XCPT_AC:
|
---|
8439 | AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
|
---|
8440 | ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
|
---|
8441 | RT_FALL_THRU();
|
---|
8442 | default:
|
---|
8443 | break;
|
---|
8444 | }
|
---|
8445 | }
|
---|
8446 |
|
---|
8447 | /* Cannot inject an NMI when block-by-MOV SS is in effect. */
|
---|
8448 | Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
|
---|
8449 | || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
|
---|
8450 | #endif
|
---|
8451 |
|
---|
8452 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
|
---|
8453 |
|
---|
8454 | /*
|
---|
8455 | * Hardware interrupts & exceptions cannot be delivered through the software interrupt
|
---|
8456 | * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
|
---|
8457 | * interrupt handler in the (real-mode) guest.
|
---|
8458 | *
|
---|
8459 | * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
|
---|
8460 | * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
|
---|
8461 | */
|
---|
8462 | if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
|
---|
8463 | {
|
---|
8464 | if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
|
---|
8465 | {
|
---|
8466 | /*
|
---|
8467 | * For CPUs with unrestricted guest execution enabled and with the guest
|
---|
8468 | * in real-mode, we must not set the deliver-error-code bit.
|
---|
8469 | *
|
---|
8470 | * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
|
---|
8471 | */
|
---|
8472 | u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
|
---|
8473 | }
|
---|
8474 | else
|
---|
8475 | {
|
---|
8476 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8477 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
8478 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
8479 | Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
|
---|
8480 |
|
---|
8481 | /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
|
---|
8482 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
8483 | int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
|
---|
8484 | | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
|
---|
8485 | AssertRCReturn(rc2, rc2);
|
---|
8486 |
|
---|
8487 | /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
|
---|
8488 | size_t const cbIdtEntry = sizeof(X86IDTR16);
|
---|
8489 | if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
|
---|
8490 | {
|
---|
8491 | /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
|
---|
8492 | if (uVector == X86_XCPT_DF)
|
---|
8493 | return VINF_EM_RESET;
|
---|
8494 |
|
---|
8495 | /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
|
---|
8496 | No error codes for exceptions in real-mode. */
|
---|
8497 | if (uVector == X86_XCPT_GP)
|
---|
8498 | {
|
---|
8499 | uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
|
---|
8500 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
|
---|
8501 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
8502 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
8503 | HMEVENT EventXcptDf;
|
---|
8504 | RT_ZERO(EventXcptDf);
|
---|
8505 | EventXcptDf.u64IntInfo = uXcptDfInfo;
|
---|
8506 | return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptDf, fStepping, pfIntrState);
|
---|
8507 | }
|
---|
8508 |
|
---|
8509 | /*
|
---|
8510 | * If we're injecting an event with no valid IDT entry, inject a #GP.
|
---|
8511 | * No error codes for exceptions in real-mode.
|
---|
8512 | *
|
---|
8513 | * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
|
---|
8514 | */
|
---|
8515 | uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
|
---|
8516 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
|
---|
8517 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
8518 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
8519 | HMEVENT EventXcptGp;
|
---|
8520 | RT_ZERO(EventXcptGp);
|
---|
8521 | EventXcptGp.u64IntInfo = uXcptGpInfo;
|
---|
8522 | return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptGp, fStepping, pfIntrState);
|
---|
8523 | }
|
---|
8524 |
|
---|
8525 | /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
|
---|
8526 | uint16_t uGuestIp = pCtx->ip;
|
---|
8527 | if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
|
---|
8528 | {
|
---|
8529 | Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
|
---|
8530 | /* #BP and #OF are both benign traps, we need to resume the next instruction. */
|
---|
8531 | uGuestIp = pCtx->ip + (uint16_t)cbInstr;
|
---|
8532 | }
|
---|
8533 | else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
|
---|
8534 | uGuestIp = pCtx->ip + (uint16_t)cbInstr;
|
---|
8535 |
|
---|
8536 | /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
|
---|
8537 | X86IDTR16 IdtEntry;
|
---|
8538 | RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
|
---|
8539 | rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
|
---|
8540 | AssertRCReturn(rc2, rc2);
|
---|
8541 |
|
---|
8542 | /* Construct the stack frame for the interrupt/exception handler. */
|
---|
8543 | VBOXSTRICTRC rcStrict;
|
---|
8544 | rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
|
---|
8545 | if (rcStrict == VINF_SUCCESS)
|
---|
8546 | {
|
---|
8547 | rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
|
---|
8548 | if (rcStrict == VINF_SUCCESS)
|
---|
8549 | rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
|
---|
8550 | }
|
---|
8551 |
|
---|
8552 | /* Clear the required eflag bits and jump to the interrupt/exception handler. */
|
---|
8553 | if (rcStrict == VINF_SUCCESS)
|
---|
8554 | {
|
---|
8555 | pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
|
---|
8556 | pCtx->rip = IdtEntry.offSel;
|
---|
8557 | pCtx->cs.Sel = IdtEntry.uSel;
|
---|
8558 | pCtx->cs.ValidSel = IdtEntry.uSel;
|
---|
8559 | pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
|
---|
8560 | if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
|
---|
8561 | && uVector == X86_XCPT_PF)
|
---|
8562 | pCtx->cr2 = GCPtrFault;
|
---|
8563 |
|
---|
8564 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
|
---|
8565 | | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
|
---|
8566 | | HM_CHANGED_GUEST_RSP);
|
---|
8567 |
|
---|
8568 | /*
|
---|
8569 | * If we delivered a hardware exception (other than an NMI) and if there was
|
---|
8570 | * block-by-STI in effect, we should clear it.
|
---|
8571 | */
|
---|
8572 | if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
8573 | {
|
---|
8574 | Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
|
---|
8575 | && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
|
---|
8576 | Log4Func(("Clearing inhibition due to STI\n"));
|
---|
8577 | *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
|
---|
8578 | }
|
---|
8579 |
|
---|
8580 | Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
|
---|
8581 | u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
|
---|
8582 |
|
---|
8583 | /*
|
---|
8584 | * The event has been truly dispatched to the guest. Mark it as no longer pending so
|
---|
8585 | * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
|
---|
8586 | */
|
---|
8587 | pVCpu->hm.s.Event.fPending = false;
|
---|
8588 |
|
---|
8589 | /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
|
---|
8590 | if (fStepping)
|
---|
8591 | rcStrict = VINF_EM_DBG_STEPPED;
|
---|
8592 | }
|
---|
8593 | AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
|
---|
8594 | ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8595 | return rcStrict;
|
---|
8596 | }
|
---|
8597 | }
|
---|
8598 |
|
---|
8599 | /*
|
---|
8600 | * Validate.
|
---|
8601 | */
|
---|
8602 | Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
|
---|
8603 | Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
|
---|
8604 |
|
---|
8605 | /*
|
---|
8606 | * Inject the event into the VMCS.
|
---|
8607 | */
|
---|
8608 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
|
---|
8609 | if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
|
---|
8610 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
|
---|
8611 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
|
---|
8612 | AssertRCReturn(rc, rc);
|
---|
8613 |
|
---|
8614 | /*
|
---|
8615 | * Update guest CR2 if this is a page-fault.
|
---|
8616 | */
|
---|
8617 | if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
|
---|
8618 | && uVector == X86_XCPT_PF)
|
---|
8619 | pCtx->cr2 = GCPtrFault;
|
---|
8620 |
|
---|
8621 | Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
|
---|
8622 | return VINF_SUCCESS;
|
---|
8623 | }
|
---|
8624 |
|
---|
8625 |
|
---|
8626 | /**
|
---|
8627 | * Evaluates the event to be delivered to the guest and sets it as the pending
|
---|
8628 | * event.
|
---|
8629 | *
|
---|
8630 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8631 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8632 | * @param pVmxTransient The VMX-transient structure.
|
---|
8633 | * @param pfIntrState Where to store the VT-x guest-interruptibility state.
|
---|
8634 | */
|
---|
8635 | static VBOXSTRICTRC hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t *pfIntrState)
|
---|
8636 | {
|
---|
8637 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
8638 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
8639 |
|
---|
8640 | /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
|
---|
8641 | uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu, pVmcsInfo);
|
---|
8642 | bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
|
---|
8643 | bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
|
---|
8644 | bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
|
---|
8645 |
|
---|
8646 | Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
|
---|
8647 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
|
---|
8648 | Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
|
---|
8649 | Assert(!TRPMHasTrap(pVCpu));
|
---|
8650 | Assert(pfIntrState);
|
---|
8651 |
|
---|
8652 | *pfIntrState = fIntrState;
|
---|
8653 |
|
---|
8654 | /*
|
---|
8655 | * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
|
---|
8656 | * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
|
---|
8657 | */
|
---|
8658 | /** @todo SMI. SMIs take priority over NMIs. */
|
---|
8659 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
|
---|
8660 | {
|
---|
8661 | /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
|
---|
8662 | if ( !pVCpu->hm.s.Event.fPending
|
---|
8663 | && !fBlockNmi
|
---|
8664 | && !fBlockSti
|
---|
8665 | && !fBlockMovSS)
|
---|
8666 | {
|
---|
8667 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
8668 | if ( pVmxTransient->fIsNestedGuest
|
---|
8669 | && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_NMI_EXIT))
|
---|
8670 | return IEMExecVmxVmexitNmi(pVCpu);
|
---|
8671 | #endif
|
---|
8672 | hmR0VmxSetPendingXcptNmi(pVCpu);
|
---|
8673 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
8674 | Log4Func(("Pending NMI\n"));
|
---|
8675 | }
|
---|
8676 | else
|
---|
8677 | hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
8678 | }
|
---|
8679 | /*
|
---|
8680 | * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
|
---|
8681 | * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
|
---|
8682 | */
|
---|
8683 | else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
|
---|
8684 | && !pVCpu->hm.s.fSingleInstruction)
|
---|
8685 | {
|
---|
8686 | Assert(!DBGFIsStepping(pVCpu));
|
---|
8687 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
|
---|
8688 | AssertRCReturn(rc, rc);
|
---|
8689 | bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
|
---|
8690 | if ( !pVCpu->hm.s.Event.fPending
|
---|
8691 | && !fBlockInt
|
---|
8692 | && !fBlockSti
|
---|
8693 | && !fBlockMovSS)
|
---|
8694 | {
|
---|
8695 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
8696 | if ( pVmxTransient->fIsNestedGuest
|
---|
8697 | && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
|
---|
8698 | {
|
---|
8699 | VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0/* uVector */, true /* fIntPending */);
|
---|
8700 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
8701 | return rcStrict;
|
---|
8702 | }
|
---|
8703 | #endif
|
---|
8704 | uint8_t u8Interrupt;
|
---|
8705 | rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
8706 | if (RT_SUCCESS(rc))
|
---|
8707 | {
|
---|
8708 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
8709 | if ( pVmxTransient->fIsNestedGuest
|
---|
8710 | && CPUMIsGuestVmxPinCtlsSet(pVCpu, pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
|
---|
8711 | && CPUMIsGuestVmxExitCtlsSet(pVCpu, pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
|
---|
8712 | {
|
---|
8713 | VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
|
---|
8714 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
8715 | return rcStrict;
|
---|
8716 | }
|
---|
8717 | #endif
|
---|
8718 | hmR0VmxSetPendingExtInt(pVCpu, u8Interrupt);
|
---|
8719 | Log4Func(("Pending external interrupt vector %#x\n", u8Interrupt));
|
---|
8720 | }
|
---|
8721 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
8722 | {
|
---|
8723 | if ( !pVmxTransient->fIsNestedGuest
|
---|
8724 | && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
|
---|
8725 | hmR0VmxApicSetTprThreshold(pVCpu, pVmcsInfo, u8Interrupt >> 4);
|
---|
8726 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
|
---|
8727 |
|
---|
8728 | /*
|
---|
8729 | * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
|
---|
8730 | * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
|
---|
8731 | * need to re-set this force-flag here.
|
---|
8732 | */
|
---|
8733 | }
|
---|
8734 | else
|
---|
8735 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
8736 | }
|
---|
8737 | else
|
---|
8738 | hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
8739 | }
|
---|
8740 |
|
---|
8741 | return VINF_SUCCESS;
|
---|
8742 | }
|
---|
8743 |
|
---|
8744 |
|
---|
8745 | /**
|
---|
8746 | * Injects any pending events into the guest if the guest is in a state to
|
---|
8747 | * receive them.
|
---|
8748 | *
|
---|
8749 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
8750 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8751 | * @param pVmxTransient The VMX-transient structure.
|
---|
8752 | * @param fIntrState The VT-x guest-interruptibility state.
|
---|
8753 | * @param fStepping Whether we are single-stepping the guest using the
|
---|
8754 | * hypervisor debugger and should return
|
---|
8755 | * VINF_EM_DBG_STEPPED if the event was dispatched
|
---|
8756 | * directly.
|
---|
8757 | */
|
---|
8758 | static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t fIntrState, bool fStepping)
|
---|
8759 | {
|
---|
8760 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
8761 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
8762 |
|
---|
8763 | bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
|
---|
8764 | bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
|
---|
8765 |
|
---|
8766 | Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
|
---|
8767 | Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
|
---|
8768 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
|
---|
8769 | Assert(!TRPMHasTrap(pVCpu));
|
---|
8770 |
|
---|
8771 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
8772 | if (pVCpu->hm.s.Event.fPending)
|
---|
8773 | {
|
---|
8774 | /*
|
---|
8775 | * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
|
---|
8776 | * pending even while injecting an event and in this case, we want a VM-exit as soon as
|
---|
8777 | * the guest is ready for the next interrupt, see @bugref{6208#c45}.
|
---|
8778 | *
|
---|
8779 | * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
|
---|
8780 | */
|
---|
8781 | uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
|
---|
8782 | #ifdef VBOX_STRICT
|
---|
8783 | if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
|
---|
8784 | {
|
---|
8785 | bool const fBlockInt = !(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
|
---|
8786 | Assert(!fBlockInt);
|
---|
8787 | Assert(!fBlockSti);
|
---|
8788 | Assert(!fBlockMovSS);
|
---|
8789 | }
|
---|
8790 | else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
|
---|
8791 | {
|
---|
8792 | bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
|
---|
8793 | Assert(!fBlockSti);
|
---|
8794 | Assert(!fBlockMovSS);
|
---|
8795 | Assert(!fBlockNmi);
|
---|
8796 | }
|
---|
8797 | #endif
|
---|
8798 | Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
|
---|
8799 | uIntType));
|
---|
8800 |
|
---|
8801 | /*
|
---|
8802 | * Inject the event and get any changes to the guest-interruptibility state.
|
---|
8803 | *
|
---|
8804 | * The guest-interruptibility state may need to be updated if we inject the event
|
---|
8805 | * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
|
---|
8806 | */
|
---|
8807 | rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &pVCpu->hm.s.Event, fStepping, &fIntrState);
|
---|
8808 | AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
|
---|
8809 |
|
---|
8810 | if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
|
---|
8811 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
|
---|
8812 | else
|
---|
8813 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
|
---|
8814 | }
|
---|
8815 |
|
---|
8816 | /*
|
---|
8817 | * Update the guest-interruptibility state.
|
---|
8818 | *
|
---|
8819 | * This is required for the real-on-v86 software interrupt injection case above, as well as
|
---|
8820 | * updates to the guest state from ring-3 or IEM/REM.
|
---|
8821 | */
|
---|
8822 | int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
|
---|
8823 | AssertRCReturn(rc, rc);
|
---|
8824 |
|
---|
8825 | /*
|
---|
8826 | * There's no need to clear the VM-entry interruption-information field here if we're not
|
---|
8827 | * injecting anything. VT-x clears the valid bit on every VM-exit.
|
---|
8828 | *
|
---|
8829 | * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
|
---|
8830 | */
|
---|
8831 |
|
---|
8832 | Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
|
---|
8833 | NOREF(fBlockMovSS); NOREF(fBlockSti);
|
---|
8834 | return rcStrict;
|
---|
8835 | }
|
---|
8836 |
|
---|
8837 |
|
---|
8838 | /**
|
---|
8839 | * Enters the VT-x session.
|
---|
8840 | *
|
---|
8841 | * @returns VBox status code.
|
---|
8842 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8843 | */
|
---|
8844 | VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu)
|
---|
8845 | {
|
---|
8846 | AssertPtr(pVCpu);
|
---|
8847 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
|
---|
8848 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8849 |
|
---|
8850 | LogFlowFunc(("pVCpu=%p\n", pVCpu));
|
---|
8851 | Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
|
---|
8852 | == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
|
---|
8853 |
|
---|
8854 | #ifdef VBOX_STRICT
|
---|
8855 | /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
|
---|
8856 | RTCCUINTREG uHostCR4 = ASMGetCR4();
|
---|
8857 | if (!(uHostCR4 & X86_CR4_VMXE))
|
---|
8858 | {
|
---|
8859 | LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
|
---|
8860 | return VERR_VMX_X86_CR4_VMXE_CLEARED;
|
---|
8861 | }
|
---|
8862 | #endif
|
---|
8863 |
|
---|
8864 | /*
|
---|
8865 | * Load the appropriate VMCS as the current and active one.
|
---|
8866 | */
|
---|
8867 | PVMXVMCSINFO pVmcsInfo;
|
---|
8868 | bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
|
---|
8869 | if (!fInNestedGuestMode)
|
---|
8870 | pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
|
---|
8871 | else
|
---|
8872 | pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
|
---|
8873 | int rc = hmR0VmxLoadVmcs(pVmcsInfo);
|
---|
8874 | if (RT_SUCCESS(rc))
|
---|
8875 | {
|
---|
8876 | pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
|
---|
8877 | pVCpu->hm.s.fLeaveDone = false;
|
---|
8878 | Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
|
---|
8879 |
|
---|
8880 | /*
|
---|
8881 | * Do the EMT scheduled L1D flush here if needed.
|
---|
8882 | */
|
---|
8883 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
|
---|
8884 | ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
|
---|
8885 | }
|
---|
8886 | return rc;
|
---|
8887 | }
|
---|
8888 |
|
---|
8889 |
|
---|
8890 | /**
|
---|
8891 | * The thread-context callback (only on platforms which support it).
|
---|
8892 | *
|
---|
8893 | * @param enmEvent The thread-context event.
|
---|
8894 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8895 | * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
|
---|
8896 | * @thread EMT(pVCpu)
|
---|
8897 | */
|
---|
8898 | VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
|
---|
8899 | {
|
---|
8900 | NOREF(fGlobalInit);
|
---|
8901 |
|
---|
8902 | switch (enmEvent)
|
---|
8903 | {
|
---|
8904 | case RTTHREADCTXEVENT_OUT:
|
---|
8905 | {
|
---|
8906 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8907 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
8908 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
8909 |
|
---|
8910 | /* No longjmps (logger flushes, locks) in this fragile context. */
|
---|
8911 | VMMRZCallRing3Disable(pVCpu);
|
---|
8912 | Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
|
---|
8913 |
|
---|
8914 | /* Restore host-state (FPU, debug etc.) */
|
---|
8915 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
8916 | {
|
---|
8917 | /*
|
---|
8918 | * Do -not- import the guest-state here as we might already be in the middle of importing
|
---|
8919 | * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
|
---|
8920 | */
|
---|
8921 | hmR0VmxLeave(pVCpu, false /* fImportState */);
|
---|
8922 | pVCpu->hm.s.fLeaveDone = true;
|
---|
8923 | }
|
---|
8924 |
|
---|
8925 | /* Leave HM context, takes care of local init (term). */
|
---|
8926 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
8927 | AssertRC(rc);
|
---|
8928 |
|
---|
8929 | /* Restore longjmp state. */
|
---|
8930 | VMMRZCallRing3Enable(pVCpu);
|
---|
8931 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
|
---|
8932 | break;
|
---|
8933 | }
|
---|
8934 |
|
---|
8935 | case RTTHREADCTXEVENT_IN:
|
---|
8936 | {
|
---|
8937 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8938 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
8939 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
8940 |
|
---|
8941 | /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
|
---|
8942 | VMMRZCallRing3Disable(pVCpu);
|
---|
8943 | Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
|
---|
8944 |
|
---|
8945 | /* Initialize the bare minimum state required for HM. This takes care of
|
---|
8946 | initializing VT-x if necessary (onlined CPUs, local init etc.) */
|
---|
8947 | int rc = hmR0EnterCpu(pVCpu);
|
---|
8948 | AssertRC(rc);
|
---|
8949 | Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
|
---|
8950 | == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
|
---|
8951 |
|
---|
8952 | /* Load the active VMCS as the current one. */
|
---|
8953 | PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
8954 | rc = hmR0VmxLoadVmcs(pVmcsInfo);
|
---|
8955 | AssertRC(rc);
|
---|
8956 | Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
|
---|
8957 | pVCpu->hm.s.fLeaveDone = false;
|
---|
8958 |
|
---|
8959 | /* Do the EMT scheduled L1D flush if needed. */
|
---|
8960 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
|
---|
8961 | ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
|
---|
8962 |
|
---|
8963 | /* Restore longjmp state. */
|
---|
8964 | VMMRZCallRing3Enable(pVCpu);
|
---|
8965 | break;
|
---|
8966 | }
|
---|
8967 |
|
---|
8968 | default:
|
---|
8969 | break;
|
---|
8970 | }
|
---|
8971 | }
|
---|
8972 |
|
---|
8973 |
|
---|
8974 | /**
|
---|
8975 | * Exports the host state into the VMCS host-state area.
|
---|
8976 | * Sets up the VM-exit MSR-load area.
|
---|
8977 | *
|
---|
8978 | * The CPU state will be loaded from these fields on every successful VM-exit.
|
---|
8979 | *
|
---|
8980 | * @returns VBox status code.
|
---|
8981 | * @param pVCpu The cross context virtual CPU structure.
|
---|
8982 | *
|
---|
8983 | * @remarks No-long-jump zone!!!
|
---|
8984 | */
|
---|
8985 | static int hmR0VmxExportHostState(PVMCPU pVCpu)
|
---|
8986 | {
|
---|
8987 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
8988 |
|
---|
8989 | int rc = VINF_SUCCESS;
|
---|
8990 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
|
---|
8991 | {
|
---|
8992 | rc = hmR0VmxExportHostControlRegs();
|
---|
8993 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
8994 |
|
---|
8995 | rc = hmR0VmxExportHostSegmentRegs(pVCpu);
|
---|
8996 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
8997 |
|
---|
8998 | rc = hmR0VmxExportHostMsrs(pVCpu);
|
---|
8999 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
9000 |
|
---|
9001 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
|
---|
9002 | }
|
---|
9003 | return rc;
|
---|
9004 | }
|
---|
9005 |
|
---|
9006 |
|
---|
9007 | /**
|
---|
9008 | * Saves the host state in the VMCS host-state.
|
---|
9009 | *
|
---|
9010 | * @returns VBox status code.
|
---|
9011 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9012 | *
|
---|
9013 | * @remarks No-long-jump zone!!!
|
---|
9014 | */
|
---|
9015 | VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
|
---|
9016 | {
|
---|
9017 | AssertPtr(pVCpu);
|
---|
9018 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
9019 |
|
---|
9020 | /*
|
---|
9021 | * Export the host state here while entering HM context.
|
---|
9022 | * When thread-context hooks are used, we might get preempted and have to re-save the host
|
---|
9023 | * state but most of the time we won't be, so do it here before we disable interrupts.
|
---|
9024 | */
|
---|
9025 | return hmR0VmxExportHostState(pVCpu);
|
---|
9026 | }
|
---|
9027 |
|
---|
9028 |
|
---|
9029 | /**
|
---|
9030 | * Exports the guest state into the VMCS guest-state area.
|
---|
9031 | *
|
---|
9032 | * The will typically be done before VM-entry when the guest-CPU state and the
|
---|
9033 | * VMCS state may potentially be out of sync.
|
---|
9034 | *
|
---|
9035 | * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
|
---|
9036 | * VM-entry controls.
|
---|
9037 | * Sets up the appropriate VMX non-root function to execute guest code based on
|
---|
9038 | * the guest CPU mode.
|
---|
9039 | *
|
---|
9040 | * @returns VBox strict status code.
|
---|
9041 | * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
|
---|
9042 | * without unrestricted guest execution and the VMMDev is not presently
|
---|
9043 | * mapped (e.g. EFI32).
|
---|
9044 | *
|
---|
9045 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9046 | * @param pVmxTransient The VMX-transient structure.
|
---|
9047 | *
|
---|
9048 | * @remarks No-long-jump zone!!!
|
---|
9049 | */
|
---|
9050 | static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9051 | {
|
---|
9052 | AssertPtr(pVCpu);
|
---|
9053 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
9054 | LogFlowFunc(("pVCpu=%p\n", pVCpu));
|
---|
9055 |
|
---|
9056 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
|
---|
9057 |
|
---|
9058 | /*
|
---|
9059 | * Determine real-on-v86 mode.
|
---|
9060 | * Used when the guest is in real-mode and unrestricted guest execution is not used.
|
---|
9061 | */
|
---|
9062 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
9063 | if ( pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
|
---|
9064 | || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
|
---|
9065 | pVmcsInfo->RealMode. fRealOnV86Active = false;
|
---|
9066 | else
|
---|
9067 | {
|
---|
9068 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
9069 | pVmcsInfo->RealMode.fRealOnV86Active = true;
|
---|
9070 | }
|
---|
9071 |
|
---|
9072 | /*
|
---|
9073 | * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
|
---|
9074 | * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
|
---|
9075 | */
|
---|
9076 | /** @todo r=ramshankar: Move hmR0VmxSelectVMRunHandler inside
|
---|
9077 | * hmR0VmxExportGuestEntryExitCtls and do it conditionally. There shouldn't
|
---|
9078 | * be a need to evaluate this everytime since I'm pretty sure we intercept
|
---|
9079 | * all guest paging mode changes. */
|
---|
9080 | int rc = hmR0VmxSelectVMRunHandler(pVCpu, pVmxTransient);
|
---|
9081 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
9082 |
|
---|
9083 | rc = hmR0VmxExportGuestEntryExitCtls(pVCpu, pVmxTransient);
|
---|
9084 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
9085 |
|
---|
9086 | rc = hmR0VmxExportGuestCR0(pVCpu, pVmxTransient);
|
---|
9087 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
9088 |
|
---|
9089 | VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu, pVmxTransient);
|
---|
9090 | if (rcStrict == VINF_SUCCESS)
|
---|
9091 | { /* likely */ }
|
---|
9092 | else
|
---|
9093 | {
|
---|
9094 | Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
|
---|
9095 | return rcStrict;
|
---|
9096 | }
|
---|
9097 |
|
---|
9098 | rc = hmR0VmxExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
|
---|
9099 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
9100 |
|
---|
9101 | rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
|
---|
9102 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
9103 |
|
---|
9104 | rc = hmR0VmxExportGuestApicTpr(pVCpu, pVmxTransient);
|
---|
9105 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
9106 |
|
---|
9107 | rc = hmR0VmxExportGuestXcptIntercepts(pVCpu, pVmxTransient);
|
---|
9108 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
9109 |
|
---|
9110 | rc = hmR0VmxExportGuestRip(pVCpu);
|
---|
9111 | rc |= hmR0VmxExportGuestRsp(pVCpu);
|
---|
9112 | rc |= hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
|
---|
9113 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
9114 |
|
---|
9115 | /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
|
---|
9116 | ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
|
---|
9117 | | HM_CHANGED_GUEST_CR2
|
---|
9118 | | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
|
---|
9119 | | HM_CHANGED_GUEST_X87
|
---|
9120 | | HM_CHANGED_GUEST_SSE_AVX
|
---|
9121 | | HM_CHANGED_GUEST_OTHER_XSAVE
|
---|
9122 | | HM_CHANGED_GUEST_XCRx
|
---|
9123 | | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
|
---|
9124 | | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
|
---|
9125 | | HM_CHANGED_GUEST_TSC_AUX
|
---|
9126 | | HM_CHANGED_GUEST_OTHER_MSRS
|
---|
9127 | | HM_CHANGED_GUEST_HWVIRT /* More accurate PLE handling someday? */
|
---|
9128 | | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
|
---|
9129 |
|
---|
9130 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
|
---|
9131 | return rc;
|
---|
9132 | }
|
---|
9133 |
|
---|
9134 |
|
---|
9135 | /**
|
---|
9136 | * Exports the state shared between the host and guest into the VMCS.
|
---|
9137 | *
|
---|
9138 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9139 | * @param pVmxTransient The VMX-transient structure.
|
---|
9140 | *
|
---|
9141 | * @remarks No-long-jump zone!!!
|
---|
9142 | */
|
---|
9143 | static void hmR0VmxExportSharedState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9144 | {
|
---|
9145 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
9146 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
9147 |
|
---|
9148 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
|
---|
9149 | {
|
---|
9150 | int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
|
---|
9151 | AssertRC(rc);
|
---|
9152 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
|
---|
9153 |
|
---|
9154 | /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
|
---|
9155 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
|
---|
9156 | {
|
---|
9157 | rc = hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
|
---|
9158 | AssertRC(rc);
|
---|
9159 | }
|
---|
9160 | }
|
---|
9161 |
|
---|
9162 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
|
---|
9163 | {
|
---|
9164 | hmR0VmxLazyLoadGuestMsrs(pVCpu);
|
---|
9165 | pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
|
---|
9166 | }
|
---|
9167 |
|
---|
9168 | AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
|
---|
9169 | ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
|
---|
9170 | }
|
---|
9171 |
|
---|
9172 |
|
---|
9173 | /**
|
---|
9174 | * Worker for loading the guest-state bits in the inner VT-x execution loop.
|
---|
9175 | *
|
---|
9176 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
9177 | * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
|
---|
9178 | * without unrestricted guest execution and the VMMDev is not presently
|
---|
9179 | * mapped (e.g. EFI32).
|
---|
9180 | *
|
---|
9181 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9182 | * @param pVmxTransient The VMX-transient structure.
|
---|
9183 | *
|
---|
9184 | * @remarks No-long-jump zone!!!
|
---|
9185 | */
|
---|
9186 | static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9187 | {
|
---|
9188 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
9189 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
9190 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
9191 |
|
---|
9192 | #ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
|
---|
9193 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
9194 | #endif
|
---|
9195 |
|
---|
9196 | /*
|
---|
9197 | * For many exits it's only RIP that changes and hence try to export it first
|
---|
9198 | * without going through a lot of change flag checks.
|
---|
9199 | */
|
---|
9200 | VBOXSTRICTRC rcStrict;
|
---|
9201 | uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
|
---|
9202 | RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
|
---|
9203 | if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
|
---|
9204 | {
|
---|
9205 | rcStrict = hmR0VmxExportGuestRip(pVCpu);
|
---|
9206 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9207 | { /* likely */}
|
---|
9208 | else
|
---|
9209 | AssertMsgFailedReturn(("Failed to export guest RIP! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
|
---|
9210 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
|
---|
9211 | }
|
---|
9212 | else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
|
---|
9213 | {
|
---|
9214 | rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
|
---|
9215 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9216 | { /* likely */}
|
---|
9217 | else
|
---|
9218 | {
|
---|
9219 | AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
|
---|
9220 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
9221 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
9222 | return rcStrict;
|
---|
9223 | }
|
---|
9224 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
|
---|
9225 | }
|
---|
9226 | else
|
---|
9227 | rcStrict = VINF_SUCCESS;
|
---|
9228 |
|
---|
9229 | #ifdef VBOX_STRICT
|
---|
9230 | /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
|
---|
9231 | fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
|
---|
9232 | RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
|
---|
9233 | AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
|
---|
9234 | ("fCtxChanged=%#RX64\n", fCtxChanged));
|
---|
9235 | #endif
|
---|
9236 | return rcStrict;
|
---|
9237 | }
|
---|
9238 |
|
---|
9239 |
|
---|
9240 | /**
|
---|
9241 | * Tries to determine what part of the guest-state VT-x has deemed as invalid
|
---|
9242 | * and update error record fields accordingly.
|
---|
9243 | *
|
---|
9244 | * @return VMX_IGS_* return codes.
|
---|
9245 | * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
|
---|
9246 | * wrong with the guest state.
|
---|
9247 | *
|
---|
9248 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9249 | * @param pVmcsInfo The VMCS info. object.
|
---|
9250 | *
|
---|
9251 | * @remarks This function assumes our cache of the VMCS controls
|
---|
9252 | * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
|
---|
9253 | */
|
---|
9254 | static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
9255 | {
|
---|
9256 | #define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
|
---|
9257 | #define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
|
---|
9258 | uError = (err); \
|
---|
9259 | break; \
|
---|
9260 | } else do { } while (0)
|
---|
9261 |
|
---|
9262 | int rc;
|
---|
9263 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9264 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
9265 | uint32_t uError = VMX_IGS_ERROR;
|
---|
9266 | uint32_t u32Val;
|
---|
9267 | bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
|
---|
9268 |
|
---|
9269 | do
|
---|
9270 | {
|
---|
9271 | /*
|
---|
9272 | * CR0.
|
---|
9273 | */
|
---|
9274 | uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
|
---|
9275 | uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
|
---|
9276 | /* Exceptions for unrestricted guest execution for fixed CR0 bits (PE, PG).
|
---|
9277 | See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
|
---|
9278 | if (fUnrestrictedGuest)
|
---|
9279 | fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
|
---|
9280 |
|
---|
9281 | uint32_t u32GuestCr0;
|
---|
9282 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
|
---|
9283 | AssertRCBreak(rc);
|
---|
9284 | HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
|
---|
9285 | HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
|
---|
9286 | if ( !fUnrestrictedGuest
|
---|
9287 | && (u32GuestCr0 & X86_CR0_PG)
|
---|
9288 | && !(u32GuestCr0 & X86_CR0_PE))
|
---|
9289 | {
|
---|
9290 | HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
|
---|
9291 | }
|
---|
9292 |
|
---|
9293 | /*
|
---|
9294 | * CR4.
|
---|
9295 | */
|
---|
9296 | uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
|
---|
9297 | uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
|
---|
9298 |
|
---|
9299 | uint32_t u32GuestCr4;
|
---|
9300 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
|
---|
9301 | AssertRCBreak(rc);
|
---|
9302 | HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
|
---|
9303 | HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
|
---|
9304 |
|
---|
9305 | /*
|
---|
9306 | * IA32_DEBUGCTL MSR.
|
---|
9307 | */
|
---|
9308 | uint64_t u64Val;
|
---|
9309 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
|
---|
9310 | AssertRCBreak(rc);
|
---|
9311 | if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
9312 | && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
|
---|
9313 | {
|
---|
9314 | HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
|
---|
9315 | }
|
---|
9316 | uint64_t u64DebugCtlMsr = u64Val;
|
---|
9317 |
|
---|
9318 | #ifdef VBOX_STRICT
|
---|
9319 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
|
---|
9320 | AssertRCBreak(rc);
|
---|
9321 | Assert(u32Val == pVmcsInfo->u32EntryCtls);
|
---|
9322 | #endif
|
---|
9323 | bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
9324 |
|
---|
9325 | /*
|
---|
9326 | * RIP and RFLAGS.
|
---|
9327 | */
|
---|
9328 | uint32_t u32Eflags;
|
---|
9329 | #if HC_ARCH_BITS == 64
|
---|
9330 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
|
---|
9331 | AssertRCBreak(rc);
|
---|
9332 | /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
|
---|
9333 | if ( !fLongModeGuest
|
---|
9334 | || !pCtx->cs.Attr.n.u1Long)
|
---|
9335 | {
|
---|
9336 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
|
---|
9337 | }
|
---|
9338 | /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
|
---|
9339 | * must be identical if the "IA-32e mode guest" VM-entry
|
---|
9340 | * control is 1 and CS.L is 1. No check applies if the
|
---|
9341 | * CPU supports 64 linear-address bits. */
|
---|
9342 |
|
---|
9343 | /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
|
---|
9344 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
|
---|
9345 | AssertRCBreak(rc);
|
---|
9346 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
|
---|
9347 | VMX_IGS_RFLAGS_RESERVED);
|
---|
9348 | HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
|
---|
9349 | u32Eflags = u64Val;
|
---|
9350 | #else
|
---|
9351 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
|
---|
9352 | AssertRCBreak(rc);
|
---|
9353 | HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
|
---|
9354 | HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
|
---|
9355 | #endif
|
---|
9356 |
|
---|
9357 | if ( fLongModeGuest
|
---|
9358 | || ( fUnrestrictedGuest
|
---|
9359 | && !(u32GuestCr0 & X86_CR0_PE)))
|
---|
9360 | {
|
---|
9361 | HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
|
---|
9362 | }
|
---|
9363 |
|
---|
9364 | uint32_t u32EntryInfo;
|
---|
9365 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
|
---|
9366 | AssertRCBreak(rc);
|
---|
9367 | if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
|
---|
9368 | && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
|
---|
9369 | {
|
---|
9370 | HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
|
---|
9371 | }
|
---|
9372 |
|
---|
9373 | /*
|
---|
9374 | * 64-bit checks.
|
---|
9375 | */
|
---|
9376 | #if HC_ARCH_BITS == 64
|
---|
9377 | if (fLongModeGuest)
|
---|
9378 | {
|
---|
9379 | HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
|
---|
9380 | HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
|
---|
9381 | }
|
---|
9382 |
|
---|
9383 | if ( !fLongModeGuest
|
---|
9384 | && (u32GuestCr4 & X86_CR4_PCIDE))
|
---|
9385 | {
|
---|
9386 | HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
|
---|
9387 | }
|
---|
9388 |
|
---|
9389 | /** @todo CR3 field must be such that bits 63:52 and bits in the range
|
---|
9390 | * 51:32 beyond the processor's physical-address width are 0. */
|
---|
9391 |
|
---|
9392 | if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
9393 | && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
|
---|
9394 | {
|
---|
9395 | HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
|
---|
9396 | }
|
---|
9397 |
|
---|
9398 | rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
|
---|
9399 | AssertRCBreak(rc);
|
---|
9400 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
|
---|
9401 |
|
---|
9402 | rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
|
---|
9403 | AssertRCBreak(rc);
|
---|
9404 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
|
---|
9405 | #endif
|
---|
9406 |
|
---|
9407 | /*
|
---|
9408 | * PERF_GLOBAL MSR.
|
---|
9409 | */
|
---|
9410 | if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
|
---|
9411 | {
|
---|
9412 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
|
---|
9413 | AssertRCBreak(rc);
|
---|
9414 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
|
---|
9415 | VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
|
---|
9416 | }
|
---|
9417 |
|
---|
9418 | /*
|
---|
9419 | * PAT MSR.
|
---|
9420 | */
|
---|
9421 | if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
|
---|
9422 | {
|
---|
9423 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
|
---|
9424 | AssertRCBreak(rc);
|
---|
9425 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
|
---|
9426 | for (unsigned i = 0; i < 8; i++)
|
---|
9427 | {
|
---|
9428 | uint8_t u8Val = (u64Val & 0xff);
|
---|
9429 | if ( u8Val != 0 /* UC */
|
---|
9430 | && u8Val != 1 /* WC */
|
---|
9431 | && u8Val != 4 /* WT */
|
---|
9432 | && u8Val != 5 /* WP */
|
---|
9433 | && u8Val != 6 /* WB */
|
---|
9434 | && u8Val != 7 /* UC- */)
|
---|
9435 | {
|
---|
9436 | HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
|
---|
9437 | }
|
---|
9438 | u64Val >>= 8;
|
---|
9439 | }
|
---|
9440 | }
|
---|
9441 |
|
---|
9442 | /*
|
---|
9443 | * EFER MSR.
|
---|
9444 | */
|
---|
9445 | if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
|
---|
9446 | {
|
---|
9447 | Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
|
---|
9448 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
|
---|
9449 | AssertRCBreak(rc);
|
---|
9450 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
|
---|
9451 | VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
|
---|
9452 | HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
|
---|
9453 | & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
|
---|
9454 | VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
|
---|
9455 | /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
|
---|
9456 | * iemVmxVmentryCheckGuestState(). */
|
---|
9457 | HMVMX_CHECK_BREAK( fUnrestrictedGuest
|
---|
9458 | || !(u32GuestCr0 & X86_CR0_PG)
|
---|
9459 | || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
|
---|
9460 | VMX_IGS_EFER_LMA_LME_MISMATCH);
|
---|
9461 | }
|
---|
9462 |
|
---|
9463 | /*
|
---|
9464 | * Segment registers.
|
---|
9465 | */
|
---|
9466 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
9467 | || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
|
---|
9468 | if (!(u32Eflags & X86_EFL_VM))
|
---|
9469 | {
|
---|
9470 | /* CS */
|
---|
9471 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
|
---|
9472 | HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
|
---|
9473 | HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
|
---|
9474 | HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
|
---|
9475 | || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
|
---|
9476 | HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
|
---|
9477 | || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
|
---|
9478 | /* CS cannot be loaded with NULL in protected mode. */
|
---|
9479 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
|
---|
9480 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
|
---|
9481 | if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
|
---|
9482 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
|
---|
9483 | else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
|
---|
9484 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
|
---|
9485 | else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
|
---|
9486 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
|
---|
9487 | else
|
---|
9488 | HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
|
---|
9489 |
|
---|
9490 | /* SS */
|
---|
9491 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
9492 | || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
|
---|
9493 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
|
---|
9494 | if ( !(pCtx->cr0 & X86_CR0_PE)
|
---|
9495 | || pCtx->cs.Attr.n.u4Type == 3)
|
---|
9496 | {
|
---|
9497 | HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
|
---|
9498 | }
|
---|
9499 | if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
9500 | {
|
---|
9501 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
|
---|
9502 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
|
---|
9503 | HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
|
---|
9504 | HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
|
---|
9505 | HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
|
---|
9506 | || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
|
---|
9507 | HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
|
---|
9508 | || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
|
---|
9509 | }
|
---|
9510 |
|
---|
9511 | /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSReg(). */
|
---|
9512 | if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
9513 | {
|
---|
9514 | HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
|
---|
9515 | HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
|
---|
9516 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
9517 | || pCtx->ds.Attr.n.u4Type > 11
|
---|
9518 | || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
|
---|
9519 | HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
|
---|
9520 | HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
|
---|
9521 | HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
|
---|
9522 | || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
|
---|
9523 | HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
|
---|
9524 | || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
|
---|
9525 | HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
9526 | || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
|
---|
9527 | }
|
---|
9528 | if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
9529 | {
|
---|
9530 | HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
|
---|
9531 | HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
|
---|
9532 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
9533 | || pCtx->es.Attr.n.u4Type > 11
|
---|
9534 | || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
|
---|
9535 | HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
|
---|
9536 | HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
|
---|
9537 | HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
|
---|
9538 | || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
|
---|
9539 | HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
|
---|
9540 | || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
|
---|
9541 | HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
9542 | || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
|
---|
9543 | }
|
---|
9544 | if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
9545 | {
|
---|
9546 | HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
|
---|
9547 | HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
|
---|
9548 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
9549 | || pCtx->fs.Attr.n.u4Type > 11
|
---|
9550 | || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
|
---|
9551 | HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
|
---|
9552 | HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
|
---|
9553 | HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
|
---|
9554 | || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
|
---|
9555 | HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
|
---|
9556 | || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
|
---|
9557 | HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
9558 | || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
|
---|
9559 | }
|
---|
9560 | if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
9561 | {
|
---|
9562 | HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
|
---|
9563 | HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
|
---|
9564 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
9565 | || pCtx->gs.Attr.n.u4Type > 11
|
---|
9566 | || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
|
---|
9567 | HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
|
---|
9568 | HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
|
---|
9569 | HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
|
---|
9570 | || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
|
---|
9571 | HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
|
---|
9572 | || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
|
---|
9573 | HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
9574 | || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
|
---|
9575 | }
|
---|
9576 | /* 64-bit capable CPUs. */
|
---|
9577 | #if HC_ARCH_BITS == 64
|
---|
9578 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
|
---|
9579 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
|
---|
9580 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
9581 | || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
|
---|
9582 | HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
|
---|
9583 | HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
|
---|
9584 | VMX_IGS_LONGMODE_SS_BASE_INVALID);
|
---|
9585 | HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
|
---|
9586 | VMX_IGS_LONGMODE_DS_BASE_INVALID);
|
---|
9587 | HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
|
---|
9588 | VMX_IGS_LONGMODE_ES_BASE_INVALID);
|
---|
9589 | #endif
|
---|
9590 | }
|
---|
9591 | else
|
---|
9592 | {
|
---|
9593 | /* V86 mode checks. */
|
---|
9594 | uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
|
---|
9595 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
9596 | {
|
---|
9597 | u32CSAttr = 0xf3; u32SSAttr = 0xf3;
|
---|
9598 | u32DSAttr = 0xf3; u32ESAttr = 0xf3;
|
---|
9599 | u32FSAttr = 0xf3; u32GSAttr = 0xf3;
|
---|
9600 | }
|
---|
9601 | else
|
---|
9602 | {
|
---|
9603 | u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
|
---|
9604 | u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
|
---|
9605 | u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
|
---|
9606 | }
|
---|
9607 |
|
---|
9608 | /* CS */
|
---|
9609 | HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
|
---|
9610 | HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
|
---|
9611 | HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
|
---|
9612 | /* SS */
|
---|
9613 | HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
|
---|
9614 | HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
|
---|
9615 | HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
|
---|
9616 | /* DS */
|
---|
9617 | HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
|
---|
9618 | HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
|
---|
9619 | HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
|
---|
9620 | /* ES */
|
---|
9621 | HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
|
---|
9622 | HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
|
---|
9623 | HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
|
---|
9624 | /* FS */
|
---|
9625 | HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
|
---|
9626 | HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
|
---|
9627 | HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
|
---|
9628 | /* GS */
|
---|
9629 | HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
|
---|
9630 | HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
|
---|
9631 | HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
|
---|
9632 | /* 64-bit capable CPUs. */
|
---|
9633 | #if HC_ARCH_BITS == 64
|
---|
9634 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
|
---|
9635 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
|
---|
9636 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
9637 | || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
|
---|
9638 | HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
|
---|
9639 | HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
|
---|
9640 | VMX_IGS_LONGMODE_SS_BASE_INVALID);
|
---|
9641 | HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
|
---|
9642 | VMX_IGS_LONGMODE_DS_BASE_INVALID);
|
---|
9643 | HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
|
---|
9644 | VMX_IGS_LONGMODE_ES_BASE_INVALID);
|
---|
9645 | #endif
|
---|
9646 | }
|
---|
9647 |
|
---|
9648 | /*
|
---|
9649 | * TR.
|
---|
9650 | */
|
---|
9651 | HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
|
---|
9652 | /* 64-bit capable CPUs. */
|
---|
9653 | #if HC_ARCH_BITS == 64
|
---|
9654 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
|
---|
9655 | #endif
|
---|
9656 | if (fLongModeGuest)
|
---|
9657 | {
|
---|
9658 | HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
|
---|
9659 | VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
|
---|
9660 | }
|
---|
9661 | else
|
---|
9662 | {
|
---|
9663 | HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
|
---|
9664 | || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
|
---|
9665 | VMX_IGS_TR_ATTR_TYPE_INVALID);
|
---|
9666 | }
|
---|
9667 | HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
|
---|
9668 | HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
|
---|
9669 | HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
|
---|
9670 | HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
|
---|
9671 | || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
|
---|
9672 | HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
|
---|
9673 | || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
|
---|
9674 | HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
|
---|
9675 |
|
---|
9676 | /*
|
---|
9677 | * GDTR and IDTR.
|
---|
9678 | */
|
---|
9679 | #if HC_ARCH_BITS == 64
|
---|
9680 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
|
---|
9681 | AssertRCBreak(rc);
|
---|
9682 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
|
---|
9683 |
|
---|
9684 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
|
---|
9685 | AssertRCBreak(rc);
|
---|
9686 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
|
---|
9687 | #endif
|
---|
9688 |
|
---|
9689 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
|
---|
9690 | AssertRCBreak(rc);
|
---|
9691 | HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
|
---|
9692 |
|
---|
9693 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
|
---|
9694 | AssertRCBreak(rc);
|
---|
9695 | HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
|
---|
9696 |
|
---|
9697 | /*
|
---|
9698 | * Guest Non-Register State.
|
---|
9699 | */
|
---|
9700 | /* Activity State. */
|
---|
9701 | uint32_t u32ActivityState;
|
---|
9702 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
|
---|
9703 | AssertRCBreak(rc);
|
---|
9704 | HMVMX_CHECK_BREAK( !u32ActivityState
|
---|
9705 | || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
|
---|
9706 | VMX_IGS_ACTIVITY_STATE_INVALID);
|
---|
9707 | HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
|
---|
9708 | || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
|
---|
9709 | uint32_t u32IntrState;
|
---|
9710 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
|
---|
9711 | AssertRCBreak(rc);
|
---|
9712 | if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
|
---|
9713 | || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
9714 | {
|
---|
9715 | HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
|
---|
9716 | }
|
---|
9717 |
|
---|
9718 | /** @todo Activity state and injecting interrupts. Left as a todo since we
|
---|
9719 | * currently don't use activity states but ACTIVE. */
|
---|
9720 |
|
---|
9721 | HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
|
---|
9722 | || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
|
---|
9723 |
|
---|
9724 | /* Guest interruptibility-state. */
|
---|
9725 | HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
|
---|
9726 | HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
|
---|
9727 | != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
|
---|
9728 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
|
---|
9729 | HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
|
---|
9730 | || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
|
---|
9731 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
|
---|
9732 | if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
|
---|
9733 | {
|
---|
9734 | if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
|
---|
9735 | {
|
---|
9736 | HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
9737 | && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
|
---|
9738 | VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
|
---|
9739 | }
|
---|
9740 | else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
|
---|
9741 | {
|
---|
9742 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
|
---|
9743 | VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
|
---|
9744 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
|
---|
9745 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
|
---|
9746 | }
|
---|
9747 | }
|
---|
9748 | /** @todo Assumes the processor is not in SMM. */
|
---|
9749 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
|
---|
9750 | VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
|
---|
9751 | HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
|
---|
9752 | || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
|
---|
9753 | VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
|
---|
9754 | if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
9755 | && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
|
---|
9756 | && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
|
---|
9757 | {
|
---|
9758 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
|
---|
9759 | VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
|
---|
9760 | }
|
---|
9761 |
|
---|
9762 | /* Pending debug exceptions. */
|
---|
9763 | #if HC_ARCH_BITS == 64
|
---|
9764 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
|
---|
9765 | AssertRCBreak(rc);
|
---|
9766 | /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
|
---|
9767 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
|
---|
9768 | u32Val = u64Val; /* For pending debug exceptions checks below. */
|
---|
9769 | #else
|
---|
9770 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
|
---|
9771 | AssertRCBreak(rc);
|
---|
9772 | /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
|
---|
9773 | HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
|
---|
9774 | #endif
|
---|
9775 |
|
---|
9776 | if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
9777 | || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
|
---|
9778 | || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
|
---|
9779 | {
|
---|
9780 | if ( (u32Eflags & X86_EFL_TF)
|
---|
9781 | && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
|
---|
9782 | {
|
---|
9783 | /* Bit 14 is PendingDebug.BS. */
|
---|
9784 | HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
|
---|
9785 | }
|
---|
9786 | if ( !(u32Eflags & X86_EFL_TF)
|
---|
9787 | || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
|
---|
9788 | {
|
---|
9789 | /* Bit 14 is PendingDebug.BS. */
|
---|
9790 | HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
|
---|
9791 | }
|
---|
9792 | }
|
---|
9793 |
|
---|
9794 | /* VMCS link pointer. */
|
---|
9795 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
|
---|
9796 | AssertRCBreak(rc);
|
---|
9797 | if (u64Val != UINT64_C(0xffffffffffffffff))
|
---|
9798 | {
|
---|
9799 | HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
|
---|
9800 | /** @todo Bits beyond the processor's physical-address width MBZ. */
|
---|
9801 | /** @todo 32-bit located in memory referenced by value of this field (as a
|
---|
9802 | * physical address) must contain the processor's VMCS revision ID. */
|
---|
9803 | /** @todo SMM checks. */
|
---|
9804 | }
|
---|
9805 |
|
---|
9806 | /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
|
---|
9807 | * not using nested paging? */
|
---|
9808 | if ( pVM->hm.s.fNestedPaging
|
---|
9809 | && !fLongModeGuest
|
---|
9810 | && CPUMIsGuestInPAEModeEx(pCtx))
|
---|
9811 | {
|
---|
9812 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
|
---|
9813 | AssertRCBreak(rc);
|
---|
9814 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
9815 |
|
---|
9816 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
|
---|
9817 | AssertRCBreak(rc);
|
---|
9818 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
9819 |
|
---|
9820 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
|
---|
9821 | AssertRCBreak(rc);
|
---|
9822 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
9823 |
|
---|
9824 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
|
---|
9825 | AssertRCBreak(rc);
|
---|
9826 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
9827 | }
|
---|
9828 |
|
---|
9829 | /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
|
---|
9830 | if (uError == VMX_IGS_ERROR)
|
---|
9831 | uError = VMX_IGS_REASON_NOT_FOUND;
|
---|
9832 | } while (0);
|
---|
9833 |
|
---|
9834 | pVCpu->hm.s.u32HMError = uError;
|
---|
9835 | return uError;
|
---|
9836 |
|
---|
9837 | #undef HMVMX_ERROR_BREAK
|
---|
9838 | #undef HMVMX_CHECK_BREAK
|
---|
9839 | }
|
---|
9840 |
|
---|
9841 |
|
---|
9842 | /**
|
---|
9843 | * Setup the APIC-access page for virtualizing APIC access.
|
---|
9844 | *
|
---|
9845 | * This can cause a longjumps to R3 due to the acquisition of the PGM lock, hence
|
---|
9846 | * this not done as part of exporting guest state, see @bugref{8721}.
|
---|
9847 | *
|
---|
9848 | * @returns VBox status code.
|
---|
9849 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9850 | */
|
---|
9851 | static int hmR0VmxMapHCApicAccessPage(PVMCPU pVCpu)
|
---|
9852 | {
|
---|
9853 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9854 | uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
9855 |
|
---|
9856 | Assert(PDMHasApic(pVM));
|
---|
9857 | Assert(u64MsrApicBase);
|
---|
9858 |
|
---|
9859 | RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
|
---|
9860 | Log4Func(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
|
---|
9861 |
|
---|
9862 | /* Unalias any existing mapping. */
|
---|
9863 | int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
|
---|
9864 | AssertRCReturn(rc, rc);
|
---|
9865 |
|
---|
9866 | /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
|
---|
9867 | Assert(pVM->hm.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
|
---|
9868 | rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
|
---|
9869 | AssertRCReturn(rc, rc);
|
---|
9870 |
|
---|
9871 | /* Update the per-VCPU cache of the APIC base MSR. */
|
---|
9872 | pVCpu->hm.s.vmx.u64GstMsrApicBase = u64MsrApicBase;
|
---|
9873 | return VINF_SUCCESS;
|
---|
9874 | }
|
---|
9875 |
|
---|
9876 |
|
---|
9877 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9878 | /**
|
---|
9879 | * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
|
---|
9880 | * nested-guest using hardware-assisted VMX.
|
---|
9881 | *
|
---|
9882 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9883 | * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
|
---|
9884 | * @param pVmcsInfoGst The guest VMCS info. object.
|
---|
9885 | */
|
---|
9886 | static void hmR0VmxMergeMsrBitmapNested(PCVMCPU pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
|
---|
9887 | {
|
---|
9888 | uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
|
---|
9889 | uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
|
---|
9890 | uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
|
---|
9891 | Assert(pu64MsrBitmapNstGst);
|
---|
9892 | Assert(pu64MsrBitmapGst);
|
---|
9893 | Assert(pu64MsrBitmap);
|
---|
9894 |
|
---|
9895 | /*
|
---|
9896 | * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
|
---|
9897 | * MSR that is intercepted by the guest is also intercepted while executing the
|
---|
9898 | * nested-guest using hardware-assisted VMX.
|
---|
9899 | */
|
---|
9900 | uint32_t const cbFrag = sizeof(uint64_t);
|
---|
9901 | uint32_t const cFrags = X86_PAGE_4K_SIZE / cbFrag;
|
---|
9902 | for (uint32_t i = 0; i <= cFrags; i++)
|
---|
9903 | pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
|
---|
9904 | }
|
---|
9905 |
|
---|
9906 |
|
---|
9907 | /**
|
---|
9908 | * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
|
---|
9909 | * hardware-assisted VMX execution of the nested-guest.
|
---|
9910 | *
|
---|
9911 | * For a guest, we don't modify these controls once we set up the VMCS.
|
---|
9912 | *
|
---|
9913 | * For nested-guests since the guest hypervisor provides these controls on every
|
---|
9914 | * nested-guest VM-entry and could potentially change them everytime we need to
|
---|
9915 | * merge them before every nested-guest VM-entry.
|
---|
9916 | *
|
---|
9917 | * @returns VBox status code.
|
---|
9918 | * @param pVCpu The cross context virtual CPU structure.
|
---|
9919 | */
|
---|
9920 | static int hmR0VmxMergeVmcsNested(PVMCPU pVCpu)
|
---|
9921 | {
|
---|
9922 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9923 | PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
|
---|
9924 | PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
|
---|
9925 | Assert(pVmcsNstGst);
|
---|
9926 |
|
---|
9927 | /*
|
---|
9928 | * Merge the controls with the requirements of the guest VMCS.
|
---|
9929 | *
|
---|
9930 | * We do not need to validate the nested-guest VMX features specified in the
|
---|
9931 | * nested-guest VMCS with the features supported by the physical CPU as it's
|
---|
9932 | * already done by the VMLAUNCH/VMRESUME instruction emulation.
|
---|
9933 | *
|
---|
9934 | * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the
|
---|
9935 | * guest are derived from the VMX features supported by the physical CPU.
|
---|
9936 | */
|
---|
9937 |
|
---|
9938 | /* Pin-based VM-execution controls. */
|
---|
9939 | uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
|
---|
9940 |
|
---|
9941 | /* Processor-based VM-execution controls. */
|
---|
9942 | uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
|
---|
9943 | | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
|
---|
9944 | | VMX_PROC_CTLS_NMI_WINDOW_EXIT
|
---|
9945 | | VMX_PROC_CTLS_USE_TPR_SHADOW
|
---|
9946 | | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
|
---|
9947 |
|
---|
9948 | /* Secondary processor-based VM-execution controls. */
|
---|
9949 | uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
|
---|
9950 | | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
|
---|
9951 | | VMX_PROC_CTLS2_INVPCID
|
---|
9952 | | VMX_PROC_CTLS2_RDTSCP
|
---|
9953 | | VMX_PROC_CTLS2_XSAVES_XRSTORS
|
---|
9954 | | VMX_PROC_CTLS2_APIC_REG_VIRT
|
---|
9955 | | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
|
---|
9956 | | VMX_PROC_CTLS2_VMFUNC));
|
---|
9957 |
|
---|
9958 | /*
|
---|
9959 | * VM-entry controls:
|
---|
9960 | * These controls contains state that depends on the nested-guest state (primarily
|
---|
9961 | * EFER MSR) and is thus not constant through VMLAUNCH/VMRESUME and the nested-guest
|
---|
9962 | * VM-exit. Although the nested-hypervisor cannot change it, we need to in order to
|
---|
9963 | * properly continue executing the nested-guest if the EFER MSR changes but does not
|
---|
9964 | * cause a nested-guest VM-exits.
|
---|
9965 | *
|
---|
9966 | * VM-exit controls:
|
---|
9967 | * These controls specify the host state on return. We cannot use the controls from
|
---|
9968 | * the nested-hypervisor state as is as it would contain the guest state rather than
|
---|
9969 | * the host state. Since the host state is subject to change (e.g. preemption, trips
|
---|
9970 | * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
|
---|
9971 | * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
|
---|
9972 | *
|
---|
9973 | * VM-entry MSR-load:
|
---|
9974 | * The guest MSRs from the VM-entry MSR-load area are already loaded into the
|
---|
9975 | * guest-CPU context by the VMLAUNCH/VMRESUME instruction emulation.
|
---|
9976 | *
|
---|
9977 | * VM-exit MSR-store:
|
---|
9978 | * The VM-exit emulation will take care of populating the MSRs from the guest-CPU
|
---|
9979 | * context back into the VM-exit MSR-store area.
|
---|
9980 | *
|
---|
9981 | * VM-exit MSR-load areas:
|
---|
9982 | * This must contain the real host MSRs with hardware-assisted VMX execution. Hence,
|
---|
9983 | * we can entirely ignore what the nested-hypervisor wants to load here.
|
---|
9984 | */
|
---|
9985 |
|
---|
9986 | /*
|
---|
9987 | * Exception bitmap.
|
---|
9988 | *
|
---|
9989 | * We could remove #UD from the guest bitmap and merge it with the nested-guest
|
---|
9990 | * bitmap here (and avoid doing anything while exporting nested-guest state), but to
|
---|
9991 | * keep the code more flexible if intercepting exceptions become more dynamic in
|
---|
9992 | * the future we do it as part of exporting the nested-guest state.
|
---|
9993 | */
|
---|
9994 | uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
|
---|
9995 |
|
---|
9996 | /*
|
---|
9997 | * CR0/CR4 guest/host mask.
|
---|
9998 | *
|
---|
9999 | * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest
|
---|
10000 | * must cause VM-exits, so we need to merge them here.
|
---|
10001 | */
|
---|
10002 | uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
|
---|
10003 | uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
|
---|
10004 |
|
---|
10005 | /*
|
---|
10006 | * Page-fault error-code mask and match.
|
---|
10007 | *
|
---|
10008 | * Although we require unrestricted guest execution (and thereby nested-paging) for
|
---|
10009 | * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
|
---|
10010 | * normally intercept #PFs, it might intercept them for debugging purposes.
|
---|
10011 | *
|
---|
10012 | * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF
|
---|
10013 | * filters. If the outer guest is intercepting #PFs we must intercept all #PFs.
|
---|
10014 | */
|
---|
10015 | uint32_t u32XcptPFMask;
|
---|
10016 | uint32_t u32XcptPFMatch;
|
---|
10017 | if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
|
---|
10018 | {
|
---|
10019 | u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
|
---|
10020 | u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
|
---|
10021 | }
|
---|
10022 | else
|
---|
10023 | {
|
---|
10024 | u32XcptPFMask = 0;
|
---|
10025 | u32XcptPFMatch = 0;
|
---|
10026 | }
|
---|
10027 |
|
---|
10028 | /*
|
---|
10029 | * Pause-Loop exiting.
|
---|
10030 | */
|
---|
10031 | uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
|
---|
10032 | uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
|
---|
10033 |
|
---|
10034 | /*
|
---|
10035 | * I/O Bitmap.
|
---|
10036 | *
|
---|
10037 | * We do not use the I/O bitmap that may be provided by the guest hypervisor as we
|
---|
10038 | * always intercept all I/O port accesses.
|
---|
10039 | */
|
---|
10040 | Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
|
---|
10041 |
|
---|
10042 | /*
|
---|
10043 | * APIC-access page.
|
---|
10044 | *
|
---|
10045 | * The APIC-access page address has already been initialized while setting up the
|
---|
10046 | * nested-guest VMCS. In theory, even if the guest-physical address is invalid, it
|
---|
10047 | * should not be on any consequence to the host or to the guest for that matter, but
|
---|
10048 | * we only accept valid addresses verified by the VMLAUNCH/VMRESUME instruction
|
---|
10049 | * emulation to keep it simple.
|
---|
10050 | */
|
---|
10051 |
|
---|
10052 | /*
|
---|
10053 | * Virtual-APIC page and TPR threshold.
|
---|
10054 | *
|
---|
10055 | * We shall use the host-physical address of the virtual-APIC page in guest memory directly.
|
---|
10056 | * For this reason, we can access the virtual-APIC page of the nested-guest only using
|
---|
10057 | * PGM physical handlers as we must not assume a kernel virtual-address mapping exists and
|
---|
10058 | * requesting PGM for a mapping could be expensive/resource intensive (PGM mapping cache).
|
---|
10059 | */
|
---|
10060 | RTHCPHYS HCPhysVirtApic = NIL_RTHCPHYS;
|
---|
10061 | uint32_t const u32TprThreshold = pVmcsNstGst->u32TprThreshold;
|
---|
10062 | if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
10063 | {
|
---|
10064 | int rc = PGMPhysGCPhys2HCPhys(pVM, pVmcsNstGst->u64AddrVirtApic.u, &HCPhysVirtApic);
|
---|
10065 |
|
---|
10066 | /*
|
---|
10067 | * If the guest hypervisor has loaded crap into the virtual-APIC page field
|
---|
10068 | * we would fail to obtain a valid host-physical address for its guest-physical
|
---|
10069 | * address.
|
---|
10070 | *
|
---|
10071 | * We currently do not support this scenario. Maybe in the future if there is a
|
---|
10072 | * pressing need we can explore making this particular set of conditions work.
|
---|
10073 | * Right now we just cause a VM-entry failure.
|
---|
10074 | *
|
---|
10075 | * This has already been checked by VMLAUNCH/VMRESUME instruction emulation,
|
---|
10076 | * so should not really failure at the moment.
|
---|
10077 | */
|
---|
10078 | AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
|
---|
10079 | }
|
---|
10080 | else
|
---|
10081 | {
|
---|
10082 | /*
|
---|
10083 | * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
|
---|
10084 | * used by the guest hypervisor. Preventing MMIO accesses to the physical APIC will
|
---|
10085 | * be taken care of by EPT/shadow paging.
|
---|
10086 | */
|
---|
10087 | if (pVM->hm.s.fAllow64BitGuests)
|
---|
10088 | {
|
---|
10089 | u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
|
---|
10090 | | VMX_PROC_CTLS_CR8_LOAD_EXIT;
|
---|
10091 | }
|
---|
10092 | }
|
---|
10093 |
|
---|
10094 | /*
|
---|
10095 | * Validate basic assumptions.
|
---|
10096 | */
|
---|
10097 | PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
|
---|
10098 | Assert(pVM->hm.s.vmx.fAllowUnrestricted);
|
---|
10099 | Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
|
---|
10100 | Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
|
---|
10101 |
|
---|
10102 | /*
|
---|
10103 | * Commit it to the nested-guest VMCS.
|
---|
10104 | */
|
---|
10105 | int rc = VINF_SUCCESS;
|
---|
10106 | if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
|
---|
10107 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
|
---|
10108 | if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
|
---|
10109 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
|
---|
10110 | if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
|
---|
10111 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
|
---|
10112 | if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
|
---|
10113 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
|
---|
10114 | if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
|
---|
10115 | rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
|
---|
10116 | if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
|
---|
10117 | rc |= VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
|
---|
10118 | if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
|
---|
10119 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
|
---|
10120 | if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
|
---|
10121 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
|
---|
10122 | if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
|
---|
10123 | && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
|
---|
10124 | {
|
---|
10125 | Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
|
---|
10126 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
|
---|
10127 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
|
---|
10128 | }
|
---|
10129 | if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
10130 | {
|
---|
10131 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
|
---|
10132 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
|
---|
10133 | }
|
---|
10134 | AssertRCReturn(rc, rc);
|
---|
10135 |
|
---|
10136 | /*
|
---|
10137 | * Update the nested-guest VMCS cache.
|
---|
10138 | */
|
---|
10139 | pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
|
---|
10140 | pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
|
---|
10141 | pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
|
---|
10142 | pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
|
---|
10143 | pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
|
---|
10144 | pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
|
---|
10145 | pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
|
---|
10146 | pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
|
---|
10147 | pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
|
---|
10148 |
|
---|
10149 | /*
|
---|
10150 | * MSR bitmap.
|
---|
10151 | *
|
---|
10152 | * The MSR bitmap address has already been initialized while setting up the
|
---|
10153 | * nested-guest VMCS, here we need to merge the MSR bitmaps.
|
---|
10154 | */
|
---|
10155 | if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
10156 | hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
|
---|
10157 |
|
---|
10158 | return VINF_SUCCESS;
|
---|
10159 | }
|
---|
10160 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
10161 |
|
---|
10162 |
|
---|
10163 | /**
|
---|
10164 | * Does the preparations before executing guest code in VT-x.
|
---|
10165 | *
|
---|
10166 | * This may cause longjmps to ring-3 and may even result in rescheduling to the
|
---|
10167 | * recompiler/IEM. We must be cautious what we do here regarding committing
|
---|
10168 | * guest-state information into the VMCS assuming we assuredly execute the
|
---|
10169 | * guest in VT-x mode.
|
---|
10170 | *
|
---|
10171 | * If we fall back to the recompiler/IEM after updating the VMCS and clearing
|
---|
10172 | * the common-state (TRPM/forceflags), we must undo those changes so that the
|
---|
10173 | * recompiler/IEM can (and should) use them when it resumes guest execution.
|
---|
10174 | * Otherwise such operations must be done when we can no longer exit to ring-3.
|
---|
10175 | *
|
---|
10176 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
10177 | * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
|
---|
10178 | * have been disabled.
|
---|
10179 | * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
|
---|
10180 | * double-fault into the guest.
|
---|
10181 | * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
|
---|
10182 | * dispatched directly.
|
---|
10183 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
10184 | *
|
---|
10185 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10186 | * @param pVmxTransient The VMX-transient structure.
|
---|
10187 | * @param fStepping Whether we are single-stepping the guest in the
|
---|
10188 | * hypervisor debugger. Makes us ignore some of the reasons
|
---|
10189 | * for returning to ring-3, and return VINF_EM_DBG_STEPPED
|
---|
10190 | * if event dispatching took place.
|
---|
10191 | */
|
---|
10192 | static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
|
---|
10193 | {
|
---|
10194 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
10195 |
|
---|
10196 | #ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
|
---|
10197 | if (pVmxTransient->fIsNestedGuest)
|
---|
10198 | {
|
---|
10199 | RT_NOREF2(pVCpu, fStepping);
|
---|
10200 | Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
10201 | return VINF_EM_RESCHEDULE_REM;
|
---|
10202 | }
|
---|
10203 | #endif
|
---|
10204 |
|
---|
10205 | #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
|
---|
10206 | PGMRZDynMapFlushAutoSet(pVCpu);
|
---|
10207 | #endif
|
---|
10208 |
|
---|
10209 | /*
|
---|
10210 | * Check and process force flag actions, some of which might require us to go back to ring-3.
|
---|
10211 | */
|
---|
10212 | VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
|
---|
10213 | if (rcStrict == VINF_SUCCESS)
|
---|
10214 | { /* FFs don't get set all the time. */ }
|
---|
10215 | else
|
---|
10216 | return rcStrict;
|
---|
10217 |
|
---|
10218 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
10219 | /*
|
---|
10220 | * Switch to the nested-guest VMCS as we may have transitioned into executing
|
---|
10221 | * the nested-guest without leaving ring-0. Otherwise, if we came from ring-3
|
---|
10222 | * we would load the nested-guest VMCS while entering the VMX ring-0 session.
|
---|
10223 | *
|
---|
10224 | * We do this as late as possible to minimize (though not completely remove)
|
---|
10225 | * clearing/loading VMCS again due to premature trips to ring-3 above.
|
---|
10226 | */
|
---|
10227 | if (pVmxTransient->fIsNestedGuest)
|
---|
10228 | {
|
---|
10229 | if (!pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
|
---|
10230 | {
|
---|
10231 | /*
|
---|
10232 | * Ensure we have synced everything from the guest VMCS and also flag that
|
---|
10233 | * that we need to export the full (nested) guest-CPU context to the
|
---|
10234 | * nested-guest VMCS.
|
---|
10235 | */
|
---|
10236 | HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
10237 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
|
---|
10238 |
|
---|
10239 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
10240 | int rc = hmR0VmxSwitchVmcs(&pVCpu->hm.s.vmx.VmcsInfo, &pVCpu->hm.s.vmx.VmcsInfoNstGst);
|
---|
10241 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
10242 | {
|
---|
10243 | pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = true;
|
---|
10244 | ASMSetFlags(fEFlags);
|
---|
10245 | pVmxTransient->pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
|
---|
10246 |
|
---|
10247 | /*
|
---|
10248 | * We use a different VM-exit MSR-store area for the nested-guest. Hence,
|
---|
10249 | * flag that we need to update the host MSR values there. Even if we decide
|
---|
10250 | * in the future to share the VM-exit MSR-store area page with the guest,
|
---|
10251 | * if its content differs, we would have to update the host MSRs anyway.
|
---|
10252 | */
|
---|
10253 | pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
|
---|
10254 | Assert(!pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer); /** @todo NSTVMX: Paranoia remove later. */
|
---|
10255 | }
|
---|
10256 | else
|
---|
10257 | {
|
---|
10258 | ASMSetFlags(fEFlags);
|
---|
10259 | return rc;
|
---|
10260 | }
|
---|
10261 | }
|
---|
10262 |
|
---|
10263 | /*
|
---|
10264 | * Merge guest VMCS controls with the nested-guest VMCS controls.
|
---|
10265 | *
|
---|
10266 | * Even if we have not executed the guest prior to this (e.g. when resuming
|
---|
10267 | * from a saved state), we should be okay with merging controls as we
|
---|
10268 | * initialize the guest VMCS controls as part of VM setup phase.
|
---|
10269 | */
|
---|
10270 | if (!pVCpu->hm.s.vmx.fMergedNstGstCtls)
|
---|
10271 | {
|
---|
10272 | int rc = hmR0VmxMergeVmcsNested(pVCpu);
|
---|
10273 | AssertRCReturn(rc, rc);
|
---|
10274 | pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
|
---|
10275 | }
|
---|
10276 | }
|
---|
10277 | #endif
|
---|
10278 |
|
---|
10279 | /*
|
---|
10280 | * Virtualize memory-mapped accesses to the physical APIC (may take locks).
|
---|
10281 | * We look at the guest VMCS control here as we always set it when supported by
|
---|
10282 | * the physical CPU. Looking at the nested-guest control here would not be
|
---|
10283 | * possible because they are not merged yet.
|
---|
10284 | */
|
---|
10285 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
10286 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
10287 | Assert(pVmcsInfo);
|
---|
10288 | if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
|
---|
10289 | && (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
|
---|
10290 | && PDMHasApic(pVM))
|
---|
10291 | {
|
---|
10292 | int rc = hmR0VmxMapHCApicAccessPage(pVCpu);
|
---|
10293 | AssertRCReturn(rc, rc);
|
---|
10294 | }
|
---|
10295 |
|
---|
10296 | /*
|
---|
10297 | * Evaluate events to be injected into the guest.
|
---|
10298 | *
|
---|
10299 | * Events in TRPM can be injected without inspecting the guest state.
|
---|
10300 | * If any new events (interrupts/NMI) are pending currently, we try to set up the
|
---|
10301 | * guest to cause a VM-exit the next time they are ready to receive the event.
|
---|
10302 | */
|
---|
10303 | if (TRPMHasTrap(pVCpu))
|
---|
10304 | hmR0VmxTrpmTrapToPendingEvent(pVCpu);
|
---|
10305 |
|
---|
10306 | uint32_t fIntrState;
|
---|
10307 | rcStrict = hmR0VmxEvaluatePendingEvent(pVCpu, pVmxTransient, &fIntrState);
|
---|
10308 |
|
---|
10309 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
10310 | /*
|
---|
10311 | * While evaluating pending events if something failed (unlikely) or if we were
|
---|
10312 | * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
|
---|
10313 | */
|
---|
10314 | if ( rcStrict != VINF_SUCCESS
|
---|
10315 | || ( pVmxTransient->fIsNestedGuest
|
---|
10316 | && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)))
|
---|
10317 | return rcStrict;
|
---|
10318 | #endif
|
---|
10319 |
|
---|
10320 | /*
|
---|
10321 | * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
|
---|
10322 | * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
|
---|
10323 | * also result in triple-faulting the VM.
|
---|
10324 | *
|
---|
10325 | * The above does not apply when executing a nested-guest (since unrestricted guest execution
|
---|
10326 | * is a requirement) regardless doing it avoid duplicating code elsewhere.
|
---|
10327 | */
|
---|
10328 | rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pVmxTransient, fIntrState, fStepping);
|
---|
10329 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
10330 | { /* likely */ }
|
---|
10331 | else
|
---|
10332 | {
|
---|
10333 | AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
|
---|
10334 | ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
10335 | return rcStrict;
|
---|
10336 | }
|
---|
10337 |
|
---|
10338 | /*
|
---|
10339 | * A longjump might result in importing CR3 even for VM-exits that don't necessarily
|
---|
10340 | * import CR3 themselves. We will need to update them here, as even as late as the above
|
---|
10341 | * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
|
---|
10342 | * the below force flags to be set.
|
---|
10343 | */
|
---|
10344 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
10345 | {
|
---|
10346 | Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
|
---|
10347 | int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
|
---|
10348 | AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
|
---|
10349 | ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
|
---|
10350 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
10351 | }
|
---|
10352 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
|
---|
10353 | {
|
---|
10354 | PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
10355 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
10356 | }
|
---|
10357 |
|
---|
10358 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
10359 | /* Paranoia. */
|
---|
10360 | Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
|
---|
10361 | #endif
|
---|
10362 |
|
---|
10363 | /*
|
---|
10364 | * No longjmps to ring-3 from this point on!!!
|
---|
10365 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
10366 | * This also disables flushing of the R0-logger instance (if any).
|
---|
10367 | */
|
---|
10368 | VMMRZCallRing3Disable(pVCpu);
|
---|
10369 |
|
---|
10370 | /*
|
---|
10371 | * Export the guest state bits.
|
---|
10372 | *
|
---|
10373 | * We cannot perform longjmps while loading the guest state because we do not preserve the
|
---|
10374 | * host/guest state (although the VMCS will be preserved) across longjmps which can cause
|
---|
10375 | * CPU migration.
|
---|
10376 | *
|
---|
10377 | * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
|
---|
10378 | * registers. Hence, loading of the guest state needs to be done -after- injection of events.
|
---|
10379 | */
|
---|
10380 | rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
|
---|
10381 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
10382 | { /* likely */ }
|
---|
10383 | else
|
---|
10384 | {
|
---|
10385 | VMMRZCallRing3Enable(pVCpu);
|
---|
10386 | return rcStrict;
|
---|
10387 | }
|
---|
10388 |
|
---|
10389 | /*
|
---|
10390 | * We disable interrupts so that we don't miss any interrupts that would flag preemption
|
---|
10391 | * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
|
---|
10392 | * preemption disabled for a while. Since this is purely to aid the
|
---|
10393 | * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
|
---|
10394 | * disable interrupt on NT.
|
---|
10395 | *
|
---|
10396 | * We need to check for force-flags that could've possible been altered since we last
|
---|
10397 | * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
|
---|
10398 | * see @bugref{6398}).
|
---|
10399 | *
|
---|
10400 | * We also check a couple of other force-flags as a last opportunity to get the EMT back
|
---|
10401 | * to ring-3 before executing guest code.
|
---|
10402 | */
|
---|
10403 | pVmxTransient->fEFlags = ASMIntDisableFlags();
|
---|
10404 |
|
---|
10405 | if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
10406 | && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
10407 | || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
|
---|
10408 | && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
|
---|
10409 | {
|
---|
10410 | if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
10411 | {
|
---|
10412 | pVCpu->hm.s.Event.fPending = false;
|
---|
10413 |
|
---|
10414 | /*
|
---|
10415 | * We've injected any pending events. This is really the point of no return (to ring-3).
|
---|
10416 | *
|
---|
10417 | * Note! The caller expects to continue with interrupts & longjmps disabled on successful
|
---|
10418 | * returns from this function, so don't enable them here.
|
---|
10419 | */
|
---|
10420 | return VINF_SUCCESS;
|
---|
10421 | }
|
---|
10422 |
|
---|
10423 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
|
---|
10424 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
10425 | }
|
---|
10426 | else
|
---|
10427 | {
|
---|
10428 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
10429 | rcStrict = VINF_EM_RAW_TO_R3;
|
---|
10430 | }
|
---|
10431 |
|
---|
10432 | ASMSetFlags(pVmxTransient->fEFlags);
|
---|
10433 | VMMRZCallRing3Enable(pVCpu);
|
---|
10434 |
|
---|
10435 | return rcStrict;
|
---|
10436 | }
|
---|
10437 |
|
---|
10438 |
|
---|
10439 | /**
|
---|
10440 | * Final preparations before executing guest code using hardware-assisted VMX.
|
---|
10441 | *
|
---|
10442 | * We can no longer get preempted to a different host CPU and there are no returns
|
---|
10443 | * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
|
---|
10444 | * failures), this function is not intended to fail sans unrecoverable hardware
|
---|
10445 | * errors.
|
---|
10446 | *
|
---|
10447 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10448 | * @param pVmxTransient The VMX-transient structure.
|
---|
10449 | *
|
---|
10450 | * @remarks Called with preemption disabled.
|
---|
10451 | * @remarks No-long-jump zone!!!
|
---|
10452 | */
|
---|
10453 | static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
10454 | {
|
---|
10455 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
10456 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
10457 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
10458 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
10459 |
|
---|
10460 | /*
|
---|
10461 | * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
|
---|
10462 | */
|
---|
10463 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
10464 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
|
---|
10465 |
|
---|
10466 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
10467 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
10468 |
|
---|
10469 | if (!CPUMIsGuestFPUStateActive(pVCpu))
|
---|
10470 | {
|
---|
10471 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
10472 | if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
|
---|
10473 | pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
|
---|
10474 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
10475 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
|
---|
10476 | }
|
---|
10477 |
|
---|
10478 | /*
|
---|
10479 | * Re-save the host state bits as we may've been preempted (only happens when
|
---|
10480 | * thread-context hooks are used or when the VM start function changes).
|
---|
10481 | * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
|
---|
10482 | * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
|
---|
10483 | * see @bugref{8432}.
|
---|
10484 | *
|
---|
10485 | * This may also happen when switching to/from a nested-guest VMCS without leaving
|
---|
10486 | * ring-0.
|
---|
10487 | */
|
---|
10488 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
|
---|
10489 | {
|
---|
10490 | int rc = hmR0VmxExportHostState(pVCpu);
|
---|
10491 | AssertRC(rc);
|
---|
10492 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
|
---|
10493 | }
|
---|
10494 | Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
|
---|
10495 |
|
---|
10496 | /*
|
---|
10497 | * Export the state shared between host and guest (FPU, debug, lazy MSRs).
|
---|
10498 | */
|
---|
10499 | if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
|
---|
10500 | hmR0VmxExportSharedState(pVCpu, pVmxTransient);
|
---|
10501 | AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
|
---|
10502 |
|
---|
10503 | /*
|
---|
10504 | * Store status of the shared guest/host debug state at the time of VM-entry.
|
---|
10505 | */
|
---|
10506 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
10507 | if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
|
---|
10508 | {
|
---|
10509 | pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
|
---|
10510 | pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
|
---|
10511 | }
|
---|
10512 | else
|
---|
10513 | #endif
|
---|
10514 | {
|
---|
10515 | pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
|
---|
10516 | pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
|
---|
10517 | }
|
---|
10518 |
|
---|
10519 | /*
|
---|
10520 | * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
|
---|
10521 | * more than one conditional check. The post-run side of our code shall determine
|
---|
10522 | * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
|
---|
10523 | */
|
---|
10524 | if (pVmcsInfo->pbVirtApic)
|
---|
10525 | pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
|
---|
10526 |
|
---|
10527 | /*
|
---|
10528 | * Update the host MSRs values in the VM-exit MSR-load area.
|
---|
10529 | */
|
---|
10530 | if (!pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs)
|
---|
10531 | {
|
---|
10532 | if (pVmcsInfo->cExitMsrLoad > 0)
|
---|
10533 | hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
|
---|
10534 | pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = true;
|
---|
10535 | }
|
---|
10536 |
|
---|
10537 | /*
|
---|
10538 | * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
|
---|
10539 | * VMX-preemption timer based on the next virtual sync clock deadline.
|
---|
10540 | */
|
---|
10541 | PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
|
---|
10542 | RTCPUID const idCurrentCpu = pHostCpu->idCpu;
|
---|
10543 | if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
|
---|
10544 | || idCurrentCpu != pVCpu->hm.s.idLastCpu)
|
---|
10545 | {
|
---|
10546 | hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient);
|
---|
10547 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
|
---|
10548 | }
|
---|
10549 |
|
---|
10550 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
|
---|
10551 | hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
|
---|
10552 | Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
|
---|
10553 | pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
|
---|
10554 |
|
---|
10555 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
|
---|
10556 |
|
---|
10557 | TMNotifyStartOfExecution(pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
|
---|
10558 | as we're about to start executing the guest . */
|
---|
10559 |
|
---|
10560 | /*
|
---|
10561 | * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
|
---|
10562 | *
|
---|
10563 | * This is done this late as updating the TSC offsetting/preemption timer above
|
---|
10564 | * figures out if we can skip intercepting RDTSCP by calculating the number of
|
---|
10565 | * host CPU ticks till the next virtual sync deadline (for the dynamic case).
|
---|
10566 | */
|
---|
10567 | if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
|
---|
10568 | {
|
---|
10569 | if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
|
---|
10570 | {
|
---|
10571 | hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
|
---|
10572 | /* NB: Because we call hmR0VmxAddAutoLoadStoreMsr with fUpdateHostMsr=true,
|
---|
10573 | it's safe even after hmR0VmxUpdateAutoLoadHostMsrs has already been done. */
|
---|
10574 | int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
|
---|
10575 | true /* fSetReadWrite */, true /* fUpdateHostMsr */);
|
---|
10576 | AssertRC(rc);
|
---|
10577 | }
|
---|
10578 | else
|
---|
10579 | hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
|
---|
10580 | }
|
---|
10581 |
|
---|
10582 | #ifdef VBOX_STRICT
|
---|
10583 | Assert(pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs);
|
---|
10584 | hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo);
|
---|
10585 | hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo);
|
---|
10586 | AssertRC(hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo));
|
---|
10587 | #endif
|
---|
10588 |
|
---|
10589 | #ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
|
---|
10590 | /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
|
---|
10591 | * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs. */
|
---|
10592 | uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
|
---|
10593 | if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
|
---|
10594 | Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
|
---|
10595 | #endif
|
---|
10596 | }
|
---|
10597 |
|
---|
10598 |
|
---|
10599 | /**
|
---|
10600 | * First C routine invoked after running guest code using hardware-assisted VMX.
|
---|
10601 | *
|
---|
10602 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10603 | * @param pVmxTransient The VMX-transient structure.
|
---|
10604 | * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
|
---|
10605 | *
|
---|
10606 | * @remarks Called with interrupts disabled, and returns with interrupts enabled!
|
---|
10607 | *
|
---|
10608 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
10609 | * unconditionally when it is safe to do so.
|
---|
10610 | */
|
---|
10611 | static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
|
---|
10612 | {
|
---|
10613 | uint64_t const uHostTsc = ASMReadTSC(); /** @todo We can do a lot better here, see @bugref{9180#c38}. */
|
---|
10614 |
|
---|
10615 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
|
---|
10616 | ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
|
---|
10617 | pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
|
---|
10618 | pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
|
---|
10619 | pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
|
---|
10620 | pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
|
---|
10621 |
|
---|
10622 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
10623 | if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
|
---|
10624 | {
|
---|
10625 | uint64_t uGstTsc;
|
---|
10626 | if (!pVmxTransient->fIsNestedGuest)
|
---|
10627 | uGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
|
---|
10628 | else
|
---|
10629 | {
|
---|
10630 | uint64_t const uNstGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
|
---|
10631 | uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
|
---|
10632 | }
|
---|
10633 | TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
|
---|
10634 | }
|
---|
10635 |
|
---|
10636 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
|
---|
10637 | TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
|
---|
10638 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
10639 |
|
---|
10640 | #if HC_ARCH_BITS == 64
|
---|
10641 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
|
---|
10642 | #endif
|
---|
10643 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
10644 | /* The 64-on-32 switcher maintains VMCS-launch state on its own
|
---|
10645 | and we need to leave it alone here. */
|
---|
10646 | if (pVmcsInfo->pfnStartVM != VMXR0SwitcherStartVM64)
|
---|
10647 | pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
|
---|
10648 | #else
|
---|
10649 | pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
|
---|
10650 | #endif
|
---|
10651 | #ifdef VBOX_STRICT
|
---|
10652 | hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
|
---|
10653 | #endif
|
---|
10654 | Assert(!ASMIntAreEnabled());
|
---|
10655 | ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
|
---|
10656 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
10657 |
|
---|
10658 | /*
|
---|
10659 | * Save the basic VM-exit reason and check if the VM-entry failed.
|
---|
10660 | * See Intel spec. 24.9.1 "Basic VM-exit Information".
|
---|
10661 | */
|
---|
10662 | uint32_t uExitReason;
|
---|
10663 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
|
---|
10664 | AssertRC(rc);
|
---|
10665 | pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
|
---|
10666 | pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
|
---|
10667 |
|
---|
10668 | /*
|
---|
10669 | * Check if VMLAUNCH/VMRESUME succeeded.
|
---|
10670 | * If this failed, we cause a guru meditation and cease further execution.
|
---|
10671 | */
|
---|
10672 | if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
|
---|
10673 | {
|
---|
10674 | /*
|
---|
10675 | * Update the VM-exit history array here even if the VM-entry failed due to:
|
---|
10676 | * - Invalid guest state.
|
---|
10677 | * - MSR loading.
|
---|
10678 | * - Machine-check event.
|
---|
10679 | *
|
---|
10680 | * In any of the above cases we will still have a "valid" VM-exit reason
|
---|
10681 | * despite @a fVMEntryFailed being false.
|
---|
10682 | *
|
---|
10683 | * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
|
---|
10684 | *
|
---|
10685 | * Note! We don't have CS or RIP at this point. Will probably address that later
|
---|
10686 | * by amending the history entry added here.
|
---|
10687 | */
|
---|
10688 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
|
---|
10689 | UINT64_MAX, uHostTsc);
|
---|
10690 |
|
---|
10691 | if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
|
---|
10692 | {
|
---|
10693 | VMMRZCallRing3Enable(pVCpu);
|
---|
10694 |
|
---|
10695 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
10696 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
10697 |
|
---|
10698 | #if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
|
---|
10699 | rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
10700 | AssertRC(rc);
|
---|
10701 | #elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
|
---|
10702 | rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_RFLAGS);
|
---|
10703 | AssertRC(rc);
|
---|
10704 | #else
|
---|
10705 | /*
|
---|
10706 | * Import the guest-interruptibility state always as we need it while evaluating
|
---|
10707 | * injecting events on re-entry.
|
---|
10708 | *
|
---|
10709 | * We don't import CR0 (when unrestricted guest execution is unavailable) despite
|
---|
10710 | * checking for real-mode while exporting the state because all bits that cause
|
---|
10711 | * mode changes wrt CR0 are intercepted.
|
---|
10712 | */
|
---|
10713 | rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
|
---|
10714 | AssertRC(rc);
|
---|
10715 | #endif
|
---|
10716 |
|
---|
10717 | /*
|
---|
10718 | * Sync the TPR shadow with our APIC state.
|
---|
10719 | */
|
---|
10720 | if ( !pVmxTransient->fIsNestedGuest
|
---|
10721 | && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
|
---|
10722 | {
|
---|
10723 | Assert(pVmcsInfo->pbVirtApic);
|
---|
10724 | if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
|
---|
10725 | {
|
---|
10726 | rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
|
---|
10727 | AssertRC(rc);
|
---|
10728 | ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
|
---|
10729 | }
|
---|
10730 | }
|
---|
10731 |
|
---|
10732 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
10733 | return;
|
---|
10734 | }
|
---|
10735 | }
|
---|
10736 | else
|
---|
10737 | Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
|
---|
10738 |
|
---|
10739 | VMMRZCallRing3Enable(pVCpu);
|
---|
10740 | }
|
---|
10741 |
|
---|
10742 |
|
---|
10743 | /**
|
---|
10744 | * Runs the guest code using hardware-assisted VMX the normal way.
|
---|
10745 | *
|
---|
10746 | * @returns VBox status code.
|
---|
10747 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10748 | * @param pcLoops Pointer to the number of executed loops.
|
---|
10749 | */
|
---|
10750 | static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu, uint32_t *pcLoops)
|
---|
10751 | {
|
---|
10752 | uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
|
---|
10753 | Assert(pcLoops);
|
---|
10754 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
10755 |
|
---|
10756 | VMXTRANSIENT VmxTransient;
|
---|
10757 | RT_ZERO(VmxTransient);
|
---|
10758 | VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
10759 |
|
---|
10760 | /* Paranoia. */
|
---|
10761 | Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfo);
|
---|
10762 | Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
|
---|
10763 |
|
---|
10764 | VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
|
---|
10765 | for (;;)
|
---|
10766 | {
|
---|
10767 | Assert(!HMR0SuspendPending());
|
---|
10768 | HMVMX_ASSERT_CPU_SAFE(pVCpu);
|
---|
10769 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
10770 |
|
---|
10771 | /*
|
---|
10772 | * Preparatory work for running nested-guest code, this may force us to
|
---|
10773 | * return to ring-3.
|
---|
10774 | *
|
---|
10775 | * Warning! This bugger disables interrupts on VINF_SUCCESS!
|
---|
10776 | */
|
---|
10777 | rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
|
---|
10778 | if (rcStrict != VINF_SUCCESS)
|
---|
10779 | break;
|
---|
10780 |
|
---|
10781 | /* Interrupts are disabled at this point! */
|
---|
10782 | hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
|
---|
10783 | int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
|
---|
10784 | hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
|
---|
10785 | /* Interrupts are re-enabled at this point! */
|
---|
10786 |
|
---|
10787 | /*
|
---|
10788 | * Check for errors with running the VM (VMLAUNCH/VMRESUME).
|
---|
10789 | */
|
---|
10790 | if (RT_SUCCESS(rcRun))
|
---|
10791 | { /* very likely */ }
|
---|
10792 | else
|
---|
10793 | {
|
---|
10794 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
|
---|
10795 | hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
|
---|
10796 | return rcRun;
|
---|
10797 | }
|
---|
10798 |
|
---|
10799 | /*
|
---|
10800 | * Profile the VM-exit.
|
---|
10801 | */
|
---|
10802 | AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
|
---|
10803 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
|
---|
10804 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
|
---|
10805 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
|
---|
10806 | HMVMX_START_EXIT_DISPATCH_PROF();
|
---|
10807 |
|
---|
10808 | VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
|
---|
10809 |
|
---|
10810 | /*
|
---|
10811 | * Handle the VM-exit.
|
---|
10812 | */
|
---|
10813 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
10814 | rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
|
---|
10815 | #else
|
---|
10816 | rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
|
---|
10817 | #endif
|
---|
10818 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
|
---|
10819 | if (rcStrict == VINF_SUCCESS)
|
---|
10820 | {
|
---|
10821 | if (++(*pcLoops) <= cMaxResumeLoops)
|
---|
10822 | continue;
|
---|
10823 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
10824 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
10825 | }
|
---|
10826 | break;
|
---|
10827 | }
|
---|
10828 |
|
---|
10829 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
10830 | return rcStrict;
|
---|
10831 | }
|
---|
10832 |
|
---|
10833 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
10834 | /**
|
---|
10835 | * Runs the nested-guest code using hardware-assisted VMX.
|
---|
10836 | *
|
---|
10837 | * @returns VBox status code.
|
---|
10838 | * @param pVCpu The cross context virtual CPU structure.
|
---|
10839 | * @param pcLoops Pointer to the number of executed loops.
|
---|
10840 | *
|
---|
10841 | * @sa hmR0VmxRunGuestCodeNormal().
|
---|
10842 | */
|
---|
10843 | static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPU pVCpu, uint32_t *pcLoops)
|
---|
10844 | {
|
---|
10845 | uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
|
---|
10846 | Assert(pcLoops);
|
---|
10847 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
10848 |
|
---|
10849 | VMXTRANSIENT VmxTransient;
|
---|
10850 | RT_ZERO(VmxTransient);
|
---|
10851 | VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
10852 | VmxTransient.fIsNestedGuest = true;
|
---|
10853 |
|
---|
10854 | VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
|
---|
10855 | for (;;)
|
---|
10856 | {
|
---|
10857 | Assert(!HMR0SuspendPending());
|
---|
10858 | HMVMX_ASSERT_CPU_SAFE(pVCpu);
|
---|
10859 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
10860 |
|
---|
10861 | /*
|
---|
10862 | * Preparatory work for running guest code, this may force us to
|
---|
10863 | * return to ring-3.
|
---|
10864 | *
|
---|
10865 | * Warning! This bugger disables interrupts on VINF_SUCCESS!
|
---|
10866 | */
|
---|
10867 | rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
|
---|
10868 | if (rcStrict != VINF_SUCCESS)
|
---|
10869 | break;
|
---|
10870 |
|
---|
10871 | /* Interrupts are disabled at this point! */
|
---|
10872 | hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
|
---|
10873 | int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
|
---|
10874 | hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
|
---|
10875 | /* Interrupts are re-enabled at this point! */
|
---|
10876 |
|
---|
10877 | /*
|
---|
10878 | * Check for errors with running the VM (VMLAUNCH/VMRESUME).
|
---|
10879 | */
|
---|
10880 | if (RT_SUCCESS(rcRun))
|
---|
10881 | { /* very likely */ }
|
---|
10882 | else
|
---|
10883 | {
|
---|
10884 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
|
---|
10885 | hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
|
---|
10886 | return rcRun;
|
---|
10887 | }
|
---|
10888 |
|
---|
10889 | /*
|
---|
10890 | * Profile the VM-exit.
|
---|
10891 | */
|
---|
10892 | AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
|
---|
10893 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
|
---|
10894 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
|
---|
10895 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
|
---|
10896 | HMVMX_START_EXIT_DISPATCH_PROF();
|
---|
10897 |
|
---|
10898 | VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
|
---|
10899 |
|
---|
10900 | /*
|
---|
10901 | * Handle the VM-exit.
|
---|
10902 | */
|
---|
10903 | rcStrict = hmR0VmxHandleExitNested(pVCpu, &VmxTransient);
|
---|
10904 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
|
---|
10905 | if ( rcStrict == VINF_SUCCESS
|
---|
10906 | && CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
10907 | {
|
---|
10908 | if (++(*pcLoops) <= cMaxResumeLoops)
|
---|
10909 | continue;
|
---|
10910 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
10911 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
10912 | }
|
---|
10913 | break;
|
---|
10914 | }
|
---|
10915 |
|
---|
10916 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
10917 | return rcStrict;
|
---|
10918 | }
|
---|
10919 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
10920 |
|
---|
10921 |
|
---|
10922 | /** @name Execution loop for single stepping, DBGF events and expensive Dtrace
|
---|
10923 | * probes.
|
---|
10924 | *
|
---|
10925 | * The following few functions and associated structure contains the bloat
|
---|
10926 | * necessary for providing detailed debug events and dtrace probes as well as
|
---|
10927 | * reliable host side single stepping. This works on the principle of
|
---|
10928 | * "subclassing" the normal execution loop and workers. We replace the loop
|
---|
10929 | * method completely and override selected helpers to add necessary adjustments
|
---|
10930 | * to their core operation.
|
---|
10931 | *
|
---|
10932 | * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
|
---|
10933 | * any performance for debug and analysis features.
|
---|
10934 | *
|
---|
10935 | * @{
|
---|
10936 | */
|
---|
10937 |
|
---|
10938 | /**
|
---|
10939 | * Transient per-VCPU debug state of VMCS and related info. we save/restore in
|
---|
10940 | * the debug run loop.
|
---|
10941 | */
|
---|
10942 | typedef struct VMXRUNDBGSTATE
|
---|
10943 | {
|
---|
10944 | /** The RIP we started executing at. This is for detecting that we stepped. */
|
---|
10945 | uint64_t uRipStart;
|
---|
10946 | /** The CS we started executing with. */
|
---|
10947 | uint16_t uCsStart;
|
---|
10948 |
|
---|
10949 | /** Whether we've actually modified the 1st execution control field. */
|
---|
10950 | bool fModifiedProcCtls : 1;
|
---|
10951 | /** Whether we've actually modified the 2nd execution control field. */
|
---|
10952 | bool fModifiedProcCtls2 : 1;
|
---|
10953 | /** Whether we've actually modified the exception bitmap. */
|
---|
10954 | bool fModifiedXcptBitmap : 1;
|
---|
10955 |
|
---|
10956 | /** We desire the modified the CR0 mask to be cleared. */
|
---|
10957 | bool fClearCr0Mask : 1;
|
---|
10958 | /** We desire the modified the CR4 mask to be cleared. */
|
---|
10959 | bool fClearCr4Mask : 1;
|
---|
10960 | /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
|
---|
10961 | uint32_t fCpe1Extra;
|
---|
10962 | /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
|
---|
10963 | uint32_t fCpe1Unwanted;
|
---|
10964 | /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
|
---|
10965 | uint32_t fCpe2Extra;
|
---|
10966 | /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
|
---|
10967 | uint32_t bmXcptExtra;
|
---|
10968 | /** The sequence number of the Dtrace provider settings the state was
|
---|
10969 | * configured against. */
|
---|
10970 | uint32_t uDtraceSettingsSeqNo;
|
---|
10971 | /** VM-exits to check (one bit per VM-exit). */
|
---|
10972 | uint32_t bmExitsToCheck[3];
|
---|
10973 |
|
---|
10974 | /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
|
---|
10975 | uint32_t fProcCtlsInitial;
|
---|
10976 | /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
|
---|
10977 | uint32_t fProcCtls2Initial;
|
---|
10978 | /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
|
---|
10979 | uint32_t bmXcptInitial;
|
---|
10980 | } VMXRUNDBGSTATE;
|
---|
10981 | AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
|
---|
10982 | typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
|
---|
10983 |
|
---|
10984 |
|
---|
10985 | /**
|
---|
10986 | * Initializes the VMXRUNDBGSTATE structure.
|
---|
10987 | *
|
---|
10988 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
10989 | * calling EMT.
|
---|
10990 | * @param pVmxTransient The VMX-transient structure.
|
---|
10991 | * @param pDbgState The debug state to initialize.
|
---|
10992 | */
|
---|
10993 | static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
|
---|
10994 | {
|
---|
10995 | pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
|
---|
10996 | pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
10997 |
|
---|
10998 | pDbgState->fModifiedProcCtls = false;
|
---|
10999 | pDbgState->fModifiedProcCtls2 = false;
|
---|
11000 | pDbgState->fModifiedXcptBitmap = false;
|
---|
11001 | pDbgState->fClearCr0Mask = false;
|
---|
11002 | pDbgState->fClearCr4Mask = false;
|
---|
11003 | pDbgState->fCpe1Extra = 0;
|
---|
11004 | pDbgState->fCpe1Unwanted = 0;
|
---|
11005 | pDbgState->fCpe2Extra = 0;
|
---|
11006 | pDbgState->bmXcptExtra = 0;
|
---|
11007 | pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls;
|
---|
11008 | pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2;
|
---|
11009 | pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap;
|
---|
11010 | }
|
---|
11011 |
|
---|
11012 |
|
---|
11013 | /**
|
---|
11014 | * Updates the VMSC fields with changes requested by @a pDbgState.
|
---|
11015 | *
|
---|
11016 | * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
|
---|
11017 | * immediately before executing guest code, i.e. when interrupts are disabled.
|
---|
11018 | * We don't check status codes here as we cannot easily assert or return in the
|
---|
11019 | * latter case.
|
---|
11020 | *
|
---|
11021 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11022 | * @param pVmxTransient The VMX-transient structure.
|
---|
11023 | * @param pDbgState The debug state.
|
---|
11024 | */
|
---|
11025 | static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
|
---|
11026 | {
|
---|
11027 | /*
|
---|
11028 | * Ensure desired flags in VMCS control fields are set.
|
---|
11029 | * (Ignoring write failure here, as we're committed and it's just debug extras.)
|
---|
11030 | *
|
---|
11031 | * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
|
---|
11032 | * there should be no stale data in pCtx at this point.
|
---|
11033 | */
|
---|
11034 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
11035 | if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
|
---|
11036 | || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
|
---|
11037 | {
|
---|
11038 | pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
|
---|
11039 | pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
|
---|
11040 | VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
11041 | Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
|
---|
11042 | pDbgState->fModifiedProcCtls = true;
|
---|
11043 | }
|
---|
11044 |
|
---|
11045 | if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
|
---|
11046 | {
|
---|
11047 | pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra;
|
---|
11048 | VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
|
---|
11049 | Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
|
---|
11050 | pDbgState->fModifiedProcCtls2 = true;
|
---|
11051 | }
|
---|
11052 |
|
---|
11053 | if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
|
---|
11054 | {
|
---|
11055 | pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
|
---|
11056 | VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
|
---|
11057 | Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
|
---|
11058 | pDbgState->fModifiedXcptBitmap = true;
|
---|
11059 | }
|
---|
11060 |
|
---|
11061 | if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
|
---|
11062 | {
|
---|
11063 | pVmcsInfo->u64Cr0Mask = 0;
|
---|
11064 | VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, 0);
|
---|
11065 | Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
|
---|
11066 | }
|
---|
11067 |
|
---|
11068 | if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
|
---|
11069 | {
|
---|
11070 | pVmcsInfo->u64Cr4Mask = 0;
|
---|
11071 | VMXWriteVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, 0);
|
---|
11072 | Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
|
---|
11073 | }
|
---|
11074 |
|
---|
11075 | NOREF(pVCpu);
|
---|
11076 | }
|
---|
11077 |
|
---|
11078 |
|
---|
11079 | /**
|
---|
11080 | * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
|
---|
11081 | * re-entry next time around.
|
---|
11082 | *
|
---|
11083 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
11084 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11085 | * @param pVmxTransient The VMX-transient structure.
|
---|
11086 | * @param pDbgState The debug state.
|
---|
11087 | * @param rcStrict The return code from executing the guest using single
|
---|
11088 | * stepping.
|
---|
11089 | */
|
---|
11090 | static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
|
---|
11091 | VBOXSTRICTRC rcStrict)
|
---|
11092 | {
|
---|
11093 | /*
|
---|
11094 | * Restore VM-exit control settings as we may not reenter this function the
|
---|
11095 | * next time around.
|
---|
11096 | */
|
---|
11097 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
11098 |
|
---|
11099 | /* We reload the initial value, trigger what we can of recalculations the
|
---|
11100 | next time around. From the looks of things, that's all that's required atm. */
|
---|
11101 | if (pDbgState->fModifiedProcCtls)
|
---|
11102 | {
|
---|
11103 | if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
|
---|
11104 | pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
|
---|
11105 | int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
|
---|
11106 | AssertRCReturn(rc2, rc2);
|
---|
11107 | pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
|
---|
11108 | }
|
---|
11109 |
|
---|
11110 | /* We're currently the only ones messing with this one, so just restore the
|
---|
11111 | cached value and reload the field. */
|
---|
11112 | if ( pDbgState->fModifiedProcCtls2
|
---|
11113 | && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
|
---|
11114 | {
|
---|
11115 | int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
|
---|
11116 | AssertRCReturn(rc2, rc2);
|
---|
11117 | pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
|
---|
11118 | }
|
---|
11119 |
|
---|
11120 | /* If we've modified the exception bitmap, we restore it and trigger
|
---|
11121 | reloading and partial recalculation the next time around. */
|
---|
11122 | if (pDbgState->fModifiedXcptBitmap)
|
---|
11123 | pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
|
---|
11124 |
|
---|
11125 | return rcStrict;
|
---|
11126 | }
|
---|
11127 |
|
---|
11128 |
|
---|
11129 | /**
|
---|
11130 | * Configures VM-exit controls for current DBGF and DTrace settings.
|
---|
11131 | *
|
---|
11132 | * This updates @a pDbgState and the VMCS execution control fields to reflect
|
---|
11133 | * the necessary VM-exits demanded by DBGF and DTrace.
|
---|
11134 | *
|
---|
11135 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11136 | * @param pVmxTransient The VMX-transient structure. May update
|
---|
11137 | * fUpdatedTscOffsettingAndPreemptTimer.
|
---|
11138 | * @param pDbgState The debug state.
|
---|
11139 | */
|
---|
11140 | static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
|
---|
11141 | {
|
---|
11142 | /*
|
---|
11143 | * Take down the dtrace serial number so we can spot changes.
|
---|
11144 | */
|
---|
11145 | pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
|
---|
11146 | ASMCompilerBarrier();
|
---|
11147 |
|
---|
11148 | /*
|
---|
11149 | * We'll rebuild most of the middle block of data members (holding the
|
---|
11150 | * current settings) as we go along here, so start by clearing it all.
|
---|
11151 | */
|
---|
11152 | pDbgState->bmXcptExtra = 0;
|
---|
11153 | pDbgState->fCpe1Extra = 0;
|
---|
11154 | pDbgState->fCpe1Unwanted = 0;
|
---|
11155 | pDbgState->fCpe2Extra = 0;
|
---|
11156 | for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
|
---|
11157 | pDbgState->bmExitsToCheck[i] = 0;
|
---|
11158 |
|
---|
11159 | /*
|
---|
11160 | * Software interrupts (INT XXh) - no idea how to trigger these...
|
---|
11161 | */
|
---|
11162 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
11163 | if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
|
---|
11164 | || VBOXVMM_INT_SOFTWARE_ENABLED())
|
---|
11165 | {
|
---|
11166 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
|
---|
11167 | }
|
---|
11168 |
|
---|
11169 | /*
|
---|
11170 | * INT3 breakpoints - triggered by #BP exceptions.
|
---|
11171 | */
|
---|
11172 | if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
|
---|
11173 | pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
|
---|
11174 |
|
---|
11175 | /*
|
---|
11176 | * Exception bitmap and XCPT events+probes.
|
---|
11177 | */
|
---|
11178 | for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
|
---|
11179 | if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
|
---|
11180 | pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
|
---|
11181 |
|
---|
11182 | if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
|
---|
11183 | if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
|
---|
11184 | if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
|
---|
11185 | if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
|
---|
11186 | if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
|
---|
11187 | if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
|
---|
11188 | if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
|
---|
11189 | if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
|
---|
11190 | if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
|
---|
11191 | if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
|
---|
11192 | if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
|
---|
11193 | if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
|
---|
11194 | if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
|
---|
11195 | if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
|
---|
11196 | if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
|
---|
11197 | if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
|
---|
11198 | if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
|
---|
11199 | if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
|
---|
11200 |
|
---|
11201 | if (pDbgState->bmXcptExtra)
|
---|
11202 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
|
---|
11203 |
|
---|
11204 | /*
|
---|
11205 | * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
|
---|
11206 | *
|
---|
11207 | * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
|
---|
11208 | * So, when adding/changing/removing please don't forget to update it.
|
---|
11209 | *
|
---|
11210 | * Some of the macros are picking up local variables to save horizontal space,
|
---|
11211 | * (being able to see it in a table is the lesser evil here).
|
---|
11212 | */
|
---|
11213 | #define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
|
---|
11214 | ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
|
---|
11215 | || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
|
---|
11216 | #define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
|
---|
11217 | if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
|
---|
11218 | { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
|
---|
11219 | ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
|
---|
11220 | } else do { } while (0)
|
---|
11221 | #define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
|
---|
11222 | if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
|
---|
11223 | { \
|
---|
11224 | (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
|
---|
11225 | AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
|
---|
11226 | ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
|
---|
11227 | } else do { } while (0)
|
---|
11228 | #define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
|
---|
11229 | if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
|
---|
11230 | { \
|
---|
11231 | (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
|
---|
11232 | AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
|
---|
11233 | ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
|
---|
11234 | } else do { } while (0)
|
---|
11235 | #define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
|
---|
11236 | if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
|
---|
11237 | { \
|
---|
11238 | (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
|
---|
11239 | AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
|
---|
11240 | ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
|
---|
11241 | } else do { } while (0)
|
---|
11242 |
|
---|
11243 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
|
---|
11244 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
|
---|
11245 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
|
---|
11246 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
|
---|
11247 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
|
---|
11248 |
|
---|
11249 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
|
---|
11250 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
|
---|
11251 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
|
---|
11252 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
|
---|
11253 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
|
---|
11254 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
|
---|
11255 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
|
---|
11256 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
|
---|
11257 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
|
---|
11258 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
|
---|
11259 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
|
---|
11260 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
|
---|
11261 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
|
---|
11262 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
|
---|
11263 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
|
---|
11264 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
|
---|
11265 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
|
---|
11266 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
|
---|
11267 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
|
---|
11268 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
|
---|
11269 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
|
---|
11270 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
|
---|
11271 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
|
---|
11272 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
|
---|
11273 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
|
---|
11274 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
|
---|
11275 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
|
---|
11276 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
|
---|
11277 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
|
---|
11278 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
|
---|
11279 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
|
---|
11280 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
|
---|
11281 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
|
---|
11282 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
|
---|
11283 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
|
---|
11284 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
|
---|
11285 |
|
---|
11286 | if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
|
---|
11287 | || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
|
---|
11288 | {
|
---|
11289 | int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4
|
---|
11290 | | CPUMCTX_EXTRN_APIC_TPR);
|
---|
11291 | AssertRC(rc);
|
---|
11292 |
|
---|
11293 | #if 0 /** @todo fix me */
|
---|
11294 | pDbgState->fClearCr0Mask = true;
|
---|
11295 | pDbgState->fClearCr4Mask = true;
|
---|
11296 | #endif
|
---|
11297 | if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
|
---|
11298 | pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
|
---|
11299 | if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
|
---|
11300 | pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
|
---|
11301 | pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
|
---|
11302 | /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
|
---|
11303 | require clearing here and in the loop if we start using it. */
|
---|
11304 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
|
---|
11305 | }
|
---|
11306 | else
|
---|
11307 | {
|
---|
11308 | if (pDbgState->fClearCr0Mask)
|
---|
11309 | {
|
---|
11310 | pDbgState->fClearCr0Mask = false;
|
---|
11311 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
|
---|
11312 | }
|
---|
11313 | if (pDbgState->fClearCr4Mask)
|
---|
11314 | {
|
---|
11315 | pDbgState->fClearCr4Mask = false;
|
---|
11316 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
|
---|
11317 | }
|
---|
11318 | }
|
---|
11319 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
|
---|
11320 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
|
---|
11321 |
|
---|
11322 | if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
|
---|
11323 | || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
|
---|
11324 | {
|
---|
11325 | /** @todo later, need to fix handler as it assumes this won't usually happen. */
|
---|
11326 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
|
---|
11327 | }
|
---|
11328 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
|
---|
11329 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
|
---|
11330 |
|
---|
11331 | SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
|
---|
11332 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
|
---|
11333 | SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
|
---|
11334 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
|
---|
11335 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
|
---|
11336 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
|
---|
11337 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
|
---|
11338 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
|
---|
11339 | #if 0 /** @todo too slow, fix handler. */
|
---|
11340 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
|
---|
11341 | #endif
|
---|
11342 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
|
---|
11343 |
|
---|
11344 | if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
|
---|
11345 | || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
|
---|
11346 | || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
|
---|
11347 | || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
|
---|
11348 | {
|
---|
11349 | pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
|
---|
11350 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
|
---|
11351 | }
|
---|
11352 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
|
---|
11353 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
|
---|
11354 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
|
---|
11355 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
|
---|
11356 |
|
---|
11357 | if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
|
---|
11358 | || IS_EITHER_ENABLED(pVM, INSTR_STR)
|
---|
11359 | || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
|
---|
11360 | || IS_EITHER_ENABLED(pVM, INSTR_LTR))
|
---|
11361 | {
|
---|
11362 | pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
|
---|
11363 | ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
|
---|
11364 | }
|
---|
11365 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
|
---|
11366 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
|
---|
11367 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
|
---|
11368 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
|
---|
11369 |
|
---|
11370 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
|
---|
11371 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
|
---|
11372 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
|
---|
11373 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
|
---|
11374 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
|
---|
11375 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
|
---|
11376 | SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
|
---|
11377 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
|
---|
11378 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
|
---|
11379 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
|
---|
11380 | SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
|
---|
11381 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
|
---|
11382 | SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
|
---|
11383 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
|
---|
11384 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
|
---|
11385 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
|
---|
11386 | SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
|
---|
11387 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
|
---|
11388 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
|
---|
11389 | SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
|
---|
11390 | SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
|
---|
11391 | SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
|
---|
11392 |
|
---|
11393 | #undef IS_EITHER_ENABLED
|
---|
11394 | #undef SET_ONLY_XBM_IF_EITHER_EN
|
---|
11395 | #undef SET_CPE1_XBM_IF_EITHER_EN
|
---|
11396 | #undef SET_CPEU_XBM_IF_EITHER_EN
|
---|
11397 | #undef SET_CPE2_XBM_IF_EITHER_EN
|
---|
11398 |
|
---|
11399 | /*
|
---|
11400 | * Sanitize the control stuff.
|
---|
11401 | */
|
---|
11402 | pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
|
---|
11403 | if (pDbgState->fCpe2Extra)
|
---|
11404 | pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
|
---|
11405 | pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
|
---|
11406 | pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
|
---|
11407 | if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
|
---|
11408 | {
|
---|
11409 | pVCpu->hm.s.fDebugWantRdTscExit ^= true;
|
---|
11410 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
|
---|
11411 | }
|
---|
11412 |
|
---|
11413 | Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
|
---|
11414 | pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
|
---|
11415 | pDbgState->fClearCr0Mask ? " clr-cr0" : "",
|
---|
11416 | pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
|
---|
11417 | }
|
---|
11418 |
|
---|
11419 |
|
---|
11420 | /**
|
---|
11421 | * Fires off DBGF events and dtrace probes for a VM-exit, when it's
|
---|
11422 | * appropriate.
|
---|
11423 | *
|
---|
11424 | * The caller has checked the VM-exit against the
|
---|
11425 | * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
|
---|
11426 | * already, so we don't have to do that either.
|
---|
11427 | *
|
---|
11428 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
11429 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11430 | * @param pVmxTransient The VMX-transient structure.
|
---|
11431 | * @param uExitReason The VM-exit reason.
|
---|
11432 | *
|
---|
11433 | * @remarks The name of this function is displayed by dtrace, so keep it short
|
---|
11434 | * and to the point. No longer than 33 chars long, please.
|
---|
11435 | */
|
---|
11436 | static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
|
---|
11437 | {
|
---|
11438 | /*
|
---|
11439 | * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
|
---|
11440 | * same time check whether any corresponding Dtrace event is enabled (fDtrace).
|
---|
11441 | *
|
---|
11442 | * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
|
---|
11443 | * does. Must add/change/remove both places. Same ordering, please.
|
---|
11444 | *
|
---|
11445 | * Added/removed events must also be reflected in the next section
|
---|
11446 | * where we dispatch dtrace events.
|
---|
11447 | */
|
---|
11448 | bool fDtrace1 = false;
|
---|
11449 | bool fDtrace2 = false;
|
---|
11450 | DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
|
---|
11451 | DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
|
---|
11452 | uint32_t uEventArg = 0;
|
---|
11453 | #define SET_EXIT(a_EventSubName) \
|
---|
11454 | do { \
|
---|
11455 | enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
|
---|
11456 | fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
|
---|
11457 | } while (0)
|
---|
11458 | #define SET_BOTH(a_EventSubName) \
|
---|
11459 | do { \
|
---|
11460 | enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
|
---|
11461 | enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
|
---|
11462 | fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
|
---|
11463 | fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
|
---|
11464 | } while (0)
|
---|
11465 | switch (uExitReason)
|
---|
11466 | {
|
---|
11467 | case VMX_EXIT_MTF:
|
---|
11468 | return hmR0VmxExitMtf(pVCpu, pVmxTransient);
|
---|
11469 |
|
---|
11470 | case VMX_EXIT_XCPT_OR_NMI:
|
---|
11471 | {
|
---|
11472 | uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
|
---|
11473 | switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
|
---|
11474 | {
|
---|
11475 | case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
|
---|
11476 | case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
|
---|
11477 | case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
|
---|
11478 | if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
|
---|
11479 | {
|
---|
11480 | if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
|
---|
11481 | {
|
---|
11482 | hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
11483 | uEventArg = pVmxTransient->uExitIntErrorCode;
|
---|
11484 | }
|
---|
11485 | enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
|
---|
11486 | switch (enmEvent1)
|
---|
11487 | {
|
---|
11488 | case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
|
---|
11489 | case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
|
---|
11490 | case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
|
---|
11491 | case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
|
---|
11492 | case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
|
---|
11493 | case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
|
---|
11494 | case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
|
---|
11495 | case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
|
---|
11496 | case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
|
---|
11497 | case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
|
---|
11498 | case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
|
---|
11499 | case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
|
---|
11500 | case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
|
---|
11501 | case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
|
---|
11502 | case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
|
---|
11503 | case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
|
---|
11504 | case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
|
---|
11505 | case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
|
---|
11506 | default: break;
|
---|
11507 | }
|
---|
11508 | }
|
---|
11509 | else
|
---|
11510 | AssertFailed();
|
---|
11511 | break;
|
---|
11512 |
|
---|
11513 | case VMX_EXIT_INT_INFO_TYPE_SW_INT:
|
---|
11514 | uEventArg = idxVector;
|
---|
11515 | enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
|
---|
11516 | fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
|
---|
11517 | break;
|
---|
11518 | }
|
---|
11519 | break;
|
---|
11520 | }
|
---|
11521 |
|
---|
11522 | case VMX_EXIT_TRIPLE_FAULT:
|
---|
11523 | enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
|
---|
11524 | //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
|
---|
11525 | break;
|
---|
11526 | case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
|
---|
11527 | case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
|
---|
11528 | case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
|
---|
11529 | case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
|
---|
11530 | case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
|
---|
11531 |
|
---|
11532 | /* Instruction specific VM-exits: */
|
---|
11533 | case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
|
---|
11534 | case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
|
---|
11535 | case VMX_EXIT_HLT: SET_BOTH(HALT); break;
|
---|
11536 | case VMX_EXIT_INVD: SET_BOTH(INVD); break;
|
---|
11537 | case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
|
---|
11538 | case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
|
---|
11539 | case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
|
---|
11540 | case VMX_EXIT_RSM: SET_BOTH(RSM); break;
|
---|
11541 | case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
|
---|
11542 | case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
|
---|
11543 | case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
|
---|
11544 | case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
|
---|
11545 | case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
|
---|
11546 | case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
|
---|
11547 | case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
|
---|
11548 | case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
|
---|
11549 | case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
|
---|
11550 | case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
|
---|
11551 | case VMX_EXIT_MOV_CRX:
|
---|
11552 | hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
11553 | if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
|
---|
11554 | SET_BOTH(CRX_READ);
|
---|
11555 | else
|
---|
11556 | SET_BOTH(CRX_WRITE);
|
---|
11557 | uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
|
---|
11558 | break;
|
---|
11559 | case VMX_EXIT_MOV_DRX:
|
---|
11560 | hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
11561 | if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
|
---|
11562 | == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
|
---|
11563 | SET_BOTH(DRX_READ);
|
---|
11564 | else
|
---|
11565 | SET_BOTH(DRX_WRITE);
|
---|
11566 | uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
|
---|
11567 | break;
|
---|
11568 | case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
|
---|
11569 | case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
|
---|
11570 | case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
|
---|
11571 | case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
|
---|
11572 | case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
|
---|
11573 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
11574 | hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
11575 | switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
|
---|
11576 | {
|
---|
11577 | case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
|
---|
11578 | case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
|
---|
11579 | case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
|
---|
11580 | case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
|
---|
11581 | }
|
---|
11582 | break;
|
---|
11583 |
|
---|
11584 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
11585 | hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
11586 | switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
|
---|
11587 | {
|
---|
11588 | case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
|
---|
11589 | case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
|
---|
11590 | case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
|
---|
11591 | case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
|
---|
11592 | }
|
---|
11593 | break;
|
---|
11594 |
|
---|
11595 | case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
|
---|
11596 | case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
|
---|
11597 | case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
|
---|
11598 | case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
|
---|
11599 | case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
|
---|
11600 | case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
|
---|
11601 | case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
|
---|
11602 | case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
|
---|
11603 | case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
|
---|
11604 | case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
|
---|
11605 | case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
|
---|
11606 |
|
---|
11607 | /* Events that aren't relevant at this point. */
|
---|
11608 | case VMX_EXIT_EXT_INT:
|
---|
11609 | case VMX_EXIT_INT_WINDOW:
|
---|
11610 | case VMX_EXIT_NMI_WINDOW:
|
---|
11611 | case VMX_EXIT_TPR_BELOW_THRESHOLD:
|
---|
11612 | case VMX_EXIT_PREEMPT_TIMER:
|
---|
11613 | case VMX_EXIT_IO_INSTR:
|
---|
11614 | break;
|
---|
11615 |
|
---|
11616 | /* Errors and unexpected events. */
|
---|
11617 | case VMX_EXIT_INIT_SIGNAL:
|
---|
11618 | case VMX_EXIT_SIPI:
|
---|
11619 | case VMX_EXIT_IO_SMI:
|
---|
11620 | case VMX_EXIT_SMI:
|
---|
11621 | case VMX_EXIT_ERR_INVALID_GUEST_STATE:
|
---|
11622 | case VMX_EXIT_ERR_MSR_LOAD:
|
---|
11623 | case VMX_EXIT_ERR_MACHINE_CHECK:
|
---|
11624 | break;
|
---|
11625 |
|
---|
11626 | default:
|
---|
11627 | AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
|
---|
11628 | break;
|
---|
11629 | }
|
---|
11630 | #undef SET_BOTH
|
---|
11631 | #undef SET_EXIT
|
---|
11632 |
|
---|
11633 | /*
|
---|
11634 | * Dtrace tracepoints go first. We do them here at once so we don't
|
---|
11635 | * have to copy the guest state saving and stuff a few dozen times.
|
---|
11636 | * Down side is that we've got to repeat the switch, though this time
|
---|
11637 | * we use enmEvent since the probes are a subset of what DBGF does.
|
---|
11638 | */
|
---|
11639 | if (fDtrace1 || fDtrace2)
|
---|
11640 | {
|
---|
11641 | hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
11642 | hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
11643 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
11644 | switch (enmEvent1)
|
---|
11645 | {
|
---|
11646 | /** @todo consider which extra parameters would be helpful for each probe. */
|
---|
11647 | case DBGFEVENT_END: break;
|
---|
11648 | case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
|
---|
11649 | case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
|
---|
11650 | case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
|
---|
11651 | case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
|
---|
11652 | case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
|
---|
11653 | case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
|
---|
11654 | case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
|
---|
11655 | case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
|
---|
11656 | case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
|
---|
11657 | case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
|
---|
11658 | case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
|
---|
11659 | case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
|
---|
11660 | case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
|
---|
11661 | case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
|
---|
11662 | case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
|
---|
11663 | case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
|
---|
11664 | case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
|
---|
11665 | case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
|
---|
11666 | case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
|
---|
11667 | case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
|
---|
11668 | case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
|
---|
11669 | case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
|
---|
11670 | case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
|
---|
11671 | case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
|
---|
11672 | case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
|
---|
11673 | case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
|
---|
11674 | case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
|
---|
11675 | case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
|
---|
11676 | case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
|
---|
11677 | case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
|
---|
11678 | case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
|
---|
11679 | case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
|
---|
11680 | case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
|
---|
11681 | RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
|
---|
11682 | case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
|
---|
11683 | case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
|
---|
11684 | case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
|
---|
11685 | case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
|
---|
11686 | case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
|
---|
11687 | case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
|
---|
11688 | case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
|
---|
11689 | case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
|
---|
11690 | case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
|
---|
11691 | case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
|
---|
11692 | case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
|
---|
11693 | case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
|
---|
11694 | case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
|
---|
11695 | case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
|
---|
11696 | case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
|
---|
11697 | case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
|
---|
11698 | case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
|
---|
11699 | case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
|
---|
11700 | case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
|
---|
11701 | case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
|
---|
11702 | case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
|
---|
11703 | case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
|
---|
11704 | case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
|
---|
11705 | case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
|
---|
11706 | case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
|
---|
11707 | case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
|
---|
11708 | case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
|
---|
11709 | case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
|
---|
11710 | case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
|
---|
11711 | case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
|
---|
11712 | case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
|
---|
11713 | case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
|
---|
11714 | default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
|
---|
11715 | }
|
---|
11716 | switch (enmEvent2)
|
---|
11717 | {
|
---|
11718 | /** @todo consider which extra parameters would be helpful for each probe. */
|
---|
11719 | case DBGFEVENT_END: break;
|
---|
11720 | case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
|
---|
11721 | case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
|
---|
11722 | case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
|
---|
11723 | case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
|
---|
11724 | case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
|
---|
11725 | case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
|
---|
11726 | case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
|
---|
11727 | case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
|
---|
11728 | case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
|
---|
11729 | case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
|
---|
11730 | case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
|
---|
11731 | case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
|
---|
11732 | case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
|
---|
11733 | case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
|
---|
11734 | case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
|
---|
11735 | RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
|
---|
11736 | case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
|
---|
11737 | case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
|
---|
11738 | case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
|
---|
11739 | case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
|
---|
11740 | case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
|
---|
11741 | case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
|
---|
11742 | case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
|
---|
11743 | case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
|
---|
11744 | case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
|
---|
11745 | case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
|
---|
11746 | case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
|
---|
11747 | case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
|
---|
11748 | case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
|
---|
11749 | case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
|
---|
11750 | case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
|
---|
11751 | case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
|
---|
11752 | case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
|
---|
11753 | case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
|
---|
11754 | case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
|
---|
11755 | case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
|
---|
11756 | case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
|
---|
11757 | case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
|
---|
11758 | case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
|
---|
11759 | case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
|
---|
11760 | case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
|
---|
11761 | case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
|
---|
11762 | case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
|
---|
11763 | case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
|
---|
11764 | case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
|
---|
11765 | case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
|
---|
11766 | case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
|
---|
11767 | case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
|
---|
11768 | case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
|
---|
11769 | case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
|
---|
11770 | case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
|
---|
11771 | case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
|
---|
11772 | default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
|
---|
11773 | }
|
---|
11774 | }
|
---|
11775 |
|
---|
11776 | /*
|
---|
11777 | * Fire of the DBGF event, if enabled (our check here is just a quick one,
|
---|
11778 | * the DBGF call will do a full check).
|
---|
11779 | *
|
---|
11780 | * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
|
---|
11781 | * Note! If we have to events, we prioritize the first, i.e. the instruction
|
---|
11782 | * one, in order to avoid event nesting.
|
---|
11783 | */
|
---|
11784 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
11785 | if ( enmEvent1 != DBGFEVENT_END
|
---|
11786 | && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
|
---|
11787 | {
|
---|
11788 | hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
|
---|
11789 | VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
|
---|
11790 | if (rcStrict != VINF_SUCCESS)
|
---|
11791 | return rcStrict;
|
---|
11792 | }
|
---|
11793 | else if ( enmEvent2 != DBGFEVENT_END
|
---|
11794 | && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
|
---|
11795 | {
|
---|
11796 | hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
|
---|
11797 | VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
|
---|
11798 | if (rcStrict != VINF_SUCCESS)
|
---|
11799 | return rcStrict;
|
---|
11800 | }
|
---|
11801 |
|
---|
11802 | return VINF_SUCCESS;
|
---|
11803 | }
|
---|
11804 |
|
---|
11805 |
|
---|
11806 | /**
|
---|
11807 | * Single-stepping VM-exit filtering.
|
---|
11808 | *
|
---|
11809 | * This is preprocessing the VM-exits and deciding whether we've gotten far
|
---|
11810 | * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
|
---|
11811 | * handling is performed.
|
---|
11812 | *
|
---|
11813 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
11814 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
11815 | * @param pVmxTransient The VMX-transient structure.
|
---|
11816 | * @param pDbgState The debug state.
|
---|
11817 | */
|
---|
11818 | DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
|
---|
11819 | {
|
---|
11820 | /*
|
---|
11821 | * Expensive (saves context) generic dtrace VM-exit probe.
|
---|
11822 | */
|
---|
11823 | uint32_t const uExitReason = pVmxTransient->uExitReason;
|
---|
11824 | if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
|
---|
11825 | { /* more likely */ }
|
---|
11826 | else
|
---|
11827 | {
|
---|
11828 | hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
11829 | int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
11830 | AssertRC(rc);
|
---|
11831 | VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
|
---|
11832 | }
|
---|
11833 |
|
---|
11834 | /*
|
---|
11835 | * Check for host NMI, just to get that out of the way.
|
---|
11836 | */
|
---|
11837 | if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
|
---|
11838 | { /* normally likely */ }
|
---|
11839 | else
|
---|
11840 | {
|
---|
11841 | int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
11842 | AssertRCReturn(rc2, rc2);
|
---|
11843 | uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
|
---|
11844 | if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
|
---|
11845 | return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
|
---|
11846 | }
|
---|
11847 |
|
---|
11848 | /*
|
---|
11849 | * Check for single stepping event if we're stepping.
|
---|
11850 | */
|
---|
11851 | if (pVCpu->hm.s.fSingleInstruction)
|
---|
11852 | {
|
---|
11853 | switch (uExitReason)
|
---|
11854 | {
|
---|
11855 | case VMX_EXIT_MTF:
|
---|
11856 | return hmR0VmxExitMtf(pVCpu, pVmxTransient);
|
---|
11857 |
|
---|
11858 | /* Various events: */
|
---|
11859 | case VMX_EXIT_XCPT_OR_NMI:
|
---|
11860 | case VMX_EXIT_EXT_INT:
|
---|
11861 | case VMX_EXIT_TRIPLE_FAULT:
|
---|
11862 | case VMX_EXIT_INT_WINDOW:
|
---|
11863 | case VMX_EXIT_NMI_WINDOW:
|
---|
11864 | case VMX_EXIT_TASK_SWITCH:
|
---|
11865 | case VMX_EXIT_TPR_BELOW_THRESHOLD:
|
---|
11866 | case VMX_EXIT_APIC_ACCESS:
|
---|
11867 | case VMX_EXIT_EPT_VIOLATION:
|
---|
11868 | case VMX_EXIT_EPT_MISCONFIG:
|
---|
11869 | case VMX_EXIT_PREEMPT_TIMER:
|
---|
11870 |
|
---|
11871 | /* Instruction specific VM-exits: */
|
---|
11872 | case VMX_EXIT_CPUID:
|
---|
11873 | case VMX_EXIT_GETSEC:
|
---|
11874 | case VMX_EXIT_HLT:
|
---|
11875 | case VMX_EXIT_INVD:
|
---|
11876 | case VMX_EXIT_INVLPG:
|
---|
11877 | case VMX_EXIT_RDPMC:
|
---|
11878 | case VMX_EXIT_RDTSC:
|
---|
11879 | case VMX_EXIT_RSM:
|
---|
11880 | case VMX_EXIT_VMCALL:
|
---|
11881 | case VMX_EXIT_VMCLEAR:
|
---|
11882 | case VMX_EXIT_VMLAUNCH:
|
---|
11883 | case VMX_EXIT_VMPTRLD:
|
---|
11884 | case VMX_EXIT_VMPTRST:
|
---|
11885 | case VMX_EXIT_VMREAD:
|
---|
11886 | case VMX_EXIT_VMRESUME:
|
---|
11887 | case VMX_EXIT_VMWRITE:
|
---|
11888 | case VMX_EXIT_VMXOFF:
|
---|
11889 | case VMX_EXIT_VMXON:
|
---|
11890 | case VMX_EXIT_MOV_CRX:
|
---|
11891 | case VMX_EXIT_MOV_DRX:
|
---|
11892 | case VMX_EXIT_IO_INSTR:
|
---|
11893 | case VMX_EXIT_RDMSR:
|
---|
11894 | case VMX_EXIT_WRMSR:
|
---|
11895 | case VMX_EXIT_MWAIT:
|
---|
11896 | case VMX_EXIT_MONITOR:
|
---|
11897 | case VMX_EXIT_PAUSE:
|
---|
11898 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
11899 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
11900 | case VMX_EXIT_INVEPT:
|
---|
11901 | case VMX_EXIT_RDTSCP:
|
---|
11902 | case VMX_EXIT_INVVPID:
|
---|
11903 | case VMX_EXIT_WBINVD:
|
---|
11904 | case VMX_EXIT_XSETBV:
|
---|
11905 | case VMX_EXIT_RDRAND:
|
---|
11906 | case VMX_EXIT_INVPCID:
|
---|
11907 | case VMX_EXIT_VMFUNC:
|
---|
11908 | case VMX_EXIT_RDSEED:
|
---|
11909 | case VMX_EXIT_XSAVES:
|
---|
11910 | case VMX_EXIT_XRSTORS:
|
---|
11911 | {
|
---|
11912 | int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
|
---|
11913 | AssertRCReturn(rc, rc);
|
---|
11914 | if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
|
---|
11915 | || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
|
---|
11916 | return VINF_EM_DBG_STEPPED;
|
---|
11917 | break;
|
---|
11918 | }
|
---|
11919 |
|
---|
11920 | /* Errors and unexpected events: */
|
---|
11921 | case VMX_EXIT_INIT_SIGNAL:
|
---|
11922 | case VMX_EXIT_SIPI:
|
---|
11923 | case VMX_EXIT_IO_SMI:
|
---|
11924 | case VMX_EXIT_SMI:
|
---|
11925 | case VMX_EXIT_ERR_INVALID_GUEST_STATE:
|
---|
11926 | case VMX_EXIT_ERR_MSR_LOAD:
|
---|
11927 | case VMX_EXIT_ERR_MACHINE_CHECK:
|
---|
11928 | case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
|
---|
11929 | break;
|
---|
11930 |
|
---|
11931 | default:
|
---|
11932 | AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
|
---|
11933 | break;
|
---|
11934 | }
|
---|
11935 | }
|
---|
11936 |
|
---|
11937 | /*
|
---|
11938 | * Check for debugger event breakpoints and dtrace probes.
|
---|
11939 | */
|
---|
11940 | if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
|
---|
11941 | && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
|
---|
11942 | {
|
---|
11943 | VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
|
---|
11944 | if (rcStrict != VINF_SUCCESS)
|
---|
11945 | return rcStrict;
|
---|
11946 | }
|
---|
11947 |
|
---|
11948 | /*
|
---|
11949 | * Normal processing.
|
---|
11950 | */
|
---|
11951 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
11952 | return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
|
---|
11953 | #else
|
---|
11954 | return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
|
---|
11955 | #endif
|
---|
11956 | }
|
---|
11957 |
|
---|
11958 |
|
---|
11959 | /**
|
---|
11960 | * Single steps guest code using hardware-assisted VMX.
|
---|
11961 | *
|
---|
11962 | * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
|
---|
11963 | * but single-stepping through the hypervisor debugger.
|
---|
11964 | *
|
---|
11965 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
11966 | * @param pVCpu The cross context virtual CPU structure.
|
---|
11967 | * @param pcLoops Pointer to the number of executed loops.
|
---|
11968 | *
|
---|
11969 | * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
|
---|
11970 | */
|
---|
11971 | static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu, uint32_t *pcLoops)
|
---|
11972 | {
|
---|
11973 | uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
|
---|
11974 | Assert(pcLoops);
|
---|
11975 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
11976 |
|
---|
11977 | VMXTRANSIENT VmxTransient;
|
---|
11978 | RT_ZERO(VmxTransient);
|
---|
11979 | VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
|
---|
11980 |
|
---|
11981 | /* Set HMCPU indicators. */
|
---|
11982 | bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
|
---|
11983 | pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
|
---|
11984 | pVCpu->hm.s.fDebugWantRdTscExit = false;
|
---|
11985 | pVCpu->hm.s.fUsingDebugLoop = true;
|
---|
11986 |
|
---|
11987 | /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
|
---|
11988 | VMXRUNDBGSTATE DbgState;
|
---|
11989 | hmR0VmxRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
|
---|
11990 | hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
|
---|
11991 |
|
---|
11992 | /*
|
---|
11993 | * The loop.
|
---|
11994 | */
|
---|
11995 | VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
|
---|
11996 | for (;;)
|
---|
11997 | {
|
---|
11998 | Assert(!HMR0SuspendPending());
|
---|
11999 | HMVMX_ASSERT_CPU_SAFE(pVCpu);
|
---|
12000 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
12001 | bool fStepping = pVCpu->hm.s.fSingleInstruction;
|
---|
12002 |
|
---|
12003 | /* Set up VM-execution controls the next two can respond to. */
|
---|
12004 | hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
|
---|
12005 |
|
---|
12006 | /*
|
---|
12007 | * Preparatory work for running guest code, this may force us to
|
---|
12008 | * return to ring-3.
|
---|
12009 | *
|
---|
12010 | * Warning! This bugger disables interrupts on VINF_SUCCESS!
|
---|
12011 | */
|
---|
12012 | rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
|
---|
12013 | if (rcStrict != VINF_SUCCESS)
|
---|
12014 | break;
|
---|
12015 |
|
---|
12016 | /* Interrupts are disabled at this point! */
|
---|
12017 | hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
|
---|
12018 |
|
---|
12019 | /* Override any obnoxious code in the above two calls. */
|
---|
12020 | hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
|
---|
12021 |
|
---|
12022 | /*
|
---|
12023 | * Finally execute the guest.
|
---|
12024 | */
|
---|
12025 | int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
|
---|
12026 |
|
---|
12027 | hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
|
---|
12028 | /* Interrupts are re-enabled at this point! */
|
---|
12029 |
|
---|
12030 | /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
|
---|
12031 | if (RT_SUCCESS(rcRun))
|
---|
12032 | { /* very likely */ }
|
---|
12033 | else
|
---|
12034 | {
|
---|
12035 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
|
---|
12036 | hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
|
---|
12037 | return rcRun;
|
---|
12038 | }
|
---|
12039 |
|
---|
12040 | /* Profile the VM-exit. */
|
---|
12041 | AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
|
---|
12042 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
|
---|
12043 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
|
---|
12044 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
|
---|
12045 | HMVMX_START_EXIT_DISPATCH_PROF();
|
---|
12046 |
|
---|
12047 | VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
|
---|
12048 |
|
---|
12049 | /*
|
---|
12050 | * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
|
---|
12051 | */
|
---|
12052 | rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
|
---|
12053 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
|
---|
12054 | if (rcStrict != VINF_SUCCESS)
|
---|
12055 | break;
|
---|
12056 | if (++(*pcLoops) > cMaxResumeLoops)
|
---|
12057 | {
|
---|
12058 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
12059 | rcStrict = VINF_EM_RAW_INTERRUPT;
|
---|
12060 | break;
|
---|
12061 | }
|
---|
12062 |
|
---|
12063 | /*
|
---|
12064 | * Stepping: Did the RIP change, if so, consider it a single step.
|
---|
12065 | * Otherwise, make sure one of the TFs gets set.
|
---|
12066 | */
|
---|
12067 | if (fStepping)
|
---|
12068 | {
|
---|
12069 | int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
|
---|
12070 | AssertRC(rc);
|
---|
12071 | if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
|
---|
12072 | || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
|
---|
12073 | {
|
---|
12074 | rcStrict = VINF_EM_DBG_STEPPED;
|
---|
12075 | break;
|
---|
12076 | }
|
---|
12077 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
|
---|
12078 | }
|
---|
12079 |
|
---|
12080 | /*
|
---|
12081 | * Update when dtrace settings changes (DBGF kicks us, so no need to check).
|
---|
12082 | */
|
---|
12083 | if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
|
---|
12084 | hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
|
---|
12085 | }
|
---|
12086 |
|
---|
12087 | /*
|
---|
12088 | * Clear the X86_EFL_TF if necessary.
|
---|
12089 | */
|
---|
12090 | if (pVCpu->hm.s.fClearTrapFlag)
|
---|
12091 | {
|
---|
12092 | int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
|
---|
12093 | AssertRC(rc);
|
---|
12094 | pVCpu->hm.s.fClearTrapFlag = false;
|
---|
12095 | pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
|
---|
12096 | }
|
---|
12097 | /** @todo there seems to be issues with the resume flag when the monitor trap
|
---|
12098 | * flag is pending without being used. Seen early in bios init when
|
---|
12099 | * accessing APIC page in protected mode. */
|
---|
12100 |
|
---|
12101 | /*
|
---|
12102 | * Restore VM-exit control settings as we may not re-enter this function the
|
---|
12103 | * next time around.
|
---|
12104 | */
|
---|
12105 | rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
|
---|
12106 |
|
---|
12107 | /* Restore HMCPU indicators. */
|
---|
12108 | pVCpu->hm.s.fUsingDebugLoop = false;
|
---|
12109 | pVCpu->hm.s.fDebugWantRdTscExit = false;
|
---|
12110 | pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
|
---|
12111 |
|
---|
12112 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
12113 | return rcStrict;
|
---|
12114 | }
|
---|
12115 |
|
---|
12116 |
|
---|
12117 | /** @} */
|
---|
12118 |
|
---|
12119 |
|
---|
12120 | /**
|
---|
12121 | * Checks if any expensive dtrace probes are enabled and we should go to the
|
---|
12122 | * debug loop.
|
---|
12123 | *
|
---|
12124 | * @returns true if we should use debug loop, false if not.
|
---|
12125 | */
|
---|
12126 | static bool hmR0VmxAnyExpensiveProbesEnabled(void)
|
---|
12127 | {
|
---|
12128 | /* It's probably faster to OR the raw 32-bit counter variables together.
|
---|
12129 | Since the variables are in an array and the probes are next to one
|
---|
12130 | another (more or less), we have good locality. So, better read
|
---|
12131 | eight-nine cache lines ever time and only have one conditional, than
|
---|
12132 | 128+ conditionals, right? */
|
---|
12133 | return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
|
---|
12134 | | VBOXVMM_XCPT_DE_ENABLED_RAW()
|
---|
12135 | | VBOXVMM_XCPT_DB_ENABLED_RAW()
|
---|
12136 | | VBOXVMM_XCPT_BP_ENABLED_RAW()
|
---|
12137 | | VBOXVMM_XCPT_OF_ENABLED_RAW()
|
---|
12138 | | VBOXVMM_XCPT_BR_ENABLED_RAW()
|
---|
12139 | | VBOXVMM_XCPT_UD_ENABLED_RAW()
|
---|
12140 | | VBOXVMM_XCPT_NM_ENABLED_RAW()
|
---|
12141 | | VBOXVMM_XCPT_DF_ENABLED_RAW()
|
---|
12142 | | VBOXVMM_XCPT_TS_ENABLED_RAW()
|
---|
12143 | | VBOXVMM_XCPT_NP_ENABLED_RAW()
|
---|
12144 | | VBOXVMM_XCPT_SS_ENABLED_RAW()
|
---|
12145 | | VBOXVMM_XCPT_GP_ENABLED_RAW()
|
---|
12146 | | VBOXVMM_XCPT_PF_ENABLED_RAW()
|
---|
12147 | | VBOXVMM_XCPT_MF_ENABLED_RAW()
|
---|
12148 | | VBOXVMM_XCPT_AC_ENABLED_RAW()
|
---|
12149 | | VBOXVMM_XCPT_XF_ENABLED_RAW()
|
---|
12150 | | VBOXVMM_XCPT_VE_ENABLED_RAW()
|
---|
12151 | | VBOXVMM_XCPT_SX_ENABLED_RAW()
|
---|
12152 | | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
|
---|
12153 | | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
|
---|
12154 | ) != 0
|
---|
12155 | || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
|
---|
12156 | | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
|
---|
12157 | | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
|
---|
12158 | | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
|
---|
12159 | | VBOXVMM_INSTR_INVD_ENABLED_RAW()
|
---|
12160 | | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
|
---|
12161 | | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
|
---|
12162 | | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
|
---|
12163 | | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
|
---|
12164 | | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
|
---|
12165 | | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
|
---|
12166 | | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
|
---|
12167 | | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
|
---|
12168 | | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
|
---|
12169 | | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
|
---|
12170 | | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
|
---|
12171 | | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
|
---|
12172 | | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
|
---|
12173 | | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
|
---|
12174 | | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
|
---|
12175 | | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
|
---|
12176 | | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
|
---|
12177 | | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
|
---|
12178 | | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
|
---|
12179 | | VBOXVMM_INSTR_STR_ENABLED_RAW()
|
---|
12180 | | VBOXVMM_INSTR_LTR_ENABLED_RAW()
|
---|
12181 | | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
|
---|
12182 | | VBOXVMM_INSTR_RSM_ENABLED_RAW()
|
---|
12183 | | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
|
---|
12184 | | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
|
---|
12185 | | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
|
---|
12186 | | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
|
---|
12187 | | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
|
---|
12188 | | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
|
---|
12189 | | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
|
---|
12190 | | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
|
---|
12191 | | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
|
---|
12192 | | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
|
---|
12193 | | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
|
---|
12194 | | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
|
---|
12195 | | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
|
---|
12196 | | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
|
---|
12197 | | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
|
---|
12198 | | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
|
---|
12199 | | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
|
---|
12200 | | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
|
---|
12201 | ) != 0
|
---|
12202 | || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
|
---|
12203 | | VBOXVMM_EXIT_HALT_ENABLED_RAW()
|
---|
12204 | | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
|
---|
12205 | | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
|
---|
12206 | | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
|
---|
12207 | | VBOXVMM_EXIT_INVD_ENABLED_RAW()
|
---|
12208 | | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
|
---|
12209 | | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
|
---|
12210 | | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
|
---|
12211 | | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
|
---|
12212 | | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
|
---|
12213 | | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
|
---|
12214 | | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
|
---|
12215 | | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
|
---|
12216 | | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
|
---|
12217 | | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
|
---|
12218 | | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
|
---|
12219 | | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
|
---|
12220 | | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
|
---|
12221 | | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
|
---|
12222 | | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
|
---|
12223 | | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
|
---|
12224 | | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
|
---|
12225 | | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
|
---|
12226 | | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
|
---|
12227 | | VBOXVMM_EXIT_STR_ENABLED_RAW()
|
---|
12228 | | VBOXVMM_EXIT_LTR_ENABLED_RAW()
|
---|
12229 | | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
|
---|
12230 | | VBOXVMM_EXIT_RSM_ENABLED_RAW()
|
---|
12231 | | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
|
---|
12232 | | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
|
---|
12233 | | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
|
---|
12234 | | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
|
---|
12235 | | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
|
---|
12236 | | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
|
---|
12237 | | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
|
---|
12238 | | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
|
---|
12239 | | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
|
---|
12240 | | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
|
---|
12241 | | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
|
---|
12242 | | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
|
---|
12243 | | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
|
---|
12244 | | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
|
---|
12245 | | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
|
---|
12246 | | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
|
---|
12247 | | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
|
---|
12248 | | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
|
---|
12249 | | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
|
---|
12250 | | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
|
---|
12251 | | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
|
---|
12252 | | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
|
---|
12253 | ) != 0;
|
---|
12254 | }
|
---|
12255 |
|
---|
12256 |
|
---|
12257 | /**
|
---|
12258 | * Runs the guest using hardware-assisted VMX.
|
---|
12259 | *
|
---|
12260 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
12261 | * @param pVCpu The cross context virtual CPU structure.
|
---|
12262 | */
|
---|
12263 | VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
|
---|
12264 | {
|
---|
12265 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
12266 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
12267 | Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
|
---|
12268 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
12269 |
|
---|
12270 | VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
|
---|
12271 |
|
---|
12272 | VBOXSTRICTRC rcStrict;
|
---|
12273 | uint32_t cLoops = 0;
|
---|
12274 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
12275 | bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
|
---|
12276 | #else
|
---|
12277 | bool const fInNestedGuestMode = false;
|
---|
12278 | #endif
|
---|
12279 | if (!fInNestedGuestMode)
|
---|
12280 | {
|
---|
12281 | if ( !pVCpu->hm.s.fUseDebugLoop
|
---|
12282 | && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
|
---|
12283 | && !DBGFIsStepping(pVCpu)
|
---|
12284 | && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
|
---|
12285 | rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
|
---|
12286 | else
|
---|
12287 | rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
|
---|
12288 | }
|
---|
12289 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
12290 | else
|
---|
12291 | rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
|
---|
12292 |
|
---|
12293 | if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
|
---|
12294 | rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
|
---|
12295 | #endif
|
---|
12296 |
|
---|
12297 | if (rcStrict == VERR_EM_INTERPRETER)
|
---|
12298 | rcStrict = VINF_EM_RAW_EMULATE_INSTR;
|
---|
12299 | else if (rcStrict == VINF_EM_RESET)
|
---|
12300 | rcStrict = VINF_EM_TRIPLE_FAULT;
|
---|
12301 |
|
---|
12302 | int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
|
---|
12303 | if (RT_FAILURE(rc2))
|
---|
12304 | {
|
---|
12305 | pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
|
---|
12306 | rcStrict = rc2;
|
---|
12307 | }
|
---|
12308 | Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
|
---|
12309 | Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
|
---|
12310 | return rcStrict;
|
---|
12311 | }
|
---|
12312 |
|
---|
12313 |
|
---|
12314 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
12315 | /**
|
---|
12316 | * Handles a guest VM-exit from hardware-assisted VMX execution.
|
---|
12317 | *
|
---|
12318 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
12319 | * @param pVCpu The cross context virtual CPU structure.
|
---|
12320 | * @param pVmxTransient The VMX-transient structure.
|
---|
12321 | */
|
---|
12322 | DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
12323 | {
|
---|
12324 | #ifdef DEBUG_ramshankar
|
---|
12325 | #define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
|
---|
12326 | do { \
|
---|
12327 | if (a_fSave != 0) \
|
---|
12328 | hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
|
---|
12329 | VBOXSTRICTRC rcStrict = a_CallExpr; \
|
---|
12330 | if (a_fSave != 0) \
|
---|
12331 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
|
---|
12332 | return rcStrict; \
|
---|
12333 | } while (0)
|
---|
12334 | #else
|
---|
12335 | # define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
|
---|
12336 | #endif
|
---|
12337 | uint32_t const rcReason = pVmxTransient->uExitReason;
|
---|
12338 | switch (rcReason)
|
---|
12339 | {
|
---|
12340 | case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
|
---|
12341 | case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
|
---|
12342 | case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
|
---|
12343 | case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
|
---|
12344 | case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
|
---|
12345 | case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
|
---|
12346 | case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
|
---|
12347 | case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
|
---|
12348 | case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
|
---|
12349 | case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
|
---|
12350 | case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
|
---|
12351 | case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
|
---|
12352 | case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
|
---|
12353 | case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
|
---|
12354 | case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
|
---|
12355 | case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
|
---|
12356 | case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
|
---|
12357 | case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
|
---|
12358 | case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
|
---|
12359 | case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
|
---|
12360 | case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
|
---|
12361 | case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
|
---|
12362 | case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
|
---|
12363 | case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
|
---|
12364 | case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
|
---|
12365 | case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
|
---|
12366 | case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
|
---|
12367 | case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
|
---|
12368 | case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
|
---|
12369 | case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
|
---|
12370 | case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
|
---|
12371 | case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
|
---|
12372 | case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
|
---|
12373 | case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
|
---|
12374 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
12375 | case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
|
---|
12376 | case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
|
---|
12377 | case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
|
---|
12378 | case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
|
---|
12379 | case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
|
---|
12380 | case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
|
---|
12381 | case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
|
---|
12382 | case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
|
---|
12383 | case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
|
---|
12384 | #else
|
---|
12385 | case VMX_EXIT_VMCLEAR:
|
---|
12386 | case VMX_EXIT_VMLAUNCH:
|
---|
12387 | case VMX_EXIT_VMPTRLD:
|
---|
12388 | case VMX_EXIT_VMPTRST:
|
---|
12389 | case VMX_EXIT_VMREAD:
|
---|
12390 | case VMX_EXIT_VMRESUME:
|
---|
12391 | case VMX_EXIT_VMWRITE:
|
---|
12392 | case VMX_EXIT_VMXOFF:
|
---|
12393 | case VMX_EXIT_VMXON:
|
---|
12394 | return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
|
---|
12395 | #endif
|
---|
12396 |
|
---|
12397 | case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
|
---|
12398 | case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
|
---|
12399 | case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
|
---|
12400 | case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
|
---|
12401 | case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
|
---|
12402 | case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
|
---|
12403 | case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
|
---|
12404 | case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
|
---|
12405 | case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
|
---|
12406 |
|
---|
12407 | case VMX_EXIT_INVEPT:
|
---|
12408 | case VMX_EXIT_INVVPID:
|
---|
12409 | case VMX_EXIT_VMFUNC:
|
---|
12410 | case VMX_EXIT_XSAVES:
|
---|
12411 | case VMX_EXIT_XRSTORS:
|
---|
12412 | return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
|
---|
12413 |
|
---|
12414 | case VMX_EXIT_ENCLS:
|
---|
12415 | case VMX_EXIT_RDSEED:
|
---|
12416 | case VMX_EXIT_PML_FULL:
|
---|
12417 | default:
|
---|
12418 | return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
|
---|
12419 | }
|
---|
12420 | #undef VMEXIT_CALL_RET
|
---|
12421 | }
|
---|
12422 | #endif /* !HMVMX_USE_FUNCTION_TABLE */
|
---|
12423 |
|
---|
12424 |
|
---|
12425 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
12426 | /**
|
---|
12427 | * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
|
---|
12428 | *
|
---|
12429 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
12430 | * @param pVCpu The cross context virtual CPU structure.
|
---|
12431 | * @param pVmxTransient The VMX-transient structure.
|
---|
12432 | */
|
---|
12433 | DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
12434 | {
|
---|
12435 | uint32_t const rcReason = pVmxTransient->uExitReason;
|
---|
12436 | switch (rcReason)
|
---|
12437 | {
|
---|
12438 | case VMX_EXIT_EPT_MISCONFIG:
|
---|
12439 | case VMX_EXIT_EPT_VIOLATION:
|
---|
12440 | case VMX_EXIT_IO_INSTR:
|
---|
12441 | case VMX_EXIT_CPUID:
|
---|
12442 | case VMX_EXIT_RDTSC:
|
---|
12443 | case VMX_EXIT_RDTSCP:
|
---|
12444 | case VMX_EXIT_APIC_ACCESS:
|
---|
12445 | case VMX_EXIT_XCPT_OR_NMI:
|
---|
12446 | case VMX_EXIT_MOV_CRX:
|
---|
12447 | case VMX_EXIT_EXT_INT:
|
---|
12448 | case VMX_EXIT_INT_WINDOW:
|
---|
12449 | case VMX_EXIT_TPR_BELOW_THRESHOLD:
|
---|
12450 | case VMX_EXIT_MWAIT:
|
---|
12451 | case VMX_EXIT_MONITOR:
|
---|
12452 | case VMX_EXIT_TASK_SWITCH:
|
---|
12453 | case VMX_EXIT_PREEMPT_TIMER:
|
---|
12454 | case VMX_EXIT_RDMSR:
|
---|
12455 | case VMX_EXIT_WRMSR:
|
---|
12456 | case VMX_EXIT_VMCALL:
|
---|
12457 | case VMX_EXIT_MOV_DRX:
|
---|
12458 | case VMX_EXIT_HLT:
|
---|
12459 | case VMX_EXIT_INVD:
|
---|
12460 | case VMX_EXIT_INVLPG:
|
---|
12461 | case VMX_EXIT_RSM:
|
---|
12462 | case VMX_EXIT_MTF:
|
---|
12463 | case VMX_EXIT_PAUSE:
|
---|
12464 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
12465 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
12466 | case VMX_EXIT_WBINVD:
|
---|
12467 | case VMX_EXIT_XSETBV:
|
---|
12468 | case VMX_EXIT_RDRAND:
|
---|
12469 | case VMX_EXIT_INVPCID:
|
---|
12470 | case VMX_EXIT_GETSEC:
|
---|
12471 | case VMX_EXIT_RDPMC:
|
---|
12472 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
12473 | case VMX_EXIT_VMCLEAR:
|
---|
12474 | case VMX_EXIT_VMLAUNCH:
|
---|
12475 | case VMX_EXIT_VMPTRLD:
|
---|
12476 | case VMX_EXIT_VMPTRST:
|
---|
12477 | case VMX_EXIT_VMREAD:
|
---|
12478 | case VMX_EXIT_VMRESUME:
|
---|
12479 | case VMX_EXIT_VMWRITE:
|
---|
12480 | case VMX_EXIT_VMXOFF:
|
---|
12481 | case VMX_EXIT_VMXON:
|
---|
12482 | #endif
|
---|
12483 | case VMX_EXIT_TRIPLE_FAULT:
|
---|
12484 | case VMX_EXIT_NMI_WINDOW:
|
---|
12485 | case VMX_EXIT_INIT_SIGNAL:
|
---|
12486 | case VMX_EXIT_SIPI:
|
---|
12487 | case VMX_EXIT_IO_SMI:
|
---|
12488 | case VMX_EXIT_SMI:
|
---|
12489 | case VMX_EXIT_ERR_MSR_LOAD:
|
---|
12490 | case VMX_EXIT_ERR_INVALID_GUEST_STATE:
|
---|
12491 | case VMX_EXIT_ERR_MACHINE_CHECK:
|
---|
12492 |
|
---|
12493 | case VMX_EXIT_INVEPT:
|
---|
12494 | case VMX_EXIT_INVVPID:
|
---|
12495 | case VMX_EXIT_VMFUNC:
|
---|
12496 | case VMX_EXIT_XSAVES:
|
---|
12497 | case VMX_EXIT_XRSTORS:
|
---|
12498 |
|
---|
12499 | case VMX_EXIT_ENCLS:
|
---|
12500 | case VMX_EXIT_RDSEED:
|
---|
12501 | case VMX_EXIT_PML_FULL:
|
---|
12502 | default:
|
---|
12503 | return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
|
---|
12504 | }
|
---|
12505 | #undef VMEXIT_CALL_RET
|
---|
12506 | }
|
---|
12507 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
12508 |
|
---|
12509 |
|
---|
12510 | #ifdef VBOX_STRICT
|
---|
12511 | /* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
|
---|
12512 | # define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
|
---|
12513 | RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
|
---|
12514 |
|
---|
12515 | # define HMVMX_ASSERT_PREEMPT_CPUID() \
|
---|
12516 | do { \
|
---|
12517 | RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
|
---|
12518 | AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
|
---|
12519 | } while (0)
|
---|
12520 |
|
---|
12521 | # define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
|
---|
12522 | do { \
|
---|
12523 | AssertPtr((a_pVCpu)); \
|
---|
12524 | AssertPtr((a_pVmxTransient)); \
|
---|
12525 | Assert((a_pVmxTransient)->fVMEntryFailed == false); \
|
---|
12526 | Assert((a_pVmxTransient)->pVmcsInfo); \
|
---|
12527 | Assert(ASMIntAreEnabled()); \
|
---|
12528 | HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
|
---|
12529 | HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
|
---|
12530 | Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
|
---|
12531 | HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
|
---|
12532 | if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
|
---|
12533 | HMVMX_ASSERT_PREEMPT_CPUID(); \
|
---|
12534 | HMVMX_STOP_EXIT_DISPATCH_PROF(); \
|
---|
12535 | } while (0)
|
---|
12536 |
|
---|
12537 | # define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
|
---|
12538 | do { \
|
---|
12539 | Log4Func(("\n")); \
|
---|
12540 | } while (0)
|
---|
12541 | #else
|
---|
12542 | # define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
|
---|
12543 | do { \
|
---|
12544 | HMVMX_STOP_EXIT_DISPATCH_PROF(); \
|
---|
12545 | NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
|
---|
12546 | } while (0)
|
---|
12547 | # define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
|
---|
12548 | #endif
|
---|
12549 |
|
---|
12550 |
|
---|
12551 | /**
|
---|
12552 | * Advances the guest RIP by the specified number of bytes.
|
---|
12553 | *
|
---|
12554 | * @param pVCpu The cross context virtual CPU structure.
|
---|
12555 | * @param cbInstr Number of bytes to advance the RIP by.
|
---|
12556 | *
|
---|
12557 | * @remarks No-long-jump zone!!!
|
---|
12558 | */
|
---|
12559 | DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
|
---|
12560 | {
|
---|
12561 | /* Advance the RIP. */
|
---|
12562 | pVCpu->cpum.GstCtx.rip += cbInstr;
|
---|
12563 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
|
---|
12564 |
|
---|
12565 | /* Update interrupt inhibition. */
|
---|
12566 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
12567 | && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
12568 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
12569 | }
|
---|
12570 |
|
---|
12571 |
|
---|
12572 | /**
|
---|
12573 | * Advances the guest RIP after reading it from the VMCS.
|
---|
12574 | *
|
---|
12575 | * @returns VBox status code, no informational status codes.
|
---|
12576 | * @param pVCpu The cross context virtual CPU structure.
|
---|
12577 | * @param pVmxTransient The VMX-transient structure.
|
---|
12578 | *
|
---|
12579 | * @remarks No-long-jump zone!!!
|
---|
12580 | */
|
---|
12581 | static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
12582 | {
|
---|
12583 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
12584 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
|
---|
12585 | AssertRCReturn(rc, rc);
|
---|
12586 |
|
---|
12587 | hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
|
---|
12588 | return VINF_SUCCESS;
|
---|
12589 | }
|
---|
12590 |
|
---|
12591 |
|
---|
12592 | /**
|
---|
12593 | * Handle a condition that occurred while delivering an event through the guest
|
---|
12594 | * IDT.
|
---|
12595 | *
|
---|
12596 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
12597 | * @retval VINF_SUCCESS if we should continue handling the VM-exit.
|
---|
12598 | * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
|
---|
12599 | * to continue execution of the guest which will delivery the \#DF.
|
---|
12600 | * @retval VINF_EM_RESET if we detected a triple-fault condition.
|
---|
12601 | * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
|
---|
12602 | *
|
---|
12603 | * @param pVCpu The cross context virtual CPU structure.
|
---|
12604 | * @param pVmxTransient The VMX-transient structure.
|
---|
12605 | *
|
---|
12606 | * @remarks No-long-jump zone!!!
|
---|
12607 | */
|
---|
12608 | static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
12609 | {
|
---|
12610 | uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
|
---|
12611 |
|
---|
12612 | int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
|
---|
12613 | rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
12614 | AssertRCReturn(rc2, rc2);
|
---|
12615 |
|
---|
12616 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
12617 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
12618 | if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
12619 | {
|
---|
12620 | uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
|
---|
12621 | uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
|
---|
12622 |
|
---|
12623 | /*
|
---|
12624 | * If the event was a software interrupt (generated with INT n) or a software exception
|
---|
12625 | * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
|
---|
12626 | * can handle the VM-exit and continue guest execution which will re-execute the
|
---|
12627 | * instruction rather than re-injecting the exception, as that can cause premature
|
---|
12628 | * trips to ring-3 before injection and involve TRPM which currently has no way of
|
---|
12629 | * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
|
---|
12630 | * the problem).
|
---|
12631 | */
|
---|
12632 | IEMXCPTRAISE enmRaise;
|
---|
12633 | IEMXCPTRAISEINFO fRaiseInfo;
|
---|
12634 | if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
12635 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
|
---|
12636 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
|
---|
12637 | {
|
---|
12638 | enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
|
---|
12639 | fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
12640 | }
|
---|
12641 | else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
|
---|
12642 | {
|
---|
12643 | uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
|
---|
12644 | uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
|
---|
12645 | uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
|
---|
12646 | /** @todo Make AssertMsgReturn as just AssertMsg later. */
|
---|
12647 | AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
|
---|
12648 | ("Unexpected VM-exit interruption vector type %#x!\n", uExitVectorType), VERR_VMX_IPE_5);
|
---|
12649 |
|
---|
12650 | enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
|
---|
12651 |
|
---|
12652 | /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
|
---|
12653 | if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
|
---|
12654 | {
|
---|
12655 | pVmxTransient->fVectoringPF = true;
|
---|
12656 | enmRaise = IEMXCPTRAISE_PREV_EVENT;
|
---|
12657 | }
|
---|
12658 | }
|
---|
12659 | else
|
---|
12660 | {
|
---|
12661 | /*
|
---|
12662 | * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
|
---|
12663 | * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
|
---|
12664 | * It is sufficient to reflect the original event to the guest after handling the VM-exit.
|
---|
12665 | */
|
---|
12666 | Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
12667 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
|
---|
12668 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
|
---|
12669 | enmRaise = IEMXCPTRAISE_PREV_EVENT;
|
---|
12670 | fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
12671 | }
|
---|
12672 |
|
---|
12673 | /*
|
---|
12674 | * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
|
---|
12675 | * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
|
---|
12676 | * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
|
---|
12677 | * subsequent VM-entry would fail.
|
---|
12678 | *
|
---|
12679 | * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
|
---|
12680 | */
|
---|
12681 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
|
---|
12682 | && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
|
---|
12683 | && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
|
---|
12684 | || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
|
---|
12685 | && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
|
---|
12686 | {
|
---|
12687 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
12688 | }
|
---|
12689 |
|
---|
12690 | switch (enmRaise)
|
---|
12691 | {
|
---|
12692 | case IEMXCPTRAISE_CURRENT_XCPT:
|
---|
12693 | {
|
---|
12694 | Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
|
---|
12695 | pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
|
---|
12696 | Assert(rcStrict == VINF_SUCCESS);
|
---|
12697 | break;
|
---|
12698 | }
|
---|
12699 |
|
---|
12700 | case IEMXCPTRAISE_PREV_EVENT:
|
---|
12701 | {
|
---|
12702 | uint32_t u32ErrCode;
|
---|
12703 | if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
12704 | {
|
---|
12705 | rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
|
---|
12706 | AssertRCReturn(rc2, rc2);
|
---|
12707 | u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
12708 | }
|
---|
12709 | else
|
---|
12710 | u32ErrCode = 0;
|
---|
12711 |
|
---|
12712 | /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
|
---|
12713 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
12714 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
|
---|
12715 | 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
|
---|
12716 |
|
---|
12717 | Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
|
---|
12718 | pVCpu->hm.s.Event.u32ErrCode));
|
---|
12719 | Assert(rcStrict == VINF_SUCCESS);
|
---|
12720 | break;
|
---|
12721 | }
|
---|
12722 |
|
---|
12723 | case IEMXCPTRAISE_REEXEC_INSTR:
|
---|
12724 | Assert(rcStrict == VINF_SUCCESS);
|
---|
12725 | break;
|
---|
12726 |
|
---|
12727 | case IEMXCPTRAISE_DOUBLE_FAULT:
|
---|
12728 | {
|
---|
12729 | /*
|
---|
12730 | * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
|
---|
12731 | * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
|
---|
12732 | */
|
---|
12733 | if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
|
---|
12734 | {
|
---|
12735 | pVmxTransient->fVectoringDoublePF = true;
|
---|
12736 | Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
|
---|
12737 | pVCpu->cpum.GstCtx.cr2));
|
---|
12738 | rcStrict = VINF_SUCCESS;
|
---|
12739 | }
|
---|
12740 | else
|
---|
12741 | {
|
---|
12742 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
12743 | hmR0VmxSetPendingXcptDF(pVCpu);
|
---|
12744 | Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
|
---|
12745 | uIdtVector, uExitVector));
|
---|
12746 | rcStrict = VINF_HM_DOUBLE_FAULT;
|
---|
12747 | }
|
---|
12748 | break;
|
---|
12749 | }
|
---|
12750 |
|
---|
12751 | case IEMXCPTRAISE_TRIPLE_FAULT:
|
---|
12752 | {
|
---|
12753 | Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
|
---|
12754 | rcStrict = VINF_EM_RESET;
|
---|
12755 | break;
|
---|
12756 | }
|
---|
12757 |
|
---|
12758 | case IEMXCPTRAISE_CPU_HANG:
|
---|
12759 | {
|
---|
12760 | Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
|
---|
12761 | rcStrict = VERR_EM_GUEST_CPU_HANG;
|
---|
12762 | break;
|
---|
12763 | }
|
---|
12764 |
|
---|
12765 | default:
|
---|
12766 | {
|
---|
12767 | AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
|
---|
12768 | rcStrict = VERR_VMX_IPE_2;
|
---|
12769 | break;
|
---|
12770 | }
|
---|
12771 | }
|
---|
12772 | }
|
---|
12773 | else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
|
---|
12774 | && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
|
---|
12775 | && uExitVector != X86_XCPT_DF
|
---|
12776 | && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
|
---|
12777 | {
|
---|
12778 | /*
|
---|
12779 | * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
|
---|
12780 | * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
|
---|
12781 | * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
|
---|
12782 | */
|
---|
12783 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
12784 | {
|
---|
12785 | Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
|
---|
12786 | VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
|
---|
12787 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
12788 | }
|
---|
12789 | }
|
---|
12790 |
|
---|
12791 | Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
|
---|
12792 | || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
|
---|
12793 | return rcStrict;
|
---|
12794 | }
|
---|
12795 |
|
---|
12796 |
|
---|
12797 | /** @name VM-exit handlers.
|
---|
12798 | * @{
|
---|
12799 | */
|
---|
12800 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
12801 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
12802 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
12803 |
|
---|
12804 | /**
|
---|
12805 | * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
|
---|
12806 | */
|
---|
12807 | HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
12808 | {
|
---|
12809 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
12810 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
|
---|
12811 | /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
|
---|
12812 | if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
|
---|
12813 | return VINF_SUCCESS;
|
---|
12814 | return VINF_EM_RAW_INTERRUPT;
|
---|
12815 | }
|
---|
12816 |
|
---|
12817 |
|
---|
12818 | /**
|
---|
12819 | * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
|
---|
12820 | */
|
---|
12821 | HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
12822 | {
|
---|
12823 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
12824 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
12825 |
|
---|
12826 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
12827 | int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
12828 | AssertRCReturn(rc, rc);
|
---|
12829 |
|
---|
12830 | uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
|
---|
12831 | Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
|
---|
12832 | && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
|
---|
12833 | Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
|
---|
12834 |
|
---|
12835 | if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
|
---|
12836 | {
|
---|
12837 | /*
|
---|
12838 | * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
|
---|
12839 | * injected it ourselves and anything we inject is not going to cause a VM-exit directly
|
---|
12840 | * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
|
---|
12841 | *
|
---|
12842 | * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
|
---|
12843 | * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
|
---|
12844 | */
|
---|
12845 | VMXDispatchHostNmi();
|
---|
12846 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
|
---|
12847 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
12848 | return VINF_SUCCESS;
|
---|
12849 | }
|
---|
12850 |
|
---|
12851 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
12852 | VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
|
---|
12853 | if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
|
---|
12854 | { /* likely */ }
|
---|
12855 | else
|
---|
12856 | {
|
---|
12857 | if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
|
---|
12858 | rcStrictRc1 = VINF_SUCCESS;
|
---|
12859 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
12860 | return rcStrictRc1;
|
---|
12861 | }
|
---|
12862 |
|
---|
12863 | uint32_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
|
---|
12864 | uint32_t const uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
|
---|
12865 | switch (uIntType)
|
---|
12866 | {
|
---|
12867 | case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
|
---|
12868 | Assert(uVector == X86_XCPT_DB);
|
---|
12869 | RT_FALL_THRU();
|
---|
12870 | case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
|
---|
12871 | Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
|
---|
12872 | RT_FALL_THRU();
|
---|
12873 | case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
|
---|
12874 | {
|
---|
12875 | /*
|
---|
12876 | * If there's any exception caused as a result of event injection, the resulting
|
---|
12877 | * secondary/final execption will be pending, we shall continue guest execution
|
---|
12878 | * after injecting the event. The page-fault case is complicated and we manually
|
---|
12879 | * handle any currently pending event in hmR0VmxExitXcptPF.
|
---|
12880 | */
|
---|
12881 | if (!pVCpu->hm.s.Event.fPending)
|
---|
12882 | { /* likely */ }
|
---|
12883 | else if (uVector != X86_XCPT_PF)
|
---|
12884 | {
|
---|
12885 | rc = VINF_SUCCESS;
|
---|
12886 | break;
|
---|
12887 | }
|
---|
12888 |
|
---|
12889 | switch (uVector)
|
---|
12890 | {
|
---|
12891 | case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
|
---|
12892 | case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
|
---|
12893 | case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
|
---|
12894 | case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
|
---|
12895 | case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
|
---|
12896 | case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
|
---|
12897 |
|
---|
12898 | case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
|
---|
12899 | rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
|
---|
12900 | case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
|
---|
12901 | rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
|
---|
12902 | case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
|
---|
12903 | rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
|
---|
12904 | case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
|
---|
12905 | rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
|
---|
12906 | case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
|
---|
12907 | rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
|
---|
12908 | case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
|
---|
12909 | rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
|
---|
12910 | case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
|
---|
12911 | rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
|
---|
12912 | default:
|
---|
12913 | {
|
---|
12914 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
|
---|
12915 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
12916 | {
|
---|
12917 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
12918 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
12919 | Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
|
---|
12920 |
|
---|
12921 | rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
|
---|
12922 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
12923 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
12924 | AssertRCReturn(rc, rc);
|
---|
12925 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
|
---|
12926 | pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
|
---|
12927 | 0 /* GCPtrFaultAddress */);
|
---|
12928 | }
|
---|
12929 | else
|
---|
12930 | {
|
---|
12931 | AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
|
---|
12932 | pVCpu->hm.s.u32HMError = uVector;
|
---|
12933 | rc = VERR_VMX_UNEXPECTED_EXCEPTION;
|
---|
12934 | }
|
---|
12935 | break;
|
---|
12936 | }
|
---|
12937 | }
|
---|
12938 | break;
|
---|
12939 | }
|
---|
12940 |
|
---|
12941 | default:
|
---|
12942 | {
|
---|
12943 | pVCpu->hm.s.u32HMError = uExitIntInfo;
|
---|
12944 | rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
|
---|
12945 | AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
|
---|
12946 | break;
|
---|
12947 | }
|
---|
12948 | }
|
---|
12949 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
12950 | return rc;
|
---|
12951 | }
|
---|
12952 |
|
---|
12953 |
|
---|
12954 | /**
|
---|
12955 | * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
|
---|
12956 | */
|
---|
12957 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
12958 | {
|
---|
12959 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
12960 |
|
---|
12961 | /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
|
---|
12962 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
12963 | int rc = hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
|
---|
12964 | AssertRCReturn(rc, rc);
|
---|
12965 |
|
---|
12966 | /* Evaluate and deliver pending events and resume guest execution. */
|
---|
12967 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
|
---|
12968 | return VINF_SUCCESS;
|
---|
12969 | }
|
---|
12970 |
|
---|
12971 |
|
---|
12972 | /**
|
---|
12973 | * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
|
---|
12974 | */
|
---|
12975 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
12976 | {
|
---|
12977 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
12978 |
|
---|
12979 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
12980 | if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
|
---|
12981 | {
|
---|
12982 | AssertMsgFailed(("Unexpected NMI-window exit.\n"));
|
---|
12983 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
12984 | }
|
---|
12985 |
|
---|
12986 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS));
|
---|
12987 |
|
---|
12988 | /*
|
---|
12989 | * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
|
---|
12990 | * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
|
---|
12991 | */
|
---|
12992 | uint32_t fIntrState;
|
---|
12993 | int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
|
---|
12994 | AssertRCReturn(rc, rc);
|
---|
12995 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
|
---|
12996 | if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
12997 | {
|
---|
12998 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
12999 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
13000 |
|
---|
13001 | fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
|
---|
13002 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
|
---|
13003 | AssertRCReturn(rc, rc);
|
---|
13004 | }
|
---|
13005 |
|
---|
13006 | /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
|
---|
13007 | rc = hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
|
---|
13008 | AssertRCReturn(rc, rc);
|
---|
13009 |
|
---|
13010 | /* Evaluate and deliver pending events and resume guest execution. */
|
---|
13011 | return VINF_SUCCESS;
|
---|
13012 | }
|
---|
13013 |
|
---|
13014 |
|
---|
13015 | /**
|
---|
13016 | * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
|
---|
13017 | */
|
---|
13018 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13019 | {
|
---|
13020 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13021 | return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
13022 | }
|
---|
13023 |
|
---|
13024 |
|
---|
13025 | /**
|
---|
13026 | * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
|
---|
13027 | */
|
---|
13028 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13029 | {
|
---|
13030 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13031 | return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
13032 | }
|
---|
13033 |
|
---|
13034 |
|
---|
13035 | /**
|
---|
13036 | * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
|
---|
13037 | */
|
---|
13038 | HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13039 | {
|
---|
13040 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13041 |
|
---|
13042 | /*
|
---|
13043 | * Get the state we need and update the exit history entry.
|
---|
13044 | */
|
---|
13045 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13046 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13047 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
|
---|
13048 | AssertRCReturn(rc, rc);
|
---|
13049 |
|
---|
13050 | VBOXSTRICTRC rcStrict;
|
---|
13051 | PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
|
---|
13052 | EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
|
---|
13053 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
13054 | if (!pExitRec)
|
---|
13055 | {
|
---|
13056 | /*
|
---|
13057 | * Regular CPUID instruction execution.
|
---|
13058 | */
|
---|
13059 | rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
|
---|
13060 | if (rcStrict == VINF_SUCCESS)
|
---|
13061 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
13062 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
13063 | {
|
---|
13064 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
13065 | rcStrict = VINF_SUCCESS;
|
---|
13066 | }
|
---|
13067 | }
|
---|
13068 | else
|
---|
13069 | {
|
---|
13070 | /*
|
---|
13071 | * Frequent exit or something needing probing. Get state and call EMHistoryExec.
|
---|
13072 | */
|
---|
13073 | int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
13074 | AssertRCReturn(rc2, rc2);
|
---|
13075 |
|
---|
13076 | Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
|
---|
13077 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
|
---|
13078 |
|
---|
13079 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
13080 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
13081 |
|
---|
13082 | Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
13083 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
13084 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
13085 | }
|
---|
13086 | return rcStrict;
|
---|
13087 | }
|
---|
13088 |
|
---|
13089 |
|
---|
13090 | /**
|
---|
13091 | * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
|
---|
13092 | */
|
---|
13093 | HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13094 | {
|
---|
13095 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13096 |
|
---|
13097 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13098 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
|
---|
13099 | AssertRCReturn(rc, rc);
|
---|
13100 |
|
---|
13101 | if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
|
---|
13102 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
13103 |
|
---|
13104 | AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
|
---|
13105 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13106 | }
|
---|
13107 |
|
---|
13108 |
|
---|
13109 | /**
|
---|
13110 | * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
|
---|
13111 | */
|
---|
13112 | HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13113 | {
|
---|
13114 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13115 |
|
---|
13116 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13117 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
13118 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13119 | AssertRCReturn(rc, rc);
|
---|
13120 |
|
---|
13121 | VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
|
---|
13122 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
13123 | {
|
---|
13124 | /* If we get a spurious VM-exit when TSC offsetting is enabled,
|
---|
13125 | we must reset offsetting on VM-entry. See @bugref{6634}. */
|
---|
13126 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
|
---|
13127 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
|
---|
13128 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
13129 | }
|
---|
13130 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
13131 | {
|
---|
13132 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
13133 | rcStrict = VINF_SUCCESS;
|
---|
13134 | }
|
---|
13135 | return rcStrict;
|
---|
13136 | }
|
---|
13137 |
|
---|
13138 |
|
---|
13139 | /**
|
---|
13140 | * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
|
---|
13141 | */
|
---|
13142 | HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13143 | {
|
---|
13144 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13145 |
|
---|
13146 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13147 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
|
---|
13148 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13149 | AssertRCReturn(rc, rc);
|
---|
13150 |
|
---|
13151 | VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
|
---|
13152 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
13153 | {
|
---|
13154 | /* If we get a spurious VM-exit when TSC offsetting is enabled,
|
---|
13155 | we must reset offsetting on VM-reentry. See @bugref{6634}. */
|
---|
13156 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
|
---|
13157 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
|
---|
13158 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
13159 | }
|
---|
13160 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
13161 | {
|
---|
13162 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
13163 | rcStrict = VINF_SUCCESS;
|
---|
13164 | }
|
---|
13165 | return rcStrict;
|
---|
13166 | }
|
---|
13167 |
|
---|
13168 |
|
---|
13169 | /**
|
---|
13170 | * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
|
---|
13171 | */
|
---|
13172 | HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13173 | {
|
---|
13174 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13175 |
|
---|
13176 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13177 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
|
---|
13178 | | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
|
---|
13179 | AssertRCReturn(rc, rc);
|
---|
13180 |
|
---|
13181 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
13182 | rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
13183 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
13184 | {
|
---|
13185 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
13186 | Assert(pVmxTransient->cbInstr == 2);
|
---|
13187 | }
|
---|
13188 | else
|
---|
13189 | {
|
---|
13190 | AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
|
---|
13191 | rc = VERR_EM_INTERPRETER;
|
---|
13192 | }
|
---|
13193 | return rc;
|
---|
13194 | }
|
---|
13195 |
|
---|
13196 |
|
---|
13197 | /**
|
---|
13198 | * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
|
---|
13199 | */
|
---|
13200 | HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13201 | {
|
---|
13202 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13203 |
|
---|
13204 | VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
|
---|
13205 | if (EMAreHypercallInstructionsEnabled(pVCpu))
|
---|
13206 | {
|
---|
13207 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13208 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
|
---|
13209 | | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
13210 | AssertRCReturn(rc, rc);
|
---|
13211 |
|
---|
13212 | /* Perform the hypercall. */
|
---|
13213 | rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
|
---|
13214 | if (rcStrict == VINF_SUCCESS)
|
---|
13215 | {
|
---|
13216 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
13217 | AssertRCReturn(rc, rc);
|
---|
13218 | }
|
---|
13219 | else
|
---|
13220 | Assert( rcStrict == VINF_GIM_R3_HYPERCALL
|
---|
13221 | || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
|
---|
13222 | || RT_FAILURE(rcStrict));
|
---|
13223 |
|
---|
13224 | /* If the hypercall changes anything other than guest's general-purpose registers,
|
---|
13225 | we would need to reload the guest changed bits here before VM-entry. */
|
---|
13226 | }
|
---|
13227 | else
|
---|
13228 | Log4Func(("Hypercalls not enabled\n"));
|
---|
13229 |
|
---|
13230 | /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
|
---|
13231 | if (RT_FAILURE(rcStrict))
|
---|
13232 | {
|
---|
13233 | hmR0VmxSetPendingXcptUD(pVCpu);
|
---|
13234 | rcStrict = VINF_SUCCESS;
|
---|
13235 | }
|
---|
13236 |
|
---|
13237 | return rcStrict;
|
---|
13238 | }
|
---|
13239 |
|
---|
13240 |
|
---|
13241 | /**
|
---|
13242 | * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
|
---|
13243 | */
|
---|
13244 | HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13245 | {
|
---|
13246 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13247 | Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
|
---|
13248 |
|
---|
13249 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13250 | int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
13251 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13252 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
13253 | AssertRCReturn(rc, rc);
|
---|
13254 |
|
---|
13255 | VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
|
---|
13256 |
|
---|
13257 | if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
|
---|
13258 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
13259 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
13260 | {
|
---|
13261 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
13262 | rcStrict = VINF_SUCCESS;
|
---|
13263 | }
|
---|
13264 | else
|
---|
13265 | AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
|
---|
13266 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13267 | return rcStrict;
|
---|
13268 | }
|
---|
13269 |
|
---|
13270 |
|
---|
13271 | /**
|
---|
13272 | * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
|
---|
13273 | */
|
---|
13274 | HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13275 | {
|
---|
13276 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13277 |
|
---|
13278 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13279 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
|
---|
13280 | AssertRCReturn(rc, rc);
|
---|
13281 |
|
---|
13282 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
13283 | rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
13284 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
13285 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
13286 | else
|
---|
13287 | {
|
---|
13288 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
|
---|
13289 | rc = VERR_EM_INTERPRETER;
|
---|
13290 | }
|
---|
13291 | return rc;
|
---|
13292 | }
|
---|
13293 |
|
---|
13294 |
|
---|
13295 | /**
|
---|
13296 | * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
|
---|
13297 | */
|
---|
13298 | HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13299 | {
|
---|
13300 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13301 |
|
---|
13302 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13303 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
|
---|
13304 | AssertRCReturn(rc, rc);
|
---|
13305 |
|
---|
13306 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
13307 | VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
13308 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
13309 | if (RT_LIKELY( rc == VINF_SUCCESS
|
---|
13310 | || rc == VINF_EM_HALT))
|
---|
13311 | {
|
---|
13312 | int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
13313 | AssertRCReturn(rc3, rc3);
|
---|
13314 |
|
---|
13315 | if ( rc == VINF_EM_HALT
|
---|
13316 | && EMMonitorWaitShouldContinue(pVCpu, pCtx))
|
---|
13317 | rc = VINF_SUCCESS;
|
---|
13318 | }
|
---|
13319 | else
|
---|
13320 | {
|
---|
13321 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
|
---|
13322 | rc = VERR_EM_INTERPRETER;
|
---|
13323 | }
|
---|
13324 | AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
|
---|
13325 | ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
|
---|
13326 | return rc;
|
---|
13327 | }
|
---|
13328 |
|
---|
13329 |
|
---|
13330 | /**
|
---|
13331 | * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
|
---|
13332 | */
|
---|
13333 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13334 | {
|
---|
13335 | /*
|
---|
13336 | * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
|
---|
13337 | * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
|
---|
13338 | * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
|
---|
13339 | * VMX root operation. If we get here, something funny is going on.
|
---|
13340 | *
|
---|
13341 | * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
|
---|
13342 | */
|
---|
13343 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13344 | AssertMsgFailed(("Unexpected RSM VM-exit\n"));
|
---|
13345 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13346 | }
|
---|
13347 |
|
---|
13348 |
|
---|
13349 | /**
|
---|
13350 | * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
|
---|
13351 | */
|
---|
13352 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13353 | {
|
---|
13354 | /*
|
---|
13355 | * This can only happen if we support dual-monitor treatment of SMI, which can be activated
|
---|
13356 | * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
|
---|
13357 | * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
|
---|
13358 | * an SMI. If we get here, something funny is going on.
|
---|
13359 | *
|
---|
13360 | * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
|
---|
13361 | * See Intel spec. 25.3 "Other Causes of VM-Exits"
|
---|
13362 | */
|
---|
13363 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13364 | AssertMsgFailed(("Unexpected SMI VM-exit\n"));
|
---|
13365 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13366 | }
|
---|
13367 |
|
---|
13368 |
|
---|
13369 | /**
|
---|
13370 | * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
|
---|
13371 | */
|
---|
13372 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13373 | {
|
---|
13374 | /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
|
---|
13375 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13376 | AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
|
---|
13377 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13378 | }
|
---|
13379 |
|
---|
13380 |
|
---|
13381 | /**
|
---|
13382 | * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
|
---|
13383 | */
|
---|
13384 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13385 | {
|
---|
13386 | /*
|
---|
13387 | * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
|
---|
13388 | * We don't make use of it as our guests don't have direct access to the host LAPIC.
|
---|
13389 | * See Intel spec. 25.3 "Other Causes of VM-exits".
|
---|
13390 | */
|
---|
13391 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13392 | AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
|
---|
13393 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13394 | }
|
---|
13395 |
|
---|
13396 |
|
---|
13397 | /**
|
---|
13398 | * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
|
---|
13399 | * VM-exit.
|
---|
13400 | */
|
---|
13401 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13402 | {
|
---|
13403 | /*
|
---|
13404 | * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
|
---|
13405 | * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
|
---|
13406 | *
|
---|
13407 | * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
|
---|
13408 | * See Intel spec. "23.8 Restrictions on VMX operation".
|
---|
13409 | */
|
---|
13410 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13411 | return VINF_SUCCESS;
|
---|
13412 | }
|
---|
13413 |
|
---|
13414 |
|
---|
13415 | /**
|
---|
13416 | * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
|
---|
13417 | * VM-exit.
|
---|
13418 | */
|
---|
13419 | HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13420 | {
|
---|
13421 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13422 | return VINF_EM_RESET;
|
---|
13423 | }
|
---|
13424 |
|
---|
13425 |
|
---|
13426 | /**
|
---|
13427 | * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
|
---|
13428 | */
|
---|
13429 | HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13430 | {
|
---|
13431 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13432 |
|
---|
13433 | int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
13434 | AssertRCReturn(rc, rc);
|
---|
13435 |
|
---|
13436 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
|
---|
13437 | if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
|
---|
13438 | rc = VINF_SUCCESS;
|
---|
13439 | else
|
---|
13440 | rc = VINF_EM_HALT;
|
---|
13441 |
|
---|
13442 | if (rc != VINF_SUCCESS)
|
---|
13443 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
|
---|
13444 | return rc;
|
---|
13445 | }
|
---|
13446 |
|
---|
13447 |
|
---|
13448 | /**
|
---|
13449 | * VM-exit handler for instructions that result in a \#UD exception delivered to
|
---|
13450 | * the guest.
|
---|
13451 | */
|
---|
13452 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13453 | {
|
---|
13454 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13455 | hmR0VmxSetPendingXcptUD(pVCpu);
|
---|
13456 | return VINF_SUCCESS;
|
---|
13457 | }
|
---|
13458 |
|
---|
13459 |
|
---|
13460 | /**
|
---|
13461 | * VM-exit handler for expiry of the VMX-preemption timer.
|
---|
13462 | */
|
---|
13463 | HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13464 | {
|
---|
13465 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13466 |
|
---|
13467 | /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
|
---|
13468 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
|
---|
13469 |
|
---|
13470 | /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
|
---|
13471 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13472 | bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
|
---|
13473 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
|
---|
13474 | return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
|
---|
13475 | }
|
---|
13476 |
|
---|
13477 |
|
---|
13478 | /**
|
---|
13479 | * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
|
---|
13480 | */
|
---|
13481 | HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13482 | {
|
---|
13483 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13484 |
|
---|
13485 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13486 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13487 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
|
---|
13488 | AssertRCReturn(rc, rc);
|
---|
13489 |
|
---|
13490 | VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
|
---|
13491 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
|
---|
13492 | : HM_CHANGED_RAISED_XCPT_MASK);
|
---|
13493 |
|
---|
13494 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
13495 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
13496 |
|
---|
13497 | return rcStrict;
|
---|
13498 | }
|
---|
13499 |
|
---|
13500 |
|
---|
13501 | /**
|
---|
13502 | * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
|
---|
13503 | */
|
---|
13504 | HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13505 | {
|
---|
13506 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13507 | /** @todo Use VM-exit instruction information. */
|
---|
13508 | return VERR_EM_INTERPRETER;
|
---|
13509 | }
|
---|
13510 |
|
---|
13511 |
|
---|
13512 | /**
|
---|
13513 | * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
|
---|
13514 | * Error VM-exit.
|
---|
13515 | */
|
---|
13516 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13517 | {
|
---|
13518 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13519 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
13520 | AssertRCReturn(rc, rc);
|
---|
13521 |
|
---|
13522 | rc = hmR0VmxCheckVmcsCtls(pVCpu, pVmcsInfo);
|
---|
13523 | if (RT_FAILURE(rc))
|
---|
13524 | return rc;
|
---|
13525 |
|
---|
13526 | uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
|
---|
13527 | NOREF(uInvalidReason);
|
---|
13528 |
|
---|
13529 | #ifdef VBOX_STRICT
|
---|
13530 | uint32_t fIntrState;
|
---|
13531 | RTHCUINTREG uHCReg;
|
---|
13532 | uint64_t u64Val;
|
---|
13533 | uint32_t u32Val;
|
---|
13534 | rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
|
---|
13535 | rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
|
---|
13536 | rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
|
---|
13537 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
|
---|
13538 | AssertRCReturn(rc, rc);
|
---|
13539 |
|
---|
13540 | Log4(("uInvalidReason %u\n", uInvalidReason));
|
---|
13541 | Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
|
---|
13542 | Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
|
---|
13543 | Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
|
---|
13544 | Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
|
---|
13545 |
|
---|
13546 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
|
---|
13547 | Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
|
---|
13548 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
|
---|
13549 | Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
|
---|
13550 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
13551 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
13552 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
|
---|
13553 | Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
|
---|
13554 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
13555 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
13556 | rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
|
---|
13557 | Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
|
---|
13558 |
|
---|
13559 | hmR0DumpRegs(pVCpu);
|
---|
13560 | #endif
|
---|
13561 |
|
---|
13562 | return VERR_VMX_INVALID_GUEST_STATE;
|
---|
13563 | }
|
---|
13564 |
|
---|
13565 |
|
---|
13566 | /**
|
---|
13567 | * VM-exit handler for VM-entry failure due to an MSR-load
|
---|
13568 | * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
|
---|
13569 | */
|
---|
13570 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13571 | {
|
---|
13572 | AssertMsgFailed(("Unexpected MSR-load exit\n"));
|
---|
13573 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13574 | }
|
---|
13575 |
|
---|
13576 |
|
---|
13577 | /**
|
---|
13578 | * VM-exit handler for VM-entry failure due to a machine-check event
|
---|
13579 | * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
|
---|
13580 | */
|
---|
13581 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13582 | {
|
---|
13583 | AssertMsgFailed(("Unexpected machine-check event exit\n"));
|
---|
13584 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13585 | }
|
---|
13586 |
|
---|
13587 |
|
---|
13588 | /**
|
---|
13589 | * VM-exit handler for all undefined reasons. Should never ever happen.. in
|
---|
13590 | * theory.
|
---|
13591 | */
|
---|
13592 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13593 | {
|
---|
13594 | RT_NOREF2(pVCpu, pVmxTransient);
|
---|
13595 | AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
|
---|
13596 | return VERR_VMX_UNDEFINED_EXIT_CODE;
|
---|
13597 | }
|
---|
13598 |
|
---|
13599 |
|
---|
13600 | /**
|
---|
13601 | * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
|
---|
13602 | * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
|
---|
13603 | * Conditional VM-exit.
|
---|
13604 | */
|
---|
13605 | HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13606 | {
|
---|
13607 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13608 |
|
---|
13609 | /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
|
---|
13610 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
|
---|
13611 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13612 | if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
|
---|
13613 | return VERR_EM_INTERPRETER;
|
---|
13614 | AssertMsgFailed(("Unexpected XDTR access\n"));
|
---|
13615 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13616 | }
|
---|
13617 |
|
---|
13618 |
|
---|
13619 | /**
|
---|
13620 | * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
|
---|
13621 | */
|
---|
13622 | HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13623 | {
|
---|
13624 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13625 |
|
---|
13626 | /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
|
---|
13627 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13628 | if (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
|
---|
13629 | return VERR_EM_INTERPRETER;
|
---|
13630 | AssertMsgFailed(("Unexpected RDRAND exit\n"));
|
---|
13631 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13632 | }
|
---|
13633 |
|
---|
13634 |
|
---|
13635 | /**
|
---|
13636 | * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
|
---|
13637 | */
|
---|
13638 | HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13639 | {
|
---|
13640 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13641 |
|
---|
13642 | /** @todo Optimize this: We currently drag in in the whole MSR state
|
---|
13643 | * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
|
---|
13644 | * MSRs required. That would require changes to IEM and possibly CPUM too.
|
---|
13645 | * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
|
---|
13646 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13647 | uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
|
---|
13648 | uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
|
---|
13649 | switch (idMsr)
|
---|
13650 | {
|
---|
13651 | case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
|
---|
13652 | case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
|
---|
13653 | }
|
---|
13654 |
|
---|
13655 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13656 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
|
---|
13657 | AssertRCReturn(rc, rc);
|
---|
13658 |
|
---|
13659 | Log4Func(("ecx=%#RX32\n", idMsr));
|
---|
13660 |
|
---|
13661 | #ifdef VBOX_STRICT
|
---|
13662 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
13663 | {
|
---|
13664 | if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
|
---|
13665 | && idMsr != MSR_K6_EFER)
|
---|
13666 | {
|
---|
13667 | AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
|
---|
13668 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13669 | }
|
---|
13670 | if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
|
---|
13671 | {
|
---|
13672 | Assert(pVmcsInfo->pvMsrBitmap);
|
---|
13673 | uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
|
---|
13674 | if (fMsrpm & VMXMSRPM_ALLOW_RD)
|
---|
13675 | {
|
---|
13676 | AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
|
---|
13677 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13678 | }
|
---|
13679 | }
|
---|
13680 | }
|
---|
13681 | #endif
|
---|
13682 |
|
---|
13683 | VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
|
---|
13684 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
|
---|
13685 | if (rcStrict == VINF_SUCCESS)
|
---|
13686 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
|
---|
13687 | | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
|
---|
13688 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
13689 | {
|
---|
13690 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
13691 | rcStrict = VINF_SUCCESS;
|
---|
13692 | }
|
---|
13693 | else
|
---|
13694 | AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13695 |
|
---|
13696 | return rcStrict;
|
---|
13697 | }
|
---|
13698 |
|
---|
13699 |
|
---|
13700 | /**
|
---|
13701 | * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
|
---|
13702 | */
|
---|
13703 | HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13704 | {
|
---|
13705 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13706 |
|
---|
13707 | /** @todo Optimize this: We currently drag in in the whole MSR state
|
---|
13708 | * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
|
---|
13709 | * MSRs required. That would require changes to IEM and possibly CPUM too.
|
---|
13710 | * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
|
---|
13711 | uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
|
---|
13712 | uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
|
---|
13713 |
|
---|
13714 | /*
|
---|
13715 | * The FS and GS base MSRs are not part of the above all-MSRs mask.
|
---|
13716 | * Although we don't need to fetch the base as it will be overwritten shortly, while
|
---|
13717 | * loading guest-state we would also load the entire segment register including limit
|
---|
13718 | * and attributes and thus we need to load them here.
|
---|
13719 | */
|
---|
13720 | switch (idMsr)
|
---|
13721 | {
|
---|
13722 | case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
|
---|
13723 | case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
|
---|
13724 | }
|
---|
13725 |
|
---|
13726 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13727 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13728 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
|
---|
13729 | AssertRCReturn(rc, rc);
|
---|
13730 |
|
---|
13731 | Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
|
---|
13732 |
|
---|
13733 | VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
|
---|
13734 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
|
---|
13735 |
|
---|
13736 | if (rcStrict == VINF_SUCCESS)
|
---|
13737 | {
|
---|
13738 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
13739 |
|
---|
13740 | /* If this is an X2APIC WRMSR access, update the APIC state as well. */
|
---|
13741 | if ( idMsr == MSR_IA32_APICBASE
|
---|
13742 | || ( idMsr >= MSR_IA32_X2APIC_START
|
---|
13743 | && idMsr <= MSR_IA32_X2APIC_END))
|
---|
13744 | {
|
---|
13745 | /*
|
---|
13746 | * We've already saved the APIC related guest-state (TPR) in post-run phase.
|
---|
13747 | * When full APIC register virtualization is implemented we'll have to make
|
---|
13748 | * sure APIC state is saved from the VMCS before IEM changes it.
|
---|
13749 | */
|
---|
13750 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
|
---|
13751 | }
|
---|
13752 | else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
|
---|
13753 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
|
---|
13754 | else if (idMsr == MSR_K6_EFER)
|
---|
13755 | {
|
---|
13756 | /*
|
---|
13757 | * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
|
---|
13758 | * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
|
---|
13759 | * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
|
---|
13760 | */
|
---|
13761 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
|
---|
13762 | }
|
---|
13763 |
|
---|
13764 | /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
|
---|
13765 | if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
|
---|
13766 | {
|
---|
13767 | switch (idMsr)
|
---|
13768 | {
|
---|
13769 | case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
|
---|
13770 | case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
|
---|
13771 | case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
|
---|
13772 | case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
|
---|
13773 | case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
|
---|
13774 | case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
|
---|
13775 | default:
|
---|
13776 | {
|
---|
13777 | if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
|
---|
13778 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
|
---|
13779 | else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
|
---|
13780 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
|
---|
13781 | break;
|
---|
13782 | }
|
---|
13783 | }
|
---|
13784 | }
|
---|
13785 | #ifdef VBOX_STRICT
|
---|
13786 | else
|
---|
13787 | {
|
---|
13788 | /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
|
---|
13789 | switch (idMsr)
|
---|
13790 | {
|
---|
13791 | case MSR_IA32_SYSENTER_CS:
|
---|
13792 | case MSR_IA32_SYSENTER_EIP:
|
---|
13793 | case MSR_IA32_SYSENTER_ESP:
|
---|
13794 | case MSR_K8_FS_BASE:
|
---|
13795 | case MSR_K8_GS_BASE:
|
---|
13796 | {
|
---|
13797 | AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
|
---|
13798 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13799 | }
|
---|
13800 |
|
---|
13801 | /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
|
---|
13802 | default:
|
---|
13803 | {
|
---|
13804 | if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
|
---|
13805 | {
|
---|
13806 | /* EFER MSR writes are always intercepted. */
|
---|
13807 | if (idMsr != MSR_K6_EFER)
|
---|
13808 | {
|
---|
13809 | AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
|
---|
13810 | idMsr));
|
---|
13811 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13812 | }
|
---|
13813 | }
|
---|
13814 |
|
---|
13815 | if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
|
---|
13816 | {
|
---|
13817 | Assert(pVmcsInfo->pvMsrBitmap);
|
---|
13818 | uint32_t fMsrpm = HMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
|
---|
13819 | if (fMsrpm & VMXMSRPM_ALLOW_WR)
|
---|
13820 | {
|
---|
13821 | AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
|
---|
13822 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
13823 | }
|
---|
13824 | }
|
---|
13825 | break;
|
---|
13826 | }
|
---|
13827 | }
|
---|
13828 | }
|
---|
13829 | #endif /* VBOX_STRICT */
|
---|
13830 | }
|
---|
13831 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
13832 | {
|
---|
13833 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
13834 | rcStrict = VINF_SUCCESS;
|
---|
13835 | }
|
---|
13836 | else
|
---|
13837 | AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13838 |
|
---|
13839 | return rcStrict;
|
---|
13840 | }
|
---|
13841 |
|
---|
13842 |
|
---|
13843 | /**
|
---|
13844 | * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
|
---|
13845 | */
|
---|
13846 | HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13847 | {
|
---|
13848 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13849 | /** @todo The guest has likely hit a contended spinlock. We might want to
|
---|
13850 | * poke a schedule different guest VCPU. */
|
---|
13851 | return VINF_EM_RAW_INTERRUPT;
|
---|
13852 | }
|
---|
13853 |
|
---|
13854 |
|
---|
13855 | /**
|
---|
13856 | * VM-exit handler for when the TPR value is lowered below the specified
|
---|
13857 | * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
|
---|
13858 | */
|
---|
13859 | HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13860 | {
|
---|
13861 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13862 | Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
|
---|
13863 |
|
---|
13864 | /*
|
---|
13865 | * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
|
---|
13866 | * We'll re-evaluate pending interrupts and inject them before the next VM
|
---|
13867 | * entry so we can just continue execution here.
|
---|
13868 | */
|
---|
13869 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
|
---|
13870 | return VINF_SUCCESS;
|
---|
13871 | }
|
---|
13872 |
|
---|
13873 |
|
---|
13874 | /**
|
---|
13875 | * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
|
---|
13876 | * VM-exit.
|
---|
13877 | *
|
---|
13878 | * @retval VINF_SUCCESS when guest execution can continue.
|
---|
13879 | * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
|
---|
13880 | * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
|
---|
13881 | * interpreter.
|
---|
13882 | */
|
---|
13883 | HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
13884 | {
|
---|
13885 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
13886 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
|
---|
13887 |
|
---|
13888 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
13889 | int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
13890 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
13891 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
13892 | AssertRCReturn(rc, rc);
|
---|
13893 |
|
---|
13894 | VBOXSTRICTRC rcStrict;
|
---|
13895 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
13896 | RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
|
---|
13897 | uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
|
---|
13898 | switch (uAccessType)
|
---|
13899 | {
|
---|
13900 | case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
|
---|
13901 | {
|
---|
13902 | uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
|
---|
13903 | rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
|
---|
13904 | VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
|
---|
13905 | AssertMsg( rcStrict == VINF_SUCCESS
|
---|
13906 | || rcStrict == VINF_IEM_RAISED_XCPT
|
---|
13907 | || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13908 |
|
---|
13909 | switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
|
---|
13910 | {
|
---|
13911 | case 0:
|
---|
13912 | {
|
---|
13913 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
|
---|
13914 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
|
---|
13915 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
|
---|
13916 | Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
|
---|
13917 |
|
---|
13918 | /*
|
---|
13919 | * This is a kludge for handling switches back to real mode when we try to use
|
---|
13920 | * V86 mode to run real mode code directly. Problem is that V86 mode cannot
|
---|
13921 | * deal with special selector values, so we have to return to ring-3 and run
|
---|
13922 | * there till the selector values are V86 mode compatible.
|
---|
13923 | *
|
---|
13924 | * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
|
---|
13925 | * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
|
---|
13926 | * at the end of this function.
|
---|
13927 | */
|
---|
13928 | if ( rc == VINF_SUCCESS
|
---|
13929 | && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
|
---|
13930 | && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
|
---|
13931 | && (uOldCr0 & X86_CR0_PE)
|
---|
13932 | && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
|
---|
13933 | {
|
---|
13934 | /** @todo check selectors rather than returning all the time. */
|
---|
13935 | Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
13936 | rcStrict = VINF_EM_RESCHEDULE_REM;
|
---|
13937 | }
|
---|
13938 | break;
|
---|
13939 | }
|
---|
13940 |
|
---|
13941 | case 2:
|
---|
13942 | {
|
---|
13943 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
|
---|
13944 | /* Nothing to do here, CR2 it's not part of the VMCS. */
|
---|
13945 | break;
|
---|
13946 | }
|
---|
13947 |
|
---|
13948 | case 3:
|
---|
13949 | {
|
---|
13950 | Assert( !pVM->hm.s.fNestedPaging
|
---|
13951 | || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
|
---|
13952 | || pVCpu->hm.s.fUsingDebugLoop);
|
---|
13953 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
|
---|
13954 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
|
---|
13955 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
|
---|
13956 | Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
|
---|
13957 | break;
|
---|
13958 | }
|
---|
13959 |
|
---|
13960 | case 4:
|
---|
13961 | {
|
---|
13962 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
|
---|
13963 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
|
---|
13964 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
|
---|
13965 | Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
|
---|
13966 | pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
|
---|
13967 | break;
|
---|
13968 | }
|
---|
13969 |
|
---|
13970 | case 8:
|
---|
13971 | {
|
---|
13972 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
|
---|
13973 | Assert(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
|
---|
13974 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
|
---|
13975 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
|
---|
13976 | break;
|
---|
13977 | }
|
---|
13978 | default:
|
---|
13979 | AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
|
---|
13980 | break;
|
---|
13981 | }
|
---|
13982 | break;
|
---|
13983 | }
|
---|
13984 |
|
---|
13985 | case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
|
---|
13986 | {
|
---|
13987 | Assert( !pVM->hm.s.fNestedPaging
|
---|
13988 | || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
|
---|
13989 | || pVCpu->hm.s.fUsingDebugLoop
|
---|
13990 | || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
|
---|
13991 | /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
|
---|
13992 | Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
|
---|
13993 | || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
|
---|
13994 |
|
---|
13995 | rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
|
---|
13996 | VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
|
---|
13997 | AssertMsg( rcStrict == VINF_SUCCESS
|
---|
13998 | || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
13999 | #ifdef VBOX_WITH_STATISTICS
|
---|
14000 | switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
|
---|
14001 | {
|
---|
14002 | case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
|
---|
14003 | case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
|
---|
14004 | case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
|
---|
14005 | case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
|
---|
14006 | case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
|
---|
14007 | }
|
---|
14008 | #endif
|
---|
14009 | Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
|
---|
14010 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14011 | if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
|
---|
14012 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
|
---|
14013 | else
|
---|
14014 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
14015 | break;
|
---|
14016 | }
|
---|
14017 |
|
---|
14018 | case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
|
---|
14019 | {
|
---|
14020 | rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
|
---|
14021 | AssertMsg( rcStrict == VINF_SUCCESS
|
---|
14022 | || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14023 |
|
---|
14024 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
|
---|
14025 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
|
---|
14026 | Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14027 | break;
|
---|
14028 | }
|
---|
14029 |
|
---|
14030 | case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
|
---|
14031 | {
|
---|
14032 | /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
|
---|
14033 | rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
|
---|
14034 | AssertRCReturn(rc, rc);
|
---|
14035 | rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
|
---|
14036 | pVmxTransient->uGuestLinearAddr);
|
---|
14037 | AssertMsg( rcStrict == VINF_SUCCESS
|
---|
14038 | || rcStrict == VINF_IEM_RAISED_XCPT
|
---|
14039 | , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14040 |
|
---|
14041 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
|
---|
14042 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
|
---|
14043 | Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14044 | break;
|
---|
14045 | }
|
---|
14046 |
|
---|
14047 | default:
|
---|
14048 | AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
|
---|
14049 | VERR_VMX_UNEXPECTED_EXCEPTION);
|
---|
14050 | }
|
---|
14051 |
|
---|
14052 | Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
|
---|
14053 | == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
|
---|
14054 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
14055 | {
|
---|
14056 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
14057 | rcStrict = VINF_SUCCESS;
|
---|
14058 | }
|
---|
14059 |
|
---|
14060 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
|
---|
14061 | NOREF(pVM);
|
---|
14062 | return rcStrict;
|
---|
14063 | }
|
---|
14064 |
|
---|
14065 |
|
---|
14066 | /**
|
---|
14067 | * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
|
---|
14068 | * VM-exit.
|
---|
14069 | */
|
---|
14070 | HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14071 | {
|
---|
14072 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14073 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
|
---|
14074 |
|
---|
14075 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
14076 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
14077 | int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
14078 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
14079 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
|
---|
14080 | | CPUMCTX_EXTRN_EFER);
|
---|
14081 | /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
|
---|
14082 | AssertRCReturn(rc, rc);
|
---|
14083 |
|
---|
14084 | /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
|
---|
14085 | uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
|
---|
14086 | uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
|
---|
14087 | bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
|
---|
14088 | bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
|
---|
14089 | bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
|
---|
14090 | bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
|
---|
14091 | AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
|
---|
14092 |
|
---|
14093 | /*
|
---|
14094 | * Update exit history to see if this exit can be optimized.
|
---|
14095 | */
|
---|
14096 | VBOXSTRICTRC rcStrict;
|
---|
14097 | PCEMEXITREC pExitRec = NULL;
|
---|
14098 | if ( !fGstStepping
|
---|
14099 | && !fDbgStepping)
|
---|
14100 | pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
|
---|
14101 | !fIOString
|
---|
14102 | ? !fIOWrite
|
---|
14103 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
|
---|
14104 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
|
---|
14105 | : !fIOWrite
|
---|
14106 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
|
---|
14107 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
|
---|
14108 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
14109 | if (!pExitRec)
|
---|
14110 | {
|
---|
14111 | /* I/O operation lookup arrays. */
|
---|
14112 | static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
|
---|
14113 | static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
|
---|
14114 | uint32_t const cbValue = s_aIOSizes[uIOWidth];
|
---|
14115 | uint32_t const cbInstr = pVmxTransient->cbInstr;
|
---|
14116 | bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
|
---|
14117 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
14118 | if (fIOString)
|
---|
14119 | {
|
---|
14120 | /*
|
---|
14121 | * INS/OUTS - I/O String instruction.
|
---|
14122 | *
|
---|
14123 | * Use instruction-information if available, otherwise fall back on
|
---|
14124 | * interpreting the instruction.
|
---|
14125 | */
|
---|
14126 | Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
|
---|
14127 | AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
|
---|
14128 | bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
|
---|
14129 | if (fInsOutsInfo)
|
---|
14130 | {
|
---|
14131 | int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
14132 | AssertRCReturn(rc2, rc2);
|
---|
14133 | AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
|
---|
14134 | AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
|
---|
14135 | IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
|
---|
14136 | bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
|
---|
14137 | if (fIOWrite)
|
---|
14138 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
|
---|
14139 | pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
|
---|
14140 | else
|
---|
14141 | {
|
---|
14142 | /*
|
---|
14143 | * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
|
---|
14144 | * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
|
---|
14145 | * See Intel Instruction spec. for "INS".
|
---|
14146 | * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
|
---|
14147 | */
|
---|
14148 | rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
|
---|
14149 | }
|
---|
14150 | }
|
---|
14151 | else
|
---|
14152 | rcStrict = IEMExecOne(pVCpu);
|
---|
14153 |
|
---|
14154 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
|
---|
14155 | fUpdateRipAlready = true;
|
---|
14156 | }
|
---|
14157 | else
|
---|
14158 | {
|
---|
14159 | /*
|
---|
14160 | * IN/OUT - I/O instruction.
|
---|
14161 | */
|
---|
14162 | Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
|
---|
14163 | uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
|
---|
14164 | Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
|
---|
14165 | if (fIOWrite)
|
---|
14166 | {
|
---|
14167 | rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
|
---|
14168 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
|
---|
14169 | if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
14170 | && !pCtx->eflags.Bits.u1TF)
|
---|
14171 | rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
|
---|
14172 | }
|
---|
14173 | else
|
---|
14174 | {
|
---|
14175 | uint32_t u32Result = 0;
|
---|
14176 | rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
|
---|
14177 | if (IOM_SUCCESS(rcStrict))
|
---|
14178 | {
|
---|
14179 | /* Save result of I/O IN instr. in AL/AX/EAX. */
|
---|
14180 | pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
|
---|
14181 | }
|
---|
14182 | if ( rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
14183 | && !pCtx->eflags.Bits.u1TF)
|
---|
14184 | rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
|
---|
14185 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
|
---|
14186 | }
|
---|
14187 | }
|
---|
14188 |
|
---|
14189 | if (IOM_SUCCESS(rcStrict))
|
---|
14190 | {
|
---|
14191 | if (!fUpdateRipAlready)
|
---|
14192 | {
|
---|
14193 | hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
|
---|
14194 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
|
---|
14195 | }
|
---|
14196 |
|
---|
14197 | /*
|
---|
14198 | * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
|
---|
14199 | * while booting Fedora 17 64-bit guest.
|
---|
14200 | *
|
---|
14201 | * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
|
---|
14202 | */
|
---|
14203 | if (fIOString)
|
---|
14204 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
|
---|
14205 |
|
---|
14206 | /*
|
---|
14207 | * If any I/O breakpoints are armed, we need to check if one triggered
|
---|
14208 | * and take appropriate action.
|
---|
14209 | * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
|
---|
14210 | */
|
---|
14211 | rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
|
---|
14212 | AssertRCReturn(rc, rc);
|
---|
14213 |
|
---|
14214 | /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
|
---|
14215 | * execution engines about whether hyper BPs and such are pending. */
|
---|
14216 | uint32_t const uDr7 = pCtx->dr[7];
|
---|
14217 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
14218 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
14219 | && (pCtx->cr4 & X86_CR4_DE))
|
---|
14220 | || DBGFBpIsHwIoArmed(pVM)))
|
---|
14221 | {
|
---|
14222 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
|
---|
14223 |
|
---|
14224 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
14225 | VMMRZCallRing3Disable(pVCpu);
|
---|
14226 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
14227 |
|
---|
14228 | bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
|
---|
14229 |
|
---|
14230 | VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
|
---|
14231 | if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
|
---|
14232 | {
|
---|
14233 | /* Raise #DB. */
|
---|
14234 | if (fIsGuestDbgActive)
|
---|
14235 | ASMSetDR6(pCtx->dr[6]);
|
---|
14236 | if (pCtx->dr[7] != uDr7)
|
---|
14237 | pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
|
---|
14238 |
|
---|
14239 | hmR0VmxSetPendingXcptDB(pVCpu);
|
---|
14240 | }
|
---|
14241 | /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
|
---|
14242 | however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
|
---|
14243 | else if ( rcStrict2 != VINF_SUCCESS
|
---|
14244 | && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
|
---|
14245 | rcStrict = rcStrict2;
|
---|
14246 | AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
|
---|
14247 |
|
---|
14248 | HM_RESTORE_PREEMPT();
|
---|
14249 | VMMRZCallRing3Enable(pVCpu);
|
---|
14250 | }
|
---|
14251 | }
|
---|
14252 |
|
---|
14253 | #ifdef VBOX_STRICT
|
---|
14254 | if ( rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
14255 | || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
|
---|
14256 | Assert(!fIOWrite);
|
---|
14257 | else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
14258 | || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
|
---|
14259 | || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
|
---|
14260 | Assert(fIOWrite);
|
---|
14261 | else
|
---|
14262 | {
|
---|
14263 | # if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
|
---|
14264 | * statuses, that the VMM device and some others may return. See
|
---|
14265 | * IOM_SUCCESS() for guidance. */
|
---|
14266 | AssertMsg( RT_FAILURE(rcStrict)
|
---|
14267 | || rcStrict == VINF_SUCCESS
|
---|
14268 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
14269 | || rcStrict == VINF_EM_DBG_BREAKPOINT
|
---|
14270 | || rcStrict == VINF_EM_RAW_GUEST_TRAP
|
---|
14271 | || rcStrict == VINF_EM_RAW_TO_R3
|
---|
14272 | || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14273 | # endif
|
---|
14274 | }
|
---|
14275 | #endif
|
---|
14276 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
|
---|
14277 | }
|
---|
14278 | else
|
---|
14279 | {
|
---|
14280 | /*
|
---|
14281 | * Frequent exit or something needing probing. Get state and call EMHistoryExec.
|
---|
14282 | */
|
---|
14283 | int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
14284 | AssertRCReturn(rc2, rc2);
|
---|
14285 | STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
|
---|
14286 | : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
|
---|
14287 | Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
|
---|
14288 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
14289 | VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
|
---|
14290 | fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
|
---|
14291 |
|
---|
14292 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
14293 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
14294 |
|
---|
14295 | Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
14296 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
14297 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
14298 | }
|
---|
14299 | return rcStrict;
|
---|
14300 | }
|
---|
14301 |
|
---|
14302 |
|
---|
14303 | /**
|
---|
14304 | * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
|
---|
14305 | * VM-exit.
|
---|
14306 | */
|
---|
14307 | HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14308 | {
|
---|
14309 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14310 |
|
---|
14311 | /* Check if this task-switch occurred while delivery an event through the guest IDT. */
|
---|
14312 | int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
14313 | AssertRCReturn(rc, rc);
|
---|
14314 | if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
|
---|
14315 | {
|
---|
14316 | rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
|
---|
14317 | AssertRCReturn(rc, rc);
|
---|
14318 | if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
14319 | {
|
---|
14320 | uint32_t uErrCode;
|
---|
14321 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
14322 | uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
|
---|
14323 | uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
|
---|
14324 | bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
|
---|
14325 | if (fErrorCodeValid)
|
---|
14326 | {
|
---|
14327 | rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
|
---|
14328 | AssertRCReturn(rc, rc);
|
---|
14329 | uErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
14330 | }
|
---|
14331 | else
|
---|
14332 | uErrCode = 0;
|
---|
14333 |
|
---|
14334 | if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
14335 | && uVector == X86_XCPT_PF)
|
---|
14336 | GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
|
---|
14337 | else
|
---|
14338 | GCPtrFaultAddress = 0;
|
---|
14339 |
|
---|
14340 | rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
14341 | AssertRCReturn(rc, rc);
|
---|
14342 |
|
---|
14343 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
|
---|
14344 | pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
|
---|
14345 |
|
---|
14346 | Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
|
---|
14347 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
14348 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
14349 | }
|
---|
14350 | }
|
---|
14351 |
|
---|
14352 | /* Fall back to the interpreter to emulate the task-switch. */
|
---|
14353 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
14354 | return VERR_EM_INTERPRETER;
|
---|
14355 | }
|
---|
14356 |
|
---|
14357 |
|
---|
14358 | /**
|
---|
14359 | * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
|
---|
14360 | */
|
---|
14361 | HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14362 | {
|
---|
14363 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14364 |
|
---|
14365 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
14366 | pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
|
---|
14367 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
14368 | AssertRCReturn(rc, rc);
|
---|
14369 | return VINF_EM_DBG_STEPPED;
|
---|
14370 | }
|
---|
14371 |
|
---|
14372 |
|
---|
14373 | /**
|
---|
14374 | * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
|
---|
14375 | */
|
---|
14376 | HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14377 | {
|
---|
14378 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14379 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
|
---|
14380 |
|
---|
14381 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
14382 | VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
|
---|
14383 | if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
|
---|
14384 | {
|
---|
14385 | /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
|
---|
14386 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
14387 | {
|
---|
14388 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
|
---|
14389 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
14390 | }
|
---|
14391 | }
|
---|
14392 | else
|
---|
14393 | {
|
---|
14394 | if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
|
---|
14395 | rcStrict1 = VINF_SUCCESS;
|
---|
14396 | return rcStrict1;
|
---|
14397 | }
|
---|
14398 |
|
---|
14399 | /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
|
---|
14400 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
14401 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
14402 | rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
14403 | AssertRCReturn(rc, rc);
|
---|
14404 |
|
---|
14405 | /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
|
---|
14406 | uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
|
---|
14407 | VBOXSTRICTRC rcStrict2;
|
---|
14408 | switch (uAccessType)
|
---|
14409 | {
|
---|
14410 | case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
|
---|
14411 | case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
|
---|
14412 | {
|
---|
14413 | AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
14414 | || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
|
---|
14415 | ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
|
---|
14416 |
|
---|
14417 | RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
|
---|
14418 | GCPhys &= PAGE_BASE_GC_MASK;
|
---|
14419 | GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
|
---|
14420 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
14421 | Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
|
---|
14422 | VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
|
---|
14423 |
|
---|
14424 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
14425 | rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
|
---|
14426 | uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
|
---|
14427 | CPUMCTX2CORE(pCtx), GCPhys);
|
---|
14428 | Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
|
---|
14429 | if ( rcStrict2 == VINF_SUCCESS
|
---|
14430 | || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
14431 | || rcStrict2 == VERR_PAGE_NOT_PRESENT)
|
---|
14432 | {
|
---|
14433 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
|
---|
14434 | | HM_CHANGED_GUEST_APIC_TPR);
|
---|
14435 | rcStrict2 = VINF_SUCCESS;
|
---|
14436 | }
|
---|
14437 | break;
|
---|
14438 | }
|
---|
14439 |
|
---|
14440 | default:
|
---|
14441 | Log4Func(("uAccessType=%#x\n", uAccessType));
|
---|
14442 | rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
|
---|
14443 | break;
|
---|
14444 | }
|
---|
14445 |
|
---|
14446 | if (rcStrict2 != VINF_SUCCESS)
|
---|
14447 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
|
---|
14448 | return rcStrict2;
|
---|
14449 | }
|
---|
14450 |
|
---|
14451 |
|
---|
14452 | /**
|
---|
14453 | * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
|
---|
14454 | * VM-exit.
|
---|
14455 | */
|
---|
14456 | HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14457 | {
|
---|
14458 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14459 |
|
---|
14460 | /* We should -not- get this VM-exit if the guest's debug registers were active. */
|
---|
14461 | if (pVmxTransient->fWasGuestDebugStateActive)
|
---|
14462 | {
|
---|
14463 | AssertMsgFailed(("Unexpected MOV DRx exit\n"));
|
---|
14464 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
|
---|
14465 | }
|
---|
14466 |
|
---|
14467 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
14468 | if ( !pVCpu->hm.s.fSingleInstruction
|
---|
14469 | && !pVmxTransient->fWasHyperDebugStateActive)
|
---|
14470 | {
|
---|
14471 | Assert(!DBGFIsStepping(pVCpu));
|
---|
14472 | Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
|
---|
14473 |
|
---|
14474 | /* Don't intercept MOV DRx any more. */
|
---|
14475 | pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
|
---|
14476 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
14477 | AssertRCReturn(rc, rc);
|
---|
14478 |
|
---|
14479 | /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
|
---|
14480 | VMMRZCallRing3Disable(pVCpu);
|
---|
14481 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
14482 |
|
---|
14483 | /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
|
---|
14484 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
14485 | Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
|
---|
14486 |
|
---|
14487 | HM_RESTORE_PREEMPT();
|
---|
14488 | VMMRZCallRing3Enable(pVCpu);
|
---|
14489 |
|
---|
14490 | #ifdef VBOX_WITH_STATISTICS
|
---|
14491 | rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
14492 | AssertRCReturn(rc, rc);
|
---|
14493 | if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
|
---|
14494 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
14495 | else
|
---|
14496 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
14497 | #endif
|
---|
14498 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
|
---|
14499 | return VINF_SUCCESS;
|
---|
14500 | }
|
---|
14501 |
|
---|
14502 | /*
|
---|
14503 | * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
|
---|
14504 | * The EFER MSR is always up-to-date.
|
---|
14505 | * Update the segment registers and DR7 from the CPU.
|
---|
14506 | */
|
---|
14507 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
14508 | int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
14509 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
|
---|
14510 | AssertRCReturn(rc, rc);
|
---|
14511 | Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
14512 |
|
---|
14513 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
14514 | if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
|
---|
14515 | {
|
---|
14516 | rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
|
---|
14517 | VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
|
---|
14518 | VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
|
---|
14519 | if (RT_SUCCESS(rc))
|
---|
14520 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
|
---|
14521 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
14522 | }
|
---|
14523 | else
|
---|
14524 | {
|
---|
14525 | rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
|
---|
14526 | VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
|
---|
14527 | VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
|
---|
14528 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
14529 | }
|
---|
14530 |
|
---|
14531 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
|
---|
14532 | if (RT_SUCCESS(rc))
|
---|
14533 | {
|
---|
14534 | int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
14535 | AssertRCReturn(rc2, rc2);
|
---|
14536 | return VINF_SUCCESS;
|
---|
14537 | }
|
---|
14538 | return rc;
|
---|
14539 | }
|
---|
14540 |
|
---|
14541 |
|
---|
14542 | /**
|
---|
14543 | * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
|
---|
14544 | * Conditional VM-exit.
|
---|
14545 | */
|
---|
14546 | HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14547 | {
|
---|
14548 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14549 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
14550 |
|
---|
14551 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
14552 | VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
|
---|
14553 | if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
|
---|
14554 | {
|
---|
14555 | /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
|
---|
14556 | injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
|
---|
14557 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
14558 | {
|
---|
14559 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
|
---|
14560 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
14561 | }
|
---|
14562 | }
|
---|
14563 | else
|
---|
14564 | {
|
---|
14565 | if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
|
---|
14566 | rcStrict1 = VINF_SUCCESS;
|
---|
14567 | return rcStrict1;
|
---|
14568 | }
|
---|
14569 |
|
---|
14570 | /*
|
---|
14571 | * Get sufficent state and update the exit history entry.
|
---|
14572 | */
|
---|
14573 | RTGCPHYS GCPhys;
|
---|
14574 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
14575 | int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
|
---|
14576 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
14577 | AssertRCReturn(rc, rc);
|
---|
14578 |
|
---|
14579 | VBOXSTRICTRC rcStrict;
|
---|
14580 | PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
|
---|
14581 | EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
|
---|
14582 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
14583 | if (!pExitRec)
|
---|
14584 | {
|
---|
14585 | /*
|
---|
14586 | * If we succeed, resume guest execution.
|
---|
14587 | * If we fail in interpreting the instruction because we couldn't get the guest physical address
|
---|
14588 | * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
|
---|
14589 | * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
|
---|
14590 | * weird case. See @bugref{6043}.
|
---|
14591 | */
|
---|
14592 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
14593 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
14594 | rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
|
---|
14595 | Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
14596 | if ( rcStrict == VINF_SUCCESS
|
---|
14597 | || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
14598 | || rcStrict == VERR_PAGE_NOT_PRESENT)
|
---|
14599 | {
|
---|
14600 | /* Successfully handled MMIO operation. */
|
---|
14601 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
|
---|
14602 | | HM_CHANGED_GUEST_APIC_TPR);
|
---|
14603 | rcStrict = VINF_SUCCESS;
|
---|
14604 | }
|
---|
14605 | }
|
---|
14606 | else
|
---|
14607 | {
|
---|
14608 | /*
|
---|
14609 | * Frequent exit or something needing probing. Get state and call EMHistoryExec.
|
---|
14610 | */
|
---|
14611 | int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
14612 | AssertRCReturn(rc2, rc2);
|
---|
14613 |
|
---|
14614 | Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
|
---|
14615 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
|
---|
14616 |
|
---|
14617 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
14618 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
14619 |
|
---|
14620 | Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
14621 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
14622 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
14623 | }
|
---|
14624 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
14625 | }
|
---|
14626 |
|
---|
14627 |
|
---|
14628 | /**
|
---|
14629 | * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
|
---|
14630 | * VM-exit.
|
---|
14631 | */
|
---|
14632 | HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14633 | {
|
---|
14634 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14635 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
14636 |
|
---|
14637 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
14638 | VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
|
---|
14639 | if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
|
---|
14640 | {
|
---|
14641 | /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
|
---|
14642 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
14643 | Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
|
---|
14644 | }
|
---|
14645 | else
|
---|
14646 | {
|
---|
14647 | if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
|
---|
14648 | rcStrict1 = VINF_SUCCESS;
|
---|
14649 | return rcStrict1;
|
---|
14650 | }
|
---|
14651 |
|
---|
14652 | RTGCPHYS GCPhys;
|
---|
14653 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
14654 | int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
|
---|
14655 | rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
14656 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
14657 | AssertRCReturn(rc, rc);
|
---|
14658 |
|
---|
14659 | /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
|
---|
14660 | AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
|
---|
14661 |
|
---|
14662 | RTGCUINT uErrorCode = 0;
|
---|
14663 | if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
|
---|
14664 | uErrorCode |= X86_TRAP_PF_ID;
|
---|
14665 | if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
|
---|
14666 | uErrorCode |= X86_TRAP_PF_RW;
|
---|
14667 | if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
|
---|
14668 | uErrorCode |= X86_TRAP_PF_P;
|
---|
14669 |
|
---|
14670 | TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
|
---|
14671 |
|
---|
14672 |
|
---|
14673 | /* Handle the pagefault trap for the nested shadow table. */
|
---|
14674 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
14675 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
14676 |
|
---|
14677 | Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x cs:rip=%#04x:%#RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
|
---|
14678 | pCtx->cs.Sel, pCtx->rip));
|
---|
14679 |
|
---|
14680 | VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
|
---|
14681 | TRPMResetTrap(pVCpu);
|
---|
14682 |
|
---|
14683 | /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
|
---|
14684 | if ( rcStrict2 == VINF_SUCCESS
|
---|
14685 | || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
14686 | || rcStrict2 == VERR_PAGE_NOT_PRESENT)
|
---|
14687 | {
|
---|
14688 | /* Successfully synced our nested page tables. */
|
---|
14689 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
|
---|
14690 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
|
---|
14691 | return VINF_SUCCESS;
|
---|
14692 | }
|
---|
14693 |
|
---|
14694 | Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
|
---|
14695 | return rcStrict2;
|
---|
14696 | }
|
---|
14697 |
|
---|
14698 | /** @} */
|
---|
14699 |
|
---|
14700 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
14701 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
14702 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
14703 |
|
---|
14704 | /**
|
---|
14705 | * VM-exit exception handler for \#MF (Math Fault: floating point exception).
|
---|
14706 | */
|
---|
14707 | static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14708 | {
|
---|
14709 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14710 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
|
---|
14711 |
|
---|
14712 | int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
|
---|
14713 | AssertRCReturn(rc, rc);
|
---|
14714 |
|
---|
14715 | if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
|
---|
14716 | {
|
---|
14717 | /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
|
---|
14718 | rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
|
---|
14719 |
|
---|
14720 | /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
|
---|
14721 | * provides VM-exit instruction length. If this causes problem later,
|
---|
14722 | * disassemble the instruction like it's done on AMD-V. */
|
---|
14723 | int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
14724 | AssertRCReturn(rc2, rc2);
|
---|
14725 | return rc;
|
---|
14726 | }
|
---|
14727 |
|
---|
14728 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
|
---|
14729 | pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
14730 | return rc;
|
---|
14731 | }
|
---|
14732 |
|
---|
14733 |
|
---|
14734 | /**
|
---|
14735 | * VM-exit exception handler for \#BP (Breakpoint exception).
|
---|
14736 | */
|
---|
14737 | static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14738 | {
|
---|
14739 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14740 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
|
---|
14741 |
|
---|
14742 | int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
14743 | AssertRCReturn(rc, rc);
|
---|
14744 |
|
---|
14745 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
14746 | rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
14747 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
14748 | {
|
---|
14749 | rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
14750 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
14751 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
14752 | AssertRCReturn(rc, rc);
|
---|
14753 |
|
---|
14754 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
|
---|
14755 | pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
14756 | }
|
---|
14757 |
|
---|
14758 | Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
|
---|
14759 | return rc;
|
---|
14760 | }
|
---|
14761 |
|
---|
14762 |
|
---|
14763 | /**
|
---|
14764 | * VM-exit exception handler for \#AC (alignment check exception).
|
---|
14765 | */
|
---|
14766 | static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14767 | {
|
---|
14768 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14769 |
|
---|
14770 | /*
|
---|
14771 | * Re-inject it. We'll detect any nesting before getting here.
|
---|
14772 | */
|
---|
14773 | int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
14774 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
14775 | AssertRCReturn(rc, rc);
|
---|
14776 | Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
|
---|
14777 |
|
---|
14778 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
|
---|
14779 | pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
14780 | return VINF_SUCCESS;
|
---|
14781 | }
|
---|
14782 |
|
---|
14783 |
|
---|
14784 | /**
|
---|
14785 | * VM-exit exception handler for \#DB (Debug exception).
|
---|
14786 | */
|
---|
14787 | static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14788 | {
|
---|
14789 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14790 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
|
---|
14791 |
|
---|
14792 | /*
|
---|
14793 | * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
|
---|
14794 | * for processing.
|
---|
14795 | */
|
---|
14796 | int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
14797 |
|
---|
14798 | /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
|
---|
14799 | uint64_t const uDR6 = X86_DR6_INIT_VAL
|
---|
14800 | | (pVmxTransient->uExitQual & ( X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3
|
---|
14801 | | X86_DR6_BD | X86_DR6_BS));
|
---|
14802 |
|
---|
14803 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
14804 | rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
|
---|
14805 | Log6Func(("rc=%Rrc\n", rc));
|
---|
14806 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
14807 | {
|
---|
14808 | /*
|
---|
14809 | * The exception was for the guest. Update DR6, DR7.GD and
|
---|
14810 | * IA32_DEBUGCTL.LBR before forwarding it.
|
---|
14811 | * See Intel spec. 27.1 "Architectural State before a VM-Exit".
|
---|
14812 | */
|
---|
14813 | VMMRZCallRing3Disable(pVCpu);
|
---|
14814 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
14815 |
|
---|
14816 | pCtx->dr[6] &= ~X86_DR6_B_MASK;
|
---|
14817 | pCtx->dr[6] |= uDR6;
|
---|
14818 | if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
14819 | ASMSetDR6(pCtx->dr[6]);
|
---|
14820 |
|
---|
14821 | HM_RESTORE_PREEMPT();
|
---|
14822 | VMMRZCallRing3Enable(pVCpu);
|
---|
14823 |
|
---|
14824 | rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
|
---|
14825 | AssertRCReturn(rc, rc);
|
---|
14826 |
|
---|
14827 | /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
|
---|
14828 | pCtx->dr[7] &= ~X86_DR7_GD;
|
---|
14829 |
|
---|
14830 | /* Paranoia. */
|
---|
14831 | pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
|
---|
14832 | pCtx->dr[7] |= X86_DR7_RA1_MASK;
|
---|
14833 |
|
---|
14834 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
|
---|
14835 | AssertRCReturn(rc, rc);
|
---|
14836 |
|
---|
14837 | /*
|
---|
14838 | * Raise #DB in the guest.
|
---|
14839 | *
|
---|
14840 | * It is important to reflect exactly what the VM-exit gave us (preserving the
|
---|
14841 | * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
|
---|
14842 | * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
|
---|
14843 | * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
|
---|
14844 | *
|
---|
14845 | * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
|
---|
14846 | * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
|
---|
14847 | */
|
---|
14848 | rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
14849 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
14850 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
14851 | AssertRCReturn(rc, rc);
|
---|
14852 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
|
---|
14853 | pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
14854 | return VINF_SUCCESS;
|
---|
14855 | }
|
---|
14856 |
|
---|
14857 | /*
|
---|
14858 | * Not a guest trap, must be a hypervisor related debug event then.
|
---|
14859 | * Update DR6 in case someone is interested in it.
|
---|
14860 | */
|
---|
14861 | AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
|
---|
14862 | AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
|
---|
14863 | CPUMSetHyperDR6(pVCpu, uDR6);
|
---|
14864 |
|
---|
14865 | return rc;
|
---|
14866 | }
|
---|
14867 |
|
---|
14868 |
|
---|
14869 | /**
|
---|
14870 | * Hacks its way around the lovely mesa driver's backdoor accesses.
|
---|
14871 | *
|
---|
14872 | * @sa hmR0SvmHandleMesaDrvGp
|
---|
14873 | */
|
---|
14874 | static int hmR0VmxHandleMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
|
---|
14875 | {
|
---|
14876 | LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
|
---|
14877 | RT_NOREF(pCtx);
|
---|
14878 |
|
---|
14879 | /* For now we'll just skip the instruction. */
|
---|
14880 | return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
14881 | }
|
---|
14882 |
|
---|
14883 |
|
---|
14884 | /**
|
---|
14885 | * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
|
---|
14886 | * backdoor logging w/o checking what it is running inside.
|
---|
14887 | *
|
---|
14888 | * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
|
---|
14889 | * backdoor port and magic numbers loaded in registers.
|
---|
14890 | *
|
---|
14891 | * @returns true if it is, false if it isn't.
|
---|
14892 | * @sa hmR0SvmIsMesaDrvGp
|
---|
14893 | */
|
---|
14894 | DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
|
---|
14895 | {
|
---|
14896 | /* 0xed: IN eAX,dx */
|
---|
14897 | uint8_t abInstr[1];
|
---|
14898 | if (pVmxTransient->cbInstr != sizeof(abInstr))
|
---|
14899 | return false;
|
---|
14900 |
|
---|
14901 | /* Check that it is #GP(0). */
|
---|
14902 | if (pVmxTransient->uExitIntErrorCode != 0)
|
---|
14903 | return false;
|
---|
14904 |
|
---|
14905 | /* Check magic and port. */
|
---|
14906 | Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
|
---|
14907 | /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
|
---|
14908 | if (pCtx->rax != UINT32_C(0x564d5868))
|
---|
14909 | return false;
|
---|
14910 | if (pCtx->dx != UINT32_C(0x5658))
|
---|
14911 | return false;
|
---|
14912 |
|
---|
14913 | /* Flat ring-3 CS. */
|
---|
14914 | AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
|
---|
14915 | Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
|
---|
14916 | /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
|
---|
14917 | if (pCtx->cs.Attr.n.u2Dpl != 3)
|
---|
14918 | return false;
|
---|
14919 | if (pCtx->cs.u64Base != 0)
|
---|
14920 | return false;
|
---|
14921 |
|
---|
14922 | /* Check opcode. */
|
---|
14923 | AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
|
---|
14924 | Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
|
---|
14925 | int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
|
---|
14926 | /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
|
---|
14927 | if (RT_FAILURE(rc))
|
---|
14928 | return false;
|
---|
14929 | if (abInstr[0] != 0xed)
|
---|
14930 | return false;
|
---|
14931 |
|
---|
14932 | return true;
|
---|
14933 | }
|
---|
14934 |
|
---|
14935 |
|
---|
14936 | /**
|
---|
14937 | * VM-exit exception handler for \#GP (General-protection exception).
|
---|
14938 | *
|
---|
14939 | * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
|
---|
14940 | */
|
---|
14941 | static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
14942 | {
|
---|
14943 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
14944 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
|
---|
14945 |
|
---|
14946 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
14947 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
14948 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
14949 | { /* likely */ }
|
---|
14950 | else
|
---|
14951 | {
|
---|
14952 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
14953 | Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv);
|
---|
14954 | #endif
|
---|
14955 | /* If the guest is not in real-mode or we have unrestricted guest execution support, reflect #GP to the guest. */
|
---|
14956 | int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
14957 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
14958 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
14959 | rc |= hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
14960 | AssertRCReturn(rc, rc);
|
---|
14961 | Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
|
---|
14962 | pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
|
---|
14963 |
|
---|
14964 | if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
|
---|
14965 | || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
|
---|
14966 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
14967 | pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
14968 | else
|
---|
14969 | rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
|
---|
14970 | return rc;
|
---|
14971 | }
|
---|
14972 |
|
---|
14973 | Assert(CPUMIsGuestInRealModeEx(pCtx));
|
---|
14974 | Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
|
---|
14975 |
|
---|
14976 | int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
14977 | AssertRCReturn(rc, rc);
|
---|
14978 |
|
---|
14979 | VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
|
---|
14980 | if (rcStrict == VINF_SUCCESS)
|
---|
14981 | {
|
---|
14982 | if (!CPUMIsGuestInRealModeEx(pCtx))
|
---|
14983 | {
|
---|
14984 | /*
|
---|
14985 | * The guest is no longer in real-mode, check if we can continue executing the
|
---|
14986 | * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
|
---|
14987 | */
|
---|
14988 | pVmcsInfo->RealMode.fRealOnV86Active = false;
|
---|
14989 | if (HMCanExecuteVmxGuest(pVCpu, pCtx))
|
---|
14990 | {
|
---|
14991 | Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
|
---|
14992 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
14993 | }
|
---|
14994 | else
|
---|
14995 | {
|
---|
14996 | Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
|
---|
14997 | rcStrict = VINF_EM_RESCHEDULE;
|
---|
14998 | }
|
---|
14999 | }
|
---|
15000 | else
|
---|
15001 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
15002 | }
|
---|
15003 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
15004 | {
|
---|
15005 | rcStrict = VINF_SUCCESS;
|
---|
15006 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
15007 | }
|
---|
15008 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
15009 | }
|
---|
15010 |
|
---|
15011 |
|
---|
15012 | /**
|
---|
15013 | * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
|
---|
15014 | * the exception reported in the VMX transient structure back into the VM.
|
---|
15015 | *
|
---|
15016 | * @remarks Requires uExitIntInfo in the VMX transient structure to be
|
---|
15017 | * up-to-date.
|
---|
15018 | */
|
---|
15019 | static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15020 | {
|
---|
15021 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15022 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
15023 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
15024 | AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVmcsInfo->RealMode.fRealOnV86Active,
|
---|
15025 | ("uVector=%#x u32XcptBitmap=%#X32\n",
|
---|
15026 | VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
|
---|
15027 | NOREF(pVmcsInfo);
|
---|
15028 | #endif
|
---|
15029 |
|
---|
15030 | /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
|
---|
15031 | hmR0VmxCheckExitDueToEventDelivery(). */
|
---|
15032 | int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
15033 | rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15034 | AssertRCReturn(rc, rc);
|
---|
15035 | Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
|
---|
15036 |
|
---|
15037 | #ifdef DEBUG_ramshankar
|
---|
15038 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
|
---|
15039 | Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n",
|
---|
15040 | VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pCtx->cs.Sel, pCtx->rip));
|
---|
15041 | #endif
|
---|
15042 |
|
---|
15043 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
|
---|
15044 | pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
15045 | return VINF_SUCCESS;
|
---|
15046 | }
|
---|
15047 |
|
---|
15048 |
|
---|
15049 | /**
|
---|
15050 | * VM-exit exception handler for \#PF (Page-fault exception).
|
---|
15051 | */
|
---|
15052 | static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15053 | {
|
---|
15054 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15055 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
15056 | int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
15057 | rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
|
---|
15058 | rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
|
---|
15059 | AssertRCReturn(rc, rc);
|
---|
15060 |
|
---|
15061 | if (!pVM->hm.s.fNestedPaging)
|
---|
15062 | { /* likely */ }
|
---|
15063 | else
|
---|
15064 | {
|
---|
15065 | #if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
|
---|
15066 | Assert(pVCpu->hm.s.fUsingDebugLoop);
|
---|
15067 | #endif
|
---|
15068 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
15069 | if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
|
---|
15070 | {
|
---|
15071 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
|
---|
15072 | pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
|
---|
15073 | }
|
---|
15074 | else
|
---|
15075 | {
|
---|
15076 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
15077 | hmR0VmxSetPendingXcptDF(pVCpu);
|
---|
15078 | Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
|
---|
15079 | }
|
---|
15080 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
15081 | return rc;
|
---|
15082 | }
|
---|
15083 |
|
---|
15084 | /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
|
---|
15085 | of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
|
---|
15086 | if (pVmxTransient->fVectoringPF)
|
---|
15087 | {
|
---|
15088 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
15089 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
15090 | }
|
---|
15091 |
|
---|
15092 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
15093 | rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
15094 | AssertRCReturn(rc, rc);
|
---|
15095 |
|
---|
15096 | Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
|
---|
15097 | pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
|
---|
15098 |
|
---|
15099 | TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
|
---|
15100 | rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
|
---|
15101 |
|
---|
15102 | Log4Func(("#PF: rc=%Rrc\n", rc));
|
---|
15103 | if (rc == VINF_SUCCESS)
|
---|
15104 | {
|
---|
15105 | /*
|
---|
15106 | * This is typically a shadow page table sync or a MMIO instruction. But we may have
|
---|
15107 | * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
|
---|
15108 | */
|
---|
15109 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
15110 | TRPMResetTrap(pVCpu);
|
---|
15111 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
15112 | return rc;
|
---|
15113 | }
|
---|
15114 |
|
---|
15115 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
15116 | {
|
---|
15117 | if (!pVmxTransient->fVectoringDoublePF)
|
---|
15118 | {
|
---|
15119 | /* It's a guest page fault and needs to be reflected to the guest. */
|
---|
15120 | uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
|
---|
15121 | TRPMResetTrap(pVCpu);
|
---|
15122 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
|
---|
15123 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
|
---|
15124 | uGstErrorCode, pVmxTransient->uExitQual);
|
---|
15125 | }
|
---|
15126 | else
|
---|
15127 | {
|
---|
15128 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
15129 | TRPMResetTrap(pVCpu);
|
---|
15130 | pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
|
---|
15131 | hmR0VmxSetPendingXcptDF(pVCpu);
|
---|
15132 | Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
|
---|
15133 | }
|
---|
15134 |
|
---|
15135 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
15136 | return VINF_SUCCESS;
|
---|
15137 | }
|
---|
15138 |
|
---|
15139 | TRPMResetTrap(pVCpu);
|
---|
15140 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
|
---|
15141 | return rc;
|
---|
15142 | }
|
---|
15143 |
|
---|
15144 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
15145 | /** @name VMX instruction handlers.
|
---|
15146 | * @{
|
---|
15147 | */
|
---|
15148 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
15149 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VMX instructions VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
15150 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
15151 |
|
---|
15152 | /**
|
---|
15153 | * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
|
---|
15154 | */
|
---|
15155 | HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15156 | {
|
---|
15157 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15158 |
|
---|
15159 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15160 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
15161 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
15162 | rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
15163 | rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
15164 | AssertRCReturn(rc, rc);
|
---|
15165 |
|
---|
15166 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
15167 |
|
---|
15168 | VMXVEXITINFO ExitInfo;
|
---|
15169 | RT_ZERO(ExitInfo);
|
---|
15170 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
15171 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
15172 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
15173 | ExitInfo.cbInstr = pVmxTransient->cbInstr;
|
---|
15174 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
15175 |
|
---|
15176 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
|
---|
15177 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
15178 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
|
---|
15179 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
15180 | {
|
---|
15181 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
15182 | rcStrict = VINF_SUCCESS;
|
---|
15183 | }
|
---|
15184 | return rcStrict;
|
---|
15185 | }
|
---|
15186 |
|
---|
15187 |
|
---|
15188 | /**
|
---|
15189 | * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
|
---|
15190 | */
|
---|
15191 | HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15192 | {
|
---|
15193 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15194 |
|
---|
15195 | /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
|
---|
15196 | otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
|
---|
15197 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15198 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
15199 | AssertRCReturn(rc, rc);
|
---|
15200 |
|
---|
15201 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
15202 |
|
---|
15203 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMLAUNCH);
|
---|
15204 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
15205 | {
|
---|
15206 | rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
|
---|
15207 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
15208 | }
|
---|
15209 | Assert(rcStrict != VINF_IEM_RAISED_XCPT);
|
---|
15210 | return rcStrict;
|
---|
15211 | }
|
---|
15212 |
|
---|
15213 |
|
---|
15214 | /**
|
---|
15215 | * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
|
---|
15216 | */
|
---|
15217 | HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15218 | {
|
---|
15219 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15220 |
|
---|
15221 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15222 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
15223 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
15224 | rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
15225 | rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
15226 | AssertRCReturn(rc, rc);
|
---|
15227 |
|
---|
15228 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
15229 |
|
---|
15230 | VMXVEXITINFO ExitInfo;
|
---|
15231 | RT_ZERO(ExitInfo);
|
---|
15232 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
15233 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
15234 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
15235 | ExitInfo.cbInstr = pVmxTransient->cbInstr;
|
---|
15236 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
15237 |
|
---|
15238 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
|
---|
15239 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
15240 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
|
---|
15241 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
15242 | {
|
---|
15243 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
15244 | rcStrict = VINF_SUCCESS;
|
---|
15245 | }
|
---|
15246 | return rcStrict;
|
---|
15247 | }
|
---|
15248 |
|
---|
15249 |
|
---|
15250 | /**
|
---|
15251 | * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
|
---|
15252 | */
|
---|
15253 | HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15254 | {
|
---|
15255 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15256 |
|
---|
15257 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15258 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
15259 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
15260 | rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
15261 | rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
15262 | AssertRCReturn(rc, rc);
|
---|
15263 |
|
---|
15264 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
15265 |
|
---|
15266 | VMXVEXITINFO ExitInfo;
|
---|
15267 | RT_ZERO(ExitInfo);
|
---|
15268 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
15269 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
15270 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
15271 | ExitInfo.cbInstr = pVmxTransient->cbInstr;
|
---|
15272 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
|
---|
15273 |
|
---|
15274 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
|
---|
15275 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
15276 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
15277 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
15278 | {
|
---|
15279 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
15280 | rcStrict = VINF_SUCCESS;
|
---|
15281 | }
|
---|
15282 | return rcStrict;
|
---|
15283 | }
|
---|
15284 |
|
---|
15285 |
|
---|
15286 | /**
|
---|
15287 | * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
|
---|
15288 | */
|
---|
15289 | HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15290 | {
|
---|
15291 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15292 |
|
---|
15293 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15294 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
15295 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
15296 | rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
15297 | rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
15298 | AssertRCReturn(rc, rc);
|
---|
15299 |
|
---|
15300 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
15301 |
|
---|
15302 | VMXVEXITINFO ExitInfo;
|
---|
15303 | RT_ZERO(ExitInfo);
|
---|
15304 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
15305 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
15306 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
15307 | ExitInfo.cbInstr = pVmxTransient->cbInstr;
|
---|
15308 | if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
|
---|
15309 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
|
---|
15310 |
|
---|
15311 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
|
---|
15312 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
15313 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
15314 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
15315 | {
|
---|
15316 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
15317 | rcStrict = VINF_SUCCESS;
|
---|
15318 | }
|
---|
15319 | return rcStrict;
|
---|
15320 | }
|
---|
15321 |
|
---|
15322 |
|
---|
15323 | /**
|
---|
15324 | * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
|
---|
15325 | */
|
---|
15326 | HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15327 | {
|
---|
15328 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15329 |
|
---|
15330 | /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
|
---|
15331 | otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
|
---|
15332 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15333 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
15334 | AssertRCReturn(rc, rc);
|
---|
15335 |
|
---|
15336 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
15337 |
|
---|
15338 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMRESUME);
|
---|
15339 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
15340 | {
|
---|
15341 | rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
|
---|
15342 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
15343 | }
|
---|
15344 | Assert(rcStrict != VINF_IEM_RAISED_XCPT);
|
---|
15345 | return rcStrict;
|
---|
15346 | }
|
---|
15347 |
|
---|
15348 |
|
---|
15349 | /**
|
---|
15350 | * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
|
---|
15351 | */
|
---|
15352 | HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15353 | {
|
---|
15354 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15355 |
|
---|
15356 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15357 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
15358 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
15359 | rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
15360 | rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
15361 | AssertRCReturn(rc, rc);
|
---|
15362 |
|
---|
15363 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
15364 |
|
---|
15365 | VMXVEXITINFO ExitInfo;
|
---|
15366 | RT_ZERO(ExitInfo);
|
---|
15367 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
15368 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
15369 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
15370 | ExitInfo.cbInstr = pVmxTransient->cbInstr;
|
---|
15371 | if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
|
---|
15372 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
15373 |
|
---|
15374 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
|
---|
15375 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
15376 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
|
---|
15377 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
15378 | {
|
---|
15379 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
15380 | rcStrict = VINF_SUCCESS;
|
---|
15381 | }
|
---|
15382 | return rcStrict;
|
---|
15383 | }
|
---|
15384 |
|
---|
15385 |
|
---|
15386 | /**
|
---|
15387 | * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
|
---|
15388 | */
|
---|
15389 | HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15390 | {
|
---|
15391 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15392 |
|
---|
15393 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15394 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
|
---|
15395 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
|
---|
15396 | AssertRCReturn(rc, rc);
|
---|
15397 |
|
---|
15398 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
15399 |
|
---|
15400 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
|
---|
15401 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
15402 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
|
---|
15403 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
15404 | {
|
---|
15405 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
15406 | rcStrict = VINF_SUCCESS;
|
---|
15407 | }
|
---|
15408 | return rcStrict;
|
---|
15409 | }
|
---|
15410 |
|
---|
15411 |
|
---|
15412 | /**
|
---|
15413 | * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
|
---|
15414 | */
|
---|
15415 | HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
15416 | {
|
---|
15417 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
15418 |
|
---|
15419 | int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
|
---|
15420 | rc |= hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
15421 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
15422 | rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
|
---|
15423 | rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
15424 | AssertRCReturn(rc, rc);
|
---|
15425 |
|
---|
15426 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
15427 |
|
---|
15428 | VMXVEXITINFO ExitInfo;
|
---|
15429 | RT_ZERO(ExitInfo);
|
---|
15430 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
15431 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
15432 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
15433 | ExitInfo.cbInstr = pVmxTransient->cbInstr;
|
---|
15434 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
15435 |
|
---|
15436 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
|
---|
15437 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
15438 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
|
---|
15439 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
15440 | {
|
---|
15441 | ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
15442 | rcStrict = VINF_SUCCESS;
|
---|
15443 | }
|
---|
15444 | return rcStrict;
|
---|
15445 | }
|
---|
15446 |
|
---|
15447 | /** @} */
|
---|
15448 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
15449 |
|
---|